Williams, Mitchel T; Tapos, Daniela O; Juhász, Csaba
2014-12-01
Pediatric-onset multiple sclerosis represents around 3-5% of all patients with multiple sclerosis. Both the 2005 and 2010 McDonald criteria for multiple sclerosis have been suggested for the possible use in pediatric-onset multiple sclerosis. Modifications incorporated into the 2010 criteria enabled the fulfillment of dissemination in time to be met with the initial magnetic resonance imaging. The present study was designed to compare the diagnostic sensitivity of these criteria at initial presentation, the time to fulfilling them, and secondary effects of ethnicity in pediatric-onset multiple sclerosis. Twenty-five children with clinically definite multiple sclerosis (mean age, 14.6 ± 3.1 years; 15 girls) from a single center between 2005 and 2012 were analyzed using both the 2005 and 2010 McDonald criteria based on initial clinical presentation and neuroimaging findings comparing diagnostic sensitivity, time interval to meet diagnosis, and ethnicity. Initial multiple sclerosis diagnosis rates applying the 2005 McDonald criteria were 32% compared with 92% for the 2010 criteria (P = 0.0003). The mean time after initial signs until the 2005 and 2010 McDonald criteria for multiple sclerosis were met was 5.0 vs 0.7 months, respectively (P = 0.001). Time to diagnosis using the 2010 criteria was shorter in black children than the European white (P = 0.005). The 2010 McDonald criteria are an appropriate tool for the timely diagnosis of pediatric multiple sclerosis, especially in black children, potentially allowing an earlier initiation of disease-modifying therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Yang, Shaofu; Guo, Zhenyuan; Wang, Jun
2017-07-01
In this paper, new results on the global synchronization of multiple recurrent neural networks (NNs) with time delays via impulsive interactions are presented. Impulsive interaction means that a number of NNs communicate with each other at impulse instants only, while they are independent at the remaining time. The communication topology among NNs is not required to be always connected and can switch ON and OFF at different impulse instants. By using the concept of sequential connectivity and the properties of stochastic matrices, a set of sufficient conditions depending on time delays is derived to ascertain global synchronization of multiple continuous-time recurrent NNs. In addition, a counterpart on the global synchronization of multiple discrete-time NNs is also discussed. Finally, two examples are presented to illustrate the results.
Robust stability bounds for multi-delay networked control systems
NASA Astrophysics Data System (ADS)
Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza
2018-04-01
In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.
ERIC Educational Resources Information Center
Shaw, David D.; Pease, Leonard F., III.
2014-01-01
Grading can be accelerated to make time for more effective instruction. This article presents specific time management strategies selected to decrease administrative time required of faculty and teaching assistants, including a multiple answer multiple choice interface for exams, a three-tier grading system for open ended problem solving, and a…
Multi-channel time-reversal receivers for multi and 1-bit implementations
Candy, James V.; Chambers, David H.; Guidry, Brian L.; Poggio, Andrew J.; Robbins, Christopher L.
2008-12-09
A communication system for transmitting a signal through a channel medium comprising digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. In one embodiment a transmitter is adapted to transmit the signal, a multiplicity of receivers are adapted to receive the signal, a digitizer digitizes the signal, and a time-reversal signal processor is adapted to time-reverse the digitized signal. An embodiment of the present invention includes multi bit implementations. Another embodiment of the present invention includes 1-bit implementations. Another embodiment of the present invention includes a multiplicity of receivers used in the step of transmitting the signal through the channel medium.
Qualitative analysis of Cohen-Grossberg neural networks with multiple delays
NASA Astrophysics Data System (ADS)
Ye, Hui; Michel, Anthony N.; Wang, Kaining
1995-03-01
It is well known that a class of artificial neural networks with symmetric interconnections and without transmission delays, known as Cohen-Grossberg neural networks, possesses global stability (i.e., all trajectories tend to some equilibrium). We demonstrate in the present paper that many of the qualitative properties of Cohen-Grossberg networks will not be affected by the introduction of sufficiently small delays. Specifically, we establish some bound conditions for the time delays under which a given Cohen-Grossberg network with multiple delays is globally stable and possesses the same asymptotically stable equilibria as the corresponding network without delays. An effective method of determining the asymptotic stability of an equilibrium of a Cohen-Grossberg network with multiple delays is also presented. The present results are motivated by some of the authors earlier work [Phys. Rev. E 50, 4206 (1994)] and by some of the work of Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)]. These works address qualitative analyses of Hopfield neural networks with one time delay. The present work generalizes these results to Cohen-Grossberg neural networks with multiple time delays. Hopfield neural networks constitute special cases of Cohen-Grossberg neural networks.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1988-01-01
The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.
Testing for Nonuniform Differential Item Functioning with Multiple Indicator Multiple Cause Models
ERIC Educational Resources Information Center
Woods, Carol M.; Grimm, Kevin J.
2011-01-01
In extant literature, multiple indicator multiple cause (MIMIC) models have been presented for identifying items that display uniform differential item functioning (DIF) only, not nonuniform DIF. This article addresses, for apparently the first time, the use of MIMIC models for testing both uniform and nonuniform DIF with categorical indicators. A…
A model for a PC-based, universal-format, multimedia digitization system: moving beyond the scanner.
McEachen, James C; Cusack, Thomas J; McEachen, John C
2003-08-01
Digitizing images for use in case presentations based on hardcopy films, slides, photographs, negatives, books, and videos can present a challenging task. Scanners and digital cameras have become standard tools of the trade. Unfortunately, use of these devices to digitize multiple images in many different media formats can be a time-consuming and in some cases unachievable process. The authors' goal was to create a PC-based solution for digitizing multiple media formats in a timely fashion while maintaining adequate image presentation quality. The authors' PC-based solution makes use of off-the-shelf hardware applications to include a digital document camera (DDC), VHS video player, and video-editing kit. With the assistance of five staff radiologists, the authors examined the quality of multiple image types digitized with this equipment. The authors also quantified the speed of digitization of various types of media using the DDC and video-editing kit. With regard to image quality, the five staff radiologists rated the digitized angiography, CT, and MR images as adequate to excellent for use in teaching files and case presentations. With regard to digitized plain films, the average rating was adequate. As for performance, the authors recognized a 68% improvement in the time required to digitize hardcopy films using the DDC instead of a professional quality scanner. The PC-based solution provides a means for digitizing multiple images from many different types of media in a timely fashion while maintaining adequate image presentation quality.
NASA Astrophysics Data System (ADS)
Tito, M. A.; Pusep, Yu A.
2018-01-01
Time-resolved magneto-photoluminescence was employed to study the magnetic field induced quantum phase transition separating two phases with different distributions of electrons over quantum wells in an aperiodic multiple quantum well, embedded in a wide AlGaAs parabolic quantum well. Intensities, broadenings and recombination times attributed to the photoluminescence lines emitted from individual quantum wells of the multiple quantum well structure were measured as a function of the magnetic field near the transition. The presented data manifest themselves to the magnetic field driven migration of the free electrons between the quantum wells of the studied multiple quantum well structure. The observed charge transfer was found to influence the screening of the multiple quantum well and disorder potentials. Evidence of the localization of the electrons in the peripheral quantum wells in strong magnetic field is presented.
Vascular Multiplicity Should Not Be a Contra-Indication for Live Kidney Donation and Transplantation
van Bruggen, Mark; Kimenai, Hendrikus J. A. N.; Tran, Thi C. K.; Terkivatan, Türkan; Betjes, Michiel G. H.; IJzermans, Jan N. M.; Dor, Frank J. M. F.
2016-01-01
Background Whether vascular multiplicity should be considered as contraindication and therefore ‘extended donor criterion’ is still under debate. Methods Data from all live kidney donors from 2006–2013 (n = 951) was retrospectively reviewed. Vascular anatomy as imaged by MRA, CTA or other modalities was compared with intraoperative findings. Furthermore, the influence of vascular multiplicity on outcome of donors and recipients was studied. Results In 237 out of 951 donors (25%), vascular multiplicity was present. CTA had the highest accuracy levels regarding vascular anatomy assessment. Regarding outcome of donors with vascular multiplicity, warm ischemia time (WIT) and skin-to-skin time were significantly longer if arterial multiplicity (AM) was present (5.1 vs. 4.0 mins and 202 vs. 178 mins). Skin-to-skin time was significantly longer, and complication rates were higher in donors with venous multiplicity (203 vs. 180 mins and 17.2% vs. 8.4%). Outcome of renal transplant recipients showed a significantly increased WIT (30 vs. 26.7 minutes), higher rate of DGF (13.9% vs. 6.9%) and lower rate of BPAR (6.9% vs. 13.9%) in patients receiving a kidney with AM compared to kidneys with singular anatomy. Conclusions We conclude that vascular multiplicity should not be a contra-indication, since it has little impact on clinical outcome in the donor as well as in renal transplant recipients. PMID:27077904
Lafranca, Jeffrey A; van Bruggen, Mark; Kimenai, Hendrikus J A N; Tran, Thi C K; Terkivatan, Türkan; Betjes, Michiel G H; IJzermans, Jan N M; Dor, Frank J M F
2016-01-01
Whether vascular multiplicity should be considered as contraindication and therefore 'extended donor criterion' is still under debate. Data from all live kidney donors from 2006-2013 (n = 951) was retrospectively reviewed. Vascular anatomy as imaged by MRA, CTA or other modalities was compared with intraoperative findings. Furthermore, the influence of vascular multiplicity on outcome of donors and recipients was studied. In 237 out of 951 donors (25%), vascular multiplicity was present. CTA had the highest accuracy levels regarding vascular anatomy assessment. Regarding outcome of donors with vascular multiplicity, warm ischemia time (WIT) and skin-to-skin time were significantly longer if arterial multiplicity (AM) was present (5.1 vs. 4.0 mins and 202 vs. 178 mins). Skin-to-skin time was significantly longer, and complication rates were higher in donors with venous multiplicity (203 vs. 180 mins and 17.2% vs. 8.4%). Outcome of renal transplant recipients showed a significantly increased WIT (30 vs. 26.7 minutes), higher rate of DGF (13.9% vs. 6.9%) and lower rate of BPAR (6.9% vs. 13.9%) in patients receiving a kidney with AM compared to kidneys with singular anatomy. We conclude that vascular multiplicity should not be a contra-indication, since it has little impact on clinical outcome in the donor as well as in renal transplant recipients.
Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop
NASA Technical Reports Server (NTRS)
Dessouky, Khaled
1989-01-01
The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included.
How to induce multiple delays in coupled chaotic oscillators?
NASA Astrophysics Data System (ADS)
Bhowmick, Sourav K.; Ghosh, Dibakar; Roy, Prodyot K.; Kurths, Jürgen; Dana, Syamal K.
2013-12-01
Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.
Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.
ERIC Educational Resources Information Center
Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido
1997-01-01
Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…
Forecasting the Relative and Cumulative Effects of Multiple Stressors on At-risk Populations
2011-08-01
Vitals (observed vital rates), Movement, Ranges, Barriers (barrier interactions), Stochasticity (a time series of stochasticity indices...Simulation Viewer are themselves stochastic . They can change each time it is run. B. 196 Analysis If multiple Census events are present in the life...30-year period. A monthly time series was generated for the 20th-century using monthly anomalies for temperature, precipitation, and percent
Tsuda, Yukihiro; Uchimura, Tomohiro
2016-01-01
Resonance-enhanced multiphoton ionization time-of-flight mass spectrometry was applied to measurements of multiple emulsions with no pretreatment; a method for the quantitative evaluation of aging was proposed. We prepared water-in-oil-in-water (W/O/W) multiple emulsions containing toluene and m-phenylenediamine. The samples were measured immediately following both preparation and after having been stirred for 24 h. Time profiles of the peak areas for each analyte species were obtained, and several intense spikes for toluene could be detected from each sample after stirring, which suggests that the concentration of toluene in the middle phase had increased during stirring. On the other hand, in the case of a W/O/W multiple emulsion containing phenol and m-phenylenediamine, spikes for m-phenylenediamine, rather than phenol, were detected after stirring. In the present study, the time-profile data were converted into a scatter plot in order to quantitatively evaluate the aging. As a result, the ratio of the plots where strong signal intensities of toluene were detected increased from 8.4% before stirring to 33.2% after stirring for 24 h. The present method could be a powerful tool for evaluating multiple emulsions, such as studies on the kinetics of the encapsulation and release of active ingredients.
ERIC Educational Resources Information Center
Chasmar, Justine
2017-01-01
This dissertation presents multiple studies with the purpose of understanding the connections between undergraduate engineering students' motivations, specifically students' Future Time Perspectives (FTPs) and Self-Regulated Learning (SRL). FTP refers to the views students hold about the future and how their perceptions of current tasks are…
Time-domain multiple-quantum NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitekamp, Daniel P.
1982-11-01
The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.
Best Practices of Multiple-Time SmartWay Award Winners
This EPA presentations focus is on the SmartWay Excellence Awards multiple winners, their best practices in protecting the environment, incorporating sustainability and reducing carbon pollution, along with benefits of being a partner.
Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.
Strickland, Karen; Worth, Allison; Kennedy, Catriona
2017-06-01
To explore the lived experience of the meaning of being diagnosed with multiple sclerosis on the individual's sense of self. The time leading up to and immediately following the diagnosis of multiple sclerosis has been identified as a time period shrouded by uncertainty and one where individuals have a heightened desire to seek accurate information and support. The diagnosis brings changes to the way one views the self which has consequences for biographical construction. A hermeneutic phenomenological study. In-depth qualitative interviews were conducted with 10 people recently diagnosed with multiple sclerosis. The data were analysed using interpretative phenomenological analysis. This study presents the three master themes: the 'road to diagnosis', 'the liminal self' and 'learning to live with multiple sclerosis'. The diagnosis of multiple sclerosis may be conceptualised as a 'threshold moment' where the individual's sense of self is disrupted from the former taken-for-granted way of being and propose a framework which articulates the transition. The findings highlight the need for healthcare professionals to develop interventions to better support people affected by a new diagnosis of multiple sclerosis. The conceptual framework which has been developed from the data and presented in this study provides a new way of understanding the impact of the diagnosis on the individual's sense of self when affected by a new diagnosis of multiple sclerosis. This framework can guide healthcare professionals in the provision of supportive care around the time of diagnosis. The findings provide practitioners with a new way of understanding the impact of the diagnosis on the individual's sense of self and a framework which can guide them in the provision of supportive care around the time of diagnosis. © 2016 John Wiley & Sons Ltd.
Real-Time Detection and Tracking of Multiple People in Laser Scan Frames
NASA Astrophysics Data System (ADS)
Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.
This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser-based trackers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-07-10
Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less
Support for fast comprehension of ICU data: visualization using metaphor graphics.
Horn, W; Popow, C; Unterasinger, L
2001-01-01
The time-oriented analysis of electronic patient records on (neonatal) intensive care units is a tedious and time-consuming task. Graphic data visualization should make it easier for physicians to assess the overall situation of a patient and to recognize essential changes over time. Metaphor graphics are used to sketch the most relevant parameters for characterizing a patient's situation. By repetition of the graphic object in 24 frames the situation of the ICU patient is presented in one display, usually summarizing the last 24 h. VIE-VISU is a data visualization system which uses multiples to present the change in the patient's status over time in graphic form. Each multiple is a highly structured metaphor graphic object. Each object visualizes important ICU parameters from circulation, ventilation, and fluid balance. The design using multiples promotes a focus on stability and change. A stable patient is recognizable at first sight, continuous improvement or worsening condition are easy to analyze, drastic changes in the patient's situation get the viewers attention immediately.
NASA Technical Reports Server (NTRS)
Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.
1995-01-01
This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.
Using Multiple FPGA Architectures for Real-time Processing of Low-level Machine Vision Functions
Thomas H. Drayer; William E. King; Philip A. Araman; Joseph G. Tront; Richard W. Conners
1995-01-01
In this paper, we investigate the use of multiple Field Programmable Gate Array (FPGA) architectures for real-time machine vision processing. The use of FPGAs for low-level processing represents an excellent tradeoff between software and special purpose hardware implementations. A library of modules that implement common low-level machine vision operations is presented...
Rational reduction of periodic propagators for off-period observations.
Blanton, Wyndham B; Logan, John W; Pines, Alexander
2004-02-01
Many common solid-state nuclear magnetic resonance problems take advantage of the periodicity of the underlying Hamiltonian to simplify the computation of an observation. Most of the time-domain methods used, however, require the time step between observations to be some integer or reciprocal-integer multiple of the period, thereby restricting the observation bandwidth. Calculations of off-period observations are usually reduced to brute force direct methods resulting in many demanding matrix multiplications. For large spin systems, the matrix multiplication becomes the limiting step. A simple method that can dramatically reduce the number of matrix multiplications required to calculate the time evolution when the observation time step is some rational fraction of the period of the Hamiltonian is presented. The algorithm implements two different optimization routines. One uses pattern matching and additional memory storage, while the other recursively generates the propagators via time shifting. The net result is a significant speed improvement for some types of time-domain calculations.
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.; Stevens, K.
1984-01-01
Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2015-01-01
We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 236 (64G) synaptic adaptors on a current high-end FPGA platform. PMID:26041985
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-11-01
We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.
Measurement and analysis of workload effects on fault latency in real-time systems
NASA Technical Reports Server (NTRS)
Woodbury, Michael H.; Shin, Kang G.
1990-01-01
The authors demonstrate the need to address fault latency in highly reliable real-time control computer systems. It is noted that the effectiveness of all known recovery mechanisms is greatly reduced in the presence of multiple latent faults. The presence of multiple latent faults increases the possibility of multiple errors, which could result in coverage failure. The authors present experimental evidence indicating that the duration of fault latency is dependent on workload. A synthetic workload generator is used to vary the workload, and a hardware fault injector is applied to inject transient faults of varying durations. This method makes it possible to derive the distribution of fault latency duration. Experimental results obtained from the fault-tolerant multiprocessor at the NASA Airlab are presented and discussed.
Three-dimensional time reversal communications in elastic media
Anderson, Brian E.; Ulrich, Timothy J.; Le Bas, Pierre-Yves; ...
2016-02-23
Our letter presents a series of vibrational communication experiments, using time reversal, conducted on a set of cast iron pipes. Time reversal has been used to provide robust, private, and clean communications in many underwater acoustic applications. Also, the use of time reversal to communicate along sections of pipes and through a wall is demonstrated here in order to overcome the complications of dispersion and multiple scattering. These demonstrations utilize a single source transducer and a single sensor, a triaxial accelerometer, enabling multiple channels of simultaneous communication streams to a single location.
The Effect of Talker Variability on Word Recognition in Preschool Children
Ryalls, Brigette Oliver; Pisoni, David B.
2012-01-01
In a series of experiments, the authors investigated the effects of talker variability on children’s word recognition. In Experiment 1, when stimuli were presented in the clear, 3- and 5-year-olds were less accurate at identifying words spoken by multiple talkers than those spoken by a single talker when the multiple-talker list was presented first. In Experiment 2, when words were presented in noise, 3-, 4-, and 5-year-olds again performed worse in the multiple-talker condition than in the single-talker condition, this time regardless of order; processing multiple talkers became easier with age. Experiment 3 showed that both children and adults were slower to repeat words from multiple-talker than those from single-talker lists. More important, children (but not adults) matched acoustic properties of the stimuli (specifically, duration). These results provide important new information about the development of talker normalization in speech perception and spoken word recognition. PMID:9149923
Illumina Unamplified Indexed Library Construction: An Automated Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Christopher A.; Sczyrba, Alexander; Cheng, Jan-Fang
Manual library construction is a limiting factor in Illumina sequencing. Constructing libraries by hand is costly, time-consuming, low-throughput, and ergonomically hazardous, and constructing multiple libraries introduces risk of library failure due to pipetting errors. The ability to construct multiple libraries simultaneously in automated fashion represents significant cost and time savings. Here we present a strategy to construct up to 96 unamplified indexed libraries using Illumina TruSeq reagents and a Biomek FX robotic platform. We also present data to indicate that this library construction method has little or no risk of cross-contamination between samples.
Immersed boundary lattice Boltzmann model based on multiple relaxation times
NASA Astrophysics Data System (ADS)
Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli
2012-01-01
As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.
Development and tests of MCP based timing and multiplicity detector for MIPs
NASA Astrophysics Data System (ADS)
Feofilov, G.; Kondratev, V.; Stolyarov, O.; Tulina, T.; Valiev, F.; Vinogradov, L.
2017-01-01
We present summary of technological developments and tests of the MCP based large area detector aimed at precise timing and charged particles multiplicity measurements. Results obtained in course of these developments of isochronous (simultaneity) precise signal readout, passive summation of 1 ns signals, fast (1 GHz) front-end electronics, miniature vacuum systems, etc. could be potentially interesting for a number of future applications in different fields.
Summarizing the incidence of adverse events using volcano plots and time intervals.
Zink, Richard C; Wolfinger, Russell D; Mann, Geoffrey
2013-01-01
Adverse event incidence analyses are a critical component for describing the safety profile of any new intervention. The results typically are presented in lengthy summary tables. For therapeutic areas where patients have frequent adverse events, analysis and interpretation are made more difficult by the sheer number and variety of events that occur. Understanding the risk in these instances becomes even more crucial. We describe a space-saving graphical summary that overcomes the limitations of traditional presentations of adverse events and improves interpretability of the safety profile. We present incidence analyses of adverse events graphically using volcano plots to highlight treatment differences. Data from a clinical trial of patients experiencing an aneurysmal subarachnoid hemorrhage are used for illustration. Adjustments for multiplicity are illustrated. Color is used to indicate the treatment with higher incidence; bubble size represents the total number of events that occur in the treatment arms combined. Adjustments for multiple comparisons are displayed in a manner to indicate clearly those events for which the difference between treatment arms is statistically significant. Furthermore, adverse events can be displayed by time intervals, with multiple volcano plots or animation to appreciate changes in adverse event risk over time. Such presentations can emphasize early differences across treatments that may resolve later or highlight events for which treatment differences may become more substantial with longer follow-up. Treatment arms are compared in a pairwise fashion. Volcano plots are space-saving tools that emphasize important differences between the adverse event profiles of two treatment arms. They can incorporate multiplicity adjustments in a manner that is straightforward to interpret and, by using time intervals, can illustrate how adverse event risk changes over the course of a clinical trial.
Real-time multiple-objective path search for in-vehicle route guidance systems
DOT National Transportation Integrated Search
1997-01-01
The application of multiple-objective route choice for in-vehicle route guidance systems is discussed. A bi-objective path search algorithm is presented and its use demonstrated. A concept of trip quality is introduced that is composed of two objecti...
A feedback control model for network flow with multiple pure time delays
NASA Technical Reports Server (NTRS)
Press, J.
1972-01-01
A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.
NASA Technical Reports Server (NTRS)
Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul
2005-01-01
InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.
Simplification of multiple Fourier series - An example of algorithmic approach
NASA Technical Reports Server (NTRS)
Ng, E. W.
1981-01-01
This paper describes one example of multiple Fourier series which originate from a problem of spectral analysis of time series data. The example is exercised here with an algorithmic approach which can be generalized for other series manipulation on a computer. The generalized approach is presently pursued towards applications to a variety of multiple series and towards a general purpose algorithm for computer algebra implementation.
A carrier sensed multiple access protocol for high data base rate ring networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, Kurt J.; Overstreet, C. Michael; Khanna, S.; Paterra, Frank
1990-01-01
The results of the study of a simple but effective media access protocol for high data rate networks are presented. The protocol is based on the fact that at high data rates networks can contain multiple messages simultaneously over their span, and that in a ring, nodes used to detect the presence of a message arriving from the immediate upstream neighbor. When an incoming signal is detected, the node must either abort or truncate a message it is presently sending. Thus, the protocol with local carrier sensing and multiple access is designated CSMA/RN. The performance of CSMA/RN with TTattempt and truncate is studied using analytic and simulation models. Three performance factors, wait or access time, service time and response or end-to-end travel time are presented. The service time is basically a function of the network rate, it changes by a factor of 1 between no load and full load. Wait time, which is zero for no load, remains small for load factors up to 70 percent of full load. Response time, which adds travel time while on the network to wait and service time, is mainly a function of network length, especially for longer distance networks. Simulation results are shown for CSMA/RN where messages are removed at the destination. A wide range of local and metropolitan area network parameters including variations in message size, network length, and node count are studied. Finally, a scaling factor based upon the ratio of message to network length demonstrates that the results, and hence, the CSMA/RN protocol, are applicable to wide area networks.
Study of optoelectronic switch for satellite-switched time-division multiple access
NASA Technical Reports Server (NTRS)
Su, Shing-Fong; Jou, Liz; Lenart, Joe
1987-01-01
The use of optoelectronic switching for satellite switched time division multiple access will improve the isolation and reduce the crosstalk of an IF switch matrix. The results are presented of a study on optoelectronic switching. Tasks include literature search, system requirements study, candidate switching architecture analysis, and switch model optimization. The results show that the power divided and crossbar switching architectures are good candidates for an IF switch matrix.
A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring
NASA Astrophysics Data System (ADS)
Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.
2012-11-01
The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.
A Survey of High Explosive-Induced Damage and Spall in Selected Metals Using Proton Radiography
NASA Astrophysics Data System (ADS)
Holtkamp, D. B.; Clark, D. A.; Ferm, E. N.; Gallegos, R. A.; Hammon, D.; Hemsing, W. F.; Hogan, G. E.; Holmes, V. H.; King, N. S. P.; Liljestrand, R.; Lopez, R. P.; Merrill, F. E.; Morris, C. L.; Morley, K. B.; Murray, M. M.; Pazuchanics, P. D.; Prestridge, K. P.; Quintana, J. P.; Saunders, A.; Schafer, T.; Shinas, M. A.; Stacy, H. L.
2004-07-01
Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns "shutter" time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented.
Inhibition-of-return at multiple locations in visual space.
Wright, R D; Richard, C M
1996-09-01
Inhibition-of-return is thought to be a visual search phenomenon characterized by delayed responses to targets presented at recently cued or recently fixated locations. We studied this inhibition effect following the simultaneous presentation of multiple location cues. The results indicated that response inhibition can be associated with as many as four locations at the same time. This suggests that a purely oculomotor account of inhibition-of-return is oversimplified. In short, although oculomotor processes appear to play a role in inhibition-of-return they may not tell the whole story about how it occurs because we can only program and execute eye movements to one location at a time.
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...
2016-11-05
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
HMC algorithm with multiple time scale integration and mass preconditioning
NASA Astrophysics Data System (ADS)
Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.
2006-01-01
We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.
NASA Astrophysics Data System (ADS)
Gad, Mohamed A.; Elshehaly, Mai H.; Gračanin, Denis; Elmongui, Hicham G.
2018-02-01
This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally variable data from multiple sources. The proposed technique uses trajectory information to determine the positions of time-enabled and spatially variable scatter data at any given time through a combination of along trajectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA enables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the TTA can be applied to a wide range of multiple-source data.
ASSISTments Dataset from Multiple Randomized Controlled Experiments
ERIC Educational Resources Information Center
Selent, Douglas; Patikorn, Thanaporn; Heffernan, Neil
2016-01-01
In this paper, we present a dataset consisting of data generated from 22 previously and currently running randomized controlled experiments inside the ASSISTments online learning platform. This dataset provides data mining opportunities for researchers to analyze ASSISTments data in a convenient format across multiple experiments at the same time.…
ERIC Educational Resources Information Center
Lenkeit, Jenny; Schwippert, Knut; Knigge, Michel
2018-01-01
Research provides evidence that gender, immigrant background and socio-economic characteristics present multiple disadvantaging characteristics that change their relative importance and configurations over time. When evaluating inequalities researchers tend to focus on one particular aspect and often use composite measures when evaluating…
Yeung, Edward S.; Gong, Xiaoyi
2004-09-07
The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.
Dandin, Özgür; Akpak, Yaşam Kemal; Karakaş, Dursun Özgür; Hazer, Batuhan; Ergin, Tuncer; Dandinoğlu, Taner; Teomete, Uygar
2014-01-01
INTRODUCTION Multiple sclerosis is a chronic demyelinating neurological disease and causing a variety of neurological symptoms, including discomfort of anorectal function. Constipation and faecal incontinence present as anorectal dysfunction in MS and anal manometry, colonic transit time, electromyography, and defecography can be used for assessment. PRESENTATION OF CASE We presented a thirty-three years old woman with rare condition of anorectal dysfunction in multiple sclerosis. Anal manometry, defecography were done, and synchronously anal incontinence and mechanical constipation due to rectocele and anismus were detected in this patient. DISCUSSION Although anal incontinence and constipation are seen often in patients with multiple sclerosis, in the literature, coexistence of animus, rectocele and anal incontinence are quite rare. CONCLUSION Defecography and anal manometry are useful diagnostic methods for demonstration of anorectal dysfuntions in patients with MS. PMID:25460483
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
NASA Astrophysics Data System (ADS)
Razzak, M. A.; Alam, M. Z.; Sharif, M. N.
2018-03-01
In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.
Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times
Lee, Jeehyun; Chambers, Delores; Chambers, Edgar
2013-01-01
Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138
Real-time associative memory with photorefractive crystal KNSBN and liquid-crystal optical switches
NASA Astrophysics Data System (ADS)
Xu, Haiying; Yuan, Yang Y.; Yu, Youlong; Xu, Kebin; Xu, Yuhuan; Zhu, De-Rui
1990-05-01
We present a real-time holographic associative memory implemented with photorefractive KNSBN : Co crystal as memory element and liquid crystal electrooptical switches as reflective thresholding device. The experimental results show that the system has real-time multiple-image storage and recall function.
Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing
NASA Technical Reports Server (NTRS)
Rost, Robert W.; Brown, David L.
1988-01-01
An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing.
Comparing Learner Community Behavior in Multiple Presentations of a Massive Open Online Course
ERIC Educational Resources Information Center
Gallagher, Silvia Elena; Savage, Timothy
2015-01-01
Massive Online Open Courses (MOOCs) can create large scale communities of learners who collaborate, interact and discuss learning materials and activities. MOOCs are often delivered multiple times with similar content to different cohorts of learners. However, research into the differences of learner communication, behavior and expectation between…
Comparing Learner Community Behavior in Multiple Presentations of a Massive Open Online Course
ERIC Educational Resources Information Center
Gallagher, Silvia Elena; Savage, Timothy
2016-01-01
Massive Online Open Courses (MOOCs) can create large scale communities of learners who collaborate, interact and discuss learning materials and activities. MOOCs are often delivered multiple times with similar content to different cohorts of learners. However, research into the differences of learner communication, behavior and expectation between…
Wang, Min; Ge, Shuzhi Sam; Hong, Keum-Shik
2010-11-01
This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the actual control u. The separation technique is introduced to decompose unknown functions of all time-varying delayed states into a series of continuous functions of each delayed state. The novel Lyapunov-Krasovskii functionals are employed to compensate for the unknown functions of current delayed state, which is effectively free from any restriction on unknown time-delay functions and overcomes the circular construction of controller caused by the neural approximation of a function of u and [Formula: see text] . Novel continuous functions are introduced to overcome the design difficulty deduced from the use of one adaptive parameter. To achieve uniformly ultimate boundedness of all the signals in the closed-loop system and tracking performance, control gains are effectively modified as a dynamic form with a class of even function, which makes stability analysis be carried out at the present of multiple time-varying delays. Simulation studies are provided to demonstrate the effectiveness of the proposed scheme.
Multiple rings around Wolf-Rayet evolution
NASA Technical Reports Server (NTRS)
Marston, A. P.
1995-01-01
We present optical narrow-band imaging of multiple rings existing around galactic Wolf-Rayet (WR) stars. The existence of multiple rings of material around Wolf-Rayet stars clearly illustrates the various phases of evolution that massive stars go through. The objects presented here show evidence of a three stage evolution. O stars produce an outer ring with the cavity being partially filled by ejecta from a red supergiant of luminous blue variable phase. A wind from the Wolf-Rayet star then passes into the ejecta materials. A simple model is presented for this three stage evolution. Using observations of the size and dynamics of the rings allows estimates of time scales for each stage of the massive star evolution. These are consistent with recent theoretical evolutionary models. Mass estimates for the ejecta, from the model presented, are consistent with previous ring nebula mass estimates from IRAS data, showing a number of ring nebulae to have large masses, most of which must in be in the form of neutral material. Finally, we illustrate how further observations will allow the determination of many of the parameters of the evolution of massive stars such as total mass loss, average mass loss rates, stellar abundances, and total time spent in each evolutionary phase.
Multiple Sclerosis and the Family Physician
Sky, Ruth
1977-01-01
Multiple sclerosis is difficult to diagnose since it develops over a period of time and the symptoms and signs are scattered throughout the central nervous system. Because there is no specific treatment, the problems of management are especially challenging. Case histories are presented to support the concept that multiple sclerosis is a family and community concern. Family physicians are urged to maintain a supportive role and an interested attitude towards patients with multiple sclerosis. These patients and their families have urgent and continuing needs for their doctors' skills. PMID:21304869
NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites
NASA Technical Reports Server (NTRS)
Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.;
2006-01-01
At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2016-12-01
In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5 n equilibrium points located in ℜ n , and 3 n of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Van Dongen, H. P.; Olofsen, E.; VanHartevelt, J. H.; Kruyt, E. W.; Dinges, D. F. (Principal Investigator)
1999-01-01
Periodogram analysis of unequally spaced time-series, as part of many biological rhythm investigations, is complicated. The mathematical framework is scattered over the literature, and the interpretation of results is often debatable. In this paper, we show that the Lomb-Scargle method is the appropriate tool for periodogram analysis of unequally spaced data. A unique procedure of multiple period searching is derived, facilitating the assessment of the various rhythms that may be present in a time-series. All relevant mathematical and statistical aspects are considered in detail, and much attention is given to the correct interpretation of results. The use of the procedure is illustrated by examples, and problems that may be encountered are discussed. It is argued that, when following the procedure of multiple period searching, we can even benefit from the unequal spacing of a time-series in biological rhythm research.
Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2018-02-01
A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.
Matrix multiplication on the Intel Touchstone Delta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huss-Lederman, S.; Jacobson, E.M.; Tsao, A.
1993-12-31
Matrix multiplication is a key primitive in block matrix algorithms such as those found in LAPACK. We present results from our study of matrix multiplication algorithms on the Intel Touchstone Delta, a distributed memory message-passing architecture with a two-dimensional mesh topology. We obtain an implementation that uses communication primitives highly suited to the Delta and exploits the single node assembly-coded matrix multiplication. Our algorithm is completely general, able to deal with arbitrary mesh aspect ratios and matrix dimensions, and has achieved parallel efficiency of 86% with overall peak performance in excess of 8 Gflops on 256 nodes for an 8800more » {times} 8800 matrix. We describe our algorithm design and implementation, and present performance results that demonstrate scalability and robust behavior over varying mesh topologies.« less
Past, present, and future of water data delivery from the U.S. Geological Survey
Hirsch, Robert M.; Fisher, Gary T.
2014-01-01
We present an overview of national water databases managed by the U.S. Geological Survey, including surface-water, groundwater, water-quality, and water-use data. These are readily accessible to users through web interfaces and data services. Multiple perspectives of data are provided, including search and retrieval of real-time data and historical data, on-demand current conditions and alert services, data compilations, spatial representations, analytical products, and availability of data across multiple agencies.
Peak-Seeking Control Using Gradient and Hessian Estimates
NASA Technical Reports Server (NTRS)
Ryan, John J.; Speyer, Jason L.
2010-01-01
A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented.
Multiplicity counting from fission detector signals with time delay effects
NASA Astrophysics Data System (ADS)
Nagy, L.; Pázsit, I.; Pál, L.
2018-03-01
In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).
A centralized audio presentation manager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, A.L. III; Blattner, M.M.
1994-05-16
The centralized audio presentation manager addresses the problems which occur when multiple programs running simultaneously attempt to use the audio output of a computer system. Time dependence of sound means that certain auditory messages must be scheduled simultaneously, which can lead to perceptual problems due to psychoacoustic phenomena. Furthermore, the combination of speech and nonspeech audio is examined; each presents its own problems of perceptibility in an acoustic environment composed of multiple auditory streams. The centralized audio presentation manager receives abstract parameterized message requests from the currently running programs, and attempts to create and present a sonic representation in themore » most perceptible manner through the use of a theoretically and empirically designed rule set.« less
[Current aspects of therapy conversion for multiple sclerosis].
Kolber, P; Luessi, F; Meuth, S G; Klotz, L; Korn, T; Trebst, C; Tackenberg, B; Kieseier, B; Kümpfel, T; Fleischer, V; Tumani, H; Wildemann, B; Lang, M; Flachenecker, P; Meier, U; Brück, W; Limmroth, V; Haghikia, A; Hartung, H-P; Stangel, M; Hohlfeld, R; Hemmer, B; Gold, R; Wiendl, H; Zipp, F
2015-10-01
In recent years the approval of new substances has led to a substantial increase in the number of course-modifying immunotherapies available for multiple sclerosis. Therapy conversion therefore represents an increasing challenge. The treatment options sometimes show complex adverse effect profiles and necessitate a long-term and comprehensive monitoring. This article presents an overview of therapy conversion of immunotherapies for multiple sclerosis in accordance with the recommendations of the Disease-Related Competence Network for Multiple Sclerosis and the German Multiple Sclerosis Society as well as the guidelines on diagnostics and therapy for multiple sclerosis of the German Society of Neurology and the latest research results. At the present point in time it should be noted that no studies have been carried out for most of the approaches for therapy conversion given here; however, the recommendations are based on theoretical considerations and therefore correspond to recommendations at the level of expert consensus, which is currently essential for the clinical daily routine.
Digital processing of array seismic recordings
Ryall, Alan; Birtill, John
1962-01-01
This technical letter contains a brief review of the operations which are involved in digital processing of array seismic recordings by the methods of velocity filtering, summation, cross-multiplication and integration, and by combinations of these operations (the "UK Method" and multiple correlation). Examples are presented of analyses by the several techniques on array recordings which were obtained by the U.S. Geological Survey during chemical and nuclear explosions in the western United States. Seismograms are synthesized using actual noise and Pn-signal recordings, such that the signal-to-noise ratio, onset time and velocity of the signal are predetermined for the synthetic record. These records are then analyzed by summation, cross-multiplication, multiple correlation and the UK technique, and the results are compared. For all of the examples presented, analysis by the non-linear techniques of multiple correlation and cross-multiplication of the traces on an array recording are preferred to analyses by the linear operations involved in summation and the UK Method.
Time history solution program, L225 (TEV126). Volume 1: Engineering and usage
NASA Technical Reports Server (NTRS)
Kroll, R. I.; Tornallyay, A.; Clemmons, R. E.
1979-01-01
Volume 1 of a two volume document is presented. The usage of the convolution program L225 (TEV 126) is described. The program calculates the time response of a linear system by convoluting the impulsive response function with the time-dependent excitation function. The convolution is performed as a multiplication in the frequency domain. Fast Fourier transform techniques are used to transform the product back into the time domain to obtain response time histories. A brief description of the analysis used is presented.
