Challenges facing developers of CAD/CAM models that seek to predict human working postures
NASA Astrophysics Data System (ADS)
Wiker, Steven F.
2005-11-01
This paper outlines the need for development of human posture prediction models for Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) design applications in product, facility and work design. Challenges facing developers of posture prediction algorithms are presented and discussed.
ERIC Educational Resources Information Center
Devos, Christelle; Dupriez, Vincent; Paquay, Leopold
2012-01-01
We investigate how the social working environment predicts beginning teachers' self-efficacy and feelings of depression. Two quantitative studies are presented. The results show that the goal structure of the school culture (mastery or performance orientation) predicts both outcomes. Frequent collaborative interactions with colleagues are related…
Passion for work and emotional exhaustion: the mediating role of rumination and recovery.
Donahue, Eric G; Forest, Jacques; Vallerand, Robert J; Lemyre, Pierre-Nicolas; Crevier-Braud, Laurence; Bergeron, Eliane
2012-11-01
The purpose of the present research is to present a model pertaining to the mediating roles of rumination and recovery experiences in the relationship between a harmonious and an obsessive passion (Vallerand et al., 2003) for work and workers' emotional exhaustion. Two populations were measured in the present research: namely elite coaches and nurses. Study 1's model posits that obsessive passion positively predicts rumination about one's work when being physically away from work, while harmonious passion negatively predicts ruminative thoughts. In turn, rumination is expected to positively contribute to emotional exhaustion. The results of Study 1 were replicated in Study 2. In addition, in the model of Study 2, obsessive passion was expected to undermine recovery experiences, while harmonious passion was expected to predict recovery experiences. In turn, recovery experiences were expected to protect workers from emotional exhaustion. Results of both studies provided support for the proposed model. The present findings demonstrate that passion for work may lead to some adaptive and maladaptive psychological processes depending on the type of passion that is prevalent. © 2012 The Authors. Applied Psychology: Health and Well-Being © 2012 The International Association of Applied Psychology.
The contents of visual working memory reduce uncertainty during visual search.
Cosman, Joshua D; Vecera, Shaun P
2011-05-01
Information held in visual working memory (VWM) influences the allocation of attention during visual search, with targets matching the contents of VWM receiving processing benefits over those that do not. Such an effect could arise from multiple mechanisms: First, it is possible that the contents of working memory enhance the perceptual representation of the target. Alternatively, it is possible that when a target is presented among distractor items, the contents of working memory operate postperceptually to reduce uncertainty about the location of the target. In both cases, a match between the contents of VWM and the target should lead to facilitated processing. However, each effect makes distinct predictions regarding set-size manipulations; whereas perceptual enhancement accounts predict processing benefits regardless of set size, uncertainty reduction accounts predict benefits only with set sizes larger than 1, when there is uncertainty regarding the target location. In the present study, in which briefly presented, masked targets were presented in isolation, there was a negligible effect of the information held in VWM on target discrimination. However, in displays containing multiple masked items, information held in VWM strongly affected target discrimination. These results argue that working memory representations act at a postperceptual level to reduce uncertainty during visual search.
High speed transition prediction
NASA Technical Reports Server (NTRS)
Gasperas, Gediminis
1993-01-01
The main objective of this work period was to develop, maintain and exercise state-of-the-art methods for transition prediction in supersonic flow fields. Basic state and stability codes, acquired during the last work period, were exercised and applied to calculate the properties of various flowfields. The development of a code for the prediction of transition location using a currently novel method (the PSE or Parabolized Stability Equation method), initiated during the last work period and continued during the present work period, was cancelled at mid-year for budgetary reasons. Other activities during this period included the presentation of a paper at the APS meeting in Tallahassee, Florida entitled 'Stability of Two-Dimensional Compressible Boundary Layers', as well as the initiation of a paper co-authored with H. Reed of the Arizona State University entitled 'Stability of Boundary Layers'.
ERIC Educational Resources Information Center
Jerman, Olga; Reynolds, Chandra; Swanson, H. Lee
2012-01-01
The present study investigated whether (a) growth patterns related to cognitive processing (working memory, updating, inhibition) differed in subgroups of children with reading disabilities (RD) and (b) growth in working memory (executive processing) predicted growth in other cognitive areas, such as reading and math. Seventy-three children (ages…
Scaling Techniques for Combustion Device Random Vibration Predictions
NASA Technical Reports Server (NTRS)
Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.
2016-01-01
This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.
Using Earth Observations to Understand and Predict Infectious Diseases
NASA Technical Reports Server (NTRS)
Soebiyanto, Radina P.; Kiang, Richard
2015-01-01
This presentation discusses the processes from data collection and processing to analysis involved in unraveling patterns between disease outbreaks and the surrounding environment and meteorological conditions. We used these patterns to estimate when and where disease outbreaks will occur. As a case study, we will present our work on assessing the relationship between meteorological conditions and influenza in Central America. Our work represents the discovery, prescriptive and predictive aspects of data analytics.
Work and women's well-being: religion and age as moderators.
Noor, Noraini M
2008-12-01
Religion has been found to moderate the stress-strain relationship. This moderator role, however, may be dependent on age. The present study tested for the three-way interaction between work experience, age, and religiosity in the prediction of women's well-being, and predicted that work experience and religiosity will combine additively in older women, while in younger women religiosity is predicted to moderate the relationship between work experience and well-being. In a sample of 389 married Malay Muslim women, results of the regression analyses showed significant three-way interactions between work experience, age, and religiosity in the prediction of well-being (measured by distress symptoms and life satisfaction). While in younger women the results were in line with the predictions made, in the older women, both additive and moderator effects of religiosity were observed, depending on the well-being measures used. These results are discussed in relation to the literature on work and family, with specific reference to women's age, religion, as well as the issue of stress-strain specificity.
Adalio, Christopher J; Owens, Elizabeth B; McBurnett, Keith; Hinshaw, Stephen P; Pfiffner, Linda J
2018-05-01
Neuropsychological functioning underlies behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD). Children with all forms of ADHD are vulnerable to working memory deficits and children presenting with the inattentive form of ADHD (ADHD-I) appear particularly vulnerable to processing speed deficits. As ADHD-I is the most common form of ADHD presented by children in community settings, it is important to consider how treatment interventions for children with ADHD-I may be affected by deficits in processing speed and working memory. We utilize data collected from 199 children with ADHD-I, aged 7 to 11 years, who participated in a randomized clinical trial of a psychosocial-behavioral intervention. Our aims are first to determine whether processing speed or working memory predict treatment outcomes in ADHD-I symptom severity, and second whether they moderate treatment effects on ADHD-I symptom severity. Results of linear regression analyses reveal that baseline processing speed significantly predicts posttreatment ADHD-I symptom severity when controlling for baseline ADHD-I symptom severity, such that better processing speed is associated with greater symptom improvement. However, predictive effects of working memory and moderation effects of both working memory and processing speed are not supported in the present study. We discuss study limitations and implications of the relation between processing speed and treatment benefits from psychosocial treatments for children with ADHD-I.
Laser-Based Trespassing Prediction in Restrictive Environments: A Linear Approach
Cheein, Fernando Auat; Scaglia, Gustavo
2012-01-01
Stationary range laser sensors for intruder monitoring, restricted space violation detections and workspace determination are extensively used in risky environments. In this work we present a linear based approach for predicting the presence of moving agents before they trespass a laser-based restricted space. Our approach is based on the Taylor's series expansion of the detected objects' movements. The latter makes our proposal suitable for embedded applications. In the experimental results (carried out in different scenarios) presented herein, our proposal shows 100% of effectiveness in predicting trespassing situations. Several implementation results and statistics analysis showing the performance of our proposal are included in this work.
Does trait affectivity predict work-to-family conflict and enrichment beyond job characteristics?
Tement, Sara; Korunka, Christian
2013-01-01
The present study examines whether negative and positive affectivity (NA and PA, respectively) predict different forms of work-to-family conflict (WFC-time, WFC-strain, WFC-behavior) and enrichment (WFE-development, WFE-affect, WFE-capital) beyond job characteristics (workload, autonomy, variety, workplace support). Furthermore, interactions between job characteristics and trait affectivity while predicting WFC and WFE were examined. Using a large sample of Slovenian employees (N = 738), NA and PA were found to explain variance in WFC as well as in WFE above and beyond job characteristics. More precisely, NA significantly predicted WFC, whereas PA significantly predicted WFE. In addition, several interactive effects were found to predict forms of WFC and WFE. These results highlight the importance of trait affectivity in work-family research. They provide further support for the crucial impact of job characteristics as well.
Regional Arctic sea-ice prediction: potential versus operational seasonal forecast skill
NASA Astrophysics Data System (ADS)
Bushuk, Mitchell; Msadek, Rym; Winton, Michael; Vecchi, Gabriel; Yang, Xiaosong; Rosati, Anthony; Gudgel, Rich
2018-06-01
Seasonal predictions of Arctic sea ice on regional spatial scales are a pressing need for a broad group of stakeholders, however, most assessments of predictability and forecast skill to date have focused on pan-Arctic sea-ice extent (SIE). In this work, we present the first direct comparison of perfect model (PM) and operational (OP) seasonal prediction skill for regional Arctic SIE within a common dynamical prediction system. This assessment is based on two complementary suites of seasonal prediction ensemble experiments performed with a global coupled climate model. First, we present a suite of PM predictability experiments with start dates spanning the calendar year, which are used to quantify the potential regional SIE prediction skill of this system. Second, we assess the system's OP prediction skill for detrended regional SIE using a suite of retrospective initialized seasonal forecasts spanning 1981-2016. In nearly all Arctic regions and for all target months, we find a substantial skill gap between PM and OP predictions of regional SIE. The PM experiments reveal that regional winter SIE is potentially predictable at lead times beyond 12 months, substantially longer than the skill of their OP counterparts. Both the OP and PM predictions display a spring prediction skill barrier for regional summer SIE forecasts, indicating a fundamental predictability limit for summer regional predictions. We find that a similar barrier exists for pan-Arctic sea-ice volume predictions, but is not present for predictions of pan-Arctic SIE. The skill gap identified in this work indicates a promising potential for future improvements in regional SIE predictions.
Lindberg, Ann-Sofie; Oksa, Juha; Antti, Henrik; Malm, Christer
2015-01-01
Physical capacity has previously been deemed important for firefighters physical work capacity, and aerobic fitness, muscular strength, and muscular endurance are the most frequently investigated parameters of importance. Traditionally, bivariate and multivariate linear regression statistics have been used to study relationships between physical capacities and work capacities among firefighters. An alternative way to handle datasets consisting of numerous correlated variables is to use multivariate projection analyses, such as Orthogonal Projection to Latent Structures. The first aim of the present study was to evaluate the prediction and predictive power of field and laboratory tests, respectively, on firefighters' physical work capacity on selected work tasks. Also, to study if valid predictions could be achieved without anthropometric data. The second aim was to externally validate selected models. The third aim was to validate selected models on firefighters' and on civilians'. A total of 38 (26 men and 12 women) + 90 (38 men and 52 women) subjects were included in the models and the external validation, respectively. The best prediction (R2) and predictive power (Q2) of Stairs, Pulling, Demolition, Terrain, and Rescue work capacities included field tests (R2 = 0.73 to 0.84, Q2 = 0.68 to 0.82). The best external validation was for Stairs work capacity (R2 = 0.80) and worst for Demolition work capacity (R2 = 0.40). In conclusion, field and laboratory tests could equally well predict physical work capacities for firefighting work tasks, and models excluding anthropometric data were valid. The predictive power was satisfactory for all included work tasks except Demolition.
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski, 2008), while other research suggests retrieval from secondary memory is only partly responsible for the observed link between working memory and reasoning (Unsworth & Engle, 2006, 2007b). The present study investigates the relationship between processing speed, working memory, secondary memory, primary memory, and fluid intelligence. Although our findings show all constructs are significantly correlated with fluid intelligence, working memory, but not secondary memory, accounts for significant unique variance in fluid intelligence. Our data support predictions made by Unsworth and Engle, and suggest that the combined need for maintenance and retrieval processes present in working memory tests makes them “special” in their prediction of higher-order cognition. PMID:20438278
Transonic cascade flow prediction using the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Arnone, A.; Stecco, S. S.
1991-01-01
This paper presents results which summarize the work carried out during the last three years to improve the efficiency and accuracy of numerical predictions in turbomachinery flow calculations. A new kind of nonperiodic c-type grid is presented and a Runge-Kutta scheme with accelerating strategies is used as a flow solver. The code capability is presented by testing four different blades at different exit Mach numbers in transonic regimes. Comparison with experiments shows the very good reliability of the numerical prediction. In particular, the loss coefficient seems to be correctly predicted by using the well-known Baldwin-Lomax turbulence model.
The Predictive Ability of IQ and Working Memory Scores in Literacy in an Adult Population
ERIC Educational Resources Information Center
Alloway, Tracy Packiam; Gregory, David
2013-01-01
Literacy problems are highly prevalent and can persist into adulthood. Yet, the majority of research on the predictive nature of cognitive skills to literacy has primarily focused on development and adolescent populations. The aim of the present study was to extend existing research to investigate the roles of IQ scores and Working Memory…
Working memory capacity as controlled attention in tactical decision making.
Furley, Philip A; Memmert, Daniel
2012-06-01
The controlled attention theory of working memory capacity (WMC, Engle 2002) suggests that WMC represents a domain free limitation in the ability to control attention and is predictive of an individual's capability of staying focused, avoiding distraction and impulsive errors. In the present paper we test the predictive power of WMC in computer-based sport decision-making tasks. Experiment 1 demonstrated that high-WMC athletes were better able at focusing their attention on tactical decision making while blocking out irrelevant auditory distraction. Experiment 2 showed that high-WMC athletes were more successful at adapting their tactical decision making according to the situation instead of relying on prepotent inappropriate decisions. The present results provide additional but also unique support for the controlled attention theory of WMC by demonstrating that WMC is predictive of controlling attention in complex settings among different modalities and highlight the importance of working memory in tactical decision making.
Saravanan, Konda Mani; Dunker, A Keith; Krishnaswamy, Sankaran
2017-12-27
More than 60 prediction methods for intrinsically disordered proteins (IDPs) have been developed over the years, many of which are accessible on the World Wide Web. Nearly, all of these predictors give balanced accuracies in the ~65%-~80% range. Since predictors are not perfect, further studies are required to uncover the role of amino acid residues in native IDP as compared to predicted IDP regions. In the present work, we make use of sequences of 100% predicted IDP regions, false positive disorder predictions, and experimentally determined IDP regions to distinguish the characteristics of native versus predicted IDP regions. A higher occurrence of asparagine is observed in sequences of native IDP regions but not in sequences of false positive predictions of IDP regions. The occurrences of certain combinations of amino acids at the pentapeptide level provide a distinguishing feature in the IDPs with respect to globular proteins. The distinguishing features presented in this paper provide insights into the sequence fingerprints of amino acid residues in experimentally determined as compared to predicted IDP regions. These observations and additional work along these lines should enable the development of improvements in the accuracy of disorder prediction algorithm.
Modular Engine Noise Component Prediction System (MCP) Technical Description and Assessment Document
NASA Technical Reports Server (NTRS)
Herkes, William H.; Reed, David H.
2005-01-01
This report describes an empirical prediction procedure for turbofan engine noise. The procedure generates predicted noise levels for several noise components, including inlet- and aft-radiated fan noise, and jet-mixing noise. This report discusses the noise source mechanisms, the development of the prediction procedures, and the assessment of the accuracy of these predictions. Finally, some recommendations for future work are presented.
Working memory and inattentional blindness.
Bredemeier, Keith; Simons, Daniel J
2012-04-01
Individual differences in working memory predict many aspects of cognitive performance, especially for tasks that demand focused attention. One negative consequence of focused attention is inattentional blindness, the failure to notice unexpected objects when attention is engaged elsewhere. Yet, the relationship between individual differences in working memory and inattentional blindness is unclear; some studies have found that higher working memory capacity is associated with greater noticing, but others have found no direct association. Given the theoretical and practical significance of such individual differences, more definitive tests are needed. In two studies with large samples, we tested the relationship between multiple working memory measures and inattentional blindness. Individual differences in working memory predicted the ability to perform an attention-demanding tracking task, but did not predict the likelihood of noticing an unexpected object present during the task. We discuss the reasons why we might not expect such individual differences in noticing and why other studies may have found them.
NASA Technical Reports Server (NTRS)
Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce
2014-01-01
A coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angleof- attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In this paper the background, objectives and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multi-code, multiorganizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.
Studies in Bilingual Evaluation, Work Unit I: Bilingual Prediction Project. Final Report.
ERIC Educational Resources Information Center
de Porcel, Antonio; And Others
The final report of the Bilingual Prediction Project presents a review of the project from its inception in 1975 through completion in 1979. The main goal was to predict a student's academic ability in English. A prediction index was constructed in two stages. The first stage was a description of the target population and their school setting, as…
A New Approach to Predict user Mobility Using Semantic Analysis and Machine Learning.
Fernandes, Roshan; D'Souza G L, Rio
2017-10-19
Mobility prediction is a technique in which the future location of a user is identified in a given network. Mobility prediction provides solutions to many day-to-day life problems. It helps in seamless handovers in wireless networks to provide better location based services and to recalculate paths in Mobile Ad hoc Networks (MANET). In the present study, a framework is presented which predicts user mobility in presence and absence of mobility history. Naïve Bayesian classification algorithm and Markov Model are used to predict user future location when user mobility history is available. An attempt is made to predict user future location by using Short Message Service (SMS) and instantaneous Geological coordinates in the absence of mobility patterns. The proposed technique compares the performance metrics with commonly used Markov Chain model. From the experimental results it is evident that the techniques used in this work gives better results when considering both spatial and temporal information. The proposed method predicts user's future location in the absence of mobility history quite fairly. The proposed work is applied to predict the mobility of medical rescue vehicles and social security systems.
NASA Astrophysics Data System (ADS)
Kroon, Martin
2012-01-01
In the present study, a computational framework for studying high-speed crack growth in rubber-like solids under conditions of plane stress and steady-state is proposed. Effects of inertia, viscoelasticity and finite strains are included. The main purpose of the study is to examine the contribution of viscoelastic dissipation to the total work of fracture required to propagate a crack in a rubber-like solid. The computational framework builds upon a previous work by the present author (Kroon in Int J Fract 169:49-60, 2011). The model was fully able to predict experimental results in terms of the local surface energy at the crack tip and the total energy release rate at different crack speeds. The predicted distributions of stress and dissipation around the propagating crack tip are presented. The predicted crack tip profiles also agree qualitatively with experimental findings.
Rail-highway crossing accident prediction research results - FY80
DOT National Transportation Integrated Search
1981-01-01
This report presents the results of research performed at the : Transportation Systems Center (TSC) dealing with mathematical : methods of predicting accidents at rail-highway crossings. The : work consists of three parts : Part I - Revised DOT Accid...
Ng, Jacky Y K; Chan, Alan H S
2018-05-14
The shortage in Hong Kong of construction workers is expected to worsen in future due to the aging population and increasing construction activity. Construction work is dangerous and to help reduce the premature loss of construction workers due to work-related disabilities, this study measured the work ability of 420 Hong Kong construction workers with a Work Ability Index (WAI) which can be used to predict present and future work performance. Given the importance of WAI, in this study the effects of individual and work-related factors on WAI were examined to develop and validate a WAI model to predict how individual and work-related factors affect work ability. The findings will be useful for formulating a pragmatic intervention program to improve the work ability of construction workers and keep them in the work force.
ERIC Educational Resources Information Center
Steger, Michael F.; Littman-Ovadia, Hadassah; Miller, Michal; Menger, Lauren; Rothmann, Sebastiaan
2013-01-01
The central aim of the present study was to assess the predictive value of affective disposition and meaningful work on employee engagement. Specifically, it was proposed that meaningful work moderates the relationship between affective disposition and engagement. Questionnaires were completed by 252 white-collar employees, working in a variety of…
A Thermo-Poromechanics Finite Element Model for Predicting Arterial Tissue Fusion
NASA Astrophysics Data System (ADS)
Fankell, Douglas P.
This work provides modeling efforts and supplemental experimental work performed towards the ultimate goal of modeling heat transfer, mass transfer, and deformation occurring in biological tissue, in particular during arterial fusion and cutting. Developing accurate models of these processes accomplishes two goals. First, accurate models would enable engineers to design devices to be safer and less expensive. Second, the mechanisms behind tissue fusion and cutting are widely unknown; models with the ability to accurately predict physical phenomena occurring in the tissue will allow for insight into the underlying mechanisms of the processes. This work presents three aims and the efforts in achieving them, leading to an accurate model of tissue fusion and more broadly the thermo-poromechanics (TPM) occurring within biological tissue. Chapters 1 and 2 provide the motivation for developing accurate TPM models of biological tissue and an overview of previous modeling efforts. In Chapter 3, a coupled thermo-structural finite element (FE) model with the ability to predict arterial cutting is offered. From the work presented in Chapter 3, it became obvious a more detailed model was needed. Chapter 4 meets this need by presenting small strain TPM theory and its implementation in an FE code. The model is then used to simulate thermal tissue fusion. These simulations show the model's promise in predicting the water content and temperature of arterial wall tissue during the fusion process, but it is limited by its small deformation assumptions. Chapters 5-7 attempt to address this limitation by developing and implementing a large deformation TPM FE model. Chapters 5, 6, and 7 present a thermodynamically consistent, large deformation TPM FE model and its ability to simulate tissue fusion. Ultimately, this work provides several methods of simulating arterial tissue fusion and the thermo-poromechanics of biological tissue. It is the first work, to the author's knowledge, to simulate the fully coupled TPM of biological tissue and the first to present a fully coupled large deformation TPM FE model. In doing so, a stepping stone for more advanced modeling of biological tissue has been laid.
Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies
NASA Technical Reports Server (NTRS)
Carlson, John R.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Jones, William T.
1995-01-01
The multiblock three-dimensional Navier-Stokes method PAB3D was utilized by the Component Integration Branch (formerly Propulsion Aerodynamics Branch) at the NASA-Langley Research Center in an international study sponsored by AGARD Working Group #17 for the assessment of the state-of-the-art of propulsion-airframe integration testing techniques and CFD prediction technologies. Three test geometries from ONERA involving fundamental flow physics and four geometries from NASA-LaRC involving realistic flow interactions of wing, body, tail, and jet plumes were chosen by the Working Group. An overview of results on four (1 ONERA and 3 LaRC) of the seven test cases is presented. External static pressures, integrated pressure drag and total drag were calculated for the Langley test cases and jet plume velocity profiles and turbulent viscous stresses were calculated for the ONERA test case. Only selected data from these calculations are presented in this paper. The complete data sets calculated by the participants will be presented in an AGARD summary report. Predicted surface static pressures compared favorably with experimental data for the Langley geometries. Predicted afterbody drag compared well with experiment. Predicted nozzle drag was typically low due to over-compression of the flow near the trailing edge. Total drag was typically high. Predicted jet plume quantities on the ONERA case compared generally well with data.
Work-Family Balance and Energy: A Day-Level Study on Recovery Conditions
ERIC Educational Resources Information Center
Sanz-Vergel, Ana Isabel; Demerouti, Evangelia; Moreno-Jimenez, Bernardo; Mayo, Margarita
2010-01-01
The present study examines whether daily recovery inhibiting and enhancing conditions predict day-levels of work-family conflict (WFC), work-family facilitation (WFF), exhaustion and vigor. Forty-nine individuals from various professional backgrounds in Spain provided questionnaire and daily survey measures over a period of five working days.…
Work-family conflict, work- and family-role salience, and women's well-being.
Noor, Noraini M
2004-08-01
The author considered both the direct effect and the moderator effect of role salience in the stress-strain relationship. In contrast to previous studies that have examined the effects of salience on well-being within specific social roles, the present study focused on the work-family interface. From a sample of 147 employed English women with children, the present results of the regression analyses showed that both effects are possible, depending on the outcome measures used. The author observed a direct effect of role salience in the prediction of job satisfaction; work salience was positively related to job satisfaction, over and above the main-effect terms of work-interfering-with-family (WIF) conflict and family-interfering-with-work (FIW) conflict. In contrast, the author found a moderator effect of role salience and conflict for symptoms of psychological distress. However, contrary to predictions, the author found that work salience exacerbated the negative impact of WIF conflict, rather than FIW conflict, on well-being. The author discussed these results in relation to the literature on work-family conflict, role salience, and the issue of stress-strain specificity.
Borhani, Fariba; Arbabisarjou, Azizollah; Kianian, Toktam; Saber, Saman
2016-10-01
Despite the existence of a large community of nurses, specific mechanisms have not been developed yet to consider their needs and the quality of their work life. Moreover, few studies have been conducted to analyze the nature of nursing, nursing places or nurses' quality of work life. In this regard, the present study aimed to assess predictable productivity of nurses working in Kerman University of Medical Sciences' teaching hospitals via the dimensions of Quality of Work Life. The present descriptive-correlational study was conducted to assess predictable productivity of nurses via the dimensions of Quality of Work Life. The study's population consisted of all nurses working in different wards of teaching hospitals associated with Kerman University of Medical Sciences. Out of the whole population, 266 nurses were selected based on the simple random sampling method. To collect data, the questionnaires of 'Quality of Nursing Work Life' and 'Productivity' were used after confirming their reliability (test-retest) and content validity. Finally, the collected data were analyzed through the SPSS software (version 16). Although the quality of work life for nurses was average and their productivity was low but the results showed that quality of life is directly related to nurses' productivity. Quality of life and its dimensions are predictive factors in the in the nurses' productivity. It can conclude that by recognizing the nurses' quality of work life situation, it can realize this group productivity and their values to the efficiency of the health system. For the quality of working life improvement and increasing nurses' productivity more efforts are needed by authorities. The findings can be applied by managers of hospitals and nursing services along with head nurses to enhance the quality of health services and nursing profession in general.
Swanson, H L; Trahan, M
1996-09-01
The present study investigates (a) whether learning disabled readers' working memory deficits that underlie poor reading comprehension are related to a general system, and (b) whether metacognition contributes to comprehension beyond what is predicted by working memory and word knowledge. To this end, performance between learning and disabled (N = 60) and average readers (N = 60) was compared on the reading comprehension, reading rate, and vocabulary subtests of the Nelson Skills Reading Test, Sentence Span test composed of high and low imagery words, and a Metacognitive Questionnaire. As expected, differences between groups in working memory, vocabulary, and reading measures emerged, whereas ability groups were statistically comparable on the Metacognitive Questionnaire. A within-group analysis indicated that the correlation patterns between working memory, vocabulary, metacognition, and reading comprehension were not the same between ability groups. For predicting reading comprehension, the metacognitive questionnaire best predicted learning disabled readers' performance, whereas the working memory span measure that included low-imagery words best predicted average achieving readers' comprehension. Overall, the results suggest that the relationship between learning disabled readers' generalised working memory deficits and poor reading comprehension may be mediated by metacognition.
Sumiyoshi, Chika; Harvey, Philip D; Takaki, Manabu; Okahisa, Yuko; Sato, Taku; Sora, Ichiro; Nuechterlein, Keith H; Subotnik, Kenneth L; Sumiyoshi, Tomiki
2015-09-01
Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1) to identify which outcome factors predict occupational functioning, quantified as work hours, and 2) to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB), the UCSD Performance-based Skills Assessment-Brief (UPSA-B), and the Social Functioning Scale Individuals' version modified for the MATRICS-PASS (Modified SFS for PASS), respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly) and a multiple logistic regression analyses (predicting dichotomized work status based on work hours). ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60-70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.
Toward Improved Predictions of Slender Airframe Aerodynamics Using the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce
2016-01-01
A coordinated project has been underway to improve computational fluid dynamics predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angle-of-attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the computational fluid dynamics failed to provide acceptable results. In this paper, the background, objectives, and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multicode, multi-organizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.
Actividad solar del ciclo 23. Predicción del máximo y fase decreciente utilizando redes neuronales
NASA Astrophysics Data System (ADS)
Parodi, M. A.; Ceccatto, H. A.; Piacentini, R. D.; García, P. J.
Different methods have been proposed in order to predict the maximum amplitude of solar cycles, either as a consequence of the intrinsic importance of this event and because of its relation with solar storms and possible effects upon satellites, communication systems, etc. In this work, a neural network solar activity prediction is presented, measured through the sunspot number (SSN). The 16-units neural network, with a 12:3:1 architecture, was trained in a ``feed-forward" propagation way and learning by the so called ``back propagation rule". The annual mean SSN data in the 1700-1975 and 1987-1998 periods were used as the training set. The solar cycle 21 (1976-1986) was taken as the cross-validation data set. After performing the network training we obtained a prediction of the maximum annual mean for the current solar cycle 23, SSNmax= 135 ±17 at the year 2000, which is 13% smaller than the International Consensus Commitee's mean maximum prediction obtained through ``precursor techniques". On the other hand, our prediction is only about 4% smaller than the Consensus's neural network mean prediction. A ``multiple step" prediction technique was also performed and SSN annual mean predicted values for the near-maximum (from the present year 1999 to beyond the maximum) and the declining activity of solar cycle 23 are presented in this work. The sensibility of predictions is also tested. To do so, we changed the interval width and comparated our results with those of a previous neural network prediction and those of others authors using differents methods.
A two wave cross-lagged study of work-role conflict, work-family conflict and emotional exhaustion.
Jensen, Maria Therese
2016-12-01
By using a two-wave panel design, the present study aimed to study causal, reversed, and reciprocal relations among work-role conflict, work-family conflict, and emotional exhaustion. The Conservation of Resources theory was applied as a theoretical framework. The study was conducted in a large Norwegian oil and gas company (n = 1703). The results demonstrated positive cross-lagged effects of work-role conflict and work-family conflict on emotional exhaustion. In addition, emotional exhaustion predicted work-family conflict over time, and work-family conflict predicted work-role conflict over time, indicating the presence of reciprocal effects. The current study adds new knowledge to the positioning of work-family conflict in relation to perceived conflict in the workplace and emotional exhaustion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Prediction of physical workload in reduced gravity environments
NASA Technical Reports Server (NTRS)
Goldberg, Joseph H.
1987-01-01
The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.
Ng, Jacky Y. K.
2018-01-01
The shortage in Hong Kong of construction workers is expected to worsen in future due to the aging population and increasing construction activity. Construction work is dangerous and to help reduce the premature loss of construction workers due to work-related disabilities, this study measured the work ability of 420 Hong Kong construction workers with a Work Ability Index (WAI) which can be used to predict present and future work performance. Given the importance of WAI, in this study the effects of individual and work-related factors on WAI were examined to develop and validate a WAI model to predict how individual and work-related factors affect work ability. The findings will be useful for formulating a pragmatic intervention program to improve the work ability of construction workers and keep them in the work force. PMID:29758018
Solar prediction and intelligent machines
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
1987-01-01
The solar prediction program is aimed at reducing or eliminating the need to throughly understand the process previously developed and to still be able to produce a prediction. Substantial progress was made in identifying the procedures to be coded as well as testing some of the presently coded work. Another project involves work on developing ideas and software that should result in a machine capable of learning as well as carrying on an intelligent conversation over a wide range of topics. The underlying idea is to use primitive ideas and construct higher order ideas from these, which can then be easily related one to another.
Big data learning and suggestions in modern apps
NASA Astrophysics Data System (ADS)
Sharma, G.; Nadesh, R. K.; ArivuSelvan, K.
2017-11-01
Among many other tasks involved for emergent location-based applications such as those involved in prescribing touring places and those focused on publicizing based on destination, destination prediction is vital. Dealing with destination prediction involves determining the probability of a location (destination) depending on historical trajectories. In this paper, a destination prediction based on probabilistic model (Machine Learning Model) feed-forward neural networks will be presented, which will work by making the observation of driver’s habits. Some individuals drive to same locations such as work involving same route every day of the working week. Here, streaming of real-time driving data will be sent through Kafka queue in apache storm for real-time processing and finally storing the data in MongoDB.
Predictive Analytics for Coordinated Optimization in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui
This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.
Initial comparison of single cylinder Stirling engine computer model predictions with test results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.
Andrés, Axel; Rosés, Martí; Bosch, Elisabeth
2014-11-28
In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources. Copyright © 2014 Elsevier B.V. All rights reserved.
Drug-therapy networks and the prediction of novel drug targets
Spiro, Zoltan; Kovacs, Istvan A; Csermely, Peter
2008-01-01
A recent study in BMC Pharmacology presents a network of drugs and the therapies in which they are used. Network approaches open new ways of predicting novel drug targets and overcoming the cellular robustness that can prevent drugs from working. PMID:18710588
ERIC Educational Resources Information Center
Bekele, Rahel; McPherson, Maggie
2011-01-01
This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…
Study on Predicting Axial Load Capacity of CFST Columns
NASA Astrophysics Data System (ADS)
Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.
2017-11-01
This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.
Reflecting on the Present and Looking Ahead: A Response to Shuler
ERIC Educational Resources Information Center
Tobias, Evan S.
2014-01-01
In considering how policy work might forward arts education, it is helpful to reflect on the present state of music and arts education while looking ahead at future challenges and possibilities. This response to Shuler's (2001) set of predictions related to music education and policy in the twenty-first century addresses such work in the…
Klein, Carina; Diaz Hernandez, Laura; Koenig, Thomas; Kottlow, Mara; Elmer, Stefan; Jäncke, Lutz
2016-01-01
Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.
Job characteristics, flow, and performance: the moderating role of conscientiousness.
Demerouti, Evangelia
2006-07-01
The present article aims to show the importance of positive work-related experiences within occupational health psychology by examining the relationship between flow at work (i.e., absorption, work enjoyment, and intrinsic work motivation) and job performance. On the basis of the literature, it was hypothesized that (a) motivating job characteristics are positively related to flow at work and (b) conscientiousness moderates the relationship between flow and other ratings of (in-role and out-of-role) performance. The hypotheses were tested on a sample of 113 employees from several occupations. Results of moderated structural equation modeling analyses generally supported the hypotheses. Motivating job characteristics were predictive of flow, and flow predicted in-role and extra-role performance, for only conscientious employees.
Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim
2017-06-01
As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Managerial Behaviors and Work Group Climate as Predictors of Employee Outcomes.
ERIC Educational Resources Information Center
Church, Allan H.
1995-01-01
Presents an analysis of the predictive relationships of managerial behavior and work group climate on employee outcomes; 1,428 survey responses were collected during an organizational change in the marketing and sales division of an international pharmaceuticals company. Behaviors of managers and work group members were found to be significantly…
Statistical Learning Induces Discrete Shifts in the Allocation of Working Memory Resources
ERIC Educational Resources Information Center
Umemoto, Akina; Scolari, Miranda; Vogel, Edward K.; Awh, Edward
2010-01-01
Observers can voluntarily select which items are encoded into working memory, and the efficiency of this process strongly predicts memory capacity. Nevertheless, the present work suggests that voluntary intentions do not exclusively determine what is encoded into this online workspace. Observers indicated whether any items from a briefly stored…
Employed Women: Family and Work--Reciprocity and Satisfaction.
ERIC Educational Resources Information Center
Sinacore-Guinn, Ada L.; Akcali, F. Ozge; Fledderus, Susan Winter
1999-01-01
In a study of 173 employed women, family environment predicted four areas of job satisfaction: present work, pay, supervisor, and job in general. There was a correspondence between values related to family and to job and between abilities expressed in the family environment and in work. Social forces impinged on job satisfaction. (SK)
Doctoral Social Work Education: Responding to Trends in Society and the Academy
ERIC Educational Resources Information Center
Cnaan, Ram A.; Ghose, Toorjo
2018-01-01
This article is intended to forecast major environmental changes that may impact social work doctoral education and assess what should be done in anticipation of these changes. We apply an open system and future studies perspective to guide our work. We present a set of predicted societal changes that will impact social work as a profession and…
Predicting employees' well-being using work-family conflict and job strain models.
Karimi, Leila; Karimi, Hamidreza; Nouri, Aboulghassem
2011-04-01
The present study examined the effects of two models of work–family conflict (WFC) and job-strain on the job-related and context-free well-being of employees. The participants of the study consisted of Iranian employees from a variety of organizations. The effects of three dimensions of the job-strain model and six forms of WFC on affective well-being were assessed. The results of hierarchical multiple regression analysis revealed that the number of working hours, strain-based work interfering with family life (WIF) along with job characteristic variables (i.e. supervisory support, job demands and job control) all make a significant contribution to the prediction of job-related well-being. On the other hand, strain-based WIF and family interfering with work (FIW) significantly predicted context-free well-being. Implications are drawn and recommendations made regarding future research and interventions in the workplace.
Life History Theory and Social Deviance: The Mediating Role of Executive Function
ERIC Educational Resources Information Center
Wenner, C. J.; Bianchi, J.; Figueredo, A. J.; Rushton, J. Philippe; Jacobs, W. J.
2013-01-01
The present work examined predicted relations among Life History strategies, Executive Functions, socially antagonistic attitudes, socially antagonistic behaviors, and general intelligence. Life History (LH) theory predicts that Executive Functions and socially antagonistic attitudes and behaviors underpin an interrelated and coherent set of…
Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin; Leong, Che Kan
2014-01-01
The goal of the present study was to test opposing views about four issues concerning predictors of individual differences in Chinese written composition: (a) Whether morphological awareness, syntactic processing, and working memory represent distinct and measureable constructs in Chinese or are just manifestations of general language ability; (b) whether they are important predictors of Chinese written composition, and if so, the relative magnitudes and independence of their predictive relations; (c) whether observed predictive relations are mediated by text comprehension; and (d) whether these relations vary or are developmentally invariant across three years of writing development. Based on analyses of the performance of students in grades 4 (n = 246), 5 (n = 242) and 6 (n = 261), the results supported morphological awareness, syntactic processing, and working memory as distinct yet correlated abilities that made independent contributions to predicting Chinese written composition, with working memory as the strongest predictor. However, predictive relations were mediated by text comprehension. The final model accounted for approximately 75 percent of the variance in Chinese written composition. The results were largely developmentally invariant across the three grades from which participants were drawn. PMID:25530630
Multivariate Analysis of Seismic Field Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M. Kathleen
1999-06-01
This report includes the details of the model building procedure and prediction of seismic field data. Principal Components Regression, a multivariate analysis technique, was used to model seismic data collected as two pieces of equipment were cycled on and off. Models built that included only the two pieces of equipment of interest had trouble predicting data containing signals not included in the model. Evidence for poor predictions came from the prediction curves as well as spectral F-ratio plots. Once the extraneous signals were included in the model, predictions improved dramatically. While Principal Components Regression performed well for the present datamore » sets, the present data analysis suggests further work will be needed to develop more robust modeling methods as the data become more complex.« less
AbuAlRub, Raeda; El-Jardali, Fadi; Jamal, Diana; Abu Al-Rub, Nawzat
2016-08-01
The aims of this study are to (1) examine the relationships between work environment, job satisfaction and intention to stay at work; and (2) explore the predicting factors of intention to stay at work among nurses in underserved areas. Developing and fostering creative work environment are paramount especially in underserved areas, where the work conditions present many challenges. A descriptive correlational design was utilized to collect data from 330 hospital nurses who worked in two underserved governorates in Jordan. A set of instruments were used to measure the variables of the study. The results showed a strong positive association between job satisfaction and work environment. The results of logistic regression indicated receiving housing, job satisfaction, and work environment were the predicting variables of the level of intention to stay at work. It is critical to improve work conditions and create a culture of supportive work environment in underserved area. Copyright © 2015 Elsevier Inc. All rights reserved.
On the role of passion for work in burnout: a process model.
Vallerand, Robert J; Paquet, Yvan; Philippe, Frederick L; Charest, Julie
2010-02-01
The purpose of the present research was to test a model on the role of passion for work in professional burnout. This model posits that obsessive passion produces conflict between work and other life activities because the person cannot let go of the work activity. Conversely, harmonious passion is expected to prevent conflict while positively contributing to work satisfaction. Finally, conflict is expected to contribute to burnout, whereas work satisfaction should prevent its occurrence. This model was tested in 2 studies with nurses in 2 cultures. Using a cross-sectional design, Study 1 (n=97) provided support for the model with nurses from France. In Study 2 (n=258), a prospective design was used to further test the model with nurses from the Province of Quebec over a 6-month period. Results provided support for the model. Specifically, harmonious passion predicted an increase in work satisfaction and a decrease in conflict. Conversely, obsessive passion predicted an increase of conflict. In turn, work satisfaction and conflict predicted decreases and increases in burnout changes that took place over time. The results have important implications for theory and research on passion as well as burnout.
