Cho, S; Son, J H; Park, D H; Aoki, C; Song, X; Smith, G P; Joh, T H
1996-01-01
Neurotransmitters play a variety of important roles during nervous system development. In the present study, we hypothesized that neurotransmitter phenotype of both projecting and target cells is an important factor for the final synaptic linkage and its specificity. To test this hypothesis, we used transgenic techniques to convert serotonin/melatonin-producing cells of the pineal gland into cells that also produce dopamine and investigated the innervation of the phenotypically altered target cells. This phenotypic alteration markedly reduced the noradrenergic innervation originating from the superior cervical ganglia. Although the mechanism by which the reduction occurs is presently unknown, quantitative enzyme-linked immunoassay showed the presence of the equivalent amounts of nerve growth factor (NGF) in the control and transgenic pineal glands, suggesting that it occurred in a NGF-independent manner. The results suggest that target neurotransmitter phenotype influences the formation of afferent connections during development. Images Fig. 3 Fig. 4 PMID:8610132
Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis
2015-01-01
Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808
Zhang, Lin; Reckling, Stacie; Dean, Gregg A
2015-10-01
Numerous studies suggest dendritic cell (DC) dysfunction is central to the dysregulated immune response during HIV infection; however, in vivo studies are lacking. In the present study we used feline immunodeficiency virus (FIV) infection of cats as a model for HIV-1 infection to assess the maturation and function of dendritic cells, in vivo and in vitro. We compared CD1a+ DC migration, surface phenotype, endocytosis, mixed leukocyte reaction (MLR) and regulatory T cell (Treg) phenotype induction by CD1a+ cells isolated from lymph nodes of FIV-infected and control cats. Results showed that resident CD1a+ DC in lymph nodes of chronically FIV-infected cats are phenotypically mature, can stimulate normal primary T cell proliferation, override Treg suppression and do not skew toward Treg induction. In contrast, FIV infection had deleterious effects on antigen presentation and migratory capacity of CD1a+ cells in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl
2009-11-01
Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.
Roberts, Evans; Oncale, Melody; Safah, Hana; Schmieg, John
2016-01-01
Mixed-phenotype acute leukemia is a rare form of leukemia that is associated with a poor prognosis. Most cases of mixed-phenotype acute leukemia are de novo. However, therapy-related mixed-phenotype acute leukemia can occur, and are often associated with exposure to topoisomerase-II inhibitors and alkylating agents. There are no known treatment guidelines for therapy-related mixed-phenotype acute leukemia. We present a patient with T/myeloid mixed-phenotype acute leukemia secondary to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone R-CHOP chemotherapy for primary cutaneous diffuse large B-cell lymphoma. The patient's leukemic cells express CD34, an immaturity marker, CD3, a T-cell marker, and myeloperoxidase, a myeloid marker, and her history of chemotherapy for previous lymphoma supports the diagnosis of therapy-related T/myeloid mixed phenotype acute leukemia. Clinicians should be aware that this entity could be associated with R-CHOP chemotherapy. Given the complexity in diagnosis, and lack of treatment guidelines, a further understanding of the pathological and genetic principles of therapy-related mixed-phenotype acute leukemia will assist in future efforts to treat and categorize these patients. Mixed phenotype acute leukemia is a rare entity that accounts for two to five percent of all acute leukemias. Therapy- related mixed phenotype acute leukemia is an exceedingly rare hematological neoplasm that accounts for less than one percent of acute leukemias. We describe a case of therapy-related T/myeloid mixed phenotype acute leukemia following rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone R-CHOP chemotherapy for primary cutaneous diffuse large B-cell lymphoma DLBCL. The patient is a 63-year-old female who presented with several cutaneous nodules diagnosed as primary cutaneous DLBCL. The patient received R-CHOP chemotherapy and achieved remission. She remained in remission for four years until she presented with dyspnea, night sweats, weakness, and diffuse lymphadenopathy. Her presentation was initially concerning for recurrent lymphoma; however, a bone marrow biopsy and aspirate and a lymph node biopsy revealed a distinct blast population consistent with T/myeloid mixed phenotype acute leukemia T/M-MPAL. Given the patient's history of previous chemotherapy exposure, our patient represents a case of therapy-related T/myeloid mixed phenotype acute leukemia t-MPAL.
Recognition of unusual presentation of natural killer cell leukemia.