Monterial, Mateusz; Marleau, Peter; Paff, Marc; ...
2017-01-20
Here, we present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with bothmore » multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.« less
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Paff, Marc; Clarke, Shaun; Pozzi, Sara
2017-04-01
We present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with both multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.
Triple synchronous primary lung cancer: a case report and review of the literature.
Kashif, Muhammad; Ayyadurai, Puvanalingam; Thanha, Luong; Khaja, Misbahuddin
2017-09-01
Multiple primary lung cancer may present in synchronous or metachronous form. Synchronous multiple primary lung cancer is defined as multiple lung lesions that develop at the same time, whereas metachronous multiple primary lung cancer describes multiple lung lesions that develop at different times, typically following treatment of the primary lung cancer. Patients with previously treated lung cancer are at risk for developing metachronous lung cancer, but with the success of computed tomography and positron emission tomography, the ability to detect both synchronous and metachronous lung cancer has increased. We present a case of a 63-year-old Hispanic man who came to our hospital for evaluation of chest pain, dry cough, and weight loss. He had recently been diagnosed with adenocarcinoma in the right upper lobe, with a poorly differentiated carcinoma favoring squamous cell cancer based on bronchoalveolar lavage of the right lower lobe for which treatment was started. Later, bronchoscopy incidentally revealed the patient to have an endobronchial lesion that turned out to be mixed small and large cell neuroendocrine lung cancer. Our patient had triple synchronous primary lung cancers that histologically were variant primary cancers. Triple synchronous primary lung cancer management continues to be a challenge. Our patient's case suggests that multiple primary lung cancers may still occur at a greater rate than can be detected by high-resolution computed tomography.
Mission Concepts and Operations for Asteroid Mitigation Involving Multiple Gravity Tractors
NASA Technical Reports Server (NTRS)
Foster, Cyrus; Bellerose, Julie; Jaroux, Belgacem; Mauro, David
2012-01-01
The gravity tractor concept is a proposed method to deflect an imminent asteroid impact through gravitational tugging over a time scale of years. In this study, we present mission scenarios and operational considerations for asteroid mitigation efforts involving multiple gravity tractors. We quantify the deflection performance improvement provided by a multiple gravity tractor campaign and assess its sensitivity to staggered launches. We next explore several proximity operation strategies to accommodate multiple gravity tractors at a single asteroid including formation-flying and mechanically-docked configurations. Finally, we utilize 99942 Apophis as an illustrative example to assess the performance of a multiple gravity tractor campaign.
ERIC Educational Resources Information Center
Stiller, Klaus D.; Petzold, Kirstin; Zinnbauer, Peter
2011-01-01
The superiority of learner-paced over system-paced instructions was demonstrated in multiple experiments. In these experiments, the system-paced presentations were highly speeded, causing cognitive overload, while the learner-paced instructions allowed adjustments of the presentational flow to the learner's needs by pacing facilities, mostly…
Multiple Roles for Time in Short-Term Memory: Evidence from Serial Recall of Order and Timing
ERIC Educational Resources Information Center
Farrell, Simon
2008-01-01
Three experiments are reported that examine the relationship between short-term memory for time and order information, and the more specific claim that order memory is driven by a timing signal. Participants were presented with digits spaced irregularly in time and postcued (Experiments 1 and 2) or precued (Experiment 3) to recall the order or…
Mommsen, Philipp; Bradt, Nikolas; Zeckey, Christian; Andruszkow, Hagen; Petri, Max; Frink, Michael; Hildebrand, Frank; Krettek, Christian; Probst, Christian
2012-01-01
In consideration of rising cost pressure in the German health care system, the usefulness of helicopter emergency medical service (HEMS) in terms of time- and cost-effectiveness is controversially discussed. The aim of the present study was to investigate whether HEMS is associated with significantly decreased arrival and transportation times compared to ground EMS. In a retrospective study, we evaluated 1,548 primary emergency missions for time sensitive diagnoses (multiple trauma, traumatic brain and burn injury, heart-attack, stroke, and pediatric emergency) performed by a German HEMS using the medical database, NADIN, of the German Air Rescue Service. Arrival and transportation times were compared to calculated ground EMS times. HEMS showed significantly reduced arrival times at the scene in case of heart-attack, stroke and pediatric emergencies. In contrast, HEMS and ground EMS showed comparable arrival times in patients with multiple trauma, traumatic brain and burn injury due to an increased flight distance. HEMS showed a significantly decreased transportation time to the closest centre capable of specialist care in all diagnosis groups (p<0.001). The results of the present study indicate the time-effectiveness of German air ambulance services with significantly decreased transportation times.
objective of this report is to characterize well-being at multiple scales in order to evaluate the relationship of service flows in terms of sustainable well-being. The HWBI results presented represent snapshot assessments for the 2000-2010 time period. Based on the spatial and t...
Detection of abrupt changes in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1984-01-01
Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed.
Radiation exposure and performance of multiple burn LEO-GEO orbit transfer trajectories
NASA Technical Reports Server (NTRS)
Gorland, S. H.
1985-01-01
Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple burn orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g acceleration, cryogenic hydrogen-oxygen chemical prpulsion system to a continuous burn, 0.001 g acceleration, hydrogen fueled resistojet propulsion system with a trip time of 60 days.
Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID.
Khadka, Grishma; Hwang, Suk-Seung
2017-01-01
Radio-frequency identification (RFID) is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other's communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD) technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.
Impact of doping on the carrier dynamics in graphene
Kadi, Faris; Winzer, Torben; Knorr, Andreas; Malic, Ermin
2015-01-01
We present a microscopic study on the impact of doping on the carrier dynamics in graphene, in particular focusing on its influence on the technologically relevant carrier multiplication in realistic, doped graphene samples. Treating the time- and momentum-resolved carrier-light, carrier-carrier, and carrier-phonon interactions on the same microscopic footing, the appearance of Auger-induced carrier multiplication up to a Fermi level of 300 meV is revealed. Furthermore, we show that doping favors the so-called hot carrier multiplication occurring within one band. Our results are directly compared to recent time-resolved ARPES measurements and exhibit an excellent agreement on the temporal evolution of the hot carrier multiplication for n- and p-doped graphene. The gained insights shed light on the ultrafast carrier dynamics in realistic, doped graphene samples. PMID:26577536
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Aganin, Alexei
2000-01-01
The transonic nozzle transmission problem and the open rotor noise radiation problem are solved computationally. Both are multiple length scales problems. For efficient and accurate numerical simulation, the multiple-size-mesh multiple-time-step Dispersion-Relation-Preserving scheme is used to calculate the time periodic solution. To ensure an accurate solution, high quality numerical boundary conditions are also needed. For the nozzle problem, a set of nonhomogeneous, outflow boundary conditions are required. The nonhomogeneous boundary conditions not only generate the incoming sound waves but also, at the same time, allow the reflected acoustic waves and entropy waves, if present, to exit the computation domain without reflection. For the open rotor problem, there is an apparent singularity at the axis of rotation. An analytic extension approach is developed to provide a high quality axis boundary treatment.
Accurate Sample Time Reconstruction of Inertial FIFO Data.
Stieber, Sebastian; Dorsch, Rainer; Haubelt, Christian
2017-12-13
In the context of modern cyber-physical systems, the accuracy of underlying sensor data plays an increasingly important role in sensor data fusion and feature extraction. The raw events of multiple sensors have to be aligned in time to enable high quality sensor fusion results. However, the growing number of simultaneously connected sensor devices make the energy saving data acquisition and processing more and more difficult. Hence, most of the modern sensors offer a first-in-first-out (FIFO) interface to store multiple data samples and to relax timing constraints, when handling multiple sensor devices. However, using the FIFO interface increases the negative influence of individual clock drifts-introduced by fabrication inaccuracies, temperature changes and wear-out effects-onto the sampling data reconstruction. Furthermore, additional timing offset errors due to communication and software latencies increases with a growing number of sensor devices. In this article, we present an approach for an accurate sample time reconstruction independent of the actual clock drift with the help of an internal sensor timer. Such timers are already available in modern sensors, manufactured in micro-electromechanical systems (MEMS) technology. The presented approach focuses on calculating accurate time stamps using the sensor FIFO interface in a forward-only processing manner as a robust and energy saving solution. The proposed algorithm is able to lower the overall standard deviation of reconstructed sampling periods below 40 μ s, while run-time savings of up to 42% are achieved, compared to single sample acquisition.
Tian, Li; Tang, Anliu; Zhang, Xian; Mei, Zhen; Liu, Fen; Li, Jingbo; Li, Xiayu; Ai, Feiyan; Wang, Xiaoyan; Shen, Shourong
2017-06-05
AL Amyloidosis is known to be a systemic disease affecting multiple organs and tissue while it's rare that patients present with gastrointestinal symptoms at first and later develop multiple-organ dysfuction. Clinical signs are not specific and the diagnosis is rarely given before performing immunofixation and endoscopy with multiple biopsies. We would like to emphasize the value of precise diagnostic process of AL amyloidosis. In this case report, we describe a 56-year-old man who presented with recurrent periumbilical pain for 4 months and gradually worsened over a month. After a series of tests, he was finally diagnosed with primary systemic AL amyloidosis. He was treated with a chemotherapy regimen (Melphalan, dexamethasone and thalidomide) achieving a good clinical response. On account of the high misdiagnosis rate, establishing the most precise diagnosis in first time with typing amyloidogenic protein becomes increasingly vital. Although the presenting feature is usually nonspecific, AL amyloidosis ought to be considered when multiple organs are involved in a short period.
Fessenden, S W; Hackmann, T J; Ross, D A; Foskolos, A; Van Amburgh, M E
2017-09-01
Microbial samples from 4 independent experiments in lactating dairy cattle were obtained and analyzed for nutrient composition, AA digestibility, and AA profile after multiple hydrolysis times ranging from 2 to 168 h. Similar bacterial and protozoal isolation techniques were used for all isolations. Omasal bacteria and protozoa samples were analyzed for AA digestibility using a new in vitro technique. Multiple time point hydrolysis and least squares nonlinear regression were used to determine the AA content of omasal bacteria and protozoa, and equivalency comparisons were made against single time point hydrolysis. Formalin was used in 1 experiment, which negatively affected AA digestibility and likely limited the complete release of AA during acid hydrolysis. The mean AA digestibility was 87.8 and 81.6% for non-formalin-treated bacteria and protozoa, respectively. Preservation of microbe samples in formalin likely decreased recovery of several individual AA. Results from the multiple time point hydrolysis indicated that Ile, Val, and Met hydrolyzed at a slower rate compared with other essential AA. Singe time point hydrolysis was found to be nonequivalent to multiple time point hydrolysis when considering biologically important changes in estimated microbial AA profiles. Several AA, including Met, Ile, and Val, were underpredicted using AA determination after a single 24-h hydrolysis. Models for predicting postruminal supply of AA might need to consider potential bias present in postruminal AA flow literature when AA determinations are performed after single time point hydrolysis and when using formalin as a preservative for microbial samples. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Using Constant Time Delay to Teach Braille Word Recognition
ERIC Educational Resources Information Center
Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah
2014-01-01
Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…
A non-isotropic multiple-scale turbulence model
NASA Technical Reports Server (NTRS)
Chen, C. P.
1990-01-01
A newly developed non-isotropic multiple scale turbulence model (MS/ASM) is described for complex flow calculations. This model focuses on the direct modeling of Reynolds stresses and utilizes split-spectrum concepts for modeling multiple scale effects in turbulence. Validation studies on free shear flows, rotating flows and recirculating flows show that the current model perform significantly better than the single scale k-epsilon model. The present model is relatively inexpensive in terms of CPU time which makes it suitable for broad engineering flow applications.
NASA Technical Reports Server (NTRS)
Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.;
2016-01-01
Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.
An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft
NASA Technical Reports Server (NTRS)
Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2010-01-01
The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.
Acoustic MIMO communications in a very shallow water channel
NASA Astrophysics Data System (ADS)
Zhou, Yuehai; Cao, Xiuling; Tong, Feng
2015-12-01
Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.
Matute-Blanch, Clara; Villar, Luisa M; Álvarez-Cermeño, José C; Rejdak, Konrad; Evdoshenko, Evgeniy; Makshakov, Gleb; Nazarov, Vladimir; Lapin, Sergey; Midaglia, Luciana; Vidal-Jordana, Angela; Drulovic, Jelena; García-Merino, Antonio; Sánchez-López, Antonio J; Havrdova, Eva; Saiz, Albert; Llufriu, Sara; Alvarez-Lafuente, Roberto; Schroeder, Ina; Zettl, Uwe K; Galimberti, Daniela; Ramió-Torrentà, Lluís; Robles, René; Quintana, Ester; Hegen, Harald; Deisenhammer, Florian; Río, Jordi; Tintoré, Mar; Sánchez, Alex; Montalban, Xavier; Comabella, Manuel
2018-04-01
The prognostic role of cerebrospinal fluid molecular biomarkers determined in early pathogenic stages of multiple sclerosis has yet to be defined. In the present study, we aimed to investigate the prognostic value of chitinase 3 like 1 (CHI3L1), neurofilament light chain, and oligoclonal bands for conversion to clinically isolated syndrome and to multiple sclerosis in 75 patients with radiologically isolated syndrome. Cerebrospinal fluid levels of CHI3L1 and neurofilament light chain were measured by enzyme-linked immunosorbent assay. Uni- and multivariable Cox regression models including as covariates age at diagnosis of radiologically isolated syndrome, number of brain lesions, sex and treatment were used to investigate associations between cerebrospinal fluid CHI3L1 and neurofilament light chain levels and time to conversion to clinically isolated syndrome and multiple sclerosis. Neurofilament light chain levels and oligoclonal bands were independent risk factors for the development of clinically isolated syndrome (hazard ratio = 1.02, P = 0.019, and hazard ratio = 14.7, P = 0.012, respectively) and multiple sclerosis (hazard ratio = 1.03, P = 0.003, and hazard ratio = 8.9, P = 0.046, respectively). The best cut-off to classify cerebrospinal fluid neurofilament light chain levels into high and low was 619 ng/l, and high neurofilament light chain levels were associated with a trend to shorter time to clinically isolated syndrome (P = 0.079) and significant shorter time to multiple sclerosis (P = 0.017). Similarly, patients with radiologically isolated syndrome presenting positive oligoclonal bands converted faster to clinically isolated syndrome and multiple sclerosis (P = 0.005 and P = 0.008, respectively). The effects of high neurofilament light chain levels shortening time to clinically isolated syndrome and multiple sclerosis were more pronounced in radiologically isolated syndrome patients with ≥37 years compared to younger patients. Cerebrospinal fluid CHI3L1 levels did not influence conversion to clinically isolated syndrome and multiple sclerosis in radiologically isolated syndrome patients. Overall, these findings suggest that cerebrospinal neurofilament light chain levels and oligoclonal bands are independent predictors of clinical conversion in patients with radiologically isolated syndrome. The association with a faster development of multiple sclerosis reinforces the importance of cerebrospinal fluid analysis in patients with radiologically isolated syndrome.
A multiple imputation strategy for sequential multiple assignment randomized trials
Shortreed, Susan M.; Laber, Eric; Stroup, T. Scott; Pineau, Joelle; Murphy, Susan A.
2014-01-01
Sequential multiple assignment randomized trials (SMARTs) are increasingly being used to inform clinical and intervention science. In a SMART, each patient is repeatedly randomized over time. Each randomization occurs at a critical decision point in the treatment course. These critical decision points often correspond to milestones in the disease process or other changes in a patient’s health status. Thus, the timing and number of randomizations may vary across patients and depend on evolving patient-specific information. This presents unique challenges when analyzing data from a SMART in the presence of missing data. This paper presents the first comprehensive discussion of missing data issues typical of SMART studies: we describe five specific challenges, and propose a flexible imputation strategy to facilitate valid statistical estimation and inference using incomplete data from a SMART. To illustrate these contributions, we consider data from the Clinical Antipsychotic Trial of Intervention and Effectiveness (CATIE), one of the most well-known SMARTs to date. PMID:24919867
Geiser, Christian; Bishop, Jacob; Lockhart, Ginger; Shiffman, Saul; Grenard, Jerry L.
2013-01-01
Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demonstrate that using the ML-SEM rather than the SL-SEM framework to estimate the parameters of these models can be practical when the study involves (1) a large number of time points, (2) individually-varying times of observation, (3) unequally spaced time intervals, and/or (4) incomplete data. Despite the practical advantages of the ML-SEM approach under these circumstances, there are also some limitations that researchers should consider. We present an application to an ecological momentary assessment study (N = 158 youths with an average of 23.49 observations of positive mood per person) using the software Mplus (Muthén and Muthén, 1998–2012) and discuss advantages and disadvantages of using the ML-SEM approach to estimate the parameters of LST and multiple-indicator LGC models. PMID:24416023
Multiple-Bit Differential Detection of OQPSK
NASA Technical Reports Server (NTRS)
Simon, Marvin
2005-01-01
A multiple-bit differential-detection method has been proposed for the reception of radio signals modulated with offset quadrature phase-shift keying (offset QPSK or OQPSK). The method is also applicable to other spectrally efficient offset quadrature modulations. This method is based partly on the same principles as those of a multiple-symbol differential-detection method for M-ary QPSK, which includes QPSK (that is, non-offset QPSK) as a special case. That method was introduced more than a decade ago by the author of the present method as a means of improving performance relative to a traditional (two-symbol observation) differential-detection scheme. Instead of symbol-by-symbol detection, both that method and the present one are based on a concept of maximum-likelihood sequence estimation (MLSE). As applied to the modulations in question, MLSE involves consideration of (1) all possible binary data sequences that could have been received during an observation time of some number, N, of symbol periods and (2) selection of the sequence that yields the best match to the noise-corrupted signal received during that time. The performance of the prior method was shown to range from that of traditional differential detection for short observation times (small N) to that of ideal coherent detection (with differential encoding) for long observation times (large N).
Periprosthetic joint infection: are patients with multiple prosthetic joints at risk?
Jafari, S Mehdi; Casper, David S; Restrepo, Camilo; Zmistowski, Benjamin; Parvizi, Javad; Sharkey, Peter F
2012-06-01
Patients who present with a periprosthetic joint infection in a single joint may have multiple prosthetic joints. The risk of these patients developing a subsequent infection in another prosthetic joint is unknown. Our purposes were (1) to identify the risk of developing a subsequent infection in another prosthetic joint and (2) to describe the time span and organism profile to the second prosthetic infection. We retrospectively identified 55 patients with periprosthetic joint infection who had another prosthetic joint in place at the time of presentation. Of the 55 patients, 11 (20%) developed a periprosthetic joint infection in a second joint. The type of organism was the same as the first infection in 4 (36%) of 11 patients. The time to developing a second infection averaged 2.0 years (range, 0-6.9 years). Copyright © 2012 Elsevier Inc. All rights reserved.
Boyce, James R [Williamsburg, VA
2011-02-08
A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
ERIC Educational Resources Information Center
Herlofsky, Stacey M.; Edmonds, Lisa A.
2013-01-01
Extensive evidence has shown that presentation of a word (target) following a related word (prime) results in faster reaction times compared to unrelated words. Two primes preceding a target have been used to examine the effects of multiple influences on a target. Several studies have observed greater, or additive, priming effects of multiple…
ERIC Educational Resources Information Center
Ten Brug, Annet; Munde, Vera S.; van der Putten, Annette A.J.; Vlaskamp, Carla
2015-01-01
Introduction: Multi-sensory storytelling (MSST) is a storytelling method designed for individuals with profound intellectual and multiple disabilities (PIMD). It is essential that listeners be alert during MSST, so that they become familiar with their personalised stories. Repetition and the presentation of stimuli are likely to affect the…
All Set! Evidence of Simultaneous Attentional Control Settings for Multiple Target Colors
ERIC Educational Resources Information Center
Irons, Jessica L.; Folk, Charles L.; Remington, Roger W.
2012-01-01
Although models of visual search have often assumed that attention can only be set for a single feature or property at a time, recent studies have suggested that it may be possible to maintain more than one attentional control setting. The aim of the present study was to investigate whether spatial attention could be guided by multiple attentional…
ERIC Educational Resources Information Center
Boekaerts, Monique; Rozendaal, Jeroen S.
2010-01-01
The present study used multiple calibration indices to capture the complex picture of fifth graders' calibration of feeling of confidence in mathematics. Specifically, the effects of gender, type of mathematical problem, instruction method, and time of measurement (before and after problem solving) on calibration skills were investigated. Fourteen…
ERIC Educational Resources Information Center
Johnson, H. Durell; LaVoie, Joseph C.; Eggenburg, Erin; Mahoney, Molly A.; Pounds, Lea
2001-01-01
One frequently used research protocol involves presenting several conflict scenarios to participants during a single session. However, in real-life situations multiple conflicts rarely occur within short periods of time, and the nature of presentation may change adolescents' reports of conflict behaviors. Trend analyses of responses suggest that…
NASA Astrophysics Data System (ADS)
Gottwald, Georg; Melbourne, Ian
2013-04-01
Whereas diffusion limits of stochastic multi-scale systems have a long and successful history, the case of constructing stochastic parametrizations of chaotic deterministic systems has been much less studied. We present rigorous results of convergence of a chaotic slow-fast system to a stochastic differential equation with multiplicative noise. Furthermore we present rigorous results for chaotic slow-fast maps, occurring as numerical discretizations of continuous time systems. This raises the issue of how to interpret certain stochastic integrals; surprisingly the resulting integrals of the stochastic limit system are generically neither of Stratonovich nor of Ito type in the case of maps. It is shown that the limit system of a numerical discretisation is different to the associated continuous time system. This has important consequences when interpreting the statistics of long time simulations of multi-scale systems - they may be very different to the one of the original continuous time system which we set out to study.
Master of Puppets: Cooperative Multitasking for In Situ Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Lukic, Zarija
2016-01-01
Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. Here, we present a novel design for running multiple codes in situ: using coroutines and position-independent executables we enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson, an implementation of ourmore » design, and illustrate its versatility by tackling analysis tasks with different computational requirements. This design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The techniques we present can also be integrated into other in situ frameworks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monozov, Dmitriy; Lukie, Zarija
2016-04-01
Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. The developers present a novel design for running multiple codes in situ: using coroutines and position-independent executables they enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. They present Henson, an implementation of ourmore » design, and illustrate its versatility by tackling analysis tasks with different computational requirements. Our design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The presented techniques can also be integrated into other in situ frameworks.« less
Tool for simplifying the complex interactions within resilient communities
NASA Astrophysics Data System (ADS)
Stwertka, C.; Albert, M. R.; White, K. D.
2016-12-01
In recent decades, scientists have observed and documented impacts from climate change that will impact multiple sectors, will be impacted by decisions from multiple sectors, and will change over time. This complex human-engineered system has a large number of moving, interacting parts, which are interdependent and evolve over time towards their purpose. Many of the existing resilience frameworks and vulnerability frameworks focus on interactions between the domains, but do not include the structure of the interactions. We present an engineering systems approach to investigate the structural elements that influence a community's ability to be resilient. In this presentation we will present and analyze four common methods for building community resilience, utilizing our common framework. For several existing case studies we examine the stress points in the system and identify the impacts on the outcomes from the case studies. In ongoing research we will apply our system tool to a new case in the field.
Sitki-Green, Diane; Covington, Mary; Raab-Traub, Nancy
2003-01-01
Infection with the Epstein-Barr virus (EBV) is often subclinical in the presence of a healthy immune response; thus, asymptomatic infection is largely uncharacterized. This study analyzed the nature of EBV infection in 20 asymptomatic immunocompetent hosts over time through the identification of EBV strain variants in the peripheral blood and oral cavity. A heteroduplex tracking assay specific for the EBV gene LMP1 precisely identified the presence of multiple EBV strains in each subject. The strains present in the peripheral blood and oral cavity were often completely discordant, indicating the existence of distinct infections, and the strains present and their relative abundance changed considerably between time points. The possible transmission of strains between the oral cavity and peripheral blood compartments could be tracked within subjects, suggesting that reactivation in the oral cavity and subsequent reinfection of B lymphocytes that reenter the periphery contribute to the maintenance of persistence. In addition, distinct virus strains persisted in the oral cavity over many time points, suggesting an important role for epithelial cells in the maintenance of persistence. Asymptomatic individuals without tonsillar tissue, which is believed to be an important source of virus for the oral cavity, also exhibited multiple strains and a cyclic pattern of transmission between compartments. This study revealed that the majority of patients with infectious mononucleosis were infected with multiple strains of EBV that were also compartmentalized, suggesting that primary infection involves the transmission of multiple strains. Both the primary and carrier states of infection with EBV are more complex than previously thought. PMID:12525618
Sitki-Green, Diane; Covington, Mary; Raab-Traub, Nancy
2003-02-01
Infection with the Epstein-Barr virus (EBV) is often subclinical in the presence of a healthy immune response; thus, asymptomatic infection is largely uncharacterized. This study analyzed the nature of EBV infection in 20 asymptomatic immunocompetent hosts over time through the identification of EBV strain variants in the peripheral blood and oral cavity. A heteroduplex tracking assay specific for the EBV gene LMP1 precisely identified the presence of multiple EBV strains in each subject. The strains present in the peripheral blood and oral cavity were often completely discordant, indicating the existence of distinct infections, and the strains present and their relative abundance changed considerably between time points. The possible transmission of strains between the oral cavity and peripheral blood compartments could be tracked within subjects, suggesting that reactivation in the oral cavity and subsequent reinfection of B lymphocytes that reenter the periphery contribute to the maintenance of persistence. In addition, distinct virus strains persisted in the oral cavity over many time points, suggesting an important role for epithelial cells in the maintenance of persistence. Asymptomatic individuals without tonsillar tissue, which is believed to be an important source of virus for the oral cavity, also exhibited multiple strains and a cyclic pattern of transmission between compartments. This study revealed that the majority of patients with infectious mononucleosis were infected with multiple strains of EBV that were also compartmentalized, suggesting that primary infection involves the transmission of multiple strains. Both the primary and carrier states of infection with EBV are more complex than previously thought.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1987-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
Multiple object tracking using the shortest path faster association algorithm.
Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.
Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall
NASA Astrophysics Data System (ADS)
Bouma, Henri; Baan, Jan; Landsmeer, Sander; Kruszynski, Chris; van Antwerpen, Gert; Dijk, Judith
2013-05-01
The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time tracking and fast interactive retrieval of persons in video streams from multiple static surveillance cameras. This system is demonstrated in a shopping mall, where the cameras are positioned without overlapping fields-of-view and have different lighting conditions. The results show that the system allows an operator to find the origin or destination of a person more efficiently. The misses are reduced with 37%, which is a significant improvement.
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Liu, Heping; Liu, Huaping; Yang, Bin
2014-01-01
To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
Unraveling multiple changes in complex climate time series using Bayesian inference
NASA Astrophysics Data System (ADS)
Berner, Nadine; Trauth, Martin H.; Holschneider, Matthias
2016-04-01
Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of observations. Unraveling such transitions yields essential information for the understanding of the observed system. The precise detection and basic characterization of underlying changes is therefore of particular importance in environmental sciences. We present a kernel-based Bayesian inference approach to investigate direct as well as indirect climate observations for multiple generic transition events. In order to develop a diagnostic approach designed to capture a variety of natural processes, the basic statistical features of central tendency and dispersion are used to locally approximate a complex time series by a generic transition model. A Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of such a transition. To systematically investigate time series for multiple changes occurring at different temporal scales, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. Thus, based on a generic transition model a probability expression is derived that is capable to indicate multiple changes within a complex time series. We discuss the method's performance by investigating direct and indirect climate observations. The approach is applied to environmental time series (about 100 a), from the weather station in Tuscaloosa, Alabama, and confirms documented instrumentation changes. Moreover, the approach is used to investigate a set of complex terrigenous dust records from the ODP sites 659, 721/722 and 967 interpreted as climate indicators of the African region of the Plio-Pleistocene period (about 5 Ma). The detailed inference unravels multiple transitions underlying the indirect climate observations coinciding with established global climate events.
A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation
NASA Astrophysics Data System (ADS)
Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming
2018-03-01
This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.
NASA Astrophysics Data System (ADS)
Warren, Aaron R.
2009-11-01
Time-series designs are an alternative to pretest-posttest methods that are able to identify and measure the impacts of multiple educational interventions, even for small student populations. Here, we use an instrument employing standard multiple-choice conceptual questions to collect data from students at regular intervals. The questions are modified by asking students to distribute 100 Confidence Points among the options in order to indicate the perceived likelihood of each answer option being the correct one. Tracking the class-averaged ratings for each option produces a set of time-series. ARIMA (autoregressive integrated moving average) analysis is then used to test for, and measure, changes in each series. In particular, it is possible to discern which educational interventions produce significant changes in class performance. Cluster analysis can also identify groups of students whose ratings evolve in similar ways. A brief overview of our methods and an example are presented.
Effect of Display Factors on Chinese Reading Times, Comprehension Scores and Preferences
ERIC Educational Resources Information Center
Chan, A.H.S.; Lee, P.S.K.
2005-01-01
This paper presents the results of research on elemental standard reading time estimates for traditional Chinese characters on computer displays and explores the factors that may affect the time estimates. Seventy-two native Chinese readers, aged 19 to 24, were asked to read 16 simple passages and then answer four multiple-choice questions.…
NASA Astrophysics Data System (ADS)
Lockhart, M.; Henzlova, D.; Croft, S.; Cutler, T.; Favalli, A.; McGahee, Ch.; Parker, R.
2018-01-01
Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli(DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory and implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. The current paper discusses and presents the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. In order to assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. The DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.
On the interpretation of kernels - Computer simulation of responses to impulse pairs
NASA Technical Reports Server (NTRS)
Hung, G.; Stark, L.; Eykhoff, P.
1983-01-01
A method is presented for the use of a unit impulse response and responses to impulse pairs of variable separation in the calculation of the second-degree kernels of a quadratic system. A quadratic system may be built from simple linear terms of known dynamics and a multiplier. Computer simulation results on quadratic systems with building elements of various time constants indicate reasonably that the larger time constant term before multiplication dominates in the envelope of the off-diagonal kernel curves as these move perpendicular to and away from the main diagonal. The smaller time constant term before multiplication combines with the effect of the time constant after multiplication to dominate in the kernel curves in the direction of the second-degree impulse response, i.e., parallel to the main diagonal. Such types of insight may be helpful in recognizing essential aspects of (second-degree) kernels; they may be used in simplifying the model structure and, perhaps, add to the physical/physiological understanding of the underlying processes.
Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît
2016-01-01
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826
Synthetic observations of protostellar multiple systems
NASA Astrophysics Data System (ADS)
Lomax, O.; Whitworth, A. P.
2018-04-01
Observations of protostars are often compared with synthetic observations of models in order to infer the underlying physical properties of the protostars. The majority of these models have a single protostar, attended by a disc and an envelope. However, observational and numerical evidence suggests that a large fraction of protostars form as multiple systems. This means that fitting models of single protostars to observations may be inappropriate. We produce synthetic observations of protostellar multiple systems undergoing realistic, non-continuous accretion. These systems consist of multiple protostars with episodic luminosities, embedded self-consistently in discs and envelopes. We model the gas dynamics of these systems using smoothed particle hydrodynamics and we generate synthetic observations by post-processing the snapshots using the SPAMCART Monte Carlo radiative transfer code. We present simulation results of three model protostellar multiple systems. For each of these, we generate 4 × 104 synthetic spectra at different points in time and from different viewing angles. We propose a Bayesian method, using similar calculations to those presented here, but in greater numbers, to infer the physical properties of protostellar multiple systems from observations.
A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
Zhang, Xiaorong; Huang, He
2015-02-19
Unreliability of surface EMG recordings over time is a challenge for applying the EMG pattern recognition (PR)-controlled prostheses in clinical practice. Our previous study proposed a sensor fault-tolerant module (SFTM) by utilizing redundant information in multiple EMG signals. The SFTM consists of multiple sensor fault detectors and a self-recovery mechanism that can identify anomaly in EMG signals and remove the recordings of the disturbed signals from the input of the pattern classifier to recover the PR performance. While the proposed SFTM has shown great promise, the previous design is impractical. A practical SFTM has to be fast enough, lightweight, automatic, and robust under different conditions with or without disturbances. This paper presented a real-time, practical SFTM towards robust EMG PR. A novel fast LDA retraining algorithm and a fully automatic sensor fault detector based on outlier detection were developed, which allowed the SFTM to promptly detect disturbances and recover the PR performance immediately. These components of SFTM were then integrated with the EMG PR module and tested on five able-bodied subjects and a transradial amputee in real-time for classifying multiple hand and wrist motions under different conditions with different disturbance types and levels. The proposed fast LDA retraining algorithm significantly shortened the retraining time from nearly 1 s to less than 4 ms when tested on the embedded system prototype, which demonstrated the feasibility of a nearly "zero-delay" SFTM that is imperceptible to the users. The results of the real-time tests suggested that the SFTM was able to handle different types of disturbances investigated in this study and significantly improve the classification performance when one or multiple EMG signals were disturbed. In addition, the SFTM could also maintain the system's classification performance when there was no disturbance. This paper presented a real-time, lightweight, and automatic SFTM, which paved the way for reliable and robust EMG PR for prosthesis control.
Dandin, Özgür; Akpak, Yaşam Kemal; Karakaş, Dursun Özgür; Hazer, Batuhan; Ergin, Tuncer; Dandinoğlu, Taner; Teomete, Uygar
2014-01-01
Multiple sclerosis is a chronic demyelinating neurological disease and causing a variety of neurological symptoms, including discomfort of anorectal function. Constipation and faecal incontinence present as anorectal dysfunction in MS and anal manometry, colonic transit time, electromyography, and defecography can be used for assessment. We presented a thirty-three years old woman with rare condition of anorectal dysfunction in multiple sclerosis. Anal manometry, defecography were done, and synchronously anal incontinence and mechanical constipation due to rectocele and anismus were detected in this patient. Although anal incontinence and constipation are seen often in patients with multiple sclerosis, in the literature, coexistence of animus, rectocele and anal incontinence are quite rare. Defecography and anal manometry are useful diagnostic methods for demonstration of anorectal dysfuntions in patients with MS. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Free Surface Downgoing VSP Multiple Imaging
NASA Astrophysics Data System (ADS)
Maula, Fahdi; Dac, Nguyen
2018-03-01
The common usage of a vertical seismic profile is to capture the reflection wavefield (upgoing wavefield) so that it can be used for further well tie or other interpretations. Borehole Seismic (VSP) receivers capture the reflection from below the well trajectory, traditionally no seismic image information above trajectory. The non-traditional way of processing the VSP multiple can be used to expand the imaging above the well trajectory. This paper presents the case study of using VSP downgoing multiples for further non-traditional imaging applications. In general, VSP processing, upgoing and downgoing arrivals are separated during processing. The up-going wavefield is used for subsurface illumination, whereas the downgoing wavefield and multiples are normally excluded from the processing. In a situation where the downgoing wavefield passes the reflectors several times (multiple), the downgoing wavefield carries reflection information. Its benefit is that it can be used for seismic tie up to seabed, and possibility for shallow hazards identifications. One of the concepts of downgoing imaging is widely known as mirror-imaging technique. This paper presents a case study from deep water offshore Vietnam. The case study is presented to demonstrate the robustness of the technique, and the limitations encountered during its processing.
Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng
2011-01-01
Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...
ERIC Educational Resources Information Center
Unsworth, Nash
2016-01-01
The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results…
Simulations of Convection Zone Flows and Measurements from Multiple Viewing Angles
NASA Technical Reports Server (NTRS)
Duvall, Thomas L.; Hanasoge, Shravan
2011-01-01
A deep-focusing time-distance measurement technique has been applied to linear acoustic simulations of a solar interior perturbed by convective flows. The simulations are for the full sphere for r/R greater than 0.2. From these it is straightforward to simulate the observations from different viewing angles and to test how multiple viewing angles enhance detectibility. Some initial results will be presented.
Maglio, Paul P; Wenger, Michael J; Copeland, Angelina M
2008-01-01
Epistemic actions are physical actions people take to simplify internal problem solving rather than to move closer to an external goal. When playing the video game Tetris, for instance, experts routinely rotate falling shapes more than is strictly needed to place the shapes. Maglio and Kirsh [Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513-549; Maglio, P. P. (1995). The computational basis of interactive skill. PhD thesis, University of California, San Diego] proposed that such actions might serve the purpose of priming memory by external means, reducing the need for internal computation (e.g., mental rotation), and resulting in performance improvements that exceed the cost of taking additional actions. The present study tests this priming hypothesis in a set of four experiments. The first three explored precisely the conditions under which priming produces benefits. Results showed that presentation of multiple orientations of a shape led to faster responses than did presentation of a single orientation, and that this effect depended on the interval between preview and test. The fourth explored whether the benefit of seeing shapes in multiple orientations outweighs the cost of taking the extra actions to rotate shapes physically. Benefits were measured using a novel statistical method for mapping reaction-time data onto an estimate of the increase in processing capacity afforded by seeing multiple orientations. Cost was measured using an empirical estimate of time needed to take action in Tetris. Results showed that indeed the increase in internal processing capacity obtained from seeing shapes in multiple orientations outweighed the time to take extra actions.
Improving Pedagogy through the Use of Dynamic Excel Presentations in Financial Management Courses
ERIC Educational Resources Information Center
Mangiero, George A.; Manley, John; Mollica, J. T.
2010-01-01
This paper discusses and illustrates the use of dynamic Excel presentations to improve learning in Financial Management courses. Through the use of such presentations, multiple and varied examples of important principles in Financial Management, which would ordinarily take an excessive amount of time to cover, can be considered within the time…
Multiple time step integrators in ab initio molecular dynamics.
Luehr, Nathan; Markland, Thomas E; Martínez, Todd J
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows
NASA Astrophysics Data System (ADS)
Jittamai, Phongchai
This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T·E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T·E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and approximately 40% of the tested problems were solved optimally by the algorithms.
Particle size analysis of some water/oil/water multiple emulsions.
Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V
2005-04-29
Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.
This paper presents a new system for automated 2D-3D migration of chemicals in large databases with conformer multiplication. The main advantages of this system are its straightforward performance, reasonable execution time, simplicity, and applicability to building large 3D che...
Dynamic electrical impedance imaging with the interacting multiple model scheme.
Kim, Kyung Youn; Kim, Bong Seok; Kim, Min Chan; Kim, Sin; Isaacson, David; Newell, Jonathan C
2005-04-01
In this paper, an effective dynamical EIT imaging scheme is presented for on-line monitoring of the abruptly changing resistivity distribution inside the object, based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic nonlinear state estimation problem with the time-varying resistivity (state) being estimated on-line with the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different process noise covariance are incorporated to reduce the modeling uncertainty. Simulations and phantom experiments are provided to illustrate the proposed algorithm.