Concurrent Working Memory Load Can Facilitate Selective Attention: Evidence for Specialized Load
ERIC Educational Resources Information Center
Park, Soojin; Kim, Min-Shik; Chun, Marvin M.
2007-01-01
Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding, see record 2004-17825-003). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not.…
The Future of Work: Insights, Views, Prospects. Basis-Info: Social Policy. IN Press.
ERIC Educational Resources Information Center
Bechtel, Michael
Young people must prepare themselves for lifelong learning and frequent job changes. Optimists predict a new world of work with many creative, interesting, satisfying jobs; pessimists believe society will finally run out of work and foresee unemployment and social downgrading for a majority of people. There are indications at present of both…
Lee, Ya-Wen; Dai, Yu-Tzu; McCreary, Linda L
2015-05-01
To examine the relationships between quality of work life (QWL) and nurses' intention to leave their unit (ITLunit), organisation (ITLorg) and profession (ITLpro). The high turnover rate among nurses presents a major challenge to health care systems across the globe. QWL plays a significant role in nurses' turnover. A descriptive cross-sectional survey design was conducted via purposive sampling of 1283 hospital nurses and administering the Chinese version of the Quality of Nursing Work Life scale (C-QNWL), a three-ITL-type scale questionnaire, and a demographic questionnaire for individual- and work-related variables. Descriptive data, correlations, and ordinal regression models were analyzed. QWL predicted ITLpro and ITLorg better than ITLunit. Three QWL dimensions (work arrangement and workload, nursing staffing and patient care, and work-home life balance) were significantly predictive of all three ITL measures. However, the dimension of teamwork and communication was only predictive for ITLunit, not for ITLorg and ITLpro. Different patterns of QWL dimensions are predictive of ITLunit, ITLorg, and ITLpro. The study provides important information to nurse administrators about the aspects of QWL that most commonly lead nurses to leave their units, organisations, and even the profession itself. © 2013 John Wiley & Sons Ltd.
Velocity measurements in a turbulent trailing vortex and their application to BWI noise prediction
NASA Technical Reports Server (NTRS)
Devenport, William J.; Glegg, Stewart A. L.
1991-01-01
The objectives were to observe the turbulence structure and spectral characteristics of the trailing vortex shed by a rectangular NACA 0012 wing over a range of conditions and to incorporate these observations into the blade-wake interaction (BWI) noise-prediction method of Glegg (1989). The following sections are presented: (1) measurements performed during the first year of this two year investigation; (2) presentation and discussion of a representative sample of the results; (3) implications for the BWI noise prediction method; and (4) re-evaluation of work planned for the second year.
Intrinsic Work Value-Reward Dissonance and Work Satisfaction during Young Adulthood
Porfeli, Erik J.; Mortimer, Jeylan T.
2010-01-01
Previous research suggests that discrepancies between work values and rewards are indicators of dissonance that induce change in both to reduce such dissonance over time. The present study elaborates this model to suggest parallels with the first phase of the extension- and-strain curve. Small discrepancies or small increases in extension are presumed to be almost unnoticeable, while increasingly large discrepancies are thought to yield exponentially increasing strain. Work satisfaction is a principal outcome of dissonance; hence, work value-reward discrepancies are predicted to diminish work satisfaction in an exponential fashion. Findings from the work and family literature, however, lead to the prediction that this curvilinear association will be moderated by gender and family roles. Using longitudinal data spanning the third decade of life, the results suggest that intrinsic work value-reward discrepancies, as predicted, are increasingly associated, in a negative curvilinear fashion, with work satisfaction. This pattern, however, differs as a function of gender and family roles. Females who established family roles exhibited the expected pattern while other gender by family status groups did not. The results suggest that gender and family roles moderate the association between intrinsic work value-reward dissonance and satisfaction. In addition, women who remained unmarried and childless exhibited the strongest associations between occupational rewards and satisfaction. PMID:20526434
Intrinsic Work Value-Reward Dissonance and Work Satisfaction during Young Adulthood.
Porfeli, Erik J; Mortimer, Jeylan T
2010-06-01
Previous research suggests that discrepancies between work values and rewards are indicators of dissonance that induce change in both to reduce such dissonance over time. The present study elaborates this model to suggest parallels with the first phase of the extension- and-strain curve. Small discrepancies or small increases in extension are presumed to be almost unnoticeable, while increasingly large discrepancies are thought to yield exponentially increasing strain. Work satisfaction is a principal outcome of dissonance; hence, work value-reward discrepancies are predicted to diminish work satisfaction in an exponential fashion. Findings from the work and family literature, however, lead to the prediction that this curvilinear association will be moderated by gender and family roles. Using longitudinal data spanning the third decade of life, the results suggest that intrinsic work value-reward discrepancies, as predicted, are increasingly associated, in a negative curvilinear fashion, with work satisfaction. This pattern, however, differs as a function of gender and family roles. Females who established family roles exhibited the expected pattern while other gender by family status groups did not. The results suggest that gender and family roles moderate the association between intrinsic work value-reward dissonance and satisfaction. In addition, women who remained unmarried and childless exhibited the strongest associations between occupational rewards and satisfaction.
Exploring predictors and consequences of embitterment in the workplace.
Michailidis, Evie; Cropley, Mark
2017-09-01
Research on the feeling of embitterment at work is still in its infancy. The present study investigated the predictors and consequences of the feeling of embitterment at work. It was hypothesised that organisational injustice as well as over-controlling supervision would predict embitterment at work and that embitterment would be associated with work-related rumination. Three hundred and thirty-seven employees completed an online survey. Regression analysis revealed that procedural injustice and over-controlling supervision were significant predictors of embitterment and that embitterment contributed significantly to the prediction of increased affective rumination and reduction in detachment. Mediation analysis indicated that embitterment at work was a significant mechanism through which organisational injustice and over-controlling supervision exerted their effect on affective rumination, which is indicative of insufficient recovery from work. Findings suggest that breaches in organisational justice can generate feelings of embitterment at work, which in turn can interfere with employees' ability to adequately recover from work. Practitioner Summary: The purpose of this study was to investigate predictors and consequences of embitterment in the workplace using an online questionnaire. Findings suggest that perceived unfairness, because of structural and organisational aspects, predicts feelings of embitterment and that feeling embittered at work can prevent employees from adequately recovering from work.
Ilies, Remus; Schwind, Kelly M; Wagner, David T; Johnson, Michael D; DeRue, D Scott; Ilgen, Daniel R
2007-09-01
This article presents a longitudinal examination of antecedents and outcomes of work-to-family conflict. A total of 106 employees participating in an experience-sampling study were asked to respond to daily surveys both at work and at home, and their spouses were interviewed daily via telephone for a period of 2 weeks. Intraindividual analyses revealed that employees' perceptions of workload predicted work-to-family conflict over time, even when controlling for the number of hours spent at work. Workload also influenced affect at work, which in turn influenced affect at home. Finally, perhaps the most interesting finding in this study was that employees' behaviors in the family domain (reported by spouses) were predicted by the employees' perceptions of work-to-family conflict and their positive affect at home. (c) 2007 APA.
LeMoult, Joelle; Carver, Charles S; Johnson, Sheri L; Joormann, Jutta
2015-03-01
Studies on depression risk emphasize the importance of both cognitive and genetic vulnerability factors. The present study has provided the first examination of whether working memory capacity, the BDNF Val66Met polymorphism, and their interaction predict changes in symptoms of depression during the transition to university. Early in the semester, students completed a self-report measure of depressive symptoms and a modified version of the reading span task to assess working memory capacity in the presence of both neutral and negative distractors. Whole blood was genotyped for the BDNF Val66Met polymorphism. Students returned at the end of the semester to complete additional self-report questionnaires. Neither working memory capacity nor the BDNF Val66Met polymorphism predicted change in depressive symptoms either independently or in interaction with self-reported semester difficulty. The BDNF Val66Met polymorphism, however, moderated the association between working memory capacity and symptom change. Among met carriers, lower working memory capacity in the presence of negative-but not neutral-distractors was associated with increased symptoms of depression over the semester. For the val/val group, working memory capacity did not predict symptom change. These findings contribute directly to biological and cognitive models of depression and highlight the importance of examining Gene × Cognition interactions when investigating risk for depression.
Predicting the Coupling Properties of Axially-Textured Materials.
Fuentes-Cobas, Luis E; Muñoz-Romero, Alejandro; Montero-Cabrera, María E; Fuentes-Montero, Luis; Fuentes-Montero, María E
2013-10-30
A description of methods and computer programs for the prediction of "coupling properties" in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge's symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.
Predicting the Coupling Properties of Axially-Textured Materials
Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.
2013-01-01
A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370
ERIC Educational Resources Information Center
Colzato, Lorenza S.; Slagter, Heleen A.; de Rover, Mischa; Hommel, Bernhard
2011-01-01
The attentional blink (AB)--a deficit in reporting the second of two target stimuli presented in close succession in a rapid sequence of distracters--has been related to processing limitations in working memory. Given that dopamine (DA) plays a crucial role working memory, the present study tested whether individual differences in the size of the…
Rowlinson, Steve; Jia, Yunyan Andrea
2014-04-01
Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.
ERIC Educational Resources Information Center
Fü rst, Guillaume; Ghisletta, Paolo; Lubart, Todd
2016-01-01
The present work proposes an integrative model of creativity that includes personality traits and cognitive processes. This model hypothesizes that three high-order personality factors predict two main process factors, which in turn predict intensity and achievement of creative activities. The personality factors are: "Plasticity" (high…
Statistical Power for a Simultaneous Test of Factorial and Predictive Invariance
ERIC Educational Resources Information Center
Olivera-Aguilar, Margarita; Millsap, Roger E.
2013-01-01
A common finding in studies of differential prediction across groups is that although regression slopes are the same or similar across groups, group differences exist in regression intercepts. Building on earlier work by Birnbaum (1979), Millsap (1998) presented an invariant factor model that would explain such intercept differences as arising due…
ERIC Educational Resources Information Center
Christopher, Micaela E.; Miyake, Akira; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.
2012-01-01
The present study explored whether different executive control and speed measures (working memory, inhibition, processing speed, and naming speed) independently predict individual differences in word reading and reading comprehension. Although previous studies suggest these cognitive constructs are important for reading, the authors analyze the…
Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo; Barnes, Graham R.
2013-01-01
Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology. PMID:23515488
The role of working memory in inferential sentence comprehension.
Pérez, Ana Isabel; Paolieri, Daniela; Macizo, Pedro; Bajo, Teresa
2014-08-01
Existing literature on inference making is large and varied. Trabasso and Magliano (Discourse Process 21(3):255-287, 1996) proposed the existence of three types of inferences: explicative, associative and predictive. In addition, the authors suggested that these inferences were related to working memory (WM). In the present experiment, we investigated whether WM capacity plays a role in our ability to answer comprehension sentences that require text information based on these types of inferences. Participants with high and low WM span read two narratives with four paragraphs each. After each paragraph was read, they were presented with four true/false comprehension sentences. One required verbatim information and the other three implied explicative, associative and predictive inferential information. Results demonstrated that only the explicative and predictive comprehension sentences required WM: participants with high verbal WM were more accurate in giving explanations and also faster at making predictions relative to participants with low verbal WM span; in contrast, no WM differences were found in the associative comprehension sentences. These results are interpreted in terms of the causal nature underlying these types of inferences.
Patients with mild Alzheimer's disease produced shorter outgoing saccades when reading sentences.
Fernández, Gerardo; Schumacher, Marcela; Castro, Liliana; Orozco, David; Agamennoni, Osvaldo
2015-09-30
In the present work we analyzed forward saccades of thirty five elderly subjects (Controls) and of thirty five mild Alzheimer's disease (AD) during reading regular and high-predictable sentences. While they read, their eye movements were recorded. The pattern of forward saccade amplitudes as a function of word predictability was clearly longer in Controls. Our results suggest that Controls might use stored information of words for enhancing their reading performance. Further, cloze predictability increased outgoing saccades amplitudes, as this increase stronger in high-predictable sentences. Quite the contrary, patients with mild AD evidenced reduced forward saccades even at early stages of the disease. This reduction might reveal impairments in brain areas such as those corresponding to working memory, memory retrieval, and semantic memory functions that are already present at early stages of AD. Our findings might be relevant for expanding the options for the early detection and monitoring of in the early stages of AD. Furthermore, eye movements during reading could provide a new tool for measuring a drug's impact on patient's behavior. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yu, Elizabeth A; Chang, Edward C
2016-10-01
The present study sought to test the generalizability of Chang et al.'s (2013) model, which suggests that optimism/pessimism and future orientation function as additive and interactive predictors of suicidal risk, to specific ethnic minority college student groups (i.e., Asian Americans, African Americans, and Latino Americans). The present study used Chang et al.'s (2013) model to predict suicidal ideation among 81 (34 male and 47 female) Asian-American, 71 (22 male and 49 female) African-American adults, and 83 (34 male and 49 female) Latino-American college students. Our results indicated that this model did not predict suicidal ideation well for Asian-American college students; however, it did work well to predict suicidal ideation for African-American and Latino-American college students. Our findings indicate that optimism/pessimism and future orientation are important positive cognitions involved with suicidal ideation for African-American and Latino-American college students. Further research is needed to better understand the cultural underpinnings of how these positive cognitions work to predict suicide-related outcomes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Best Practices for Unstructured Grid Shock-Fitting
NASA Technical Reports Server (NTRS)
McCoud, Peter L.
2017-01-01
Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock-fitting is outlined and applied to production-relevant cases. Results
Harmon-Jones, Eddie; Harmon-Jones, Cindy; Amodio, David M; Gable, Philip A
2011-12-01
The present work outlines a theory of attitudes toward emotions, provides a measure of attitudes toward emotions, and then tests several predictions concerning relationships between attitudes toward specific emotions and emotional situation selection, emotional traits, emotional reactivity, and emotion regulation. The present conceptualization of individual differences in attitudes toward emotions focuses on specific emotions and presents data indicating that 5 emotions (anger, sadness, joy, fear, and disgust) load on 5 separate attitude factors (Study 1). Attitudes toward emotions predicted emotional situation selection (Study 2). Moreover, attitudes toward approach emotions (e.g., anger, joy) correlated directly with the associated trait emotions, whereas attitudes toward withdrawal emotions (fear, disgust) correlated inversely with associated trait emotions (Study 3). Similar results occurred when attitudes toward emotions were used to predict state emotional reactivity (Study 4). Finally, attitudes toward emotions predicted specific forms of emotion regulation (Study 5).
Critcher, Clayton R; Ferguson, Melissa J
2016-06-01
To effectively self-regulate, people must persevere on tasks that they deem important, regardless of whether those tasks are enjoyable. Building on past work that has noted the fundamental role of implicit cognition in guiding effective self-regulation, the present paper tests whether an implicit association between goal means and importance predicts self-regulatory persistence and success. Implicit importance predicted markers of effective self-regulation-better grades, more studying and exercise, and stronger standardized testing performance-over and above, and often better than, explicit beliefs about the importance of that self-regulation, as well as implicit evaluations of those means. In particular, those for whom tasks were fairly taxing to complete (i.e., those for whom this self-regulation required effortful self-control) were those who most benefitted from the implicit association between means and importance. Moreover, when participants were reminded of recent self-regulatory failure that they believed could be overcome through hard work, implicit importance toward the means increased as if to prepare them to achieve self-regulatory persistence. A final study sought to reconcile the present findings with previous work showing the key role that implicit evaluations play in effective self-regulation. We reasoned that means are important precisely because they are associated with valued end-states. Consistent with this account, implicit evaluations of end-states predicted the implicit importance of means, which in turn predicted effective self-regulation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Taming Many-Parameter BSM Models with Bayesian Neural Networks
NASA Astrophysics Data System (ADS)
Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.
2017-09-01
The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.
ERIC Educational Resources Information Center
Chikani, Vatsal; Reding, Douglas; Gunderson, Paul; McCarty, Catherine A.
2005-01-01
Background: The aim of the present study is to investigate the association between psychosocial work characteristics and health functioning and cardiovascular disease risk factors among rural women of central Wisconsin and compare psychosocial work characteristics between farm and nonfarm women. Methods: Stratified sampling was used to select a…
ERIC Educational Resources Information Center
Blickle, Gerhard; Frohlich, Julia K.; Ehlert, Sandra; Pirner, Katharina; Dietl, Erik; Hanes, T. Johnston; Ferris, Gerald R.
2011-01-01
Socioanalytic theory postulates that job performance ratings are predicted by basic social motives moderated by social competency. The two motives are the motive to get along with others and the motive to achieve status and power. The present two-study investigation assessed these motives as work values and collected supervisors' job performance…
Post-buckling of a pressured biopolymer spherical shell with the mode interaction
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2018-03-01
Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.
Numerical modeling of NITM-2 flow field
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Mo, Jiada
1992-01-01
An axisymmetric flowfield inside the NASA NITM-2 nozzle has been analyzed by solving the compressible Navier-Stokes equations. The PARC code has been modified for the present work and the objective of this research work is to provide some database and some instructive information for the further experimental test on this subject. The presented work includes both the flowfield prediction for the pretest case and the impact of the erosion from any ring of the insulation materials in the flowfield inside the test section and the result is very preliminary.
Clausen, Thomas; Burr, Hermann; Borg, Vilhelm
2014-06-01
To investigate whether high psychosocial job demands (quantitative demands and work pace) and low psychosocial job resources (influence at work and quality of leadership) predicted risk of disability pensioning among employees in four occupational groups--employees working with customers, employees working with clients, office workers and manual workers--in line with the propositions of the Job Demands-Resources (JD-R) model. Survey data from 40,554 individuals were fitted to the DREAM register containing information on payments of disability pension. Using multi-adjusted Cox regression, observations were followed in the DREAM-register to assess risk of disability pensioning. Average follow-up time was 5.9 years (SD=3.0). Low levels of influence at work predicted an increased risk of disability pensioning and medium levels of quantitative demands predicted a decreased risk of disability pensioning in the study population. We found significant interaction effects between job demands and job resources as combinations low quality of leadership and high job demands predicted the highest rate of disability pensioning. Further analyses showed some, but no statistically significant, differences between the four occupational groups in the associations between job demands, job resources and risk of disability pensioning. The study showed that psychosocial job demands and job resources predicted risk of disability pensioning. The direction of some of the observed associations countered the expectations of the JD-R model and the findings of the present study therefore imply that associations between job demands, job resources and adverse labour market outcomes are more complex than conceptualised in the JD-R model. © 2014 the Nordic Societies of Public Health.
Jet Measurements for Development of Jet Noise Prediction Tools
NASA Technical Reports Server (NTRS)
Bridges, James E.
2006-01-01
The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.
Predicted changes in advanced turboprop noise with shaft angle of attack
NASA Technical Reports Server (NTRS)
Padula, S. L.; Block, P. J. W.
1984-01-01
Advanced turboprop blade designs and new propeller installation schemes motivated an effort to include unsteady loading effects in existing propeller noise prediction computer programs. The present work validates the prediction capability while studing the effects of shaft inclination on the radiated sound field. Classical methods of propeller performance analysis supply the time-dependent blade loading needed to calculate noise. Polar plots of the sound pressure level (SPL) of the first four harmonics and overall SPL are indicative of the change in directivity pattern as a function of propeller angle of attack. Noise predictions are compared with newly available wind tunnel data and the accuracy and applicability of the prediction method are discussed. It is concluded that unsteady blade loading caused by inclining the propeller with respect to the flow changes the directionality and the intensity of the radiated noise. These changes are well modeled by the present quasi-steady prediction method.
Ellis, William L.; Kibler, J.D.
1983-01-01
Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.
Feature Biases in Early Word Learning: Network Distinctiveness Predicts Age of Acquisition
ERIC Educational Resources Information Center
Engelthaler, Tomas; Hills, Thomas T.
2017-01-01
Do properties of a word's features influence the order of its acquisition in early word learning? Combining the principles of mutual exclusivity and shape bias, the present work takes a network analysis approach to understanding how feature distinctiveness predicts the order of early word learning. Distance networks were built from nouns with edge…
Provocative work experiences predict the acquired capability for suicide in physicians.
Fink-Miller, Erin L
2015-09-30
The interpersonal psychological theory of suicidal behavior (IPTS) offers a potential means to explain suicide in physicians. The IPTS posits three necessary and sufficient precursors to death by suicide: thwarted belongingness, perceived burdensomeness, and acquired capability. The present study sought to examine whether provocative work experiences unique to physicians (e.g., placing sutures, withdrawing life support) would predict levels of acquired capability, while controlling for gender and painful and provocative experiences outside the work environment. Data were obtained from 376 of 7723 recruited physicians. Study measures included the Acquired Capability for Suicide Scale, the Interpersonal Needs Questionnaire, the Painful and Provocative Events Scale, and the Life Events Scale-Medical Doctors Version. Painful and provocative events outside of work predicted acquired capability (β=0.23, t=3.82, p<0.001, f(2)=0.09) as did provocative work experiences (β=0.12, t=2.05, p<0.05, f(2)=0.07). This represents the first study assessing the potential impact of unique work experiences on suicidality in physicians. Limitations include over-representation of Caucasian participants, limited representation from various specialties of medicine, and lack of information regarding individual differences. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A CFD Study on the Prediction of Cyclone Collection Efficiency
NASA Astrophysics Data System (ADS)
Gimbun, Jolius; Chuah, T. G.; Choong, Thomas S. Y.; Fakhru'L-Razi, A.
2005-09-01
This work presents a Computational Fluid Dynamics calculation to predict and to evaluate the effects of temperature, operating pressure and inlet velocity on the collection efficiency of gas cyclones. The numerical solutions were carried out using spreadsheet and commercial CFD code FLUENT 6.0. This paper also reviews four empirical models for the prediction of cyclone collection efficiency, namely Lapple [1], Koch and Licht [2], Li and Wang [3], and Iozia and Leith [4]. All the predictions proved to be satisfactory when compared with the presented experimental data. The CFD simulations predict the cyclone cut-off size for all operating conditions with a deviation of 3.7% from the experimental data. Specifically, results obtained from the computer modelling exercise have demonstrated that CFD model is the best method of modelling the cyclones collection efficiency.
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2008-01-01
This paper at first describes the fluid network approach recently implemented into the National Combustion Code (NCC) for the simulation of transport of aerosols (volatile particles and soot) in the particulate sampling systems. This network-based approach complements the other two approaches already in the NCC, namely, the lower-order temporal approach and the CFD-based approach. The accuracy and the computational costs of these three approaches are then investigated in terms of their application to the prediction of particle losses through sample transmission and distribution lines. Their predictive capabilities are assessed by comparing the computed results with the experimental data. The present work will help establish standard methodologies for measuring the size and concentration of particles in high-temperature, high-velocity jet engine exhaust. Furthermore, the present work also represents the first step of a long term effort of validating physics-based tools for the prediction of aircraft particulate emissions.
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.; Gedwill, M. A.
1984-01-01
Hot-section gas-turbine components typically require some form of coating for oxidation and corrosion protection. Efficient use of coatings requires reliable and accurate predictions of the protective life of the coating. Currently engine inspections and component replacements are often made on a conservative basis. As a result, there is a constant need to improve and develop the life-prediction capability of metallic coatings for use in various service environments. The purpose of this present work is aimed at developing of an improved methodology for predicting metallic coating lives in an oxidizing environment and in a corrosive environment.
Forecasting Occurrences of Activities.
Minor, Bryan; Cook, Diane J
2017-07-01
While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.
Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.
Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M
2010-08-14
Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.
Bayindir, Mustafa; Bolger, Fergus; Say, Bilge
2016-07-19
Making decisions using judgements of multiple non-deterministic indicators is an important task, both in everyday and professional life. Learning of such decision making has often been studied as the mapping of stimuli (cues) to an environmental variable (criterion); however, little attention has been paid to the effects of situation-by-person interactions on this learning. Accordingly, we manipulated cue and feedback presentation mode (graphic or numeric) and task difficulty, and measured individual differences in working memory capacity (WMC). We predicted that graphic presentation, fewer cues, and elevated WMC would facilitate learning, and that person and task characteristics would interact such that presentation mode compatible with the decision maker's cognitive capability (enhanced visual or verbal WMC) would assist learning, particularly for more difficult tasks. We found our predicted main effects, but no significant interactions, except that those with greater WMC benefited to a larger extent with graphic than with numeric presentation, regardless of which type of working memory was enhanced or number of cues. Our findings suggest that the conclusions of past research based predominantly on tasks using numeric presentation need to be reevaluated and cast light on how working memory helps us learn multiple cue-criterion relationships, with implications for dual-process theories of cognition.
León-Roque, Noemí; Abderrahim, Mohamed; Nuñez-Alejos, Luis; Arribas, Silvia M; Condezo-Hoyos, Luis
2016-12-01
Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. Copyright © 2016 Elsevier B.V. All rights reserved.
Predicting alienation in a sample of Nigerian Igbo subjects.
Morah, E I
1990-08-01
Seeman in 1959 suggested that alienation is a multidimensional concept. Using two aspects of Seeman's concept of alienation, powerlessness and social alienation, and two concepts derived from Lachar's 1978 Minnesota Multiphasic Personality Inventory Cookbook, emotional and self-alienation, the present work was undertaken to ascertain which concept will more likely predict feelings of alienation. A stepwise multiple regression showed that among 160 Nigerian (Igbo) subjects the feeling of powerlessness predicted alienation more than did the other concept.
ERIC Educational Resources Information Center
Halloran, Roberta Kathryn
2011-01-01
Self-regulation, executive function and working memory are areas of cognitive processing that have been studied extensively. Although many studies have examined the constructs, there is limited empirical support suggesting a formal link between the three cognitive processes and their prediction of academic achievement. Thus, the present study…
New technology in turbine aerodynamics
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Simple neural substrate predicts complex rhythmic structure in duetting birds
NASA Astrophysics Data System (ADS)
Amador, Ana; Trevisan, M. A.; Mindlin, G. B.
2005-09-01
Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.
Predictors of early growth in academic achievement: the head-toes-knees-shoulders task
McClelland, Megan M.; Cameron, Claire E.; Duncan, Robert; Bowles, Ryan P.; Acock, Alan C.; Miao, Alicia; Pratt, Megan E.
2014-01-01
Children's behavioral self-regulation and executive function (EF; including attentional or cognitive flexibility, working memory, and inhibitory control) are strong predictors of academic achievement. The present study examined the psychometric properties of a measure of behavioral self-regulation called the Head-Toes-Knees-Shoulders (HTKS) by assessing construct validity, including relations to EF measures, and predictive validity to academic achievement growth between prekindergarten and kindergarten. In the fall and spring of prekindergarten and kindergarten, 208 children (51% enrolled in Head Start) were assessed on the HTKS, measures of cognitive flexibility, working memory (WM), and inhibitory control, and measures of emergent literacy, mathematics, and vocabulary. For construct validity, the HTKS was significantly related to cognitive flexibility, working memory, and inhibitory control in prekindergarten and kindergarten. For predictive validity in prekindergarten, a random effects model indicated that the HTKS significantly predicted growth in mathematics, whereas a cognitive flexibility task significantly predicted growth in mathematics and vocabulary. In kindergarten, the HTKS was the only measure to significantly predict growth in all academic outcomes. An alternative conservative analytical approach, a fixed effects analysis (FEA) model, also indicated that growth in both the HTKS and measures of EF significantly predicted growth in mathematics over four time points between prekindergarten and kindergarten. Results demonstrate that the HTKS involves cognitive flexibility, working memory, and inhibitory control, and is substantively implicated in early achievement, with the strongest relations found for growth in achievement during kindergarten and associations with emergent mathematics. PMID:25071619
Working memory capacity predicts listwise directed forgetting in adults and children.
Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T
2010-05-01
In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.
Johnston, Derek; Bell, Cheryl; Jones, Martyn; Farquharson, Barbara; Allan, Julia; Schofield, Patricia; Ricketts, Ian; Johnston, Marie
2016-04-01
Stress in health care professionals may reflect both the work and appraisal of work and impacts on the individuals, their patients, colleagues and managers. The purpose of the present study is to examine physiological and psychological effects of stressors (tasks) and theory-based perceptions of work stressors within and between nurses in real time. During two work shifts, 100 nurses rated experienced stress, affect, fatigue, theory-based measures of work stress and nursing tasks on electronic diaries every 90 min, whereas heart rate and activity were measured continuously. Heart rate was associated with both demand and effort. Experienced stress was related to demand, control, effort and reward. Effort and reward interacted as predicted (but only within people). Results were unchanged when allowance was made for work tasks. Real-time appraisals were more important than actual tasks in predicting both psychological and physiological correlates of stress. At times when effort was high, perceived reward reduced stress.
Potential for western US seasonal snowpack prediction
Kapnick, Sarah B.; Yang, Xiaosong; Vecchi, Gabriel A.; Delworth, Thomas L.; Gudgel, Rich; Malyshev, Sergey; Milly, Paul C. D.; Shevliakova, Elena; Underwood, Seth; Margulis, Steven A.
2018-01-01
Western US snowpack—snow that accumulates on the ground in the mountains—plays a critical role in regional hydroclimate and water supply, with 80% of snowmelt runoff being used for agriculture. While climate projections provide estimates of snowpack loss by the end of th ecentury and weather forecasts provide predictions of weather conditions out to 2 weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), crucial for regional agricultural decisions (e.g., plant choice and quantity). Seasonal predictions with climate models first took the form of El Niño predictions 3 decades ago, with hydroclimate predictions emerging more recently. While the field has been focused on single-season predictions (3 months or less), we are now poised to advance our predictions beyond this timeframe. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate the feasibility of seasonal snowpack predictions and quantify the limits of predictive skill 8 month sin advance. This physically based dynamic system outperforms observation-based statistical predictions made on July 1 for March snowpack everywhere except the southern Sierra Nevada, a region where prediction skill is nonexistent for every predictor presently tested. Additionally, in the absence of externally forced negative trends in snowpack, narrow maritime mountain ranges with high hydroclimate variability pose a challenge for seasonal prediction in our present system; natural snowpack variability may inherently be unpredictable at this timescale. This work highlights present prediction system successes and gives cause for optimism for developing seasonal predictions for societal needs.
Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers
NASA Technical Reports Server (NTRS)
Koch, L. Danielle; Bridges, James; Khavaran, Abbas
2004-01-01
Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.
A model to predict stream water temperature across the conterminous USA
Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang
2014-01-01
Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...
NASA Astrophysics Data System (ADS)
Ong, P. E.; K. C Huong, Audrey
2017-08-01
This paper presents the use of a point spectroscopy system to determine one’s transcutaneous bilirubin level using Modified Lambert Beer model and the developed fitting routine. This technique required a priori knowledge of extinction coefficient of bilirubin and hemoglobin components in the wavelength range of 440-500 nm for the prediction of the required parameter value. This work was conducted on different skin sites of six healthy Asians namely on the thenar region of the palm of their hand, back of the hand, posterior and anterior forearm. The obtained results revealed the lowest mean transcutaneous bilirubin concentration of 0.44±0.3 g/l predicted for palm site while the highest bilirubin level of 0.98±0.2 g/l was estimated for posterior forearm. These values were also compared with that presented in the literature. This study found considerably good consistency in the value predicted for different subjects especially at the thenar region of the palm. This work concluded that the proposed system and technique may be suitably served as an alternative means to noncontact and noninvasive measurement of one’s transcutaneous bilirubin level at palm site.
COPRED: prediction of fold, GO molecular function and functional residues at the domain level.
López, Daniel; Pazos, Florencio
2013-07-15
Only recently the first resources devoted to the functional annotation of proteins at the domain level started to appear. The next step is to develop specific methodologies for predicting function at the domain level based on these resources, and to implement them in web servers to be used by the community. In this work, we present COPRED, a web server for the concomitant prediction of fold, molecular function and functional sites at the domain level, based on a methodology for domain molecular function prediction and a resource of domain functional annotations previously developed and benchmarked. COPRED can be freely accessed at http://csbg.cnb.csic.es/copred. The interface works in all standard web browsers. WebGL (natively supported by most browsers) is required for the in-line preview and manipulation of protein 3D structures. The website includes a detailed help section and usage examples. pazos@cnb.csic.es.
Driver's mental workload prediction model based on physiological indices.
Yan, Shengyuan; Tran, Cong Chi; Wei, Yingying; Habiyaremye, Jean Luc
2017-09-15
Developing an early warning model to predict the driver's mental workload (MWL) is critical and helpful, especially for new or less experienced drivers. The present study aims to investigate the correlation between new drivers' MWL and their work performance, regarding the number of errors. Additionally, the group method of data handling is used to establish the driver's MWL predictive model based on subjective rating (NASA task load index [NASA-TLX]) and six physiological indices. The results indicate that the NASA-TLX and the number of errors are positively correlated, and the predictive model shows the validity of the proposed model with an R 2 value of 0.745. The proposed model is expected to provide a reference value for the new drivers of their MWL by providing the physiological indices, and the driving lesson plans can be proposed to sustain an appropriate MWL as well as improve the driver's work performance.
Prediction of explosive yield and other characteristics of liquid rocket propellant explosions
NASA Technical Reports Server (NTRS)
Farber, E. A.; Smith, J. H.; Watts, E. H.
1973-01-01
Work which has been done at the University of Florida in arriving at credible explosive yield values for liquid rocket propellants is presented. The results are based upon logical methods which have been well worked out theoretically and verified through experimental procedures. Three independent methods to predict explosive yield values for liquid rocket propellants are described. All three give the same end result even though they utilize different parameters and procedures. They are: (1) mathematical model; (2) seven chart approach; and (3) critical mass method. A brief description of the methods, how they were derived, how they were applied, and the results which they produced are given. The experimental work used to support and verify the above methods both in the laboratory and in the field with actually explosive mixtures are presented. The methods developed are used and their value demonstrated in analyzing real problems, among them the destruct system of the Saturn 5, and the early configurations of the space shuttle.
Croft, Alyssa; Schmader, Toni; Block, Katharina; Baron, Andrew Scott
2014-07-01
Gender inequality at home continues to constrain gender equality at work. How do the gender disparities in domestic labor that children observe between their parents predict those children's visions for their future roles? The present research examined how parents' behaviors and implicit associations concerning domestic roles, over and above their explicit beliefs, predict their children's future aspirations. Data from 326 children aged 7 to 13 years revealed that mothers' explicit beliefs about domestic gender roles predicted the beliefs held by their children. In addition, when fathers enacted or espoused a more egalitarian distribution of household labor, their daughters in particular expressed a greater interest in working outside the home and having a less stereotypical occupation. Fathers' implicit gender-role associations also uniquely predicted daughters' (but not sons') occupational preferences. These findings suggest that a more balanced division of household labor between parents might promote greater workforce equality in future generations. © The Author(s) 2014.
Right Lateral Cerebellum Represents Linguistic Predictability.
Lesage, Elise; Hansen, Peter C; Miall, R Chris
2017-06-28
Mounting evidence indicates that posterolateral portions of the cerebellum (right Crus I/II) contribute to language processing, but the nature of this role remains unclear. Based on a well-supported theory of cerebellar motor function, which ascribes to the cerebellum a role in short-term prediction through internal modeling, we hypothesize that right cerebellar Crus I/II supports prediction of upcoming sentence content. We tested this hypothesis using event-related fMRI in male and female human subjects by manipulating the predictability of written sentences. Our design controlled for motor planning and execution, as well as for linguistic features and working memory load; it also allowed separation of the prediction interval from the presentation of the final sentence item. In addition, three further fMRI tasks captured semantic, phonological, and orthographic processing to shed light on the nature of the information processed. As hypothesized, activity in right posterolateral cerebellum correlated with the predictability of the upcoming target word. This cerebellar region also responded to prediction error during the outcome of the trial. Further, this region was engaged in phonological, but not semantic or orthographic, processing. This is the first imaging study to demonstrate a right cerebellar contribution in language comprehension independently from motor, cognitive, and linguistic confounds. These results complement our work using other methodologies showing cerebellar engagement in linguistic prediction and suggest that internal modeling of phonological representations aids language production and comprehension. SIGNIFICANCE STATEMENT The cerebellum is traditionally seen as a motor structure that allows for smooth movement by predicting upcoming signals. However, the cerebellum is also consistently implicated in nonmotor functions such as language and working memory. Using fMRI, we identify a cerebellar area that is active when words are predicted and when these predictions are violated. This area is active in a separate task that requires phonological processing, but not in tasks that require semantic or visuospatial processing. Our results support the idea of prediction as a unifying cerebellar function in motor and nonmotor domains. We provide new insights by linking the cerebellar role in prediction to its role in verbal working memory, suggesting that these predictions involve phonological processing. Copyright © 2017 Lesage et al.
[Psychosocial risk factors at work as predictors of mobbing].
Meseguer de Pedro, Mariano; Soler Sánchez, María I; García-Izquierdo, Mariano; Sáez Navarro, M C; Sánchez Meca, Julio
2007-05-01
This work analyses the way in which various psychosocial risk indicators may predict mobbing. A sample of 638 workers, 168 men and 470 women, from the fruit-and-vegetable sector was evaluated. An anonymous questionnaire was administered to all employees who were present on the evaluation days in the companies comprising the study. After analysing the data obtained with the mobbing questionnaire NAQ-RE (Sáez, García-Izquierdo, and Llor, 2003) and with the psychosocial risk factors evaluation method of the INSHT (Martín and Pérez, 1997), using canonical regression, we found that several psychosocial factors such as role definition, mental workload, interest in the workers, and supervision / participation predict two types of mobbing: personal mobbing and work-performance-related mobbing.
Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD
NASA Astrophysics Data System (ADS)
Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël
2016-11-01
Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.
Indoor NO2 air pollution and lung function of professional cooks.
Arbex, M A; Martins, L C; Pereira, L A A; Negrini, F; Cardoso, A A; Melchert, W R; Arbex, R F; Saldiva, P H N; Zanobetti, A; Braga, A L F
2007-04-01
Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF(25-75), based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. On predicted FEF(25-75), a decrease of 3.5% (P = 0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF(25-75) that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.
Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar
2016-10-01
The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Higgs Boson Production in Association with a Jet at Next-to-Next-to-Leading Order.
Boughezal, Radja; Caola, Fabrizio; Melnikov, Kirill; Petriello, Frank; Schulze, Markus
2015-08-21
We present precise predictions for Higgs boson production in association with a jet. We work in the Higgs effective field theory framework and compute next-to-next-to-leading order QCD corrections to the gluon-gluon and quark-gluon channels, which is sufficient for reliable LHC phenomenology. We present fully differential results as well as total cross sections for the LHC. Our next-to-next-to-leading order predictions reduce the unphysical scale dependence by more than a factor of 2 and enhance the total rate by about twenty percent compared to next-to-leading order QCD predictions. Our results demonstrate for the first time satisfactory convergence of the perturbative series.
Zhao, Ping; Pan, Yuzhuo; Wagner, Christian
2017-01-01
A comprehensive search in literature and published US Food and Drug Administration reviews was conducted to assess whether physiologically based pharmacokinetic (PBPK) modeling could be prospectively used to predict clinical food effect on oral drug absorption. Among the 48 resulted food effect predictions, ∼50% were predicted within 1.25‐fold of observed, and 75% within 2‐fold. Dissolution rate and precipitation time were commonly optimized parameters when PBPK modeling was not able to capture the food effect. The current work presents a knowledgebase for documenting PBPK experience to predict food effect. PMID:29168611
Cued Reacquisition Trials during Extinction Weaken Contextual Renewal in Human Predictive Learning
ERIC Educational Resources Information Center
Effting, Marieke; Vervliet, Bram; Beckers, Tom; Kindt, Merel
2013-01-01
Extinction is generally more context specific than acquisition, as illustrated by the renewal effect. While most strategies to counteract renewal focus on decreasing the context specificity of extinction, the present work aimed at increasing the context specificity of acquisition learning. Two experiments examined whether presenting cued…
Neural network applications in telecommunications
NASA Technical Reports Server (NTRS)
Alspector, Joshua
1994-01-01
Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.
Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polly, B.
2011-09-01
This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.