Gardiner, C M; Reen, D J; O'Meara, A
1995-10-01
Expansion of the natural killer (NK) subset of lymphocytes represents a rare leukemia phenotype with variations in clinical presentation, morphology, surface phenotype, and effector function. This paper reports on a 5-year-old male patient who had an unusual presentation of an NK cell leukemia that was initially diagnosed as neuroblastoma. A bone marrow (BM) aspirate showed clumps of undifferentiated cells with the following phenotype: CD56bright+, CD33dim+, CD45-, CD2-, CD19-, CD16-, and CD57-. Cytochemistry was noncontributory. The patient, having failed to respond to conventional neuroblastoma chemotherapy, was subsequently diagnosed as having NK cell leukemia based on functional in vitro assays. The patient responded to acute lymphoblastic leukemia (ALL) chemotherapy but relapsed 4 weeks into treatment and eventually died 25 weeks after initial presentation. The cell surface phenotype observed is consistent with a rare NK cell subset, the biology of which has not been well defined. Freshly isolated BM cells killed K562 cells in a conventional 51Cr-release assay. Both interleukin-2 (IL-2) and interferon-alpha (IFN-alpha) induced LAK activity against the Daudi cell line. IL-2 induced proliferation of the leukemic cells. TNF-alpha, IFN-gamma, IL-6, IL-1ra, and TGF-beta levels were assessed and found to be concentrated in BM, in contrast to plasma samples. TNF-alpha was present at a high concentration in BM (150.9 pg/ml), probably a reflection of the associated disease pathology of severe bone pain and pyrexia. In summary, this paper details clinical and laboratory investigations of a leukemia of a rare NK cell subset.
Chaya, D; Fougère-Deschatrette, C; Weiss, M C
1997-01-01
Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver. PMID:9343392
Chaya, D; Fougère-Deschatrette, C; Weiss, M C
1997-11-01
Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J
2017-06-15
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Platform for combined analysis of functional and biomolecular phenotypes of the same cell.
Kelbauskas, L; Ashili, S; Zeng, J; Rezaie, A; Lee, K; Derkach, D; Ueberroth, B; Gao, W; Paulson, T; Wang, H; Tian, Y; Smith, D; Reid, B; Meldrum, Deirdre R
2017-03-16
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression.
SAP is required for the development of innate phenotype in H2-M3-restricted CD8+ T cells1
Bediako, Yaw; Bian, Yao; Zhang, Hong; Cho, Hoonsik; Stein, Paul L.; Wang, Chyung-Ru
2012-01-01
H2-M3-restricted T cells have a pre-activated surface phenotype, rapidly expand and produce cytokines upon stimulation and as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ co-receptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8+ T cells. Although iNKT cells are also innate lymphocytes, they are selected exclusively on hematopoietic cells (HC), while M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells (TEC). Moreover, their phenotypes differ depending on what cells mediate their selection. Though there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. SAP is required for the development of iNKT cells and mediates signals from SLAM receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models we demonstrate that while M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of pre-activated phenotype and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a pre-activated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection. PMID:23041566
Al-Mawali, Adhra; Pinto, Avinash Daniel; Al-Zadjali, Shoaib
In CD34-positive acute myeloid leukaemia (AML), the leukaemia-initiating event likely takes place in the CD34+CD38- cell compartment. CD123 has been shown to be a unique marker of leukaemic stem cells within the CD34+CD38- compartment. The aim of this study was to identify the percentage of CD34+CD38-CD123+ cells in AML blasts, AML CD34+CD38- stem cells, and normal and regenerating bone marrow CD34+CD38- stem cells from non-myeloid malignancies. Thirty-eight adult de novo AML patients with intention to treat were enrolled after the application of inclusion criteria from February 2012 to February 2017. The percentage of the CD34+CD38-CD123+ phenotype in the blast population at diagnosis was determined using a CD45-gating strategy and CD34+ backgating by flow cytometry. We studied the CD34+CD38-CD123+ fraction in AML blasts at diagnosis, and its utility as a unique phenotype for minimal residual disease (MRD) of AML patients. CD123+ cells were present in 97% of AML blasts in patients at diagnosis (median 90%; range 21-99%). CD123+ cells were also present in 97% of the CD34+CD38- compartment (median 0.8164%, range 0.0262-39.7%). Interestingly, CD123 was not present in normal and regenerating CD34+CD38- bone marrow stem cells (range 0.002- 0.067 and 0.004-0.086, respectively). The CD34+CD38-CD123+ phenotype is present in virtually all AML blasts and it may be used as a unique single phenotype for MRD detection in AML patients. © 2017 The Author(s) Published by S. Karger AG, Basel.
Platform for combined analysis of functional and biomolecular phenotypes of the same cell
Kelbauskas, L.; Ashili, S.; Zeng, J.; Rezaie, A.; Lee, K.; Derkach, D.; Ueberroth, B.; Gao, W.; Paulson, T.; Wang, H.; Tian, Y.; Smith, D.; Reid, B.; Meldrum, Deirdre R.
2017-01-01
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression. PMID:28300162
Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S
2014-08-01
At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.
Sosinowski, Tomasz; White, Jason T.; Cross, Eric; Haluszczak, Catherine; Marrack, Philippa; Gapin, Laurent; Kedl, Ross M.