Droit-Volet, Sylvie; Gil, Sandrine
2009-01-01
The present manuscript discusses the time–emotion paradox in time psychology: although humans are able to accurately estimate time as if they possess a specific mechanism that allows them to measure time (i.e. an internal clock), their representations of time are easily distorted by the context. Indeed, our sense of time depends on intrinsic context, such as the emotional state, and on extrinsic context, such as the rhythm of others' activity. Existing studies on the relationships between emotion and time suggest that these contextual variations in subjective time do not result from the incorrect functioning of the internal clock but rather from the excellent ability of the internal clock to adapt to events in one's environment. Finally, the fact that we live and move in time and that everything, every act, takes more or less time has often been neglected. Thus, there is no unique, homogeneous time but instead multiple experiences of time. Our subjective temporal distortions directly reflect the way our brain and body adapt to these multiple time scales. PMID:19487196
Real-time detection and quantification of Rhizoctonia and Pythium species on the Cook Agronomy Farm.
USDA-ARS?s Scientific Manuscript database
Populations of Rhizoctonia and Pythium are diverse in eastern Washington, with multiple species/anastomosis groups present throughout the region and within individual fields. The process of identifying the pathogen present in a sample is laborious and the high diversity increases the difficulty in a...
A microprocessor based high speed packet switch for satellite communications
NASA Technical Reports Server (NTRS)
Arozullah, M.; Crist, S. C.
1980-01-01
The architectures of a single processor, a three processor, and a multiple processor system are described. The hardware circuits, and software routines required for implementing the three and multiple processor designs are presented. A bit-slice microprocessor was designed and microprogrammed. Maximum throughput was calculated for all three designs. Queue theoretic models for these three designs were developed and utilized to obtain analytical expressions for the average waiting times, overall average response times and average queue sizes. From these expressions, graphs were obtained showing the effect on the system performance of a number of design parameters.
Multiple Fault Isolation in Redundant Systems
NASA Technical Reports Server (NTRS)
Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David
1997-01-01
Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.
Multiple Fault Isolation in Redundant Systems
NASA Technical Reports Server (NTRS)
Pattipati, Krishna R.
1997-01-01
Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.
Power optimization of wireless media systems with space-time block codes.
Yousefi'zadeh, Homayoun; Jafarkhani, Hamid; Moshfeghi, Mehran
2004-07-01
We present analytical and numerical solutions to the problem of power control in wireless media systems with multiple antennas. We formulate a set of optimization problems aimed at minimizing total power consumption of wireless media systems subject to a given level of QoS and an available bit rate. Our formulation takes into consideration the power consumption related to source coding, channel coding, and transmission of multiple-transmit antennas. In our study, we consider Gauss-Markov and video source models, Rayleigh fading channels along with the Bernoulli/Gilbert-Elliott loss models, and space-time block codes.
Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.
Alexiadis, Dimitrios S; Sergiadis, George D
2007-01-01
Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.
A wavefront orientation method for precise numerical determination of tsunami travel time
NASA Astrophysics Data System (ADS)
Fine, I. V.; Thomson, R. E.
2013-04-01
We present a highly accurate and computationally efficient method (herein, the "wavefront orientation method") for determining the travel time of oceanic tsunamis. Based on Huygens principle, the method uses an eight-point grid-point pattern and the most recent information on the orientation of the advancing wave front to determine the time for a tsunami to travel to a specific oceanic location. The method is shown to provide improved accuracy and reduced anisotropy compared with the conventional multiple grid-point method presently in widespread use.
Kinematically redundant arm formulations for coordinated multiple arm implementations
NASA Technical Reports Server (NTRS)
Bailey, Robert W.; Quiocho, Leslie J.; Cleghorn, Timothy F.
1990-01-01
Although control laws for kinematically redundant robotic arms were presented as early as 1969, redundant arms have only recently become recognized as viable solutions to limitations inherent to kinematically sufficient arms. The advantages of run-time control optimization and arm reconfiguration are becoming increasingly attractive as the complexity and criticality of robotic systems continues to progress. A generalized control law for a spatial arm with 7 or more degrees of freedom (DOF) based on Whitney's resolved rate formulation is given. Results from a simulation implementation utilizing this control law are presented. Furthermore, results from a two arm simulation are presented to demonstrate the coordinated control of multiple arms using this formulation.
Visual-servoing optical microscopy
Callahan, Daniel E.; Parvin, Bahram
2009-06-09
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E [Martinez, CA; Parvin, Bahram [Mill Valley, CA
2011-05-24
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Visual-servoing optical microscopy
Callahan, Daniel E; Parvin, Bahram
2013-10-01
The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.
Real-time acquisition and tracking system with multiple Kalman filters
NASA Astrophysics Data System (ADS)
Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.
1994-07-01
The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.
Lockhart, M.; Henzlova, D.; Croft, S.; ...
2017-09-20
Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, M.; Henzlova, D.; Croft, S.
Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less
Generalized interactions using virtual tools within the spring framework: cutting
NASA Technical Reports Server (NTRS)
Montgomery, Kevin; Bruyns, Cynthia D.
2002-01-01
We present schemes for real-time generalized mesh cutting. Starting with the a basic example, we describe the details of implementing cutting on single and multiple surface objects as well as hybrid and volumetric meshes using virtual tools with single and multiple cutting surfaces. These methods have been implemented in a robust surgical simulation environment allowing us to model procedures ranging from animal dissection to cleft lip correction.
A Lyapunov-Based Approach for Time-Coordinated 3D Path-Following of Multiple Quadrotors
2012-12-01
presented in [10] as solutions for accommodating the nonlinear disturbances for outdoor altitude control . Finally, in [11] a trajectory- tracking ... control algorithm is formulated using the Special Orthogonal group SO(3) for attitude representation, leading to a simple and singularity-free solution for...the trajectory tracking problem. Cooperation between multiple unmanned vehicles has also received significant attention in the control community in
ERIC Educational Resources Information Center
Chung, Hwan; Anthony, James C.
2013-01-01
This article presents a multiple-group latent class-profile analysis (LCPA) by taking a Bayesian approach in which a Markov chain Monte Carlo simulation is employed to achieve more robust estimates for latent growth patterns. This article describes and addresses a label-switching problem that involves the LCPA likelihood function, which has…
Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines
NASA Astrophysics Data System (ADS)
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-04-01
A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.
ERIC Educational Resources Information Center
Learning, 1980
1980-01-01
Classroom games designed to develop mathematics skills in elementary school children are presented. These games involve personalizing metric measurement, telling time by television, creating an all-math newsletter, addition puzzles, subtraction games, division cards, multiplication, fractions, and measurement. (JD)
DOT National Transportation Integrated Search
1974-06-01
The report presents a summary of a study conducted for the Transportation Systems Center of promising access control techniques which are applicable to an aeronautical satellite system. Several frequency division multiple access (FDMA) and time divis...
NASA Technical Reports Server (NTRS)
Atkins, Harold
1991-01-01
A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.
Multiple μ-stability of neural networks with unbounded time-varying delays.
Wang, Lili; Chen, Tianping
2014-05-01
In this paper, we are concerned with a class of recurrent neural networks with unbounded time-varying delays. Based on the geometrical configuration of activation functions, the phase space R(n) can be divided into several Φη-type subsets. Accordingly, a new set of regions Ωη are proposed, and rigorous mathematical analysis is provided to derive the existence of equilibrium point and its local μ-stability in each Ωη. It concludes that the n-dimensional neural networks can exhibit at least 3(n) equilibrium points and 2(n) of them are μ-stable. Furthermore, due to the compatible property, a set of new conditions are presented to address the dynamics in the remaining 3(n)-2(n) subset regions. As direct applications of these results, we can get some criteria on the multiple exponential stability, multiple power stability, multiple log-stability, multiple log-log-stability and so on. In addition, the approach and results can also be extended to the neural networks with K-level nonlinear activation functions and unbounded time-varying delays, in which there can store (2K+1)(n) equilibrium points, (K+1)(n) of them are locally μ-stable. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acoustic field in unsteady moving media
NASA Technical Reports Server (NTRS)
Bauer, F.; Maestrello, L.; Ting, L.
1995-01-01
In the interaction of an acoustic field with a moving airframe the authors encounter a canonical initial value problem for an acoustic field induced by an unsteady source distribution, q(t,x) with q equivalent to 0 for t less than or equal to 0, in a medium moving with a uniform unsteady velocity U(t)i in the coordinate system x fixed on the airframe. Signals issued from a source point S in the domain of dependence D of an observation point P at time t will arrive at point P more than once corresponding to different retarded times, Tau in the interval (0, t). The number of arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform flow U(t)i, rules are formulated for defining the smallest number of I subdomains V(sub i) of D with the union of V(sub i) equal to D. Each subdomain has multiplicity 1 and a formula for the corresponding retarded time. The number of subdomains V(sub i) with nonempty intersection is the multiplicity m of the intersection. The multiplicity is at most I. Examples demonstrating these rules are presented for media at accelerating and/or decelerating supersonic speed.
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.
2014-06-01
The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.
Hicks, Jason L; Franks, Bryan A; Spitler, Samantha N
2017-10-01
We explored the nature of focal versus nonfocal event-based prospective memory retrieval. In the context of a lexical decision task, people received an intention to respond to a single word (focal) in one condition and to a category label (nonfocal) for the other condition. Participants experienced both conditions, and their order was manipulated. The focal instruction condition was a single word presented multiple times. In Experiment 1, the stimuli in the nonfocal condition were different exemplars from a category, each presented once. In the nonfocal condition retrieval was poorer and reaction times were slower during the ongoing task as compared to the focal condition, replicating prior findings. In Experiment 2, the stimulus in the nonfocal condition was a single category exemplar repeated multiple times. When this single-exemplar nonfocal condition followed in time the single-item focal condition, focal versus nonfocal performance was virtually indistinguishable. These results demonstrate that people can modify their stimulus processing and expectations in event-based prospective memory tasks based on experience with the nature of prospective cues and with the ongoing task.
Spectral decompositions of multiple time series: a Bayesian non-parametric approach.
Macaro, Christian; Prado, Raquel
2014-01-01
We consider spectral decompositions of multiple time series that arise in studies where the interest lies in assessing the influence of two or more factors. We write the spectral density of each time series as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle's approximation to the likelihood function and follow a Bayesian non-parametric approach to obtain posterior inference on the spectral densities based on Bernstein-Dirichlet prior distributions. The prior is strategically important as it carries identifiability conditions for the models and allows us to quantify our degree of confidence in such conditions. A Markov chain Monte Carlo (MCMC) algorithm for posterior inference within this class of frequency-domain models is presented.We illustrate the approach by analyzing simulated and real data via spectral one-way and two-way models. In particular, we present an analysis of functional magnetic resonance imaging (fMRI) brain responses measured in individuals who participated in a designed experiment to study pain perception in humans.
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Hinsdale, Taylor; Malik, Bilal H.; Rico-Jimenez, Jose J.; Jo, Javier A.; Maitland, Kristen C.
2016-03-01
We present a wide-field fluorescence lifetime imaging (FLIM) system with optical sectioning by structured illumination microscopy (SIM). FLIM measurements were made using a time gated ICCD camera in conjunction with a pulsed nitrogen dye laser operating at 450 nm. Intensity images were acquired at multiple time delays from a trigger initiated by a laser pulse to create a wide-field FLIM image, which was then combined with three phase SIM to provide optical sectioning. Such a mechanism has the potential to increase the reliability and accuracy of the FLIM measurements by rejecting background intensity. SIM also provides the opportunity to create volumetric FLIM images with the incorporation of scanning mechanisms for the sample plane. We present multiple embodiments of such a system: one as a free space endoscope and the other as a fiber microendoscope enabled by the introduction of a fiber bundle. Finally, we demonstrate the efficacy of such an imaging system by imaging dyes embedded in a tissue phantom.
Exercising away the blues: can it help multiple sclerosis-related depression?
Feinstein, Anthony; Rector, Neil; Motl, Robert
2013-12-01
The present review focuses on exercise as a treatment for depression in multiple sclerosis. While exercise has emerged as a potentially useful treatment in the general psychiatry-depression literature, the findings from a small number of multiple sclerosis-related treatment trials are equivocal. Methodological limitations, including the absence of depression as a primary endpoint, characterize all the studies completed to date. Given that limitations in study design can be rectified, it is time to put exercise to the test once more. Depressed multiple sclerosis patients and those involved in their care are looking for guidance here because the prevailing zeitgeist promotes the benefits of exercise to mood. But first, some clarity is needed.
Compensator improvement for multivariable control systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.
1977-01-01
A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.
Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)
1996-01-01
A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
NASA Astrophysics Data System (ADS)
Fujita, Shigetaka; Harima, Takashi
2016-03-01
The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.
Carrica, Victoriano
2006-01-01
Arsenic (As) and its compounds may cause multiple harmful effects on the human organism, interfering with biological processes of vital importance. It is known that the inhabitants of vast areas of the Argentine Republic drink well water contaminated with AS, which results in a disease known as Endemic Regional Chronic Hydroarsenicism (ERCH). It has been observed that these patients present a clinical picture characterized by multiple carcinomatous skin lesions which occur concurrently or successively along long periods of time. To present the clinical case of a female patient from the arsenical area of Cordoba Province, who had multiple carcinomatous oral lesions. The patient's history was written and iconographies, surgical excision of the lip lesions, pathological studies of the samples, and evolution observations were done. Based on both the patient's history and follow-up studies, it was possible to prove the presence of multiple successive carcinomatous lesions in the oral mucosa. It is concluded that drinking water containing more AS than the quantity accepted by the WHO (0.0 5 ppm) can cause multiple carcinomatous lesions on the oral mucosa as well as on the skin.
Effect of perception irregularity on chain-reaction crash in low visibility
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-06-01
We present the dynamic model of the chain-reaction crash to take into account the irregularity of the perception-reaction time. When a driver brakes according to taillights of the forward vehicle, the perception-reaction time varies from driver to driver. We study the effect of the perception irregularity on the chain-reaction crash (multiple-vehicle collision) in low-visibility condition. The first crash may induce more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow of vehicles with irregular perception times. We clarify the effect of the perception irregularity on the multiple-vehicle collision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun
Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generatormore » based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)« less
Kneider, M; Bergström, T; Gustafsson, C; Nenonen, N; Ahlgren, C; Nilsson, S; Andersen, O
2009-04-01
Upper respiratory infections were reported to trigger multiple sclerosis relapses. A relationship between picornavirus infections and MS relapses was recently reported. To evaluate whether human rhinovirus is associated with multiple sclerosis relapses and whether any particular strain is predominant. Nasopharyngeal fluid was aspirated from 36 multiple sclerosis patients at pre-defined critical time points. Reverse-transcriptase-PCR was performed to detect human rhinovirus-RNA. Positive amplicons were sequenced. We found that rhinovirus RNA was present in 17/40 (43%) of specimens obtained at the onset of a URTI in 19 patients, in 1/21 specimens during convalescence after URTI in 14 patients, in 0/6 specimens obtained in 5 patients on average a week after the onset of an "at risk" relapse, occurring within a window in time from one week before to three weeks after an infection, and in 0/17 specimens obtained after the onset of a "not at risk" relapse not associated with any infection in 12 patients. Fifteen specimens from healthy control persons not associated with URTI were negative. The frequency of HRV presence in URTI was similar to that reported for community infections. Eight amplicons from patients represented 5 different HRV strains. We were unable to reproduce previous findings of association between HRV infections and multiple sclerosis relapses. HRV was not present in nasopharyngeal aspirates obtained during "at risk" or "not at risk" relapses. Sequencing of HRV obtained from patients during URTI did not reveal any strain with predominance in multiple sclerosis.
Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes
NASA Astrophysics Data System (ADS)
González Arenas, Zochil; Barci, Daniel G.
2012-12-01
Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.
NASA Astrophysics Data System (ADS)
Moayedi, Maryam; Foo, Yung Kuan; Chai Soh, Yeng
2011-03-01
The minimum-variance filtering problem in networked control systems, where both random measurement transmission delays and packet dropouts may occur, is investigated in this article. Instead of following the many existing results that solve the problem by using probabilistic approaches based on the probabilities of the uncertainties occurring between the sensor and the filter, we propose a non-probabilistic approach by time-stamping the measurement packets. Both single-measurement and multiple measurement packets are studied. We also consider the case of burst arrivals, where more than one packet may arrive between the receiver's previous and current sampling times; the scenario where the control input is non-zero and subject to delays and packet dropouts is examined as well. It is shown that, in such a situation, the optimal state estimate would generally be dependent on the possible control input. Simulations are presented to demonstrate the performance of the various proposed filters.
Unsworth, Nash
2016-01-01
The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results suggested that WMC and LTM recall were related, and part of this relation was due to effective strategy use. However, adaptive changes in strategy use and study time allocation were not related to WMC. Examining multiple variables with structural equation modeling suggested that the relation between WMC and LTM recall was due to variation in effective strategy use, search efficiency, and monitoring abilities. Furthermore, all variables were shown to account for individual differences in LTM recall. These results suggest that the relation between WMC and recall from LTM is due to multiple strategic factors operating at both encoding and retrieval. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
High-quality slab-based intermixing method for fusion rendering of multiple medical objects.
Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil
2016-01-01
The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moya, Nikolas; Falcão, Alexandre X; Ciesielski, Krzysztof C; Udupa, Jayaram K
2014-01-01
Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of some state-of-the-art methods. The user can add/remove markers (seed voxels) along a sequence of executions of the DRIFT algorithm to improve segmentation. Its first execution takes linear time with the image's size, while the subsequent executions for corrections take sublinear time in practice. At each execution, DRIFT first runs the DIFT algorithm, then it applies diffusion filtering to smooth boundaries between objects (and background) and, finally, it corrects possible objects' disconnection occurrences with respect to their seeds. We evaluate DRIFT in 3D CT-images of the thorax for segmenting the arterial system, esophagus, left pleural cavity, right pleural cavity, trachea and bronchi, and the venous system.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
ePRISM: A case study in multiple proxy and mixed temporal resolution integration
Robinson, Marci M.; Dowsett, Harry J.
2010-01-01
As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.
Mass media in health promotion: an analysis using an extended information-processing model.
Flay, B R; DiTecco, D; Schlegel, R P
1980-01-01
The information-processing model of the attitude and behavior change process was critically examined and extended from six to 12 levels for a better analysis of change due to mass media campaigns. Findings from social psychology and communications research, and from evaluations of mass media health promotion programs, were reviewed to determine how source, message, channel, receiver, and destination variables affect each of the levels of change of major interest (knowledge, beliefs, attitudes, intentions and behavior). Factors found to most likely induce permanent attitude and behavior change (most important in health promotion) were: presentation and repetition over long time periods, via multiple sources, at different times (including "prime" or high-exposure times), by multiple sources, in novel and involving ways, with appeals to multiple motives, development of social support, and provisions of appropriate behavioral skills, alternatives, and reinforcement (preferably in ways that get the active participation of the audience). Suggestions for evaluation of mass media programs that take account of this complexity were advanced.
Local discretization method for overdamped Brownian motion on a potential with multiple deep wells.
Nguyen, P T T; Challis, K J; Jack, M W
2016-11-01
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Local discretization method for overdamped Brownian motion on a potential with multiple deep wells
NASA Astrophysics Data System (ADS)
Nguyen, P. T. T.; Challis, K. J.; Jack, M. W.
2016-11-01
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Imaging workflow and calibration for CT-guided time-domain fluorescence tomography
Tichauer, Kenneth M.; Holt, Robert W.; El-Ghussein, Fadi; Zhu, Qun; Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W.
2011-01-01
In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates. PMID:22076264
Effects of Type and Strength of Force Feedback on Movement Time in a Target Selection Task
NASA Technical Reports Server (NTRS)
Rorie, Robert Conrad; Vu, Kim-Phuong L.; Marayong, Panadda; Robles, Jose; Strybel, Thomas Z.; Battiste, Vernol
2013-01-01
Future cockpits will likely include new onboard technologies, such as cockpit displays of traffic information, to help support future flight deck roles and responsibilities. These new technologies may benefit from multimodal feedback to aid pilot information processing. The current study investigated the effects of multiple levels of force feedback on operator performance in an aviation task. Participants were presented with two different types of force feedback (gravitational and spring force feedback) for a discrete targeting task, with multiple levels of gain examined for each force feedback type. Approach time and time in target were recorded. Results suggested that the two highest levels of gravitational force significantly reduced approach times relative to the lowest level of gravitational force. Spring force level only affected time in target. Implications of these findings for the design of future cockpit displays will be discussed.
Hilbert-Carius, P; Hofmann, G O; Lefering, R; Stuttmann, R; Struck, M F
2016-04-01
Trauma-induced coagulopathy (TIC) in multiple trauma patients is a potentially lethal complication. Whether quickly available laboratory parameters using point-of-care (POC) blood gas analysis (BGA) may serve as surrogate parameters for standard coagulation parameters is unknown. The present study evaluated TraumaRegister DGU® of the German Trauma Society for correlations between POC BGA parameters and standard coagulation parameters. In the setting of 197 trauma centres (172 in Germany), 86,442 patients were analysed between 2005 and 2012. Of these, 40,129 (72% men) with a mean age 46 ± 21 years underwent further analysis presenting with direct admission from the scene of the accident to a trauma centre, injury severity score (ISS) ≥ 9, complete data available for the calculation of revised injury severity classification prognosis, and blood samples with valid haemoglobin (Hb) measurements taken immediately after emergency department (ED) admission. Correlations between standard coagulation parameters and POC BGA parameters (Hb, base excess [BE], lactate) were tested using Pearson's test with a two-tailed significance level of p < 0.05. A subgroup analysis including patients with ISS > 16, ISS > 25, ISS > 16 and shock at ED admission, and patients with massive transfusion was likewise carried out. Correlations were found between Hb and prothrombin time (r = 0.497; p < 0.01), Hb and activated partial thromboplastin time (aPTT; r = -0.414; p < 0.01), and Hb and platelet count (PLT; r = 0.301; p < 0.01). Patients presenting with ISS ≥ 16 and shock (systolic blood pressure < 90 mmHg) at ED admission (n = 4,329) revealed the strongest correlations between Hb and prothrombin time (r = 0.570; p < 0.01), Hb and aPTT (r = -0.457; p < 0.01), and Hb and PLT (r = 0.412; p < 0.01). Significant correlations were also found between BE and prothrombin time (r = -0.365; p < 0.01), and BE and aPTT (r = 0.327, p < 0.01). No correlations were found between Hb, BE and lactate lactate. POC BGA parameters Hb and BE of multiple trauma patients correlated with standard coagulation parameters in a large database analysis. These correlations were particularly strong in multiple trauma patients presenting with ISS > 16 and shock at ED admission. This may be relevant for hospitals with delayed availability of coagulation studies and those without viscoelastic POC devices. Future studies may determine whether clinical presentation/BGA-oriented coagulation therapy is an appropriate tool for improving outcomes after major trauma.
NASA Astrophysics Data System (ADS)
Johnson, Kristina Mary
In 1973 the computerized tomography (CT) scanner revolutionized medical imaging. This machine can isolate and display in two-dimensional cross-sections, internal lesions and organs previously impossible to visualize. The possibility of three-dimensional imaging however is not yet exploited by present tomographic systems. Using multiple-exposure holography, three-dimensional displays can be synthesizing from two-dimensional CT cross -sections. A multiple-exposure hologram is an incoherent superposition of many individual holograms. Intuitively it is expected that holograms recorded with equal energy will reconstruct images with equal brightness. It is found however, that holograms recorded first are brighter than holograms recorded later in the superposition. This phenomena is called Holographic Reciprocity Law Failure (HRLF). Computer simulations of latent image formation in multiple-exposure holography are one of the methods used to investigate HRLF. These simulations indicate that it is the time between individual exposures in the multiple -exposure hologram that is responsible for HRLF. This physical parameter introduces an asymmetry into the latent image formation process that favors the signal of previously recorded holograms over holograms recorded later in the superposition. The origin of this asymmetry lies in the dynamics of latent image formation, and in particular in the decay of single-atom latent image specks, which have lifetimes that are short compared to typical times between exposures. An analytical model is developed for a double exposure hologram that predicts a decrease in the brightness of the second exposure as compared to the first exposure as the time between exposures increases. These results are consistent with the computer simulations. Experiments investigating the influence of this parameter on the diffraction efficiency of reconstructed images in a double exposure hologram are also found to be consistent with the computer simulations and analytical results. From this information, two techniques are presented that correct for HRLF, and succeed in reconstructing multiple holographic images of CT cross-sections with equal brightness. The multiple multiple-exposure hologram is a new hologram that increases the number of equally bright images that can be superimposed on one photographic plate.
A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications
NASA Astrophysics Data System (ADS)
Robin, J.; Tanter, M.; Pernot, M.
2017-09-01
Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.
Li, Ru-Qin; Ren, Yu-Wei; Li, Jing; Huang, Can; Shao, Jun-Hui; Chen, Xiao-Xuan; Wu, Zhi-Xin
2015-06-01
Research into the pharmacokinetics and residue elimination of oxytetracycline (OTC) is important both to determine the optimal dosage regimens and to establish a safe withdrawal time in fish. A depletion study is presented here for OTC in Megalobrama amblycephala with a single-dose (100 mg/kg) and multiple-dose (100 mg/kg for five consecutive days) oral administration. The study was conducted at 25 °C. As a result, a one-compartment model was developed. For the single dose, the absorption half-life was 5.79, 9.40, 6.96, and 8.06 h in the plasma, liver, kidney, and muscle, respectively. However, the absorption half-life was 3.62, 7.33, 4.59, and 6.02 h with multiple-dose oral administration. The elimination half-time in the plasma, liver, kidney, and muscle was 58.63, 126.43, 65.1, and 58.85 h when M. amblycephala was treated with a single dose. However, the elimination half-time changed to 91.75, 214.87, 126.22, and 135.84 h with multiple-dose oral administration.
Double-multiple streamtube model for Darrieus in turbines
NASA Technical Reports Server (NTRS)
Paraschivoiu, I.
1981-01-01
An analytical model is proposed for calculating the rotor performance and aerodynamic blade forces for Darrieus wind turbines with curved blades. The method of analysis uses a multiple-streamtube model, divided into two parts: one modeling the upstream half-cycle of the rotor and the other, the downstream half-cycle. The upwind and downwind components of the induced velocities at each level of the rotor were obtained using the principle of two actuator disks in tandem. Variation of the induced velocities in the two parts of the rotor produces larger forces in the upstream zone and smaller forces in the downstream zone. Comparisons of the overall rotor performance with previous methods and field test data show the important improvement obtained with the present model. The calculations were made using the computer code CARDAA developed at IREQ. The double-multiple streamtube model presented has two major advantages: it requires a much shorter computer time than the three-dimensional vortex model and is more accurate than multiple-streamtube model in predicting the aerodynamic blade loads.
Liang, H; Shi, B C; Guo, Z L; Chai, Z H
2014-05-01
In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.
Yamazaki, Shinji; Johnson, Theodore R; Smith, Bill J
2015-10-01
An orally available multiple tyrosine kinase inhibitor, crizotinib (Xalkori), is a CYP3A substrate, moderate time-dependent inhibitor, and weak inducer. The main objectives of the present study were to: 1) develop and refine a physiologically based pharmacokinetic (PBPK) model of crizotinib on the basis of clinical single- and multiple-dose results, 2) verify the crizotinib PBPK model from crizotinib single-dose drug-drug interaction (DDI) results with multiple-dose coadministration of ketoconazole or rifampin, and 3) apply the crizotinib PBPK model to predict crizotinib multiple-dose DDI outcomes. We also focused on gaining insights into the underlying mechanisms mediating crizotinib DDIs using a dynamic PBPK model, the Simcyp population-based simulator. First, PBPK model-predicted crizotinib exposures adequately matched clinically observed results in the single- and multiple-dose studies. Second, the model-predicted crizotinib exposures sufficiently matched clinically observed results in the crizotinib single-dose DDI studies with ketoconazole or rifampin, resulting in the reasonably predicted fold-increases in crizotinib exposures. Finally, the predicted fold-increases in crizotinib exposures in the multiple-dose DDI studies were roughly comparable to those in the single-dose DDI studies, suggesting that the effects of crizotinib CYP3A time-dependent inhibition (net inhibition) on the multiple-dose DDI outcomes would be negligible. Therefore, crizotinib dose-adjustment in the multiple-dose DDI studies could be made on the basis of currently available single-dose results. Overall, we believe that the crizotinib PBPK model developed, refined, and verified in the present study would adequately predict crizotinib oral exposures in other clinical studies, such as DDIs with weak/moderate CYP3A inhibitors/inducers and drug-disease interactions in patients with hepatic or renal impairment. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
NASA Astrophysics Data System (ADS)
Dey, Sudip; Karmakar, Amit
2014-02-01
This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.
An entropic barriers diffusion theory of decision-making in multiple alternative tasks
Sigman, Mariano; Cecchi, Guillermo A.
2018-01-01
We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude) at every stage of the game. We apply the model to show that (a) higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b) reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving. PMID:29499036
Zheng, Yong-Sheng; Lu, Yu-Qing; Meng, Ying-Ying; Zhang, Rong-Zhi; Zhang, Han; Sun, Jia-Mei; Wang, Mu-Mu; Li, Li-Hui; Li, Ru-Yu
2017-05-01
WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Wright, Michelle F.
2015-01-01
The present study examined multiple sources of strain, particular cyber victimization, and perceived stress from parents, peers, and academics, in relation to late adolescents' (ages 16-18; N = 423) cyber aggression, anxiety, and depression, each assessed 1 year later (Time 2). Three-way interactions revealed that the relationship between Time 1…
ERIC Educational Resources Information Center
Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.
2014-01-01
The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…
Hadac, Jamie N; Leystra, Alyssa A; Paul Olson, Terrah J; Maher, Molly E; Payne, Susan N; Yueh, Alexander E; Schwartz, Alexander R; Albrecht, Dawn M; Clipson, Linda; Pasch, Cheri A; Matkowskyj, Kristina A; Halberg, Richard B; Deming, Dustin A
2015-10-01
Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. ©2015 American Association for Cancer Research.
Hadac, Jamie N.; Leystra, Alyssa A.; Olson, Terrah J. Paul; Maher, Molly E.; Payne, Susan N; Yueh, Alexander E.; Schwartz, Alexander R.; Albrecht, Dawn M.; Clipson, Linda; Pasch, Cheri A.; Matkowskyj, Kristina A.; Halberg, Richard B.; Deming, Dustin A.
2015-01-01
Human colorectal cancers often possess multiple mutations, including 3–6 driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present prior to the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. PMID:26276752
Ratcliff, Roger; Starns, Jeffrey J.
2014-01-01
Confidence in judgments is a fundamental aspect of decision making, and tasks that collect confidence judgments are an instantiation of multiple-choice decision making. We present a model for confidence judgments in recognition memory tasks that uses a multiple-choice diffusion decision process with separate accumulators of evidence for the different confidence choices. The accumulator that first reaches its decision boundary determines which choice is made. Five algorithms for accumulating evidence were compared, and one of them produced proportions of responses for each of the choices and full response time distributions for each choice that closely matched empirical data. With this algorithm, an increase in the evidence in one accumulator is accompanied by a decrease in the others so that the total amount of evidence in the system is constant. Application of the model to the data from an earlier experiment (Ratcliff, McKoon, & Tindall, 1994) uncovered a relationship between the shapes of z-transformed receiver operating characteristics and the behavior of response time distributions. Both are explained in the model by the behavior of the decision boundaries. For generality, we also applied the decision model to a 3-choice motion discrimination task and found it accounted for data better than a competing class of models. The confidence model presents a coherent account of confidence judgments and response time that cannot be explained with currently popular signal detection theory analyses or dual-process models of recognition. PMID:23915088
Removing impulse bursts from images by training-based soft morphological filtering
NASA Astrophysics Data System (ADS)
Koivisto, Pertti T.; Astola, Jaakko T.; Lukin, Vladimir V.; Melnik, Vladimir P.; Tsymbal, Oleg V.
2001-08-01
The characteristics of impulse bursts in radar images are analyzed and a model for this noise is proposed. The model also takes into consideration the multiplicative noise present in radar images. As a case study, soft morphological filters utilizing a training-based optimization scheme are used for the noise removal. Different approaches for the training are discussed. It is shown that the methods used can provide an effective removal of impulse bursts. At the same time the multiplicative noise in images is also suppressed together with god edge and detail preservation. Numerical simulation results as well as examples of real radar images are presented.
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.
1999-02-01
Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.
Cherri, A K
1999-02-10
Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space-bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.
Herlofsky, Stacey M; Edmonds, Lisa A
2013-02-01
Extensive evidence has shown that presentation of a word (target) following a related word (prime) results in faster reaction times compared to unrelated words. Two primes preceding a target have been used to examine the effects of multiple influences on a target. Several studies have observed greater, or additive, priming effects of multiple related primes compared to single related primes. The present study aims to eliminate attentional factors that may have contributed to findings in previous studies that used explicitly presented primes and targets. Thus, a continuous priming paradigm where targets are unknown to participants is used with noun-noun-verb triads filling agent, patient, and action roles in situation schemas (tourist, car, rent). Results replicate priming of single nouns preceding related verbs but do not suggest an additive effect for two nouns versus one. The absence of additive priming suggests that attentional processes may have been a factor in previous research.
CCD Measurements of Double and Multiple Stars at NAO Rozhen and ASV in 2015
NASA Astrophysics Data System (ADS)
Cvetković, Z.; Pavlović, R.; Boeva, S.
2017-04-01
Results of CCD observations of 154 double or multiple stars, made with the 2 m telescope of the Bulgarian National Astronomical Observatory at Rozhen over five nights in 2015, are presented. This is the ninth series of measurements of CCD frames obtained at Rozhen. We also present results of CCD observations of 323 double or multiple stars made with the 0.6 m telescope of the Serbian Astronomical Station on the mountain of Vidojevica over 23 nights in 2015. This is the fourth series of measurements of CCD frames obtained at this station. This paper contains the results for the position angle and angular separation for 801 pairs and residuals for 127 pairs with published orbital elements or linear solutions. The angular separations are in the range from 1.″52 to 201.″56, with a median angular separation of 8.″26. We also present eight pairs that are measured for the first time and linear elements for five pairs.
Sound source localization inspired by the ears of the Ormia ochracea
NASA Astrophysics Data System (ADS)
Kuntzman, Michael L.; Hall, Neal A.
2014-07-01
The parasitoid fly Ormia ochracea has the remarkable ability to locate crickets using audible sound. This ability is, in fact, remarkable as the fly's hearing mechanism spans only 1.5 mm which is 50× smaller than the wavelength of sound emitted by the cricket. The hearing mechanism is, for all practical purposes, a point in space with no significant interaural time or level differences to draw from. It has been discovered that evolution has empowered the fly with a hearing mechanism that utilizes multiple vibration modes to amplify interaural time and level differences. Here, we present a fully integrated, man-made mimic of the Ormia's hearing mechanism capable of replicating the remarkable sound localization ability of the special fly. A silicon-micromachined prototype is presented which uses multiple piezoelectric sensing ports to simultaneously transduce two orthogonal vibration modes of the sensing structure, thereby enabling simultaneous measurement of sound pressure and pressure gradient.
NASA Astrophysics Data System (ADS)
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
A note on the electromagnetic irradiation in a holed spatial region: A space-time approach
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2017-02-01
We study the role of the homological topological property of a space-time with holes (a multiple connected manifold) on the formal solution of the electromagnetic irradiation problem taking place on these “holed” space-times. In this paper, in addition to the main focus of study, we present as well important studies on this irradiation problem on other mathematical frameworks.
NASA Astrophysics Data System (ADS)
Jorris, Timothy R.
2007-12-01
To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.
Porcupine quill migration in the thoracic cavity of a German shorthaired pointer.
Guevara, Jose L; Holmes, Elaine S; Reetz, Jennifer; Holt, David E
2015-01-01
A 7 yr old German shorthaired pointer presented with progressive respiratory distress and lethargy. Two weeks prior to presentation, the dog had porcupine quills removed from the left forepaw, muzzle, and sternal area. At the time of presentation, the dog had bounding pulses and friction rubs in the right dorsal lung field. Harsh lung sounds and decreased lung sounds were ausculted in multiple lung fields. Radiographs revealed a pneumothorax and rounding of the cardiac silhouette suggestive of pericardial effusion. Computed tomographic imaging was performed and revealed multiple porcupine quills in the thoracic cavity. Surgery was performed and quills were found in multiple lung lobes and the heart. Following surgery the dog remained hypotensive. A post-operative echocardiogram revealed multiple curvilinear soft-tissue opacities in the heart. Given the grave prognosis the dog was subsequently euthanized and a postmortem examination was performed. A single porcupine quill was discovered in the left atrium above the mitral valve annulus. The quill extended across the aortic root, impinging on the coronary artery below the level of the aortic valve. To the authors' knowledge, this is the first known report of porcupine quill migration through the heart.
Multiple Health Behavior Change Research: An Introduction and Overview
Prochaska, Judith J.; Spring, Bonnie; Nigg, Claudio R.
2008-01-01
In 2002, the Society of Behavioral Medicine’s special interest group on Multiple Health Behavior Change was formed. The group focuses on the interrelationships among health behaviors and interventions designed to promote change in more than one health behavior at a time. Growing evidence suggests the potential for multiple-behavior interventions to have a greater impact on public health than single-behavior interventions. However, there exists surprisingly little understanding of some very basic principles concerning multiple health behavior change (MHBC) research. This paper presents the rationale and need for MHBC research and interventions, briefly reviews the research base, and identifies core conceptual and methodological issues unique to this growing area. The prospects of MHBC for the health of individuals and populations are considerable. PMID:18319098
1993-10-01
Structures: Simultaneous Trajectory Tracking and Vibration Reduction ... 10 3 . Buckling Control of a Flexible Beam Using Piezoelectric Actuators...bounded solution for the inverse dynamic torque has to be non-causal. Bayo, et. al. [ 3 ], extended the inverse dynamics to planar, multiple-link systems...presented by &ayo and Moulin [4] for the single link system, with provisions for 3 extension to multiple link systems. An equivalent time domain approach for
NASA Astrophysics Data System (ADS)
Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias
2017-03-01
The authors regret that an inappropriate NMR data processing, not known to all authors at the time of publication, was used to produce the multiple-quantum coherence (MQC) spin counting data presented in our article: this lead to artificially enhanced results, particularly concerning those obtained at long MQC excitation intervals (τexc). Here we reproduce Figs. 4-7 with correctly processed data.
Monochorionic triplets after single embryo transfer.
Rísquez, Francisco; Gil, Mónica; D'Ommar, Gustavo; Poo, María; Sosa, Anna; Piras, Marta
2004-10-01
A 40-year-old patient underwent intracytoplasmic sperm injection and assisted hatching, and a single embryo was transferred. Ultrasonography demonstrated a single gestational sac containing monochorionic tri-amniotic pregnancy. Several factors that have been implicated in the aetiology of monozygotic triple pregnancies after IVF appear to be present in this case. To avoid multiple pregnancies after IVF, it is time to have definite predictive factors for the occurrence of monozygotic multiple pregnancies as well as transferring only a single embryo.