Time Span of Discretion and Administrative Work in School Systems: Results of a Pilot Study.
ERIC Educational Resources Information Center
Allison, Derek J.; Morfitt, Grace
This paper presents findings of a study that utilized Elliott Jaques' theories of organizational depth structure and time span of discretion in administrative work to examine administrators' responsibilities in two Ontario (Canada) school systems. The theory predicts that the time-span of discretion associated with the administrative tasks will…
Best Practices for Unstructured Grid Shock Fitting
NASA Technical Reports Server (NTRS)
McCloud, Peter L.
2017-01-01
Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock fitting is outlined and applied to production relevant cases. Results achieved by using the Loci-CHEM Computational Fluid Dynamics solver are provided.
Srinivas, N R
2016-08-01
Linear regression models utilizing a single time point (Cmax) has been reported for pravastatin and simvastatin. A new model was developed for the prediction of AUC of statins that utilized the slopes of the above 2 models, with pharmacokinetic (Cmax) and a pharmacodynamic (IC50 value) components for the statins. The prediction of AUCs for various statins (pravastatin, atorvastatin, simvastatin and rosuvastatin) was carried out using the newly developed dual pharmacokinetic and pharmacodynamic model. Generally, the AUC predictions were contained within 0.5 to 2-fold difference of the observed AUC suggesting utility of the new models. The root mean square error predictions were<45% for the 2 models. On the basis of the present work, it is feasible to utilize both pharmacokinetic (Cmax) and pharmacodynamic (IC50) data for effectively predicting the AUC for statins. Such a new concept as described in the work may have utility in both drug discovery and development stages. © Georg Thieme Verlag KG Stuttgart · New York.
Insufficient sleep predicts clinical burnout.
Söderström, Marie; Jeding, Kerstin; Ekstedt, Mirjam; Perski, Aleksander; Akerstedt, Torbjörn
2012-04-01
The present prospective study aimed to identify risk factors for subsequent clinical burnout. Three hundred eighty-eight working individuals completed a baseline questionnaire regarding work stress, sleep, mood, health, and so forth. During a 2-year period, 15 subjects (7 women and 8 men) of the total sample were identified as "burnout cases," as they were assessed and referred to treatment for clinical burnout. Questionnaire data from the baseline measurement were used as independent variables in a series of logistic regression analyses to predict clinical burnout. The results identified "too little sleep (< 6 h)" as the main risk factor for burnout development, with adjustment for "work demands," "thoughts of work during leisure time," and "sleep quality." The first two factors were significant predictors in earlier steps of the multivariate regression. The results indicate that insufficient sleep, preoccupation with thoughts of work during leisure time, and high work demands are risk factors for subsequent burnout. The results suggest a chain of causation. PsycINFO Database Record (c) 2012 APA, all rights reserved.
State of Jet Noise Prediction-NASA Perspective
NASA Technical Reports Server (NTRS)
Bridges, James E.
2008-01-01
This presentation covers work primarily done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. To provide motivation and context, the presentation starts with a brief overview of the Airport Noise Technical Challenge. It then covers the state of NASA s jet noise prediction tools in empirical, RANS-based, and time-resolved categories. The empirical tools, requires seconds to provide a prediction of noise spectral directivity with an accuracy of a few dB, but only for axisymmetric configurations. The RANS-based tools are able to discern the impact of three-dimensional features, but are currently deficient in predicting noise from heated jets and jets with high speed and require hours to produce their prediction. The time-resolved codes are capable of predicting resonances and other time-dependent phenomena, but are very immature, requiring months to deliver predictions without unknown accuracies and dependabilities. In toto, however, when one considers the progress being made it appears that aeroacoustic prediction tools are soon to approach the level of sophistication and accuracy of aerodynamic engineering tools.
Birkeland, Marianne Skogbrott; Nielsen, Morten Birkeland; Knardahl, Stein; Heir, Trond
2015-01-01
Experiencing terrorism is associated with high levels of psychological distress among survivors. The aim of the present study was to examine whether work environmental factors such as role clarity and predictability, role conflicts, and leader support may protect against elevated levels of psychological distress after a workplace terrorist attack. Data from approximately 1800 ministerial employees were collected ten months after the 2011 Oslo bombing attack which targeted the Norwegian ministries. The results show that after a traumatic event, lower role conflicts, higher role clarity, higher predictability, and higher leader support were independently associated with lower psychological distress. These findings suggest that the workplace environment may be a facilitator of employees' mental health after stressful events.
Predicting introductory programming performance: A multi-institutional multivariate study
NASA Astrophysics Data System (ADS)
Bergin, Susan; Reilly, Ronan
2006-12-01
A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a logistic regression model using 10-fold stratified cross validation was developed. The model used three attributes: Leaving Certificate Mathematics result (final mathematics examination at second level), number of hours playing computer games while taking the module and programming self-esteem. Prediction success was significant with 80% of students correctly classified. The model also works well on a per-institution level. A discussion on the implications of the model is provided and future work is outlined.
Review of the BACKONE equation of state and its applications
NASA Astrophysics Data System (ADS)
Lai, Ngoc Anh; Phan, Thi Thu Huong
2017-06-01
This paper presents a review of the BACKONE equation of state (EOS) and its various applications in the study of pure fluid and mixtures as refrigerants, working fluids, natural gases and the study of heat pumps, refrigeration cycles, organic Rankine cycles, trilateral cycles and power flash cycles. It also presents an accurate parameterisation of the BACKONE EOS for the low global warming potential working fluid 3,3,3-trifluoropropene (HFO-1243zf). The average absolute deviations (AAD) between experimental vapour pressure and saturated liquid density data from those of the BACKONE EOS are 0.12% and 0.08%, respectively. The BACKONE EOS for HFO-1243zf also predicts thermodynamic data accurately. The AAD between the BACKONE predicted values and experimental data are 0.20% for sub-cooled liquid density and 0.56% for gaseous pressure.
Franceschini, Marco; Massimiani, Maria Pia; Paravati, Stefano; Agosti, Maurizio
2016-01-01
Return to work (RTW) for people with acquired brain injury (ABI) represents a main objective of rehabilitation: this work presents a strong correlation between personal well-being and quality of life. The aim of this study is to investigate the prognostic factors that can predict RTW after ABI (traumatic or non- traumatic aetiology) in patients without disorders of consciousness (e.g. coma, vegetative or minimally conscious state) at the beginning of their admission to rehabilitation. At the end of a 6-month follow-up after discharge, data were successfully collected in 69 patients. The rehabilitation effectiveness (functional Recovery) between admission and discharge was assessed by Functional Independent Measure (FIM) gain, through the Montebello Rehabilitation Factor Score (MRFS), which was obtained as follows: (discharge FIM-admission FIM)/(Maximum possible FIM-Admission FIM) x 100. The cut-off value (criterion) deriving from MRFS, which helped identify RTW patients, resulted in .659 (sn 88.9%; sp 52.4%). Considering the Mini Mental State Examination (MMSE) and the MRFS data, the multivariable binary logistic regression analysis presented 62.96% of correct RTW classification cases, 80.95% of non-RTW leading to an overall satisfactory predictability of 73.91%. The results of the present study suggest that occupational therapy intervention could modify cut-off in patients with an MFRS close to target at the end of an in-hospital rehabilitative program thus developing their capabilities and consequently surpassing cut-off itself.
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1978-01-01
A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.
An Experimental and Theoretical Study on Cavitating Propellers.
1982-10-01
34 And Identfyp eV &to" nMeeJ cascade flow theoretical supercavitating flow performance prediction method partially cavitating flow supercavitating ...the present work was to develop an analytical tool for predicting the off-design performance of supercavitating propellers over a wide range of...operating conditions. Due to the complex nature of the flow phenomena, a lifting line theory sirply combined with the two-dimensional supercavitating
A nonparametric multiple imputation approach for missing categorical data.
Zhou, Muhan; He, Yulei; Yu, Mandi; Hsu, Chiu-Hsieh
2017-06-06
Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by measuring distances between each missing value with other non-missing values. The distance function is calculated based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for predicting the missing categorical outcome (the outcome model) and the other fits a logistic regression for predicting missingness probabilities (the missingness model). A weighting scheme is used to accommodate contributions from two working models when generating the predictive score. A missing value is imputed by randomly selecting one of the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the proposed method and compare it with several alternative methods. A real-data application is also presented. The simulation study suggests that the proposed method performs well when missingness probabilities are not extreme under some misspecifications of the working models. However, the calibration estimator, which is also based on two working models, can be highly unstable when missingness probabilities for some observations are extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper weights need to be chosen to balance the contributions from the two working models and achieve optimal results for the proposed method. We conclude that the proposed multiple imputation method is a reasonable approach to dealing with missing categorical outcome data with more than two levels for assessing the distribution of the outcome. In terms of the choices for the working models, we suggest a multinomial logistic regression for predicting the missing outcome and a binary logistic regression for predicting the missingness probability.
NASA Astrophysics Data System (ADS)
Ko, P.; Kurosawa, S.
2014-03-01
The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.
An Efficient Pattern Mining Approach for Event Detection in Multivariate Temporal Data
Batal, Iyad; Cooper, Gregory; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos
2015-01-01
This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach first converts the time series data into time-interval sequences of temporal abstractions. It then constructs more complex time-interval patterns backward in time using temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework for selecting a small set of predictive and non-spurious patterns. We apply our methods for predicting adverse medical events in real-world clinical data. The results demonstrate the benefits of our methods in learning accurate event detection models, which is a key step for developing intelligent patient monitoring and decision support systems. PMID:26752800
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.
Plante, Benoît; Benzaazoua, Mostafa; Bussière, Bruno; Kandji, El-Hadji-Babacar; Chopard, Aurélie; Bouzahzah, Hassan
2015-05-01
The tools developed for acid mine drainage (AMD) prediction were proven unsuccessful to predict the geochemical behavior of mine waste rocks having a significant chemical sorption capacity, which delays the onset of contaminated neutral drainage (CND). The present work was performed in order to test a new approach of water quality prediction, by using a chelating agent solution (0.03 M EDTA, or ethylenediaminetetraacetic acid) in kinetic testing used for the prediction of the geochemical behavior of geologic material. The hypothesis underlying the proposed approach is that the EDTA solution should chelate the metals as soon as they are released by sulfide oxidation, inhibiting their sorption or secondary precipitation, and therefore reproduce a worst-case scenario where very low metal attenuation mechanisms are present in the drainage waters. Fresh and weathered waste rocks from the Lac Tio mine (Rio tinto, Iron and Titanium), which are known to generate Ni-CND at the field scale, were submitted to small-scale humidity cells in control tests (using deionized water) and using an EDTA solution. Results show that EDTA effectively prevents the metals to be sorbed or to precipitate as secondary minerals, therefore enabling to bypass the delay associated with metal sorption in the prediction of water quality from these materials. This work shows that the use of a chelating agent solution is a promising novel approach of water quality prediction and provides general guidelines to be used in further studies, which will help both practitioners and regulators to plan more efficient management and disposal strategies of mine wastes.
Space Flight Cable Model Development
NASA Technical Reports Server (NTRS)
Spak, Kaitlin
2013-01-01
This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.
Towards Assessing the Human Trajectory Planning Horizon
Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015
Towards Assessing the Human Trajectory Planning Horizon.
Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.
Feasibility of MHD submarine propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less
NuMI Flux Predictions for NOvA and MINERvA
NASA Astrophysics Data System (ADS)
Aliaga Soplin, Leonidas; Nova Collaboration; Minerva Collaboration
2017-01-01
The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the knowledge of the flux. For experiments like MINERvA and NOvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-section measurement. The majority of this work involves predicting the neutrino flux using dedicated hadron production measurements from hadron-nucleus collisions. The predictions at the MINERvA and NOvA near detectors are presented as well as the results of incorporating in-situ MINERvA data that can provide additional constraints. These results have been fully implemented in MINERvA and they are currently use for its cross-section analysis. The implementation for NoVA is underway. The procedure and conclusions of this work will have a big impact on future hadron production experiments and on determining the flux for the upcoming DUNE experiment.
NASA Astrophysics Data System (ADS)
Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas
2017-06-01
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.
New technology in turbine aerodynamics.
NASA Technical Reports Server (NTRS)
Glassman, A. J.; Moffitt, T. P.
1972-01-01
Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.
Predicting pornography use over time: Does self-reported "addiction" matter?
Grubbs, Joshua B; Wilt, Joshua A; Exline, Julie J; Pargament, Kenneth I
2018-07-01
In recent years, several works have reported on perceived addiction to internet pornography, or the potential for some individuals to label their own use of pornography as compulsive or out of control. Such works have consistently found that perceived addiction is related to concerning outcomes such as psychological distress, relational distress, and other addictive behaviors. However, very little work has specifically examined whether or not perceived addiction is actually related to increased use of pornography, cross-sectionally or over time. The present work sought to address this deficit in the literature. Using two longitudinal samples (Sample 1, Baseline N = 3988; Sample 2, Baseline N = 1047), a variety of factors (e.g., male gender, lower religiousness, and lower self-control) were found to predict any use of pornography. Among those that acknowledged use (Sample 1, Baseline N = 1352; Sample 2, Baseline N = 793), perceived addiction to pornography consistently predicted greater average daily use of pornography. At subsequent longitudinal follow-ups (Sample 1, Baseline N = 265; Sample 2, One Month Later, N = 410, One Year Later, N = 360), only male gender and baseline average pornography use consistently predicted future use. These findings suggest that perceived addiction to pornography is associated with concurrent use of pornography, but does not appear to predict use over time, suggesting that perceived addiction may not always be an accurate indicator of behavior or addiction. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kim, YouJin; Payant, Caroline; Pearson, Pamela
2015-01-01
The extent to which individual differences in cognitive abilities affect the relationship among task complexity, attention to form, and second language development has been addressed only minimally in the cognition hypothesis literature. The present study explores how reasoning demands in tasks and working memory (WM) capacity predict learners'…
Lock-in amplifier error prediction and correction in frequency sweep measurements.
Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose
2007-01-01
This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.
Bankruptcy prediction for credit risk using neural networks: a survey and new results.
Atiya, A F
2001-01-01
The prediction of corporate bankruptcies is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. This work presents two contributions. First we review the topic of bankruptcy prediction, with emphasis on neural-network (NN) models. Second, we develop an NN bankruptcy prediction model. Inspired by one of the traditional credit risk models developed by Merton (1974), we propose novel indicators for the NN system. We show that the use of these indicators in addition to traditional financial ratio indicators provides a significant improvement in the (out-of-sample) prediction accuracy (from 81.46% to 85.5% for a three-year-ahead forecast).
eMolTox: prediction of molecular toxicity with confidence.
Ji, Changge; Svensson, Fredrik; Zoufir, Azedine; Bender, Andreas
2018-03-07
In this work we present eMolTox, a web server for the prediction of potential toxicity associated with a given molecule. 174 toxicology-related in vitro/vivo experimental datasets were used for model construction and Mondrian conformal prediction was used to estimate the confidence of the resulting predictions. Toxic substructure analysis is also implemented in eMolTox. eMolTox predicts and displays a wealth of information of potential molecular toxicities for safety analysis in drug development. The eMolTox Server is freely available for use on the web at http://xundrug.cn/moltox. chicago.ji@gmail.com or ab454@cam.ac.uk. Supplementary data are available at Bioinformatics online.
Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation
NASA Astrophysics Data System (ADS)
Peters, A.; Lantermann, U.; el Moctar, O.
2015-12-01
The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.
Modeling and analysis of transport in the mammary glands
NASA Astrophysics Data System (ADS)
Quezada, Ana; Vafai, Kambiz
2014-08-01
The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.
Working memory predicts semantic comprehension in dichotic listening in older adults.
James, Philip J; Krishnan, Saloni; Aydelott, Jennifer
2014-10-01
Older adults have difficulty understanding spoken language in the presence of competing voices. Everyday social situations involving multiple simultaneous talkers may become increasingly challenging in later life due to changes in the ability to focus attention. This study examined whether individual differences in cognitive function predict older adults' ability to access sentence-level meanings in competing speech using a dichotic priming paradigm. Older listeners showed faster responses to words that matched the meaning of spoken sentences presented to the left or right ear, relative to a neutral baseline. However, older adults were more vulnerable than younger adults to interference from competing speech when the competing signal was presented to the right ear. This pattern of performance was strongly correlated with a non-auditory working memory measure, suggesting that cognitive factors play a key role in semantic comprehension in competing speech in healthy aging. Copyright © 2014 Elsevier B.V. All rights reserved.
The interaction of drug use, sex work, and HIV among transgender women.
Hoffman, Beth R
2014-06-01
Transgender women have a higher prevalence of drug use, HIV, drug use, and sex work than the general population. This article explores the interaction of these variables and discusses how sex work and drug use behaviors contribute to the high rates of HIV. A model predicting HIV rates with sex work and drug use as well as these behaviors in the transgender woman's social network is presented. Challenges to intervening with transgender women, as well as suggestions and criteria for successful interventions, are discussed.
Data Mining at NASA: From Theory to Applications
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.
2009-01-01
This slide presentation demonstrates the data mining/machine learning capabilities of NASA Ames and Intelligent Data Understanding (IDU) group. This will encompass the work done recently in the group by various group members. The IDU group develops novel algorithms to detect, classify, and predict events in large data streams for scientific and engineering systems. This presentation for Knowledge Discovery and Data Mining 2009 is to demonstrate the data mining/machine learning capabilities of NASA Ames and IDU group. This will encompass the work done re cently in the group by various group members.
Yet More Lessons From Complexity. Unity the key for Peace.
NASA Astrophysics Data System (ADS)
Puente, C. E.
2004-12-01
The last few decades have witnessed the development of a host of ideas aimed at understanding and predicting nature's ever present complexity. It is shown that such a work provides, through its detailed study of order and disorder, a suitable framework for visualizing the dynamics and consequences of mankind's ever present divisive traits. Specifically, this work explains how recent universal results pertaining to power-laws, self-organized criticality and space-filling transformations provide additional and pertinent reminders that point us to unity as an essential element for us to achieve peace.
Mulhearn, Tyler J; Watts, Logan L; Todd, E Michelle; Medeiros, Kelsey E; Connelly, Shane; Mumford, Michael D
2017-01-01
Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r = 0.46) with objective course outcomes. Implications for training program development and refinement are discussed.
Psychosocial work characteristics predicting daytime sleepiness in day and shift workers.
Takahashi, Masaya; Nakata, Akinori; Haratani, Takashi; Otsuka, Yasumasa; Kaida, Kosuke; Fukasawa, Kenji
2006-01-01
Characteristics of work organization other than working time arrangements may contribute importantly to daytime sleepiness. The present study was designed to identify the psychosocial factors at work that predict daytime sleepiness in a sample of day and shift workers. Participants working at a pulp and chemical factory completed an annual questionnaire regarding psychosocial factors at work using the U.S. National Institute for Occupational Safety and Health Generic Job Stress Questionnaire (i.e., quantitative workload, variance in workload, job control, support from supervisor, coworkers, or family/friends, job satisfaction, and depressive symptoms), as well as daytime sleepiness (through the Epworth Sleepiness Scale [ESS]) and sleep disturbances for three years starting in 2002 (response rates, 94.6-99.0%). The present analysis included 55 day workers (11 women) and 57 shift workers (all men) who participated in all three years of the study, worked under the same work schedule throughout the study period, and had no missing data on any of the daytime sleep items. A repeated-measures analysis of covariance (ANCOVA) was used to test the effects of work schedule (day vs. shift work) and psychosocial factors at work in 2002 on the ESS scores in subsequent years, with sleep duration, insomnia symptoms, chronic diseases, and sleepiness levels at baseline as covariates. Given significant and near-significant interactions of work schedules with psychosocial factor or study year, the ANCOVA, with the factors of psychosocial work characteristics and study year, was performed by type of work schedule. The results indicated a significant main effect of psychosocial work characteristics (p = 0.010, partial eng2 = 0.14) and an almost significant main effect of study year (p = 0.067, partial eng2 = 0.06) and interaction between psychosocial work characteristics and study year (p = 0.085, partial eng2 = 0.06) for variance in workload among the day work group. The day workers reporting high variance in workload in 2002 exhibited significantly higher ESS scores in 2003 and 2004 than did those reporting low variance in workload. The ANCOVA for the shift work group showed a main effect of psychosocial work characteristics for job satisfaction (p = 0.026, partial eng2 = 0.10) and depressive symptoms (p = 0.094, partial eng2 = 0.06) with the interaction between psychosocial work characteristics and study year for job satisfaction (p = 0.172, partial eng2 = 0.04) and depressive symptoms (p = 0.035, partial eng2 = 0.07). The shift workers with low job satisfaction and high symptoms of depression in 2002 showed significantly greater ESS scores in 2003 and/or 2004 than did those with opposite characteristics. These results may suggest a potential predictive value of variance in workload for day workers as well as job satisfaction and depressive symptoms for shift workers with respect to daytime sleepiness. The present findings may imply that redesigning these aspects of work environment would be of help in managing daytime sleepiness.
Are prediction models for Lynch syndrome valid for probands with endometrial cancer?
Backes, Floor J; Hampel, Heather; Backes, Katherine A; Vaccarello, Luis; Lewandowski, George; Bell, Jeffrey A; Reid, Gary C; Copeland, Larry J; Fowler, Jeffrey M; Cohn, David E
2009-01-01
Currently, three prediction models are used to predict a patient's risk of having Lynch syndrome (LS). These models have been validated in probands with colorectal cancer (CRC), but not in probands presenting with endometrial cancer (EMC). Thus, the aim was to determine the performance of these prediction models in women with LS presenting with EMC. Probands with EMC and LS were identified. Personal and family history was entered into three prediction models, PREMM(1,2), MMRpro, and MMRpredict. Probabilities of mutations in the mismatch repair genes were recorded. Accurate prediction was defined as a model predicting at least a 5% chance of a proband carrying a mutation. From 562 patients prospectively enrolled in a clinical trial of patients with EMC, 13 (2.2%) were shown to have LS. Nine patients had a mutation in MSH6, three in MSH2, and one in MLH1. MMRpro predicted that 3 of 9 patients with an MSH6, 3 of 3 with an MSH2, and 1 of 1 patient with an MLH1 mutation could have LS. For MMRpredict, EMC coded as "proximal CRC" predicted 5 of 5, and as "distal CRC" three of five. PREMM(1,2) predicted that 4 of 4 with an MLH1 or MSH2 could have LS. Prediction of LS in probands presenting with EMC using current models for probands with CRC works reasonably well. Further studies are needed to develop models that include questions specific to patients with EMC with a greater age range, as well as placing increased emphasis on prediction of LS in probands with MSH6 mutations.
Predictability effects in auditory scene analysis: a review
Bendixen, Alexandra
2014-01-01
Many sound sources emit signals in a predictable manner. The idea that predictability can be exploited to support the segregation of one source's signal emissions from the overlapping signals of other sources has been expressed for a long time. Yet experimental evidence for a strong role of predictability within auditory scene analysis (ASA) has been scarce. Recently, there has been an upsurge in experimental and theoretical work on this topic resulting from fundamental changes in our perspective on how the brain extracts predictability from series of sensory events. Based on effortless predictive processing in the auditory system, it becomes more plausible that predictability would be available as a cue for sound source decomposition. In the present contribution, empirical evidence for such a role of predictability in ASA will be reviewed. It will be shown that predictability affects ASA both when it is present in the sound source of interest (perceptual foreground) and when it is present in other sound sources that the listener wishes to ignore (perceptual background). First evidence pointing toward age-related impairments in the latter capacity will be addressed. Moreover, it will be illustrated how effects of predictability can be shown by means of objective listening tests as well as by subjective report procedures, with the latter approach typically exploiting the multi-stable nature of auditory perception. Critical aspects of study design will be delineated to ensure that predictability effects can be unambiguously interpreted. Possible mechanisms for a functional role of predictability within ASA will be discussed, and an analogy with the old-plus-new heuristic for grouping simultaneous acoustic signals will be suggested. PMID:24744695
Bohnert, Tonika; Patel, Aarti; Templeton, Ian; Chen, Yuan; Lu, Chuang; Lai, George; Leung, Louis; Tse, Susanna; Einolf, Heidi J; Wang, Ying-Hong; Sinz, Michael; Stearns, Ralph; Walsky, Robert; Geng, Wanping; Sudsakorn, Sirimas; Moore, David; He, Ling; Wahlstrom, Jan; Keirns, Jim; Narayanan, Rangaraj; Lang, Dieter; Yang, Xiaoqing
2016-08-01
Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Applications of information theory, genetic algorithms, and neural models to predict oil flow
NASA Astrophysics Data System (ADS)
Ludwig, Oswaldo; Nunes, Urbano; Araújo, Rui; Schnitman, Leizer; Lepikson, Herman Augusto
2009-07-01
This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.
Fisher information framework for time series modeling
NASA Astrophysics Data System (ADS)
Venkatesan, R. C.; Plastino, A.
2017-08-01
A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.
Vander Elst, Tinne; Cavents, Carolien; Daneels, Katrien; Johannik, Kristien; Baillien, Elfi; Van den Broeck, Anja; Godderis, Lode
A better knowledge of the job aspects that may predict home health care nurses' burnout and work engagement is important in view of stress prevention and health promotion. The Job Demands-Resources model predicts that job demands and resources relate to burnout and work engagement but has not previously been tested in the specific context of home health care nursing. The present study offers a comprehensive test of the Job-Demands Resources model in home health care nursing. We investigate the main and interaction effects of distinctive job demands (workload, emotional demands and aggression) and resources (autonomy, social support and learning opportunities) on burnout and work engagement. Analyses were conducted using cross-sectional data from 675 Belgian home health care nurses, who participated in a voluntary and anonymous survey. The results show that workload and emotional demands were positively associated with burnout, whereas aggression was unrelated to burnout. All job resources were associated with higher levels of work engagement and lower levels of burnout. In addition, social support buffered the positive relationship between workload and burnout. Home health care organizations should invest in dealing with workload and emotional demands and stimulating the job resources under study to reduce the risk of burnout and increase their nurses' work engagement. Copyright © 2016 Elsevier Inc. All rights reserved.
2016-01-01
Return to work (RTW) for people with acquired brain injury (ABI) represents a main objective of rehabilitation: this work presents a strong correlation between personal well-being and quality of life. The aim of this study is to investigate the prognostic factors that can predict RTW after ABI (traumatic or non- traumatic aetiology) in patients without disorders of consciousness (e.g. coma, vegetative or minimally conscious state) at the beginning of their admission to rehabilitation. At the end of a 6-month follow-up after discharge, data were successfully collected in 69 patients. The rehabilitation effectiveness (functional Recovery) between admission and discharge was assessed by Functional Independent Measure (FIM) gain, through the Montebello Rehabilitation Factor Score (MRFS), which was obtained as follows: (discharge FIM—admission FIM)/(Maximum possible FIM—Admission FIM) x 100. The cut-off value (criterion) deriving from MRFS, which helped identify RTW patients, resulted in .659 (sn 88.9%; sp 52.4%). Considering the Mini Mental State Examination (MMSE) and the MRFS data, the multivariable binary logistic regression analysis presented 62.96% of correct RTW classification cases, 80.95% of non-RTW leading to an overall satisfactory predictability of 73.91%. The results of the present study suggest that occupational therapy intervention could modify cut-off in patients with an MFRS close to target at the end of an in-hospital rehabilitative program thus developing their capabilities and consequently surpassing cut-off itself. PMID:27780215
ERIC Educational Resources Information Center
Hughes, K. Scott; And Others
This report describes national demographic and work force trends that have important implications for institutions and presents recommended management strategies for the 1990s. Among the trends predicted for the next 10 years are the following: (1) a continuing reduction in the traditional 18-24 year-old college-going population; (2) the…
Time-Based Loss in Visual Short-Term Memory Is from Trace Decay, Not Temporal Distinctiveness
ERIC Educational Resources Information Center
Ricker, Timothy J.; Spiegel, Lauren R.; Cowan, Nelson
2014-01-01
There is no consensus as to why forgetting occurs in short-term memory tasks. In past work, we have shown that forgetting occurs with the passage of time, but there are 2 classes of theories that can explain this effect. In the present work, we investigate the reason for time-based forgetting by contrasting the predictions of temporal…
ERIC Educational Resources Information Center
Eichorn, Naomi; Marton, Klara; Schwartz, Richard G.; Melara, Robert D.; Pirutinsky, Steven
2016-01-01
Purpose: The present study examined whether engaging working memory in a secondary task benefits speech fluency. Effects of dual-task conditions on speech fluency, rate, and errors were examined with respect to predictions derived from three related theoretical accounts of disfluencies. Method: Nineteen adults who stutter and twenty adults who do…
ERIC Educational Resources Information Center
Abós Catalán, Ángel; Sevil Serrano, Javier; Julián Clemente, José Antonio; Martín-Albo Lucas, José; García-González, Luis
2018-01-01
The present study aimed to validate a Spanish-version of the Basic Psychological Needs at Work Scale (BPNWS-Sp) and to examine the associations between needs satisfaction and engagement and burnout in secondary education teachers. Using a sample of 584 secondary education teachers, the results supported the three-factor model, composite…
Shallow Water Reverberation Measurement and Prediction
1994-06-01
tool . The temporal signal processing consisted of a short-time Fourier transform spectral estimation method applied to data from a single hydrophone...The three-dimensional Hamiltonian Acoustic Ray-tracing Program for the Ocean (HARPO) was used as the primary propagation modeling tool . The temporal...summarizes the work completed and discusses lessons learned . Advice regarding future work to refine the present study will be provided. 6 our poiut source
Collaboratory for the Study of Earthquake Predictability
NASA Astrophysics Data System (ADS)
Schorlemmer, D.; Jordan, T. H.; Zechar, J. D.; Gerstenberger, M. C.; Wiemer, S.; Maechling, P. J.
2006-12-01
Earthquake prediction is one of the most difficult problems in physical science and, owing to its societal implications, one of the most controversial. The study of earthquake predictability has been impeded by the lack of an adequate experimental infrastructure---the capability to conduct scientific prediction experiments under rigorous, controlled conditions and evaluate them using accepted criteria specified in advance. To remedy this deficiency, the Southern California Earthquake Center (SCEC) is working with its international partners, which include the European Union (through the Swiss Seismological Service) and New Zealand (through GNS Science), to develop a virtual, distributed laboratory with a cyberinfrastructure adequate to support a global program of research on earthquake predictability. This Collaboratory for the Study of Earthquake Predictability (CSEP) will extend the testing activities of SCEC's Working Group on Regional Earthquake Likelihood Models, from which we will present first results. CSEP will support rigorous procedures for registering prediction experiments on regional and global scales, community-endorsed standards for assessing probability-based and alarm-based predictions, access to authorized data sets and monitoring products from designated natural laboratories, and software to allow researchers to participate in prediction experiments. CSEP will encourage research on earthquake predictability by supporting an environment for scientific prediction experiments that allows the predictive skill of proposed algorithms to be rigorously compared with standardized reference methods and data sets. It will thereby reduce the controversies surrounding earthquake prediction, and it will allow the results of prediction experiments to be communicated to the scientific community, governmental agencies, and the general public in an appropriate research context.
Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction.
Chen, Kun; Liang, Yu; Gao, Zengliang; Liu, Yi
2017-08-08
Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors.
Just-in-Time Correntropy Soft Sensor with Noisy Data for Industrial Silicon Content Prediction
Chen, Kun; Liang, Yu; Gao, Zengliang; Liu, Yi
2017-01-01
Development of accurate data-driven quality prediction models for industrial blast furnaces encounters several challenges mainly because the collected data are nonlinear, non-Gaussian, and uneven distributed. A just-in-time correntropy-based local soft sensing approach is presented to predict the silicon content in this work. Without cumbersome efforts for outlier detection, a correntropy support vector regression (CSVR) modeling framework is proposed to deal with the soft sensor development and outlier detection simultaneously. Moreover, with a continuous updating database and a clustering strategy, a just-in-time CSVR (JCSVR) method is developed. Consequently, more accurate prediction and efficient implementations of JCSVR can be achieved. Better prediction performance of JCSVR is validated on the online silicon content prediction, compared with traditional soft sensors. PMID:28786957
Effect of aerobic fitness on the physiological stress responses at work.
Ritvanen, Tiina; Louhevaara, Veikko; Helin, Pertti; Halonen, Toivo; Hänninen, Osmo
2007-01-01
The aim of the present study was to examine the effects of aerobic fitness on physiological stress responses experienced by teachers during working hours. Twenty-six healthy female and male teachers aged 33-62 years participated in the study. The ratings of perceived stress visual analogue scale (VAS), and the measurement of physiological responses (norepinephrine, epinephrine, cortisol, diastolic and systolic blood pressure, heart rate (HR), and trapezius muscle activity by electromyography (EMG), were determined. Predicted maximal oxygen uptake (VO(2)max) was measured using the submaximal bicycle ergometer test. The predicted VO(2)max was standardized for age using residuals of linear regression analyses. Static EMG activity, HR and VAS were associated with aerobic fitness in teachers. The results suggest that a higher level of aerobic fitness may reduce muscle tension, HR and perceived work stress in teachers.
Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl
2010-01-01
β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC = 0.50, Qtotal = 82.1%, sensitivity = 75.6%, PPV = 68.8% and AUC = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. Conclusion The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. PMID:21152409
Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl
2010-11-30
β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.
Mounce, S R; Shepherd, W; Sailor, G; Shucksmith, J; Saul, A J
2014-01-01
Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that provide data for these assets. This paper presents research into the prediction of the hydraulic performance of CSOs using artificial neural networks (ANN) as an alternative to hydraulic models. Previous work has explored using an ANN model for the prediction of chamber depth using time series for depth and rain gauge data. Rainfall intensity data that can be provided by rainfall radar devices can be used to improve on this approach. Results are presented using real data from a CSO for a catchment in the North of England, UK. An ANN model trained with the pseudo-inverse rule was shown to be capable of predicting CSO depth with less than 5% error for predictions more than 1 hour ahead for unseen data. Such predictive approaches are important to the future management of combined sewer systems.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Puffing flame instability - Part II: Predicting the onset and frequency
NASA Astrophysics Data System (ADS)
Boettcher, Philipp; Shepherd, Joseph; Menon, Shyam; Blanquart, Guillaume
2011-11-01
Experiments and simulations have been performed on fuel rich n- hexane air mixtures in a closed vessel. Both experiments and simulations show a distinct cyclic combustion or ``puffing'' mode. The misalignment of buoyancy induced pressure gradients and density gradients across the flame front is responsible for the generation of vorticity and its subsequent roll-up into vortex rings. In the present work, a simplified model is proposed based on the fundamental interactions between fluid mechanical and chemical parameters. This simplified fluid mechanics model is based on dimensional analysis and is used to predict the onset and frequency of the puffing behavior. This work was sponsored by The Boeing Company through CTBA-GTA-1.
de Wind, Astrid; Scharn, Micky; Geuskens, Goedele A; van der Beek, Allard J; Boot, Cécile R L
2018-02-17
An increasing number of retirees continue to work beyond retirement despite being eligible to retire. As the prevalence of chronic disease increases with age, working beyond retirement may go along with having a chronic disease. Working beyond retirement may be different for retirees with and without chronic disease. We aim to investigate whether demographic, socioeconomic and work characteristics, health and social factors predict working beyond retirement, in workers with and without a chronic disease. Employees aged 56-64 years were selected from the Study on Transitions in Employment, Ability and Motivation (N = 1125). Questionnaire data on demographic and work characteristics, health, social factors, and working beyond retirement were linked to registry data from Statistics Netherlands on socioeconomic characteristics. Separate prediction models were built for retirees with and without chronic disease using multivariate logistic regression analyses. Workers without chronic disease were more likely to work beyond retirement compared to workers with chronic disease (27% vs 23%). In retirees with chronic disease, work and health factors predicted working beyond retirement, while in retirees without a chronic disease, work, health and social factors predicted working beyond retirement. In the final model for workers with chronic disease, healthcare work, better physical health, higher body height, lower physical load and no permanent contract were positively predictive of working beyond retirement. In the final model for workers without chronic disease, feeling full of life and being intensively physically active for > = 2 days per week were positively predictive of working beyond retirement; while manual labor, better recovery, and a partner who did not support working until the statutory retirement age, were negatively predictive of working beyond retirement. Work and health factors independently predicted working beyond retirement in workers with and without chronic disease, whereas social factors only did so among workers without chronic disease. Demographic and socioeconomic characteristics did not independently contribute to prediction of working beyond retirement in any group. As prediction of working beyond retirement was more difficult among workers with a chronic disease, future research is needed in this group.
New efficient optimizing techniques for Kalman filters and numerical weather prediction models
NASA Astrophysics Data System (ADS)
Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis
2016-06-01
The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.
Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain
2014-01-01
Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.
Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain
2014-01-01
Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms. PMID:24772098
NASA Technical Reports Server (NTRS)
Mukherjee, Rinku; Gopalarathnam, Ashok; Kim, Sung Wan
2003-01-01
An iterative decambering approach for the post stall prediction of wings using known section data as inputs is presented. The method can currently be used for incompressible .ow and can be extended to compressible subsonic .ow using Mach number correction schemes. A detailed discussion of past work on this topic is presented first. Next, an overview of the decambering approach is presented and is illustrated by applying the approach to the prediction of the two-dimensional C(sub l) and C(sub m) curves for an airfoil. The implementation of the approach for iterative decambering of wing sections is then discussed. A novel feature of the current e.ort is the use of a multidimensional Newton iteration for taking into consideration the coupling between the di.erent sections of the wing. The approach lends itself to implementation in a variety of finite-wing analysis methods such as lifting-line theory, discrete-vortex Weissinger's method, and vortex lattice codes. Results are presented for a rectangular wing for a from 0 to 25 deg. The results are compared for both increasing and decreasing directions of a, and they show that a hysteresis loop can be predicted for post-stall angles of attack.
Sense of coherence and the motivational process of the job-demands-resources model.
Vogt, Katharina; Hakanen, Jari J; Jenny, Gregor J; Bauer, Georg F
2016-04-01
This longitudinal study systematically examines the various roles played by the personal resource "sense of coherence" (SoC) in the motivational process described by the job-demands-resources model. SoC captures the extent to which people perceive their life as comprehensible, manageable and meaningful, and there is evidence of its influence in many health-related outcomes. The first aim here was to establish whether a resourceful working environment builds up SoC and whether SoC leads to work engagement. A second aim was to test reverse relationships: how work engagement leads to SoC and how SoC in turn relates to job resources. A third aim was to assess whether SoC boosts the relationship between job resources and work engagement. The study utilized a 3-wave, 3-month panel design, involving 940 employees working in a broad range of occupations and economic sectors. The results of longitudinal structural equation modeling show that job resources predict SoC and SoC predicts work engagement, suggesting a mediating role of SoC. In addition, SoC predicts job resources, suggesting reciprocal relationships between job resources and SoC. No boosting effect of SoC was found. Overall, the present findings support the view that providing employees with a resourceful working environment will help to build their SoC. The effects of SoC on perceptual, appraisal, and behavioral processes may in turn lead to enhanced job resources and positive outcomes such as greater work engagement. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.
2015-12-01
Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.
Overview of Recent Radiation Transport Code Comparisons for Space Applications
NASA Astrophysics Data System (ADS)
Townsend, Lawrence
Recent advances in radiation transport code development for space applications have resulted in various comparisons of code predictions for a variety of scenarios and codes. Comparisons among both Monte Carlo and deterministic codes have been made and published by vari-ous groups and collaborations, including comparisons involving, but not limited to HZETRN, HETC-HEDS, FLUKA, GEANT, PHITS, and MCNPX. In this work, an overview of recent code prediction inter-comparisons, including comparisons to available experimental data, is presented and discussed, with emphases on those areas of agreement and disagreement among the various code predictions and published data.
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
Real coded genetic algorithm for fuzzy time series prediction
NASA Astrophysics Data System (ADS)
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
A Particle and Energy Balance Model of the Orificed Hollow Cathode
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.