2013-01-01
Various populations of memory phenotype CD8+ T cells have been described over the last 15–20 years, all of which possess elevated effector functions relative to naïve phenotype cells. Using a technique for isolating antigen specific cells from unprimed hosts, we recently identified a new subset of cells, specific for nominal antigen, but phenotypically and functionally similar to memory cells arising as a result of homeostatic proliferation (HP). We show here that these “Virtual Memory” cells are independent of previously identified “innate memory” cells, arising as a result of their response to IL-15 trans-presentation by lymphoid tissue-resident CD8α+ DCs in the periphery. The absence of IL-15, CD8+ T cell expression of either CD122 or Eomes, or of CD8a+ DCs all lead to the loss of Virtual Memory cells in the host. Our results show that CD8+ T cell homeostatic expansion is an active process within the non-lymphopenic environment, is mediated by IL-15, and produces antigen inexperienced memory cells which retain the capacity to respond to nominal antigen with memory-like function. Preferential engagement of these “Virtual Memory” T cells into a vaccine response could dramatically enhance the rate by which immune protection develops. PMID:23355737
Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.
Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J
2016-09-09
The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.
The antiproliferative aspects of mortalin (review).
Wadhwa, R; Mitsui, Y; Ide, T; Kaul, S
1995-07-01
Cellular mortal and immortal phenotypes as defined by the limited and the infinite capacity of cells to divide are the characteristics of normal and cancerous cells in culture. Numerous strategies that have been employed to understand the mechanism(s) of normal as well as tumor cell growth have revealed that these are genetically controlled, however, the genes and the synchronized regulations remain largely undefined so far. The present report reviews the identification of mortalin, a novel member of murine hsp70 family of proteins, as a gene involved in pathways that determine divisional phenotype of cells in vitro. In the present study, the anti-proliferative activity of mortalin is demonstrated also in human skin fibroblasts (TIG-73PD) by microinjection of anti-mortalin antibody. Furthermore, studies on the mortalin immunofluorescence patterns in SV40-immortalized pre-crisis and post-crisis human cells have revealed that the change in the intracellular distribution of mortalin is linked to the change in the divisional phenotype of cells. Thus, the studies to resolve the molecular basis of association of the cytosolically distributed form of mortalin with cellular mortal phenotype would be important in understanding of the mechanism(s) that determine replicative potential of cells in culture.
NASA Astrophysics Data System (ADS)
Horvath, D.; Brutovsky, B.
2018-06-01
Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.
Vargas, K; Wertz, P W; Drake, D; Morrow, B; Soll, D R
1994-04-01
Cells of the laboratory strain 3153A of Candida albicans can be stimulated to undergo high-frequency phenotypic switching by a low dose of UV. We have compared the adhesive properties of cells exhibiting the basic original smooth (o-smooth) phenotype and three switch phenotypes (star, irregular wrinkle, and revertant smooth) to buccal epithelium and stratum corneum. The generalized hierarchy of adhesion is as follows: o-smooth > irregular wrinkle > revertant smooth > star. This is the inverse of the hierarchy of the proportions of elongate hyphae formed by these phenotypes in culture. These results suggest that the differences in adhesion between o-smooth and the three switch phenotypes of strain 3153A reflect, at least in part, the level of interference due to the formation of elongate hyphae, which tend to cause clumping in suspension. No major differences in the levels of adhesion of cells of the different phenotypes between buccal epithelium and stratum corneum were observed. Results which demonstrate that buccal epithelium induces germination (hypha formation) by conditioning the medium are also presented.
The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.
Niu, Yuanling; Wang, Yue; Zhou, Da
2015-12-07
The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rawstron, Andy C; Green, Michael J; Kuzmicki, Anita; Kennedy, Ben; Fenton, James A L; Evans, Paul A S; O'Connor, Sheila J M; Richards, Stephen J; Morgan, Gareth J; Jack, Andrew S; Hillmen, Peter
2002-07-15
Molecular and cellular markers associated with malignant disease are frequently identified in healthy individuals. The relationship between these markers and clinical disease is not clear, except where a neoplastic cell population can be identified as in myeloma/monoclonal gammopathies of undetermined significance (MGUS). We have used the distinctive phenotype of chronic lymphocytic leukemia (CLL) cells to determine whether low levels of these cells can be identified in individuals with normal complete blood counts. CLL cells were identified by 4-color flow cytometric analysis of CD19/CD5/CD79b/CD20 expression in 910 outpatients over 40 years old. These outpatients were age- and sex-matched to the general population with normal hematologic parameters and no evident history of malignant disease. CLL phenotype cells were detectable in 3.5% of individuals at low level (median, 0.013; range, 0.002- 1.458 x 10(9) cells/L), and represented a minority of B lymphocytes (median, 11%; range, 3%-95%). Monoclonality was demonstrated by immunoglobulin light-chain restriction in all cases with CLL phenotype cells present and confirmed in a subset of cases by consensus-primer IgH-polymerase chain reaction. As in clinical disease, CLL phenotype cells were detected with a higher frequency in men (male-to-female ratio, 1.9:1) and elderly individuals (2.1% of 40- to 59-year-olds versus 5.0% of 60- to 89-year-olds, P =.01). The neoplastic cells were identical to good-prognosis CLL, being CD5+23+20(wk)79b(wk)11a(-)22(wk)sIg(wk)CD38-, and where assessed had a high degree (4.8%-6.6%) of IgH somatic hypermutation. The monoclonal CLL phenotype cells present in otherwise healthy individuals may represent a very early stage of indolent CLL and should be useful in elucidating the mechanisms of leukemogenesis.