NASA Astrophysics Data System (ADS)
Drukker, Karen; Hammes-Schiffer, Sharon
1997-07-01
This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.
Shock timing measurements in DT ice layers
NASA Astrophysics Data System (ADS)
Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.
2013-10-01
Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
A Fast-Time Simulation Environment for Airborne Merging and Spacing Research
NASA Technical Reports Server (NTRS)
Bussink, Frank J. L.; Doble, Nathan A.; Barmore, Bryan E.; Singer, Sharon
2005-01-01
As part of NASA's Distributed Air/Ground Traffic Management (DAG-TM) effort, NASA Langley Research Center is developing concepts and algorithms for merging multiple aircraft arrival streams and precisely spacing aircraft over the runway threshold. An airborne tool has been created for this purpose, called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). To evaluate the performance of AMSTAR and complement human-in-the-loop experiments, a simulation environment has been developed that enables fast-time studies of AMSTAR operations. The environment is based on TMX, a multiple aircraft desktop simulation program created by the Netherlands National Aerospace Laboratory (NLR). This paper reviews the AMSTAR concept, discusses the integration of the AMSTAR algorithm into TMX and the enhancements added to TMX to support fast-time AMSTAR studies, and presents initial simulation results.
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-12-26
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.
Development of an automation technique for the establishment of functional lipid bilayer arrays
NASA Astrophysics Data System (ADS)
Hansen, J. S.; Perry, M.; Vogel, J.; Vissing, T.; Hansen, C. R.; Geschke, O.; Emnéus, J.; Nielsen, C. H.
2009-02-01
In the present work, a technique for establishing multiple black lipid membranes (BLMs) in arrays of micro structured ethylene tetrafluoroethylene (ETFE) films, and supported by a micro porous material was developed. Rectangular 8 × 8 arrays with apertures having diameters of 301 ± 5 µm were fabricated in ETFE Teflon film by laser ablation using a carbon dioxide laser. Multiple lipid membranes could be formed across the micro structured 8 × 8 array ETFE partitions. Success rates for the establishment of cellulose-supported BLMs across the multiple aperture arrays were above 95%. However, the time course of the membrane thinning process was found to vary considerably between multiple aperture bilayer experiments. An airbrush partition pretreatment technique was developed to increase the reproducibility of the multiple lipid bilayers formation during the time course from the establishment of the lipid membranes to the formation of bilayers. The results showed that multiple lipid bilayers could be reproducible formed across the airbrush-pretreated 8 × 8 rectangular arrays. The ionophoric peptide valinomycin was incorporated into established membrane arrays, resulting in ionic currents that could be effectively blocked by tetraethylammonium. This shows that functional bimolecular lipid membranes were established, and furthermore outlines that the established lipid membrane arrays could host functional membrane-spanning molecules.
Nagy, Helga; Bencsik, Krisztina; Rajda, Cecília; Benedek, Krisztina; Janáky, Márta; Beniczky, Sándor; Kéri, Szabolcs; Vécsei, László
2007-06-01
Visual impairment is a common feature of multiple sclerosis. The aim of this study was to investigate lateral interactions in the visual cortex of highly functioning patients with multiple sclerosis and to compare that with basic visual and neuropsychologic functions. Twenty-two young, visually unimpaired multiple sclerosis patients with minimal symptoms (Expanded Disability Status Scale <2) and 30 healthy controls subjects participated in the study. Lateral interactions were investigated with the flanker task, during which participants were asked to detect the orientation of a low-contrast Gabor patch (vertical or horizontal), flanked with 2 collinear or orthogonal Gabor patches. Stimulus exposure time was 40, 60, 80, and 100 ms. Digit span forward/backward, digit symbol, verbal fluency, and California Verbal Learning Test procedures were used for background neuropsychologic assessment. Results revealed that patients with multiple sclerosis showed intact visual contrast sensitivity and neuropsychologic functions, whereas orientation detection in the orthogonal condition was significantly impaired. At 40-ms exposure time, collinear flankers facilitated the orientation detection performance of the patients resulting in normal performance. In conclusion, the detection of briefly presented, low-contrast visual stimuli was selectively impaired in multiple sclerosis. Lateral interactions between target and flankers robustly facilitated target detection in the patient group.
New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy.
Liu, Zhidai; Zhang, Penghui; He, Xiaoyan; Liu, Shan; Tang, Shi; Zhang, Rong; Wang, Xinbin; Tan, Junjie; Peng, Bin; Jiang, Li; Hong, Siqi; Zou, Lin
2016-08-17
Spinal muscular atrophy (SMA) is the most common autosomal recessive disease in children, and the diagnosis is complicated and difficult, especially at early stage. Early diagnosis of SMA is able to improve the outcome of SMA patients. In our study, Real-time PCR was developed to measure the gene mutation or deletion of key genes for SMA and to further analyse genotype-phenotype correlation. The multiple real-time PCR for detecting the mutations of survival of motor neuron (SMN), apoptosis inhibitory protein (NAIP) and general transcription factor IIH, polypeptide 2 gene (GTF2H2) was established and confirmed by DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). The diagnosis and prognosis of 141 hospitalized children, 100 normal children and further 2000 cases of dry blood spot (DBS) samples were analysed by this multiple real-time PCR. The multiple real-time PCR was established and the accuracy of it to detect the mutations of SMN, NAIP and GTF2H2 was at least 98.8 % comparing with DNA sequencing and MLPA. Among 141 limb movement disorders children, 75 cases were SMA. 71 cases of SMA (94.67 %) were with SMN c.840 mutation, 9 cases (12 %) with NAIP deletion and 3 cases (4 %) with GTF2H2 deletion. The multiple real-time PCR was able to diagnose and predict the prognosis of SMA patients. Simultaneously, the real-time PCR was applied to detect trace DNA from DBS and able to make an early diagnosis of SMA. The clinical and molecular characteristics of SMA in Southwest of China were presented. Our work provides a novel way for detecting SMA in children by using real-time PCR and the potential usage in newborn screening for early diagnosis of SMA.
Complex dynamics in the Leslie-Gower type of the food chain system with multiple delays
NASA Astrophysics Data System (ADS)
Guo, Lei; Song, Zi-Gen; Xu, Jian
2014-08-01
In this paper, we present a Leslie-Gower type of food chain system composed of three species, which are resource, consumer, and predator, respectively. The digestion time delays corresponding to consumer-eat-resource and predator-eat-consumer are introduced for more realistic consideration. It is called the resource digestion delay (RDD) and consumer digestion delay (CDD) for simplicity. Analyzing the corresponding characteristic equation, the stabilities of the boundary and interior equilibrium points are studied. The food chain system exhibits the species coexistence for the small values of digestion delays. Large RDD/CDD may destabilize the species coexistence and induce the system dynamic into recurrent bloom or system collapse. Further, the present of multiple delays can control species population into the stable coexistence. To investigate the effect of time delays on the recurrent bloom of species population, the Hopf bifurcation and periodic solution are investigated in detail in terms of the central manifold reduction and normal form method. Finally, numerical simulations are performed to display some complex dynamics, which include multiple periodic solution and chaos motion for the different values of system parameters. The system dynamic behavior evolves into the chaos motion by employing the period-doubling bifurcation.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
SparkClouds: visualizing trends in tag clouds.
Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash
2010-01-01
Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.
NASA Astrophysics Data System (ADS)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason
2015-01-01
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 μm) at a 10 Hz repetition rate. The sensor was designed for operation in multiple modes, including gas sensing within a multi-pass Heriott cell and intracavity absorption sensing using the ECQCL compliance voltage. In addition, the ECQCL compliance voltage was used to reduce effects of long-term drifts in the ECQCL output power. The sensor was characterized for noise, drift, and detection of chemicals including ammonia, methanol, ethanol, isopropanol, Freon- 134a, Freon-152a, and diisopropyl methylphosphonate (DIMP). We also present use of the sensor for mobile detection of ammonia downwind of cattle facilities, in which concentrations were recorded at 1-s intervals.
Low, Diana H P; Motakis, Efthymios
2013-10-01
Binding free energy calculations obtained through molecular dynamics simulations reflect intermolecular interaction states through a series of independent snapshots. Typically, the free energies of multiple simulated series (each with slightly different starting conditions) need to be estimated. Previous approaches carry out this task by moving averages at certain decorrelation times, assuming that the system comes from a single conformation description of binding events. Here, we discuss a more general approach that uses statistical modeling, wavelets denoising and hierarchical clustering to estimate the significance of multiple statistically distinct subpopulations, reflecting potential macrostates of the system. We present the deltaGseg R package that performs macrostate estimation from multiple replicated series and allows molecular biologists/chemists to gain physical insight into the molecular details that are not easily accessible by experimental techniques. deltaGseg is a Bioconductor R package available at http://bioconductor.org/packages/release/bioc/html/deltaGseg.html.
NASA Astrophysics Data System (ADS)
Kandel, Mikhail E.; Kouzehgarani, Ghazal N.; Ngyuen, Tan H.; Gillette, Martha U.; Popescu, Gabriel
2017-02-01
Although the contrast generated in transmitted light microscopy is due to the elastic scattering of light, multiple scattering scrambles the image and reduces overall visibility. To image both thin and thick samples, we turn to gradient light interference microscopy (GLIM) to simultaneously measure morphological parameters such as cell mass, volume, and surfaces as they change through time. Because GLIM combines multiple intensity images corresponding to controlled phase offsets between laterally sheared beams, incoherent contributions from multiple scattering are implicitly cancelled during the phase reconstruction procedure. As the interfering beams traverse near identical paths, they remain comparable in power and interfere with optimal contrast. This key property lets us obtain tomographic parameters from wide field z-scans after simple numerical processing. Here we show our results on reconstructing tomograms of bovine embryos, characterizing the time-lapse growth of HeLa cells in 3D, and preliminary results on imaging much larger specimen such as brain slices.
T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael
2017-01-01
A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.G.; Norman, P.I.; Leadbeater, T.W.
Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have beenmore » used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)« less
Longitudinal Multiple Sclerosis Lesion Segmentation: Resource & Challenge
Carass, Aaron; Roy, Snehashis; Jog, Amod; Cuzzocreo, Jennifer L.; Magrath, Elizabeth; Gherman, Adrian; Button, Julia; Nguyen, James; Prados, Ferran; Sudre, Carole H.; Cardoso, Manuel Jorge; Cawley, Niamh; Ciccarelli, Olga; Wheeler-Kingshott, Claudia A. M.; Ourselin, Sébastien; Catanese, Laurence; Deshpande, Hrishikesh; Maurel, Pierre; Commowick, Olivier; Barillot, Christian; Tomas-Fernandez, Xavier; Warfield, Simon K.; Vaidya, Suthirth; Chunduru, Abhijith; Muthuganapathy, Ramanathan; Krishnamurthi, Ganapathy; Jesson, Andrew; Arbel, Tal; Maier, Oskar; Handels, Heinz; Iheme, Leonardo O.; Unay, Devrim; Jain, Saurabh; Sima, Diana M.; Smeets, Dirk; Ghafoorian, Mohsen; Platel, Bram; Birenbaum, Ariel; Greenspan, Hayit; Bazin, Pierre-Louis; Calabresi, Peter A.; Crainiceanu, Ciprian M.; Ellingsen, Lotta M.; Reich, Daniel S.; Prince, Jerry L.; Pham, Dzung L.
2017-01-01
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: 1) the sharing of a rich data set; 2) collaboration and comparison of the various avenues of research being pursued in the community; and 3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website1 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters. PMID:28087490
ERIC Educational Resources Information Center
Monahan, Kathryn C.; Lee, Joanna M.; Steinberg, Laurence
2011-01-01
The impact of part-time employment on adolescent functioning remains unclear because most studies fail to adequately control for differential selection into the workplace. The present study reanalyzes data from L. Steinberg, S. Fegley, and S. M. Dornbusch (1993) using multiple imputation, which minimizes bias in effect size estimation, and 2 types…
Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Brown, Jeremy R.; Madhavan, Poomima
2011-01-01
The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.
NASA Astrophysics Data System (ADS)
Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.
2009-09-01
The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.
Lithopoulos, Alexander; Bassett-Gunter, Rebecca L; Martin Ginis, Kathleen A; Latimer-Cheung, Amy E
2017-06-01
Few people with multiple sclerosis engage in physical activity. Messaging interventions may motivate more physical activity among these individuals. The purpose of this online study was to evaluate an intervention presenting participants with multiple sclerosis (N = 237) with risk information (i.e., information demonstrating people with multiple sclerosis are more likely to experience certain health issues) or no risk information followed by gain- or loss-framed physical activity messages. Participants completed questionnaires on Days 1, 6, and 28 and received information material on Days 2-5. The dependent variables were as follows: physical activity intentions and behavior, response and task efficacy, perceived threat (i.e., perception of threat to health issues relevant to people with multiple sclerosis), and avoidance (i.e., avoiding thinking about/doing something about the health issues presented in the messages). Analyses indicated physical activity and response efficacy increased over time. Also, participants receiving risk information had higher levels of physical activity and perceived threat. However, manipulation checks showed no differences between participants regarding perceptions of risk information or gain/loss-framed messages. Despite the lack of impact of the framing intervention, this study suggests that a brief informational intervention can positively influence physical activity and certain correlates of physical activity among people with multiple sclerosis.
Time-reversal MUSIC imaging of extended targets.
Marengo, Edwin A; Gruber, Fred K; Simonetti, Francesco
2007-08-01
This paper develops, within a general framework that is applicable to rather arbitrary electromagnetic and acoustic remote sensing systems, a theory of time-reversal "MUltiple Signal Classification" (MUSIC)-based imaging of extended (nonpoint-like) scatterers (targets). The general analysis applies to arbitrary remote sensing geometry and sheds light onto how the singular system of the scattering matrix relates to the geometrical and propagation characteristics of the entire transmitter-target-receiver system and how to use this effect for imaging. All the developments are derived within exact scattering theory which includes multiple scattering effects. The derived time-reversal MUSIC methods include both interior sampling, as well as exterior sampling (or enclosure) approaches. For presentation simplicity, particular attention is given to the time-harmonic case where the informational wave modes employed for target interrogation are purely spatial, but the corresponding generalization to broadband fields is also given. This paper includes computer simulations illustrating the derived theory and algorithms.
Urea cycle disorder misdiagnosed as multiple sclerosis: a case report and review of the literature.
Algahtani, Hussein; Alameer, Seham; Marzouk, Yousef; Shirah, Bader
2018-04-01
Urea cycle disorders are a group of inborn errors of metabolism caused by dysfunction of any of the six enzymes or two transport proteins involved in urea biosynthesis. In this paper, we report a patient who presented with neurological dysfunction and coma in the immediate postpartum period. She was misdiagnosed for many years as a case of multiple sclerosis. The importance of reporting this case is to illustrate that the wrong diagnosis of patients as being affected with multiple sclerosis for many years due to magnetic resonance imaging abnormalities rather than the classic relapsing-remitting nature of the disease may lead to catastrophic consequences. The patient was treated with intravenous steroids several times, which is contraindicated in patients with urea cycle disorders as it may precipitate acute hyperammonemic attacks. In addition, the management of urea cycle disorder could have started earlier and avoided multiple admissions to the intensive care unit. We believe that the presence of symmetric hyperintense insular cortical changes are seen in multiple hyperammonemic processes, and in the context of the clinical presentation and high ammonia levels can be suggestive of a urea cycle disorder. For any patient presenting with atypical clinical features, images should be reviewed and discussed in detail with an experienced neuroradiologist. In addition, the ammonia levels should be checked if a urea cycle disorder is suspected.
Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Maria Corina; Chira, Alexandru Mihai; Rosu, Oana Maria; Sandesc, Dorel
2015-01-01
Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflammation modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple organ dysfunction and death. In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.
NASA Technical Reports Server (NTRS)
Wood, C. A.
1974-01-01
For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.
Dahshan, Basem A; Mattes, Malcolm D; Bhatia, Sanjay; Palek, Mary Susan; Cifarelli, Christopher P; Hack, Joshua D; Vargo, John A
2017-12-19
The role of stereotactic radiosurgery (SRS) in the treatment of multiple brain metastases is controversial. While whole brain radiation therapy (WBRT) has historically been the mainstay of treatment, its value is increasingly being questioned as emerging data supports that SRS alone can provide comparable therapeutic outcomes for limited (one to three) intracranial metastases with fewer adverse effects, including neurocognitive decline. Multiple recent studies have also demonstrated that patients with multiple (> 3) intracranial metastases with a low overall tumor volume have a favorable therapeutic response to SRS, with no significant difference compared to patients with limited metastases. Herein, we present a patient with previously controlled breast cancer who presented with multiple recurrences of intracranial metastases but low total intracranial tumor volume each time. This patient underwent SRS alone for a total of 40 metastatic lesions over three separate procedures with good local control and without any significant cognitive toxicity. The patient eventually opted for enrollment in the NRG-CC001 clinical trial after multiple cranial recurrences. She received conventional WBRT with six months of memantine and developed significant neurocognitive side effects. This case highlights the growing body of literature supporting the role of SRS alone in the management of multiple brain metastases and the importance of maximizing neurocognition as advances in systemic therapies prolong survival in Stage IV cancer.
Mattes, Malcolm D; Bhatia, Sanjay; Palek, Mary Susan; Cifarelli, Christopher P; Hack, Joshua D; Vargo, John A
2017-01-01
The role of stereotactic radiosurgery (SRS) in the treatment of multiple brain metastases is controversial. While whole brain radiation therapy (WBRT) has historically been the mainstay of treatment, its value is increasingly being questioned as emerging data supports that SRS alone can provide comparable therapeutic outcomes for limited (one to three) intracranial metastases with fewer adverse effects, including neurocognitive decline. Multiple recent studies have also demonstrated that patients with multiple (> 3) intracranial metastases with a low overall tumor volume have a favorable therapeutic response to SRS, with no significant difference compared to patients with limited metastases. Herein, we present a patient with previously controlled breast cancer who presented with multiple recurrences of intracranial metastases but low total intracranial tumor volume each time. This patient underwent SRS alone for a total of 40 metastatic lesions over three separate procedures with good local control and without any significant cognitive toxicity. The patient eventually opted for enrollment in the NRG-CC001 clinical trial after multiple cranial recurrences. She received conventional WBRT with six months of memantine and developed significant neurocognitive side effects. This case highlights the growing body of literature supporting the role of SRS alone in the management of multiple brain metastases and the importance of maximizing neurocognition as advances in systemic therapies prolong survival in Stage IV cancer. PMID:29492355
Hydrodynamic Limit of Multiple SLE
NASA Astrophysics Data System (ADS)
Hotta, Ikkei; Katori, Makoto
2018-04-01
Recently del Monaco and Schleißinger addressed an interesting problem whether one can take the limit of multiple Schramm-Loewner evolution (SLE) as the number of slits N goes to infinity. When the N slits grow from points on the real line R in a simultaneous way and go to infinity within the upper half plane H, an ordinary differential equation describing time evolution of the conformal map g_t(z) was derived in the N → ∞ limit, which is coupled with a complex Burgers equation in the inviscid limit. It is well known that the complex Burgers equation governs the hydrodynamic limit of the Dyson model defined on R studied in random matrix theory, and when all particles start from the origin, the solution of this Burgers equation is given by the Stieltjes transformation of the measure which follows a time-dependent version of Wigner's semicircle law. In the present paper, first we study the hydrodynamic limit of the multiple SLE in the case that all slits start from the origin. We show that the time-dependent version of Wigner's semicircle law determines the time evolution of the SLE hull, K_t \\subset H\\cup R, in this hydrodynamic limit. Next we consider the situation such that a half number of the slits start from a>0 and another half of slits start from -a < 0, and determine the multiple SLE in the hydrodynamic limit. After reporting these exact solutions, we will discuss the universal long-term behavior of the multiple SLE and its hull K_t in the hydrodynamic limit.
Multiple-Frequency Ultrasonic Pulse-Echo Display System.
1982-09-28
will sweep across some time interval. Adjust the ramp rate potentiometer to set this interval to exactly 10 ps. Ramp Delay None Set time base to 1.0 lis...the function keys. The table is a printout which results F.irectly from exercising Program KEE, listed in Appendix C-I. Note that "(ESC)B" refers to...flag +21 ŕ" = one-time flag (nessage is presented prior to full plot once per session) +22 time- base duration code +23 (High order digit) +24 * +25
A parametric LQ approach to multiobjective control system design
NASA Technical Reports Server (NTRS)
Kyr, Douglas E.; Buchner, Marc
1988-01-01
The synthesis of a constant parameter output feedback control law of constrained structure is set in a multiple objective linear quadratic regulator (MOLQR) framework. The use of intuitive objective functions such as model-following ability and closed-loop trajectory sensitivity, allow multiple objective decision making techniques, such as the surrogate worth tradeoff method, to be applied. For the continuous-time deterministic problem with an infinite time horizon, dynamic compensators as well as static output feedback controllers can be synthesized using a descent Anderson-Moore algorithm modified to impose linear equality constraints on the feedback gains by moving in feasible directions. Results of three different examples are presented, including a unique reformulation of the sensitivity reduction problem.
Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin
NASA Astrophysics Data System (ADS)
McClung, Amber J. W.; Tandon, Gyaneshwar P.; Baur, Jeffery W.
2013-02-01
Shape-memory polymers have attracted great interest in recent years for application in reconfigurable structures (for instance morphing aircraft, micro air vehicles, and deployable space structures). However, before such applications can be attempted, the mechanical behavior of the shape-memory polymers must be thoroughly understood. The present study represents an assessment of viscous effects during multiple shape-memory cycles of Veriflex-E, an epoxy-based, thermally triggered shape-memory polymer resin. The experimental program is designed to explore the influence of multiple thermomechanical cycles on the shape-memory performance of Veriflex-E. The effects of the deformation rate and hold times at elevated temperature on the shape-memory behavior are also investigated.
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.
1999-01-01
In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.
Determination of the Persistence of Non-Spore-Forming ...
Report This report presents the results of an investigation to evaluate the persistence (or natural attenuation) of Yersinia pestis (Y. pestis), Francisella tularensis (F. tularensis), and Burkholderia mallei (B. mallei) on glass and soil under multiple environmental conditions and time points.
A two-layer multiple-time-scale turbulence model and grid independence study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.
Broadband ultrafast transient absorption of multiple exciton dynamics in lead sulfide nanocrystals
NASA Astrophysics Data System (ADS)
Gesuele, Felice; Wong, Chee Wei; Sfeir, Matthew; Misewich, James; Koh, Weonkyu; Murray, Christopher
2011-03-01
Multiple exciton generation (MEG) is under intense investigation as potential third-generation solar photovoltaics with efficiencies beyond the Shockley-Queisser limit. We examine PbS nanocrystals, dispersed and vigorously stirred in TCE solution, by means of supercontinuum femtosecond transient absorption (TA). TA spectra show the presence of first and second order bleaches for the 1Sh-Se and 1Ph-Pe excitonic transition while photoinduced absorption for the 1Sh,e-Ph,e transitions. We found evidence of carrier multiplication (MEG for single absorbed photon) from the analysis of the first and second order bleaches, in the limit of low number of absorbed photons (Nabs ~ 0.01), for energy three times and four times the Energy gap. The MEG efficiency, derived from the ratio between early-time to long-time TA signal, presents a strongly dispersive behavior with maximum red shifted respect the first absorption peak. Analysis of population dynamics shows that in presence of biexciton, the 1Sh-Se bleach peak is red-shifted indicating a positive binding energy. MEG efficiency estimation will be discussed with regards to spectral integration, correlated higher-order and first excitonic transitions, as well as the nanocrystal morphologies.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
SPROC: A multiple-processor DSP IC
NASA Technical Reports Server (NTRS)
Davis, R.
1991-01-01
A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.
Unprotected intercourse in the 2 weeks prior to requesting emergency intrauterine contraception.
Sanders, Jessica N; Howell, Laura; Saltzman, Hanna M; Schwarz, E Bimla; Thompson, Ivana S; Turok, David K
2016-11-01
Previous emergency contraception studies have excluded women who report >1 episode of unprotected or underprotected intercourse. Thus, clinical recommendations are based on exposure to a single episode of underprotected intercourse. We sought to assess the prevalence and timing of underprotected intercourse episodes among women requesting emergency contraception and to examine the probability of pregnancy following an emergency contraception regimen including placement of either a copper intrauterine device or a levonorgestrel intrauterine device with simultaneous administration of an oral levonorgestrel pill in women reporting multiple underprotected intercourse episodes, including episodes beyond the Food and Drug Administration-approved emergency contraception time frame (6-14 days). Women seeking emergency contraception who had a negative pregnancy test and desired either a copper intrauterine device or levonorgestrel emergency contraception regimen enrolled in this prospective observational study. At enrollment, participants reported the number and timing of underprotected intercourse episodes in the previous 14 days. Two weeks later, participants reported the results of a self-administered home pregnancy test. Of the 176 women who presented for emergency contraception and received a same-day intrauterine device, 43% (n = 76) reported multiple underprotected intercourse episodes in the 14 days prior to presenting for emergency contraception. Women with multiple underprotected intercourse episodes reported a median of 3 events (range 2-20). Two-week pregnancy data were available for 172 (98%) participants. Only 1 participant had a positive pregnancy test. Pregnancy occurred in 0 of 97 (0%; 95% confidence interval, 0-3.7%) women with a single underprotected intercourse episode and 1 of 75 (1.3%; 95% confidence interval, 0-7.2%) women reporting multiple underprotected intercourse episodes; this includes 1 of 40 (2.5%; 95% confidence interval, 0-13.2%) women reporting underprotected intercourse 6-14 days prior to intrauterine device insertion. Women seeking emergency contraception from clinics commonly reported multiple recent underprotected intercourse episodes, including episodes occurring beyond the Food and Drug Administration-approved emergency contraception time frame. However, the probability of pregnancy was low following same-day intrauterine device placement. Copyright © 2016 Elsevier Inc. All rights reserved.
A noniterative greedy algorithm for multiframe point correspondence.
Shafique, Khurram; Shah, Mubarak
2005-01-01
This paper presents a framework for finding point correspondences in monocular image sequences over multiple frames. The general problem of multiframe point correspondence is NP-hard for three or more frames. A polynomial time algorithm for a restriction of this problem is presented and is used as the basis of the proposed greedy algorithm for the general problem. The greedy nature of the proposed algorithm allows it to be used in real-time systems for tracking and surveillance, etc. In addition, the proposed algorithm deals with the problems of occlusion, missed detections, and false positives by using a single noniterative greedy optimization scheme and, hence, reduces the complexity of the overall algorithm as compared to most existing approaches where multiple heuristics are used for the same purpose. While most greedy algorithms for point tracking do not allow for entry and exit of the points from the scene, this is not a limitation for the proposed algorithm. Experiments with real and synthetic data over a wide range of scenarios and system parameters are presented to validate the claims about the performance of the proposed algorithm.
Redundant binary number representation for an inherently parallel arithmetic on optical computers.
De Biase, G A; Massini, A
1993-02-10
A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.
Competitive Stem Cell Recruitment by Multiple Cytotactic Cues
Mendelson, Avital; Cheung, Yukkee; Paluch, Kamila; Chen, Mo; Kong, Kimi; Tan, Jiali; Dong, Ziming; Sia, Samuel K.; Mao, Jeremy J.
2014-01-01
A multitude of cytotactic cues direct cell migration in development, cancer metastasis and wound healing. However, our understanding of cell motility remains fragmented partially because current migration devices only allow the study of independent factors. We developed a cell motility assay that allows competitive recruitment of a given cell population simultaneously by gradients of multiple cytotactic cues, observable under real-time imaging. Well-defined uniform gradients of cytotactic cues can be independently generated and sustained in each channel. As a case study, bone marrow mesenchymal stem/stromal cells (MSCs) were exposed to 15 cytokines that are commonly present in arthritis. Cytokines that induced robust recruitment of MSCs in multiple groups were selected to ‘compete’ in a final round to yield the most chemotactic factor(s) based on cell migration numbers, distances, migration indices and motility over time. The potency of a given cytokine in competition frequently differed from its individual action, substantiating the need to test multiple cytokines concurrently due to synergistic or antagonistic effects. This new device has the rare capacity to screen molecules that induce cell migration in cancer therapy, drug development and tissue regeneration. PMID:23364311
Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos
2017-08-01
We present data and code for visualizing the electrical energy data and weather-, climate-related and socioeconomic variables in the time domain in Greece. The electrical energy data include hourly demand, weekly-ahead forecasted values of the demand provided by the Greek Independent Power Transmission Operator and pricing values in Greece. We also present the daily temperature in Athens and the Gross Domestic Product of Greece. The code combines the data to a single report, which includes all visualizations with combinations of all variables in multiple time scales. The data and code were used in Tyralis et al. (2017) [1].
Introduction and application of the multiscale coefficient of variation analysis.
Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh
2017-10-01
Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.
Magnetosphere-Ionosphere Coupling During a Geomagnetic Substorm on March 1, 2017
NASA Astrophysics Data System (ADS)
Coster, A. J.; Hampton, D. L.; Sazykin, S. Y.; Wolf, R.; Huba, J.; Varney, R. H.; Reimer, A.; Lynch, K. A.; Samara, M.; Michell, R.
2017-12-01
On March 1, 2017, at approximately 10 UT, magnetometers at Ft Yukon and Poker Flat in Alaska measured the classic signature of an auroral substorm: a rapid decrease in the northward component of the magnetic field. Nearby, a camera at Venetie Alaska captured intensive visual brightening of multiple auroral arcs at approximately the same time. Our data and model analysis focuses on this time period. We are taking advantage of the extensive instrumentation that was in place in Northern Alaska on this date due to the ISINGLASS rocket campaign. Although no rockets were flown on March 1, 2017, this substorm was monitored at Poker by the three-filter all-sky survey and at Venetie by three all-sky cameras running simultaneously with each filtered for a different wavelength. Our analysis includes co-incidental high precision GNSS receiver data providing total electron content (TEC) measurements during the overhead auroral arcs. The receiver at Venetie also monitored L-band scintillation. In addition, the Poker Flat Incoherent Scatter radar captured the rapid ionization enhancement in the 100-200 km region across multiple beams looking to the north of Poker. The timing of these events between the multiple sites is closely monitored, and inferences of the propagation of this event are described. The available SuperDARN data from this time period indicates this substorm happened at about the same time within the Harang discontinuity. This event presented an unprecedented opportunity to observe occurrence and development of a substorm with a combination of ground-based remote sensing instruments. To support our interpretation of the data, we present first simulations of the magnetosphere-ionosphere coupled system during a substorm with the self-consistently coupled SAMI/RCM code.
Measuring the Value of the Hubble Constant “à la Refsdal”
NASA Astrophysics Data System (ADS)
Grillo, C.; Rosati, P.; Suyu, S. H.; Balestra, I.; Caminha, G. B.; Halkola, A.; Kelly, P. L.; Lombardi, M.; Mercurio, A.; Rodney, S. A.; Treu, T.
2018-06-01
Realizing Refsdal’s original idea from 1964, we present estimates of the Hubble constant that are complementary to, and potentially competitive with, those of other cosmological probes. We use the observed positions of 89 multiple images, with extensive spectroscopic information, from 28 background sources and the measured time delays between the images S1–S4 and SX of supernova “Refsdal” (z = 1.489), which were obtained thanks to Hubble Space Telescope deep imaging and Multi Unit Spectroscopic Explorer data. We extend the strong-lensing modeling of the Hubble Frontier Fields galaxy cluster MACS J1149.5+2223 (z = 0.542), published by Grillo et al. (2016), and explore different ΛCDM models. Taking advantage of the lensing information associated to the presence of very close pairs of multiple images at various redshifts, and to the extended surface brightness distribution of the SN Refsdal host, we can reconstruct the total mass-density profile of the cluster very precisely. The combined dependence of the multiple-image positions and time delays on the cosmological parameters allows us to infer the values of H 0 and Ωm with relative (1σ) statistical errors of, respectively, 6% (7%) and 31% (26%) in flat (general) cosmological models, assuming a conservative 3% uncertainty on the final time delay of image SX and, remarkably, no priors from other cosmological experiments. Our best estimate of H 0, based on the model described in this work, will be presented when the final time-delay measurement becomes available. Our results show that it is possible to utilize time delays in lens galaxy clusters as an important alternative tool for measuring the expansion rate and the geometry of the universe.
Adaptive reconfigurable V-BLAST type equalizer for cognitive MIMO-OFDM radios
NASA Astrophysics Data System (ADS)
Ozden, Mehmet Tahir
2015-12-01
An adaptive channel shortening equalizer design for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) radio receivers is considered in this presentation. The proposed receiver has desirable features for cognitive and software defined radio implementations. It consists of two sections: MIMO decision feedback equalizer (MIMO-DFE) and adaptive multiple Viterbi detection. In MIMO-DFE section, a complete modified Gram-Schmidt orthogonalization of multichannel input data is accomplished using sequential processing multichannel Givens lattice stages, so that a Vertical Bell Laboratories Layered Space Time (V-BLAST) type MIMO-DFE is realized at the front-end section of the channel shortening equalizer. Matrix operations, a major bottleneck for receiver operations, are accordingly avoided, and only scalar operations are used. A highly modular and regular radio receiver architecture that has a suitable structure for digital signal processing (DSP) chip and field programable gate array (FPGA) implementations, which are important for software defined radio realizations, is achieved. The MIMO-DFE section of the proposed receiver can also be reconfigured for spectrum sensing and positioning functions, which are important tasks for cognitive radio applications. In connection with adaptive multiple Viterbi detection section, a systolic array implementation for each channel is performed so that a receiver architecture with high computational concurrency is attained. The total computational complexity is given in terms of equalizer and desired response filter lengths, alphabet size, and number of antennas. The performance of the proposed receiver is presented for two-channel case by means of mean squared error (MSE) and probability of error evaluations, which are conducted for time-invariant and time-variant channel conditions, orthogonal and nonorthogonal transmissions, and two different modulation schemes.
An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.
Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang
2016-01-28
In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.
An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database
Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang
2016-01-01
In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496
Extracting similar terms from multiple EMR-based semantic embeddings to support chart reviews.
Cheng Ye, M S; Fabbri, Daniel
2018-05-21
Word embeddings project semantically similar terms into nearby points in a vector space. When trained on clinical text, these embeddings can be leveraged to improve keyword search and text highlighting. In this paper, we present methods to refine the selection process of similar terms from multiple EMR-based word embeddings, and evaluate their performance quantitatively and qualitatively across multiple chart review tasks. Word embeddings were trained on each clinical note type in an EMR. These embeddings were then combined, weighted, and truncated to select a refined set of similar terms to be used in keyword search and text highlighting. To evaluate their quality, we measured the similar terms' information retrieval (IR) performance using precision-at-K (P@5, P@10). Additionally a user study evaluated users' search term preferences, while a timing study measured the time to answer a question from a clinical chart. The refined terms outperformed the baseline method's information retrieval performance (e.g., increasing the average P@5 from 0.48 to 0.60). Additionally, the refined terms were preferred by most users, and reduced the average time to answer a question. Clinical information can be more quickly retrieved and synthesized when using semantically similar term from multiple embeddings. Copyright © 2018. Published by Elsevier Inc.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
The complexity of cancer in multiple family members: dynamics of social work collaboration.
Snow, Alison; Gilbertson, Kristen
2011-01-01
This article presents a case study of one family affected by a cancer diagnosis in both the father and the daughter, who were diagnosed within the same time interval and who underwent treatment at the same time. The article examines the relationship between the caregivers and the oncology patient as well as with one another when the stress of diagnosis is compounded by multiple, simultaneous, and similar diagnoses in a highly condensed period of time. A thorough examination of the literature reveals that there are significant gaps regarding how multiple cancer diagnoses in one family affect the family dynamic, individual and collective coping styles, and caregiver burden. The diagnoses can also dramatically exacerbate economic stressors in a family. The coordination of psychosocial care from the perspectives of the adult and pediatric oncology social workers at an urban academic medical center will be discussed. The social work role, importance of collaboration, and family centered care perspective will be discussed as a method of easing the treatment experience for families in psychosocial distress.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
Neulander, Endre Z; Tiktinsky, Alex; Romanowsky, Igor; Kaneti, Jacob
2010-02-01
Vaginal foreign bodies in children usually present with foul-smelling discharge and/or vaginal bleeding. Rarely, these basic clinical diagnostic signs are not present. We report on a 5(1/2)-year-old girl with recurrent lower urinary tract infection as the sole presentation of multiple vaginal foreign bodies. Ultrasound of the lower urinary tract was inconclusive, and cystography indicated for recurrent urinary tract infections was declined by the patient in an outpatient setting. Cystography under general anesthesia raised the suspicion of foreign vaginal objects, and the definitive diagnosis was made by vaginoscopy. The relevant literature covering this subject is reviewed. High level of suspicion and strict basic diagnostic protocol are the most important steps for a timely diagnosis of this condition. Copyright 2010 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Sudden multiple fractures in a patient with sarcoidosis in multiple organs.
Sada, Mitsuru; Saraya, Takeshi; Ishii, Haruyuki; Goto, Hajime
2014-04-07
A 30-year-old man who incidentally fractured his right olecranon and other multiple phalanges was admitted to our hospital. He had a 2-year history of uveitis and bilateral hilar lymphadenopathy (BHL), and pulmonary sarcoidosis was diagnosed from transbronchial lung biopsy. Right elbow arthrodesis was performed, and biopsied specimens showed non-caseating epithelioid cell granuloma, suggesting osseous sarcoidosis. He was discharged uneventfully without further treatment, but BHL had progressed with the appearance of lung parenchymal lesions 3 months later. At that time, involvement of other organs was also noted on Gallium-67 scintigraphy, showing accumulations in BHL, axillary and inguinal lymph nodes, enlarged liver and spleen and subcutaneous areas. After initiation of steroid therapy, multiple organ involvement improved, and no further bone involvement has been recognised to date. Osseous sarcoidosis complicated by bone fracture is an extremely rare presentation, but should be considered in patients with sarcoidosis, especially when multiple organs are involved.
Reading time allocation strategies and working memory using rapid serial visual presentation.
Busler, Jessica N; Lazarte, Alejandro A
2017-09-01
Rapid serial visual presentation (RSVP) is a useful method for controlling the timing of text presentations and studying how readers' characteristics, such as working memory (WM) and reading strategies for time allocation, influence text recall. In the current study, a modified version of RSVP (Moving Window RSVP [MW-RSVP]) was used to induce longer pauses at the ends of clauses and ends of sentences when reading texts with multiple embedded clauses. We studied if WM relates to allocation of time at end of clauses or sentences in a self-paced reading task and in 2 MW-RSVP reading conditions (Constant MW-RSVP and Paused MW-RSVP) in which the reading rate was kept constant or pauses were induced. Higher WM span readers were more affected by the restriction of time allocation in the MW-RSVP conditions. In addition, the recall of both higher and lower WM-span readers benefited from the paused MW-RSVP presentation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Short-term scheduling of an open-pit mine with multiple objectives
NASA Astrophysics Data System (ADS)
Blom, Michelle; Pearce, Adrian R.; Stuckey, Peter J.