2002-01-01
A particle and energy balance model of orificed hollow cathodes was developed to assist in cathode design. The model presented here is an ensemble of original work by the author and previous work by others. The processes in the orifice region are considered to be one of the primary drivers in determining cathode performance, since the current density was greatest in this volume (up to 1.6 x 10(exp 8) A/m2). The orifice model contains comparatively few free parameters, and its results are used to bound the free parameters for the insert model. Next, the insert region model is presented. The sensitivity of the results to the free parameters is assessed, and variation of the free parameters in the orifice dominates the calculated power consumption and plasma properties. The model predictions are compared to data from a low-current orificed hollow cathode. The predicted power consumption exceeds the experimental results. Estimates of the plasma properties in the insert region overlap Langmuir probe data, and the predicted orifice plasma suggests the presence of one or more double layers. Finally, the model is used to examine the operation of higher current cathodes.
Individual differences in working memory capacity predict learned control over attentional capture.
Robison, Matthew K; Unsworth, Nash
2017-11-01
Although individual differences in working memory capacity (WMC) typically predict susceptibility to attentional capture in various paradigms (e.g., Stroop, antisaccade, flankers), it sometimes fails to correlate with the magnitude of attentional capture effects in visual search (e.g., Stokes, 2016), which is 1 of the most frequently studied tasks to study capture (Theeuwes, 2010). But some studies have shown that search modes can mitigate the effects of attentional capture (Leber & Egeth, 2006). Therefore, the present study examined whether or not the relationship between WMC and attentional capture changes as a function of the search modes available. In Experiment 1, WMC was unrelated to attentional capture, but only 1 search mode (singleton-detection) could be employed. In Experiment 2, greater WMC predicted smaller attentional capture effects, but only when multiple search modes (feature-search and singleton-detection) could be employed. Importantly this relationship was entirely independent of variation in attention control, which suggests that this effect is driven by WMC-related long-term memory differences (Cosman & Vecera, 2013a, 2013b). The present set of findings help to further our understanding of the nuanced ways in which memory and attention interact. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less
NASA Astrophysics Data System (ADS)
Raimundo, A. M.; Oliveira, A. V. M.; Gaspar, A. R.; Quintela, D. A.
2015-11-01
The present work is dedicated to the assessment of the cold thermal strain of human beings working within freezing chambers. To obtain the present results, both field measurements and a numerical procedure based on a modified version of the Stolwijk thermoregulation model were used. Eighteen freezing chambers were considered. A wide range of physical parameters of the cold stores, the workers clothing insulation, and the working and recovering periods were observed. The combination of these environmental and individual parameters lead to different levels of thermal stress, which were grouped under three categories. Some good practices were observed in the field evaluations, namely situations with appropriate level of clothing protection and limited duration of exposure to cold avoiding unacceptable level of hypothermia. However, the clothing ensembles normally used by the workers do not provide the minimum required insulation, which suggests the possibility of the whole body cooling for levels higher than admissible. The numerical predictions corroborate the main conclusions of the field survey. The results obtained with both methodologies clearly show that, for the low temperature of the freezing chambers, the clothing insulation is insufficient, the exposure periods are too long, and the recovering periods are inadequate. Thus, high levels of physiological strain can indeed be reached by human beings under such working environments.
Raimundo, A M; Oliveira, A V M; Gaspar, A R; Quintela, D A
2015-11-01
The present work is dedicated to the assessment of the cold thermal strain of human beings working within freezing chambers. To obtain the present results, both field measurements and a numerical procedure based on a modified version of the Stolwijk thermoregulation model were used. Eighteen freezing chambers were considered. A wide range of physical parameters of the cold stores, the workers clothing insulation, and the working and recovering periods were observed. The combination of these environmental and individual parameters lead to different levels of thermal stress, which were grouped under three categories. Some good practices were observed in the field evaluations, namely situations with appropriate level of clothing protection and limited duration of exposure to cold avoiding unacceptable level of hypothermia. However, the clothing ensembles normally used by the workers do not provide the minimum required insulation, which suggests the possibility of the whole body cooling for levels higher than admissible. The numerical predictions corroborate the main conclusions of the field survey. The results obtained with both methodologies clearly show that, for the low temperature of the freezing chambers, the clothing insulation is insufficient, the exposure periods are too long, and the recovering periods are inadequate. Thus, high levels of physiological strain can indeed be reached by human beings under such working environments.
Theoretical models of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Hawkings, D. L.
1978-01-01
For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.
A nuclear fragmentation energy deposition model
NASA Technical Reports Server (NTRS)
Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)
1991-01-01
A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.
Matthews, Russell A; Wayne, Julie Holliday; Ford, Michael T
2014-11-01
In the present study, we examine competing predictions of stress reaction models and adaptation theories regarding the longitudinal relationship between work-family conflict and subjective well-being. Based on data from 432 participants over 3 time points with 2 lags of varying lengths (i.e., 1 month, 6 months), our findings suggest that in the short term, consistent with prior theory and research, work-family conflict is associated with poorer subjective well-being. Counter to traditional work-family predictions but consistent with adaptation theories, after accounting for concurrent levels of work-family conflict as well as past levels of subjective well-being, past exposure to work-family conflict was associated with higher levels of subjective well-being over time. Moreover, evidence was found for reverse causation in that greater subjective well-being at 1 point in time was associated with reduced work-family conflict at a subsequent point in time. Finally, the pattern of results did not vary as a function of using different temporal lags. We discuss the theoretical, research, and practical implications of our findings. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Prediction of light aircraft interior noise
NASA Technical Reports Server (NTRS)
Howlett, J. T.; Morales, D. A.
1976-01-01
At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.
NASA Technical Reports Server (NTRS)
Slutz, R. J.; Gray, T. B.; West, M. L.; Stewart, F. G.; Leftin, M.
1971-01-01
A statistical study of formulas for predicting the sunspot number several years in advance is reported. By using a data lineup with cycle maxima coinciding, and by using multiple and nonlinear predictors, a new formula which gives better error estimates than former formulas derived from the work of McNish and Lincoln is obtained. A statistical analysis is conducted to determine which of several mathematical expressions best describes the relationship between 10.7 cm solar flux and Zurich sunspot numbers. Attention is given to the autocorrelation of the observations, and confidence intervals for the derived relationships are presented. The accuracy of predicting a value of 10.7 cm solar flux from a predicted sunspot number is dicussed.
Present status and future of the sophisticated work station
NASA Astrophysics Data System (ADS)
Ishida, Haruhisa
The excellency of the work station is explained, by comparing the functions of software and hardware of work station with those of personal computer. As one of the examples utilizing the functions of work station, desk top publishing is explained. By describing the competition between the Group of ATT · Sun Microsystems which intends to have the leadership by integrating Berkeley version which is most popular at this moment and System V version, and the group led by IBM, future of UNIX as OS of work station is predicted. Development of RISC processor, TRON Plan and Sigma Projects by MITI are also mentioned as its background.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
NASA Technical Reports Server (NTRS)
Stutzman, Warren L.
1989-01-01
This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.
Baeriswyl, Sophie; Krause, Andreas; Schwaninger, Adrian
2016-01-01
The growing threat of terrorism has increased the importance of aviation security and the work of airport security officers (screeners). Nonetheless, airport security research has yet to focus on emotional exhaustion and job satisfaction as major determinants of screeners' job performance. The present study bridges this research gap by applying the job demands-resources (JD-R) model and using work-family conflict (WFC) as an intervening variable to study relationships between work characteristics (workload and supervisor support), emotional exhaustion, and job satisfaction in 1,127 screeners at a European airport. Results of structural equation modeling revealed that (a) supervisor support as a major job resource predicted job satisfaction among screeners; (b) workload as a major job demand predicted their emotional exhaustion; and (c) WFC proved to be a promising extension to the JD-R model that partially mediated the impact of supervisor support and workload on job satisfaction and emotional exhaustion. Theoretical and practical implications are discussed.
Reflections on the Conception, Birth, and Childhood of Numerical Weather Prediction
NASA Astrophysics Data System (ADS)
Lorenz, Edward N.
2006-05-01
In recognition of the contributions of Norman Phillips and Joseph Smagorinsky to the field of numerical weather prediction (NWP), a symposium was held in 2003; this account is an amplification of a talk presented there. Ideas anticipating the advent of NWP, the first technically successful numerical weather forcast, and the subsequent progression of NWP to a mature discipline are described, with special emphasis on the work of Phillips and Smagorinsky and their mentor Jule Charney.
Validation of Afterbody Aeroheating Predictions for Planetary Probes: Status and Future Work
NASA Technical Reports Server (NTRS)
Wright, Michael J.; Brown, James L.; Sinha, Krishnendu; Candler, Graham V.; Milos, Frank S.; Prabhu, DInesh K.
2005-01-01
A review of the relevant flight conditions and physical models for planetary probe afterbody aeroheating calculations is given. Readily available sources of afterbody flight data and published attempts to computationally simulate those flights are summarized. A current status of the application of turbulence models to afterbody flows is presented. Finally, recommendations for additional analysis and testing that would reduce our uncertainties in our ability to accurately predict base heating levels are given.
Characterizing short-term stability for Boolean networks over any distribution of transfer functions
Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; ...
2016-07-05
Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.
NASA Astrophysics Data System (ADS)
Paouris, Evangelos; Mavromichalaki, Helen
2017-12-01
In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.
Aeroelastic Stability and Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
1998-01-01
A summary of the work performed from 1996 to 1997 is presented. More details can be found in the cited references. This grant led to the development of aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational
Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Illingworth, David A; Davelaar, Eddy J
2013-02-01
Although temporal dynamics are inherent aspects of diagnostic tasks, few studies have investigated how various aspects of time course influence hypothesis generation. An experiment is reported that demonstrates that working memory dynamics operating during serial data acquisition bias hypothesis generation. The presentation rate (and order) of a sequence of serially presented symptoms was manipulated to be either fast (180 ms per symptom) or slow (1,500 ms per symptom) in a simulated medical diagnosis task. When the presentation rate was slow, participants chose the disease hypothesis consistent with the symptoms appearing later in the sequence. When the presentation rate was fast, however, participants chose the disease hypothesis consistent with the symptoms appearing earlier in the sequence, therefore representing a novel primacy effect. We predicted and account for this effect through competitive working memory dynamics governing information acquisition and the contribution of maintained information to the retrieval of hypotheses from long-term memory.
Houshyarifar, Vahid; Chehel Amirani, Mehdi
2016-08-12
In this paper we present a method to predict Sudden Cardiac Arrest (SCA) with higher order spectral (HOS) and linear (Time) features extracted from heart rate variability (HRV) signal. Predicting the occurrence of SCA is important in order to avoid the probability of Sudden Cardiac Death (SCD). This work is a challenge to predict five minutes before SCA onset. The method consists of four steps: pre-processing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In second step, bispectrum features of HRV signal and time-domain features are obtained. Six features are extracted from bispectrum and two features from time-domain. In the next step, these features are reduced to one feature by the linear discriminant analysis (LDA) technique. Finally, KNN and support vector machine-based classifiers are used to classify the HRV signals. We used two database named, MIT/BIH Sudden Cardiac Death (SCD) Database and Physiobank Normal Sinus Rhythm (NSR). In this work we achieved prediction of SCD occurrence for six minutes before the SCA with the accuracy over 91%.
Predicting consumer behavior with Web search.
Goel, Sharad; Hofman, Jake M; Lahaie, Sébastien; Pennock, David M; Watts, Duncan J
2010-10-12
Recent work has demonstrated that Web search volume can "predict the present," meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future.
Predicting consumer behavior with Web search
Goel, Sharad; Hofman, Jake M.; Lahaie, Sébastien; Pennock, David M.; Watts, Duncan J.
2010-01-01
Recent work has demonstrated that Web search volume can “predict the present,” meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future. PMID:20876140
Contextual predictability enhances reading performance in patients with schizophrenia.
Fernández, Gerardo; Guinjoan, Salvador; Sapognikoff, Marcelo; Orozco, David; Agamennoni, Osvaldo
2016-07-30
In the present work we analyzed fixation duration in 40 healthy individuals and 18 patients with chronic, stable SZ during reading of regular sentences and proverbs. While they read, their eye movements were recorded. We used lineal mixed models to analyze fixation durations. The predictability of words N-1, N, and N+1 exerted a strong influence on controls and SZ patients. The influence of the predictabilities of preceding, current, and upcoming words on SZ was clearly reduced for proverbs in comparison to regular sentences. Both controls and SZ readers were able to use highly predictable fixated words for an easier reading. Our results suggest that SZ readers might compensate attentional and working memory deficiencies by using stored information of familiar texts for enhancing their reading performance. The predictabilities of words in proverbs serve as task-appropriate cues that are used by SZ readers. To the best of our knowledge, this is the first study using eyetracking for measuring how patients with SZ process well-defined words embedded in regular sentences and proverbs. Evaluation of the resulting changes in fixation durations might provide a useful tool for understanding how SZ patients could enhance their reading performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3.
Douillard, François P; Mora, Diego; Eijlander, Robyn T; Wels, Michiel; de Vos, Willem M
2018-01-01
Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3 product confirmed the product specifications, determined its coding capacity as well as identified potential probiotic functions.
Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3
Mora, Diego; Eijlander, Robyn T.; Wels, Michiel; de Vos, Willem M.
2018-01-01
Several probiotic-marketed formulations available for the consumers contain live lactic acid bacteria and/or bifidobacteria. The multispecies product commercialized as VSL#3 has been used for treating various gastro-intestinal disorders. However, like many other products, the bacterial strains present in VSL#3 have only been characterized to a limited extent and their efficacy as well as their predicted mode of action remain unclear, preventing further applications or comparative studies. In this work, the genomes of all eight bacterial strains present in VSL#3 were sequenced and characterized, to advance insights into the possible mode of action of this product and also to serve as a basis for future work and trials. Phylogenetic and genomic data analysis allowed us to identify the 7 species present in the VSL#3 product as specified by the manufacturer. The 8 strains present belong to the species Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus helveticus, Bifidobacterium breve and B. animalis subsp. lactis (two distinct strains). Comparative genomics revealed that the draft genomes of the S. thermophilus and L. helveticus strains were predicted to encode most of the defence systems such as restriction modification and CRISPR-Cas systems. Genes associated with a variety of potential probiotic functions were also identified. Thus, in the three Bifidobacterium spp., gene clusters were predicted to encode tight adherence pili, known to promote bacteria-host interaction and intestinal barrier integrity, and to impact host cell development. Various repertoires of putative signalling proteins were predicted to be encoded by the genomes of the Lactobacillus spp., i.e. surface layer proteins, LPXTG-containing proteins, or sortase-dependent pili that may interact with the intestinal mucosa and dendritic cells. Taken altogether, the individual genomic characterization of the strains present in the VSL#3 product confirmed the product specifications, determined its coding capacity as well as identified potential probiotic functions. PMID:29451876
Vieira, Ana; Snellen, Mirjam; Simons, Dick G
2018-01-01
Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.
Prediction of thermal cycling induced cracking in polymer matrix composites
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1993-01-01
This report summarizes the work done in the period February 1993 through July 1993 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program. An oral presentation of this work was given to Langley personnel in September of 1993. This document was prepared for archival purposes. Progress studies have been performed on the effects of spatial variations in material strength. Qualitative agreement was found with observed patterns of crack distribution. These results were presented to NASA Langley personnel in November 1992. The analytical methodology developed by Prof. McManus in the summer of 1992 (under an ASEE fellowship) has been generalized. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate has been implemented as a computer code. The code also predicts changes in properties due to the cracking. Experimental progressive cracking studies on a variety of laminates were carried out at Langley Research Center. Results were correlated to predictions using the new methods. Results were initially mixed. This motivated an exploration of the configuration of cracks within laminates. A crack configuration study was carried out by cutting and/or sanding specimens in order to examine the distribution of cracks within the specimens. These investigations were supplemented by dye-penetrant enhanced X-ray photographs. The behavior of thin plies was found to be different from the behavior of thicker plies (or ply groups) on which existing theories are based. Significant edge effects were also noted, which caused the traditional metric of microcracking (count of cracks on a polished edge) to be very inaccurate in some cases. With edge and configuration taken into account, rough agreement with predictions was achieved. All results to date were reviewed with NASA Langley personnel in September 1993.
Percolation of binary disk systems: Modeling and theory
Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.
2017-01-12
The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less
Predictive simulation of guide-wave structural health monitoring
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor
2017-04-01
This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.
Supersonics Project: Airport Noise Technical Challenge
NASA Technical Reports Server (NTRS)
Bridges, James E.
2008-01-01
This presentation gives an overview of the work being done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. The objective of the Challenge is to provide technology (e.g. low noise nozzle concepts) and engineering tools required for a viable supersonic aircraft. To accomplish this we have activities divided into Prediction, Diagnostics, and Engineering elements. Each of the tasks reviewed here have potential applications to work being done at other flight regimes and other aircraft and are of interest to the Acoustics Technical Working Group.
Thermal analysis of friction riveting of dissimilar materials
NASA Astrophysics Data System (ADS)
Vignesh, N. J.; Hynes, N. Rajesh Jesudoss
2018-05-01
Friction riveting is a new technique which finds its applications in a variety of domains, where there is a need to join dissimilar materials for the sake of achieving weight reduction of the components produced especially in the fields of aerospace and automobile. In this present work, a numerical simulation on the heat transfer analysis has been done to predict the variation of temperature on the surface of the components being joined. Owing to the applications, Aluminum rivet is chosen for friction riveting on Poly Methyl Metha Acrylate base material. Abaqus explicit version 6.14 has been used to simulate the results of the process. Heat flux at the joint interface has been computed and thermal distribution at the work material is predicted.
Foley, Pamela F.; Lytle, Megan C.
2015-01-01
Despite a recent increase in the number of adults who work past traditional retirement age, existing theories of vocational behavior have not yet received adequate empirical support. In a large sample of adults age 60–87, we evaluated the relationship between theorized predictors of work satisfaction proposed by Social Cognitive Career Theory (SCCT), work satisfaction as a predictor of continued work, as proposed by the Theory of Work adjustment (TWA), as well as the influence of reported experiences of discrimination on these relationships. While the results supported most of the predicted relationships, the effects of discrimination were stronger than the variables proposed by either SCCT or TWA for the present sample. PMID:26101456
Livingston, Beth A; Judge, Timothy A
2008-01-01
The present study tested the effect of work-family conflict on emotions and the moderating effects of gender role orientation. On the basis of a multilevel design, the authors found that family-interfering-with- work was positively related to guilt, and gender role orientation interacted with both types of conflict (work-interfering-with-family and family-interfering-with-work) to predict guilt. Specifically, in general, traditional individuals experienced more guilt from family-interfering-with-work, and egalitarian individuals experienced more guilt from work-interfering-with-family. Additionally, a higher level interaction indicated that traditional men tended to experience a stronger relationship between family-interfering-with-work and guilt than did egalitarian men or women of either gender role orientation. 2008 APA
Breaststroke swimmers moderate internal work increases toward the highest stroke frequencies.
Lauer, Jessy; Olstad, Bjørn Harald; Minetti, Alberto Enrico; Kjendlie, Per-Ludvik; Rouard, Annie Hélène
2015-09-18
A model to predict the mechanical internal work of breaststroke swimming was designed. It allowed us to explore the frequency-internal work relationship in aquatic locomotion. Its accuracy was checked against internal work values calculated from kinematic sequences of eight participants swimming at three different self-chosen paces. Model predictions closely matched experimental data (0.58 ± 0.07 vs 0.59 ± 0.05 J kg(-1)m(-1); t(23)=-0.30, P=0.77), which was reflected in a slope of the major axis regression between measured and predicted total internal work whose 95% confidence intervals included the value of 1 (β=0.84, [0.61, 1.07], N=24). The model shed light on swimmers ability to moderate the increase in internal work at high stroke frequencies. This strategy of energy minimization has never been observed before in humans, but is present in quadrupedal and octopedal animal locomotion. This was achieved through a reduced angular excursion of the heaviest segments (7.2 ± 2.9° and 3.6 ± 1.5° for the thighs and trunk, respectively, P<0.05) in favor of the lightest ones (8.8 ± 2.3° and 7.4 ± 1.0° for the shanks and forearms, respectively, P<0.05). A deeper understanding of the energy flow between the body segments and the environment is required to ascertain the possible dependency between internal and external work. This will prove essential to better understand swimming mechanical cost determinants and power generation in aquatic movements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of indoor noise prediction in the real world
NASA Astrophysics Data System (ADS)
Lewis, David N.
2002-11-01
Predicting indoor noise in industrial workrooms is an important part of the process of designing industrial plants. Predicted levels are used in the design process to determine compliance with occupational-noise regulations, and to estimate levels inside the walls in order to predict community noise radiated from the building. Once predicted levels are known, noise-control strategies can be developed. In this paper an overview of over 20 years of experience is given with the use of various prediction approaches to manage noise in Unilever plants. This work has applied empirical and ray-tracing approaches separately, and in combination, to design various packaging and production plants and other facilities. The advantages of prediction methods in general, and of the various approaches in particular, will be discussed. A case-study application of prediction methods to the optimization of noise-control measures in a food-packaging plant will be presented. Plans to acquire a simplified prediction model for use as a company noise-screening tool will be discussed.
Personality trait changes among young Finns: the role of life events and transitions.
Leikas, Sointu; Salmela-Aro, Katariina
2015-02-01
Recent research has shown that personality traits continue to develop throughout the life span, but most profound changes are typically found during young adulthood. Increasing evidence suggests that life events play a significant role in many of these changes. The present longitudinal study examined the role of work, education, social, and health-related life events in the development of the Big Five traits among young Finns. Participants were originally recruited in 2004 through elementary schools in a middle-sized Finnish city. Participants' Big Five traits and life events were measured via self-reports at ages 20 and 23 (Ns = 597 and 588, respectively). Entering work life, beginning a relationship, and studying in university predicted increases in Conscientiousness, trying drugs predicted increases in Neuroticism, and onset of a chronic disease predicted increases in Neuroticism and Conscientiousness between ages 20 and 23. The results suggest that mature life transitions relate to stronger increases in Conscientiousness in young adulthood, and that non-normative life choices and events may predict increases in Neuroticism. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Naeimi, Hossein; Nayebi Shahabi, Mina; Mohammadi, Sohrab
2017-08-01
In developing countries, small and micro hydropower plants are very effective source for electricity generation with energy pay-back time (EPBT) less than other conventional electricity generation systems. Using pump as turbine (PAT) is an attractive, significant and cost-effective alternative. Pump manufacturers do not normally provide the characteristic curves of their pumps working as turbines. Therefore, choosing an appropriate Pump to work as a turbine is essential in implementing the small-hydro plants. In this paper, in order to find the best fitting method to choose a PAT, the results of a small-hydro plant implemented on the by-pass of a Pressure Reducing Valve (PRV) in Urmia city in Iran are presented. Some of the prediction methods of Best Efficiency Point of PATs are derived. Then, the results of implemented project have been compared to the prediction methods results and the deviation of from measured data were considered and discussed and the best method that predicts the specifications of PAT more accurately determined. Finally, the energy pay-back time for the plant is calculated.
Vocabulary learning in primary school children: working memory and long-term memory components.
Morra, Sergio; Camba, Roberta
2009-10-01
The goal of this study was to investigate which working memory and long-term memory components predict vocabulary learning. We used a nonword learning paradigm in which 8- to 10-year-olds learned picture-nonword pairs. The nonwords varied in length (two vs. four syllables) and phonology (native sounding vs. including one Russian phoneme). Short, phonologically native nonwords were learned best, whereas learning long nonwords leveled off after a few presentation cycles. Linear structural equation analyses showed an influence of three constructs-phonological sensitivity, vocabulary knowledge, and central attentional resources (M capacity)-on nonword learning, but the extent of their contributions depended on specific characteristics of the nonwords to be learned. Phonological sensitivity predicted learning of all nonword types except short native nonwords, vocabulary predicted learning of only short native nonwords, and M capacity predicted learning of short nonwords but not long nonwords. The discussion considers three learning processes-effortful activation of phonological representations, lexical mediation, and passive associative learning-that use different cognitive resources and could be involved in learning different nonword types.
Øverup, Camilla S; Brunson, Julie A; Acitelli, Linda K
2015-01-01
Past work has established a connection between self-esteem and self-presentation; however, research has not explored how self-esteem that is contingent on one's relationship may influence self-presentational tactics in that relationship. Across two studies, undergraduate students reported on the extent to which their self-esteem depended on their friendship and romantic relationship, as well as the extent to which they engaged in self-presentation behaviors in those relationships. The results suggest that relationship-specific contingent self-esteem predicts relationship-specific self-presentation; however, friendship-contingent self-esteem predicted self-presentation in both friendships and romantic relationships. These results suggest that individuals are keenly and differentially attuned to qualitatively different relationships, and when perceiving potential problems, they attempt to remedy those through their self-presentations. Furthermore, results indicate the possibility that self-esteem tied to a particular relationship may not be as important as self-esteem based more generally on one's relationships.
Validation of FAST Model Sleep Estimates with Actigraph Measured Sleep in Locomotive Engineers
DOT National Transportation Integrated Search
2012-04-01
This report presents the results of a study to validate the AutoSleep sleep prediction algorithm, which is a component of the Fatigue Avoidance Scheduling Tool (FAST). Researchers collected work and sleep data from 41 locomotive engineers by using ac...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
Condensation model for the ESBWR passive condensers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revankar, S. T.; Zhou, W.; Wolf, B.
2012-07-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less
Optimized Algorithms for Prediction Within Robotic Tele-Operative Interfaces
NASA Technical Reports Server (NTRS)
Martin, Rodney A.; Wheeler, Kevin R.; Allan, Mark B.; SunSpiral, Vytas
2010-01-01
Robonaut, the humanoid robot developed at the Dexterous Robotics Labo ratory at NASA Johnson Space Center serves as a testbed for human-rob ot collaboration research and development efforts. One of the recent efforts investigates how adjustable autonomy can provide for a safe a nd more effective completion of manipulation-based tasks. A predictiv e algorithm developed in previous work was deployed as part of a soft ware interface that can be used for long-distance tele-operation. In this work, Hidden Markov Models (HMM?s) were trained on data recorded during tele-operation of basic tasks. In this paper we provide the d etails of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmi c approach. We show that all of the algorithms presented can be optim ized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. 1
Recent Progress in Engine Noise Reduction Technologies
NASA Technical Reports Server (NTRS)
Huff, Dennis; Gliebe, Philip
2003-01-01
Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.
NASA Technical Reports Server (NTRS)
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Real-time speech encoding based on Code-Excited Linear Prediction (CELP)
NASA Technical Reports Server (NTRS)
Leblanc, Wilfrid P.; Mahmoud, S. A.
1988-01-01
This paper reports on the work proceeding with regard to the development of a real-time voice codec for the terrestrial and satellite mobile radio environments. The codec is based on a complexity reduced version of code-excited linear prediction (CELP). The codebook search complexity was reduced to only 0.5 million floating point operations per second (MFLOPS) while maintaining excellent speech quality. Novel methods to quantize the residual and the long and short term model filters are presented.
Reducing usage of the computational resources by event driven approach to model predictive control
NASA Astrophysics Data System (ADS)
Misik, Stefan; Bradac, Zdenek; Cela, Arben
2017-08-01
This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.
Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Auger, Isabelle; Leone, Mario
2015-01-01
Individual heart rate (HR) to workload relationships were determined using 93 submaximal step-tests administered to 26 healthy participants attending physical activities in a university training centre (laboratory study) and 41 experienced forest workers (field study). Predicted maximum aerobic capacity (MAC) was compared to measured MAC from a maximal treadmill test (laboratory study) to test the effect of two age-predicted maximum HR Equations (220-age and 207-0.7 × age) and two clothing insulation levels (0.4 and 0.91 clo) during the step-test. Work metabolism (WM) estimated from forest work HR was compared against concurrent work V̇O2 measurements while taking into account the HR thermal component. Results show that MAC and WM can be accurately predicted from work HR measurements and simple regression models developed in this study (1% group mean prediction bias and up to 25% expected prediction bias for a single individual). Clothing insulation had no impact on predicted MAC nor age-predicted maximum HR equations. Practitioner summary: This study sheds light on four practical methodological issues faced by practitioners regarding the use of HR methodology to assess WM in actual work environments. More specifically, the effect of wearing work clothes and the use of two different maximum HR prediction equations on the ability of a submaximal step-test to assess MAC are examined, as well as the accuracy of using an individual's step-test HR to workload relationship to predict WM from HR data collected during actual work in the presence of thermal stress.
Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.
2003-01-01
Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.
Understanding Work-Family Spillover in Hotel Managers.
Lawson, Katie M; Davis, Kelly D; Crouter, Ann C; O'Neill, John W
2013-06-01
The present study examined the experience of work-family spillover among 586 hotel managers (HMs) working in 50 full-service hotels throughout the U.S. Work-family spillover occurs when behaviors, moods, stresses, and emotions from work spill over into family. We first investigated which hotel managers were more likely to experience spillover and stressful work conditions based on their life circumstances (gender, parental status, age, decision-making latitude at work). Second, we investigated which work conditions (hours worked per week, organizational time expectations, emotional labor, and permeable boundaries) predicted more work-family spillover. Women, employees without children at home, and younger adults experienced the highest levels of negative work-family spillover. Work conditions, particularly organizational time expectations, put HMs at risk for experiencing more negative and less positive work-family spillover. The results provide evidence that modifying certain work conditions in the hotel industry may be helpful in improving the quality of HMs' jobs and retention.
Understanding Work-Family Spillover in Hotel Managers
Lawson, Katie M.; Davis, Kelly D.; Crouter, Ann C.; O’Neill, John W.
2013-01-01
The present study examined the experience of work-family spillover among 586 hotel managers (HMs) working in 50 full-service hotels throughout the U.S. Work-family spillover occurs when behaviors, moods, stresses, and emotions from work spill over into family. We first investigated which hotel managers were more likely to experience spillover and stressful work conditions based on their life circumstances (gender, parental status, age, decision-making latitude at work). Second, we investigated which work conditions (hours worked per week, organizational time expectations, emotional labor, and permeable boundaries) predicted more work-family spillover. Women, employees without children at home, and younger adults experienced the highest levels of negative work-family spillover. Work conditions, particularly organizational time expectations, put HMs at risk for experiencing more negative and less positive work-family spillover. The results provide evidence that modifying certain work conditions in the hotel industry may be helpful in improving the quality of HMs’ jobs and retention. PMID:23888092
Simmering, Vanessa R
2016-09-01
Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.
Fritscher, Karl; Schuler, Benedikt; Link, Thomas; Eckstein, Felix; Suhm, Norbert; Hänni, Markus; Hengg, Clemens; Schubert, Rainer
2008-01-01
Fractures of the proximal femur are one of the principal causes of mortality among elderly persons. Traditional methods for the determination of femoral fracture risk use methods for measuring bone mineral density. However, BMD alone is not sufficient to predict bone failure load for an individual patient and additional parameters have to be determined for this purpose. In this work an approach that uses statistical models of appearance to identify relevant regions and parameters for the prediction of biomechanical properties of the proximal femur will be presented. By using Support Vector Regression the proposed model based approach is capable of predicting two different biomechanical parameters accurately and fully automatically in two different testing scenarios.
Mining data from CFD simulation for aneurysm and carotid bifurcation models.
Miloš, Radović; Dejan, Petrović; Nenad, Filipović
2011-01-01
Arterial geometry variability is present both within and across individuals. To analyze the influence of geometric parameters, blood density, dynamic viscosity and blood velocity on wall shear stress (WSS) distribution in the human carotid artery bifurcation and aneurysm, the computer simulations were run to generate the data pertaining to this phenomenon. In our work we evaluate two prediction models for modeling these relationships: neural network model and k-nearest neighbor model. The results revealed that both models have high prediction ability for this prediction task. The achieved results represent progress in assessment of stroke risk for a given patient data in real time.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan
2009-01-01
This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.
[The state of the psychological contract and its relation with employees' psychological health].
Gracia, Francisco Javier; Silla, Inmaculada; Peiró, José María; Fortes-Ferreira, Lina
2006-05-01
In the present paper the role of the state of the psychological contract to predict psychological health results is studied in a sample of 385 employees of different Spanish companies. Results indicate that the state of the psychological contract significantly predicts life satisfaction, work-family conflict and well-being beyond the prediction produced by the content of the psychological contract. In addition, trust and fairness, two dimensions of the state of psychological contract, all together contribute to explain these psychological health variables adding value to the role as predictor of fulfillment of the psychological contract. The results support the approach argued by Guest and colleagues.
Calculation of precise firing statistics in a neural network model
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2017-08-01
A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.
A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm
Chen, Jui-Le; Yang, Chu-Sing
2013-01-01
The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result. PMID:23762864
Parallel noise barrier prediction procedure : report 2 user's manual revision 1
DOT National Transportation Integrated Search
1987-11-01
This report defines the parameters which are used to input the data required to run Program Barrier and BarrierX on a microcomputer such as an IBM PC or compatible. Directions for setting up and operating a working disk are presented. Examples of inp...
Statistical prediction with Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1989-01-01
A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.
One-Dimensional Modelling of Internal Ballistics
NASA Astrophysics Data System (ADS)
Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.
2017-10-01
A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.
Discharge in Long Air Gaps; Modelling and applications
NASA Astrophysics Data System (ADS)
Beroual, A.; Fofana, I.
2016-06-01
Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by contributing an innovative approach to this research domain, and universities with programs in high-voltage engineering will find this volume to be a working example of how to introduce the basics of electric discharge phenomena.
Intrinsic Nano-Ductility of Glasses: The Critical Role of Composition
NASA Astrophysics Data System (ADS)
Wang, Bu; Yu, Yingtian; Lee, Young; Bauchy, Mathieu
2015-02-01
Understanding, predicting and eventually improving the resistance to fracture for silicate materials is of primary importance to design tougher new glasses suitable for advanced applications. However, the fracture mechanism at the atomic level in amorphous silicate materials is still a topic of debate. In particular, there are some controversies about the existence of ductility at the nanoscale during crack propagation. Here, we present simulations of fracture of three archetypical silicate glasses, using molecular dynamics. The simulations clearly show that, depending on their composition, silicate glasses can exhibit different degrees of ductility at the nanoscale. Additionally, we show that the methodology used in the present work can provide realistic predictions of fracture energy and toughness.
NASA Astrophysics Data System (ADS)
Gheribi, Aïmen E.; Poncsák, Sándor; Guérard, Sébastien; Bilodeau, Jean-François; Kiss, László; Chartrand, Patrice
2017-03-01
During aluminium electrolysis, a ledge of frozen electrolytes is generally formed, attached to the sides of the cells. This ledge acts as a protective layer, preventing erosion and chemical attacks of both the electrolyte melt and the liquid aluminium on the side wall materials. The control of the sideledge thickness is thus essential in ensuring a reasonable lifetime for the cells. The key property for modelling and predicting the sideledge thickness as a function of temperature and electrolyte composition is the thermal conductivity. Unfortunately, almost no data is available on the thermal conductivity of the sideledge. The aim of this work is to alleviate this lack of data. For seven different samples of sideledge microstructures, recovered from post-mortem industrial electrolysis cells, the thermal diffusivity, the density, and the phase compositions were measured in the temperature range of 423 K to 873 K. The thermal diffusivity was measured with a laser flash technique and the average phase compositions by X-ray diffraction analysis. The thermal conductivity of the sideledge is deduced from the present experimental thermal diffusivity and density, and the thermodynamically assessed heat capacity. In addition to the present experimental work, a theoretical model for the prediction of the effective thermal transport properties of the sideledge microstructure is also proposed. The proposed model considers an equivalent microstructure and depends on phase fractions, porosity, and temperature. The strength of the model lies in the fact that only a few key physical properties are required for its parametrization and they can be predicted with a good accuracy via first principles calculations. It is shown that the theoretical predictions are in a good agreement with the present experimental measurements.
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774
Meier, Matt E; Kane, Michael J
2015-11-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. (c) 2015 APA, all rights reserved).
A Simulated Environment Experiment on Annoyance Due to Combined Road Traffic and Industrial Noises.
Marquis-Favre, Catherine; Morel, Julien
2015-07-21
Total annoyance due to combined noises is still difficult to predict adequately. This scientific gap is an obstacle for noise action planning, especially in urban areas where inhabitants are usually exposed to high noise levels from multiple sources. In this context, this work aims to highlight potential to enhance the prediction of total annoyance. The work is based on a simulated environment experiment where participants performed activities in a living room while exposed to combined road traffic and industrial noises. The first objective of the experiment presented in this paper was to gain further understanding of the effects on annoyance of some acoustical factors, non-acoustical factors and potential interactions between the combined noise sources. The second one was to assess total annoyance models constructed from the data collected during the experiment and tested using data gathered in situ. The results obtained in this work highlighted the superiority of perceptual models. In particular, perceptual models with an interaction term seemed to be the best predictors for the two combined noise sources under study, even with high differences in sound pressure level. Thus, these results reinforced the need to focus on perceptual models and to improve the prediction of partial annoyances.
Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments
NASA Technical Reports Server (NTRS)
Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.
2016-01-01
This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).
Nohe, Christoph; Meier, Laurenz L; Sonntag, Karlheinz; Michel, Alexandra
2015-03-01
Does work-family conflict predict strain, does strain predict work-family conflict, or are they reciprocally related? To answer these questions, we used meta-analytic path analyses on 33 studies that had repeatedly measured work interference with family (WIF) or family interference with work (FIW) and strain. Additionally, this study sheds light on whether relationships between WIF/FIW and work-specific strain support the popular cross-domain perspective or the less popular matching perspective. Results showed reciprocal effects; that is, that WIF predicted strain (β = .08) and strain predicted WIF (β = .08). Similarly, FIW and strain were reciprocally related, such that FIW predicted strain (β = .03) and strain predicted FIW (β = .05). These findings held for both men and women and for different time lags between the 2 measurement waves. WIF had a stronger effect on work-specific strain than did FIW, supporting the matching hypothesis rather than the cross-domain perspective. PsycINFO Database Record (c) 2015 APA, all rights reserved.
A new software for prediction of femoral neck fractures.
Testi, Debora; Cappello, Angelo; Sgallari, Fiorella; Rumpf, Martin; Viceconti, Marco
2004-08-01
Femoral neck fractures are an important clinical, social and economic problem. Even if many different attempts have been carried out to improve the accuracy predicting the fracture risk, it was demonstrated in retrospective studies that the standard clinical protocol achieves an accuracy of about 65%. A new procedure was developed including for the prediction not only bone mineral density but also geometric and femoral strength information and achieving an accuracy of about 80% in a previous retrospective study. Aim of the present work was to re-engineer research-based procedures and develop a real-time software for the prediction of the risk for femoral fracture. The result was efficient, repeatable and easy to use software for the evaluation of the femoral neck fracture risk to be inserted in the daily clinical practice providing a useful tool for the improvement of fracture prediction.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Reality Check Algorithm for Complex Sources in Early Warning
NASA Astrophysics Data System (ADS)
Karakus, G.; Heaton, T. H.
2013-12-01
In almost all currently operating earthquake early warning (EEW) systems, presently available seismic data are used to predict future shaking. In most cases, location and magnitude are estimated. We are developing an algorithm to test the goodness of that prediction in real time. We monitor envelopes of acceleration, velocity, and displacement; if they deviate significantly from the envelope predicted by Cua's envelope gmpe's then we declare an overfit (perhaps false alarm) or an underfit (possibly a larger event has just occurred). This algorithm is designed to provide a robust measure and to work as quickly as possible in real-time. We monitor the logarithm of the ratio between the envelopes of the ongoing observed event and the envelopes derived from the predicted envelopes of channels of ground motion of the Virtual Seismologist (VS) (Cua, G. and Heaton, T.). Then, we recursively filter this result with a simple running median (de-spiking operator) to minimize the effect of one single high value. Depending on the result of the filtered value we make a decision such as if this value is large enough (e.g., >1), then we would declare, 'that a larger event is in progress', or similarly if this value is small enough (e.g., <-1), then we would declare a false alarm. We design the algorithm to work at a wide range of amplitude scales; that is, it should work for both small and large events.