van den Brand, Michiel; van der Velden, Walter J F M; Diets, Illja J; Ector, Geneviève I C G; de Haan, Anton F J; Stevens, Wendy B C; Hebeda, Konnie M; Groenen, Patricia J T A; van Krieken, Han J M
2016-07-01
Nodal marginal zone lymphoma (NMZL) is a rare type of B-cell non-Hodgkin lymphoma. This study assessed the clinical features of 56 patients with NMZL in comparison to 46 patients with follicular lymphoma (FL). Patients with NMZL and FL had a largely similar clinical presentation, but patients with FL had a higher disease stage at presentation, more frequent abdominal lymphadenopathy and bone marrow involvement, and showed more common transformation into diffuse large B-cell lymphoma (DLBCL) during the course of disease. Overall survival and event-free survival were similar for patients with NMZL and FL, but factors associated with worse prognosis differed between the two groups. Transformation into DLBCL was associated with a significantly poorer outcome in both groups, but the phenotypes were different: DLBCL arising in FL was mainly of germinal center B-cell phenotype, whereas DLBCL arising in NMZL was mainly of non-germinal center B-cell phenotype.
NASA Astrophysics Data System (ADS)
Blaha, Laura
A diagnosis of metastatic cancer reduces a patient's 5-year survival rate by nearly 80% compared to a primary tumor diagnosed at an early stage. While gene expression arrays have revealed unique gene signatures for metastatic cancer cells, we are lacking an understanding of the tangible physical changes that distinguish metastatic tumor cells from each other and from their related primary tumors. At the fundamental level, this translates into first characterizing the phenotype of metastatic cancer cells in vitro both in 2D - looking at morphology and migration - and in 3D - focusing on matrix invasion. While 2D in vitro studies have provided insight into the effects of specific environmental conditions on specific cancer cell lines, the unique details included in each experimental design make it challenging to compare cell phenotype across different in vitro platforms as well as between laboratories and disciplines that share the goal of understanding cancer. While 3D phenotype studies have employed more standardized and ubiquitous assays, most available tools lack the imaging capability and geometry to effectively characterize all factors driving 3D matrix invasion. In this work, we present protocols and platforms aimed at addressing the problems identified in the tools currently available for studying metastatic cancer in vitro. First, we present a 2D study of morphology and migration using widely accepted protocols. The study is applied to characterizing phenotypes of three breast cancer cell lines with different metastatic organ tropisms. The results show that general populations of cells from each of the 3 lines are unique in shape and motility despite being derived from the same tumor line and that the observed phenotype differences may be related to differences in focal adhesion assembly. More broadly, these studies suggest that standardizing phenotype studies using commonly available techniques may provide a platform by which to compare phenotypic studies across cancer cell types and between research groups to investigate tropism-specific cancer phenotypes. We conclude our investigation of phenotype with a study of 3D matrix invasion using a novel microfluidic platform. The results show that invasion of metastatic breast cancer cells into a 3D type I collagen gel is significantly enhanced in the presence of live endothelial cells. In applying the model to study cell-cell and cell-matrix interactions driving invasion, our platform revealed that, while the fibronectin-rich matrix deposited by endothelial cells was not sufficient to drive invasion alone, metastatic breast cancer cells were able to exploit a structural or secreted component of energetically inactivated endothelial cell to gain entry into the underlying matrix. These findings have important implications for designing drugs targeted at preventing cancer metastasis. The findings in this dissertation reveal significant phenotypic differences in metastatic breast cancer cells with different preferences in metastatic target organ. In addition, the microfluidic platform reveals novel cell-cell interactions driving a key step in the seeding and colonization of a metastatic tumor. Collectively, these results reveal important characteristics of metastatic cancer cells and their interactions with other cell types during metastasis. These studies also provide platforms on which to target or prevent malignant phenotypes and cellular interactions in the future.