2017-05-01
This article presents a novel algorithm for the generation of multiple short-term production schedules for an open-pit mine, in which several objectives, of varying priority, characterize the quality of each solution. A short-term schedule selects regions of a mine site, known as 'blocks', to be extracted in each week of a planning horizon (typically spanning 13 weeks). Existing tools for constructing these schedules use greedy heuristics, with little optimization. To construct a single schedule in which infrastructure is sufficiently utilized, with production grades consistently close to a desired target, a planner must often run these heuristics many times, adjusting parameters after each iteration. A planner's intuition and experience can evaluate the relative quality and mineability of different schedules in a way that is difficult to automate. Of interest to a short-term planner is the generation of multiple schedules, extracting available ore and waste in varying sequences, which can then be manually compared. This article presents a tool in which multiple, diverse, short-term schedules are constructed, meeting a range of common objectives without the need for iterative parameter adjustment.
Multiple Acquisition InSAR Analysis: Persistent Scatterer and Small Baseline Approaches
NASA Astrophysics Data System (ADS)
Hooper, A.
2006-12-01
InSAR techniques that process data from multiple acquisitions enable us to form time series of deformation and also allow us to reduce error terms present in single interferograms. There are currently two broad categories of methods that deal with multiple images: persistent scatterer methods and small baseline methods. The persistent scatterer approach relies on identifying pixels whose scattering properties vary little with time and look angle. Pixels that are dominated by a singular scatterer best meet these criteria; therefore, images are processed at full resolution to both increase the chance of there being only one dominant scatterer present, and to reduce the contribution from other scatterers within each pixel. In images where most pixels contain multiple scatterers of similar strength, even at the highest possible resolution, the persistent scatterer approach is less optimal, as the scattering characteristics of these pixels vary substantially with look angle. In this case, an approach that interferes only pairs of images for which the difference in look angle is small makes better sense, and resolution can be sacrificed to reduce the effects of the look angle difference by band-pass filtering. This is the small baseline approach. Existing small baseline methods depend on forming a series of multilooked interferograms and unwrapping each one individually. This approach fails to take advantage of two of the benefits of processing multiple acquisitions, however, which are usually embodied in persistent scatterer methods: the ability to find and extract the phase for single-look pixels with good signal-to-noise ratio that are surrounded by noisy pixels, and the ability to unwrap more robustly in three dimensions, the third dimension being that of time. We have developed, therefore, a new small baseline method to select individual single-look pixels that behave coherently in time, so that isolated stable pixels may be found. After correction for various error terms, the phase values of the selected pixels are unwrapped using a new three-dimensional algorithm. We apply our small baseline method to an area in southern Iceland that includes Katla and Eyjafjallajökull volcanoes, and retrieve a time series of deformation that shows transient deformation due to intrusion of magma beneath Eyjafjallajökull. We also process the data using the Stanford method for persistent scatterers (StaMPS) for comparison.
NASA Astrophysics Data System (ADS)
Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T. J. M.
2007-05-01
First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au24+ (11 MeV/u) on a thin carbon foil (28 μg/cm2).
Leavitt, Victoria M; Lengenfelder, Jean; Moore, Nancy B; Chiaravalloti, Nancy D; DeLuca, John
2011-06-01
Cognitive symptoms of multiple sclerosis (MS) include processing-speed deficits and working memory impairment. The precise manner in which these deficits interact in individuals with MS remains to be explicated. We hypothesized that providing more time on a complex working memory task would result in performance benefits for individuals with MS relative to healthy controls. Fifty-three individuals with clinically definite MS and 36 matched healthy controls performed a computerized task that systematically manipulated cognitive load. The interval between stimuli presentations was manipulated to provide increasing processing time. The results confirmed that individuals with MS who have processing-speed deficits significantly improve in performance accuracy when given additional time to process the information in working memory. Implications of these findings for developing appropriate cognitive rehabilitation interventions are discussed.
Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications
NASA Astrophysics Data System (ADS)
Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; García, M. Fernández; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.; Stricker, M.; Vila, I.
2016-09-01
This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.
A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks
Hu, Sheng; Wei, Hongxing; Chen, Youdong; Tan, Jindong
2012-01-01
Long term continuous monitoring of electrocardiogram (ECG) in a free living environment provides valuable information for prevention on the heart attack and other high risk diseases. This paper presents the design of a real-time wearable ECG monitoring system with associated cardiac arrhythmia classification algorithms. One of the striking advantages is that ECG analog front-end and on-node digital processing are designed to remove most of the noise and bias. In addition, the wearable sensor node is able to monitor the patient's ECG and motion signal in an unobstructive way. To realize the real-time medical analysis, the ECG is digitalized and transmitted to a smart phone via Bluetooth. On the smart phone, the ECG waveform is visualized and a novel layered hidden Markov model is seamlessly integrated to classify multiple cardiac arrhythmias in real time. Experimental results demonstrate that the clean and reliable ECG waveform can be captured in multiple stressed conditions and the real-time classification on cardiac arrhythmia is competent to other workbenches. PMID:23112746
The NASA Smart Probe Project for real-time multiple microsensor tissue recognition
NASA Technical Reports Server (NTRS)
Andrews, Russell J.; Mah, Robert W.
2003-01-01
BACKGROUND: Remote surgery requires automated sensors, effectors and sensor-effector communication. The NASA Smart Probe Project has focused on the sensor aspect. METHODS: The NASA Smart Probe uses neural networks and data from multiple microsensors for a unique tissue signature in real time. Animal and human trials use several probe configurations: (1) 8-microsensor probe (2.5 mm in diameter) for rodent studies (normal and subcutaneous mammary tumor tissues), and (2) 21-gauge needle probe with 3 spectroscopic fibers and an impedance microelectrode for breast cancer diagnosis in humans. Multisensor data are collected in real time (update 100 times/s) using PCs. RESULTS: Human data (collected by NASA licensee BioLuminate) from 15 women undergoing breast biopsy distinguished normal tissue from both benign tumors and breast carcinoma. Tumor margins and necrosis are rapidly detected. CONCLUSION: Real-time tissue identification is achievable. Potential applications, including probes incorporating nanoelectrode arrays, are presented. Copyright 2003 S. Karger AG, Basel.
Wang, Zhuo; Jin, Shuilin; Liu, Guiyou; Zhang, Xiurui; Wang, Nan; Wu, Deliang; Hu, Yang; Zhang, Chiping; Jiang, Qinghua; Xu, Li; Wang, Yadong
2017-05-23
The development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data collected at multiple time points remains a challenge to effective measurement gene expression patterns in transcriptome analysis. We present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell types from complex mixtures of multiple cell types. The DTWscore successfully classify cells of different types with the most highly variable genes from time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore .
NASA Astrophysics Data System (ADS)
Xu, Haiying; Yuan, Yang; Yu, Youlong; Xu, Kebin; Xu, Yuhuan
1990-08-01
This paper presents a real time holographic associative memory implemented with photorefractive KNSBN:Co crystal as the memory element and a liquid crystal electrooptic switch array as the reflective thresholding device. The experiment stores and recalls two images and shows that the system has real-time multiple-image storage and recall functions. An associative memory with a dynamic threshold level to decide the closest match of an incomplete input is proposed.
ERIC Educational Resources Information Center
Jarome, Timothy J.; Kwapis, Janine L.; Werner, Craig T.; Parsons, Ryan G.; Gafford, Georgette M.; Helmstetter, Fred J.
2012-01-01
Numerous studies have indicated that maintaining a fear memory after retrieval requires de novo protein synthesis. However, no study to date has examined how the temporal dynamics of repeated retrieval events affect this protein synthesis requirement. The present study varied the timing of a second retrieval of an established auditory fear memory…
Otta, Emma; Fernandes, Eloisa de S; Acquaviva, Tiziana G; Lucci, Tania K; Kiehl, Leda C; Varella, Marco A C; Segal, Nancy L; Valentova, Jaroslava V
2016-12-01
The present study investigates the twinning rates in the city of São Paulo, Brazil, during the years 2003-2014. The data were drawn from the Brazilian Health Department database of Sistema de Informações de Nascidos Vivos de São Paulo-SINASC (Live Births Information System of São Paulo). In general, more information is available on the incidence of twinning in developed countries than in developing ones. A total of 24,589 twin deliveries and 736 multiple deliveries were registered in 140 hospitals of São Paulo out of a total of 2,056,016 deliveries during the studied time period. The overall average rates of singleton, twin, and multiple births per 1,000 maternities (‰) were 987.43, 11.96 (dizygotic (DZ) rate was 7.15 and monozygotic (MZ) 4.42), and 0.36, respectively. We further regressed maternal age and historical time period on percentage of singleton, twin, and multiple birth rates. Our results indicated that maternal age strongly positively predicted twin and multiple birth rates, and negatively predicted singleton birth rates. The historical time period also positively, although weakly, predicted twin birth rates, and had no effect on singleton or multiple birth rates. Further, after applying Weinberg's differential method, we computed regressions separately for the estimated frequencies of DZ and MZ twin rates. DZ twinning was strongly positively predicted by maternal age and, to a smaller degree, by time period, while MZ twinning increased marginally only with higher maternal age. Factors such as increasing body mass index or air pollution can lead to the slight historical increase in DZ twinning rates. Importantly, consistent with previous cross-cultural and historical research, our results support the existence of an age-dependent physiological mechanism that leads to a strong increase in twinning and multiple births, but not singleton births, among mothers of higher age categories. From the ultimate perspective, twinning and multiple births in later age can lead to higher individual reproductive success near the end of the reproductive career of the mother.
Dogan, Ebru; Steg, Linda; Delhomme, Patricia
2011-09-01
Due to the innate complexity of the task drivers have to manage multiple goals while driving and the importance of certain goals may vary over time leading to priority being given to different goals depending on the circumstances. This study aimed to investigate drivers' behavioral regulation while managing multiple goals during driving. To do so participants drove on urban and rural roads in a driving simulator while trying to manage fuel saving and time saving goals, besides the safety goals that are always present during driving. A between-subjects design was used with one group of drivers managing two goals (safety and fuel saving) and another group managing three goals (safety, fuel saving, and time saving) while driving. Participants were provided continuous feedback on the fuel saving goal via a meter on the dashboard. The results indicate that even when a fuel saving or time saving goal is salient, safety goals are still given highest priority when interactions with other road users take place and when interacting with a traffic light. Additionally, performance on the fuel saving goal diminished for the group that had to manage fuel saving and time saving together. The theoretical implications for a goal hierarchy in driving tasks and practical implications for eco-driving are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmagarmid, A.K.
The availability of distributed data bases is directly affected by the timely detection and resolution of deadlocks. Consequently, mechanisms are needed to make deadlock detection algorithms resilient to failures. Presented first is a centralized algorithm that allows transactions to have multiple requests outstanding. Next, a new distributed deadlock detection algorithm (DDDA) is presented, using a global detector (GD) to detect global deadlocks and local detectors (LDs) to detect local deadlocks. This algorithm essentially identifies transaction-resource interactions that m cause global (multisite) deadlocks. Third, a deadlock detection algorithm utilizing a transaction-wait-for (TWF) graph is presented. It is a fully disjoint algorithmmore » that allows multiple outstanding requests. The proposed algorithm can achieve improved overall performance by using multiple disjoint controllers coupled with the two-phase property while maintaining the simplicity of centralized schemes. Fourth, an algorithm that combines deadlock detection and avoidance is given. This algorithm uses concurrent transaction controllers and resource coordinators to achieve maximum distribution. The language of CSP is used to describe this algorithm. Finally, two efficient deadlock resolution protocols are given along with some guidelines to be used in choosing a transaction for abortion.« less
NASA Astrophysics Data System (ADS)
Wang, Tusheng; Yang, Yuanyuan; Zhang, Jianguo
2013-03-01
In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai by using grid-based or cloud-based distributed architecture and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. However, when the platform integrates more and more nodes over different networks, the first challenge is that how to monitor and maintain all the hosts and services operating cross multiple academic institutions and hospitals in the e-Science platform, such as DICOM and Web based image communication services, messaging services and XDS ITI transaction services. In this presentation, we presented a system design and implementation of intelligent monitoring and management which can collect system resource status of every node in real time, alert when node or service failure occurs, and can finally improve the robustness, reliability and service continuity of this e-Science platform.
Lucky imaging multiplicity studies of exoplanet host stars
NASA Astrophysics Data System (ADS)
Ginski, C.; Mugrauer, M.; Neuhäuser, R.
2014-03-01
The multiplicity of stars is an important parameter in order to understand star and planet formation. In the past decades extrasolar planets have been discovered around more than 600 stars with the radial velocity and transit techniques. Many of these systems present extreme cases of massive planetary objects at very close separations to their primary stars. To explain the configurations of such systems is hence a continued challenge in the development of formation theories. It will be very interesting to determine if there are significant differences between planets in single and multiple star systems. In our ongoing study we use high resolution imaging techniques to clarify the multiplicity status of nearby (within 250 pc) planet host stars. For targets on the northern hemisphere we employ the lucky imaging instrument Astralux at the 2.2 m telescope of the Calar Alto Observatory. The lucky imaging approach consists of taking several thousand short images with integration times shorter than the speckle coherence time, to sample the speckle variations during the observation window. We then only choose the so called "lucky shots" with a very high Strehl ratio in one of the speckles, to shift and add, resulting in a final image with the highest possible Strehl ratio and therefore highest possible angular resolution. We will present recent results of our study at the Calar Alto Observatory, as well as observations undertaken with the RTK camera at the 20 cm guiding telescope in our own observatory in Großschwabhausen.
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-01-01
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765
Garla, Bharath Kumar; Deshmukh, Seema; Murthy, Prashanth Sadashiva; Satish, G
2015-01-01
Traumatic injuries to the dento-alveolar structures are emergencies that compromise the quality of life of the patients. In addition to symptomatic management, definitive functional restoration and suitable rehabilitation becomes a major treatment objective in such cases. The dynamics of the traumatic forces may cause multiple injuries of different grades to the oral and para-oral structures, which makes comprehensive management a greater challenge to the dentist. The present case report elaborates a modified esthetic splint designed to treat multiple dental injuries in children, which can promote healing, restore optimal functionality along with esthetic rehabilitation to psychologically benefit the child during the time of recovery. PMID:26435631
Parallel matrix multiplication on the Connection Machine
NASA Technical Reports Server (NTRS)
Tichy, Walter F.
1988-01-01
Matrix multiplication is a computation and communication intensive problem. Six parallel algorithms for matrix multiplication on the Connection Machine are presented and compared with respect to their performance and processor usage. For n by n matrices, the algorithms have theoretical running times of O(n to the 2nd power log n), O(n log n), O(n), and O(log n), and require n, n to the 2nd power, n to the 2nd power, and n to the 3rd power processors, respectively. With careful attention to communication patterns, the theoretically predicted runtimes can indeed be achieved in practice. The parallel algorithms illustrate the tradeoffs between performance, communication cost, and processor usage.
NASA Astrophysics Data System (ADS)
Kim, Hoon; Hyon, Taein; Lee, Yeonwoo
Most of previous works have presented the dynamic spectrum allocation (DSA) gain achieved by utilizing the time or regional variations in traffic demand between multi-network operators (NOs). In this paper, we introduce the functionalities required for the entities related with the spectrum sharing and allocation and propose a spectrum allocation algorithm while considering the long-term priority between NOs, the priority between multiple class services, and the urgent bandwidth request. To take into account the priorities among the NOs and the priorities of multiple class services, a spectrum sharing metric (SSM) is proposed, while a negotiation procedure is proposed to treat the urgent bandwidth request.
Atmospheric turbulence profiling with SLODAR using multiple adaptive optics wavefront sensors.
Wang, Lianqi; Schöck, Matthias; Chanan, Gary
2008-04-10
The slope detection and ranging (SLODAR) method recovers atmospheric turbulence profiles from time averaged spatial cross correlations of wavefront slopes measured by Shack-Hartmann wavefront sensors. The Palomar multiple guide star unit (MGSU) was set up to test tomographic multiple guide star adaptive optics and provided an ideal test bed for SLODAR turbulence altitude profiling. We present the data reduction methods and SLODAR results from MGSU observations made in 2006. Wind profiling is also performed using delayed wavefront cross correlations along with SLODAR analysis. The wind profiling analysis is shown to improve the height resolution of the SLODAR method and in addition gives the wind velocities of the turbulent layers.
Multiple-vehicle collision induced by a sudden stop in traffic flow
NASA Astrophysics Data System (ADS)
Sugiyama, Naoki; Nagatani, Takashi
2012-04-01
We study the dynamic process of the multiple-vehicle collision when a vehicle stops suddenly in a traffic flow. We apply the optimal-velocity model to the vehicular motion. If a vehicle does not decelerate successfully, it crashes into the vehicle ahead with a residual speed. The collision criterion is presented by vi(t)/Δxi(t)→∞ if Δxi(t)→0 where vi(t) and Δxi(t) are the speed and headway of vehicle i at time t. The number of crumpled vehicles depends on the initial velocity, the sensitivity, and the initial headway. We derive the region map (or phase diagram) for the multiple-vehicle collision.
Three primary synchronous malignancies of the uterus, cervix, and fallopian tube: A case report.
Song, Liang; Li, Qingli; Yang, Kaixuan; Yin, Rutie; Wang, Danqing
2018-06-01
Multiple primary malignancies can occur in the same organ or in multiple organs or systems. Likewise, they can occur simultaneously or successively. Based on the timing of the diagnosis, they are classified as multiple synchronous (i.e., concurrent) or metachronous (i.e., successive) primary malignancies. The vast majority of patients have multiple metachronous malignant tumors; multiple synchronous tumors are rare. A 63-year-old woman presented with the chief complaint of vaginal fluid discharge for 3 months and abdominal pain for 1 month. The patient was diagnosed with multiple synchronous primary malignancies: 1) endometrial poorly differentiated serous adenocarcinoma, stage IV; 2) poorly differentiated squamous cell carcinoma of the cervix, stage IB1; and 3) left-sided fallopian tube carcinoma in situ. After total abdominal hysterectomy, bilateral salpingo-oophorectomy, and comprehensive staging and debulking, the patient was administered eight courses of adjuvant chemotherapy (taxane carboplatin/taxane cisplatin). After chemotherapy completion, the patient has been undergoing regular follow-up examinations; no recurrence has been noted at 18 months. It is important to distinguish between multiple synchronous primary malignancies and metastasis of a primary tumor to select the appropriate treatment regimen and to adequately assess the patient's prognosis. When a cancer patient shows clinical manifestations of another tumor, not only metastasis but also the possibility of multiple synchronous primary malignant tumors should be considered. The duration of follow-up in patients with malignant tumors should be extended as much as possible, as the timely detection and treatment of other primary malignant tumors can prolong survival and improve the quality of life.
Children's environmental chemical exposures in the USA, NHANES 2003-2012.
Hendryx, Michael; Luo, Juhua
2018-02-01
Children are vulnerable to environmental chemical exposures, but little is known about the extent of multiple chemical exposures among children. We analyzed biomonitoring data from five cycles (2003-2012) of the National Health and Nutrition Examination Survey (NHANES) to describe multiple chemical exposures in US children, examine levels of chemical concentrations present over time, and examine differences in chemical exposures by selected demographic groups. We analyzed data for 36 chemical analytes across five chemical classes in a sample of 4299 children aged 6-18. Classes included metals, pesticides, phthalates, phenols, and polycyclic aromatic hydrocarbons. We calculated the number and percent of chemicals detected and tested for secular trends over time in chemical concentrations. We compared log concentrations among groups defined by age, sex, race/ethnicity, and poverty using multiple linear regression models and report adjusted geometric means. Among a smaller subgroup of 733 children with data across chemical classes, we calculated the linear correlations within and between classes and conducted a principal component analysis. The percentage of children with detectable concentrations of an individual chemical ranged from 26 to 100%; the average was 93%, and 29 of 36 were detected in more than 90% of children. Concentrations of most tested chemicals were either unchanged or declined from earlier to more recent years. Many differences in concentrations were present by age, sex, poverty, and race/ethnicity categories. Within and between class correlations were all significant and positive, and the principal component analysis suggested a one factor solution, indicating that children exposed to higher levels of one chemical were exposed to higher levels of other chemicals. In conclusion, children in the USA are exposed to multiple simultaneous chemicals at uneven risk across socioeconomic and demographic groups. Further efforts to understand the effects of multiple exposures on child health and development are warranted.
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
Faculty Ranks and Reviews: One Institution's Solution.
ERIC Educational Resources Information Center
Rau, A. Ravi P.; Masse, Michelle A.; Wittkopf, Eugene R.; Kinney, Ralph A.
2000-01-01
Presents recommendations of a faculty/administrator committee at Louisiana State University concerning faculty ranks and reviews, especially of nontenured full-time faculty who specialize in either teaching or research. It proposes rolling multiple-year contracts for instructors, new titles for non-teaching research scientists, university…
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.
2012-01-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G
2011-07-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.
Jabbarpoor Bonyadi, Mohammad Hossein; Hassanpour, Kiana; Soheilian, Masoud
2018-04-01
To present a recurrent case of conforming focal choroidal excavation (FCE) following multiple evanescent white dot syndrome (MEWDS) in a 25-year-old woman. Following spontaneous MEWDS sings resolution our patient noted a recurrent decrease in vision. Repeated OCT revealed elevation and mild disruption of RPE layer at fovea without previous angiographic MEWDS signs. At this time, short-term systemic steroid therapy was started and visual acuity became normal. Following quiescence of the new-onset phase, the conforming type of FCE located in inferior macula appeared in OCT. In the following next 2 years recurrence of presumptive focal subfoveal choriocapillaritis occurred for three times presenting with blurred vision. During every acute attack, above-mentioned FCE disappeared and returned back again after resolution of presumptive focal choriocapillaritis. This is the first and unique case of recurrent type of FCE following MEWDS. It seems to disappear during active phase of presumptive focal choriocapillaritis and then returns after the eye has become quiescent.
Method for traceable measurement of LTE signals
NASA Astrophysics Data System (ADS)
Sunder Dash, Soumya; Pythoud, Frederic; Leuchtmann, Pascal; Leuthold, Juerg
2018-04-01
This contribution presents a reference setup to measure the power of the cell-specific resource elements present in downlink long term evolution (LTE) signals in a way that the measurements are traceable to the international system of units. This setup can be used to calibrate the LTE code-selective field probes that are used to measure the radiation of base stations for mobile telephony. It can also be used to calibrate LTE signal generators and receivers. The method is based on traceable scope measurements performed directly at the output of a measuring antenna. It implements offline digital signal processing demodulation algorithms that consider the digital down-conversion, timing synchronization, frequency synchronization, phase synchronization and robust LTE cell identification to produce the downlink time-frequency LTE grid. Experimental results on conducted test scenarios, both single-input-single-output and multiple-input-multiple-output antenna configuration, show promising results confirming measurement uncertainties of the order of 0.05 dB with a coverage factor of 2.
Chaaraoui, Alexandros Andre; Flórez-Revuelta, Francisco
2014-01-01
This paper presents a novel silhouette-based feature for vision-based human action recognition, which relies on the contour of the silhouette and a radial scheme. Its low-dimensionality and ease of extraction result in an outstanding proficiency for real-time scenarios. This feature is used in a learning algorithm that by means of model fusion of multiple camera streams builds a bag of key poses, which serves as a dictionary of known poses and allows converting the training sequences into sequences of key poses. These are used in order to perform action recognition by means of a sequence matching algorithm. Experimentation on three different datasets returns high and stable recognition rates. To the best of our knowledge, this paper presents the highest results so far on the MuHAVi-MAS dataset. Real-time suitability is given, since the method easily performs above video frequency. Therefore, the related requirements that applications as ambient-assisted living services impose are successfully fulfilled.
NASA Astrophysics Data System (ADS)
Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.
1996-02-01
Neutron coincidence counting is commonly used for the non-destructive assay of plutonium bearing waste or for safeguards verification measurements. A major drawback of conventional coincidence counting is related to the fact that a valid calibration is needed to convert a neutron coincidence count rate to a 240Pu equivalent mass ( 240Pu eq). In waste assay, calibrations are made for representative waste matrices and source distributions. The actual waste however may have quite different matrices and source distributions compared to the calibration samples. This often results in a bias of the assay result. This paper presents a new neutron multiplicity sensitive coincidence counting technique including an auto-calibration of the neutron detection efficiency. The coincidence counting principle is based on the recording of one- and two-dimensional Rossi-alpha distributions triggered respectively by pulse pairs and by pulse triplets. Rossi-alpha distributions allow an easy discrimination between real and accidental coincidences and are aimed at being measured by a PC-based fast time interval analyser. The Rossi-alpha distributions can be easily expressed in terms of a limited number of factorial moments of the neutron multiplicity distributions. The presented technique allows an unbiased measurement of the 240Pu eq mass. The presented theory—which will be indicated as Time Interval Analysis (TIA)—is complementary to Time Correlation Analysis (TCA) theories which were developed in the past, but is from the theoretical point of view much simpler and allows a straightforward calculation of deadtime corrections and error propagation. Analytical expressions are derived for the Rossi-alpha distributions as a function of the factorial moments of the efficiency dependent multiplicity distributions. The validity of the proposed theory is demonstrated and verified via Monte Carlo simulations of pulse trains and the subsequent analysis of the simulated data.
Studying Different Tasks of Implicit Learning across Multiple Test Sessions Conducted on the Web
Sævland, Werner; Norman, Elisabeth
2016-01-01
Implicit learning is usually studied through individual performance on a single task, with the most common tasks being the Serial Reaction Time (SRT) task, the Dynamic System Control (DSC) task, and Artificial Grammar Learning (AGL). Few attempts have been made to compare performance across different implicit learning tasks within the same study. The current study was designed to explore the relationship between performance on the DSC Sugar factory task and the Alternating Serial Reaction Time (ASRT) task. We also addressed another limitation of traditional implicit learning experiments, namely that implicit learning is usually studied in laboratory settings over a restricted time span lasting for less than an hour. In everyday situations, implicit learning is assumed to involve a gradual accumulation of knowledge across several learning episodes over a longer time span. One way to increase the ecological validity of implicit learning experiments could be to present the learning material repeatedly across shorter test sessions. This can most easily be done by using a web-based setup in which participants can access the material from home. We therefore created an online web-based system for measuring implicit learning that could be administered in either single or multiple sessions. Participants (n = 66) were assigned to either a single session or a multiple session condition. Learning occurred on both tasks, and awareness measures suggested that acquired knowledge was not fully conscious on either of the tasks. Learning and the degree of conscious awareness of the learned regularities were compared across conditions and tasks. On the DSC task, performance was not affected by whether learning had taken place in one or over multiple sessions. On the ASRT task, RT improvement across blocks was larger in the multiple-session condition. Learning in the two tasks was not related. PMID:27375512
Least squares reverse time migration of controlled order multiples
NASA Astrophysics Data System (ADS)
Liu, Y.
2016-12-01
Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).
Kwon, Tae-Ho; Kim, Jai-Eun; Kim, Ki-Doo
2018-05-14
In the field of communication, synchronization is always an important issue. The communication between a light-emitting diode (LED) array (LEA) and a camera is known as visual multiple-input multiple-output (MIMO), for which the data transmitter and receiver must be synchronized for seamless communication. In visual-MIMO, LEDs generally have a faster data rate than the camera. Hence, we propose an effective time-sharing-based synchronization technique with its color-independent characteristics providing the key to overcome this synchronization problem in visual-MIMO communication. We also evaluated the performance of our synchronization technique by varying the distance between the LEA and camera. A graphical analysis is also presented to compare the symbol error rate (SER) at different distances.
Consortium for Verification Technology Fellowship Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadler, Lorraine E.
2017-06-01
As one recipient of the Consortium for Verification Technology (CVT) Fellowship, I spent eight days as a visiting scientist at the University of Michigan, Department of Nuclear Engineering and Radiological Sciences (NERS). During this time, I participated in multiple department and research group meetings and presentations, met with individual faculty and students, toured multiple laboratories, and taught one-half of a one-unit class on Risk Analysis in Nuclear Arms control (six 1.5 hour lectures). The following report describes some of the interactions that I had during my time as well as a brief discussion of the impact of this fellowship onmore » members of the consortium and on me/my laboratory’s technical knowledge and network.« less
Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S K
2006-02-09
We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated datamore » with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Bradley E.
2011-12-01
I report on the cumulative results from a program started 24 years ago designed to measure the orbital period change of recurrent novae (RNe) across an eruption. The goal is to use the orbital period change to measure the mass ejected during each eruption as the key part of trying to measure whether the RNe white dwarfs are gaining or losing mass over an entire eruption cycle, and hence whether they can be progenitors for Type Ia supernovae. This program has now been completed for two eclipsing RNe: CI Aquilae (CI Aql) across its eruption in 2000 and U Scorpiimore » (U Sco) across its eruption in 1999. For CI Aql, I present 78 eclipse times from 1991 to 2009 (including four during the tail of the 2000 eruption) plus two eclipses from 1926 and 1935. For U Sco, I present 67 eclipse times, including 46 times during quiescence from 1989 to 2009, plus 21 eclipse times in the tails of the 1945, 1999, and 2010 eruptions. The eclipse times during the tails of eruptions are systematically and substantially shifted with respect to the ephemerides from the eclipses in quiescence, with this being caused by shifts of the center of light during the eruption. These eclipse times are plotted on an O - C diagram and fitted to models with a steady period change ( P-dot ) between eruptions (caused by, for example, conservative mass transfer) plus an abrupt period change ({Delta}P) at the time of eruption. The primary uncertainty arises from the correlation between {Delta}P with P-dot , such that a more negative P-dot makes for a more positive {Delta}P. For CI Aql, the best fit is {Delta}P = -3.7{sup +9.2}{sub -7.3} Multiplication-Sign 10{sup -7}. For U Sco, the best fit is {Delta}P = (+ 43 {+-} 69) Multiplication-Sign 10{sup -7} days. These period changes can directly give a dynamical measure of the mass ejected (M{sub ejecta}) during each eruption with negligible sensitivity to the stellar masses and no uncertainty from distances. For CI Aql, the 1{sigma} upper limit is M{sub ejecta} < 10 Multiplication-Sign 10{sup -7} M{sub Sun }. For U Sco, I derive M{sub ejecta} = (43 {+-} 67) Multiplication-Sign 10{sup -7} M{sub Sun }.« less
Choi1, Yong Seok; Lee, Kelvin H.
2016-01-01
Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (> 90%) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R2 = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78%), and inter-day reproducibility (average CV = 9.85%). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard. PMID:26404792
Choi, Yong Seok; Lee, Kelvin H
2016-03-01
Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (>90 %) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems in laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R(2) = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78 %), and inter-day reproducibility (average CV = 9.85 %). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard.
Real-time optical holographic tracking of multiple objects
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Liu, Hua-Kuang
1989-01-01
A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.
Reduced rank models for travel time estimation of low order mode pulses.
Chandrayadula, Tarun K; Wage, Kathleen E; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M
2013-10-01
Mode travel time estimation in the presence of internal waves (IWs) is a challenging problem. IWs perturb the sound speed, which results in travel time wander and mode scattering. A standard approach to travel time estimation is to pulse compress the broadband signal, pick the peak of the compressed time series, and average the peak time over multiple receptions to reduce variance. The peak-picking approach implicitly assumes there is a single strong arrival and does not perform well when there are multiple arrivals due to scattering. This article presents a statistical model for the scattered mode arrivals and uses the model to design improved travel time estimators. The model is based on an Empirical Orthogonal Function (EOF) analysis of the mode time series. Range-dependent simulations and data from the Long-range Ocean Acoustic Propagation Experiment (LOAPEX) indicate that the modes are represented by a small number of EOFs. The reduced-rank EOF model is used to construct a travel time estimator based on the Matched Subspace Detector (MSD). Analysis of simulation and experimental data show that the MSDs are more robust to IW scattering than peak picking. The simulation analysis also highlights how IWs affect the mode excitation by the source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helton, Jon C.; Brooks, Dusty Marie; Sallaberry, Cedric Jean-Marie.
Representations for margins associated with loss of assured safety (LOAS) for weak link (WL)/strong link (SL) systems involving multiple time-dependent failure modes are developed. The following topics are described: (i) defining properties for WLs and SLs, (ii) background on cumulative distribution functions (CDFs) for link failure time, link property value at link failure, and time at which LOAS occurs, (iii) CDFs for failure time margins defined by (time at which SL system fails) – (time at which WL system fails), (iv) CDFs for SL system property values at LOAS, (v) CDFs for WL/SL property value margins defined by (property valuemore » at which SL system fails) – (property value at which WL system fails), and (vi) CDFs for SL property value margins defined by (property value of failing SL at time of SL system failure) – (property value of this SL at time of WL system failure). Included in this presentation is a demonstration of a verification strategy based on defining and approximating the indicated margin results with (i) procedures based on formal integral representations and associated quadrature approximations and (ii) procedures based on algorithms for sampling-based approximations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1987-01-01
Analysis results for multiple steam generator blow down caused by an auxiliary feedwater steam-line break performed with the RETRAN-02 MOD 003 computer code are presented to demonstrate the capabilities of the RETRAN code to predict system transient response for verifying changes in operational procedures and supporting plant equipment modifications. A typical four-loop Westinghouse pressurized water reactor was modeled using best-estimate versus worst case licensing assumptions. This paper presents analyses performed to evaluate the necessity of implementing an auxiliary feedwater steam-line isolation modification. RETRAN transient analysis can be used to determine core cooling capability response, departure from nucleate boiling ratio (DNBR)more » status, and reactor trip signal actuation times.« less
Flight-determined stability analysis of multiple-input-multiple-output control systems
NASA Technical Reports Server (NTRS)
Burken, John J.
1992-01-01
Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron command-feedback gain by +/- 20 percent. Minimum eigenvalues of the return difference matrix which bound the singular values are also presented. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.
Flight-determined stability analysis of multiple-input-multiple-output control systems
NASA Technical Reports Server (NTRS)
Burken, John J.
1992-01-01
Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron-command-feedback gain by +/- 20 percent. Also presented are the minimum eigenvalues of the return difference matrix which bound the singular values. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.
NASA Technical Reports Server (NTRS)
Roman, Monserrate C.; Jones, Kathy U.; Oubre, Cherie M.; Castro, Victoria; Ott, Mark C.; Birmele, Michele; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.
2013-01-01
Current methods for microbial detection: a) Labor & time intensive cultivation-based approaches that can fail to detect or characterize all cells present. b) Requires collection of samples on orbit and transportation back to ground for analysis. Disadvantages to current detection methods: a) Unable to perform quick and reliable detection on orbit. b) Lengthy sampling intervals. c) No microbe identification.
Proactive Time-Rearrangement Scheme for Multi-Radio Collocated Platform
NASA Astrophysics Data System (ADS)
Kim, Chul; Shin, Sang-Heon; Park, Sang Kyu
We present a simple proactive time rearrangement scheme (PATRA) that reduces the interferences from multi-radio devices equipped in one platform and guarantees user-conceived QoS. Simulation results show that the interference among multiple radios in one platform causes severe performance degradation and cannot guarantee the user requested QoS. However, the PATRA can dramatically improve not only the userconceived QoS but also the overall network throughput.
Oral Lesions: The Clue to Diagnosis of Pemphigus Vulgaris.
Kuriachan, Diana; Suresh, Rakesh; Janardhanan, Mahija; Savithri, Vindhya
2015-01-01
Pemphigus is a group of potentially fatal dermatoses with both cutaneous and oral manifestations. Characterized by the appearance of vesicle or bullae, their manifestations in the oral cavity often precede those on the skin by many months or may remain as the only symptoms of the disease. It is therefore important that the oral manifestations of the disease are recognized on time, to make a proper diagnosis and initiate timely treatment. Here we present a case of Pemphigus Vulgaris (PV) that presented with oral lesions at multiple sites including tongue, to highlight the importance of timely recognition of the oral lesions during routine dental practice for the diagnosis and management of this disease.
LSST: Cadence Design and Simulation
NASA Astrophysics Data System (ADS)
Cook, Kem H.; Pinto, P. A.; Delgado, F.; Miller, M.; Petry, C.; Saha, A.; Gee, P. A.; Tyson, J. A.; Ivezic, Z.; Jones, L.; LSST Collaboration
2009-01-01
The LSST Project has developed an operations simulator to investigate how best to observe the sky to achieve its multiple science goals. The simulator has a sophisticated model of the telescope and dome to properly constrain potential observing cadences. This model has also proven useful for investigating various engineering issues ranging from sizing of slew motors, to design of cryogen lines to the camera. The simulator is capable of balancing cadence goals from multiple science programs, and attempts to minimize time spent slewing as it carries out these goals. The operations simulator has been used to demonstrate a 'universal' cadence which delivers the science requirements for a deep cosmology survey, a Near Earth Object Survey and good sampling in the time domain. We will present the results of simulating 10 years of LSST operations using realistic seeing distributions, historical weather data, scheduled engineering downtime and current telescope and camera parameters. These simulations demonstrate the capability of the LSST to deliver a 25,000 square degree survey probing the time domain including 20,000 square degrees for a uniform deep, wide, fast survey, while effectively surveying for NEOs over the same area. We will also present our plans for future development of the simulator--better global minimization of slew time and eventual transition to a scheduler for the real LSST.
Extracting information in spike time patterns with wavelets and information theory.
Lopes-dos-Santos, Vítor; Panzeri, Stefano; Kayser, Christoph; Diamond, Mathew E; Quian Quiroga, Rodrigo
2015-02-01
We present a new method to assess the information carried by temporal patterns in spike trains. The method first performs a wavelet decomposition of the spike trains, then uses Shannon information to select a subset of coefficients carrying information, and finally assesses timing information in terms of decoding performance: the ability to identify the presented stimuli from spike train patterns. We show that the method allows: 1) a robust assessment of the information carried by spike time patterns even when this is distributed across multiple time scales and time points; 2) an effective denoising of the raster plots that improves the estimate of stimulus tuning of spike trains; and 3) an assessment of the information carried by temporally coordinated spikes across neurons. Using simulated data, we demonstrate that the Wavelet-Information (WI) method performs better and is more robust to spike time-jitter, background noise, and sample size than well-established approaches, such as principal component analysis, direct estimates of information from digitized spike trains, or a metric-based method. Furthermore, when applied to real spike trains from monkey auditory cortex and from rat barrel cortex, the WI method allows extracting larger amounts of spike timing information. Importantly, the fact that the WI method incorporates multiple time scales makes it robust to the choice of partly arbitrary parameters such as temporal resolution, response window length, number of response features considered, and the number of available trials. These results highlight the potential of the proposed method for accurate and objective assessments of how spike timing encodes information. Copyright © 2015 the American Physiological Society.
Colored Traveling Salesman Problem.