One-Dimensional Simulations for Spall in Metals with Intra- and Inter-grain failure models
NASA Astrophysics Data System (ADS)
Ferri, Brian; Dwivedi, Sunil; McDowell, David
2017-06-01
The objective of the present work is to model spall failure in metals with coupled effect of intra-grain and inter-grain failure mechanisms. The two mechanisms are modeled by a void nucleation, growth, and coalescence (VNGC) model and contact-cohesive model respectively. Both models were implemented in a 1-D code to simulate spall in 6061-T6 aluminum at two impact velocities. The parameters of the VNGC model without inter-grain failure and parameters of the cohesive model without intra-grain failure were first determined to obtain pull-back velocity profiles in agreement with experimental data. With the same impact velocities, the same sets of parameters did not predict the velocity profiles when both mechanisms were simultaneously activated. A sensitivity study was performed to predict spall under combined mechanisms by varying critical stress in the VNGC model and maximum traction in the cohesive model. The study provided possible sets of the two parameters leading to spall. Results will be presented comparing the predicted velocity profile with experimental data using one such set of parameters for the combined intra-grain and inter-grain failures during spall. Work supported by HDTRA1-12-1-0004 gran and by the School of Mechanical Engineering GTA.
Psychosocial Pathways to STEM Engagement among Graduate Students in the Life Sciences
Clark, Sheri L.; Dyar, Christina; Maung, Nina; London, Bonita
2016-01-01
Despite growing diversity among life sciences professionals, members of historically underrepresented groups (e.g., women) continue to encounter barriers to academic and career advancement, such as subtle messages and stereotypes that signal low value for women, and fewer opportunities for quality mentoring relationships. These barriers reinforce the stereotype that women’s gender is incompatible with their science, technology, engineering, and mathematics (STEM) field, and can interfere with their sense of belonging and self-efficacy within STEM. The present work expands this literature in two ways, by 1) focusing on a distinct period in women’s careers that has been relatively understudied, but represents a critical period when career decisions are made, that is, graduate school; and 2) highlighting the buffering effect of one critical mechanism against barriers to STEM persistence, that is, perceived support from advisors. Results of the present study show that perceived support from one’s advisor may promote STEM engagement among women by predicting greater gender–STEM identity compatibility, which in turn predicts greater STEM importance among women (but not men). STEM importance further predicts higher sense of belonging in STEM for both men and women and increased STEM self-efficacy for women. Finally, we describe the implications of this work for educational policy. PMID:27562961
Predictive model for ice formation on superhydrophobic surfaces.
Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom
2011-12-06
The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society
Heterogeneity of long-history migration predicts emotion recognition accuracy.
Wood, Adrienne; Rychlowska, Magdalena; Niedenthal, Paula M
2016-06-01
Recent work (Rychlowska et al., 2015) demonstrated the power of a relatively new cultural dimension, historical heterogeneity, in predicting cultural differences in the endorsement of emotion expression norms. Historical heterogeneity describes the number of source countries that have contributed to a country's present-day population over the last 500 years. People in cultures originating from a large number of source countries may have historically benefited from greater and clearer emotional expressivity, because they lacked a common language and well-established social norms. We therefore hypothesized that in addition to endorsing more expressive display rules, individuals from heterogeneous cultures will also produce facial expressions that are easier to recognize by people from other cultures. By reanalyzing cross-cultural emotion recognition data from 92 papers and 82 cultures, we show that emotion expressions of people from heterogeneous cultures are more easily recognized by observers from other cultures than are the expressions produced in homogeneous cultures. Heterogeneity influences expression recognition rates alongside the individualism-collectivism of the perceivers' culture, as more individualistic cultures were more accurate in emotion judgments than collectivistic cultures. This work reveals the present-day behavioral consequences of long-term historical migration patterns and demonstrates the predictive power of historical heterogeneity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Measurement of the Shock Velocity and Symmetry History in Decaying Shock Pulses
NASA Astrophysics Data System (ADS)
Baker, Kevin; Milovich, Jose; Jones, Oggie; Robey, Harry; Smalyuk, Vladimir; Casey, Daniel; Celliers, Peter; Clark, Dan; Giraldez, Emilio; Haan, Steve; Hamza, Alex; Berzak-Hopkins, Laura; Jancaitis, Ken; Kroll, Jeremy; Lafortune, Kai; MacGowan, Brian; Macphee, Andrew; Moody, John; Nikroo, Abbas; Peterson, Luc; Raman, Kumar; Weber, Chris; Widmayer, Clay
2014-10-01
Decaying first shock pulses are predicted in simulations to provide more stable implosions and still achieve a low adiabat in the fuel, enabling a higher fuel compression similar to ``low foot'' laser pulses. The first step in testing these predictions was to measure the shock velocity for both a three shock and a four shock adiabat-shaped pulse in a keyhole experimental platform. We present measurements of the shock velocity history, including the decaying shock velocity inside the ablator, and compare it with simulations, as well as with previous low and high foot pulses. Using the measured pulse shape, the predicted adiabat from simulations is presented and compared with the calculated adiabat from low and high foot laser pulse shapes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Junker, Philipp; Jaeger, Stefanie; Kastner, Oliver; Eggeler, Gunther; Hackl, Klaus
2015-07-01
In this work, we present simulations of shape memory alloys which serve as first examples demonstrating the predicting character of energy-based material models. We begin with a theoretical approach for the derivation of the caloric parts of the Helmholtz free energy. Afterwards, experimental results for DSC measurements are presented. Then, we recall a micromechanical model based on the principle of the minimum of the dissipation potential for the simulation of polycrystalline shape memory alloys. The previously determined caloric parts of the Helmholtz free energy close the set of model parameters without the need of parameter fitting. All quantities are derived directly from experiments. Finally, we compare finite element results for tension tests to experimental data and show that the model identified by thermal measurements can predict mechanically induced phase transformations and thus rationalize global material behavior without any further assumptions.
Force Modelling in Orthogonal Cutting Considering Flank Wear Effect
NASA Astrophysics Data System (ADS)
Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.
2017-05-01
In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Song, Pengfei; Meng, Fanchao; Li, Xiao; Liu, Xinyu; Song, Jun
2017-12-01
The present work presents a quantitative modeling framework for investigating the self-rolling of nanomembranes under different lattice mismatch strain anisotropy. The effect of transverse mismatch strain on the roll-up direction and curvature has been systematically studied employing both analytical modeling and numerical simulations. The bidirectional nature of the self-rolling of nanomembranes and the critical role of transverse strain in affecting the rolling behaviors have been demonstrated. Two fabrication strategies, i.e., third-layer deposition and corner geometry engineering, have been proposed to predictively manipulate the bidirectional rolling competition of strained nanomembranes, so as to achieve controlled, unidirectional roll-up. In particular for the strategy of corner engineering, microfabrication experiments have been performed to showcase its practical application and effectiveness. Our study offers new mechanistic knowledge towards understanding and predictive engineering of self-rolling of nanomembranes with improved roll-up yield.
Neutrino Flux Prediction for the NuMI Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soplin, Leonidas Aliaga
2016-01-01
The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvAmore » data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the flux for the upcoming DUNE experiment.« less
Neutrino Flux Prediction for the NuMI Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliaga Soplin, Leonidas
2016-01-01
The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvAmore » data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the fl ux for the upcoming DUNE experiment.« less
Examination of thermal comfort in a hospital using PMV-PPD model.
Pourshaghaghy, A; Omidvari, M
2012-11-01
In this study, the performance of air conditioning system and the level of thermal comfort are determined in a state hospital located in Kermanshah city in the west of Iran in winter and summer using the Predicted Mean Vote (PMV) model which has been presented by ISO-7730 (2005). The Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) indices were computed using the data acquired from the experimental measurements performed in the building. The results showed that the values of PMV in some parts of the building, both for men and women, are not within the standard acceptable range defined by ISO. It was found that the most thermal problems in winter occur in morning work shift, and the worst thermal conditions in summer occur in noon work shift. The t-test results revealed that there is no noticeable difference between the thermal conditions of some rooms and those of the surroundings. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Working memory management and predicted utility
Chatham, Christopher H.; Badre, David
2013-01-01
Given the limited capacity of working memory (WM), its resources should be allocated strategically. One strategy is filtering, whereby access to WM is granted preferentially to items with the greatest utility. However, reallocation of WM resources might be required if the utility of maintained information subsequently declines. Here, we present behavioral, computational, and neuroimaging evidence that human participants track changes in the predicted utility of information in WM. First, participants demonstrated behavioral costs when the utility of items already maintained in WM declined and resources should be reallocated. An adapted Q-learning model indicated that these costs scaled with the historical utility of individual items. Finally, model-based neuroimaging demonstrated that frontal cortex tracked the utility of items to be maintained in WM, whereas ventral striatum tracked changes in the utility of items maintained in WM to the degree that these items are no longer useful. Our findings suggest that frontostriatal mechanisms track the utility of information in WM, and that these dynamics may predict delays in the removal of information from WM. PMID:23882196
Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Wood, William A.; Oliver, A. Brandon
2011-01-01
Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.
Predicting K0Λ photoproduction observables by using the multipole approach
NASA Astrophysics Data System (ADS)
Mart, T.; Rusli, A.
2017-12-01
We present an isobar model for kaon photoproduction on the proton γ p\\to K^+Λ that can nicely reproduce the available experimental data from threshold up to W=2.0 GeV. The background amplitude of the model is constructed from a covariant Feynman diagrammatic method, whereas the resonance one is formulated by using the multipole approach. All unknown parameters in both background and resonance amplitudes are extracted by adjusting the calculated observables to experimental data. With the help of SU(3) isospin symmetry and some information obtained from the Particle Data Group we estimate the cross section and polarization observables for the neutral kaon photoproduction on the neutron γ n\\to K^0Λ. The result indicates no sharp peak in the K^0Λ total cross section. The predicted differential cross section exhibits resonance structures only at cosθ=-1. To obtain sizable observables the present work recommends measurement of the K^0Λ cross section with W≳ 1.70 GeV, whereas for the recoiled Λ polarization measurement with W≈ 1.65-1.90 GeV would be advised, since the predictions of existing models show a large variance at this kinematics. The predicted electric and magnetic multipoles are found to be mostly different from those obtained in previous works. For W=1.75 and 1.95 GeV it is found that most of the single and double polarization observables demonstrate large asymmetries.
Presentation of a large amount of moving objects in a virtual environment
NASA Astrophysics Data System (ADS)
Ye, Huanzhuo; Gong, Jianya; Ye, Jing
2004-05-01
It needs a lot of consideration to manage the presentation of a large amount of moving objects in virtual environment. Motion state model (MSM) is used to represent the motion of objects and 2n tree is used to index the motion data stored in database or files. To minimize the necessary memory occupation for static models, cache with LRU or FIFO refreshing is introduced. DCT and wavelet work well with different playback speeds of motion presentation because they can filter low frequencies from motion data and adjust the filter according to playback speed. Since large amount of data are continuously retrieved, calculated, used for displaying, and then discarded, multithreading technology is naturally employed though single thread with carefully arranged data retrieval also works well when the number of objects is not very big. With multithreading, the level of concurrence should be placed at data retrieval, where waiting may occur, rather than at calculating or displaying, and synchronization should be carefully arranged to make sure that different threads can collaborate well. Collision detection is not needed when playing with history data and sampled current data; however, it is necessary for spatial state prediction. When the current state is presented, either predicting-adjusting method or late updating method could be used according to the users' preference.
Gram Quist, Helle; Christensen, Ulla; Christensen, Karl Bang; Aust, Birgit; Borg, Vilhelm; Bjorner, Jakob B
2013-01-17
Lifestyle variables may serve as important intermediate factors between psychosocial work environment and health outcomes. Previous studies, focussing on work stress models have shown mixed and weak results in relation to weight change. This study aims to investigate psychosocial factors outside the classical work stress models as potential predictors of change in body mass index (BMI) in a population of health care workers. A cohort study, with three years follow-up, was conducted among Danish health care workers (3982 women and 152 men). Logistic regression analyses examined change in BMI (more than +/- 2 kg/m(2)) as predicted by baseline psychosocial work factors (work pace, workload, quality of leadership, influence at work, meaning of work, predictability, commitment, role clarity, and role conflicts) and five covariates (age, cohabitation, physical work demands, type of work position and seniority). Among women, high role conflicts predicted weight gain, while high role clarity predicted both weight gain and weight loss. Living alone also predicted weight gain among women, while older age decreased the odds of weight gain. High leadership quality predicted weight loss among men. Associations were generally weak, with the exception of quality of leadership, age, and cohabitation. This study of a single occupational group suggested a few new risk factors for weight change outside the traditional work stress models.
Effect of work and recovery durations on W' reconstitution during intermittent exercise.
Skiba, Philip F; Jackman, Sarah; Clarke, David; Vanhatalo, Anni; Jones, Andrew M
2014-07-01
We recently presented an integrating model of the curvature constant of the hyperbolic power-time relationship (W') that permits the calculation of the W' balance (W'BAL) remaining at any time during intermittent exercise. Although a relationship between recovery power and the rate of W' recovery was demonstrated, the effect of the length of work or recovery intervals remains unclear. After determining VO2max, critical power, and W', 11 subjects completed six separate exercise tests on a cycle ergometer on different days, and in random order. Tests consisted of a period of intermittent severe-intensity exercise until the subject depleted approximately 50% of their predicted W'BAL, followed by a constant work rate (CWR) exercise bout until exhaustion. Work rates were kept constant between trials; however, either work or recovery durations during intermittent exercise were varied. The actual W' measured during the CWR (W'ACT) was compared with the amount of W' predicted to be available by the W'BAL model. Although some differences between W'BAL and W'ACT were noted, these amounted to only -1.6 ± 1.1 kJ when averaged across all conditions. The W'ACT was linearly correlated with the difference between VO2 at the start of CWR and VO2max (r = 0.79, P < 0.01). The W'BAL model provided a generally robust prediction of CWR W'. There may exist a physiological optimum formulation of work and recovery intervals such that baseline VO2 can be minimized, leading to an enhancement of subsequent exercise tolerance. These results may have important implications for athletic training and racing.
Can you please put it out? Predicting non-smokers' assertiveness intentions at work.
Aspropoulos, Eleftherios; Lazuras, Lambros; Rodafinos, Angelos; Eiser, J Richard
2010-04-01
The present study aimed to identify the psychosocial predictors of non-smoker employee intentions to ask smokers not to smoke at work. The predictive effects of past behaviour, anticipated regret, social norms, attitudinal, outcome expectancy and behavioural control beliefs were investigated in relation to the Attitudes-Social influence-self-Efficacy (ASE) model. Data were collected from Greek non-smoker employees (n=137, mean age=33.5, SD=10.5, 54.7% female) in 15 companies. The main outcome measure was assertiveness intention. Data on participants' past smoking, age, gender and on current smoking policy in the company were also collected. The majority of employees (77.4%) reported being annoyed by exposure to passive smoking at work, but only 37% reported having asked a smoker colleague not to smoke in the last 30 days. Regression analysis showed that the strongest predictor of non-smokers' assertiveness intentions was how often they believed that other non-smokers were assertive. Perceived control over being assertive, annoyance with secondhand smoke (SHS) exposure at work and past assertive behaviour also significantly predicted assertiveness intentions. Assertiveness by non-smoker employees seems to be guided mainly by normative and behavioural control beliefs, annoyance with SHS exposure at work, and past behaviour. Interventions to promote assertiveness in non-smokers might benefit from efficacy training combined with conveying the messages that the majority of other non-smokers are frequently annoyed by exposure to SHS, and that nearly half of all non-smokers are assertive towards smokers.
The general alcoholics anonymous tools of recovery: the adoption of 12-step practices and beliefs.
Greenfield, Brenna L; Tonigan, J Scott
2013-09-01
Working the 12 steps is widely prescribed for Alcoholics Anonymous (AA) members although the relative merits of different methods for measuring step work have received minimal attention and even less is known about how step work predicts later substance use. The current study (1) compared endorsements of step work on an face-valid or direct measure, the Alcoholics Anonymous Inventory (AAI), with an indirect measure of step work, the General Alcoholics Anonymous Tools of Recovery (GAATOR); (2) evaluated the underlying factor structure of the GAATOR and changes in step work over time; (3) examined changes in the endorsement of step work over time; and (4) investigated how, if at all, 12-step work predicted later substance use. New AA affiliates (N = 130) completed assessments at intake, 3, 6, and 9 months. Significantly more participants endorsed step work on the GAATOR than on the AAI for nine of the 12 steps. An exploratory factor analysis revealed a two-factor structure for the GAATOR comprising behavioral step work and spiritual step work. Behavioral step work did not change over time, but was predicted by having a sponsor, while Spiritual step work decreased over time and increases were predicted by attending 12-step meetings or treatment. Behavioral step work did not prospectively predict substance use. In contrast, spiritual step work predicted percent days abstinent. Behavioral step work and spiritual step work appear to be conceptually distinct components of step work that have distinct predictors and unique impacts on outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Systematics of heavy-ion charge-exchange straggling
NASA Astrophysics Data System (ADS)
Sigmund, P.; Schinner, A.
2016-10-01
The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.
Computationally modeling interpersonal trust.
Lee, Jin Joo; Knox, W Bradley; Wormwood, Jolie B; Breazeal, Cynthia; Desteno, David
2013-01-01
We present a computational model capable of predicting-above human accuracy-the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.
Assessment of thermal environments: working conditions in the portuguese glass industry
OLIVEIRA, A. Virgílio M.; GASPAR, Adélio R.; RAIMUNDO, António M.; QUINTELA, Divo A.
2017-01-01
The objective of the present contribution is to assess the exposure to hot thermal environments in the Portuguese glass industry. For this purpose a field survey was carried out and the measurements took place in industrial units - five industries and nineteen workplaces were considered–so all the results are based on real working conditions. In order to assess the level of heat exposure the Wet Bulb Globe Temperature (WBGT) index and the Predicted Heat Strain (PHS) model, defined in ISO Standards 7243 (1989) and 7933 (2004), respectively, were used. According to the WBGT index, the results show that almost 80% of the workplaces under analysis are prone to heat stress conditions. If the PHS model is considered, the results highlight that the predicted and the maximum sweat rates present equal values in about 40% of the workplaces. In addition, in almost 25% of the workplaces the estimated rectal temperature was higher than 38°C, just for an exposure period of one hour. Thus, the present study brings to light the characteristics of the glass industry in terms of the occupational exposure to hot environments and places this activity sector as one of the most difficult to deal with. PMID:28824045
Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"
NASA Astrophysics Data System (ADS)
Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker
2017-04-01
Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain. Performance tests are being conducted at the moment in order to improve UPC predicted products for 1-, 2-days ahead. In addition, UPC is working to enable short-term predictions based on UPC real-time GIMs (labelled URTG) and implementing an improved prediction approach. TUM developed a forecast method based on a time series analysis of TEC products which are either B-spline coefficients estimated by a Kalman filter or TEC grid maps derived from the B-spline coefficients. The forecast method uses a Fourier series expansion to extract the trend functions from the estimated TEC product. Then the trend functions are carried out to provide predicted TEC products. The forecast algorithm developed by GMV is based on the ionospheric delay estimation from previous epochs using GNSS data and the main dependence of ionospheric delays on solar and magnetic conditions. Since the ionospheric behavior is highly dependent on the region of the Earth, different region-based algorithmic modifications have been implemented in GMV's magicSBAS ionospheric algorithms to be able to estimate and forecast ionospheric delays worldwide. Different TEC prediction approaches outlined here will certainly help to learn about forecasting ionospheric ionization.
First Results of the Regional Earthquake Likelihood Models Experiment
Schorlemmer, D.; Zechar, J.D.; Werner, M.J.; Field, E.H.; Jackson, D.D.; Jordan, T.H.
2010-01-01
The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment-a truly prospective earthquake prediction effort-is underway within the U. S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary-the forecasts were meant for an application of 5 years-we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one. ?? 2010 The Author(s).
First Results of the Regional Earthquake Likelihood Models Experiment
NASA Astrophysics Data System (ADS)
Schorlemmer, Danijel; Zechar, J. Douglas; Werner, Maximilian J.; Field, Edward H.; Jackson, David D.; Jordan, Thomas H.
2010-08-01
The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment—a truly prospective earthquake prediction effort—is underway within the U.S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary—the forecasts were meant for an application of 5 years—we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one.
Improving streamflow prediction using remotely-sensed soil moisture and snow depth
USDA-ARS?s Scientific Manuscript database
The monitoring of both cold and warm season hydrologic processes in headwater watersheds is critical for accurate water resource monitoring in many alpine regions. This work presents a new method that explores the simultaneous use of remotely sensed surface soil moisture (SM) and snow depth (SD) ret...
ADAPTIVE-GRID SIMULATION OF GROUNDWATER FLOW IN HETEROGENEOUS AQUIFERS. (R825689C068)
The prediction of contaminant transport in porous media requires the computation of the flow velocity. This work presents a methodology for high-accuracy computation of flow in a heterogeneous isotropic formation, employing a dual-flow formulation and adaptive...
ERIC Educational Resources Information Center
Martin, Andrew J.; Nejad, Harry G.; Colmar, Susan; Liem, Gregory Arief D.
2013-01-01
Adaptability is defined as appropriate cognitive, behavioral, and/or affective adjustment in the face of uncertainty and novelty. Building on prior measurement work demonstrating the psychometric properties of an adaptability construct, the present study investigates dispositional predictors (personality, implicit theories) of adaptability, and…
Revisiting the Relationship between Exercise Heart Rate and Music Tempo Preference
ERIC Educational Resources Information Center
Karageorghis, Costas I.; Jones, Leighton; Priest, David-Lee; Akers, Rose I.; Clarke, Adam; Perry, Jennifer M.; Reddick, Benjamin T.; Bishop, Daniel T.; Lim, Harry B. T.
2011-01-01
In the present study, we investigated a hypothesized quartic relationship (meaning three inflection points) between exercise heart rate (HR) and preferred music tempo. Initial theoretical predictions suggested a positive linear relationship (Iwanaga, 1995a, 1995b); however, recent experimental work has shown that as exercise HR increases, step…
Loran-C time difference calculations
NASA Technical Reports Server (NTRS)
Fischer, J. P.
1978-01-01
Some of the simpler mathematical equations which may be used in Loran-C navigation calculations were examined. A technique is presented to allow Loran-C time differences to be predicted at a location. This is useful for receiver performance work, and a tool for more complex calculations, such as position fixing.
Aeroelastic Stability & Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
2001-01-01
A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.
EMISSIONS INVENTORY OF PM 2.5 TRACE ELEMENTS ACROSS THE U.S.
This abstract describes work done to speciate PM2.5 emissions into emissions of trace metals to enable concentrations of metal species to be predicted by air quality models. Methods are described and initial results are presented. A technique for validating the resul...
Density of septic systems in watersheds has been identified as a contributor to pathogen loading in streams. At present, little work has been done to provide simple models to assist in evaluating groundwater loading for pathogen TMDLs. A compartmental model is being developed for...
Tree mortality risk of oak due to gypsy moth
K.W. Gottschalk; J.J. Colbert; D.L. Feicht
1998-01-01
We present prediction models for estimating tree mortality resulting from gypsy moth, Lymantria dispar, defoliation in mixed oak, Quercus sp., forests. These models differ from previous work by including defoliation as a factor in the analysis. Defoliation intensity, initial tree crown condition (crown vigour), crown position, and...
The Individual Psychology of Alfred Adler: Toward an Adlerian Vocational Theory.
ERIC Educational Resources Information Center
Watkins, C. Edward, Jr.
1984-01-01
Presents an Adlerian vocational theory with several hypotheses and corollaries regarding: (a) life style, (b) work as life task, (c) family atmosphere and relationships, and (d) early recollections. Develops predictive vocational statements and offers the resulting framework as a stimulant to generate further study of Adlerian vocational…
Particle migration in rotating liquids
NASA Technical Reports Server (NTRS)
Annamalai, P.; Cole, R.
1986-01-01
An analytical solution predicting the behavior of particles in the presence of both gravitational and rotational fields is obtained at the limit of quasi-steady creeping flow. The experiments performed in the present work using fluid particles, as well as the experiments already reported on solid particles, agree satisfactorily with the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadhukhan, Jhilam; Pal, Santanu
An expression for stationary fission width is obtained for systems with steep shape-dependent nuclear collective inertia by extending the work of Kramers, which was originally derived for a fixed value of the inertia. The domain of validity of the present expression is examined by comparing its predictions with widths obtained from the corresponding Langevin equations.
Diamond Thin-Film Thermionic Generator
NASA Astrophysics Data System (ADS)
Clewell, J. M.; Ordonez, C. A.; Perez, J. M.
1997-03-01
Since the eighteen-hundreds scientists have sought to develop the highest thermal efficiency in heat engines such as thermionic generators. Modern research in the emerging diamond film industry has indicated the work functions of diamond thin-films can be much less than one electron volt, compelling fresh investigation into their capacity as thermionic generators and inviting new methodology for determining that efficiency. Our objective is to predict the efficiency of a low-work-function, degenerate semiconductor (diamond film) thermionic generator operated as a heat engine between two constant-temperature thermal reservoirs. Our presentation will focus on a theoretical model which predicts the efficiency of the system by employing a Monte Carlo computational technique from which we report results for the thermal efficiency and the thermionic current densities of diamond thin-films.
Wright, Bradley James
2011-03-01
This study attempted to determine the relationship of physiological indices of stress (ie, cortisol and salivary immunoglobulin A) to the effort-reward imbalance model (ERI). A sample of 98 direct-care disability workers completed the Work-Related Questions II-III and provided morning saliva samples on the same day of completion, which were subsequently analyzed for cortisol and salivary immunoglobulin A concentration levels. Using structural equation modeling, the ERI successfully predicted potentially adverse physiological outcomes. The salivary immunoglobulin A scores were predicted more successfully by the ERI than the cortisol data. The present investigation suggests that the ERI may be useful in determining which aspects of work life are associated with ill health and as such may be useful in identifying meaningful intervention.
Fujii, Tsutomu; Uebuchi, Hisashi; Yamada, Kotono; Saito, Masahiro; Ito, Eriko; Tonegawa, Akiko; Uebuchi, Marie
2015-06-01
The purposes of the present study were (a) to use both a relational-anxiety Go/No-Go Association Task (GNAT) and an avoidance-of-intimacy GNAT in order to assess an implicit Internal Working Model (IWM) of attachment; (b) to verify the effects of both measured implicit relational anxiety and implicit avoidance of intimacy on information processing. The implicit IWM measured by GNAT differed from the explicit IWM measured by questionnaires in terms of the effects on information processing. In particular, in subliminal priming tasks involving with others, implicit avoidance of intimacy predicted accelerated response times with negative stimulus words about attachment. Moreover, after subliminally priming stimulus words about self, implicit relational anxiety predicted delayed response times with negative stimulus words about attachment.
Influence of affective valence on working memory processes.
Gotoh, Fumiko
2008-02-01
Recent research has revealed widespread effects of emotion on cognitive function and memory. However, the influence of affective valence on working or short-term memory remains largely unexplored. In two experiments, the present study examined the predictions that negative words would capture attention, that attention would be difficult to disengage from such negative words, and that the cost of attention switching would increase the time required to update information in working memory. Participants switched between two concurrent working memory tasks: word recognition and a working memory digit updating task. Experiment 1 showed substantial switching cost for negative words, relative to neutral words. Experiment 2 replicated the first experiment, using a self-report measure of anxiety to examine if switching cost is a function of an anxiety-related attention bias. Results did not support this hypothesis. In addition, Experiment 2 revealed switch costs for positive words without the effect of the attention bias from anxiety. The present study demonstrates the effect of affective valence on a specific component of working memory. Moreover, findings suggest why affective valence effects on working memory have not been found in previous research.
Holmgren, Kristina; Ekbladh, Elin; Hensing, Gunnel; Dellve, Lotta
2013-02-01
To analyze if the combination of organizational climate and work commitment can predict return to work (RTW). This prospective Swedish study was based on 2285 participants, 19 to 64 years old, consecutively selected from the employed population, newly sick-listed for more than 14 days. Data were collected in 2008 through postal questionnaire and from register data. Among women, the combination of good organizational climate and fair work commitment predicted an early RTW with an adjusted relative risk of 2.05 (1.32 to 3.18). Among men, none of the adjusted variables or combinations of variables was found significantly to predict RTW. This study demonstrated the importance of integrative effects of organizational climate and individual work commitment on RTW among women. These factors did not predict RTW in men. More research is needed to understand the RTW process among men.
Tang, Kenneth; Beaton, Dorcas E; Gignac, Monique A M; Lacaille, Diane; Zhang, Wei; Bombardier, Claire
2010-11-01
Among people with arthritis, the need for work transitions may signal a risk for more adverse work outcomes in the future, such as permanent work loss. Our aim was to evaluate the ability of the Work Instability Scale for Rheumatoid Arthritis (RA-WIS) to predict arthritis-related work transitions within a 12-month period. Workers with osteoarthritis or rheumatoid arthritis (n = 250) from 3 clinical sites participated in self-administered surveys that assessed the impact of health on employment at multiple time points over 12 months. Multivariable logistic regressions were conducted to assess the ability of the RA-WIS (range 0-23, where 23 = highest work instability) to predict 4 types of work transition: reductions in work hours, disability leaves of absence, changes in job/occupation, or temporary unemployment, assembled as a composite outcome. Covariates assessed include age, sex, education, marital status, income, pain intensity, disease duration, and the Health Assessment Questionnaire. Areas under the receiver operating characteristic curves (AUROCCs) were also assessed to further examine the predictive ability of the RA-WIS and to determine optimal cut points for predicting specific work transitions. After 12 months, 21.7% (n = 50 of 230) of the participants had indicated at least one arthritis-related work transition. Higher baseline RA-WIS was predictive of such an outcome (relative risk [RR] 1.05 [95% confidence interval (95% CI) 1.00-1.11]), particularly at >17 (RR 2.30 [95% CI 1.11-4.77]). The RA-WIS cut point of >13 was found to be most accurate for prediction (AUROCC 0.68 [95% CI 0.58-0.78]). The RA-WIS demonstrated the ability to predict arthritis-related work transitions within a short timeframe, and could be a promising measurement candidate for risk prognostication where work disability outcomes are of concern. Copyright © 2010 by the American College of Rheumatology.
Deficits in Top-Down Sensory Prediction in Infants At Risk due to Premature Birth.
Emberson, Lauren L; Boldin, Alex M; Riccio, Julie E; Guillet, Ronnie; Aslin, Richard N
2017-02-06
A prominent theoretical view is that the brain is inherently predictive [1, 2] and that prediction helps drive the engine of development [3, 4]. Although infants exhibit neural signatures of top-down sensory prediction [5, 6], in order to establish that prediction supports development, it must be established that deficits in early prediction abilities alter trajectories. We investigated prediction in infants born prematurely, a leading cause of neuro-cognitive impairment worldwide [7]. Prematurity, independent of medical complications, leads to developmental disturbances [8-12] and a broad range of developmental delays [13-17]. Is an alteration in early prediction abilities the common cause? Using functional near-infrared spectroscopy (fNIRS), we measured top-down sensory prediction in preterm infants (born <33 weeks gestation) before infants exhibited clinically identifiable developmental delays (6 months corrected age). Whereas preterm infants had typical neural responses to presented visual stimuli, they exhibited altered neural responses to predicted visual stimuli. Importantly, a separate behavioral control confirmed that preterm infants detect pattern violations at the same rate as full-terms, establishing selectivity of this response to top-down predictions (e.g., not in learning an audiovisual association). These findings suggest that top-down sensory prediction plays a crucial role in development and that deficits in this ability may be the reason why preterm infants experience altered developmental trajectories and are at risk for poor developmental outcomes. Moreover, this work presents an opportunity for establishing a neuro-biomarker for early identification of infants at risk and could guide early intervention regimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Weaknesses in executive functioning predict the initiating of adolescents' alcohol use.
Peeters, Margot; Janssen, Tim; Monshouwer, Karin; Boendermaker, Wouter; Pronk, Thomas; Wiers, Reinout; Vollebergh, Wilma
2015-12-01
Recently, it has been suggested that impairments in executive functioning might be risk factors for the onset of alcohol use rather than a result of heavy alcohol use. In the present study, we examined whether two aspects of executive functioning, working memory and response inhibition, predicted the first alcoholic drink and first binge drinking episode in young adolescents using discrete survival analyses. Adolescents were selected from several Dutch secondary schools including both mainstream and special education (externalizing behavioral problems). Participants were 534 adolescents between 12 and 14 years at baseline. Executive functioning and alcohol use were assessed four times over a period of two years. Working memory uniquely predicted the onset of first drink (p=.01) and first binge drinking episode (p=.04) while response inhibition only uniquely predicted the initiating of the first drink (p=.01). These results suggest that the association of executive functioning and alcohol consumption found in former studies cannot simply be interpreted as an effect of alcohol consumption, as weaknesses in executive functioning, found in alcohol naïve adolescents, predict the initiating of (binge) drinking. Though, prolonged and heavy alcohol use might further weaken already existing deficiencies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Ladd, Helen F.
2009-01-01
This quantitative study uses data from North Carolina to examine the extent to which survey based perceptions of working conditions are predictive of policy-relevant outcomes, independent of other school characteristics such as the demographic mix of the school's students. Working conditions emerge as highly predictive of teachers' stated…
Khurana, Atika; Romer, Daniel; Betancourt, Laura M.; Brodsky, Nancy L.; Giannetta, Joan M.; Hurt, Hallam
2013-01-01
Although deficits in working memory ability have been implicated in suboptimal decision making and risk taking among adolescents, its influence on early sexual initiation has so far not been examined. Analyzing 2 waves of panel data from a community sample of adolescents (N = 347; Mean age[baseline] = 13.4 years), assessed 1 year apart, the present study tested the hypothesis that weak working memory ability predicts early sexual initiation and explored whether this relationship is mediated by sensation seeking and 2 forms of impulsivity, namely acting-without-thinking and temporal discounting. The 2 forms of impulsivity were expected to be positively associated with early sexual initiation, whereas sensation seeking was hypothesized to be unrelated or to have a protective influence, due to its positive association with working memory. Results obtained from structural equation modeling procedures supported these predictions and in addition showed that the effects of 3 prominent risk factors (Black racial identity, low socioeconomic background, and early pubertal maturation) on early sexual initiation were entirely mediated by working memory and impulsivity. The findings are discussed in regard to their implications for preventing early sexual onset among adolescents. PMID:22369334
Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Gunawan
The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. Thismore » paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.« less
IMF Prediction with Cosmic Rays
NASA Astrophysics Data System (ADS)
Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.
2013-12-01
Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
Wind Power Curve Modeling in Simple and Complex Terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulaevskaya, V.; Wharton, S.; Irons, Z.
2015-02-09
Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the resultsmore » to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.« less
Examining the psychology of working theory: Decent work among sexual minorities.
Douglass, Richard P; Velez, Brandon L; Conlin, Sarah E; Duffy, Ryan D; England, Jessica W
2017-10-01
Research has found heterosexist discrimination negatively relates to vocational outcomes among lesbian, gay, and bisexual (LGB) people, but no known study has examined how heterosexist discrimination relates to the attainment of decent work. Building from the Psychology of Working Theory, which proposes that specific forms of marginalization coupled with economic constraints limit a person's ability to secure decent work, the present study examined theoretically hypothesized pathways to decent work among a sample of employed sexual minority adults. Heterosexist discrimination and social class were examined as direct predictors of decent work, and indirect links were examined via work volition and career adaptability. Among our sample of 218 sexual minority people, structural equation modeling results suggested heterosexist discrimination and social class directly-and indirectly through work volition-predicted decent work. Practical implications and directions for future research are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Working memory involved in predicting future outcomes based on past experiences.
Dretsch, Michael N; Tipples, Jason
2008-02-01
Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152-162]. Similarly, a secondary memory load task has been shown to impair task performance [Hinson, J., Jameson, T. & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioural Neuroscience, 2, 341-353]. In the present study, we investigate whether the latter findings were due to increased random responding [Franco-Watkins, A. M., Pashler, H., & Rickard, T. C. (2006). Does working memory load lead to greater impulsivity? Commentary on Hinson, Jameson, and Whitney's (2003). Journal of Experimental Psychology: Learning, Memory & Cognition, 32, 443-447]. Participants were tested under Low Working Memory (LWM; n=18) or High Working Memory (HWM; n=17) conditions while performing the Reversed IGT in which punishment was immediate and reward delayed [Bechara, A., Dolan, S., & Hindes, A. (2002). Decision making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690-1705]. In support of a role for working memory in emotional decision making, compared to the LWM condition, participants in the HWM condition made significantly greater number of disadvantageous selections than that predicted by chance. Performance by the HWM group could not be fully explained by random responding.
PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.
Kahanda, Indika; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa
2015-01-01
The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data.
Some effects of thermal-cycle-induced deformation in rocket thrust chambers
NASA Technical Reports Server (NTRS)
Hannum, N. P.; Price, R. G., Jr.
1981-01-01
The deformation process observed in the hot gas side wall of rocket combustion chambers was investigaged for three different liner materials. Five thrust chambers were cycled to failure by using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/cu m. The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the problems of life prediction associated with the types of failures encountered in the present work. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers. From these deformation data and observation of the failure sites it is evident that modeling the failure process as classic low cycle thermal fatigue is inadequate as a life prediction method.
Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation
NASA Technical Reports Server (NTRS)
Morrell, Michael Randy
2002-01-01
This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.
The General Alcoholics Anonymous Tools of Recovery: The Adoption of 12-Step Practices and Beliefs
Greenfield, Brenna L.; Tonigan, J. Scott
2013-01-01
Working the 12 steps is widely prescribed for Alcoholics Anonymous (AA) members although the relative merits of different methods for measuring step-work have received minimal attention and even less is known about how step-work predicts later substance use. The current study (1) compared endorsements of step-work on an face-valid or direct measure, the Alcoholics Anonymous Inventory (AAI), with an indirect measure of step-work, the General Alcoholics Anonymous Tools of Recovery (GAATOR), (2) evaluated the underlying factor structure of the GAATOR and changes in step-work over time, (3) examined changes in the endorsement of step-work over time, and (4) investigated how, if at all, 12-step-work predicted later substance use. New AA affiliates (N = 130) completed assessments at intake, 3, 6, and 9 months. Significantly more participants endorsed step-work on the GAATOR than on the AAI for nine of the 12 steps. An exploratory factor analysis revealed a two-factor structure for the GAATOR comprising Behavioral Step-Work and Spiritual Step-Work. Behavioral Step-Work did not change over time, but was predicted by having a sponsor, while Spiritual Step-Work decreased over time and increases were predicted by attending 12-step meetings or treatment. Behavioral Step-Work did not prospectively predict substance use. In contrast, Spiritual Step-Work predicted percent days abstinent, an effect that is consistent with recent work on the mediating effects of spiritual growth, AA, and increased abstinence. Behavioral and Spiritual Step-Work appear to be conceptually distinct components of step-work that have distinct predictors and unique impacts on outcomes. PMID:22867293
D'Antuono, Giovanni; La Torre, Francesca Romana; Marin, Dario; Antonucci, Gabriella; Piccardi, Laura; Guariglia, Cecilia
2017-01-01
We investigated the relationship between verbal and visuo-spatial measures of working memory, inhibition, fluid intelligence and the performance on the Tower of London (ToL) task in a large sample of 830 healthy participants aged between 18 and 71 years. We found that fluid intelligence and visuo-spatial working memory accounted for a significant variance in the ToL task, while performances on verbal working memory and on the Stroop Test were not predictive for performance on the ToL. The present results confirm that fluid intelligence has a fundamental role on planning tests, but also show that visuo-spatial working memory plays a crucial role in ToL performance.
A Numerical Round Robin for the Reliability Prediction of Structural Ceramics
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Janosik, Lesley A.
1993-01-01
A round robin has been conducted on integrated fast fracture design programs for brittle materials. An informal working group (WELFEP-WEakest Link failure probability prediction by Finite Element Postprocessors) was formed to discuss and evaluate the implementation of the programs examined in the study. Results from the study have provided insight on the differences between the various programs examined. Conclusions from the study have shown that when brittle materials are used in design, analysis must understand how to apply the concepts presented herein to failure probability analysis.
Genetic testing and the future of disability insurance: ethics, law & policy.
Wolf, Susan M; Kahn, Jeffrey P
2007-01-01
Predictive genetic testing poses fundamental questions for disability insurance, a crucial resource funding basic needs when disability prevents income from work. This article, from an NIH-funded project, presents the first indepth analysis of the challenging issues: Should disability insurers be permitted to consider genetics and exclude predicted disability? May disabilities with a recognized genetic basis be excluded from coverage as pre-existing conditions? How can we assure that private insurers writing individual and group policies, employers, and public insurers deal competently and appropriately with genetic testing?