Li, Xiao-Feng; Dai, Dong; Song, Xiu-Yu; Liu, Jian-Jing; Zhu, Lei; Zhu, Xiang; Ma, Wenchao; Xu, Wengui
2017-05-01
Natural T cells [cluster of differentiation (CD) 3 + CD56 + ] and natural killer (NK) cells (CD3 - CD56 + ) are particularly abundant in the human liver and serve an important role in immune responses in the liver. The aim of the present study was to extensively determine the phenotypic and functional characteristics of natural T and NK cells in human hepatocellular carcinoma (HCC). Tumorous and non-tumorous tissue infiltrating lymphocytes (TILs and NILs, respectively) and peripheral blood mononuclear cells (PBMCs) from patients with hepatocellular carcinoma (HCC) were obtained to determine the frequency and phenotype of natural T/NK cells by a multicolor fluorescence activated cell sorting analysis. The abundance of natural T cells and NK cells was decreased in TILs vs. NILs (natural T cells, 6.315±1.002 vs. 17.16±1.804; NK cells, 6.324±1.559 vs. 14.52±2.336, respectively). However such results were not observed in PBMCs from HCC patients vs. that of healthy donors. Notably, a substantial fraction of the natural T cells (21.96±5.283) in TILs acquired forkhead box P3 (FOXP3) expression, and the FOXP3 + natural T cells lost the expression of interferon-γ and perforin. Conversely, being similar to the conventional FOXP3 + regulatory T cells, the FOXP3 + natural T cells assumed a specific phenotype that was characteristic of CD25 + , CD45RO + and cytotoxic T-lymphocyte-associated protein 4 + . Consistent with the phenotypic conversion, the present functional results indicate that FOXP3 expression in natural T cells contributes to the acquisition of a potent immunosuppressive capability. In conclusion, the present study describes a different representation of natural T cells and NK cells in local tumor tissues and in the periphery blood of patients with HCC, and identified a new type of FOXP3-expressing natural T cell spontaneously arising in the TILs of HCC.
Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis
Jolly, Mohit Kumar; Boareto, Marcelo; Huang, Bin; Jia, Dongya; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.; Levine, Herbert
2015-01-01
Transitions between epithelial and mesenchymal phenotypes – the epithelial to mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis. PMID:26258068
Organelles – understanding noise and heterogeneity in cell biology at an intermediate scale
Chang, Amy Y.
2017-01-01
ABSTRACT Many studies over the years have shown that non-genetic mechanisms for producing cell-to-cell variation can lead to highly variable behaviors across genetically identical populations of cells. Most work to date has focused on gene expression noise as the primary source of phenotypic heterogeneity, yet other sources may also contribute. In this Commentary, we explore organelle-level heterogeneity as a potential secondary source of cellular ‘noise’ that contributes to phenotypic heterogeneity. We explore mechanisms for generating organelle heterogeneity and present evidence of functional links between organelle morphology and cellular behavior. Given the many instances in which molecular-level heterogeneity has been linked to phenotypic heterogeneity, we posit that organelle heterogeneity may similarly contribute to overall phenotypic heterogeneity and underline the importance of studying organelle heterogeneity to develop a more comprehensive understanding of phenotypic heterogeneity. Finally, we conclude with a discussion of the medical challenges associated with phenotypic heterogeneity and outline how improved methods for characterizing and controlling this heterogeneity may lead to improved therapeutic strategies and outcomes for patients. PMID:28183729
Kameishi, Sumako; Umemoto, Terumasa; Matsuzaki, Yu; Fujita, Masako; Okano, Teruo; Kato, Takashi; Yamato, Masayuki
2016-05-06
Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Phenotypes of antibody-mediated rejection in organ transplants.
Mengel, Michael; Husain, Sufia; Hidalgo, Luis; Sis, Banu
2012-06-01
Antibody-mediated hyperacute rejection was the first rejection phenotype observed in human organ transplants. This devastating phenotype was eliminated by reliable crossmatch technologies. Since then, the focus was on T-cell-mediated rejection and de novo donor-specific antibodies were considered an epiphenomenon of cognate T-cell activation. The immune theory was that controlling the T-cell response would entail elimination of antibody-mediated rejection (ABMR). With modern immunosuppressive drugs, T-cell-mediated rejection is essentially treatable. However, this did not prevent ABMR from emerging as a significant phenotype in all types of organ transplants. It became obvious that both rejection types require distinct treatment and thus reliable diagnosis. This is the current challenge. ABMR, depending on stage, grade, time course, organ type or prior treatment, can present with a wide spectrum of phenotypes. This review summarizes the current diagnostic consensus for ABMR, describes unmet needs and challenges in diagnostics, and proposes new approaches for consideration. © 2012 The Authors. Transplant International © 2012 European Society for Organ Transplantation.
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping
Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel
2016-01-01
Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. PMID:27180912
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.
Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel
2016-05-16
Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.
Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer
2016-12-01
Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.
Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z
2017-07-17
Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.
Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells
KIM, EUN-SOOK; MOON, AREE
2015-01-01
Metastasis is a major cause of cancer-related mortality in patients with gastric cancer. Ursolic acid, a pentacyclic triterpenoid compound derived from medicinal herbs, has been demonstrated to exert anticancer effects in various cancer cell systems. However, to the best of our knowledge, the inhibitory effect of ursolic acid on the invasive phenotype of gastric cancer cells has yet to be reported. Therefore, the aim of the present study was to investigate the effect of ursolic acid on the invasiveness of SNU-484 human gastric cancer cells. Ursolic acid efficiently induced apoptosis, possibly via the downregulation of B-cell lymphoma 2 (Bcl-2), the upregulation of Bcl-2-associated X protein and the proteolytic activation of caspase-3. Furthermore, the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was increased by the administration of ursolic acid. In addition, ursolic acid significantly suppressed the invasive phenotype of the SNU-484 cells and significantly decreased the expression of matrix metalloproteinase (MMP)-2, indicating that MMP-2 may be responsible for the anti-invasive activity of ursolic acid. Taken together, the results of the present study demonstrate that ursolic acid induces apoptosis and inhibits the invasive phenotype of gastric cancer cells; therefore, ursolic acid may have a potential application as a chemopreventive agent to prevent the metastasis of gastric cancer or to alleviate the process of metastasis. PMID:25621065
Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate.