Li, Jun; Zhou, MengChu; Sun, Qirui; Dai, Xianzhong; Yu, Xiaolong
2015-11-01
The multiple traveling salesman problem (MTSP) is an important combinatorial optimization problem. It has been widely and successfully applied to the practical cases in which multiple traveling individuals (salesmen) share the common workspace (city set). However, it cannot represent some application problems where multiple traveling individuals not only have their own exclusive tasks but also share a group of tasks with each other. This work proposes a new MTSP called colored traveling salesman problem (CTSP) for handling such cases. Two types of city groups are defined, i.e., each group of exclusive cities of a single color for a salesman to visit and a group of shared cities of multiple colors allowing all salesmen to visit. Evidences show that CTSP is NP-hard and a multidepot MTSP and multiple single traveling salesman problems are its special cases. We present a genetic algorithm (GA) with dual-chromosome coding for CTSP and analyze the corresponding solution space. Then, GA is improved by incorporating greedy, hill-climbing (HC), and simulated annealing (SA) operations to achieve better performance. By experiments, the limitation of the exact solution method is revealed and the performance of the presented GAs is compared. The results suggest that SAGA can achieve the best quality of solutions and HCGA should be the choice making good tradeoff between the solution quality and computing time.
Self-presentational persona: simultaneous management of multiple impressions.
Leary, Mark R; Allen, Ashley Batts
2011-11-01
Most research on self-presentation has examined how people convey images of themselves on only 1 or 2 dimensions at a time. In everyday interactions, however, people often manage their impressions on several image-relevant dimensions simultaneously. By examining people's self-presentations to several targets across multiple dimensions, these 2 studies offer new insights into the nature of self-presentation and provide a novel paradigm for studying impression management. Results showed that most people rely on a relatively small number of basic self-presentational personas in which they convey particular profiles of impressions as a set and that these personas reflect both normative influences to project images that are appropriate to a particular target and distinctive influences by which people put an idiosyncratic spin on these normative images. Furthermore, although people's self-presentational profiles correlate moderately with their self-views, they tailor their public images to specific targets. The degree to which participants' self-presentations were normative and distinctive, as well as the extent to which they reflected their own self-views, were moderated by individual differences in agreeableness, self-esteem, authenticity, and Machiavellianism.
Curran, Patrick J.; Hussong, Andrea M.; Cai, Li; Huang, Wenjing; Chassin, Laurie; Sher, Kenneth J.; Zucker, Robert A.
2010-01-01
There are a number of significant challenges encountered when studying development over an extended period of time including subject attrition, changing measurement structures across group and developmental period, and the need to invest substantial time and money. Integrative data analysis is an emerging set of methodologies that overcomes many of the challenges of single sample designs through the pooling of data drawn from multiple existing developmental studies. This approach is characterized by a host of advantages, but this also introduces several new complexities that must be addressed prior to broad adoption by developmental researchers. In this paper we focus on methods for fitting measurement models and creating scale scores using data drawn from multiple longitudinal studies. We present findings from the analysis of repeated measures of internalizing symptomatology that were pooled from three existing developmental studies. We describe and demonstrate each step in the analysis and we conclude with a discussion of potential limitations and directions for future research. PMID:18331129
Computer simulation of a multiple-aperture coherent laser radar
NASA Astrophysics Data System (ADS)
Gamble, Kevin J.; Weeks, Arthur R.
1996-06-01
This paper presents the construction of a 2D multiple aperture coherent laser radar simulation that is capable of including the effects of the time evolution of speckle on the laser radar output. Every portion of a laser radar system is modeled in software, including quarter and half wave plates, beamsplitters (polarizing and non-polarizing), the detector, the laser source, and all necessary lenses. Free space propagation is implemented using the Rayleigh- Sommerfeld integral for both orthogonal polarizations. Atmospheric turbulence is also included in the simulation and is modeled using time correlated Kolmogorov phase screens. The simulation itself can be configured to simulate both monostatic and bistatic systems. The simulation allows the user to specify component level parameters such as extinction ratios for polarizing beam splitters, detector sizes and shapes. orientation of the slow axis for quarter/half wave plates and other components used in the system. This is useful from a standpoint of being a tool in the design of a multiple aperture laser radar system.
Unified tensor model for space-frequency spreading-multiplexing (SFSM) MIMO communication systems
NASA Astrophysics Data System (ADS)
de Almeida, André LF; Favier, Gérard
2013-12-01
This paper presents a unified tensor model for space-frequency spreading-multiplexing (SFSM) multiple-input multiple-output (MIMO) wireless communication systems that combine space- and frequency-domain spreadings, followed by a space-frequency multiplexing. Spreading across space (transmit antennas) and frequency (subcarriers) adds resilience against deep channel fades and provides space and frequency diversities, while orthogonal space-frequency multiplexing enables multi-stream transmission. We adopt a tensor-based formulation for the proposed SFSM MIMO system that incorporates space, frequency, time, and code dimensions by means of the parallel factor model. The developed SFSM tensor model unifies the tensorial formulation of some existing multiple-access/multicarrier MIMO signaling schemes as special cases, while revealing interesting tradeoffs due to combined space, frequency, and time diversities which are of practical relevance for joint symbol-channel-code estimation. The performance of the proposed SFSM MIMO system using either a zero forcing receiver or a semi-blind tensor-based receiver is illustrated by means of computer simulation results under realistic channel and system parameters.
Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Martin, Stephen W
2015-01-01
Time difference of arrival (TDOA) methods for acoustically localizing multiple marine mammals have been applied to recorded data from the Navy's Pacific Missile Range Facility in order to localize and track humpback whales. Modifications to established methods were necessary in order to simultaneously track multiple animals on the range faster than real-time and in a fully automated way, while minimizing the number of incorrect localizations. The resulting algorithms were run with no human intervention at computational speeds faster than the data recording speed on over forty days of acoustic recordings from the range, spanning multiple years. Spatial localizations based on correlating sequences of units originating from within the range produce estimates having a standard deviation typically 10 m or less (due primarily to TDOA measurement errors), and a bias of 20 m or less (due primarily to sound speed mismatch). An automated method for associating units to individual whales is presented, enabling automated humpback song analyses to be performed.
Waveform Optimization for Target Estimation by Cognitive Radar with Multiple Antennas.
Yao, Yu; Zhao, Junhui; Wu, Lenan
2018-05-29
A new scheme based on Kalman filtering to optimize the waveforms of an adaptive multi-antenna radar system for target impulse response (TIR) estimation is presented. This work aims to improve the performance of TIR estimation by making use of the temporal correlation between successive received signals, and minimize the mean square error (MSE) of TIR estimation. The waveform design approach is based upon constant learning from the target feature at the receiver. Under the multiple antennas scenario, a dynamic feedback loop control system is established to real-time monitor the change in the target features extracted form received signals. The transmitter adapts its transmitted waveform to suit the time-invariant environment. Finally, the simulation results show that, as compared with the waveform design method based on the MAP criterion, the proposed waveform design algorithm is able to improve the performance of TIR estimation for extended targets with multiple iterations, and has a relatively lower level of complexity.
NASA Technical Reports Server (NTRS)
Gernhardt, Michael L.; Abercromby, Andrew F.
2009-01-01
This slide presentation reviews the use of variable pressure suits, intermittent recompression and Nitrox breathing mixtures to allow for multiple short extravehicular activities (EVAs) at different locations in a day. This new operational concept of multiple short EVAs requires short purge times and shorter prebreathes to assure rapid egress with a minimal loss of the vehicular air. Preliminary analysis has begun to evaluate the potential benefits of the intermittent recompression, and Nitrox breathing mixtures when used with variable pressure suits to enable reduce purges and prebreathe durations.
Effects of Multiple Crimps and Cable Length on Reflection Signatures from Long Cables
DOT National Transportation Integrated Search
2002-03-19
The accuracy of time domain reflectometry (TDR) measurements of rock shearing with cable lengths greater than 60 m has not been adequately documented. This paper presents the results of controlled crimping and shearing of a 530 m long, 22.2mm diamete...
Review of subjective measures of human response to aircraft noise
NASA Technical Reports Server (NTRS)
Cawthorn, J. M.; Mayes, W. H.
1976-01-01
The development of aircraft noise rating scales and indexes is reviewed up to the present time. Single event scales, multiple event indexes, and their interrelation with each other, are considered. Research requirements for further refinement and development of aircraft noise rating quantification factors are discussed.
NASA Technical Reports Server (NTRS)
Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee
2004-01-01
This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.
NASA Astrophysics Data System (ADS)
Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.
2004-09-01
This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.
Real-time multiple human perception with color-depth cameras on a mobile robot.
Zhang, Hao; Reardon, Christopher; Parker, Lynne E
2013-10-01
The ability to perceive humans is an essential requirement for safe and efficient human-robot interaction. In real-world applications, the need for a robot to interact in real time with multiple humans in a dynamic, 3-D environment presents a significant challenge. The recent availability of commercial color-depth cameras allow for the creation of a system that makes use of the depth dimension, thus enabling a robot to observe its environment and perceive in the 3-D space. Here we present a system for 3-D multiple human perception in real time from a moving robot equipped with a color-depth camera and a consumer-grade computer. Our approach reduces computation time to achieve real-time performance through a unique combination of new ideas and established techniques. We remove the ground and ceiling planes from the 3-D point cloud input to separate candidate point clusters. We introduce the novel information concept, depth of interest, which we use to identify candidates for detection, and that avoids the computationally expensive scanning-window methods of other approaches. We utilize a cascade of detectors to distinguish humans from objects, in which we make intelligent reuse of intermediary features in successive detectors to improve computation. Because of the high computational cost of some methods, we represent our candidate tracking algorithm with a decision directed acyclic graph, which allows us to use the most computationally intense techniques only where necessary. We detail the successful implementation of our novel approach on a mobile robot and examine its performance in scenarios with real-world challenges, including occlusion, robot motion, nonupright humans, humans leaving and reentering the field of view (i.e., the reidentification challenge), human-object and human-human interaction. We conclude with the observation that the incorporation of the depth information, together with the use of modern techniques in new ways, we are able to create an accurate system for real-time 3-D perception of humans by a mobile robot.
Multi-Objective Reinforcement Learning for Cognitive Radio-Based Satellite Communications
NASA Technical Reports Server (NTRS)
Ferreira, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.
2016-01-01
Previous research on cognitive radios has addressed the performance of various machine-learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different cross-layer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3.5 times for clear sky conditions and 6.8 times for rain conditions.
NASA Astrophysics Data System (ADS)
Bevilacqua, R.; Lehmann, T.; Romano, M.
2011-04-01
This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.
Multi-Objective Reinforcement Learning for Cognitive Radio Based Satellite Communications
NASA Technical Reports Server (NTRS)
Ferreira, Paulo; Paffenroth, Randy; Wyglinski, Alexander; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale John
2016-01-01
Previous research on cognitive radios has addressed the performance of various machine learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different crosslayer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3:5 times for clear sky conditions and 6:8 times for rain conditions.
Gupta, Rahul; Audhkhasi, Kartik; Jacokes, Zach; Rozga, Agata; Narayanan, Shrikanth
2018-01-01
Studies of time-continuous human behavioral phenomena often rely on ratings from multiple annotators. Since the ground truth of the target construct is often latent, the standard practice is to use ad-hoc metrics (such as averaging annotator ratings). Despite being easy to compute, such metrics may not provide accurate representations of the underlying construct. In this paper, we present a novel method for modeling multiple time series annotations over a continuous variable that computes the ground truth by modeling annotator specific distortions. We condition the ground truth on a set of features extracted from the data and further assume that the annotators provide their ratings as modification of the ground truth, with each annotator having specific distortion tendencies. We train the model using an Expectation-Maximization based algorithm and evaluate it on a study involving natural interaction between a child and a psychologist, to predict confidence ratings of the children's smiles. We compare and analyze the model against two baselines where: (i) the ground truth in considered to be framewise mean of ratings from various annotators and, (ii) each annotator is assumed to bear a distinct time delay in annotation and their annotations are aligned before computing the framewise mean.
TITAN's multiple-reflection time-of-flight isobar separator
NASA Astrophysics Data System (ADS)
Reiter, Moritz Pascal; Titan Collaboration
2016-09-01
At the ISAC facility located at TRIUMF exotic nuclei are produced by the ISOL method. Exotic nuclei are separated by a magnetic separator and transported to TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). TITAN is a system of multiple ion traps for high precision mass measurements and in-trap decay spectroscopy. Although ISAC can deliver some of the highest yields for even many of the most exotic species many measurements suffer from a strong isobaric background. This background often prevents the high precision measurement of the species of interest. To overcome this limitation an additional isobar separator based on the Multiple-Reflection Time-Of-Flight Mass Spectrometry (MR-TOF-MS) technique has been developed for TITAN. Mass selection is achieved using dynamic re-trapping of the species of interest after a time-of-flight analysis in an electrostatic isochronous reflector system. Additionally the MR-TOF-MS will, on its own, enable mass measurements of very short-lived nuclides that are weakly produced. Being able to measure all isobars of a given mass number at the same time the MR-TOF-MS can be used for beam diagnostics or determination of beam compositions. Results from the offline commissioning showing mass resolving power and separation power will be presented.
Multiple-hypothesis multiple-model line tracking
NASA Astrophysics Data System (ADS)
Pace, Donald W.; Owen, Mark W.; Cox, Henry
2000-07-01
Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.
CCDST: A free Canadian climate data scraping tool
NASA Astrophysics Data System (ADS)
Bonifacio, Charmaine; Barchyn, Thomas E.; Hugenholtz, Chris H.; Kienzle, Stefan W.
2015-02-01
In this paper we present a new software tool that automatically fetches, downloads and consolidates climate data from a Web database where the data are contained on multiple Web pages. The tool is called the Canadian Climate Data Scraping Tool (CCDST) and was developed to enhance access and simplify analysis of climate data from Canada's National Climate Data and Information Archive (NCDIA). The CCDST deconstructs a URL for a particular climate station in the NCDIA and then iteratively modifies the date parameters to download large volumes of data, remove individual file headers, and merge data files into one output file. This automated sequence enhances access to climate data by substantially reducing the time needed to manually download data from multiple Web pages. To this end, we present a case study of the temporal dynamics of blowing snow events that resulted in ~3.1 weeks time savings. Without the CCDST, the time involved in manually downloading climate data limits access and restrains researchers and students from exploring climate trends. The tool is coded as a Microsoft Excel macro and is available to researchers and students for free. The main concept and structure of the tool can be modified for other Web databases hosting geophysical data.
Compositional data analysis for physical activity, sedentary time and sleep research.
Dumuid, Dorothea; Stanford, Tyman E; Martin-Fernández, Josep-Antoni; Pedišić, Željko; Maher, Carol A; Lewis, Lucy K; Hron, Karel; Katzmarzyk, Peter T; Chaput, Jean-Philippe; Fogelholm, Mikael; Hu, Gang; Lambert, Estelle V; Maia, José; Sarmiento, Olga L; Standage, Martyn; Barreira, Tiago V; Broyles, Stephanie T; Tudor-Locke, Catrine; Tremblay, Mark S; Olds, Timothy
2017-01-01
The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
Human Trafficking, Sexual Assault, or Something Else? A Complicated Case With an Unexpected Outcome.
Scott-Tilley, Donna; Crites, Heather
This case report presents a patient who presented multiple times with vaginal injuries and bleeding, reporting sexual assault with a foreign object. Findings from her history and physical examination were consistent with sexual assault and human trafficking. The outcome of this case was not what we initially expected when the patient first presented for care. However, the patient ultimately received the care she needed. This case illuminates the need for excellent continuing education, interdisciplinary communication, and continuity of care.
Rudowska, Ewa; Basta, Lidia; Piwowarska, Grazyna; Drybańska, Bozena; Dylag, Stanisław
2011-03-01
In the recent years a great progress has been documented in infection prevention. There is more possibilities responsible for infection and its transmission. To analyze obtained epidemiological data concerned to detected infection in blood donors in the area of Blood Bank in Katowice in the years 2006-2009. Statistic calculations taking account of confirmed infections in the years 2006-2009 were analyzed in first-time donors and multiple donors, and for all donors. Tests confirming infection were performed in the IHiT in Warsaw, in RBC in Katowice, confirmation test for syphilis in the RBC in Warsaw. Only the positive confirmed results are taken into account and presented in summary. In first-time donors more frequently the markers of infection: HCV and HBV dozens of times, HIV and syphilis several times were detected. In the group of first-time donors a downward trend was detected in the number of detected infections HBV and HCV In the group of multiple donors the downward trend was documented in the number of detected antibodies associated to syphilis. In the group of multiple donors the number of detected HIV infections has been increased in the years 2008 and 2009. For monitoring trends of each type of infections, a period of four-years is not sufficiently long. This data needs a further observations.
Fischer, E A J; De Vlas, S J; Richardus, J H; Habbema, J D F
2008-09-01
Microsimulation of infectious diseases requires simulation of many life histories of interacting individuals. In particular, relatively rare infections such as leprosy need to be studied in very large populations. Computation time increases disproportionally with the size of the simulated population. We present a novel method, MUSIDH, an acronym for multiple use of simulated demographic histories, to reduce computation time. Demographic history refers to the processes of birth, death and all other demographic events that should be unrelated to the natural course of an infection, thus non-fatal infections. MUSIDH attaches a fixed number of infection histories to each demographic history, and these infection histories interact as if being the infection history of separate individuals. With two examples, mumps and leprosy, we show that the method can give a factor 50 reduction in computation time at the cost of a small loss in precision. The largest reductions are obtained for rare infections with complex demographic histories.
Energy-aware embedded classifier design for real-time emotion analysis.
Padmanabhan, Manoj; Murali, Srinivasan; Rincon, Francisco; Atienza, David
2015-01-01
Detection and classification of human emotions from multiple bio-signals has a wide variety of applications. Though electronic devices are available in the market today that acquire multiple body signals, the classification of human emotions in real-time, adapted to the tight energy budgets of wearable embedded systems is a big challenge. In this paper we present an embedded classifier for real-time emotion classification. We propose a system that operates at different energy budgeted modes, depending on the available energy, where each mode is constrained by an operating energy bound. The classifier has an offline training phase where feature selection is performed for each operating mode, with an energy-budget aware algorithm that we propose. Across the different operating modes, the classification accuracy ranges from 95% - 75% and 89% - 70% for arousal and valence respectively. The accuracy is traded off for less power consumption, which results in an increased battery life of up to 7.7 times (from 146.1 to 1126.9 hours).
Clinical characteristics of patients with multiple sclerosis enrolled in a new registry in Egypt.
Zakaria, Magd; Zamzam, Dina A; Abdel Hafeez, Mohamed A; Swelam, Mahmoud S; Khater, Shaimaa S; Fahmy, Mai F; Abdel Hady, Ayman; Fouad, Mohamed M; Abdel Nasser, Azza; Aref, Hany; Gadallah, Mohsen
2016-11-01
Epidemiological studies of multiple sclerosis (MS) are lacking in Egypt. To study the characteristics of Egyptian patients with multiple sclerosis in a new registry in a major tertiary referral centre in Cairo, Egypt. Patients were from the project MS database of the Multiple Sclerosis Unit at Ain Shams University Hospitals (N=950). We conducted a detailed medical history and examination including the Expanded Disability Status Scale (EDSS). Females represented 72% of subjects (female: male ratio 2.57:1). The mean age of disease onset was 26.1±7.6 years. Relapsing-remitting MS (RRMS) was the most common presentation (74.6%). Visual or sensory symptoms were the most common at presentation with RRMS, while motor symptoms were the most common presentation in other types of MS. Time to diagnosis was delayed up to 2 years in 27.8% of patients. The mean EDSS score was 3.6±2.1; 55% had EDSS≤3. About half (49%) received a disease-modifying drug. Progressive MS and motor presentation were associated with higher disability. This is the first documented MS registry from Egypt. The clinical characteristics of MS in Egypt was similar to other Arab countries and western countries. MS is more common among females in Egypt, with RRMS being the most common presentation. Visual symptoms and motor symptoms were the most common presentations in RRMS and progressive MS, respectively. Our findings also highlight the value of establishing registries in Egypt in order to be able to study, prospectively, the clinical course of the disease, the response to various DMD's and the epidemiology of MS in Egypt. Copyright © 2016 Elsevier B.V. All rights reserved.
Using syllable-timed speech to treat preschool children who stutter: a multiple baseline experiment.
Trajkovski, Natasha; Andrews, Cheryl; Onslow, Mark; Packman, Ann; O'Brian, Sue; Menzies, Ross
2009-03-01
This report presents the results of an experimental investigation of the effects of a syllable-timed speech treatment on three stuttering preschool children. Syllable-timed speech involves speaking with minimal differentiation in linguistic stress across syllables. Three children were studied in a multiple baseline across participants design, with percent syllables stuttered (%SS) as the dependent variable. In the week following the initial clinic visit, each child decreased their beyond-clinic stuttering by 40%, 49% and 32%, respectively. These reductions are only evident in the time series after the introduction of the syllable-timed speech treatment procedure. Participants required a mean of six clinic visits, of approximately 30-60 min in duration, to reach and sustain a beyond-clinic %SS below 1.0. The results suggest that clinical trials of the treatment are warranted. The reader will be able to summarize, discuss and evaluate: (1) The nature, impact and treatment options available for early stuttering. (2) The syllable-timed speech treatment protocol administered. (3) The advantages of syllable-timed speech treatment for early stuttering. (4) The questions that further research needs to answer about the syllable-timed speech treatment.
NASA Astrophysics Data System (ADS)
Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.
2014-12-01
The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.
An introduction to multiplicity issues in clinical trials: the what, why, when and how.
Li, Guowei; Taljaard, Monica; Van den Heuvel, Edwin R; Levine, Mitchell Ah; Cook, Deborah J; Wells, George A; Devereaux, Philip J; Thabane, Lehana
2017-04-01
In clinical trials it is not uncommon to face a multiple testing problem which can have an impact on both type I and type II error rates, leading to inappropriate interpretation of trial results. Multiplicity issues may need to be considered at the design, analysis and interpretation stages of a trial. The proportion of trial reports not adequately correcting for multiple testing remains substantial. The purpose of this article is to provide an introduction to multiple testing issues in clinical trials, and to reduce confusion around the need for multiplicity adjustments. We use a tutorial, question-and-answer approach to address the key issues of why, when and how to consider multiplicity adjustments in trials. We summarize the relevant circumstances under which multiplicity adjustments ought to be considered, as well as options for carrying out multiplicity adjustments in terms of trial design factors including Population, Intervention/Comparison, Outcome, Time frame and Analysis (PICOTA). Results are presented in an easy-to-use table and flow diagrams. Confusion about multiplicity issues can be reduced or avoided by considering the potential impact of multiplicity on type I and II errors and, if necessary pre-specifying statistical approaches to either avoid or adjust for multiplicity in the trial protocol or analysis plan. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Multiple cues add up in defining a figure on a ground.
Devinck, Frédéric; Spillmann, Lothar
2013-01-25
We studied the contribution of multiple cues to figure-ground segregation. Convexity, symmetry, and top-down polarity (henceforth called wide base) were used as cues. Single-cue displays as well as ambiguous stimulus patterns containing two or three cues were presented. Error rate (defined by responses to uncued stimuli) and reaction time were used to quantify the figural strength of a given cue. In the first experiment, observers were asked to report which of two regions, left or right, appeared as foreground figure. Error rate did not benefit from adding additional cues if convexity was present, suggesting that responses were based on convexity as the predominant figural determinant. However, reaction time became shorter with additional cues even if convexity was present. For example, when symmetry and wide base were added, figure-ground segregation was facilitated. In a second experiment, stimulus patterns were exposed for 150ms to rule out eye movements. Results were similar to those found in the first experiment. Both experiments suggest that under the conditions of our experiment figure-ground segregation is perceived more readily, when several cues cooperate in defining the figure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Presentation Extensions of the SOAP
NASA Technical Reports Server (NTRS)
Carnright, Robert; Stodden, David; Coggi, John
2009-01-01
A set of extensions of the Satellite Orbit Analysis Program (SOAP) enables simultaneous and/or sequential presentation of information from multiple sources. SOAP is used in the aerospace community as a means of collaborative visualization and analysis of data on planned spacecraft missions. The following definitions of terms also describe the display modalities of SOAP as now extended: In SOAP terminology, View signifies an animated three-dimensional (3D) scene, two-dimensional still image, plot of numerical data, or any other visible display derived from a computational simulation or other data source; a) "Viewport" signifies a rectangular portion of a computer-display window containing a view; b) "Palette" signifies a collection of one or more viewports configured for simultaneous (split-screen) display in the same window; c) "Slide" signifies a palette with a beginning and ending time and an animation time step; and d) "Presentation" signifies a prescribed sequence of slides. For example, multiple 3D views from different locations can be crafted for simultaneous display and combined with numerical plots and other representations of data for both qualitative and quantitative analysis. The resulting sets of views can be temporally sequenced to convey visual impressions of a sequence of events for a planned mission.
Classification of Uxo by Principal Dipole Polarizability
NASA Astrophysics Data System (ADS)
Kappler, K. N.
2010-12-01
Data acquired by multiple-Transmitter, multiple-receiver time-domain electromagnetic devices show great potential for determining the geometric and compositional information relating to near surface conductive targets. Here is presented an analysis of data from one such system; the Berkeley Unexploded-ordnance Discriminator (BUD) system. BUD data are succinctly reduced by processing the multi-static data matrices to obtain magnetic dipole polarizability matrices for data from each time gate. When viewed over all time gates, the projections of the data onto the principal polar axes yield so-called polarizability curves. These curves are especially well suited to discriminating between subsurface conductivity anomalies which correspond to objects of rotational symmetry and irregularly shaped objects. The curves have previously been successfully employed as library elements in a pattern recognition scheme aimed at discriminating harmless scrap metal from dangerous intact unexploded ordnance. However, previous polarizability-curve matching methods have only been applied at field sites which are known a priori to be contaminated by a single type of ordnance, and furthermore, the particular ordnance present in the subsurface was known to be large. Thus signal amplitude was a key element in the discrimination process. The work presented here applies feature-based pattern classification techniques to BUD field data where more than 20 categories of object are present. Data soundings from a calibration grid at the Yuma, AZ proving ground are used in a cross validation study to calibrate the pattern recognition method. The resultant method is then applied to a Blind Test Grid. Results indicate that when lone UXO are present and SNR is reasonably high, Polarizability Curve Matching successfully discriminates UXO from scrap metal when a broad range of objects are present.
Multiple Indicator Stationary Time Series Models.
ERIC Educational Resources Information Center
Sivo, Stephen A.
2001-01-01
Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…
Kunnuji, Michael
2014-01-01
Research has shown that in countries such as Nigeria many urban dwellers live in a state of squalour and lack the basic necessities of food, clothing and shelter. The present study set out to examine the association between forms of basic deprivation--such as food deprivation, high occupancy ratio as a form of shelter deprivation, and inadequate clothing--and two sexual outcomes--timing of onset of penetrative sex and involvement in multiple sexual partnerships. The study used survey data from a sample of 480 girls resident in Iwaya community. A survival analysis of the timing of onset of sex and a regression model for involvement in multiple sexual partnerships reveal that among the forms of deprivation explored, food deprivation is the only significant predictor of the timing of onset of sex and involvement in multiple sexual partnerships. The study concludes that the sexual activities of poor out-of-school girls are partly explained by their desire to overcome food deprivation and recommends that government and non-governmental-organisation programmes working with young people should address the problem of basic deprivation among adolescent girls.
Improvements to direct quantitative analysis of multiple microRNAs facilitating faster analysis.
Ghasemi, Farhad; Wegman, David W; Kanoatov, Mirzo; Yang, Burton B; Liu, Stanley K; Yousef, George M; Krylov, Sergey N
2013-11-05
Studies suggest that patterns of deregulation in sets of microRNA (miRNA) can be used as cancer diagnostic and prognostic biomarkers. Establishing a "miRNA fingerprint"-based diagnostic technique requires a suitable miRNA quantitation method. The appropriate method must be direct, sensitive, capable of simultaneous analysis of multiple miRNAs, rapid, and robust. Direct quantitative analysis of multiple microRNAs (DQAMmiR) is a recently introduced capillary electrophoresis-based hybridization assay that satisfies most of these criteria. Previous implementations of the method suffered, however, from slow analysis time and required lengthy and stringent purification of hybridization probes. Here, we introduce a set of critical improvements to DQAMmiR that address these technical limitations. First, we have devised an efficient purification procedure that achieves the required purity of the hybridization probe in a fast and simple fashion. Second, we have optimized the concentrations of the DNA probe to decrease the hybridization time to 10 min. Lastly, we have demonstrated that the increased probe concentrations and decreased incubation time removed the need for masking DNA, further simplifying the method and increasing its robustness. The presented improvements bring DQAMmiR closer to use in a clinical setting.
Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process
NASA Astrophysics Data System (ADS)
Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.
2018-03-01
In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.
Project Physics Tests 1, Concepts of Motion.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…
AJE invited commentary: Measuring social disparities in health - what was the question again?
Monitoring social disparities in health is not a straightforward project. Defining what constitutes a disparity is challenging, and multiple measures have been proposed to track changes in disparity over time. In this issue, Harper et al. (Am J Epidemiol 2008;167:889-899) present...
Sampling Error in a Particulate Mixture: An Analytical Chemistry Experiment.
ERIC Educational Resources Information Center
Kratochvil, Byron
1980-01-01
Presents an undergraduate experiment demonstrating sampling error. Selected as the sampling system is a mixture of potassium hydrogen phthalate and sucrose; using a self-zeroing, automatically refillable buret to minimize titration time of multiple samples and employing a dilute back-titrant to obtain high end-point precision. (CS)
Incidence and spatial distribution of Rhizoctonia and Pythium species determined with real-time PCR
USDA-ARS?s Scientific Manuscript database
Populations of Rhizoctonia and Pythium are diverse in eastern Washington, with multiple species/anastomosis groups present throughout the region and within individual fields. Recent evidence suggests that species composition may be influenced by crop rotation. The Cook Agronomy Farm near Pullman, WA...
The Promise of Qualitative Metasynthesis: Mathematics Experiences of Black Learners
ERIC Educational Resources Information Center
Berry, Robert; Thunder, Kateri
2012-01-01
The purpose of this article is to present the findings of a qualitative metasynthesis focused on Black learners negotiating their mathematics experiences in multiple settings (in school and out-of-school) and reflecting on experiences that contributed towards their mathematics identities over time. Five findings emerged from this qualitative…
USDA-ARS?s Scientific Manuscript database
Most analytical solutions available for the equations governing the advective-dispersive transport of multiple solutes undergoing sequential first-order decay reactions have been developed for infinite or semi-infinite spatial domains and steady-state boundary conditions. In this work we present an ...
A signal processing framework for simultaneous detection of multiple environmental contaminants
NASA Astrophysics Data System (ADS)
Chakraborty, Subhadeep; Manahan, Michael P.; Mench, Matthew M.
2013-11-01
The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities.
Reducing adaptive optics latency using Xeon Phi many-core processors
NASA Astrophysics Data System (ADS)
Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah
2015-11-01
The next generation of Extremely Large Telescopes (ELTs) for astronomy will rely heavily on the performance of their adaptive optics (AO) systems. Real-time control is at the heart of the critical technologies that will enable telescopes to deliver the best possible science and will require a very significant extrapolation from current AO hardware existing for 4-10 m telescopes. Investigating novel real-time computing architectures and testing their eligibility against anticipated challenges is one of the main priorities of technology development for the ELTs. This paper investigates the suitability of the Intel Xeon Phi, which is a commercial off-the-shelf hardware accelerator. We focus on wavefront reconstruction performance, implementing a straightforward matrix-vector multiplication (MVM) algorithm. We present benchmarking results of the Xeon Phi on a real-time Linux platform, both as a standalone processor and integrated into an existing real-time controller (RTC). Performance of single and multiple Xeon Phis are investigated. We show that this technology has the potential of greatly reducing the mean latency and variations in execution time (jitter) of large AO systems. We present both a detailed performance analysis of the Xeon Phi for a typical E-ELT first-light instrument along with a more general approach that enables us to extend to any AO system size. We show that systematic and detailed performance analysis is an essential part of testing novel real-time control hardware to guarantee optimal science results.
Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model
NASA Astrophysics Data System (ADS)
Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi
2018-02-01
Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.
Multiple, short-lived "stellar prominences" on the O giant ξ Persei: a magnetic star?
NASA Astrophysics Data System (ADS)
Sudnik, N.; Henrichs, H. F.
2018-01-01
We present strong evidence for a rotation period of 2.0406 d of the O giant ξ Persei, derived from the NIV λ1718 wind line in 12 yr of IUE data. We predict that ξ Per has a magnetic dipole field, with superposed variable magnetic prominences. Favorable dates for future magnetic measurements can be predicted. We also analysed time-resolved HeII 4686 spectra from a campaign in 1989 by using the same simplified model as before for λ Cephei, in terms of multiple spherical blobs attached to the surface, called stellar prominences (Sudnik & Henrichs, 2016). These represent transient multiple magnetic loops on the surface, for which we find lifetimes of mostly less than 5 h.
Unciti-Broceta, Juan D; Cano-Cortés, Victoria; Altea-Manzano, Patricia; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Sánchez-Martín, Rosario M
2015-05-15
Engineered nanoparticles (eNPs) for biological and biomedical applications are produced from functionalised nanoparticles (NPs) after undergoing multiple handling steps, giving rise to an inevitable loss of NPs. Herein we present a practical method to quantify nanoparticles (NPs) number per volume in an aqueous suspension using standard spectrophotometers and minute amounts of the suspensions (up to 1 μL). This method allows, for the first time, to analyse cellular uptake by reporting NPs number added per cell, as opposed to current methods which are related to solid content (w/V) of NPs. In analogy to the parameter used in viral infective assays (multiplicity of infection), we propose to name this novel parameter as multiplicity of nanofection.
Prevalence of multiple sclerosis in the region of Osona, Catalonia, northern Spain.
Bufill, E; Blesa, R; Galan, I; Dean, G
1995-01-01
To ascertain the prevalence of multiple sclerosis in the region of Osona in Catalonia, northern Spain, an intensive study was undertaken in a small population of 72,000 people over a period of five years, using many sources of information. Patients were classified according to the Poser criteria. Most of the patients presented with mild symptoms only and many had not seen a neurologist or attended a large hospital. The prevalence of definite and probable multiple sclerosis was 58 per 100,000. This is nine to 10 times higher than had been found previously in Catalonia and is a similar prevalence to that found in southern Spain, in Sicily, and in Greek speaking Cyprus. Images PMID:7745405
2012-01-01
Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html. PMID:22531049
NASA Astrophysics Data System (ADS)
Sikder, Somali; Ghosh, Shila
2018-02-01
This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.
Hyperspectral Remote Sensing of Terrestrial Ecosystem Productivity from ISS
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Campbell, P. K. E.; Gao, B. C.; Flanagan, L. B.; Goulden, M.
2017-12-01
Data from the Hyperspectral Imager for Coastal Ocean (HICO), mounted on the International Space Station (ISS), were used to develop and test algorithms for remotely retrieving ecosystem productivity. The ISS orbit introduces both limitations and opportunities for observing ecosystem dynamics. Twenty six HICO images were used from four study sites representing different vegetation types: grasslands, shrubland, and forest. Gross ecosystem production (GEP) data from eddy covariance were matched with HICO-derived spectra. Multiple algorithms were successful relating spectral reflectance with GEP, including: Spectral Vegetation Indices (SVI), SVI in a light use efficiency model framework, spectral shape characteristics through spectral derivatives and absorption feature analysis, and statistical models leading to Multiband Hyperspectral Indices (MHI) from stepwise regressions and Partial Least Squares Regression (PLSR). Algorithms were able to achieve r2 better than 0.7 for both GEP at the overpass time and daily GEP. These algorithms were successful using a diverse set of observations combining data from multiple years, multiple times during growing season, different times of day, with different view angles, and different vegetation types. The demonstrated robustness of the algorithms presented in this study over these conditions provides some confidence in mapping spatial patterns of GEP, describing variability within fields as well as the regional patterns based only on spectral reflectance information. The ISS orbit provides periods with multiple observations collected at different times of the day within a period of a few days. Diurnal GEP patterns were estimated comparing the half-hourly average GEP from the flux tower against HICO estimates of GEP (r2=0.87) if morning, midday, and afternoon observations were available for average fluxes in the time period.
Time synchronization of a frequency-hopped MFSK communication system
NASA Technical Reports Server (NTRS)
Simon, M. K.; Polydoros, A.; Huth, G. K.
1981-01-01
In a frequency-hopped (FH) multiple-frequency-shift-keyed (MFSK) communication system, frequency hopping causes the necessary frequency transitions for time synchronization estimation rather than the data sequence as in the conventional (nonfrequency-hopped) system. Making use of this observation, this paper presents a fine synchronization (i.e., time errors of less than a hop duration) technique for estimation of FH timing. The performance degradation due to imperfect FH time synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of hops used in the FH timing estimate.
Measuring happiness in individuals with profound multiple disabilities.
Darling, Joseph A; Circo, Deborah K
2015-12-01
This quantitative study assessed whether presentation of preferred items and activities during multiple periods of the day (and over multiple days) increased indices of happiness (over time/sustained) in individuals with PMD. A multiple baseline design across participants was utilized to measure changes in indices of happiness of the participants. Participants were recruited from an adult day activity program specializing in providing assistance to individuals with disabilities. For Mary, baseline indices of happiness were 26.67% of intervals, increasing 6.76% during intervention to 33.43%. For Caleb, baseline indices of happiness were 20.84% of intervals, increasing 6.34% during intervention to 27.18%. For Mark, baseline indices of happiness were 40.00% of intervals, increasing 12.75% during intervention to 52.75%. Overall interobserver agreement was 82.8%, with interobserver agreement observations occurring during 63.04% of the observations. The results of the investigation demonstrated that presenting preferred items and activities increased the indices of happiness compared to baseline rates of indices of happiness. Results may have been more robust if the participants were assessed for overall responsiveness patterns prior to the initiation of measurement of indices of happiness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acoustic 3D modeling by the method of integral equations
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
The Antimicrobial Peptide Lysozyme Is Induced after Multiple Trauma
Klüter, Tim; Fitschen-Oestern, Stefanie; Lippross, Sebastian; Weuster, Matthias; Pufe, Thomas; Tohidnezhad, Mersedeh; Beyer, Andreas; Seekamp, Andreas; Varoga, Deike
2014-01-01
The antimicrobial peptide lysozyme is an important factor of innate immunity and exerts high potential of antibacterial activity. In the present study we evaluated the lysozyme expression in serum of multiple injured patients and subsequently analyzed their possible sources and signaling pathways. Expression of lysozyme was examined in blood samples of multiple trauma patients from the day of trauma until 14 days after trauma by ELISA. To investigate major sources of lysozyme, its expression and regulation in serum samples, different blood cells, and tissue samples were analysed by ELISA and real-time PCR. Neutrophils and hepatocytes were stimulated with cytokines and supernatant of Staphylococcus aureus. The present study demonstrates the induction and release of lysozyme in serum of multiple injured patients. The highest lysozyme expression of all tested cells and tissues was detected in neutrophils. Stimulation with trauma-related factors such as interleukin-6 and S. aureus induced lysozyme expression. Liver tissue samples of patients without trauma show little lysozyme expression compared to neutrophils. After stimulation with bacterial fragments, lysozyme expression of hepatocytes is upregulated significantly. Toll-like receptor 2, a classic receptor of Gram-positive bacterial protein, was detected as a possible target for lysozyme induction. PMID:25258475
M13 multiple stellar populations seen with the eyes of Strömgren photometry
NASA Astrophysics Data System (ADS)
Savino, A.; Massari, D.; Bragaglia, A.; Dalessandro, E.; Tolstoy, E.