Dislocation core structures of tungsten with dilute solute hydrogen
NASA Astrophysics Data System (ADS)
Wang, Yinan; Li, Qiulin; Li, Chengliang; Shu, Guogang; Xu, Ben; Liu, Wei
2017-12-01
In this paper, a combination of quantum mechanical and interatomic potential-based atomistic calculations are used to predict the core structures of screw and edge dislocations in tungsten in the presence of a particular concentration of hydrogen atoms. These configurations of the core structures are the results of two competing energies: the interaction between the partial dislocations and the corresponding generalized stacking fault energy in between the two partial dislocations, which are presented in this work. With this, we can precisely predict the configurations of the hydrogen-doped dislocation core structures.
Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials
Asteris, Panagiotis G.; Roussis, Panayiotis C.; Douvika, Maria G.
2017-01-01
This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature. PMID:28598400
Prosocial Motivation and Blood Donations: A Survey of the Empirical Literature
Goette, Lorenz; Stutzer, Alois; Frey, Beat M.
2010-01-01
Summary Recent shortages in the supply of blood donations have renewed the interest in how blood donations can be increased temporarily. We survey the evidence on the role of financial and other incentives in eliciting blood donations among donors who are normally willing to donate pro bono. We present the predictions from different empirical/psychological-based theories, with some predicting that incentives are effective while others predict that incentives may undermine prosocial motivation. The evidence suggests that incentives work relatively well in settings in which donors are relatively anonymous, but evidence indicates also that when image concerns become important, incentives may be counterproductive as donors do not want to be seen as greedy. PMID:20737018
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
Implicit motives, explicit traits, and task and contextual performance at work.
Lang, Jonas W B; Zettler, Ingo; Ewen, Christian; Hülsheger, Ute R
2012-11-01
Personality psychologists have long argued that explicit traits (as measured by questionnaires) channel the expression of implicit motives (as measured by coding imaginative verbal behavior) such that both interact in the prediction of relevant life outcome variables. In the present research, we apply these ideas in the context of industrial and organizational psychology and propose that 2 explicit traits work as channels for the expression of 3 core implicit motives in task and contextual job performance (extraversion for implicit affiliation and implicit power; explicit achievement for implicit achievement). As a test of these theoretical ideas, we report a study in which employees (N = 241) filled out a questionnaire booklet and worked on an improved modern implicit motive measure, the operant motive test. Their supervisors rated their task and contextual performance. Results support 4 of the 6 theoretical predictions and show that interactions between implicit motives and explicit traits increase the explained criterion variance in both task and contextual performance. (c) 2012 APA, all rights reserved.
Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan
2016-01-01
We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.
Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan
2016-01-01
We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113
VERBAL AND SPATIAL WORKING MEMORY LOAD HAVE SIMILARLY MINIMAL EFFECTS ON SPEECH PRODUCTION.
Lee, Ogyoung; Redford, Melissa A
2015-08-10
The goal of the present study was to test the effects of working memory on speech production. Twenty American-English speaking adults produced syntactically complex sentences in tasks that taxed either verbal or spatial working memory. Sentences spoken under load were produced with more errors, fewer prosodic breaks, and at faster rates than sentence produced in the control conditions, but other acoustic correlates of rhythm and intonation did not change. Verbal and spatial working memory had very similar effects on production, suggesting that the different span tasks used to tax working memory merely shifted speakers' attention away from the act of speaking. This finding runs contra the hypothesis of incremental phonological/phonetic encoding, which predicts the manipulation of information in verbal working memory during speech production.
What Was Learned in Predicting Slender Airframe Aerodynamics with the F16-XL Aircraft
NASA Technical Reports Server (NTRS)
Rizzi, Arthur; Lucking, James M.
2014-01-01
The CAWAPI-2 coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with the F-16XL aircraft for comparison and verification. These conditions, a low-speed high angle-of-attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In re-visiting these two cases, approaches for improved results include better, denser grids using more grid adaptation to local flow features as well as unsteady higher-fidelity physical modeling like hybrid RANS/URANS-LES methods. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations where some authors investigate other possible factors that could explain the discrepancies in agreement, e.g. effects due to deflected control surfaces during the flight tests, as well as static aeroelastic deflection of the outer wing. This paper presents the synthesis of all the results and findings and draws some conclusions that lead to an improved understanding of the underlying flow physics, and finally making the connections between the physics and aircraft features.
Experimental observation of ballistic nanofriction on graphene
NASA Astrophysics Data System (ADS)
Blue, Brandon; Lodge, Michael; Tang, Chun; Hubbard, William; Martini, Ashlie; Dawson, Ben; Ishigami, Masa
Recent calculations have predicted that gold nanocrystals slide on graphite with two radically different friction coefficients depending on their speeds. At high sliding speeds in the range of 100?m/s, nanocrystals are expected to behave radically differently in what is known as the ballistic nanofriction regime. In this work, we present a direct measurement of ballistic nanofriction for gold nanocrystals on graphene. Nanocrystals are deposited onto an oscillating graphene-coated quartz crystal microbalance (QCM) in-situ under UHV and allowed to periodically ring down. After deposition, frictional parameters are measured as a function of oscillatory velocity to investigate the predicted velocity dependence of friction. Lubricity beyond even the predictions of ballistic nanofriction is observed at much lower surface velocities than expected, with drag coefficients approaching 8.65*10-14 kg/s. In comparison to the theoretically-predicted value of 2.0*10-13 kg/s, our results suggest a much lower interaction strength than proposed in contemporary models of nanoscopic sliding contacts even at relatively low speeds. This work is based on research supported by the National Science Foundation, Grant No. 0955625 (MLS, BTB, BDD and MI) and Grant No. CMMI-1265594 (CT and AM). BDD and MI were also supported by the Intelligence Community Postdoctoral Fellowship.
Prediction and Stability of Mathematics Skill and Difficulty
Martin, Rebecca B.; Cirino, Paul T.; Barnes, Marcia A.; Ewing-Cobbs, Linda; Fuchs, Lynn S.; Stuebing, Karla K.; Fletcher, Jack M.
2016-01-01
The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance. PMID:22392890
An updated view of global water cycling
NASA Astrophysics Data System (ADS)
Houser, P. R.; Schlosser, A.; Lehr, J.
2009-04-01
Unprecedented new observation capacities combined with revolutions in modeling, we are poised to make huge advances in water cycle assessment, understanding, and prediction. To realize this goal, we must develop a discipline of prediction and verification through the integration of water and energy cycle observations and models, and to verify model predictions against observed phenomena to ensure that research delivers reliable improvements in prediction skill. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability, through integration of all necessary observations and research tools. A brief history of the lineage of the conventional water balance and a summary accounting of all major parameters of the water balance using highly respected secondary sources will be presented. Principally, recently published peer reviewed papers reporting results of original work involving direct measurements and new data generated by high-tech devices (e.g. satellite / airborne instruments, supercomputers, geophysical tools) will be employed. This work lends credence to the conventional water balance ideas, but also reveals anachronistic scientific concepts/models, questionable underlying data, longstanding oversights and outright errors in the water balance.
Prediction and stability of mathematics skill and difficulty.
Martin, Rebecca B; Cirino, Paul T; Barnes, Marcia A; Ewing-Cobbs, Linda; Fuchs, Lynn S; Stuebing, Karla K; Fletcher, Jack M
2013-01-01
The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance.
Hermes, Helen E.; Teutonico, Donato; Preuss, Thomas G.; Schneckener, Sebastian
2018-01-01
The environmental fates of pharmaceuticals and the effects of crop protection products on non-target species are subjects that are undergoing intense review. Since measuring the concentrations and effects of xenobiotics on all affected species under all conceivable scenarios is not feasible, standard laboratory animals such as rabbits are tested, and the observed adverse effects are translated to focal species for environmental risk assessments. In that respect, mathematical modelling is becoming increasingly important for evaluating the consequences of pesticides in untested scenarios. In particular, physiologically based pharmacokinetic/toxicokinetic (PBPK/TK) modelling is a well-established methodology used to predict tissue concentrations based on the absorption, distribution, metabolism and excretion of drugs and toxicants. In the present work, a rabbit PBPK/TK model is developed and evaluated with data available from the literature. The model predictions include scenarios of both intravenous (i.v.) and oral (p.o.) administration of small and large compounds. The presented rabbit PBPK/TK model predicts the pharmacokinetics (Cmax, AUC) of the tested compounds with an average 1.7-fold error. This result indicates a good predictive capacity of the model, which enables its use for risk assessment modelling and simulations. PMID:29561908
Prediction of Shrinkage Porosity Defect in Sand Casting Process of LM25
NASA Astrophysics Data System (ADS)
Rathod, Hardik; Dhulia, Jay K.; Maniar, Nirav P.
2017-08-01
In the present worldwide and aggressive environment, foundry commercial enterprises need to perform productively with least number of rejections and create casting parts in shortest lead time. It has become extremely difficult for foundry industries to meet demands of defects free casting and meet strict delivery schedules. The process of casting solidification is complex in nature. Prediction of shrinkage defect in metal casting is one of the critical concern in foundries and is one of the potential research areas in casting. Due to increasing pressure to improve quality and to reduce cost, it is very essential to upgrade the level of current methodology used in foundries. In the present research work, prediction methodology of shrinkage porosity defect in sand casting process of LM25 using experimentation and ANSYS is proposed. The objectives successfully achieved are prediction of shrinkage porosity distribution in Al-Si casting and determining effectiveness of investigated function for predicting shrinkage porosity by correlating results of simulating studies to those obtained experimentally. The real-time application of the research reflects from the fact that experimentation is performed on 9 different Y junctions at foundry industry and practical data obtained from experimentation are used for simulation.
Prognostic models for renal cell carcinoma recurrence: external validation in a Japanese population.
Utsumi, Takanobu; Ueda, Takeshi; Fukasawa, Satoshi; Komaru, Atsushi; Sazuka, Tomokazu; Kawamura, Koji; Imamoto, Takashi; Nihei, Naoki; Suzuki, Hiroyoshi; Ichikawa, Tomohiko
2011-09-01
The aim of the present study was to compare the accuracy of three prognostic models in predicting recurrence-free survival among Japanese patients who underwent nephrectomy for non-metastatic renal cell carcinoma (RCC). Patients originated from two centers: Chiba University Hospital (n = 152) and Chiba Cancer Center (n = 65). The following data were collected: age, sex, clinical presentation, Eastern Cooperative Oncology Group performance status, surgical technique, 1997 tumor-node-metastasis stage, clinical and pathological tumor size, histological subtype, disease recurrence, and progression. Three western models, including Yaycioglu's model, Cindolo's model and Kattan's nomogram, were used to predict recurrence-free survival. Predictive accuracy of these models were validated by using Harrell's concordance-index. Concordance-indexes were 0.795 and 0.745 for Kattan's nomogram, 0.700 and 0.634 for Yaycioglu's model, and 0.700 and 0.634 for Cindolo's model, respectively. Furthermore, the constructed calibration plots of Kattan's nomogram overestimated the predicted probability of recurrence-free survival after 5 years compared with the actual probability. Our findings suggest that despite working better than other predictive tools, Kattan's nomogram needs be used with caution when applied to Japanese patients who have undergone nephrectomy for non-metastatic RCC. © 2011 The Japanese Urological Association.
2011-01-01
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586
Error-rate prediction for programmable circuits: methodology, tools and studied cases
NASA Astrophysics Data System (ADS)
Velazco, Raoul
2013-05-01
This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).
Keithley, Richard B; Wightman, R Mark
2011-06-07
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
Hyperfocusing in Schizophrenia: Evidence from Interactions Between Working Memory and Eye Movements
Luck, Steven J.; McClenon, Clara; Beck, Valerie M.; Hollingworth, Andrew; Leonard, Carly J.; Hahn, Britta; Robinson, Benjamin M.; Gold, James M.
2014-01-01
Recent research suggests that processing resources are focused more narrowly but more intensely in people with schizophrenia (PSZ) than in healthy control subjects (HCS), possibly reflecting local cortical circuit abnormalities. This hyperfocusing hypothesis leads to the counterintuitive prediction that, although PSZ cannot store as much information in working memory as HCS, the working memory representations that are present in PSZ may be more intense than those in HCS. To test this hypothesis, we used a task in which participants make a saccadic eye movement to a peripheral target and avoid a parafoveal nontarget while they are holding a color in working memory. Previous research with this task has shown that the parafoveal nontarget is more distracting when it matches the color being held in working memory. This effect should be enhanced in PSZ if their working memory representations are more intense. Consistent with this prediction, we found that the effect of a match between the distractor color and the memory color was larger in PSZ than in HCS. We also observed evidence that PSZ hyperfocused spatially on the region surrounding the fixation point. These results provide further evidence that some aspects of cognitive dysfunction in schizophrenia may be a result of a narrower and more intense focusing of processing resources. PMID:25089655
Hyperfocusing in schizophrenia: Evidence from interactions between working memory and eye movements.
Luck, Steven J; McClenon, Clara; Beck, Valerie M; Hollingworth, Andrew; Leonard, Carly J; Hahn, Britta; Robinson, Benjamin M; Gold, James M
2014-11-01
Recent research suggests that processing resources are focused more narrowly but more intensely in people with schizophrenia (PSZ) than in healthy control subjects (HCS), possibly reflecting local cortical circuit abnormalities. This hyperfocusing hypothesis leads to the counterintuitive prediction that, although PSZ cannot store as much information in working memory as HCS, the working memory representations that are present in PSZ may be more intense than those in HCS. To test this hypothesis, we used a task in which participants make a saccadic eye movement to a peripheral target and avoid a parafoveal nontarget while they are holding a color in working memory. Previous research with this task has shown that the parafoveal nontarget is more distracting when it matches the color being held in working memory. This effect should be enhanced in PSZ if their working memory representations are more intense. Consistent with this prediction, we found that the effect of a match between the distractor color and the memory color was larger in PSZ than in HCS. We also observed evidence that PSZ hyperfocused spatially on the region surrounding the fixation point. These results provide further evidence that some aspects of cognitive dysfunction in schizophrenia may be a result of a narrower and more intense focusing of processing resources.
Fate of abstracts presented at the 2008 European Congress of Physical and Rehabilitation Medicine.
Allart, E; Beaucamp, F; Tiffreau, V; Thevenon, A
2015-08-01
The subsequent full-text publication of abstracts presented at a scientific congress reflects the latter's scientific quality. The aim of this paper was to evaluate the publication rate for abstracts presented at the 2008 European Congress of Physical and Rehabilitation Medicine (ECPRM), characterize the publications and identify factors that were predictive of publication. It is a bibliography search. We used the PubMed database to search for subsequent publication of abstracts. We screened the abstracts' characteristics for features that were predictive of publication among abstracts features, such the status of the authors, the topic and the type of work. We performed univariate analyses and a logistic regression analysis. Of 779 abstracts presented at ECPRM 2008, 169 (21.2%) were subsequently published. The mean time to publication was 12±15.7 months and the mean impact factor of the publishing journals was 2.05±2.1. In a univariate analysis, university status (P<10-6), geographic origin (P=10-3), oral presentation (P<10-6), and original research (P<10-6) (and particularly multicentre trials [P<0.01] and randomized controlled trials [P=10-3]) were predictive of publication. In a logistic regression analysis, oral presentation (odds ratio [OR]=0.37) and university status (OR=0.36) were significant, independent predictors of publication. ECPRM 2008 publication rate and impact factor were relatively low, when compared with most other national and international conferences in this field. University status, the type of abstract and oral presentation were predictive of subsequent publication.
Fernández, Gerardo; Manes, Facundo; Politi, Luis E; Orozco, David; Schumacher, Marcela; Castro, Liliana; Agamennoni, Osvaldo; Rotstein, Nora P
2016-01-01
Patients with Alzheimer's disease (AD) develop progressive language, visuoperceptual, attentional, and oculomotor changes that can have an impact on their reading comprehension. However, few studies have examined reading behavior in AD, and none have examined the contribution of predictive cueing in reading performance. For this purpose we analyzed the eye movement behavior of 35 healthy readers (Controls) and 35 patients with probable AD during reading of regular and high-predictable sentences. The cloze predictability of words N - 1, and N + 1 exerted an influence on the reader's gaze duration. The predictabilities of preceding words in high-predictable sentences served as task-appropriate cues that were used by Control readers. In contrast, these effects were not present in AD patients. In Controls, changes in predictability significantly affected fixation duration along the sentence; noteworthy, these changes did not affect fixation durations in AD patients. Hence, only in healthy readers did predictability of upcoming words influence fixation durations via memory retrieval. Our results suggest that Controls used stored information of familiar texts for enhancing their reading performance and imply that contextual-word predictability, whose processing is proposed to require memory retrieval, only affected reading behavior in healthy subjects. In AD patients, this loss reveals impairments in brain areas such as those corresponding to working memory and memory retrieval. These findings might be relevant for expanding the options for the early detection and monitoring in the early stages of AD. Furthermore, evaluation of eye movements during reading could provide a new tool for measuring drug impact on patients' behavior.
Prediction of BP reactivity to talking using hybrid soft computing approaches.
Kaur, Gurmanik; Arora, Ajat Shatru; Jain, Vijender Kumar
2014-01-01
High blood pressure (BP) is associated with an increased risk of cardiovascular diseases. Therefore, optimal precision in measurement of BP is appropriate in clinical and research studies. In this work, anthropometric characteristics including age, height, weight, body mass index (BMI), and arm circumference (AC) were used as independent predictor variables for the prediction of BP reactivity to talking. Principal component analysis (PCA) was fused with artificial neural network (ANN), adaptive neurofuzzy inference system (ANFIS), and least square-support vector machine (LS-SVM) model to remove the multicollinearity effect among anthropometric predictor variables. The statistical tests in terms of coefficient of determination (R (2)), root mean square error (RMSE), and mean absolute percentage error (MAPE) revealed that PCA based LS-SVM (PCA-LS-SVM) model produced a more efficient prediction of BP reactivity as compared to other models. This assessment presents the importance and advantages posed by PCA fused prediction models for prediction of biological variables.
Thermodynamic prediction of protein neutrality.
Bloom, Jesse D; Silberg, Jonathan J; Wilke, Claus O; Drummond, D Allan; Adami, Christoph; Arnold, Frances H
2005-01-18
We present a simple theory that uses thermodynamic parameters to predict the probability that a protein retains the wild-type structure after one or more random amino acid substitutions. Our theory predicts that for large numbers of substitutions the probability that a protein retains its structure will decline exponentially with the number of substitutions, with the severity of this decline determined by properties of the structure. Our theory also predicts that a protein can gain extra robustness to the first few substitutions by increasing its thermodynamic stability. We validate our theory with simulations on lattice protein models and by showing that it quantitatively predicts previously published experimental measurements on subtilisin and our own measurements on variants of TEM1 beta-lactamase. Our work unifies observations about the clustering of functional proteins in sequence space, and provides a basis for interpreting the response of proteins to substitutions in protein engineering applications.
Thermodynamic prediction of protein neutrality
Bloom, Jesse D.; Silberg, Jonathan J.; Wilke, Claus O.; Drummond, D. Allan; Adami, Christoph; Arnold, Frances H.
2005-01-01
We present a simple theory that uses thermodynamic parameters to predict the probability that a protein retains the wild-type structure after one or more random amino acid substitutions. Our theory predicts that for large numbers of substitutions the probability that a protein retains its structure will decline exponentially with the number of substitutions, with the severity of this decline determined by properties of the structure. Our theory also predicts that a protein can gain extra robustness to the first few substitutions by increasing its thermodynamic stability. We validate our theory with simulations on lattice protein models and by showing that it quantitatively predicts previously published experimental measurements on subtilisin and our own measurements on variants of TEM1 β-lactamase. Our work unifies observations about the clustering of functional proteins in sequence space, and provides a basis for interpreting the response of proteins to substitutions in protein engineering applications. PMID:15644440
Fong, Allan; Mittu, Ranjeev; Ratwani, Raj; Reggia, James
2014-01-01
Alarm fatigue caused by false alarms and alerts is an extremely important issue for the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the staff and hospital systems better classify a patient's waveforms and subsequent alarms. This paper explores the use of Echo State Networks, a specific type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network architectures are designed and evaluated. The results show the utility of these echo state networks, particularly ones with larger integrated reservoirs, for predicting electrocardiogram waveforms and the adaptability of such models across individuals. The work presented here offers a unique approach for understanding and predicting a patient's waveforms in order to potentially improve alarm generation. We conclude with a brief discussion of future extensions of this research.
Close Approach Prediction Analysis of the Earth Science Constellation with the Fengyun-1C Debris
NASA Technical Reports Server (NTRS)
Duncan, Matthew; Rand, David K.
2008-01-01
Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. Each day, close approach predictions are generated by a U.S. Department of Defense Joint Space Operations Center Orbital Safety Analyst using the high accuracy Space Object Catalog maintained by the Air Force's 1" Space Control Squadron. Prediction results and other ancillary data such as state vector information are sent to NASAJGoddard Space Flight Center's (GSFC's) Collision Risk Assessment analysis team for review. Collision analysis is performed and the GSFC team works with the ESC member missions to develop risk reduction strategies as necessary. This paper presents various close approach statistics for the ESC. The ESC missions have been affected by debris from the recent anti-satellite test which destroyed the Chinese Fengyun- 1 C satellite. The paper also presents the percentage of close approach events induced by the Fengyun-1C debris, and presents analysis results which predict the future effects on the ESC caused by this event. Specifically, the Fengyun-1C debris is propagated for twenty years using high-performance computing technology and close approach predictions are generated for the ESC. The percent increase in the total number of conjunction events is considered to be an estimate of the collision risk due to the Fengyun-1C break- UP.
Review of numerical models of cavitating flows with the use of the homogeneous approach
NASA Astrophysics Data System (ADS)
Niedźwiedzka, Agnieszka; Schnerr, Günter H.; Sobieski, Wojciech
2016-06-01
The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.
An Overview of an Experimental Demonstration Aerotow Program
NASA Technical Reports Server (NTRS)
Murray, James E.; Bowers, Albion H.; Lokos, William A.; Peters, Todd L.; Gera, Joseph
1998-01-01
An overview of an experimental demonstration of aerotowing a delta-wing airplane with low-aspect ratio and relatively high wing loading is presented. Aerotowing of future space launch configurations is a new concept, and the objective of the work described herein is to demonstrate the aerotow operation using an airplane configuration similar to conceptual space launch vehicles. Background information on the use of aerotow for a space launch vehicle is presented, and the aerotow system used in this demonstration is described. The ground tests, analytical studies, and flight planning used to predict system behavior and to enhance flight safety are detailed. The instrumentation suite and flight test maneuvers flown are discussed, preliminary performance is assessed, and flight test results are compared with the preflight predictions.
Human Frontal Lobes and AI Planning Systems
NASA Technical Reports Server (NTRS)
Levinson, Richard; Lum, Henry Jr. (Technical Monitor)
1994-01-01
Human frontal lobes are essential for maintaining a self-regulating balance between predictive and reactive behavior. This paper describes a system that integrates prediction and reaction based on neuropsychological theories of frontal lobe function. In addition to enhancing our understanding of deliberate action in humans' the model is being used to develop and evaluate the same properties in machines. First, the paper presents some background neuropsychology in order to set a general context. The role of frontal lobes is then presented by summarizing three theories which formed the basis for this work. The components of an artificial frontal lobe are then discussed from both neuropsychological and AI perspectives. The paper concludes by discussing issues and methods for evaluating systems that integrate planning and reaction.
The construction and assessment of a statistical model for the prediction of protein assay data.
Pittman, J; Sacks, J; Young, S Stanley
2002-01-01
The focus of this work is the development of a statistical model for a bioinformatics database whose distinctive structure makes model assessment an interesting and challenging problem. The key components of the statistical methodology, including a fast approximation to the singular value decomposition and the use of adaptive spline modeling and tree-based methods, are described, and preliminary results are presented. These results are shown to compare favorably to selected results achieved using comparitive methods. An attempt to determine the predictive ability of the model through the use of cross-validation experiments is discussed. In conclusion a synopsis of the results of these experiments and their implications for the analysis of bioinformatic databases in general is presented.
NASA Astrophysics Data System (ADS)
Efthimiou, G. C.; Andronopoulos, S.; Bartzis, J. G.
2018-02-01
One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict dosage-based parameters from the puff release of an airborne material from a point source in the atmospheric boundary layer inside the built-up area. The present work addresses the question of whether the computational fluid dynamics (CFD)-Reynolds-averaged Navier-Stokes (RANS) methodology can be used to predict ensemble-average dosage-based parameters that are related with the puff dispersion. RANS simulations with the ADREA-HF code were, therefore, performed, where a single puff was released in each case. The present method is validated against the data sets from two wind-tunnel experiments. In each experiment, more than 200 puffs were released from which ensemble-averaged dosage-based parameters were calculated and compared to the model's predictions. The performance of the model was evaluated using scatter plots and three validation metrics: fractional bias, normalized mean square error, and factor of two. The model presented a better performance for the temporal parameters (i.e., ensemble-average times of puff arrival, peak, leaving, duration, ascent, and descent) than for the ensemble-average dosage and peak concentration. The majority of the obtained values of validation metrics were inside established acceptance limits. Based on the obtained model performance indices, the CFD-RANS methodology as implemented in the code ADREA-HF is able to predict the ensemble-average temporal quantities related to transient emissions of airborne material in urban areas within the range of the model performance acceptance criteria established in the literature. The CFD-RANS methodology as implemented in the code ADREA-HF is also able to predict the ensemble-average dosage, but the dosage results should be treated with some caution; as in one case, the observed ensemble-average dosage was under-estimated slightly more than the acceptance criteria. Ensemble-average peak concentration was systematically underpredicted by the model to a degree higher than the allowable by the acceptance criteria, in 1 of the 2 wind-tunnel experiments. The model performance depended on the positions of the examined sensors in relation to the emission source and the buildings configuration. The work presented in this paper was carried out (partly) within the scope of COST Action ES1006 "Evaluation, improvement, and guidance for the use of local-scale emergency prediction and response tools for airborne hazards in built environments".
Determinants of work ability and its predictive value for disability.
Alavinia, S M; de Boer, A G E M; van Duivenbooden, J C; Frings-Dresen, M H W; Burdorf, A
2009-01-01
Maintaining the ability of workers to cope with physical and psychosocial demands at work becomes increasingly important in prolonging working life. To analyse the effects of work-related factors and individual characteristics on work ability and to determine the predictive value of work ability on receiving a work-related disability pension. A longitudinal study was conducted among 850 construction workers aged 40 years and older, with average follow-up period of 23 months. Disability was defined as receiving a disability pension, granted to workers unable to continue working in their regular job. Work ability was assessed using the work ability index (WAI). Associations between work-related factors and individual characteristics with work ability at baseline were evaluated using linear regression analysis, and Cox regression analysis was used to evaluate the predictive value of work ability for disability. Work-related factors were associated with a lower work ability at baseline, but had little prognostic value for disability during follow-up. The hazard ratios for disability among workers with a moderate and poor work ability at baseline were 8 and 32, respectively. All separate scales in the WAI had predictive power for future disability with the highest influence of current work ability in relation to job demands and lowest influence of diseases diagnosed by a physician. A moderate or poor work ability was highly predictive for receiving a disability pension. Preventive measures should facilitate a good balance between work performance and health in order to prevent quitting labour participation.
Concurrent working memory load can facilitate selective attention: evidence for specialized load.
Park, Soojin; Kim, Min-Shik; Chun, Marvin M
2007-10-01
Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference increased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors. (c) 2007 APA
Novel composites for wing and fuselage applications
NASA Technical Reports Server (NTRS)
Sobel, L. H.; Buttitta, C.; Suarez, J. A.
1995-01-01
Probabilistic predictions based on the IPACS code are presented for the material and structural response of unnotched and notched, IM6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is judged poor because IPACS did not have a progressive failure capability at the time this work was performed. The report also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
Non-constant link tension coefficient in the tumbling-snake model subjected to simple shear
NASA Astrophysics Data System (ADS)
Stephanou, Pavlos S.; Kröger, Martin
2017-11-01
The authors of the present study have recently presented evidence that the tumbling-snake model for polymeric systems has the necessary capacity to predict the appearance of pronounced undershoots in the time-dependent shear viscosity as well as an absence of equally pronounced undershoots in the transient two normal stress coefficients. The undershoots were found to appear due to the tumbling behavior of the director u when a rotational Brownian diffusion term is considered within the equation of motion of polymer segments, and a theoretical basis concerning the use of a link tension coefficient given through the nematic order parameter had been provided. The current work elaborates on the quantitative predictions of the tumbling-snake model to demonstrate its capacity to predict undershoots in the time-dependent shear viscosity. These predictions are shown to compare favorably with experimental rheological data for both polymer melts and solutions, help us to clarify the microscopic origin of the observed phenomena, and demonstrate in detail why a constant link tension coefficient has to be abandoned.
Numerical analysis of the Magnus moment on a spin-stabilized projectile
NASA Astrophysics Data System (ADS)
Cremins, Michael; Rodebaugh, Gregory; Verhulst, Claire; Benson, Michael; van Poppel, Bret
2016-11-01
The Magnus moment is a result of an uneven pressure distribution that occurs when an object rotates in a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on flight stability. According to one source, most transonic and subsonic flight instabilities are caused by the Magnus moment [Modern Exterior Ballistics, McCoy], and yet simulations often fail to accurately predict the Magnus moment in the subsonic regime. In this study, we present hybrid Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) predictions of the Magnus moment for a spin-stabilized projectile. Velocity, pressure, and Magnus moment predictions are presented for multiple Reynolds numbers and spin rates. We also consider the effect of a sting mount, which is commonly used when conducting flow measurements in a wind tunnel or water channel. Finally, we present the initial designs for a novel Magnetic Resonance Velocimetry (MRV) experiment to measure three-dimensional flow around a spinning projectile. This work was supported by the Department of Defense High Performance Computing Modernization Program (DoD HPCMP).
Numerical Simulation of Bolide Entry with Ground Footprint Prediction
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian; Mathias, Donovan L.; Berger, Marsha J.
2016-01-01
As they decelerate through the atmosphere, meteors deposit mass, momentum and energy into the surrounding air at tremendous rates. Trauma from the entry of such bolides produces strong blast waves that can propagate hundreds of kilometers and cause substantial terrestrial damage even when no ground impact occurs. We present a new simulation technique for airburst blast prediction using a fully-conservative, Cartesian mesh, finite-volume solver and investigate the ability of this method to model far- field propagation over hundreds of kilometers. The work develops mathematical models for the deposition of mass, momentum and energy into the atmosphere and presents verification and validation through canonical problems and the comparison of surface overpressures, and blast arrival times with actual results in the literature for known bolides. The discussion also examines the effects of various approximations to the physics of bolide entry that can substantially decrease the computational expense of these simulations. We present parametric studies to quantify the influence of entry-angle, burst-height and other parameters on the ground footprint of the airburst, and these values are related to predictions from analytic and handbook-methods.
NASA Astrophysics Data System (ADS)
Attarzadeh, M. A.; Nouh, M.
2018-05-01
One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.
Lebensohn, Ricardo A.; Zecevic, Miroslav; Knezevic, Marko; ...
2015-12-15
Here, this work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fccmore » and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach.« less
The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores th...
ERIC Educational Resources Information Center
Heckman, Andrew R.
2010-01-01
Technology provides educators with a significant advantage in working with today's students. One particular application of technology for the purposes of academic and behavioral interventions is the use of video self-modeling (VSM). Although VSM is an evidence-based intervention, it is rarely used in educational settings. The present research…
Applied genomics in ruminants-new discoveries and model for predictive medicine
USDA-ARS?s Scientific Manuscript database
An overview of the progress for Dr. Sonstegard’s work in applied genomics in dairy cattle will be presented. The overview will include how applied research in livestock offers unique investigative models to discover gene function as a result of genetic load or inbreeding and also how genome selectio...
A survey of numerical models for wind prediction
NASA Technical Reports Server (NTRS)
Schonfeld, D.
1980-01-01
A literature review is presented of the work done in the numerical modeling of wind flows. Pertinent computational techniques are described, as well as the necessary assumptions used to simplify the governing equations. A steady state model is outlined, based on the data obtained at the Deep Space Communications complex at Goldstone, California.
ERIC Educational Resources Information Center
White, Brian
2004-01-01
This paper presents a generally applicable method for characterizing subjects' hypothesis-testing behaviour based on a synthesis that extends on previous work. Beginning with a transcript of subjects' speech and videotape of their actions, a Reasoning Map is created that depicts the flow of their hypotheses, tests, predictions, results, and…
Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs
NASA Technical Reports Server (NTRS)
Camp, Dennis W. (Editor); Frost, Walter (Editor)
1987-01-01
The purpose of the workshop was to bring together various disciplines of the aviation, missile, and space programs involved in predicting, measuring, modeling, and understanding the processes of atmospheric turbulence. Working committees re-examined the current state of knowledge, identified present and future needs, and documented and prioritized integrated and cooperative research programs.
Mark Spencer; Kevin O' Hara
2007-01-01
Phytophthora ramorum attacks tanoak (Lithocarpus densiflorus) in California and Oregon. We present a stand-level study examining the presence of disease symptoms in individual stems. Working with data from four plots in redwood (Sequoia sempervirens)/tanoak forests in Marin County, and three plots in Mendocino...
Fine Motor Skills and Early Comprehension of the World: Two New School Readiness Indicators
ERIC Educational Resources Information Center
Grissmer, David; Grimm, Kevin J.; Aiyer, Sophie M.; Murrah, William M.; Steele, Joel S.
2010-01-01
Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler A; Usseglio Viretta, Francois L; Graf, Peter A
This presentation describes research work led by NREL with team members from Argonne National Laboratory and Texas A&M University in microstructure analysis, modeling and validation under DOE's Computer-Aided Engineering of Batteries (CAEBAT) program. The goal of the project is to close the gaps between CAEBAT models and materials research by creating predictive models that can be used for electrode design.
The space shuttle payload planning working groups. Volume 8: Earth and ocean physics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Earth and Ocean Physics working group of the space shuttle payload planning activity are presented. The requirements for the space shuttle mission are defined as: (1) precision measurement for earth and ocean physics experiments, (2) development and demonstration of new and improved sensors and analytical techniques, (3) acquisition of surface truth data for evaluation of new measurement techniques, (4) conduct of critical experiments to validate geophysical phenomena and instrumental results, and (5) development and validation of analytical/experimental models for global ocean dynamics and solid earth dynamics/earthquake prediction. Tables of data are presented to show the flight schedule estimated costs, and the mission model.
Hosu, Anamaria; Cristea, Vasile-Mircea; Cimpoiu, Claudia
2014-05-01
Wine is one of the most consumed beverages over the world containing large quantities of polyphenolic compounds. These compounds are responsible for quality of red wines, influencing the antioxidant activity, astringency, bitterness and colour, their composition in wine being influenced by the varieties, the vintage and the wineries. The aim of the present work is to build software instruments intended to work as data-mining tools for predicting valuable properties of wine and for revealing different wine classes. The developed ANNs are able to reveal the relationships between the concentration of total phenolic, flavonoids, anthocyanins, and tannins content, associated to the antioxidant activity, and the wine distinctive classes determined by the wine variety, harvesting year or winery. The presented ANNs proved to be reliable software tools for assessment or validation of the wine essential characteristics and authenticity and may be further used to establish a database of analytical characteristics of wines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Magnetic Actuator Modelling for Rotating Machinery Analysis
NASA Astrophysics Data System (ADS)
Mendes, Ricardo Ugliara; de Castro, Hélio Fiori; Cavalca, Kátia Lucchesi; Ferreira, Luiz Otávio Saraiva
Rotating machines have a wide range of application such as airplanes, factories, laboratories and power plants. Lately, with computer aid design, shafts finite element models including bearings, discs, seals and couplings have been developed, allowing the prediction of the machine behavior. In order to keep confidence during operation, it is necessary to monitor these systems, trying to predict future failures. One of the most applied technique for this purpose is the modal analysis. It consists of applying a perturbation force into the system and then to measure its response. However, there is a difficulty that brings limitations to the excitation of systems with rotating shafts when using impact hammers or shakers, once due to friction, undesired tangential forces and noise can be present in the measurements. Therefore, the study of a non-contact technique of external excitation becomes of high interest. In this sense, the present work deals with the study and development of a finite element model for rotating machines using a magnetic actuator as an external excitation source. This work also brings numerical simulations where the magnetic actuator was used to obtain the frequency response function of the rotating system.
Individual differences in proactive interference in verbal and visuospatial working memory.
Lilienthal, Lindsey
2017-09-01
Proactive interference (PI) has been shown to affect working memory (WM) span as well as the predictive utility of WM span measures. However, most of the research on PI has been conducted using verbal memory items, and much less is known about the role of PI in the visuospatial domain. In order to further explore this issue, the present study used a within-subjects manipulation of PI that alternated clusters of trials with verbal and visuospatial to-be-remembered items. Although PI was shown to build and release across trials similarly in the two domains, important differences also were observed. The ability of verbal WM to predict performance on a measure of fluid intelligence was significantly affected by the amount of PI present, consistent with past research, but this proved not to be the case for visuospatial WM. Further, individuals' susceptibility to PI in one domain was relatively independent of their susceptibility in the other domain, suggesting that, contrary to some theories of executive function, individual differences in PI susceptibility may not be domain-general.
Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkoff, R.; Neymark, J.; Polly, B.
2011-12-01
This presentation discusses the goals of NREL Analysis Accuracy R&D; BESTEST-EX goals; what BESTEST-EX is; how it works; 'Building Physics' cases; 'Building Physics' reference results; 'utility bill calibration' cases; limitations and potential future work. Goals of NREL Analysis Accuracy R&D are: (1) Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods; (2) Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades; and (3) Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments. BESTEST-EX Goals are: (1) Test software predictions of retrofitmore » energy savings in existing homes; (2) Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard; and (3) Quantify impact of uncertainties in input audit data and occupant behavior. BESTEST-EX is a repeatable procedure that tests how well audit software predictions compare to the current state of the art in building energy simulation. There is no direct truth standard. However, reference software have been subjected to validation testing, including comparisons with empirical data.« less
Homeostatic Regulation of Memory Systems and Adaptive Decisions
Mizumori, Sheri JY; Jo, Yong Sang
2013-01-01
While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23929788
Homeostatic regulation of memory systems and adaptive decisions.
Mizumori, Sheri J Y; Jo, Yong Sang
2013-11-01
While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The "multiple memory systems of the brain" have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.
2016-12-01
Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.
Forslin, Mia; Fink, Katharina; Hammar, Ulf; von Koch, Lena; Johansson, Sverker
2018-01-31
To identify predictors for employment status after 10 years in a cohort of people with multiple sclerosis (MS), with the aim to increase knowledge concerning factors present at an early stage that are important for working life and work-life balance. A 10-year longitudinal observational cohort study. University hospital. A consecutive sample of people with MS (N=154) of working age were included at baseline, of which a total of 116 people participated in the 10-year follow-up; 27 people declined participation and 11 were deceased. Not applicable. Baseline data on personal factors and functioning were used as independent variables. Employment status 10 years after baseline, categorized as full-time work, part-time work, and no work, was used as the dependent variable. A generalized ordinal logistic regression was used to analyze the predictive value of the independent variables. Predictors for full- or part-time work after 10 years were young age (P=.002), low perceived physical impact of MS (P=.02), fatigue (P=.03), full-time work (P=.001), and high frequency of social/lifestyle activities (P=.001) at baseline. Low perceived physical impact of MS (P=.02) at baseline also predicted full-time work after 10 years. This study underlines the complexity of working life for people with MS, and indicates that it may be valuable to give more attention to the balance between working and private life, both in clinical practice and future research, to achieve a sustainable working life over time. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A
2014-10-14
Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.
A prediction method for broadband shock associated noise from supersonic rectangualr jets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Reddy, N. N.