Van Horn, Christopher R; Moretti, Marcelo L; Robertson, Renae R; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Schulz, Burkhard; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Hall, J Christopher; McLean, Michael D; Lawton, Mark B; Sammons, R Douglas; Wang, Dafu; Westra, Philip; Gaines, Todd A
2018-05-01
Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko
The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also foundmore » that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.« less
Anwar, Tarique; Sen, Bijoya; Aggarwal, Savera; Nath, Rhisita; Pathak, Niteen; Katoch, Ajay; Aiyaz, Mohamed; Trehanpati, Nirupma; Khosla, Sanjeev; Ramakrishna, Gayatri
2018-05-01
In multicellular organisms majority of the cells remain in a non-dividing states of either quiescence (reversible) or senescence (irreversible). In the present study, gene expression signatures unique to quiescence and senescence were identified using microarray in osteosarcoma cell line, U2OS. It was noted that certain genes and pathways like NOD pathway was shared by both the growth arrest conditions. A major highlight of the present study was increased expression of number of chemokines and cytokines in both quiescence and senescence. While senescence-associated secretory phenotype (SASP) is well known, the quiescence-associated secretory phenotype (QASP) is relatively unknown and appeared novel in this study. ARID5A, a subunit of SWI/SNF complex was identified as a quiescence associated gene. The endogenous expression of ARID5A increased during serum starved condition of quiescence. Overexpression of ARID5A resulted in more number of cells in G0/G1 phase of cell cycle. Further ARID5A overexpressing cells when subjected to serum starvation showed a pronounced secretory phenotype. Overall, the present work has identified gene expression signatures which can distinguish quiescence from senescence. © 2017 Wiley Periodicals, Inc.
Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.
Gorospe, Giann; Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie; Vidal, Rene
2014-09-01
Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes (CMs) is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a CM based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of CMs into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies. While some of the nine cell clusters in the dataset are presented with just one phenotype, the majority of the cell clusters are presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of CMs from an electrophysiological perspective.
Automated Grouping of Action Potentials of Human Embryonic Stem Cell-Derived Cardiomyocytes
Gorospe, Giann; Zhu, Renjun; Millrod, Michal A.; Zambidis, Elias T.; Tung, Leslie; Vidal, René
2015-01-01
Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a cardiomyocyte based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of cardiomyocytes into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies (hEBs). While some of the 9 cell clusters in the dataset presented with just one phenotype, the majority of the cell clusters presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of cardiomyocytes from an electrophysiological perspective. PMID:25148658
Mislocalization of SLP-76 leads to aberrant inflammatory cytokine and autoantibody production.
Sonnenberg, Gregory F; Mangan, Paul R; Bezman, Natalie A; Sekiguchi, Debora R; Luning Prak, Eline T; Erikson, Jan; Maltzman, Jonathan S; Jordan, Martha S; Koretzky, Gary A
2010-03-18
Central and peripheral tolerance is required to prevent immune responses to self-antigens. We now present a mouse model in which wild-type (WT) SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) has been constitutively targeted to the membrane, where CD4+ T cells become spontaneously dysregulated and develop an inflammatory phenotype. Mice bearing membrane-targeted SLP-76 (MTS) have a partial T-cell lymphopenia and impaired signaling though the mature T-cell receptor. The CD4+ T cells that develop in these mice possess an activated-like phenotype and are skewed toward the inflammatory T(H)1 and T(H)17 lineages. MTS mice also spontaneously develop autoantibodies at an early age. To rule out abnormal thymic selection as the sole cause of the MTS phenotype, we expressed WT SLP-76 along with the MTS followed by deletion of the WT allele in peripheral T cells. The peripheral MTS-expressing T cells demonstrate skewed cytokine responses when transferred into lymphopenic hosts. Thus, the abnormal effector T-cell phenotype still occurs in the presence of preserved central and peripheral tolerance, suggesting that diminished T-cell receptor signaling can promote skewed T-cell responses.
Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells
Suhane, Sonal; Ramanujan, V Krishnan
2011-01-01
Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435
Tai, Yan-Chin; Kim, Lian-Hua; Peh, Suat-Cheng
2004-03-01
Natural killer (NK)/T-cell lymphomas are frequently associated with Epstein-Barr virus (EBV), and usually lack TCR gene rearrangement. Studies from Asia have reported frequent deletion in the LMP-1 gene in EBV-associated nasopharyngeal carcinoma (NPC). The present study aims to investigate LMP-1 and TCRgamma gene status in upper aerodigestive tract lymphomas. A total of 43 cases were classified into T-, B-, and NK/T-cell tumors based on the phenotype expressions of CD3(+)/CD20(-)/CD56(-), CD3(-)/CD20(+)/CD56(-), and CD3(+)/CD20(-)/CD56(+), respectively. The presence of EBV in the tumor was confirmed by EBV early RNA-in situ hybridization. LMP-1 gene deletion and TCR gamma gene rearrangement were analyzed by polymerase chain reaction on paraffin-embedded tissues. There were 20 NK/T-, eight T-, and 15 B-cell phenotype lymphomas in the present series, and EBV was detected in 19 (95%), two (25%), and three (20%) cases in the respective groups. All EBV+ cases carried 30-bp deletion in the LMP-1 gene, and two of the NK/T-cell cases were infected by both the wild type and deleted strains. Five (25%) of the NK/T-cell phenotype lymphomas showed rearranged TCR gamma gene. The present study revealed a high frequency of EBV association, and a high frequency of 30-bp deletion in the LMP-1 gene in the virus in the present series of lymphoma. The NK/T-phenotype lymphomas are comprised of both NK-cell and cytotoxic T-lymphocyte-derived tumors.
Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino
2016-07-01
Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.
Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M
2010-12-22
A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.
Biava, Pier Mario; Burigana, Fabio; Germano, Roberto; Kurian, Philip; Verzegnassi, Claudio; Vitiello, Giuseppe
2017-09-20
A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation-which we call stem cell differentiation stage factors (SCDSFs)-are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated re-differentiation often signifies the phenotypic reversion back to health and non-proliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer description of reality. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Modeling continuum of epithelial mesenchymal transition plasticity.
Mandal, Mousumi; Ghosh, Biswajoy; Anura, Anji; Mitra, Pabitra; Pathak, Tanmaya; Chatterjee, Jyotirmoy
2016-02-01
Living systems respond to ambient pathophysiological changes by altering their phenotype, a phenomenon called 'phenotypic plasticity'. This program contains information about adaptive biological dynamism. Epithelial-mesenchymal transition (EMT) is one such process found to be crucial in development, wound healing, and cancer wherein the epithelial cells with restricted migratory potential develop motile functions by acquiring mesenchymal characteristics. In the present study, phase contrast microscopy images of EMT induced HaCaT cells were acquired at 24 h intervals for 96 h. The expression study of relevant pivotal molecules viz. F-actin, vimentin, fibronectin and N-cadherin was carried out to confirm the EMT process. Cells were intuitively categorized into five distinct morphological phenotypes. A population of 500 cells for each temporal point was selected to quantify their frequency of occurrence. The plastic interplay of cell phenotypes from the observations was described as a Markovian process. A model was formulated empirically using simple linear algebra, to depict the possible mechanisms of cellular transformation among the five phenotypes. This work employed qualitative, semi-quantitative and quantitative tools towards illustration and establishment of the EMT continuum. Thus, it provides a newer perspective to understand the embedded plasticity across the EMT spectrum.
Pajor, L; Matolcsy, A; Vass, J A; Méhes, G; Marton, E; Szabó, F; Iványi, J L
1998-01-01
The case history of a 70-year-old man with myelodysplastic syndrome terminated into acute leukemia in 22 months is presented. The leukemic cells exhibited multifocal acid phosphatase positivity and expressed TdT, CD45, CD34 and HLA-DR but not myeloid, monocytic or megakaryocytic differentiation antigenes. The genotypic analysis revealed clonal immunoglobulin heavy chain gene rearrangement. These phenotypic and genotypic analyses of the blastic cell population suggest that myelodysplastic syndrome may transform to pure acute lymphoblastic leukemia of B-cell origin.
Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei
2018-01-01
Background Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial–mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. Methods A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. Results The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1+) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44+CD24− BCSCs from MCF-7 cells. Discussion This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs. PMID:29780673
Wang, Bixiao; Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei; Kang, Hua
2018-01-01
Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial-mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1 + ) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44 + CD24 - BCSCs from MCF-7 cells. This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs.
Arai, Masayoshi
2016-01-01
With the development of cell biology and microbiology, it has become easy to culture many types of animal cells and microbes, and they are frequently used for phenotypic screening to explore medicinal seeds. On the other hand, it is recognized that cells and pathogenic microbes present in pathologic sites and infected regions of the human body display unique properties different from those under general culture conditions. We isolated several bioactive compounds from marine medicinal resources using constructed bioassay-guided separation focusing on the unique changes in the characteristics of cells and pathogenic microbes (Mycobacterium spp.) in the human body under disease conditions. In addition, we also carried out identification studies of target molecules of the bioactive compounds by methods utilizing the gene expression profile, transformants of cells or microbes, synthetic probe molecules of the isolated compounds, etc., since bioactive compounds isolated from the phenotypic screening system often target new molecules. This review presents our phenotypic screening systems, isolation of bioactive compounds from marine medicinal resources, and target identification of bioactive compounds.