2018-03-01
We present a photometric study of M13 multiple stellar populations over a wide field of view, covering approximately 6.5 half-light radii, using archival Isaac Newton Telescope observations to build an accurate multiband Strömgren catalogue. The use of the Strömgren index cy permits us to separate the multiple populations of M13 on the basis of their position on the red giant branch. The comparison with medium and high resolution spectroscopic analysis confirms the robustness of our selection criterion. To determine the radial distribution of stars in M13, we complemented our data set with Hubble Space Telescope observations of the cluster core, to compensate for the effect of incompleteness affecting the most crowded regions. From the analysis of the radial distributions, we do not find any significant evidence of spatial segregation. Some residuals may be present in the external regions where we observe only a small number of stars. This finding is compatible with the short dynamical time-scale of M13 and represents, to date, one of the few examples of fully spatially mixed multiple populations in a massive globular cluster.
Robinson, Mark D; De Souza, David P; Keen, Woon Wai; Saunders, Eleanor C; McConville, Malcolm J; Speed, Terence P; Likić, Vladimir A
2007-10-29
Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities. This approach can produce the optimal alignment between an arbitrary number of peak lists, and models explicitly within-state and between-state peak alignment. The accuracy of the proposed method was close to the accuracy of manually-curated peak matching, which required tens of man-hours for the analyzed data sets. The proposed approach may offer significant advantages for processing of high-throughput metabolomics data, especially when large numbers of experimental replicates and multiple sample states are analyzed.
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Alberti, Gloria; Oliva, Doretta; Megna, Gianfranco; Iliceto, Carla; Damiani, Sabino; Ricci, Irene; Spica, Antonella
2011-01-01
The present two studies extended research evidence on the use of microswitch technology by post-coma persons with multiple disabilities. Specifically, Study I examined whether three adults with a diagnosis of minimally conscious state and multiple disabilities could use microswitches as tools to access brief, selected stimulus events. Study II assessed whether an adult, who had emerged from a minimally conscious state but was affected by multiple disabilities, could manage the use of a radio device via a microswitch-aided program. Results showed that the participants of Study I had a significant increase of microswitch responding during the intervention phases. The participant of Study II learned to change radio stations and seemed to spend different amounts of session time on the different stations available (suggesting preferences among the programs characterizing them). The importance of microswitch technology for assisting post-coma persons with multiple disabilities to positively engage with their environment was discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Suppressing multiples using an adaptive multichannel filter based on L1-norm
NASA Astrophysics Data System (ADS)
Shi, Ying; Jing, Hongliang; Zhang, Wenwu; Ning, Dezhi
2017-08-01
Adaptive subtraction is an important link for removing surface-related multiples in the wave equation-based method. In this paper, we propose an adaptive multichannel subtraction method based on the L1-norm. We achieve enhanced compensation for the mismatch between the input seismogram and the predicted multiples in terms of the amplitude, phase, frequency band, and travel time. Unlike the conventional L2-norm, the proposed method does not rely on the assumption that the primary and the multiples are orthogonal, and also takes advantage of the fact that the L1-norm is more robust when dealing with outliers. In addition, we propose a frequency band extension via modulation to reconstruct the high frequencies to compensate for the frequency misalignment. We present a parallel computing scheme to accelerate the subtraction algorithm on graphic processing units (GPUs), which significantly reduces the computational cost. The synthetic and field seismic data tests show that the proposed method effectively suppresses the multiples.
Interoperation transfer in Chinese-English bilinguals' arithmetic.
Campbell, Jamie I D; Dowd, Roxanne R
2012-10-01
We examined interoperation transfer of practice in adult Chinese-English bilinguals' memory for simple multiplication (6 × 8 = 48) and addition (6 + 8 = 14) facts. The purpose was to determine whether they possessed distinct number-fact representations in both Chinese (L1) and English (L2). Participants repeatedly practiced multiplication problems (e.g., 4 × 5 = ?), answering a subset in L1 and another subset in L2. Then separate groups answered corresponding addition problems (4 + 5 = ?) and control addition problems in either L1 (N = 24) or L2 (N = 24). The results demonstrated language-specific negative transfer of multiplication practice to corresponding addition problems. Specifically, large simple addition problems (sum > 10) presented a significant response time cost (i.e., retrieval-induced forgetting) after their multiplication counterparts were practiced in the same language, relative to practice in the other language. The results indicate that our Chinese-English bilinguals had multiplication and addition facts represented in distinct language-specific memory stores.
Cognitive-Developmental Learning for a Humanoid Robot: A Caregiver’s Gift
2004-05-01
system . We propose a real- time algorithm to infer depth and build 3-dimensional coarse maps for objects through the analysis of cues provided by an... system is well defined at the boundary of these regions (although the derivatives are not). A time domain analysis is presented for a piece-linear... Analysis of Multivariable Systems ......................... 266 D.3.1 Networks of Multiple Neural Oscillators ................. 266 D.3.2 Networks of
Human detection and motion analysis at security points
NASA Astrophysics Data System (ADS)
Ozer, I. Burak; Lv, Tiehan; Wolf, Wayne H.
2003-08-01
This paper presents a real-time video surveillance system for the recognition of specific human activities. Specifically, the proposed automatic motion analysis is used as an on-line alarm system to detect abnormal situations in a campus environment. A smart multi-camera system developed at Princeton University is extended for use in smart environments in which the camera detects the presence of multiple persons as well as their gestures and their interaction in real-time.
Channel Model Optimization with Reflection Residual Component for Indoor MIMO-VLC System
NASA Astrophysics Data System (ADS)
Chen, Yong; Li, Tengfei; Liu, Huanlin; Li, Yichao
2017-12-01
A fast channel modeling method is studied to solve the problem of reflection channel gain for multiple input multiple output-visible light communications (MIMO-VLC) in the paper. For reducing the computational complexity when associating with the reflection times, no more than 3 reflections are taken into consideration in VLC. We think that higher order reflection link consists of corresponding many times line of sight link and firstly present reflection residual component to characterize higher reflection (more than 2 reflections). We perform computer simulation results for point-to-point channel impulse response, receiving optical power and receiving signal to noise ratio. Based on theoretical analysis and simulation results, the proposed method can effectively reduce the computational complexity of higher order reflection in channel modeling.
On simulating flow with multiple time scales using a method of averages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolin, L.G.
1997-12-31
The author presents a new computational method based on averaging to efficiently simulate certain systems with multiple time scales. He first develops the method in a simple one-dimensional setting and employs linear stability analysis to demonstrate numerical stability. He then extends the method to multidimensional fluid flow. His method of averages does not depend on explicit splitting of the equations nor on modal decomposition. Rather he combines low order and high order algorithms in a generalized predictor-corrector framework. He illustrates the methodology in the context of a shallow fluid approximation to an ocean basin circulation. He finds that his newmore » method reproduces the accuracy of a fully explicit second-order accurate scheme, while costing less than a first-order accurate scheme.« less
Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Blonigan, Patrick J.; Wang, Qiqi
2018-02-01
Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.
Innovative Visualization Techniques applied to a Flood Scenario
NASA Astrophysics Data System (ADS)
Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael
2013-04-01
The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other windows. These concepts can be part of a collaborative platform, where multiple people share and work together on the data, via online access, which also allows its remote usage from a mobile platform. Storytelling augments analysis and decision-making capabilities allowing to assimilate complex situations and reach informed decisions, in addition to helping the public visualize information. In our visualization scenario, developed in the context of the VA-4D project for the European Space Agency (see http://www.ca3-uninova.org/project_va4d), we make use of the GAV (GeoAnalytics Visualization) framework, a web-oriented visual analytics application based on multiple interactive views. The final visualization that we produce includes multiple interactive views, including a dynamic multi-layer map surrounded by other visualizations such as bar charts, time graphs and scatter plots. The map provides flood and building information, on top of a base city map (street maps and/or satellite imagery provided by online map services such as Google Maps, Bing Maps etc.). Damage over time for selected buildings, damage for all buildings at a chosen time period, correlation between damage and water depth can be analysed in the other views. This interactive web-based visualization that incorporates the ideas of storytelling, web-based linked views, and other visualization techniques, for a 4 hour flood event in Lisbon in 2010, can be found online at http://www.ncomva.se/flash/projects/esa/flooding/.
Common pitfalls in statistical analysis: The perils of multiple testing
Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc
2016-01-01
Multiple testing refers to situations where a dataset is subjected to statistical testing multiple times - either at multiple time-points or through multiple subgroups or for multiple end-points. This amplifies the probability of a false-positive finding. In this article, we look at the consequences of multiple testing and explore various methods to deal with this issue. PMID:27141478
A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1993-01-01
A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.
Li, Da-Peng; Li, Dong-Juan; Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip
2017-10-01
This paper deals with the tracking control problem for a class of nonlinear multiple input multiple output unknown time-varying delay systems with full state constraints. To overcome the challenges which cause by the appearances of the unknown time-varying delays and full-state constraints simultaneously in the systems, an adaptive control method is presented for such systems for the first time. The appropriate Lyapunov-Krasovskii functions and a separation technique are employed to eliminate the effect of unknown time-varying delays. The barrier Lyapunov functions are employed to prevent the violation of the full state constraints. The singular problems are dealt with by introducing the signal function. Finally, it is proven that the proposed method can both guarantee the good tracking performance of the systems output, all states are remained in the constrained interval and all the closed-loop signals are bounded in the design process based on choosing appropriate design parameters. The practicability of the proposed control technique is demonstrated by a simulation study in this paper.
A study of X-ray multiple diffraction by means of section topography.
Kohn, V G; Smirnova, I A
2015-09-01
The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.
Price competition and equilibrium analysis in multiple hybrid channel supply chain
NASA Astrophysics Data System (ADS)
Kuang, Guihua; Wang, Aihu; Sha, Jin
2017-06-01
The amazing boom of Internet and logistics industry prompts more and more enterprises to sell commodity through multiple channels. Such market conditions make the participants of multiple hybrid channel supply chain compete each other in traditional and direct channel at the same time. This paper builds a two-echelon supply chain model with a single manufacturer and a single retailer who both can choose different channel or channel combination for their own sales, then, discusses the price competition and calculates the equilibrium price under different sales channel selection combinations. Our analysis shows that no matter the manufacturer and retailer choose same or different channel price to compete, the equilibrium price does not necessarily exist the equilibrium price in the multiple hybrid channel supply chain and wholesale price change is not always able to coordinate supply chain completely. We also present the sufficient and necessary conditions for the existence of equilibrium price and coordination wholesale price.
Swarm observation of field-aligned current and electric field in multiple arc systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, M.; Donovan, E.; Burchill, J. K.
2017-12-01
It is often thought that auroral arcs are a direct consequence of upward field-aligned currents. In fact, the relation between currents and brightness is more complicated. Multiple auroral arc systems provide and opportunity to study this relation in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the THEMIS all-sky imagers (ASIs), magnetometers and electric field instruments onboard the Swarm satellites during the period from December 2013 to March 2015. In type 1 events, each arc is an intensification within a broad, unipolar current sheet and downward currents only exist outside the upward current sheet. These types of events are termed "unipolar FAC" events. In type 2 events, multiple arc systems represent a collection of multiple up/down current pairs, which are termed as "multipolar FAC" events. Comparisons of these two types of FAC events are presented with 17 "unipolar FAC" events and 12 "multipolar FAC" events. The results show that "unipolar FAC" and "multipolar FAC" events have systematic differences in terms of MLT, arc width and separation, and dependence on substorm onset time. For "unipolar FAC" events, significant electric field enhancements are shown on the edges of the broad upward current sheet. Electric field fluctuations inside the multiple arc system can be large or small. For "multipolar FAC" events, a strong correlation between magnetic and electric field indicate uniform conductance within each upward current sheet. The electrodynamical structures of multiple arc systems presented in this paper represents a step toward understanding arc generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig
2004-12-01
Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail to function as intended in a fire environment are investigated. In the systems under study, failure of the WL system before failure of the SL system is intended to render the overall system inoperational and thus prevent the possible occurrence of accidents with potentially serious consequences. Formal developments of the probability that the WL system fails to deactivate the overall system before failure of the SL system (i.e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: (i) onemore » WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which the individual components of this system fail and are formally defined as multidimensional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson's rule) and also on Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented.« less
Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
Multiple cueing dissociates location- and feature-based repetition effects
Hu, Kesong; Zhan, Junya; Li, Bingzhao; He, Shuchang; Samuel, Arthur G.
2014-01-01
There is an extensive literature on the phenomenon of inhibition of return (IOR): When attention is drawn to a peripheral location and then removed, response time is delayed if a target appears in the previously inspected location. Recent research suggests that non-spatial attribute repetition (i.e., if a target shares a feature like color with the earlier, cueing, stimulus) can have a similar inhibitory effect, at least when the target appears in the previously cued location. What remains unknown is whether location- and feature-based inhibitory effects can be dissociated. In the present study, we used a multiple cueing approach to investigate the properties of location- and feature-based repetition effects. In two experiments (detection, and discrimination), location-based IOR was absent but feature-based inhibition was consistently observed. Thus, the present results indicate that feature- and location-based inhibitory effects are dissociable. The results also provide support for the view that the attentional consequences of multiple cues reflect the overall center of gravity of the cues. We suggest that the repetition costs associated with feature and location repetition may be best understood as a consequence of the pattern of activation for object files associated with the stimuli present in the displays. PMID:24907677
A spatial-temporal approach to surveillance of prostate cancer disparities in population subgroups.
Hsu, Chiehwen Ed; Mas, Francisco Soto; Miller, Jerry A.; Nkhoma, Ella T.
2007-01-01
BACKGROUND: Prostate cancer mortality disparities exist among racial/ethnic groups in the United States, yet few studies have explored the spatiotemporal trend of the disease burden. To better understand mortality disparities by geographic regions over time, the present study analyzed the geographic variations of prostate cancer mortality by three Texas racial/ethnic groups over a 22-year period. METHODS: The Spatial Scan Statistic developed by Kulldorff et al was used. Excess mortality was detected using scan windows of 50% and 90% of the study period and a spatial cluster size of 50% of the population at risk. Time trend was analyzed to examine the potential temporal effects of clustering. Spatial queries were used to identify regions with multiple racial/ethnic groups having excess mortality. RESULTS: The most likely area of excess mortality for blacks occurred in Dallas-Metroplex and upper east Texas areas between 1990 and 1999; for Hispanics, in central Texas between 1992 and 1996: and for non-Hispanic whites, in the upper south and west to central Texas areas between 1990 and 1996. Excess mortality persisted among all racial/ethnic groups in the identified counties. The second scan revealed that three counties in west Texas presented an excess mortality for Hispanics from 1980-2001. Many counties bore an excess mortality burden for multiple groups. There is no time trend decline in prostate cancer mortality for blacks and non-Hispanic whites in Texas. CONCLUSION: Disparities in prostate cancer mortality among racial/ethnic groups existed in Texas. Central Texas counties with excess mortality in multiple subgroups warrant further investigation. PMID:17304971
Idiopathic bone cavities of the mandible: an update on recurrence rates and case report.
Horne, Robert P; Meara, Daniel J; Granite, Edwin L
2014-02-01
Idiopathic bone cavities (IBCs) are usually an incidental finding, often found in long bones but also in the craniofacial skeleton. Typically solitary, IBCs can present at multiple sites. Surgical exploration alone has proved effective, although recurrence does occur, particularly in cases with multiple lesions. The average time necessary to observe either recurrence or complete healing has been reported to be more than 3 years. Previously reported low recurrence rates for IBCs in the craniofacial skeleton may have been artificially low because of insufficient long-term follow-up. Providers should be prepared for long-term follow-up and care of these patients. The case of the patient presented here supports the need for long-term follow-up. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.
2012-10-01
Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.
NASA Astrophysics Data System (ADS)
Jin, Yongmei
In recent years, theoretical modeling and computational simulation of microstructure evolution and materials property has been attracting much attention. While significant advances have been made, two major challenges remain. One is the integration of multiple physical phenomena for simulation of complex materials behavior, the other is the bridging over multiple length and time scales in materials modeling and simulation. The research presented in this Thesis is focused mainly on tackling the first major challenge. In this Thesis, a unified Phase Field Microelasticity (PFM) approach is developed. This approach is an advanced version of the phase field method that takes into account the exact elasticity of arbitrarily anisotropic, elastically and structurally inhomogeneous systems. The proposed theory and models are applicable to infinite solids, elastic half-space, and finite bodies with arbitrary-shaped free surfaces, which may undergo various concomitant physical processes. The Phase Field Microelasticity approach is employed to formulate the theories and models of martensitic transformation, dislocation dynamics, and crack evolution in single crystal and polycrystalline solids. It is also used to study strain relaxation in heteroepitaxial thin films through misfit dislocation and surface roughening. Magnetic domain evolution in nanocrystalline thin films is also investigated. Numerous simulation studies are performed. Comparison with analytical predictions and experimental observations are presented. Agreement verities the theory and models as realistic simulation tools for computational materials science and engineering. The same Phase Field Microelasticity formalism of individual models of different physical phenomena makes it easy to integrate multiple physical processes into one unified simulation model, where multiple phenomena are treated as various relaxation modes that together act as one common cooperative phenomenon. The model does not impose a priori constraints on possible microstructure evolution paths. This gives the model predicting power, where material system itself "chooses" the optimal path for multiple processes. The advances made in this Thesis present a significant step forward to overcome the first challenge, mesoscale multi-physics modeling and simulation of materials. At the end of this Thesis, the way to tackle the second challenge, bridging over multiple length and time scales in materials modeling and simulation, is discussed based on connection between the mesoscale Phase Field Microelasticity modeling and microscopic atomistic calculation as well as macroscopic continuum theory.
Non-syndrome multiple supernumerary teeth in Nigerians.
Umweni, A A; Osunbor, G E N
2002-09-01
The present study was carried out to ascertain frequency of multiple supernumerary teeth not associated with syndrome in Nigerians. A total of 13 patients comprising of 10 males (76.92%) and 3 female (23.07%) representing 0.098% of the study population had multiple supernumerary teeth. Multiple supernumerary teeth without any associated systemic diseases or syndrome are rare as reported by BLUMENTHAL (3) RUHLMAN and NEELY (17), KANTOR et al. (10) is not the case in this study. The maxillary region has the highest frequency of occurrence with 12 times (66.67%) followed by the mandibular premolar region with 4 times (22.22%) while maxillary premolar and mandibular anterior region shared (5.55%) respectively. The conical and tuberculate types of supernumerary teeth were found in the midline region, while the supplemental supernumerary teeth were more in the mandibular premolar region with 12 (70.58%) follow by maxillary midline 4 (23.52%) and the lower incisor region 1 (5.88%) which is in consonant with WINTER and BROOK (2), STAFNE (19) NAZIF, FUTALO ZULLO (15). The role of genetics in the aetiology of multiple supernumerary teeth as found in this study, the occurrence of supernumerary teeth on two brothers and a daughter to one of the affected brothers, tends, to suggest an autosomal dominant mode of inheritance and the challenges to management by the orthodontists are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandwana, Peeyush; Peter, William H.; Lowe, Larry E.
In this study, powder bed based additive manufacturing technologies offer a big advantage in terms of reusability of the powders over multiple cycles that result in cost savings. However, currently there are no standards to determine the factors that govern the powder reuse times. This work presents the results from a recyclability study conducted on Inconel 718 and Ti-6Al-4V powders. It has been found that the Inconel 718 powders are chemically stable over a large number of cycles and their reuse time is limited by physical characteristics of powders such as flowability. Ti-6Al-4V, on the other hand, finds its reusemore » time governed by the oxygen pick up that occurs during and in between build cycles. The detailed results have been presented.« less
Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint.
Saito, Priscila T M; Nakamura, Rodrigo Y M; Amorim, Willian P; Papa, João P; de Rezende, Pedro J; Falcão, Alexandre X
2015-01-01
Nowadays, large datasets are common and demand faster and more effective pattern analysis techniques. However, methodologies to compare classifiers usually do not take into account the learning-time constraints required by applications. This work presents a methodology to compare classifiers with respect to their ability to learn from classification errors on a large learning set, within a given time limit. Faster techniques may acquire more training samples, but only when they are more effective will they achieve higher performance on unseen testing sets. We demonstrate this result using several techniques, multiple datasets, and typical learning-time limits required by applications.
Graph transformation method for calculating waiting times in Markov chains.
Trygubenko, Semen A; Wales, David J
2006-06-21
We describe an exact approach for calculating transition probabilities and waiting times in finite-state discrete-time Markov processes. All the states and the rules for transitions between them must be known in advance. We can then calculate averages over a given ensemble of paths for both additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we can calculate the mean first-passage time between arbitrary groups of stationary points for discrete path sampling databases, and hence extract phenomenological rate constants. We present a number of examples to demonstrate the efficiency and robustness of this approach.
NASA Astrophysics Data System (ADS)
Zheng, Qin; Yang, Zubin; Sha, Jianxin; Yan, Jun
2017-02-01
In predictability problem research, the conditional nonlinear optimal perturbation (CNOP) describes the initial perturbation that satisfies a certain constraint condition and causes the largest prediction error at the prediction time. The CNOP has been successfully applied in estimation of the lower bound of maximum predictable time (LBMPT). Generally, CNOPs are calculated by a gradient descent algorithm based on the adjoint model, which is called ADJ-CNOP. This study, through the two-dimensional Ikeda model, investigates the impacts of the nonlinearity on ADJ-CNOP and the corresponding precision problems when using ADJ-CNOP to estimate the LBMPT. Our conclusions are that (1) when the initial perturbation is large or the prediction time is long, the strong nonlinearity of the dynamical model in the prediction variable will lead to failure of the ADJ-CNOP method, and (2) when the objective function has multiple extreme values, ADJ-CNOP has a large probability of producing local CNOPs, hence making a false estimation of the LBMPT. Furthermore, the particle swarm optimization (PSO) algorithm, one kind of intelligent algorithm, is introduced to solve this problem. The method using PSO to compute CNOP is called PSO-CNOP. The results of numerical experiments show that even with a large initial perturbation and long prediction time, or when the objective function has multiple extreme values, PSO-CNOP can always obtain the global CNOP. Since the PSO algorithm is a heuristic search algorithm based on the population, it can overcome the impact of nonlinearity and the disturbance from multiple extremes of the objective function. In addition, to check the estimation accuracy of the LBMPT presented by PSO-CNOP and ADJ-CNOP, we partition the constraint domain of initial perturbations into sufficiently fine grid meshes and take the LBMPT obtained by the filtering method as a benchmark. The result shows that the estimation presented by PSO-CNOP is closer to the true value than the one by ADJ-CNOP with the forecast time increasing.
Memory interface simulator: A computer design aid
NASA Technical Reports Server (NTRS)
Taylor, D. S.; Williams, T.; Weatherbee, J. E.
1972-01-01
Results are presented of a study conducted with a digital simulation model being used in the design of the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. The model simulates the activity involved as instructions are fetched from random access memory for execution in one of the system central processing units. A series of model runs measured instruction execution time under various assumptions pertaining to the CPU's and the interface between the CPU's and RAM. Design tradeoffs are presented in the following areas: Bus widths, CPU microprogram read only memory cycle time, multiple instruction fetch, and instruction mix.
A Josephson Junction based SPDT switch
NASA Astrophysics Data System (ADS)
Zhang, Helin; Earnest, Nathan; Lu, Yao; Ma, Ruichao; Chakram, Srivatsan; Schuster, David
RF microwave switches are useful tools in cryogenic experiments, allowing for multiple experiments to be connected to a single cryogenic measurement chain. However, these switches dissipate a substantial amount of heat, preventing fast switching. Josephson junction (JJ) are a promising avenue for realizing millikelvin microwave switching. We present a JJ based single-pole-double throw (SPDT) switch that has fast switching time, no heat dissipation, large on/off contrast, and works over a wide bandwidth. The switch can be used for real-time switching between experiments, routing single photons, or even generating entanglement. We will describe the design of the switch and present experimental characterization of its performance.
Juswardy, Budi; Xiao, Feng; Alameh, Kamal
2009-03-16
This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
Popova, E V; Boyko, A N; Boyko, O V
2015-01-01
At the present time, disease modifying drugs (DMD) for treatment of patients with multiple sclerosis are used to reduce the risk of exacerbations and, consequently, slowing the progression of disability in accordance to treatment standards. However, the application of the first line of this therapy is not always successful. In these situations, patients receive second-line DMD. Fingolimod is one of the second-line drugs in Russia. To gain experience in using fingolimod in routine neurological practice, we have conducted a post-marketing research - GIMN.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.
2010-01-01
Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies
Xue, Dingyü; Li, Tingxue
2017-04-27
The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Management of actinic keratosis.
2013-07-01
Actinic keratoses are common, often multiple, epidermal lesions found mainly on the sun-exposed skin of fair-skinned middle-aged and older people.(1) Over time, lesions may remain unchanged or may proliferate, regress, reappear or develop into squamous cell carcinoma (SCC).(2) Detectable (spot) lesions are often associated with alteration of the surrounding skin (field) where subclinical lesions might be present.(2) Interventions may target individual or multiple lesions or a whole field.(2) Here, we update our previous review(3) on the prevention and treatment of actinic keratoses, focusing on the licensed treatments most commonly used in the UK and recommended in UK guidelines.
"Exercices de style": Developing Multiple Competencies through a Writing Portfolio
ERIC Educational Resources Information Center
Paesani, Kate
2006-01-01
This article presents a writing portfolio project whose primary goal is to integrate the development of proficiency skills, content knowledge, and grammatical competence through literary study. Excerpts from Queneau's (1947) "Exercices de style," which tells the same story 99 times, serve as the basis for this portfolio project: These excerpts are…
Digital Booktalk: Creating a Community of Avid Readers, One Video at a Time
ERIC Educational Resources Information Center
Gunter, Glenda A.
2012-01-01
In this article the author presents a meta-analysis of the findings from several studies conducted over multiple years with various types of learners that investigated exemplar/signature pedagogical practices incorporating video to motivate otherwise reluctant and struggling learners. Noting that newer technologies are making today's learners less…
An Integrative Metatheory for Organisational Learning and Sustainability in Turbulent Times
ERIC Educational Resources Information Center
Edwards, Mark G.
2009-01-01
Purpose: Theories of organizational learning and sustainability must be able to respond to contemporary social issues and accommodate, in some way, the multiplicity of perspectives that are present in society on these topics. One way of developing multi-perspectival capacities in the scientific understandings is through the building of metatheory.…
NASA Technical Reports Server (NTRS)
Boorstyn, R. R.
1973-01-01
Research is reported dealing with problems of digital data transmission and computer communications networks. The results of four individual studies are presented which include: (1) signal processing with finite state machines, (2) signal parameter estimation from discrete-time observations, (3) digital filtering for radar signal processing applications, and (4) multiple server queues where all servers are not identical.
Level of Processing Modulates the Neural Correlates of Emotional Memory Formation
ERIC Educational Resources Information Center
Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto
2011-01-01
Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…
English Homework: What Makes Sense?
ERIC Educational Resources Information Center
Büchel, Laura Loder
2016-01-01
The purpose of this article is to persuade English as a foreign language (EFL) teachers and teacher trainers that homework is indeed beneficial by presenting multiple examples of high-quality homework assignments, as Dettmers et al. (2010) found in mathematics. The argument here is that it is not the time spent on homework that matters in early…
ERIC Educational Resources Information Center
Kaya, Yasemin; Leite, Walter L.
2017-01-01
Cognitive diagnosis models are diagnostic models used to classify respondents into homogenous groups based on multiple categorical latent variables representing the measured cognitive attributes. This study aims to present longitudinal models for cognitive diagnosis modeling, which can be applied to repeated measurements in order to monitor…
High spatial resolution LWIR hyperspectral sensor
NASA Astrophysics Data System (ADS)
Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph
2015-06-01
Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.
Observational and Incidental Learning by Children with Autism during Small Group Instruction
ERIC Educational Resources Information Center
Ledford, Jennifer R.; Gast, David L.; Luscre, Deanna; Ayres, Kevin M.
2008-01-01
This study evaluated the acquisition of incidental and observational information presented to 6 children with autism in a small group instructional arrangement using a constant time delay (CTD) procedure. A multiple probe design across behaviors, replicated across 6 participants, was used to evaluate the effectiveness of the CTD procedure and to…
Predictors of Psychological Sequelae of Torture among South African Former Political Prisoners
ERIC Educational Resources Information Center
Halvorsen, Joar Overaas; Kagee, Ashraf
2010-01-01
The present study investigated potential predictors of the psychological sequelae of torture among 143 former political activists who had been detained during the apartheid era in South Africa. Using multiple regression analyses, the authors found that the number of times detained for political reasons, negative social support, strong…
Intelligent composting assisted by a wireless sensing network.
López, Marga; Martinez-Farre, Xavier; Casas, Oscar; Quilez, Marcos; Polo, Jose; Lopez, Oscar; Hornero, Gemma; Pinilla, Mirta R; Rovira, Carlos; Ramos, Pedro M; Borges, Beatriz; Marques, Hugo; Girão, Pedro Silva
2014-04-01
Monitoring of the moisture and temperature of composting process is a key factor to obtain a quality product beyond the quality of raw materials. Current methodologies for monitoring these two parameters are time consuming for workers, sometimes not sufficiently reliable to help decision-making and thus are ignored in some cases. This article describes an advance on monitoring of composting process through a Wireless Sensor Network (WSN) that allows measurement of temperature and moisture in real time in multiple points of the composting material, the Compo-ball system. To implement such measurement capabilities on-line, a WSN composed of multiple sensor nodes was designed and implemented to provide the staff with an efficient monitoring composting management tool. After framing the problem, the objectives and characteristics of the WSN are briefly discussed and a short description of the hardware and software of the network's components are presented. Presentation and discussion of practical issues and results obtained with the WSN during a demonstration stage that took place in several composting sites concludes the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.
2013-04-01
We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK
Power Hardware-in-the-Loop Testing of a Smart Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige
This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less
Robust Real-Time Music Transcription with a Compositional Hierarchical Model.
Pesek, Matevž; Leonardis, Aleš; Marolt, Matija
2017-01-01
The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.
NASA Technical Reports Server (NTRS)
Brieda, Lubos
2015-01-01
This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.
Willemse, Elias J; Joubert, Johan W
2016-09-01
In this article we present benchmark datasets for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities (MCARPTIF). The problem is a generalisation of the Capacitated Arc Routing Problem (CARP), and closely represents waste collection routing. Four different test sets are presented, each consisting of multiple instance files, and which can be used to benchmark different solution approaches for the MCARPTIF. An in-depth description of the datasets can be found in "Constructive heuristics for the Mixed Capacity Arc Routing Problem under Time Restrictions with Intermediate Facilities" (Willemseand Joubert, 2016) [2] and "Splitting procedures for the Mixed Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemseand Joubert, in press) [4]. The datasets are publicly available from "Library of benchmark test sets for variants of the Capacitated Arc Routing Problem under Time restrictions with Intermediate Facilities" (Willemse and Joubert, 2016) [3].
Real-time optical multiple object recognition and tracking system and method
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)
1987-01-01
The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.
Impact localization on composite structures using time difference and MUSIC approach
NASA Astrophysics Data System (ADS)
Zhong, Yongteng; Xiang, Jiawei
2017-05-01
1-D uniform linear array (ULA) has the shortcoming of the half-plane mirror effect, which does not allow discriminating between a target placed above the array and a target placed below the array. This paper presents time difference (TD) and multiple signal classification (MUSIC) based omni-directional impact localization on a large stiffened composite structure using improved linear array, which is able to perform omni-directional 360° localization. This array contains 2M+3 PZT sensors, where 2M+1 PZT sensors are arranged as a uniform linear array, and the other two PZT sensors are placed above and below the array. Firstly, the arrival times of impact signals observed by the other two sensors are determined using the wavelet transform. Compared with each other, the direction range of impact source can be decided in general, 0°to 180° or 180°to 360°. And then, two dimensional multiple signal classification (2D-MUSIC) based spatial spectrum formula using the uniform linear array is applied for impact localization by the general direction range. When the arrival times of impact signals observed by upper PZT is equal to that of lower PZT, the direction can be located in x axis (0°or 180°). And time difference based MUSIC method is present to locate impact position. To verify the proposed approach, the proposed approach is applied to a composite structure. The localization results are in good agreement with the actual impact occurring positions.
Rotor Noise due to Blade-Turbulence Interaction.
NASA Astrophysics Data System (ADS)
Ishimaru, Kiyoto
The time-averaged intensity density function of the acoustic radiation from rotating blades is derived by replacing blades with rotating dipoles. This derivation is done under the following turbulent inflow conditions: turbulent ingestion with no inlet strut wakes, inflow turbulence elongation and contraction with no inlet strut wakes, and inlet strut wakes. Dimensional analysis reveals two non-dimensional parameters which play important roles in generating the blade-passing frequency tone and its multiples. The elongation and contraction of inflow turbulence has a strong effect on the generation of the blade-passing frequency tone and its multiples. Increasing the number of rotor blades widens the peak at the blade-passing frequency and its multiples. Increasing the rotational speed widens the peak under the condition that the non-dimensional parameter involving the rotational speed is fixed. The number of struts and blades should be chosen so that (the least common multiple of them)(.)(rotational speed) is in the cutoff range of Sears' function, in order to minimize the effect of the mean flow deficit on the time averaged intensity density function. The acoustic intensity density function is not necessarily stationary even if the inflow turbulence is homogeneous and isotropic. The time variation of the propagation path due to the rotation should be considered in the computation of the intensity density function; for instance, in the present rotor specification, the rotor radius is about 0.3 m and the rotational speed Mach number is about 0.2.
Baratloo, Alireza; Shokravi, Masumeh; Safari, Saeed; Aziz, Awat Kamal
2016-03-01
The Full Outline of Unresponsiveness (FOUR) score was developed to compensate for the limitations of Glasgow coma score (GCS) in recent years. This study aimed to assess the predictive value of GCS and FOUR score on the outcome of multiple trauma patients admitted to the emergency department. The present prospective cross-sectional study was conducted on multiple trauma patients admitted to the emergency department. GCS and FOUR scores were evaluated at the time of admission and at the sixth and twelfth hours after admission. Then the receiver operating characteristic (ROC) curve, sensitivity, specificity, as well as positive and negative predictive value of GCS and FOUR score were evaluated to predict patients' outcome. Patients' outcome was divided into discharge with and without a medical injury (motor deficit, coma or death). Finally, 89 patients were studied. Sensitivity and specificity of GCS in predicting adverse outcome (motor deficit, coma or death) were 84.2% and 88.6% at the time of admission, 89.5% and 95.4% at the sixth hour and 89.5% and 91.5% at the twelfth hour, respectively. These values for the FOUR score were 86.9% and 88.4% at the time of admission, 89.5% and 100% at the sixth hour and 89.5% and 94.4% at the twelfth hour, respectively. Findings of this study indicate that the predictive value of FOUR score and GCS on the outcome of multiple trauma patients admitted to the emergency department is similar.
Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing
Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin
2016-01-01
With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606
Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.
Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin
2016-04-07
With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.
Real-time path planning in dynamic virtual environments using multiagent navigation graphs.
Sud, Avneesh; Andersen, Erik; Curtis, Sean; Lin, Ming C; Manocha, Dinesh
2008-01-01
We present a novel approach for efficient path planning and navigation of multiple virtual agents in complex dynamic scenes. We introduce a new data structure, Multi-agent Navigation Graph (MaNG), which is constructed using first- and second-order Voronoi diagrams. The MaNG is used to perform route planning and proximity computations for each agent in real time. Moreover, we use the path information and proximity relationships for local dynamics computation of each agent by extending a social force model [Helbing05]. We compute the MaNG using graphics hardware and present culling techniques to accelerate the computation. We also address undersampling issues and present techniques to improve the accuracy of our algorithm. Our algorithm is used for real-time multi-agent planning in pursuit-evasion, terrain exploration and crowd simulation scenarios consisting of hundreds of moving agents, each with a distinct goal.
Handbook of aircraft noise metrics
NASA Technical Reports Server (NTRS)
Bennett, R. L.; Pearsons, K. S.
1981-01-01
Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.
Hosseinbor, A. Pasha; Chung, Moo K.; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.
2014-01-01
We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, HyperSPHARM treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. HyperSPHARM is shown to achieve a better reconstruction with only 5 basis compared to SPHARM that requires more than 441. PMID:24505716
Handbook of aircraft noise metrics
NASA Astrophysics Data System (ADS)
Bennett, R. L.; Pearsons, K. S.
1981-03-01
Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang;
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.
NASA Astrophysics Data System (ADS)
Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore
2014-02-01
Investigations on the use of Low Level Laser Therapy (LLLT) for wound healing especially with the red laser light have demonstrated its pro-healing potential on a variety of pre-clinical and surgical wounds. However, until now, in LLLT the effect of multiple exposure of low dose laser irradiation on acute wound healing on well-designed pre-clinical model is not much explored. The present study aimed to investigate the effect of multiple exposure of low dose Helium Neon laser on healing progression of full thickness excision wounds in Swiss albino mice. Further, the efficacy of the multiple exposure of low dose laser irradiation was compared with the single exposure of optimum dose. Full thickness excision wounds (circular) of 15 mm diameter were created, and subsequently illuminated with the multiple exposures (1, 2, 3, 4 and 5 exposure/ week until healing) of He-Ne (632.8 nm, 4.02 mWcm-2) laser at 0.5 Jcm-2 along with single exposure of optimum laser dose (2 J/cm-2) and un-illuminated controls. Classical biophysical parameters such as contraction kinetics, area under the curve and the mean healing time were documented as the assessment parameters to examine the efficacy of multiple exposures with low level laser dose. Experimental findings substantiated that either single or multiple exposures of 0.5 J/cm2 failed to produce any detectable alterations on wound contraction, area under the curve and mean healing time compared to single exposure of optimum dose (2 Jcm-2) and un-illuminated controls. Single exposure of optimum, laser dose was found to be ideal for acute wound healing.
Adaptable Transponder for Multiple Telemetry Systems
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)
2014-01-01
The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.