1993-01-01
Braodband shock associated noise is an important aircraft noise component of the proposed high-speed civil transport (HSCT) at take-offs and landings. For noise certification purpose one would, therefore, like to be able to predict as accurately as possible the intensity, directivity and spectral content of this noise component. The purpose of this work is to develop a semi-empirical prediction method for the broadband shock associated noise from supersonic rectangular jets. The complexity and quality of the noise prediction method are to be similar to those for circular jets. In this paper only the broadband shock associated noise of jets issued from rectangular nozzles with straight side walls is considered. Since many current aircraft propulsion systems have nozzle aspect ratios (at nozzle exit) in the range of 1 to 4, the present study has been confined to nozzles with aspect ratio less than 6. In developing the prediction method the essential physics of the problem are taken into consideration. Since the braodband shock associated noise generation mechanism is the same whether the jet is circular or round the present prediction method in a number of ways is quite similar to that for axisymmetric jets. Comparisons between predictions and measurements for jets with aspect ratio up to 6 will be reported. Efforts will be concentrated on the fly-over plane. However, side line angles and other directions will also be included.
NASA Astrophysics Data System (ADS)
Battistel, O. A.; Pimenta, T. H.; Dallabona, G.
2016-10-01
In the present work we consider the phenomenological consequences of a predictive formulation of the Nambu-Jona-Lasinio (NJL) model at the one loop level of perturbative calculations. The investigation reported here can be considered as an extension of previously made ones on the same issue. In the study made in this work we have included vector and tensor couplings, simultaneously, as well as S U (2 ) isospin symmetry breaking terms. As a consequence of the last ingredient mentioned, there are different masses in the model amplitudes. In spite of this, within the context of the adopted procedure, we verify that it is possible to eliminate unphysical dependencies on the arbitrary choices for the routing of internal lines momenta as well as Ward identities violating contributions and scale ambiguous terms, from the corresponding one loop amplitudes, through the simple and universal Consistency Relations. The total content of divergence of the amplitudes is reduced to only two basic divergent objects. They are related to two inputs of the model in a way that, due to their scale properties, an unique arbitrariness remains. However, due to the critical condition found in the mechanism which generates the constituent quark mass, within our approach, this arbitrariness is also removed turning the model predictive in the sense that its phenomenological consequences is not dependent in possible choices made in intermediary steps of the calculations, as occurs in usual treatments. In this scenario, we investigate the most typical static properties of the scalar, pseudoscalar, vector and axial-vector mesons at low-energy. Special attention is given to the consequences of the S U (2 ) isospin symmetry breaking for the phenomenological predictions. The implications of the tensor couplings for the model observables, which can be considered an original contribution of the present work, at the level of the content and not only in the form, is analyzed in a detailed way. The found values are in good accordance with the expectations and are globally consistent, having the obvious advantage that the predictions are not dependent in parameters aliens to the model Lagrangian as occurs in traditional approaches based in regularizations.
High-pressure oxidation of ethane
Hashemi, Hamid; Jacobsen, Jon G.; Rasmussen, Christian T.; ...
2017-05-02
Here, ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate constants for reactions on the C 2H 5O 2more » potential energy surface were adopted from the recent theoretical work of Klippenstein. In the present work, the internal H-abstraction in CH 3CH 2OO to form CH 2CH 2OOH was treated in detail. Modeling predictions were in good agreement with data from the present work as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C 2H 5 + O 2 reaction yields ethylperoxyl rather than C 2H 4 + HO 2, the chain branching sequence CH 3CH 2OO → CH 2CH 2OOH → +O2 OOCH 2CH 2OOH → branching is not competitive, because the internal H-atom transfer in CH 3CH 2OO to CH 2CH 2OOH is too slow compared to thermal dissociation to C 2H 4 and HO 2.« less
Predictive value and construct validity of the work functioning screener-healthcare (WFS-H).
Boezeman, Edwin J; Nieuwenhuijsen, Karen; Sluiter, Judith K
2016-05-25
To test the predictive value and convergent construct validity of a 6-item work functioning screener (WFS-H). Healthcare workers (249 nurses) completed a questionnaire containing the work functioning screener (WFS-H) and a work functioning instrument (NWFQ) measuring the following: cognitive aspects of task execution and general incidents, avoidance behavior, conflicts and irritation with colleagues, impaired contact with patients and their family, and level of energy and motivation. Productivity and mental health were also measured. Negative and positive predictive values, AUC values, and sensitivity and specificity were calculated to examine the predictive value of the screener. Correlation analysis was used to examine the construct validity. The screener had good predictive value, since the results showed that a negative screener score is a strong indicator of work functioning not hindered by mental health problems (negative predictive values: 94%-98%; positive predictive values: 21%-36%; AUC:.64-.82; sensitivity: 42%-76%; and specificity 85%-87%). The screener has good construct validity due to moderate, but significant (p<.001), associations with productivity (r=.51), mental health (r=.48), and distress (r=.47). The screener (WFS-H) had good predictive value and good construct validity. Its score offers occupational health professionals a helpful preliminary insight into the work functioning of healthcare workers.
Statistical physics of modulated phases in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Shamid, Shaikh M.
Nematic liquid crystals are the state of the matter in which there is no positional order like crystals but it has orientational order of the constituent molecules. In the conventional nematics, the long axes of the rod-like molecules tend to align up or down uniformly along a director n. If the constituent molecules are chiral, they tend to form a modulated structure in one of the space dimensions. They are called the chiral nematics. If the chirality is strong enough we get the modulated structures in all three dimensions called the chiral blue phase. On the other hand, if the molecules are achiral, but an additional polar dipole is attached to the molecules, they also tend to form a modulated structure. In these types of materials we observe an important physical effect called flexoelectric effect, in which the polar order is linearly coupled to the director gradients. This dissertation work presents analytical and simulation studies of that modulated structures using the flexoelectric mechanism. Classic work by R. B. Meyer and further studies by I. Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-shaped liquid crystals. In this recently discovered twist-bend nematic phase the modulation is along one of the space dimensions. If this flexoelectric coupling is strong enough, in addition to twist-bend and splay-bend, here we predict the formation of polar analog of chiral blue phases (in both 2D and 3D) made of achiral polar liquid crystal materials by using Elastic continuum theory-based numerical calculations and computer simulations. This dissertation work also presents the coarse-grained theory of twist-bend phase. This theory predicts normal modes of fluctuation in both sides of nematic to twist-bend transition, which then compared with light scattering experiments. Macroscopic elastic and electric properties of twist-bend nematics can be realized using this coarse-grained description.
Davis, Robert C; Jensen, Carl J; Burgette, Lane; Burnett, Kathryn
2014-03-01
Cold case squads have garnered much attention; however, they have yet to undergo significant empirical scrutiny. In the present study, the authors interviewed investigators and reviewed 189 solved and unsolved cold cases in Washington, D.C., to determine whether there are factors that can predict cold case solvability. In the interviews, new information from witnesses or information from new witnesses was cited as the most prevalent reason for case clearance. The case reviews determined that there were factors in each of the following domains that predicted whether cases would be solved during cold case investigations: Crime Context, Initial Investigation Results, Basis for Opening Cold Case, and Cold Case Investigator Actions. The results suggest that it is possible to prioritize cold case work based on the likelihood of investigations leading to clearances. © 2014 American Academy of Forensic Sciences.
The role of predictive uncertainty in the operational management of reservoirs
NASA Astrophysics Data System (ADS)
Todini, E.
2014-09-01
The present work deals with the operational management of multi-purpose reservoirs, whose optimisation-based rules are derived, in the planning phase, via deterministic (linear and nonlinear programming, dynamic programming, etc.) or via stochastic (generally stochastic dynamic programming) approaches. In operation, the resulting deterministic or stochastic optimised operating rules are then triggered based on inflow predictions. In order to fully benefit from predictions, one must avoid using them as direct inputs to the reservoirs, but rather assess the "predictive knowledge" in terms of a predictive probability density to be operationally used in the decision making process for the estimation of expected benefits and/or expected losses. Using a theoretical and extremely simplified case, it will be shown why directly using model forecasts instead of the full predictive density leads to less robust reservoir management decisions. Moreover, the effectiveness and the tangible benefits for using the entire predictive probability density instead of the model predicted values will be demonstrated on the basis of the Lake Como management system, operational since 1997, as well as on the basis of a case study on the lake of Aswan.
The feminisation of Canadian medicine and its impact upon doctor productivity.
Weizblit, Nataly; Noble, Jason; Baerlocher, Mark Otto
2009-05-01
We examined the differences in work patterns between female and male doctors in Canada to gain insight into the effect of an increased number of female doctors on overall doctor productivity. Data on the practice profiles of female and male doctors across Canada were extracted from the 2007 National Physician Survey. A doctor productivity measure, 'work hours per week per population' (WHPWPP), was created, based on the number of weekly doctor hours spent providing direct patient care per 100,000 citizens. The predicted WHPWPP was calculated for a hypothetical time-point when the female and male doctor populations reach equilibrium. The differences in current and predicted WHPWPP were then analysed. Female medical students currently (2007) outnumber male medical students (at 57.8% of the medical student population). The percentage of practising doctors who are women is highest in the fields of paediatrics, obstetrics and gynaecology, psychiatry and family practice. Female doctors work an average of 47.5 hours per week (giving 30.0 hours of direct patient care), compared with 53.8 hours worked by male doctors (35.0 hours of direct patient care) (P < 0.01, chi(2) test). Female doctors tend to work less on call hours per week and see fewer patients while on-call. Female doctors are also more likely to take parental leave or a leave of absence (P < 0.01, chi(2) test). The difference in current and predicted WHPWPP was found to be 2.6%, equivalent to 1853 fewer full-time female doctors or 1588 fewer full-time male doctors. Gender appears to have a significant influence on the practice patterns of doctors in Canada. If the gender-specific work patterns described in the present study persist, an overall decrease in doctor productivity is to be anticipated.
Validation of a Questionnaire to Screen for Shift Work Disorder
Barger, Laura K.; Ogeil, Rowan P.; Drake, Christopher L.; O'Brien, Conor S.; Ng, Kim T.; Rajaratnam, Shantha M. W.
2012-01-01
Study Objective: At least 15% of the full-time work force is shift workers. Working during the overnight hours, early morning start times, and variable or rotating schedules present a challenge to the circadian system, and these shifts are associated with adverse health and safety consequences. Shift work disorder (SWD), a primary (circadian rhythm) sleep disorder indicated by excessive daytime sleepiness and/or insomnia associated with a shiftwork schedule, is under-recognized by primary care physicians. We sought to develop and validate a questionnaire to screen for high risk of SWD in a shift working population. Design: Shift workers completed a 26-item questionnaire and were evaluated by a sleep specialist (physician) who diagnosed them as either positive or negative for SWD. The physician assessment of SWD was guided by a flow chart that operationalized the ICSD-2 criteria for SWD. Setting: 18 sleep clinics in the USA. Patients or Participants: 311 shift workers. Interventions: Not applicable. Measurements and Results: Responses to the items in the questionnaire were entered into a series of discrimination function analyses to determine the diagnostic value of the items and the fewest number of questions with the best predictive value. The function was then cross-validated. A final 4-item questionnaire has 89% positive predictive value and 62% negative predictive value (sensitivity = 0.74; specificity = 0.82). Conclusions: This Shiftwork Disorder Screening Questionnaire may be appropriate for use in primary care settings to aid in the diagnosis of SWD. Citation: Barger LK; Ogeil RP; Drake CL; O'Brien CS; Ng KT; Rajaratnam SMW. Validation of a questionnaire to screen for shift work disorder. SLEEP 2012;35(12):1693–1703. PMID:23204612
Psychometric properties of the Hebrew version of the Dutch Work Addiction Scale (DUWAS-10).
Littman-Ovadia, Hadassah; Balducci, Cristian; Ben-Moshe, Tali
2014-01-01
The present study examined the psychometric properties of the Hebrew version of the Dutch Work Addiction Scale (DUWAS-10), developed by Schaufeli, Shimazu, and Taris (2009). Three hundred fifty-one employees completed a questionnaire measuring workaholism; of these, 251 employees completed questionnaires measuring work engagement, job satisfaction, overcommitment, and burnout. The results confirmed the expected two-factor structure of workaholism: working excessively and working compulsively. Strong correlations were obtained between self-reports and peer-reports, and satisfactory correlations were obtained between the first and second administrations of the DUWAS-10. Furthermore, DUWAS-10 scores showed predictable relations with actual number of hours worked per week, work engagement, job satisfaction, overcommitment, and burnout. Interestingly, despite working fewer hours per week, women reported higher levels of workaholism in comparison to men, and managers reported higher levels of workaholism in comparison to nonmanagerial employees.
A Simulated Environment Experiment on Annoyance Due to Combined Road Traffic and Industrial Noises
Marquis-Favre, Catherine; Morel, Julien
2015-01-01
Total annoyance due to combined noises is still difficult to predict adequately. This scientific gap is an obstacle for noise action planning, especially in urban areas where inhabitants are usually exposed to high noise levels from multiple sources. In this context, this work aims to highlight potential to enhance the prediction of total annoyance. The work is based on a simulated environment experiment where participants performed activities in a living room while exposed to combined road traffic and industrial noises. The first objective of the experiment presented in this paper was to gain further understanding of the effects on annoyance of some acoustical factors, non-acoustical factors and potential interactions between the combined noise sources. The second one was to assess total annoyance models constructed from the data collected during the experiment and tested using data gathered in situ. The results obtained in this work highlighted the superiority of perceptual models. In particular, perceptual models with an interaction term seemed to be the best predictors for the two combined noise sources under study, even with high differences in sound pressure level. Thus, these results reinforced the need to focus on perceptual models and to improve the prediction of partial annoyances. PMID:26197326
Pazzaglia, Francesca; Meneghetti, Chiara; Ronconi, Lucia
2018-01-01
Wayfinding (WF) is the ability to move around efficiently and find the way from a starting point to a destination. It is a component of spatial navigation, a coordinate and goal-directed movement of one's self through the environment. In the present study, the relationship between WF tasks (route tracing and shortcut finding) and individual factors were explored with the hypothesis that WF tasks would be predicted by different types of cognitive, affective, motivational variables, and personality factors. A group of 116 university students (88 F.) were conducted along a route in a virtual environment and then asked first to trace the same route again, and then to find a shortcut between the start and end points. Several instruments assessing visuospatial working memory, mental rotation ability, self-efficacy, spatial anxiety, positive attitude to exploring, and personality traits were administered. The results showed that a latent spatial ability factor (measured with the visuospatial working memory and mental rotations tests) - controlled for gender - predicted route-tracing performance, while self-report measures of anxiety, efficacy, and pleasure in exploring, and some personality traits were more likely to predict shortcut-finding performance. We concluded that both personality and cognitive abilities affect WF performance, but differently, depending on the requirements of the task.
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2003-01-01
Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.
Aggregation Trade Offs in Family Based Recommendations
NASA Astrophysics Data System (ADS)
Berkovsky, Shlomo; Freyne, Jill; Coombe, Mac
Personalized information access tools are frequently based on collaborative filtering recommendation algorithms. Collaborative filtering recommender systems typically suffer from a data sparsity problem, where systems do not have sufficient user data to generate accurate and reliable predictions. Prior research suggested using group-based user data in the collaborative filtering recommendation process to generate group-based predictions and partially resolve the sparsity problem. Although group recommendations are less accurate than personalized recommendations, they are more accurate than general non-personalized recommendations, which are the natural fall back when personalized recommendations cannot be generated. In this work we present initial results of a study that exploits the browsing logs of real families of users gathered in an eHealth portal. The browsing logs allowed us to experimentally compare the accuracy of two group-based recommendation strategies: aggregated group models and aggregated predictions. Our results showed that aggregating individual models into group models resulted in more accurate predictions than aggregating individual predictions into group predictions.
Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct.
Funk, Christopher S; Kahanda, Indika; Ben-Hur, Asa; Verspoor, Karin M
2015-01-01
Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated.
ATLAS trigger operations: Upgrades to ``Xmon'' rate prediction system
NASA Astrophysics Data System (ADS)
Myers, Ava; Aukerman, Andrew; Hong, Tae Min; Atlas Collaboration
2017-01-01
We present ``Xmon,'' a tool to monitor trigger rates in the Control Room of the ATLAS Experiment. We discuss Xmon's recent (1) updates, (2) upgrades, and (3) operations. (1) Xmon was updated to modify the tool written for the three-level trigger architecture in Run-1 (2009-2012) to adapt to the new two-level system for Run-2 (2015-current). The tool takes as input the beam luminosity to make a rate prediction, which is compared with incoming rates to detect anomalies that occur both globally throughout a run and locally within a run. Global offsets are more commonly caught by the predictions based upon past runs, where offline processing allows for function adjustments and fit quality through outlier rejection. (2) Xmon was upgraded to detect local offsets using on-the-fly predictions, which uses a sliding window of in-run rates to make predictions. (3) Xmon operations examples are given. Future work involves further automation of the steps to provide the predictive functions and for alerting shifters.
NASA Astrophysics Data System (ADS)
Chen, Dian-Yong
2016-12-01
In the present work, we propose Y(4140) as the χ _{c1}(3P) state by studying the χ _{c1} π ^+ π ^- invariant mass spectrum of the B→ K χ _{c1} π ^+ π ^- process. In the Dbar{D} invariant mass spectrum of the B→ K Dbar{D} process, we find a new resonance with the mass and width to be ( 4083.0 ± 5.0) and (24.1 ± 15.4) MeV, respectively, which could be a good candidate of the χ _{c0}(3P) state. The theoretical investigations on the decay behaviors of the χ _{cJ}(3P) in the present work support the assignments of the Y(4140) and Y(4080) as the χ _{c1}(3P) and χ _{c0}(3P) states, respectively. In addition, the χ _{c2}(3P) state is predicted to be a very narrow state. The results in the present work could be tested by further experiments in the LHCb and forthcoming Belle II.
Michel, Jesse S; Clark, Malissa A
2013-10-01
This study examines the relative importance of individual differences in relation to perceptions of work-family conflict and facilitation, as well as the moderating role of boundary preference for segmentation on these relationships. Relative importance analyses, based on a diverse sample of 380 employees from the USA, revealed that individual differences were consistently predictive of self-reported work-family conflict and facilitation. Conscientiousness, neuroticism, negative affect and core self-evaluations were consistently related to both directions of work-family conflict, whereas agreeableness predicted significant variance in family-to-work conflict only. Positive affect and core self-evaluations were consistently related to both directions of work-family facilitation, whereas agreeableness and neuroticism predicted significant variance in family-to-work facilitation only. Collectively, individual differences explained 25-28% of the variance in work-family conflict (primarily predicted by neuroticism and negative affect) and 11-18% of the variance in work-family facilitation (primarily predicted by positive affect and core self-evaluations). Moderated regression analyses showed that boundary preference for segmentation strengthened many of the relationships between individual differences and work-family conflict and facilitation. Implications for addressing the nature of work and family are discussed. Copyright © 2012 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Magimairaj, Beula M.; Montgomery, James W.
2012-01-01
Purpose: This study investigated the role of processing complexity of verbal working memory tasks in predicting spoken sentence comprehension in typically developing children. Of interest was whether simple and more complex working memory tasks have similar or different power in predicting sentence comprehension. Method: Sixty-five children (6- to…
Does working memory load facilitate target detection?
Fruchtman-Steinbok, Tom; Kessler, Yoav
2016-02-01
Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.
Asher, Anthony L; Devin, Clinton J; Archer, Kristin R; Chotai, Silky; Parker, Scott L; Bydon, Mohamad; Nian, Hui; Harrell, Frank E; Speroff, Theodore; Dittus, Robert S; Philips, Sharon E; Shaffrey, Christopher I; Foley, Kevin T; McGirt, Matthew J
2017-10-01
OBJECTIVE Current costs associated with spine care are unsustainable. Productivity loss and time away from work for patients who were once gainfully employed contributes greatly to the financial burden experienced by individuals and, more broadly, society. Therefore, it is vital to identify the factors associated with return to work (RTW) after lumbar spine surgery. In this analysis, the authors used data from a national prospective outcomes registry to create a predictive model of patients' ability to RTW after undergoing lumbar spine surgery for degenerative spine disease. METHODS Data from 4694 patients who underwent elective spine surgery for degenerative lumbar disease, who had been employed preoperatively, and who had completed a 3-month follow-up evaluation, were entered into a prospective, multicenter registry. Patient-reported outcomes-Oswestry Disability Index (ODI), numeric rating scale (NRS) for back pain (BP) and leg pain (LP), and EQ-5D scores-were recorded at baseline and at 3 months postoperatively. The time to RTW was defined as the period between operation and date of returning to work. A multivariable Cox proportional hazards regression model, including an array of preoperative factors, was fitted for RTW. The model performance was measured using the concordance index (c-index). RESULTS Eighty-two percent of patients (n = 3855) returned to work within 3 months postoperatively. The risk-adjusted predictors of a lower likelihood of RTW were being preoperatively employed but not working at the time of presentation, manual labor as an occupation, worker's compensation, liability insurance for disability, higher preoperative ODI score, higher preoperative NRS-BP score, and demographic factors such as female sex, African American race, history of diabetes, and higher American Society of Anesthesiologists score. The likelihood of a RTW within 3 months was higher in patients with higher education level than in those with less than high school-level education. The c-index of the model's performance was 0.71. CONCLUSIONS This study presents a novel predictive model for the probability of returning to work after lumbar spine surgery. Spine care providers can use this model to educate patients and encourage them in shared decision-making regarding the RTW outcome. This evidence-based decision support will result in better communication between patients and clinicians and improve postoperative recovery expectations, which will ultimately increase the likelihood of a positive RTW trajectory.
Zero-Sum Bias: Perceived Competition Despite Unlimited Resources
Meegan, Daniel V.
2010-01-01
Zero-sum bias describes intuitively judging a situation to be zero-sum (i.e., resources gained by one party are matched by corresponding losses to another party) when it is actually non-zero-sum. The experimental participants were students at a university where students’ grades are determined by how the quality of their work compares to a predetermined standard of quality rather than to the quality of the work produced by other students. This creates a non-zero-sum situation in which high grades are an unlimited resource. In three experiments, participants were shown the grade distribution after a majority of the students in a course had completed an assigned presentation, and asked to predict the grade of the next presenter. When many high grades had already been given, there was a corresponding increase in low grade predictions. This suggests a zero-sum bias, in which people perceive a competition for a limited resource despite unlimited resource availability. Interestingly, when many low grades had already been given, there was not a corresponding increase in high grade predictions. This suggests that a zero-sum heuristic is only applied in response to the allocation of desirable resources. A plausible explanation for the findings is that a zero-sum heuristic evolved as a cognitive adaptation to enable successful intra-group competition for limited resources. Implications for understanding inter-group interaction are also discussed. PMID:21833251
Zero-sum bias: perceived competition despite unlimited resources.
Meegan, Daniel V
2010-01-01
Zero-sum bias describes intuitively judging a situation to be zero-sum (i.e., resources gained by one party are matched by corresponding losses to another party) when it is actually non-zero-sum. The experimental participants were students at a university where students' grades are determined by how the quality of their work compares to a predetermined standard of quality rather than to the quality of the work produced by other students. This creates a non-zero-sum situation in which high grades are an unlimited resource. In three experiments, participants were shown the grade distribution after a majority of the students in a course had completed an assigned presentation, and asked to predict the grade of the next presenter. When many high grades had already been given, there was a corresponding increase in low grade predictions. This suggests a zero-sum bias, in which people perceive a competition for a limited resource despite unlimited resource availability. Interestingly, when many low grades had already been given, there was not a corresponding increase in high grade predictions. This suggests that a zero-sum heuristic is only applied in response to the allocation of desirable resources. A plausible explanation for the findings is that a zero-sum heuristic evolved as a cognitive adaptation to enable successful intra-group competition for limited resources. Implications for understanding inter-group interaction are also discussed.
NASA Astrophysics Data System (ADS)
Scott, James F.; Evans, Donald M.; Katiyar, Ram S.; McQuaid, Raymond G. P.; Gregg, J. Marty
2017-08-01
Since the 1935 work of Landau-Lifshitz and of Kittel in 1946 all ferromagnetic, ferroelectric, and ferroelastic domains have been thought to be straight-sided with domain widths proportional to the square root of the sample thickness. We show in the present work that this is not true. We also discover period doubling domains predicted by Metaxas et al (2008 Phys. Rev. Lett. 99 217208) and modeled by Wang and Zhao (2015 Sci. Rep. 5 8887). We examine non-equilibrium ferroic domain structures in perovskite oxides with respect to folding, wrinkling, and relaxation and suggest that structures are kinetically limited and in the viscous flow regime predicted by Metaxas et al in 2008 but never observed experimentally. Comparisons are made with liquid crystals and hydrodynamic instabilities, including chevrons, and fractional power-law relaxation. As Shin et al (2016 Soft Matter 12 3502) recently emphasized: ‘An understanding of how these folds initiate, propagate, and interact with each other is still lacking’. Inside each ferroelastic domain are ferroelectric 90° nano-domains with 10 nm widths and periodicity in agreement with the 10 nm theoretical minima predicted by Feigl et al (2014 Nat. Commun. 5 4677). Evidence is presented for domain-width period doubling, which is common in polymer films but unknown in ferroic domains. A discussion of the folding-to-period doubling phase transition model of Wang and Zhao is included.
Kouklari, Evangelia-Chrysanthi; Tsermentseli, Stella; Monks, Claire P
2018-03-26
The development of executive function (EF) in autism spectrum disorder (ASD) has been investigated using only "cool"-cognitive EF tasks while there is limited knowledge regarding the development of "hot"-affective EF. Although cool EF development and its links to theory of mind (ToM) have been widely examined, understanding of the influence of hot EF to ToM mechanisms is minimal. The present study introduced a longitudinal design to examine the developmental changes in cool and hot EF of children with ASD (n = 45) and matched (to age and IQ) controls (n = 37) as well as the impact of EF on ToM development over a school year. For children with ASD, although selective cool (working memory and inhibition) and hot (affective decision making) EF domains presented age-related improvements, they never reached the performance level of the control group. Early cool working memory predicted later ToM in both groups but early hot delay discounting predicted later ToM only in the ASD group. No evidence was found for the reverse pattern (early ToM predicting later EF). These findings suggest that improvements in some EF aspects are evident in school age in ASD and highlight the crucial role that both cool and hot EF play in ToM development.
NASA Technical Reports Server (NTRS)
Good, Susan M.
2016-01-01
This Aqua Spring 2017 IAM Series powerpoint presentation will be presented at the MOWG meeting in Albuquerque, NM. Topics to be discussed are: recap Aqua 2016 IAM campaign maneuver results and post 2016 IAM MLT evolution; current DMU strategy; 2017 IAM campaign dates and planning; Aqua latest lifetime MLT team predictions. Susan Good is a contractor who supports David Tracewell in code 595 therefore this is being routed through 595. Eric Moyer, ESMO Deputy Project Manager-Technical has reviewed and approved this presentation.
NASA Technical Reports Server (NTRS)
1985-01-01
The concept of a large disturbance bypass mechanism for the initiation of transition is reviewed and studied. This mechanism, or some manifestation thereof, is suspected to be at work in the boundary layers present in a turbine flow passage. Discussion is presented on four relevant subtopics: (1) the effect of upstream disturbances and wakes on transition; (2) transition prediction models, code development, and verification; (3) transition and turbulence measurement techniques; and (4) the hydrodynamic condition of low Reynolds number boundary layers.
NASA Technical Reports Server (NTRS)
White, R. J.
1974-01-01
The present work discusses a model of the cardiovascular system and related subsystems capable of long-term simulations of the type desired for in-space hypogravic human physiological performance prediction. The discussion centers around the model of Guyton and modifications of it. In order to draw attention to the fluid handling capabilities of the model, one of several transfusion simulations performed is presented, namely, the isotonic saline transfusion simulation.
Test/semi-empirical analysis of a carbon/epoxy fabric stiffened panel
NASA Technical Reports Server (NTRS)
Spier, E. E.; Anderson, J. A.
1990-01-01
The purpose of this work-in-progress is to present a semi-empirical analysis method developed to predict the buckling and crippling loads of carbon/epoxy fabric blade stiffened panels in compression. This is a hand analysis method comprised of well known, accepted techniques, logical engineering judgements, and experimental data that results in conservative solutions. In order to verify this method, a stiffened panel was fabricated and tested. Both the best and analysis results are presented.
Work-related stress, education and work ability among hospital nurses.
Golubic, Rajna; Milosevic, Milan; Knezevic, Bojana; Mustajbegovic, Jadranka
2009-10-01
This paper is a report of a study conducted to determine which occupational stressors are present in nurses' working environment; to describe and compare occupational stress between two educational groups of nurses; to estimate which stressors and to what extent predict nurses' work ability; and to determine if educational level predicts nurses' work ability. Nurses' occupational stress adversely affects their health and nursing quality. Higher educational level has been shown to have positive effects on the preservation of good work ability. A cross-sectional study was conducted in 2006-2007. Questionnaires were distributed to a convenience sample of 1392 (59%) nurses employed at four university hospitals in Croatia (n = 2364). The response rate was 78% (n = 1086). Data were collected using the Occupational Stress Assessment Questionnaire and Work Ability Index Questionnaire. We identified six major groups of occupational stressors: 'Organization of work and financial issues', 'public criticism', 'hazards at workplace', 'interpersonal conflicts at workplace', 'shift work' and 'professional and intellectual demands'. Nurses with secondary school qualifications perceived Hazards at workplace and Shift work as statistically significantly more stressful than nurses a with college degree. Predictors statistically significantly related with low work ability were: Organization of work and financial issues (odds ratio = 1.69, 95% confidence interval 122-236), lower educational level (odds ratio = 1.69, 95% confidence interval 122-236) and older age (odds ratio = 1.07, 95% confidence interval 1.05-1.09). Hospital managers should develop strategies to address and improve the quality of working conditions for nurses in Croatian hospitals. Providing educational and career prospects can contribute to decreasing nurses' occupational stress levels, thus maintaining their work ability.
Bigger is Better, but at What Cost? Estimating the Economic Value of Incremental Data Assets.
Dalessandro, Brian; Perlich, Claudia; Raeder, Troy
2014-06-01
Many firms depend on third-party vendors to supply data for commercial predictive modeling applications. An issue that has received very little attention in the prior research literature is the estimation of a fair price for purchased data. In this work we present a methodology for estimating the economic value of adding incremental data to predictive modeling applications and present two cases studies. The methodology starts with estimating the effect that incremental data has on model performance in terms of common classification evaluation metrics. This effect is then translated into economic units, which gives an expected economic value that the firm might realize with the acquisition of a particular data asset. With this estimate a firm can then set a data acquisition price that targets a particular return on investment. This article presents the methodology in full detail and illustrates it in the context of two marketing case studies.
In silico design of smart binders to anthrax PA
NASA Astrophysics Data System (ADS)
Sellers, Michael; Hurley, Margaret M.
2012-06-01
The development of smart peptide binders requires an understanding of the fundamental mechanisms of recognition which has remained an elusive grail of the research community for decades. Recent advances in automated discovery and synthetic library science provide a wealth of information to probe fundamental details of binding and facilitate the development of improved models for a priori prediction of affinity and specificity. Here we present the modeling portion of an iterative experimental/computational study to produce high affinity peptide binders to the Protective Antigen (PA) of Bacillus anthracis. The result is a general usage, HPC-oriented, python-based toolkit based upon powerful third-party freeware, which is designed to provide a better understanding of peptide-protein interactions and ultimately predict and measure new smart peptide binder candidates. We present an improved simulation protocol with flexible peptide docking to the Anthrax Protective Antigen, reported within the context of experimental data presented in a companion work.
Donham, K J; Reynolds, S J; Whitten, P; Merchant, J A; Burmeister, L; Popendorf, W J
1995-03-01
Human respiratory health hazards for people working in livestock confinement buildings have been recognized since 1974. However, before comprehensive control programs can be implemented, more knowledge is needed of specific hazardous substances present in the air of these buildings, and at what concentrations they are harmful. Therefore, a medical epidemiological and exposure-response study was conducted on 207 swine producers using intensive housing systems (108 farms). Dose-response relationships between pulmonary function and exposures are reported here. Positive correlations were seen between change in pulmonary function over a work period and exposure to total dust, respirable dust, ammonia, respirable endotoxin, and the interactions of age-of-producer and dust exposure and years-of-working-in-the-facility and dust exposure. Relationships between baseline pulmonary function and exposures were not strong and therefore, not pursued in this study. The correlations between exposure and response were stronger after 6 years of exposure. Multiple regression models were used to identify total dust and ammonia as the two primary environmental predictors of pulmonary function decrements over a work period. The regression models were then used to determine exposure concentrations related to pulmonary function decrements suggestive of a health hazard. Total dust concentrations > or = 2.8 mg/m3 were predictive of a work period decrement of > or = 10% in FEV1. Ammonia concentrations of > or = 7.5 ppm were predictive of a > or = 3% work period decrement in FEV1. These predictive concentrations were similar to a previous dose-response study, which suggested 2.5 mg/m3 of total dust and 7 ppm of NH3 were associated with significant work period decrements. Therefore, dust > or = 2.8 mg/m3 and ammonia > or = 7.5 ppm should be considered reasonable evidence for guidelines regarding hazardous exposure concentrations in this work environment.
Gender, Emotion Work, and Relationship Quality: A Daily Diary Study
Curran, Melissa A.; McDaniel, Brandon T.; Pollitt, Amanda M.; Totenhagen, Casey J.
2015-01-01
We use the gender relations perspective from feminist theorizing to investigate how gender and daily emotion work predict daily relationship quality in 74 couples (148 individuals in dating, cohabiting, or married relationships) primarily from the southwest U.S. Emotion work is characterized by activities that enhance others’ emotional well-being. We examined emotion work two ways: trait (individuals’ average levels) and state (individuals’ daily fluctuations). We examined actor and partner effects of emotion work and tested for gender differences. As outcome variables, we included six types of daily relationship quality: love, commitment, satisfaction, closeness, ambivalence, and conflict. This approach allowed us to predict three aspects of relationship quality: average levels, daily fluctuations, and volatility (overall daily variability across a week). Three patterns emerged. First, emotion work predicted relationship quality in this diverse set of couples. Second, gender differences were minimal for fixed effects: Trait and state emotion work predicted higher average scores on, and positive daily increases in, individuals’ own positive relationship quality and lower average ambivalence. Third, gender differences were more robust for volatility: For partner effects, having a partner who reported higher average emotion work predicted lower volatility in love, satisfaction, and closeness for women versus greater volatility in love and commitment for men. Neither gender nor emotion work predicted average levels, daily fluctuations, or volatility in conflict. We discuss implications and future directions pertaining to the unique role of gender in understanding the associations between daily emotion work and volatility in daily relationship quality for relational partners. PMID:26508808
Gender, Emotion Work, and Relationship Quality: A Daily Diary Study.
Curran, Melissa A; McDaniel, Brandon T; Pollitt, Amanda M; Totenhagen, Casey J
2015-08-01
We use the gender relations perspective from feminist theorizing to investigate how gender and daily emotion work predict daily relationship quality in 74 couples (148 individuals in dating, cohabiting, or married relationships) primarily from the southwest U.S. Emotion work is characterized by activities that enhance others' emotional well-being. We examined emotion work two ways: trait (individuals' average levels) and state (individuals' daily fluctuations). We examined actor and partner effects of emotion work and tested for gender differences. As outcome variables, we included six types of daily relationship quality: love, commitment, satisfaction, closeness, ambivalence, and conflict. This approach allowed us to predict three aspects of relationship quality: average levels, daily fluctuations, and volatility (overall daily variability across a week). Three patterns emerged. First, emotion work predicted relationship quality in this diverse set of couples. Second, gender differences were minimal for fixed effects: Trait and state emotion work predicted higher average scores on, and positive daily increases in, individuals' own positive relationship quality and lower average ambivalence. Third, gender differences were more robust for volatility: For partner effects, having a partner who reported higher average emotion work predicted lower volatility in love, satisfaction, and closeness for women versus greater volatility in love and commitment for men. Neither gender nor emotion work predicted average levels, daily fluctuations, or volatility in conflict. We discuss implications and future directions pertaining to the unique role of gender in understanding the associations between daily emotion work and volatility in daily relationship quality for relational partners.
Shahpouri, Samira; Namdari, Kourosh; Abedi, Ahmad
2016-05-01
One of the latest models proposed with regard to work engagement is the detailed model put forward by Bakker and Demerouti (2007). The present study aims at investigating the effect of job resources and personal resources on turnover intention with the mediator role of work engagement among female nurses at Isfahan Alzahra Hospital. In the current study, job and personal resources were considered as the predictors of job turnover and work engagement was considered as the mediator variable among predictive and criterion variables. The data of the present study were collected from 208 female nurses who were selected by systematic random sampling. As for the analysis of the collected data, structural equations model, normal distribution method, and Bootstrap method in Macro, Preacher and Hayes, (2004) program were deployed. The findings showed that the personal resources affect the turnover intention both directly and indirectly (through work engagement); however, job resources are just associated with turnover intention with the mediating role of work engagement. The results of the study have important implications for organizations' managers about improving work engagement. Copyright © 2015 Elsevier Inc. All rights reserved.
Kranz, Michael B; Baniqued, Pauline L; Voss, Michelle W; Lee, Hyunkyu; Kramer, Arthur F
2017-01-01
The variety and availability of casual video games presents an exciting opportunity for applications such as cognitive training. Casual games have been associated with fluid abilities such as working memory (WM) and reasoning, but the importance of these cognitive constructs in predicting performance may change across extended gameplay and vary with game structure. The current investigation examined the relationship between cognitive abilities and casual game performance over time by analyzing first and final session performance over 4-5 weeks of game play. We focused on two groups of subjects who played different types of casual games previously shown to relate to WM and reasoning when played for a single session: (1) puzzle-based games played adaptively across sessions and (2) speeded switching games played non-adaptively across sessions. Reasoning uniquely predicted first session casual game scores for both groups and accounted for much of the relationship with WM. Furthermore, over time, WM became uniquely important for predicting casual game performance for the puzzle-based adaptive games but not for the speeded switching non-adaptive games. These results extend the burgeoning literature on cognitive abilities involved in video games by showing differential relationships of fluid abilities across different game types and extended play. More broadly, the current study illustrates the usefulness of using multiple cognitive measures in predicting performance, and provides potential directions for game-based cognitive training research.
Riemer, Stefanie; Müller, Corsin; Virányi, Zsófia; Huber, Ludwig; Range, Friederike
2014-01-01
Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2-10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40-50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited.
Riemer, Stefanie; Müller, Corsin; Virányi, Zsófia; Huber, Ludwig; Range, Friederike
2014-01-01
Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2–10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40–50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited. PMID:25003341
Kranz, Michael B.; Baniqued, Pauline L.; Voss, Michelle W.; Lee, Hyunkyu; Kramer, Arthur F.
2017-01-01
The variety and availability of casual video games presents an exciting opportunity for applications such as cognitive training. Casual games have been associated with fluid abilities such as working memory (WM) and reasoning, but the importance of these cognitive constructs in predicting performance may change across extended gameplay and vary with game structure. The current investigation examined the relationship between cognitive abilities and casual game performance over time by analyzing first and final session performance over 4–5 weeks of game play. We focused on two groups of subjects who played different types of casual games previously shown to relate to WM and reasoning when played for a single session: (1) puzzle-based games played adaptively across sessions and (2) speeded switching games played non-adaptively across sessions. Reasoning uniquely predicted first session casual game scores for both groups and accounted for much of the relationship with WM. Furthermore, over time, WM became uniquely important for predicting casual game performance for the puzzle-based adaptive games but not for the speeded switching non-adaptive games. These results extend the burgeoning literature on cognitive abilities involved in video games by showing differential relationships of fluid abilities across different game types and extended play. More broadly, the current study illustrates the usefulness of using multiple cognitive measures in predicting performance, and provides potential directions for game-based cognitive training research. PMID:28326042
Airframe Noise Prediction by Acoustic Analogy: Revisited
NASA Technical Reports Server (NTRS)
Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.
2006-01-01
The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not appear to offer any advantages over the use of FSGF at the present stage of development. It is suggested here that the applications of EGF for airframe noise analysis be continued. As an example pertinent to airframe noise prediction, the Fast Scattering Code of NASA Langley is utilized to obtain the EGF numerically on the surface of a three dimensional wing with a flap and leading edge slat in uniform rectilinear motion. The interpretation and use of these numerical Green functions are then discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, Michael L.; Kaneshige, Michael J.; Erikson, William W.