Immunoglobulin G4-related acquired hemophilia: A case report
Li, Xiaoyan; Duan, Wei; Zhu, Xiang; Xu, Jianying
2016-01-01
Acquired hemophilia A (AHA) is a relatively rare and life-threatening bleeding disorder whose pathogenesis is not completely understood. The present study reports a rare case of immunogubulin (IgG)4-related AHA with multisystemic involvement. A 55-year old male patient presented with symptoms of bronchial asthma and multiple subdermal hematomas. Chest computed tomography showed multiple diffuse nodular lesions with thickening of bronchovascular bundles, and scattered high-density spots in both lung lobes. Laboratory investigations showed increased activated partial prothrombin time (120.0 sec), a markedly decreased factor VIII (FVIII) activity (0.5%), a high-titer of FVIII inhibitor (27.2 Bethesda units/ml) and a marked increase in serum IgG4 (>4.03 g/l) level. Left inguinal lymph node biopsy revealed capsular thickening with marked lymphoplasmacytic infiltration, occlusive phlebitis and irregular fibrosis. Immunostaining revealed numerous IgG4-positive plasma cells (>100 cells/human plasma fibronectin) in the nodular lesions, with an IgG4/IgG ratio of >40%. The symptoms were markedly alleviated following corticosteroid therapy. The current study presents the first reported case of a rare IgG4-related AHA that presented with unusual clinical features and multisystemic involvement. The patient responded well to corticosteroid therapy. Documentation of such rare cases will help in characterizing the pathogenesis, and prompt recognition and timely treatment of this rare disorder. PMID:28105131
Parental satisfaction with paediatric care, triage and waiting times.
Fitzpatrick, Nicholas; Breen, Daniel T; Taylor, James; Paul, Eldho; Grosvenor, Robert; Heggie, Katrina; Mahar, Patrick D
2014-04-01
The present study aims to determine parental and guardian's perceptions of paediatric emergency care and satisfaction with care, waiting times and triage category in a community ED. A structured questionnaire was provided to parents or guardians of paediatric patients presenting to emergency. The survey evaluated parent perceptions of waiting time, environment/facilities, professionalism and communication skills of staff and overall satisfaction of care. One hundred and thirty-three completed questionnaires were received from parents of paediatric patients. Responses were overall positive with respect to the multiple domains assessed. Parents generally considered waiting times to be appropriate and consistent with triage categories. Overall satisfaction was not significantly different for varying treatment or waiting times. Patients triaged as semi-urgent were of the opinion that waiting times were less appropriate than urgent, less-urgent or non-urgent patients. On the basis of the present study, patient perceptions and overall satisfaction of care does not appear to be primarily influenced by time spent waiting or receiving treatment. Attempts made at the triage process to ensure that semi-urgent patients have reasonable expectations of waiting times might provide an opportunity to improve these patients' expectations and perceptions. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Pastore, Vito Paolo; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo
2018-01-01
We implemented an automated and efficient open-source software for the analysis of multi-site neuronal spike signals. The software package, named SPICODYN, has been developed as a standalone windows GUI application, using C# programming language with Microsoft Visual Studio based on .NET framework 4.5 development environment. Accepted input data formats are HDF5, level 5 MAT and text files, containing recorded or generated time series spike signals data. SPICODYN processes such electrophysiological signals focusing on: spiking and bursting dynamics and functional-effective connectivity analysis. In particular, for inferring network connectivity, a new implementation of the transfer entropy method is presented dealing with multiple time delays (temporal extension) and with multiple binary patterns (high order extension). SPICODYN is specifically tailored to process data coming from different Multi-Electrode Arrays setups, guarantying, in those specific cases, automated processing. The optimized implementation of the Delayed Transfer Entropy and the High-Order Transfer Entropy algorithms, allows performing accurate and rapid analysis on multiple spike trains from thousands of electrodes.
Second order nonlinear QED processes in ultra-strong laser fields
NASA Astrophysics Data System (ADS)
Mackenroth, Felix
2017-10-01
In the interaction of ultra-intense laser fields with matter the ever increasing peak laser intensities render nonlinear QED effects ever more important. For long, ultra-intense laser pulses scattering large systems, like a macroscopic plasma, the interaction time can be longer than the scattering time, leading to multiple scatterings. These are usually approximated as incoherent cascades of single-vertex processes. Under certain conditions, however, this common cascade approximation may be insufficient, as it disregards several effects such as coherent processes, quantum interferences or pulse shape effects. Quantifying deviations of the full amplitude of multiple scatterings from the commonly employed cascade approximations is a formidable, yet unaccomplished task. In this talk we are going to discuss how to compute second order nonlinear QED amplitudes and relate them to the conventional cascade approximation. We present examples for typical second order processes and benchmark the full result against common approximations. We demonstrate that the approximation of multiple nonlinear QED scatterings as a cascade of single interactions has certain limitations and discuss these limits in light of upcoming experimental tests.
Simultaneous acquisition of multiple auditory-motor transformations in speech
Rochet-Capellan, Amelie; Ostry, David J.
2011-01-01
The brain easily generates the movement that is needed in a given situation. Yet surprisingly, the results of experimental studies suggest that it is difficult to acquire more than one skill at a time. To do so, it has generally been necessary to link the required movement to arbitrary cues. In the present study, we show that speech motor learning provides an informative model for the acquisition of multiple sensorimotor skills. During training, subjects are required to repeat aloud individual words in random order while auditory feedback is altered in real-time in different ways for the different words. We find that subjects can quite readily and simultaneously modify their speech movements to correct for these different auditory transformations. This multiple learning occurs effortlessly without explicit cues and without any apparent awareness of the perturbation. The ability to simultaneously learn several different auditory-motor transformations is consistent with the idea that in speech motor learning, the brain acquires instance specific memories. The results support the hypothesis that speech motor learning is fundamentally local. PMID:21325534
Kannan, Arun; Jahan, Kahroba; Lotun, Kapildeo; Janardhanan, Rajesh
2015-09-21
Acute prosthetic valve thrombosis is a potentially serious complication with an incidence as high as 6% per patient-year for prostheses in the mitral position. Accurate diagnosis of the degree of obstruction and differentiation of pannus versus thrombus is critical in determination of the best mode of therapy. We discuss a case of a patient with multiple comorbidities who presented with mechanical mitral valve obstruction where both transthoracic and two-dimensional transesophageal echocardiography (TEE) were limited in making an accurate diagnosis regarding the mechanism of obstruction. Real-time 3D-TEE (RT-3DTEE) was critical in identifying a partial thrombus on the mechanical valve and guided the choice of thrombolysis as the most appropriate intervention, thus avoiding high-risk surgery in this patient with significant multiple comorbidities. 2015 BMJ Publishing Group Ltd.
Kannan, Arun; Jahan, Kahroba; Lotun, Kapildeo; Janardhanan, Rajesh
2015-01-01
Acute prosthetic valve thrombosis is a potentially serious complication with an incidence as high as 6% per patient-year for prostheses in the mitral position. Accurate diagnosis of the degree of obstruction and differentiation of pannus versus thrombus is critical in determination of the best mode of therapy. We discuss a case of a patient with multiple comorbidities who presented with mechanical mitral valve obstruction where both transthoracic and two-dimensional transesophageal echocardiography (TEE) were limited in making an accurate diagnosis regarding the mechanism of obstruction. Real-time 3D-TEE (RT-3DTEE) was critical in identifying a partial thrombus on the mechanical valve and guided the choice of thrombolysis as the most appropriate intervention, thus avoiding high-risk surgery in this patient with significant multiple comorbidities. PMID:26392458
Rapid convergence of optimal control in NMR using numerically-constructed toggling frames
NASA Astrophysics Data System (ADS)
Coote, Paul; Anklin, Clemens; Massefski, Walter; Wagner, Gerhard; Arthanari, Haribabu
2017-08-01
We present a numerical method for rapidly solving the Bloch equation for an arbitrary time-varying spin-1/2 Hamiltonian. The method relies on fast, vectorized computations such as summation and quaternion multiplication, rather than slow computations such as matrix exponentiation. A toggling frame is constructed in which the Hamiltonian is time-invariant, and therefore has a simple analytical solution. The key insight is that constructing this frame is faster than solving the system dynamics in the original frame. Rapidly solving the Bloch equations for an arbitrary Hamiltonian is particularly useful in the context of NMR optimal control. Optimal control theory can be used to design pulse shapes for a range of tasks in NMR spectroscopy. However, it requires multiple simulations of the Bloch equations at each stage of the algorithm, and for each relevant set of parameters (e.g. chemical shift frequencies). This is typically time consuming. We demonstrate that by working in an appropriate toggling frame, optimal control pulses can be generated much faster. We present a new alternative to the well-known GRAPE algorithm to continuously update the toggling-frame as the optimal pulse is generated, and demonstrate that this approach is extremely fast. The use and benefit of rapid optimal pulse generation is demonstrated for 19F fragment screening experiments.
Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte
2016-09-15
Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
The capacity limitations of orientation summary statistics
Attarha, Mouna; Moore, Cathleen M.
2015-01-01
The simultaneous–sequential method was used to test the processing capacity of establishing mean orientation summaries. Four clusters of oriented Gabor patches were presented in the peripheral visual field. One of the clusters had a mean orientation that was tilted either left or right while the mean orientations of the other three clusters were roughly vertical. All four clusters were presented at the same time in the simultaneous condition whereas the clusters appeared in temporal subsets of two in the sequential condition. Performance was lower when the means of all four clusters had to be processed concurrently than when only two had to be processed in the same amount of time. The advantage for establishing fewer summaries at a given time indicates that the processing of mean orientation engages limited-capacity processes (Experiment 1). This limitation cannot be attributed to crowding, low target-distractor discriminability, or a limited-capacity comparison process (Experiments 2 and 3). In contrast to the limitations of establishing multiple summary representations, establishing a single summary representation unfolds without interference (Experiment 4). When interpreted in the context of recent work on the capacity of summary statistics, these findings encourage reevaluation of the view that early visual perception consists of summary statistic representations that unfold independently across multiple areas of the visual field. PMID:25810160
Differential expression of estrogen receptor α and β isoforms in multiple and solitary leiomyomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Ruyue; Fang, Liaoqiong; Xing, Ruoxi
Uterine leiomyomas are benign myometrial neoplasms that function as one of the common indications for hysterectomy. Clinical and biological evidences indicate that uterine leiomyomas are estrogen-dependent. Estrogen stimulates cell proliferation through binding to the estrogen receptor (ER), of which both subtypes α and β are present in leiomyomas. Clinically, leiomyomas may be singular or multiple, where the first one is rarely recurring if removed and the latter associated to a relatively young age or genetic predisposition. These markedly different clinical phenotypes indicate that there may different mechanism causing a similar smooth muscle response. To investigate the relative expression of ERαmore » and ERβ in multiple and solitary uterine leiomyomas, we collected samples from 35 Chinese women (multiple leiomyomas n = 20, solitary leiomyoma n = 15) undergoing surgery to remove uterine leiomyomas. ELISA assay was performed to detect estrogen(E{sub 2}) concentration. Quantitative real-time PCR analysis was performed to detect ERα and ERβ mRNA expression. Western blot and immunohistochemical analysis were performed to detect ERα and ERβ protein expression. We found that ERα mRNA and protein levels of in multiple leiomyomas were significantly lower than those of solitary leiomyomas, whereas ERβ mRNA and protein levels in multiple leiomyomas were significantly higher than those in solitary leiomyomas, irrespectively of the menstrual cycle stage. In both multiple and solitary leiomyomas, ERα expression was higher than that of ERβ. E{sub 2} concentration in multiple and solitary leiomyomas correlated with that of ERα expression. ERα was present in nuclus and cytoplasma while estrogen receptor β localized only in nuclei in both multiple and solitary leiomyomas. Our findings suggest that the difference of ERα and ERβ expression between multiple and solitary leiomyomas may be responsible for the course of the disease subtypes. - Highlights: • In both multiple and solitary leiomyomas, ERα expression was higher than that of ERβ. • ERα was significantly lower, whereas ERβ was significantly higher in multiple leiomyomas than that in solitary leiomyomas. • The differential expression of ERα and ERβ may be responsible for the cause of the disease subtypes.« less
NASA Astrophysics Data System (ADS)
Chen, Hsin-Han; Hsieh, Chih-Cheng
2013-09-01
This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.
Michael, George Andrew; Bacon, Elisabeth; Offerlin-Meyer, Isabelle
2007-09-01
There is a general consensus that benzodiazepines affect attentional processes, yet only few studies have tried to investigate these impairments in detail. The purpose of the present study was to investigate the effects of a single dose of Lorazepam on performance in a target cancellation task with important time constraints. We measured correct target detections and correct distractor rejections, misses and false positives. The results show that Lorazepam produces multiple kinds of shifts in performance, which suggests that it impairs multipLe processes: (a) the evolution of performance over time was not the same between the placebo and the Lorazepam groups, with the Lorazepam affecting performance quite early after the beginning of the test. This is suggestive of a depletion of attentional resources during sequential attentional processing; (b) Lorazepam affected differently target and distractor processing, with target detection being the most impaired; (c) misses were more frequent under Lorazepam than under placebo, but no such difference was observed as far as false positives were concerned. Signal detection analyses showed that Lorazepam (d) decreased perceptual discrimination, and (e) reliably increased response bias. Our results bring new insights on the multiple effects of Lorazepam on selective attention which, when combined, may have deleterious effects on human performance.
Justice-Allen, A; Trujillo, J; Goodell, G; Wilson, D
2011-07-01
The objective of this study was to further validate a SYBR PCR protocol for Mycoplasma spp. by comparing it with standard microbial culture in the detection of Mycoplasma spp. in bulk tank milk samples. Additionally, we identified Mycoplasma spp. present by analysis of PCR-generated amplicons [dissociation (melt) temperature (T(m)), length, and DNA sequence]. The research presented herein tests the hypothesis that the SYBR PCR protocol is as sensitive as conventional culture for the detection of Mycoplasma spp. in bulk tank milk samples. Mycoplasmas cause several important disease syndromes in cattle, including mastitis in dairy cows. The standard diagnostic method at the herd level has been microbial isolation of mycoplasmas on 1 of several specialized media and speciation through biochemical or immunological techniques; repeated sampling schemes are recommended. The development of a real-time SYBR PCR protocol offers advantages in decrease of time to detection, cost, and complexity. The T(m) of the double-stranded DNA generated from the PCR reaction was used to detect the presence of and tentatively identify the species of mycoplasmas other than Mycoplasma bovis. In the SYBR PCR protocol, the presence of multiple species of mycoplasmas is indicated by an atypical dissociation curve. Gel electrophoresis and sequencing of the amplicons was used to confirm the mycoplasma species present when a non-M. bovis organism was detected (T(m) not equal to M. bovis) and used to identify all the mycoplasma species present for the samples with atypical dissociation curves. Mycoplasma bovis was identified in 83% of SYBR PCR mycoplasma-positive bulk tank samples. Another mycoplasma was identified either alone or in addition to M. bovis in 25% of SYBR PCR mycoplasma-positive bulk tank milk samples. Four species of mycoplasma other than M. bovis (Mycoplasma alkalescens, Mycoplasma arginini, Mycoplasma bovigenitalium, and Mycoplasma gateae) were identified in bulk tank milk samples tested with this method. Five farms had 2 mycoplasma species occurring at different times in their bulk tanks. Two mycoplasma species were identified in the same bulk tank sample in 7 instances on 2 farms. The finding of multiple Mycoplasma spp. coexisting on a farm and even in the same bulk tank milk sample indicates that the clinical significance of multiple mycoplasma species in the pathology of intramammary infections should be investigated further. In comparison with conventional culture, the SYBR PCR protocol was slightly (but not statistically significantly) more sensitive in the detection of mycoplasmas in bulk tank milk. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Churkin, Alexander; Barash, Danny
2008-01-01
Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289
Bayesian correlated clustering to integrate multiple datasets
Kirk, Paul; Griffin, Jim E.; Savage, Richard S.; Ghahramani, Zoubin; Wild, David L.
2012-01-01
Motivation: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct—but often complementary—information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured through parameters that describe the agreement among the datasets. Results: Using a set of six artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real Saccharomyces cerevisiae datasets. In the two-dataset case, we show that MDI’s performance is comparable with the present state-of-the-art. We then move beyond the capabilities of current approaches and integrate gene expression, chromatin immunoprecipitation–chip and protein–protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques—as well as to non-integrative approaches—demonstrate that MDI is competitive, while also providing information that would be difficult or impossible to extract using other methods. Availability: A Matlab implementation of MDI is available from http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/. Contact: D.L.Wild@warwick.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23047558
Service offerings and interfaces for the ACTS network of Earth stations
NASA Technical Reports Server (NTRS)
Coney, Thom A.
1988-01-01
The Advanced Communications Satellite (ACTS) is capable of two modes of communication. Mode 1 is a mesh network of Earth stations using baseband-switched, time-division multiple-access (BBS-TDMA) and hopping beams. Mode 2 is a mesh network using satellite-switched, time-division multiple-access (SS-TDMA) and fixed (or hopping) beams. The purpose of this paper is to present the functional requirements and the design of the ACTS Mode 1 Earth station terrestrial interface. Included among the requirements are that: (1) the interface support standard telecommunications service offerings (i.e., voice, video and data at rates ranging from 9.6 kbps to 44 Mbps); (2) the interface support the unique design characteristics of the ACTS communications systems (e.g., the real time demand assignment of satellite capacity); and (3) the interface support test hardware capable of validating ACTS communications processes. The resulting interface design makes use of an appropriate combination of T1 or T3 multiplexers and a small central office (maximum capacity 56 subscriber lines per unit).
Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake
Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less
Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD
Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake; ...
2017-03-24
Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less
Rummel, Julia L; Steill, Jeffrey D; Oomens, Jos; Contreras, Cesar S; Pearson, Wright L; Szczepanski, Jan; Powell, David H; Eyler, John R
2011-06-01
Infrared multiple photon dissociation (IRMPD) was used to generate vibrational spectra of ions produced with a direct analysis in real time (DART) ionization source coupled to a 4.7 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The location of protonation on the nerve agent simulants diisopropyl methylphosphonate (DIMP) and dimethyl methylphosphonate (DMMP) was studied while solutions of the compounds were introduced for extended periods of time with a syringe pump. Theoretical vibrational spectra were generated with density functional theory calculations. Visual comparison of experimental mid-IR IRMPD spectra and theoretical spectra could not establish definitively if a single structure or a mixture of conformations was present for the protonated parent of each compound. However, theoretical calculations, near-ir IRMPD spectra, and frequency-to-frequency and statistical comparisons indicated that the protonation site for both DIMP and DMMP was predominantly, if not exclusively, the phosphonyl oxygen instead of one of the oxygen atoms with only single bonds.
Baccini, Michela; Carreras, Giulia
2014-10-01
This paper describes the methods used to investigate variations in total alcoholic beverage consumption as related to selected control intervention policies and other socioeconomic factors (unplanned factors) within 12 European countries involved in the AMPHORA project. The analysis presented several critical points: presence of missing values, strong correlation among the unplanned factors, long-term waves or trends in both the time series of alcohol consumption and the time series of the main explanatory variables. These difficulties were addressed by implementing a multiple imputation procedure for filling in missing values, then specifying for each country a multiple regression model which accounted for time trend, policy measures and a limited set of unplanned factors, selected in advance on the basis of sociological and statistical considerations are addressed. This approach allowed estimating the "net" effect of the selected control policies on alcohol consumption, but not the association between each unplanned factor and the outcome.
NASA Astrophysics Data System (ADS)
Wernicke, S.; Dang, T.; Gies, S.; Tekkaya, A. E.
2018-05-01
The tendency to a higher variety of products requires economical manufacturing processes suitable for the production of prototypes and small batches. In the case of complex hollow-shaped parts, single point incremental forming (SPIF) represents a highly flexible process. The flexibility of this process comes along with a very long process time. To decrease the process time, a new incremental forming approach with multiple forming tools is investigated. The influence of two incremental forming tools on the resulting mechanical and geometrical component properties compared to SPIF is presented. Sheets made of EN AW-1050A were formed to frustums of a pyramid using different tool-path strategies. Furthermore, several variations of the tool-path strategy are analyzed. A time saving between 40% and 60% was observed depending on the tool-path and the radii of the forming tools while the mechanical properties remained unchanged. This knowledge can increase the cost efficiency of incremental forming processes.
Multiple-reflection time-of-flight mass spectrometry for in situ applications
NASA Astrophysics Data System (ADS)
Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.
2013-12-01
Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.
Feasibility of Rapid Multitracer PET Tumor Imaging
NASA Astrophysics Data System (ADS)
Kadrmas, D. J.; Rust, T. C.
2005-10-01
Positron emission tomography (PET) can characterize different aspects of tumor physiology using various tracers. PET scans are usually performed using only one tracer since there is no explicit signal for distinguishing multiple tracers. We tested the feasibility of rapidly imaging multiple PET tracers using dynamic imaging techniques, where the signals from each tracer are separated based upon differences in tracer half-life, kinetics, and distribution. Time-activity curve populations for FDG, acetate, ATSM, and PTSM were simulated using appropriate compartment models, and noisy dual-tracer curves were computed by shifting and adding the single-tracer curves. Single-tracer components were then estimated from dual-tracer data using two methods: principal component analysis (PCA)-based fits of single-tracer components to multitracer data, and parallel multitracer compartment models estimating single-tracer rate parameters from multitracer time-activity curves. The PCA analysis found that there is information content present for separating multitracer data, and that tracer separability depends upon tracer kinetics, injection order and timing. Multitracer compartment modeling recovered rate parameters for individual tracers with good accuracy but somewhat higher statistical uncertainty than single-tracer results when the injection delay was >10 min. These approaches to processing rapid multitracer PET data may potentially provide a new tool for characterizing multiple aspects of tumor physiology in vivo.
A Data Parallel Multizone Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)
1995-01-01
We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.
SLAMM: Visual monocular SLAM with continuous mapping using multiple maps
Md. Sabri, Aznul Qalid; Loo, Chu Kiong; Mansoor, Ali Mohammed
2018-01-01
This paper presents the concept of Simultaneous Localization and Multi-Mapping (SLAMM). It is a system that ensures continuous mapping and information preservation despite failures in tracking due to corrupted frames or sensor’s malfunction; making it suitable for real-world applications. It works with single or multiple robots. In a single robot scenario the algorithm generates a new map at the time of tracking failure, and later it merges maps at the event of loop closure. Similarly, maps generated from multiple robots are merged without prior knowledge of their relative poses; which makes this algorithm flexible. The system works in real time at frame-rate speed. The proposed approach was tested on the KITTI and TUM RGB-D public datasets and it showed superior results compared to the state-of-the-arts in calibrated visual monocular keyframe-based SLAM. The mean tracking time is around 22 milliseconds. The initialization is twice as fast as it is in ORB-SLAM, and the retrieved map can reach up to 90 percent more in terms of information preservation depending on tracking loss and loop closure events. For the benefit of the community, the source code along with a framework to be run with Bebop drone are made available at https://github.com/hdaoud/ORBSLAMM. PMID:29702697
Reach on sound: a key to object permanence in visually impaired children.
Fazzi, Elisa; Signorini, Sabrina Giovanna; Bomba, Monica; Luparia, Antonella; Lanners, Josée; Balottin, Umberto
2011-04-01
The capacity to reach an object presented through sound clue indicates, in the blind child, the acquisition of object permanence and gives information over his/her cognitive development. To assess cognitive development in congenitally blind children with or without multiple disabilities. Cohort study. Thirty-seven congenitally blind subjects (17 with associated multiple disabilities, 20 mainly blind) were enrolled. We used Bigelow's protocol to evaluate "reach on sound" capacity over time (at 6, 12, 18, 24, and 36 months), and a battery of clinical, neurophysiological and cognitive instruments to assess clinical features. Tasks n.1 to 5 were acquired by most of the mainly blind children by 12 months of age. Task 6 coincided with a drop in performance, and the acquisition of the subsequent tasks showed a less agehomogeneous pattern. In blind children with multiple disabilities, task acquisition rates were lower, with the curves dipping in relation to the more complex tasks. The mainly blind subjects managed to overcome Fraiberg's "conceptual problem"--i.e., they acquired the ability to attribute an external object with identity and substance even when it manifested its presence through sound only--and thus developed the ability to reach an object presented through sound. Instead, most of the blind children with multiple disabilities presented poor performances on the "reach on sound" protocol and were unable, before 36 months of age, to develop the strategies needed to resolve Fraiberg's "conceptual problem". Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lyster, P. M.; Liewer, P. C.; Decyk, V. K.; Ferraro, R. D.
1995-01-01
A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been developed on coarse-grain distributed-memory massively parallel computers with message passing communications. Our implementation is the generalization to three-dimensions of the general concurrent particle-in-cell (GCPIC) algorithm. In the GCPIC algorithm, the particle computation is divided among the processors using a domain decomposition of the simulation domain. In a three-dimensional simulation, the domain can be partitioned into one-, two-, or three-dimensional subdomains ("slabs," "rods," or "cubes") and we investigate the efficiency of the parallel implementation of the push for all three choices. The present implementation runs on the Intel Touchstone Delta machine at Caltech; a multiple-instruction-multiple-data (MIMD) parallel computer with 512 nodes. We find that the parallel efficiency of the push is very high, with the ratio of communication to computation time in the range 0.3%-10.0%. The highest efficiency (> 99%) occurs for a large, scaled problem with 64(sup 3) particles per processing node (approximately 134 million particles of 512 nodes) which has a push time of about 250 ns per particle per time step. We have also developed expressions for the timing of the code which are a function of both code parameters (number of grid points, particles, etc.) and machine-dependent parameters (effective FLOP rate, and the effective interprocessor bandwidths for the communication of particles and grid points). These expressions can be used to estimate the performance of scaled problems--including those with inhomogeneous plasmas--to other parallel machines once the machine-dependent parameters are known.
Mining Multi-Aspect Reflection of News Events in Twitter: Discovery, Linking and Presentation
Wang, Jingjing; Tong, Wenzhu; Yu, Hongkun; Li, Min; Ma, Xiuli; Cai, Haoyan; Hanratty, Tim; Han, Jiawei
2015-01-01
A major event often has repercussions on both news media and microblogging sites such as Twitter. Reports from mainstream news agencies and discussions from Twitter complement each other to form a complete picture. An event can have multiple aspects (sub-events) describing it from multiple angles, each of which attracts opinions/comments posted on Twitter. Mining such reflections is interesting to both policy makers and ordinary people seeking information. In this paper, we propose a unified framework to mine multi-aspect reflections of news events in Twitter. We propose a novel and efficient dynamic hierarchical entity-aware event discovery model to learn news events and their multiple aspects. The aspects of an event are linked to their reflections in Twitter by a bootstrapped dataless classification scheme, which elegantly handles the challenges of selecting informative tweets under overwhelming noise and bridging the vocabularies of news and tweets. In addition, we demonstrate that our framework naturally generates an informative presentation of each event with entity graphs, time spans, news summaries and tweet highlights to facilitate user digestion. PMID:27034625
Mining Multi-Aspect Reflection of News Events in Twitter: Discovery, Linking and Presentation.
Wang, Jingjing; Tong, Wenzhu; Yu, Hongkun; Li, Min; Ma, Xiuli; Cai, Haoyan; Hanratty, Tim; Han, Jiawei
2015-11-01
A major event often has repercussions on both news media and microblogging sites such as Twitter. Reports from mainstream news agencies and discussions from Twitter complement each other to form a complete picture. An event can have multiple aspects (sub-events) describing it from multiple angles, each of which attracts opinions/comments posted on Twitter. Mining such reflections is interesting to both policy makers and ordinary people seeking information. In this paper, we propose a unified framework to mine multi-aspect reflections of news events in Twitter. We propose a novel and efficient dynamic hierarchical entity-aware event discovery model to learn news events and their multiple aspects. The aspects of an event are linked to their reflections in Twitter by a bootstrapped dataless classification scheme, which elegantly handles the challenges of selecting informative tweets under overwhelming noise and bridging the vocabularies of news and tweets. In addition, we demonstrate that our framework naturally generates an informative presentation of each event with entity graphs, time spans, news summaries and tweet highlights to facilitate user digestion.
NASA Astrophysics Data System (ADS)
Chalmers, Alex
2007-10-01
A simple model is presented of a possible inspection regimen applied to each leg of a cargo containers' journey between its point of origin and destination. Several candidate modalities are proposed to be used at multiple remote locations to act as a pre-screen inspection as the target approaches a perimeter and as the primary inspection modality at the portal. Information from multiple data sets are fused to optimize the costs and performance of a network of such inspection systems. A series of image processing algorithms are presented that automatically process X-ray images of containerized cargo. The goal of this processing is to locate the container in a real time stream of traffic traversing a portal without impeding the flow of commerce. Such processing may facilitate the inclusion of unmanned/unattended inspection systems in such a network. Several samples of the processing applied to data collected from deployed systems are included. Simulated data from a notional cargo inspection system with multiple sensor modalities and advanced data fusion algorithms are also included to show the potential increased detection and throughput performance of such a configuration.
Ilyin, S E; Plata-Salamán, C R
2000-02-15
Homogenization of tissue samples is a common first step in the majority of current protocols for RNA, DNA, and protein isolation. This report describes a simple device for centrifugation-mediated homogenization of tissue samples. The method presented is applicable to RNA, DNA, and protein isolation, and we show examples where high quality total cell RNA, DNA, and protein were obtained from brain and other tissue samples. The advantages of the approach presented include: (1) a significant reduction in time investment relative to hand-driven or individual motorized-driven pestle homogenization; (2) easy construction of the device from inexpensive parts available in any laboratory; (3) high replicability in the processing; and (4) the capacity for the parallel processing of multiple tissue samples, thus allowing higher efficiency, reliability, and standardization.
A comparative study of serial and parallel aeroelastic computations of wings
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1994-01-01
A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.
Cramer, Stig P; Modvig, Signe; Simonsen, Helle J; Frederiksen, Jette L; Larsson, Henrik B W
2015-09-01
Optic neuritis is an acute inflammatory condition that is highly associated with multiple sclerosis. Currently, the best predictor of future development of multiple sclerosis is the number of T2 lesions visualized by magnetic resonance imaging. Previous research has found abnormalities in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging as part of the diagnostic work-up at time of diagnosis. Eighteen healthy controls were included for comparison. Patients had magnetic resonance imaging and lumbar puncture performed within 4 weeks of onset of optic neuritis. Information on multiple sclerosis conversion was acquired from hospital records 2 years after optic neuritis onset. Logistic regression analysis showed that baseline permeability in normal-appearing white matter significantly improved prediction of multiple sclerosis conversion (according to the 2010 revised McDonald diagnostic criteria) within 2 years compared to T2 lesion count alone. There was no correlation between permeability and T2 lesion count. An increase in permeability in normal-appearing white matter of 0.1 ml/100 g/min increased the risk of multiple sclerosis 8.5 times whereas having more than nine T2 lesions increased the risk 52.6 times. Receiver operating characteristic curve analysis of permeability in normal-appearing white matter gave a cut-off of 0.13 ml/100 g/min, which predicted conversion to multiple sclerosis with a sensitivity of 88% and specificity of 72%. We found a significant correlation between permeability and the leucocyte count in cerebrospinal fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent reflecting cellular permeability of the blood-brain barrier, whereas T2 lesion count may more reflect the length of the subclinical pre-relapse phase.See Naismith and Cross (doi:10.1093/brain/awv196) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Learning of goal-relevant and -irrelevant complex visual sequences in human V1.
Rosenthal, Clive R; Mallik, Indira; Caballero-Gaudes, Cesar; Sereno, Martin I; Soto, David
2018-06-12
Learning and memory are supported by a network involving the medial temporal lobe and linked neocortical regions. Emerging evidence indicates that primary visual cortex (i.e., V1) may contribute to recognition memory, but this has been tested only with a single visuospatial sequence as the target memorandum. The present study used functional magnetic resonance imaging to investigate whether human V1 can support the learning of multiple, concurrent complex visual sequences involving discontinous (second-order) associations. Two peripheral, goal-irrelevant but structured sequences of orientated gratings appeared simultaneously in fixed locations of the right and left visual fields alongside a central, goal-relevant sequence that was in the focus of spatial attention. Pseudorandom sequences were introduced at multiple intervals during the presentation of the three structured visual sequences to provide an online measure of sequence-specific knowledge at each retinotopic location. We found that a network involving the precuneus and V1 was involved in learning the structured sequence presented at central fixation, whereas right V1 was modulated by repeated exposure to the concurrent structured sequence presented in the left visual field. The same result was not found in left V1. These results indicate for the first time that human V1 can support the learning of multiple concurrent sequences involving complex discontinuous inter-item associations, even peripheral sequences that are goal-irrelevant. Copyright © 2018. Published by Elsevier Inc.
[Delivery in multiple pregnancies].
Colla, F; D'Addato, F; Grio, R
2001-04-01
A knowledge of clinical physiognomy in pathologies related to multiple births is indispensable for improving maternal and feto-neonatal prognosis. This study is a contribution to the solution of this problem. A meta-analysis of data for multiple births at Department B of the Gynecology and Obstetrics Clinic at the University of Turi during the decade 1989-1998 was carried out, focusing on the arrangement and presentation of fetuses, the various types of birth, the gestational age at which birth occurred, the weight of neonates, neonatal mortality and maternal morbidity. Out of 11,523 births, there were a total of 194 (1.68%) multiple births, including 190 sets of twins and 4 triplets. 154 (79.38%) premature births were reported; 20 occurred <32(nd) week (10.29%). There was a high incidence of podalic presentation (26.30%) and shoulder presentation (5.61%) among twins; 202 were delivered using a cesarian section (51.53%) and 190 by vaginal birth (48.47%), of which 172 (90.52%) spontaneously. Surgical birth was an important means of extracting fetuses rapidly from a pathological environment. two hundred and sixty-two neonates (66.84%) were LBW (<2500 g), including 28 (7.14%) VLBW (>1500 g). The perinatal mortality rate was 3.82%. Maternal complications mainly occurred during the placental state, in the immediate postpartum and in puerperio. The authors feel that a more careful medical and social assistance, preventive hospitalisation, early recognition of the risk, constant monitoring for the optimal timing of birth, and lastly, qualified medical assistance during labour (expert gynecologist, trained obstetric staff) with other medical personnel (anesthetist, neonatal specialist) represent winning strategies to solve the problems arising during multiple pregnancies.
Senan, Sibel; Arik, Sabri
2007-10-01
This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.
NASA Astrophysics Data System (ADS)
Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.
2017-12-01
We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.
Estimating the number of people in crowded scenes
NASA Astrophysics Data System (ADS)
Kim, Minjin; Kim, Wonjun; Kim, Changick
2011-01-01
This paper presents a method to estimate the number of people in crowded scenes without using explicit object segmentation or tracking. The proposed method consists of three steps as follows: (1) extracting space-time interest points using eigenvalues of the local spatio-temporal gradient matrix, (2) generating crowd regions based on space-time interest points, and (3) estimating the crowd density based on the multiple regression. In experimental results, the efficiency and robustness of our proposed method are demonstrated by using PETS 2009 dataset.
Disturbing the coherent dynamics of an excitonic polarization with strong terahertz fields
NASA Astrophysics Data System (ADS)
Drexler, M. J.; Woscholski, R.; Lippert, S.; Stolz, W.; Rahimi-Iman, A.; Koch, M.
2014-11-01
We present a paper based on combining four-wave mixing and strong fields in the terahertz frequency range to monitor the time evolution of a disturbed excitonic polarization in a multiple quantum well system. Our findings not only confirm a lower field-dependent ionization threshold for higher excitonic states, but furthermore provide experimental evidence for intraexcitonic Rabi flopping in the time domain. These measurements correspond to the picture of a reversible and irreversible transfer as previously predicted by a microscopic theory.
NASA Astrophysics Data System (ADS)
Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.
2015-09-01
We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.
Optical digital chaos cryptography
NASA Astrophysics Data System (ADS)
Arenas-Pingarrón, Álvaro; González-Marcos, Ana P.; Rivas-Moscoso, José M.; Martín-Pereda, José A.
2007-10-01
In this work we present a new way to mask the data in a one-user communication system when direct sequence - code division multiple access (DS-CDMA) techniques are used. The code is generated by a digital chaotic generator, originally proposed by us and previously reported for a chaos cryptographic system. It is demonstrated that if the user's data signal is encoded with a bipolar phase-shift keying (BPSK) technique, usual in DS-CDMA, it can be easily recovered from a time-frequency domain representation. To avoid this situation, a new system is presented in which a previous dispersive stage is applied to the data signal. A time-frequency domain analysis is performed, and the devices required at the transmitter and receiver end, both user-independent, are presented for the optical domain.
Real-time flutter identification
NASA Technical Reports Server (NTRS)
Roy, R.; Walker, R.
1985-01-01
The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael
2012-08-01
This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.
ERIC Educational Resources Information Center
Cummins, Jim
2015-01-01
Recent scholarship within the field of applied linguistics highlights the fact that identities are not static but are fluid, multiple, changeable across time and space, and always constructed in relationship to interactions with others. In other words, identities are constantly in motion. This paper presents a framework for examining the notion of…
The Impact of Tier 2 Mathematics Instruction on Second Graders with Mathematics Difficulties
ERIC Educational Resources Information Center
Dennis, Minyi Shih; Bryant, Brian R.; Drogan, Robin
2015-01-01
Although research on Tier 2 interventions for early mathematics is accumulating, such efforts remain far behind those for reading, especially regarding specific features such as the ideal time to begin an intervention. The present study investigated the effectiveness of a Tier 2 intervention using a single subject multiple baseline, across-groups…
The Multilingual Lexicon: Modelling Selection and Control
ERIC Educational Resources Information Center
de Bot, Kees
2004-01-01
In this paper an overview of research on the multilingual lexicon is presented as the basis for a model for processing multiple languages. With respect to specific issues relating to the processing of more than two languages, it is suggested that there is no need to develop a specific model for such multilingual processing, but at the same time we…
A Negative Effect of Repetition in Episodic Memory
ERIC Educational Resources Information Center
Peterson, Daniel J.; Mulligan, Neil W.
2012-01-01
One of the foundational principles of human memory is that repetition (i.e., being presented with a stimulus multiple times) improves recall. In the current study a group of participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once, a negative repetition effect. Such a…
A new approach to flow simulation in highly heterogeneous porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rame, M.; Killough, J.E.
In this paper, applications are presented for a new numerical method - operator splittings on multiple grids (OSMG) - devised for simulations in heterogeneous porous media. A coarse-grid, finite-element pressure solver is interfaced with a fine-grid timestepping scheme. The CPU time for the pressure solver is greatly reduced and concentration fronts have minimal numerical dispersion.
The Use of Video Self-Modeling to Increase On-Task Behavior in Children with High-Functioning Autism
ERIC Educational Resources Information Center
Schatz, Rochelle B.; Peterson, Rachel K.; Bellini, Scott
2016-01-01
In the present study, the researchers implemented a video self-modeling intervention for increasing on-task classroom behavior for three elementary school students diagnosed with an autism spectrum disorder. The researchers observed the students' on-task engagement three times a week during their respective math classes. A multiple baseline design…