In this study, we have made reasonable cookoff predictions of large-scale explosive systems by using pressure-dependent kinetics determined from small-scale experiments. Scale-up is determined by properly accounting for pressure generated from gaseous decomposition products and the volume that these reactive gases occupy, e.g. trapped within the explosive, the system, or vented. The pressure effect on the decomposition rates has been determined for different explosives by using both vented and sealed experiments at low densities. Low-density explosives are usually permeable to decomposition gases and can be used in both vented and sealed configurations to determine pressure-dependent reaction rates. In contrast, explosivesmore » that are near the theoretical maximum density (TMD) are not as permeable to decomposition gases, and pressure-dependent kinetics are difficult to determine. Ignition in explosives at high densities can be predicted by using pressure-dependent rates determined from the low-density experiments as long as gas volume changes associated with bulk thermal expansion are also considered. In the current work, cookoff of the plastic-bonded explosives PBX 9501 and PBX 9502 is reviewed and new experimental work on LX-14 is presented. Reactive gases are formed inside these heated explosives causing large internal pressures. The pressure is released differently for each of these explosives. For PBX 9501, permeability is increased and internal pressure is relieved as the nitroplasticizer melts and decomposes. Internal pressure in PBX 9502 is relieved as the material is damaged by cracks and spalling. For LX-14, internal pressure is not relieved until the explosive thermally ignites. The current paper is an extension of work presented at the 26th ICDERS symposium [1].« less
NASA Astrophysics Data System (ADS)
Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2014-09-01
In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.
Portfolio optimization for seed selection in diverse weather scenarios.
Marko, Oskar; Brdar, Sanja; Panić, Marko; Šašić, Isidora; Despotović, Danica; Knežević, Milivoje; Crnojević, Vladimir
2017-01-01
The aim of this work was to develop a method for selection of optimal soybean varieties for the American Midwest using data analytics. We extracted the knowledge about 174 varieties from the dataset, which contained information about weather, soil, yield and regional statistical parameters. Next, we predicted the yield of each variety in each of 6,490 observed subregions of the Midwest. Furthermore, yield was predicted for all the possible weather scenarios approximated by 15 historical weather instances contained in the dataset. Using predicted yields and covariance between varieties through different weather scenarios, we performed portfolio optimisation. In this way, for each subregion, we obtained a selection of varieties, that proved superior to others in terms of the amount and stability of yield. According to the rules of Syngenta Crop Challenge, for which this research was conducted, we aggregated the results across all subregions and selected up to five soybean varieties that should be distributed across the network of seed retailers. The work presented in this paper was the winning solution for Syngenta Crop Challenge 2017.
Poole, Bradley J; Kane, Michael J
2009-07-01
Variation in working-memory capacity (WMC) predicts individual differences in only some attention-control capabilities. Whereas higher WMC subjects outperform lower WMC subjects in tasks requiring the restraint of prepotent but inappropriate responses, and the constraint of attentional focus to target stimuli against distractors, they do not differ in prototypical visual-search tasks, even those that yield steep search slopes and engender top-down control. The present three experiments tested whether WMC, as measured by complex memory span tasks, would predict search latencies when the 1-8 target locations to be searched appeared alone, versus appearing among distractor locations to be ignored, with the latter requiring selective attentional focus. Subjects viewed target-location cues and then fixated on those locations over either long (1,500-1,550 ms) or short (300 ms) delays. Higher WMC subjects identified targets faster than did lower WMC subjects only in the presence of distractors and only over long fixation delays. WMC thus appears to affect subjects' ability to maintain a constrained attentional focus over time.
Predicting FLDs Using a Multiscale Modeling Scheme
NASA Astrophysics Data System (ADS)
Wu, Z.; Loy, C.; Wang, E.; Hegadekatte, V.
2017-09-01
The measurement of a single forming limit diagram (FLD) requires significant resources and is time consuming. We have developed a multiscale modeling scheme to predict FLDs using a combination of limited laboratory testing, crystal plasticity (VPSC) modeling, and dual sequential-stage finite element (ABAQUS/Explicit) modeling with the Marciniak-Kuczynski (M-K) criterion to determine the limit strain. We have established a means to work around existing limitations in ABAQUS/Explicit by using an anisotropic yield locus (e.g., BBC2008) in combination with the M-K criterion. We further apply a VPSC model to reduce the number of laboratory tests required to characterize the anisotropic yield locus. In the present work, we show that the predicted FLD is in excellent agreement with the measured FLD for AA5182 in the O temper. Instead of 13 different tests as for a traditional FLD determination within Novelis, our technique uses just four measurements: tensile properties in three orientations; plane strain tension; biaxial bulge; and the sheet crystallographic texture. The turnaround time is consequently far less than for the traditional laboratory measurement of the FLD.
Portfolio optimization for seed selection in diverse weather scenarios
Brdar, Sanja; Panić, Marko; Šašić, Isidora; Despotović, Danica; Knežević, Milivoje; Crnojević, Vladimir
2017-01-01
The aim of this work was to develop a method for selection of optimal soybean varieties for the American Midwest using data analytics. We extracted the knowledge about 174 varieties from the dataset, which contained information about weather, soil, yield and regional statistical parameters. Next, we predicted the yield of each variety in each of 6,490 observed subregions of the Midwest. Furthermore, yield was predicted for all the possible weather scenarios approximated by 15 historical weather instances contained in the dataset. Using predicted yields and covariance between varieties through different weather scenarios, we performed portfolio optimisation. In this way, for each subregion, we obtained a selection of varieties, that proved superior to others in terms of the amount and stability of yield. According to the rules of Syngenta Crop Challenge, for which this research was conducted, we aggregated the results across all subregions and selected up to five soybean varieties that should be distributed across the network of seed retailers. The work presented in this paper was the winning solution for Syngenta Crop Challenge 2017. PMID:28863173
Bendixen, Alexandra; Scharinger, Mathias; Strauß, Antje; Obleser, Jonas
2014-04-01
Speech signals are often compromised by disruptions originating from external (e.g., masking noise) or internal (e.g., inaccurate articulation) sources. Speech comprehension thus entails detecting and replacing missing information based on predictive and restorative neural mechanisms. The present study targets predictive mechanisms by investigating the influence of a speech segment's predictability on early, modality-specific electrophysiological responses to this segment's omission. Predictability was manipulated in simple physical terms in a single-word framework (Experiment 1) or in more complex semantic terms in a sentence framework (Experiment 2). In both experiments, final consonants of the German words Lachs ([laks], salmon) or Latz ([lats], bib) were occasionally omitted, resulting in the syllable La ([la], no semantic meaning), while brain responses were measured with multi-channel electroencephalography (EEG). In both experiments, the occasional presentation of the fragment La elicited a larger omission response when the final speech segment had been predictable. The omission response occurred ∼125-165 msec after the expected onset of the final segment and showed characteristics of the omission mismatch negativity (MMN), with generators in auditory cortical areas. Suggestive of a general auditory predictive mechanism at work, this main observation was robust against varying source of predictive information or attentional allocation, differing between the two experiments. Source localization further suggested the omission response enhancement by predictability to emerge from left superior temporal gyrus and left angular gyrus in both experiments, with additional experiment-specific contributions. These results are consistent with the existence of predictive coding mechanisms in the central auditory system, and suggestive of the general predictive properties of the auditory system to support spoken word recognition. Copyright © 2014 Elsevier Ltd. All rights reserved.
A discrete element method-based approach to predict the breakage of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Sun, Xin; Xu, Wei
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been informed by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments. However, the predictive capabilities for new coals and processes are limited. This work presents a Discrete Element Method based computational framework to predict particle size distribution resulting from the breakage of coal particles characterized by the coal’s physical properties. The effect ofmore » certain operating parameters on the breakage behavior of coal particles also is examined.« less
Automated Protocol for Large-Scale Modeling of Gene Expression Data.
Hall, Michelle Lynn; Calkins, David; Sherman, Woody
2016-11-28
With the continued rise of phenotypic- and genotypic-based screening projects, computational methods to analyze, process, and ultimately make predictions in this field take on growing importance. Here we show how automated machine learning workflows can produce models that are predictive of differential gene expression as a function of a compound structure using data from A673 cells as a proof of principle. In particular, we present predictive models with an average accuracy of greater than 70% across a highly diverse ∼1000 gene expression profile. In contrast to the usual in silico design paradigm, where one interrogates a particular target-based response, this work opens the opportunity for virtual screening and lead optimization for desired multitarget gene expression profiles.
Prediction of binding hot spot residues by using structural and evolutionary parameters.
Higa, Roberto Hiroshi; Tozzi, Clésio Luis
2009-07-01
In this work, we present a method for predicting hot spot residues by using a set of structural and evolutionary parameters. Unlike previous studies, we use a set of parameters which do not depend on the structure of the protein in complex, so that the predictor can also be used when the interface region is unknown. Despite the fact that no information concerning proteins in complex is used for prediction, the application of the method to a compiled dataset described in the literature achieved a performance of 60.4%, as measured by F-Measure, corresponding to a recall of 78.1% and a precision of 49.5%. This result is higher than those reported by previous studies using the same data set.
Conde, E; Angulo, B; Izquierdo, E; Paz-Ares, L; Belda-Iniesta, C; Hidalgo, M; López-Ríos, F
2013-07-01
The arrival of targeted therapies has presented both a conceptual and a practical challenge in the treatment of patients with advanced non-small cell lung carcinomas (NSCLCs). The relationship of these treatments with specific histologies and predictive biomarkers has made the handling of biopsies the key factor for success. In this study, we highlight the balance between precise histological diagnosis and the practice of conducting multiple predictive assays simultaneously. This can only be achieved where there is a commitment to multidisciplinary working by the tumor board to ensure that a sensible protocol is applied. This proposal for prioritizing samples includes both recent technological advances and the some of the latest discoveries in the molecular classification of NSCLCs.
Thermo-mechanical response predictions for metal matrix composite laminates
NASA Technical Reports Server (NTRS)
Aboudi, J.; Hidde, J. S.; Herakovich, C. T.
1991-01-01
An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.
Akyürek, Elkan G; Leszczyński, Marcin; Schubö, Anna
2010-11-01
An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3 component was shown to be affected by both working memory load and the lag between the target stimuli, consistent with current models of temporal attention and a functional explanation of the P3 in terms of memory consolidation. P3 amplitude was reduced for short target lags and high memory loads. The P2 component was affected by lag only, and not memory load. Importantly, the N2pc component was modulated also by both lag and memory load. The results showed that early attentional processing (as marked by the N2pc) was suppressed by increased involvement of working memory, a phenomenon not well predicted by many current theories of temporal attention. Copyright © 2010 Society for Psychophysiological Research.
NASA Technical Reports Server (NTRS)
McKim, Stephen A.
2016-01-01
This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Direct simulation for the instability and breakup of laminar liquid jets
NASA Technical Reports Server (NTRS)
Chuech, S. G.; Przekwas, A. J.; Yang, H. Q.; Gross, K. W.
1990-01-01
A direct numerical simulation method is described for predicting the deformation of laminar liquid jets. In the present nonlinear direct simulation, the convective term, which has been discarded in past linear analyses by Rayleigh and others, is included in the hydrodynamic equations. It is shown that only by maintaining full complexity of the nonlinear surface tension term accurate drop formation can be predicted. The continuity and momentum equations in the transient form are integrated on an adaptive grid, conforming the jet and surface wave shape. The equations, which are parabolic in time and elliptic in space, are solved by a TVD scheme with characteristic flux splitting. The results of the present work are discussed and compared with available measurements and other analyses. The comparison shows that among the predictions, the current 1-D direct simulation results agree best with the experimental data. Furthermore, the computer time requirements are much (an order of magnitude) smaller than those of previously reported multidimensional analyses.
Direct simulation for the instability and breakup of laminar liquid jets
NASA Astrophysics Data System (ADS)
Chuech, S. G.; Przekwas, A. J.; Yang, H. Q.; Gross, K. W.
1990-07-01
A direct numerical simulation method is described for predicting the deformation of laminar liquid jets. In the present nonlinear direct simulation, the convective term, which has been discarded in past linear analyses by Rayleigh and others, is included in the hydrodynamic equations. It is shown that only by maintaining full complexity of the nonlinear surface tension term accurate drop formation can be predicted. The continuity and momentum equations in the transient form are integrated on an adaptive grid, conforming the jet and surface wave shape. The equations, which are parabolic in time and elliptic in space, are solved by a TVD scheme with characteristic flux splitting. The results of the present work are discussed and compared with available measurements and other analyses. The comparison shows that among the predictions, the current 1-D direct simulation results agree best with the experimental data. Furthermore, the computer time requirements are much (an order of magnitude) smaller than those of previously reported multidimensional analyses.
Jappe, Emma Christine; Kringelum, Jens; Trolle, Thomas; Nielsen, Morten
2018-02-15
Peptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity. However, only a small proportion of the peptides that bind to MHC molecules are, in fact, immunogenic, and substantial work has been dedicated to uncovering additional determinants of peptide immunogenicity. In this context, and in light of recent advancements in mass spectrometry (MS), the existence of immunological hotspots has been given new life, inciting the hypothesis that hotspots are associated with MHC class I peptide immunogenicity. We here introduce a precise terminology for defining these hotspots and carry out a systematic analysis of MS and in silico predicted hotspots. We find that hotspots defined from MS data are largely captured by peptide binding predictions, enabling their replication in silico. This leads us to conclude that hotspots, to a great degree, are simply a result of promiscuous HLA binding, which disproves the hypothesis that the identification of hotspots provides novel information in the context of immunogenic peptide prediction. Furthermore, our analyses demonstrate that the signal of ligand processing, although present in the MS data, has very low predictive power to discriminate between MS and in silico defined hotspots. © 2018 John Wiley & Sons Ltd.
Neural activity reveals perceptual grouping in working memory.
Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S
2017-03-01
There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.
Viotti, Sara; Essenmacher, Lynnette; Hamblin, Lydia E.; Arnetz, Judith E.
2018-01-01
In spite of the considerable number of studies on co-worker incivility, knowledge on this topic needs to be further enhanced. In particular, no studies have focused on the reciprocal nature of the relationship of incivility with other important aspects of working life, i.e. employee well-being and the quality of the working process. The aim of the present study was to examine the cross-lagged associations among co-worker incivility, work-related exhaustion, and organisational efficiency in a sample of healthcare workers. Based on the conservation of resource theory, we hypothesised that those three variables affect each other reciprocally over the time. Data from a two-wave study design (with a one-year time lag) were utilised, and cross-lagged structural equation models were performed. Results confirmed that incivility and efficiency affected each other reciprocally over time. On the other hand, whereas incivility positively predicted exhaustion and exhaustion at inversely predicted organisational efficiency, the opposite paths were found to be not significant. The study suggests that efficiency is crucial for understanding incivility because it operates both as its cause and as its outcome. Interventions aimed at promoting civility and respect in the workplace may help prevent co-worker incivility, work-related exhaustion, and enhance organisational efficiency.
Viotti, Sara; Essenmacher, Lynnette; Hamblin, Lydia E; Arnetz, Judith E
2018-01-01
In spite of the considerable number of studies on co-worker incivility, knowledge on this topic needs to be further enhanced. In particular, no studies have focused on the reciprocal nature of the relationship of incivility with other important aspects of working life, i.e. employee well-being and the quality of the working process. The aim of the present study was to examine the cross-lagged associations among co-worker incivility, work-related exhaustion, and organisational efficiency in a sample of healthcare workers. Based on the conservation of resource theory, we hypothesised that those three variables affect each other reciprocally over the time. Data from a two-wave study design (with a one-year time lag) were utilised, and cross-lagged structural equation models were performed. Results confirmed that incivility and efficiency affected each other reciprocally over time. On the other hand, whereas incivility positively predicted exhaustion and exhaustion at inversely predicted organisational efficiency, the opposite paths were found to be not significant. The study suggests that efficiency is crucial for understanding incivility because it operates both as its cause and as its outcome. Interventions aimed at promoting civility and respect in the workplace may help prevent co-worker incivility, work-related exhaustion, and enhance organisational efficiency.
Authentic leadership and nurses' voice behaviour and perceptions of care quality.
Wong, Carol A; Spence Laschinger, Heather K; Cummings, Greta G
2010-11-01
The purpose of the present study was to test a theoretical model linking authentic leadership with staff nurses' trust in their manager, work engagement, voice behaviour and perceived unit care quality. Authentic leadership is a guide for effective leadership needed to build trust and healthier work environments because there is special attention given to honesty, integrity and high ethical standards in the development of leader-follower relationships. A non-experimental, predictive survey design was used to test the hypothesized model in a random sample of 280 (48% response rate) registered nurses working in acute care hospitals in Ontario. The final model fitted the data acceptably (χ(2)=17.24, d.f.=11, P=0.10, IFI=0.99, CFI=0.99, RMSEA=0.045). Authentic leadership significantly and positively influenced staff nurses' trust in their manager and work engagement which in turn predicted voice behaviour and perceived unit care quality. These findings suggest that authentic leadership and trust in the manager play a role in fostering trust, work engagement, voice behaviour and perceived quality of care. Nursing leaders can improve care quality and workplace conditions by paying attention to facilitating genuine and positive relationships with their staff. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Effects of thermal aging on mechanical performance of paper
B.T. Hotle; J.M. Considine; M.J. Wald; R.E. Rowlands; K.T. Turner
2008-01-01
A missing element of paper aging research is a description of mechanical performance with aging. Tensile strength cannot be predicted directly from DP measurements, and existing models do not represent the effects of aging on strength and stiffness. The primary aim of the present work is to characterize changes of mechanical properties, such as tensile response and...
Evaporation And Ignition Of Dense Fuel Sprays
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth G.
1988-01-01
Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.
ERIC Educational Resources Information Center
Hatcher, Juliet L.; Scarpa, Juliet
Although adolescence is characterized by general good health, this developmental stage is a key time for promoting a healthy lifestyle and preventing health-compromising behaviors and injuries. This paper presents a selective review of research into factors predicting health and safety behavior patterns and injury occurrence, focusing on…
ERIC Educational Resources Information Center
Becker, Derek R.; Miao, Alicia; Duncan, Robert; McClelland, Megan M.
2014-01-01
The present study explored direct and interactive effects between behavioral self-regulation (SR) and two measures of executive function (EF, inhibitory control and working memory), with a fine motor measure tapping visuomotor skills (VMS) in a sample of 127 prekindergarten and kindergarten children. It also examined the relative contribution of…
The Impact of Inattention and Emotional Problems on Cognitive Control in Primary School Children
ERIC Educational Resources Information Center
Sorensen, Lin; Plessen, Kerstin J.; Lundervold, Astri J.
2012-01-01
Objective: The present study investigated the predictive value of parent/teacher reports of inattention and emotional problems on cognitive control function in 241 children in primary school. Method: Cognitive control was measured by functions of set-shifting and working memory as assessed by the Behavior Rating Inventory of Executive Function…
ERIC Educational Resources Information Center
Dever, Bridget V.
2016-01-01
Within the expectancy-value framework, much work has been done linking expectancies and task values to academic outcomes such as performance, persistence, and choice. Research on the associations between student motivation (including efficacy and task values) and behavioral and emotional problems, however, is nascent. The present study examined a…
ERIC Educational Resources Information Center
Dettmers, Swantje; Trautwein, Ulrich; Ludtke, Oliver; Kunter, Mareike; Baumert, Jurgen
2010-01-01
The present study examined the associations of 2 indicators of homework quality (homework selection and homework challenge) with homework motivation, homework behavior, and mathematics achievement. Multilevel modeling was used to analyze longitudinal data from a representative national sample of 3,483 students in Grades 9 and 10; homework effects…
Developmental Relations between Alcohol Expectancies and Social Norms in Predicting Alcohol Onset
ERIC Educational Resources Information Center
Janssen, Tim; Treloar Padovano, Hayley; Merrill, Jennifer E.; Jackson, Kristina M.
2018-01-01
Expectations about alcohol's effects and perceptions of peers' behaviors and beliefs related to alcohol use are each shown to strongly influence the timing of drinking onset during adolescence. The present study builds on prior work by examining the conjoint effects of within-person changes in these social-cognitive factors on age of adolescent…
T. rex, the Crater of Doom, and the Nature of Scientific Discovery
ERIC Educational Resources Information Center
Lawson, Anton E.
2004-01-01
Working from the 1970s to the early 1990s, Walter Alvarez and his research team sought the cause of the mass extinction that claimed the dinosaurs 65 million years ago. The present paper discusses that research in terms of eight puzzling observations, eight episodes of hypothetico-predictive reasoning, enumerative induction, and Jung's…
ERIC Educational Resources Information Center
Akin Kösterelioglu, Meltem
2017-01-01
Purpose: The present study investigates the capability of high school teachers' shared leadership perception to predict the academic optimism and organizational citizenship levels. Research methods: The population of the current descriptive study, which was conducted via screening model, consists of 321 high school teachers working for Amasya…
This presentation will examine the impact of data quality on the construction of QSAR models being developed within the EPA‘s National Center for Computational Toxicology. We have developed a public-facing platform to provide access to predictive models. As part of the work we ha...
From Data-Sharing to Model-Sharing: SCEC and the Development of Earthquake System Science (Invited)
NASA Astrophysics Data System (ADS)
Jordan, T. H.
2009-12-01
Earthquake system science seeks to construct system-level models of earthquake phenomena and use them to predict emergent seismic behavior—an ambitious enterprise that requires high degree of interdisciplinary, multi-institutional collaboration. This presentation will explore model-sharing structures that have been successful in promoting earthquake system science within the Southern California Earthquake Center (SCEC). These include disciplinary working groups to aggregate data into community models; numerical-simulation working groups to investigate system-specific phenomena (process modeling) and further improve the data models (inverse modeling); and interdisciplinary working groups to synthesize predictive system-level models. SCEC has developed a cyberinfrastructure, called the Community Modeling Environment, that can distribute the community models; manage large suites of numerical simulations; vertically integrate the hardware, software, and wetware needed for system-level modeling; and promote the interactions among working groups needed for model validation and refinement. Various socio-scientific structures contribute to successful model-sharing. Two of the most important are “communities of trust” and collaborations between government and academic scientists on mission-oriented objectives. The latter include improvements of earthquake forecasts and seismic hazard models and the use of earthquake scenarios in promoting public awareness and disaster management.
PIV Measurements of Chevrons on F400 Tactical Aircraft Nozzle Model
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark; Frate, Franco
2010-01-01
Previous talks at this meeting have covered our collaborative work on high-energy jets such as present in tactical aircraft (those with supersonic plumes). The emphasis of this work is improving our understanding of flow physics and our prediction tools. In this presentation we will discuss recent flow diagnostics acquired using Particle Image Velocimetry (PIV) made on an underexpanded shocked jet plume from a tactical aircraft nozzle. In this presentation we show cross-sectional and streamwise cuts of both mean and turbulent velocities of an F404 engine nozzle with various chevron designs applied. The impact of chevron penetration, length, and width are documented. The impact of the parameters is generally nonlinear in measures considered here, a surprising result given the relatively smooth behavior of the noise to variations in these chevron parameters.
Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work
NASA Astrophysics Data System (ADS)
Muniz, German; Alum, Jorge
1996-02-01
In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.
Drug targets in the cytokine universe for autoimmune disease.
Liu, Xuebin; Fang, Lei; Guo, Taylor B; Mei, Hongkang; Zhang, Jingwu Z
2013-03-01
In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meteor Shower Forecasting for Spacecraft Operations
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.; Cooke, William J.; Campbell-Brown, Margaret D.
2017-01-01
Although sporadic meteoroids generally pose a much greater hazard to spacecraft than shower meteoroids, meteor showers can significantly increase the risk of damage over short time periods. Because showers are brief, it is sometimes possible to mitigate the risk operationally, which requires accurate predictions of shower activity. NASA's Meteoroid Environment Office (MEO) generates an annual meteor shower forecast that describes the variations in the near-Earth meteoroid flux produced by meteor showers, and presents the shower flux both in absolute terms and relative to the sporadic flux. The shower forecast incorporates model predictions of annual variations in shower activity and quotes fluxes to several limiting particle kinetic energies. In this work, we describe our forecasting methods and present recent improvements to the temporal profiles based on flux measurements from the Canadian Meteor Orbit Radar (CMOR).
Experimental study on the resonance frequencies of a cantilevered plate in air flow
NASA Astrophysics Data System (ADS)
Cros, Anne; Arellano Castro, Rocío F.
2016-02-01
The present experimental work focuses on the resonances exhibited by a cantilevered plate immersed in airflow. The flexible plate is clamped at its leading edge and submitted to a small, lateral harmonic displacement. Throughout this work, our two control parameters are the forcing frequency and the air velocity. We determine experimentally the evolution of the first three resonant frequencies as air velocity is increased. Our results are in agreement with the Eloy et al. (2007) [1] and Michelin and Llewellyn-Smith (2009) [2] linear theoretical predictions.
Fifty Years of Mountain Passes: A Perspective on Dan Janzen's Classic Article.
Sheldon, Kimberly S; Huey, Raymond B; Kaspari, Michael; Sanders, Nathan J
2018-05-01
In 1967, Dan Janzen published "Why Mountain Passes Are Higher in the Tropics" in The American Naturalist. Janzen's seminal article has captured the attention of generations of biologists and continues to inspire theoretical and empirical work. The underlying assumptions and derived predictions are broadly synthetic and widely applicable. Consequently, Janzen's "seasonality hypothesis" has proven relevant to physiology, climate change, ecology, and evolution. To celebrate the fiftieth anniversary of this highly influential article, we highlight the past, present, and future of this work and include a unique historical perspective from Janzen himself.
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
NASA Astrophysics Data System (ADS)
Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye
2016-07-01
Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.
Platelets miRNA as a Prediction Marker of Thrombotic Episodes
Dzieciol, Malgorzata
2016-01-01
The blood platelets are crucial for the coagulation physiology to maintain haemostatic balance and are involved in various pathologies such as atherosclerosis and thrombosis. The studies of recent years have shown that anucleated platelets are able to succeed protein synthesis. Additionally, mRNA translation in blood platelets is regulated by miRNA molecules. Recent works postulate the possibility of using miRNAs as biomarkers of atherosclerosis and ischemic episodes. This review article describes clinical studies that presented blood platelets miRNAs expression profile changes in different thrombotic states, which suggest use of these molecules as predictive biomarkers. PMID:28042196
Relativity time-delay experiments utilizing 'Mariner' spacecraft
NASA Technical Reports Server (NTRS)
Esposito, P. B.; Anderson, J. D.
1974-01-01
Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.
NASA Technical Reports Server (NTRS)
Sabin, C. M.; Poppendiek, H. F.
1971-01-01
A number of heat transfer and fluid flow mechanisms that control once-through, forced convection potassium boiling are studied analytically. The topics discussed are: (1) flow through tubes containing helical wire inserts, (2) motion of droplets entrained in vapor flow, (3) liquid phase distribution in boilers, (4) temperature distributions in boiler tube walls, (5) mechanisms of heat transfer regime change, and (6) heat transfer in boiler tubes. Whenever possible, comparisons of predicted and actual performances are made. The model work presented aids in the prediction of operating characteristics of actual boilers.
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
NASA Subsonic Rotary Wing Project - Structures and Materials Discipline
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Johnson, Susan M.
2008-01-01
The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.
Punishment Sensitivity Predicts the Impact of Punishment on Cognitive Control
Braem, Senne; Duthoo, Wout; Notebaert, Wim
2013-01-01
Cognitive control theories predict enhanced conflict adaptation after punishment. However, no such effect was found in previous work. In the present study, we demonstrate in a flanker task how behavioural adjustments following punishment signals are highly dependent on punishment sensitivity (as measured by the Behavioural Inhibition System (BIS) scale): Whereas low punishment-sensitive participants do show increased conflict adaptation after punishment, high punishment-sensitive participants show no such modulation. Interestingly, participants with a high punishment-sensitivity showed an overall reaction time increase after punishments. Our results stress the role of individual differences in explaining motivational modulations of cognitive control. PMID:24058520
CDEP Consortium on Ocean Data Assimilation for Seasonal-to-Interannual Prediction (ODASI)
NASA Technical Reports Server (NTRS)
Rienecker, Michele; Zebiak, Stephen; Kinter, James; Behringer, David; Rosati, Antonio; Kaplan, Alexey
2005-01-01
The ODASI consortium is focused activity of the NOAA/OGP/Climate Diagnostics and Experimental Prediction Program with the goal of improving ocean data assimilation methods and their implementations in support of seasonal forecasts with coupled general circulation models. The consortium is undertaking coordinated assimilation experiments, with common forcing data sets and common input data streams. With different assimilation systems and different models, we aim to understand what approach works best in improving forecast skill in the equatorial Pacific. The presentation will provide an overview of the consortium goals and plans and recent results focused towards evaluating data impacts.
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Gonzalez, W. D.
1995-01-01
Within the last 7-8 years, there has been a substantial growth in out knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.
International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification
NASA Technical Reports Server (NTRS)
Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.
2011-01-01
The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.
NASA Technical Reports Server (NTRS)
Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.
2011-01-01
The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allanach, B
2004-03-01
The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 26 May-6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional modelsmore » are examined next, including measurement strategies for radions and Higgs', as well as the virtual effects of Kaluza Klein modes of gluons. Finally, there is an update on LHC Z' studies.« less
Hardiness, psychosocial factors and shift work tolerance among nurses - a 2-year follow-up study.
Saksvik-Lehouillier, Ingvild; Bjorvatn, Bjørn; Magerøy, Nils; Pallesen, Ståle
2016-08-01
To examine the predictive power of the subfactors of hardiness (commitment, control and challenge) on shift work tolerance (measured with sleepiness, fatigue, anxiety and depression) over 2 years in nurses working shifts. We also investigated the direct effects of psychosocial variables such as role conflict, social support and fair leadership on shift work tolerance, as well as their moderating role on the relationship between hardiness and shift work tolerance. Several scholars have discussed the role of individual differences and psychosocial variables in predicting shift work tolerance. The conclusions are not clear. Longitudinal questionnaire study. A sample of Norwegian nurses employed in shift work including nights participated in this longitudinal questionnaire study: 1877 at baseline, 1228 at 1-year follow-up and 659 nurses at 2-year follow-up. Data were collected in three waves, first wave in 2008 and third in 2011 and were analysed with a series of hierarchical multiple regression analyses. We found that the subfactor commitment could predict fatigue over 1 year and anxiety and depression over 2 years. Challenge could predict anxiety over 1 year. Control was unrelated to shift work intolerance. Hardiness did not predict sleepiness. Social support, role conflict and fair leadership were important for some aspects of shift work tolerance; however, hardiness seemed to be more eminent for shift work tolerance than the psychosocial variables. Social support moderated the relationship between hardiness and shift work tolerance to some degree, but this interaction was weak. Hardiness can to some degree predict shift work tolerance over 2 years among nurses. © 2016 John Wiley & Sons Ltd.
Ensemble-based prediction of RNA secondary structures.
Aghaeepour, Nima; Hoos, Holger H
2013-04-24
Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.
Skoch, Jesse; Tahir, Rizwan; Abruzzo, Todd; Taylor, John M; Zuccarello, Mario; Vadivelu, Sudhakar
2017-12-01
Artificial neural networks (ANN) are increasingly applied to complex medical problem solving algorithms because their outcome prediction performance is superior to existing multiple regression models. ANN can successfully identify symptomatic cerebral vasospasm (SCV) in adults presenting after aneurysmal subarachnoid hemorrhage (aSAH). Although SCV is unusual in children with aSAH, the clinical consequences are severe. Consequently, reliable tools to predict patients at greatest risk for SCV may have significant value. We applied ANN modeling to a consecutive cohort of pediatric aSAH cases to assess its ability to predict SCV. A retrospective chart review was conducted to identify patients < 21 years of age who presented with spontaneously ruptured, non-traumatic, non-mycotic, non-flow-related intracranial arterial aneurysms to our institution between January 2002 and January 2015. Demographics, clinical, radiographic, and outcome data were analyzed using an adapted ANN model using learned value nodes from the adult aneurysmal SAH dataset previously reported. The strength of the ANN prediction was measured between - 1 and 1 with - 1 representing no likelihood of SCV and 1 representing high likelihood of SCV. Sixteen patients met study inclusion criteria. The median age for aSAH patients was 15 years. Ten underwent surgical clipping and 6 underwent endovascular coiling for definitive treatment. One patient experienced SCV and 15 did not. The ANN applied here was able to accurately predict all 16 outcomes. The mean strength of prediction for those who did not exhibit SCV was - 0.86. The strength for the one patient who did exhibit SCV was 0.93. Adult-derived aneurysmal SAH value nodes can be applied to a simple AAN model to accurately predict SCV in children presenting with aSAH. Further work is needed to determine if ANN models can prospectively predict SCV in the pediatric aSAH population in toto; adapted to include mycotic, traumatic, and flow-related origins as well.
Mun, Chung Jung; Karoly, Paul; Okun, Morris A; Kim, Hanjoe; Tennen, Howard
2016-04-01
For individuals with chronic pain, the within-person influence of affect and goal cognition on daily work-related goal striving is not yet well understood. The present study tested the hypothesis that anticipatory goal cognition in the form of a morning work goal schema mediates the relations between morning affect and later (afternoon and evening) work goal striving. Working adults with chronic pain (N = 131) completed a 21-day diary with morning, afternoon, and evening assessments analyzed via multi-level structural equation modeling. At the within-person level, morning positive and negative affect were positively associated with morning work goal schemas; and morning work goal schemas, in turn, positively predicted both afternoon and evening work goal striving. Our findings underscore the complex dynamics over time of the relationship between affect and self-regulatory processes and have implications for future studies and for interventions to assist working adults with chronic pain.
Evolutionary and Functional Relationships in the Truncated Hemoglobin Family.
Bustamante, Juan P; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A; Ten Have, Arjen; Martí, Marcelo A
2016-01-01
Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.
Evolutionary and Functional Relationships in the Truncated Hemoglobin Family
Bustamante, Juan P.; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A.; ten Have, Arjen; Martí, Marcelo A.
2016-01-01
Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends. PMID:26788940
A Geometric Model for Specularity Prediction on Planar Surfaces with Multiple Light Sources.
Morgand, Alexandre; Tamaazousti, Mohamed; Bartoli, Adrien
2018-05-01
Specularities are often problematic in computer vision since they impact the dynamic range of the image intensity. A natural approach would be to predict and discard them using computer graphics models. However, these models depend on parameters which are difficult to estimate (light sources, objects' material properties and camera). We present a geometric model called JOLIMAS: JOint LIght-MAterial Specularity, which predicts the shape of specularities. JOLIMAS is reconstructed from images of specularities observed on a planar surface. It implicitly includes light and material properties, which are intrinsic to specularities. This model was motivated by the observation that specularities have a conic shape on planar surfaces. The conic shape is obtained by projecting a fixed quadric on the planar surface. JOLIMAS thus predicts the specularity using a simple geometric approach with static parameters (object material and light source shape). It is adapted to indoor light sources such as light bulbs and fluorescent lamps. The prediction has been tested on synthetic and real sequences. It works in a multi-light context by reconstructing a quadric for each light source with special cases such as lights being switched on or off. We also used specularity prediction for dynamic retexturing and obtained convincing rendering results. Further results are presented as supplementary video material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2677445.
NASA Astrophysics Data System (ADS)
Intriligator, M.
2011-12-01
Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.
Bouwhuis, Stef; Geuskens, Goedele A; Boot, Cécile R L; Bongers, Paulien M; van der Beek, Allard J
2017-08-01
To construct prediction models for transitions to combination multiple job holding (MJH) (multiple jobs as an employee) and hybrid MJH (being an employee and self-employed), among employees aged 45-64. A total of 5187 employees in the Netherlands completed online questionnaires annually between 2010 and 2013. We applied logistic regression analyses with a backward elimination strategy to construct prediction models. Transitions to combination MJH and hybrid MJH were best predicted by a combination of factors including: demographics, health and mastery, work characteristics, work history, skills and knowledge, social factors, and financial factors. Not having a permanent contract and a poor household financial situation predicted both transitions. Some predictors only predicted combination MJH, e.g., working part-time, or hybrid MJH, e.g., work-home interference. A wide variety of factors predict combination MJH and/or hybrid MJH. The prediction model approach allowed for the identification of predictors that have not been previously studied. © 2017 Wiley Periodicals, Inc.
Hakanen, Jari; Peeters, Maria
2015-06-01
To investigate the long-term relationships between work engagement, workaholism, work-to-family enrichment, and work-to-family conflict (WFC). We used structural equation modeling and the three-wave 7-year follow-up data of 1580 Finnish dentists to test our hypotheses. Work engagement and work-to-family enrichment mutually predicted each other, and work engagement also negatively predicted WFC. Workaholism predicted WFC, but not vice versa. Work engagement and workaholism were unrelated over time. The results indicate that beyond its suggested benefits for organizations, work engagement may boost the positive interaction between work and family, whereas workaholism is likely to lead to WFC over time. It is valuable for organizations to distinguish work engagement from workaholism and to enhance the former while preventing the latter to have sustainably hardworking working employees with happy home lives.
NASA Astrophysics Data System (ADS)
Osman, Marisol; Vera, C. S.
2017-10-01
This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to those associated with the signal, especially at the extratropics.
Determination of work of adhesion of gelatin hydrogels on a glass substrate
NASA Astrophysics Data System (ADS)
Thakre, Avinash A.; Singh, Arun K.
2018-04-01
In this article, work of adhesion (w adh ) of soft gelatin hydrogels on a smooth glass substrate is determined experimentally using the wedge adhesion test. The results showed that w adh decreases with the increase in gelatin concentration in the hydrogels but the same is found to be independent of thickness of hydrogel specimen. These results are used further for establishing a scaling law between w adh and mesh size (ξ) of the three dimensional structure present in the hydrogel as w adh ∼ ξ 8.6. Finite element analysis is also carried out for validating the fracture stability of wedge test in view of analytical prediction. At the end, practical significance of the present study is also discussed.
A controlled variation scheme for convection treatment in pressure-based algorithm
NASA Technical Reports Server (NTRS)
Shyy, Wei; Thakur, Siddharth; Tucker, Kevin
1993-01-01
Convection effect and source terms are two primary sources of difficulties in computing turbulent reacting flows typically encountered in propulsion devices. The present work intends to elucidate the individual as well as the collective roles of convection and source terms in the fluid flow equations, and to devise appropriate treatments and implementations to improve our current capability of predicting such flows. A controlled variation scheme (CVS) has been under development in the context of a pressure-based algorithm, which has the characteristics of adaptively regulating the amount of numerical diffusivity, relative to central difference scheme, according to the variation in local flow field. Both the basic concepts and a pragmatic assessment will be presented to highlight the status of this work.
CisMiner: Genome-Wide In-Silico Cis-Regulatory Module Prediction by Fuzzy Itemset Mining
Navarro, Carmen; Lopez, Francisco J.; Cano, Carlos; Garcia-Alcalde, Fernando; Blanco, Armando
2014-01-01
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user. PMID:25268582
Predicting on-site environmental impacts of municipal engineering works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu
2014-01-15
The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering projectmore » documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also help contractors to implement environmental management systems.« less
ERIC Educational Resources Information Center
Mousavi, Shima; Radmehr, Farzad; Alamolhodaei, Hasan
2012-01-01
Introduction: The main objective of this study is (a) to investigate whether cognitive styles and working memory capacity could predict mathematical performance and which variable is relatively most important in predicting mathematical performance and b) to explore whether cognitive styles and working memory capacity could predict mathematical…
Taboo: Working memory and mental control in an interactive task
Hansen, Whitney A.; Goldinger, Stephen D.
2014-01-01
Individual differences in working memory (WM) predict principled variation in tasks of reasoning, response time, memory, and other abilities. Theoretically, a central function of WM is keeping task-relevant information easily accessible while suppressing irrelevant information. The present experiment was a novel study of mental control, using performance in the game Taboo as a measure. We tested effects of WM capacity on several indices, including perseveration errors (repeating previous guesses or clues) and taboo errors (saying at least part of a taboo or target word). By most measures, high-span participants were superior to low-span participants: High-spans were better at guessing answers, better at encouraging correct guesses from teammates, and less likely to either repeat themselves or produce taboo clues. Differences in taboo errors occurred only in an easy control condition. The results suggest that WM capacity predicts behavior in tasks requiring mental control, extending this finding to an interactive group setting. PMID:19827699
A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.
2015-01-01
A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.