Kunwar, Fulesh; Pandya, Vidhi; Bakshi, Sonal R
2016-03-01
The heterogeneous phenotype of known syndromes is a clinical challenge, and harmonized description using globally accepted ontology is desirable. This report attempts phenotypic analysis in a patient of constitutional mosaic trisomy 13 in mesoderm and ectoderm to make globally comparable clinical description. Phenotypic features (minor/major abnormalities) were recorded and matched with the Human Phenotype Ontology terms that were used to query web-based tool Phenomizer. We report here a case of 24-year-old girl born to non consanguineous parents with history of one abortion. Her phenotypic evaluation included short columella, low-set ears, seizures, enlarged naris, bifid tongue, infra-orbital fold, smooth philtrum, microtia, microcephaly, carious teeth, downslanted palpebral fissures, proportionate short stature, high palate, thin upper lip vermilion, small for gestational age, broad fingertip, broad hallux, mandibular prognathia and dental malocclusion. Karyotype and interphase FISH (Fluorescence in situ hybridization) was done in blood cells. Interphase FISH was also performed on buccal epithelial cells. Cytogenetic analysis demonstrated trisomy 13 mosaicism in 25% cells i.e. 47, XX,+13(9)/46,XX(27). The interphase FISH in blood cells showed trisomy 13 in 15%, whereas in buccal mucosa cells showed nearly 6%. Mosaic aneuploidy in constitutional karyotype can be responsible for variation in clinical and morphological presentation of patient with genetic disorder.
Cancer heterogeneity and multilayer spatial evolutionary games.
Świerniak, Andrzej; Krześlak, Michał
2016-10-13
Evolutionary game theory (EGT) has been widely used to simulate tumour processes. In almost all studies on EGT models analysis is limited to two or three phenotypes. Our model contains four main phenotypes. Moreover, in a standard approach only heterogeneity of populations is studied, while cancer cells remain homogeneous. A multilayer approach proposed in this paper enables to study heterogeneity of single cells. In the extended model presented in this paper we consider four strategies (phenotypes) that can arise by mutations. We propose multilayer spatial evolutionary games (MSEG) played on multiple 2D lattices corresponding to the possible phenotypes. It enables simulation and investigation of heterogeneity on the player-level in addition to the population-level. Moreover, it allows to model interactions between arbitrary many phenotypes resulting from the mixture of basic traits. Different equilibrium points and scenarios (monomorphic and polymorphic populations) have been achieved depending on model parameters and the type of played game. However, there is a possibility of stable quadromorphic population in MSEG games for the same set of parameters like for the mean-field game. The model assumes an existence of four possible phenotypes (strategies) in the population of cells that make up tumour. Various parameters and relations between cells lead to complex analysis of this model and give diverse results. One of them is a possibility of stable coexistence of different tumour cells within the population, representing almost arbitrary mixture of the basic phenotypes. This article was reviewed by Tomasz Lipniacki, Urszula Ledzewicz and Jacek Banasiak.
Common genetic variation drives molecular heterogeneity in human iPSCs
Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard
2017-01-01
Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells. PMID:28489815
Schwann Cell Phenotype Changes in Aging Human Dental Pulp.
Couve, E; Lovera, M; Suzuki, K; Schmachtenberg, O
2018-03-01
Schwann cells are glial cells that support axonal development, maintenance, defense, and regeneration in the peripheral nervous system. There is limited knowledge regarding the organization, plasticity, and aging of Schwann cells within the dental pulp in adult permanent teeth. The present study sought to relate changes in the pattern of Schwann cell phenotypes between young and old adult teeth with neuronal, immune, and vascular components of the dental pulp. Schwann cells are shown to form a prominent glial network at the dentin-pulp interface, consisting of nonmyelinating and myelinating phenotypes, forming a multicellular neuroimmune interface in association with nerve fibers and dendritic cells. Schwann cell phenotypes are recognized by the expression of S100, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), Sox10, GAP43, and p75NTR markers. In young adult teeth, a dense population of nonmyelinating Schwann cells projects processes in close association with sensory nerve terminals through the odontoblast layer, reaching the adjacent predentin/dentin domain. While GAP43 and p75NTR are highly expressed in nonmyelinating Schwann cells from young adult teeth, the presence of these markers declines significantly in old adult teeth. Myelinated axons, identified by MBP expression, are mainly present at the Raschkow plexus and within nerve bundles in the dental pulp, but their density is significantly reduced in old adult versus young adult teeth. These data reveal age-related changes within the glial network of the dental pulp, in association with a reduction of coronal dental pulp innervation in old adult versus young adult teeth. The prominence of Schwann cells as a cellular component at the dentin-pulp interface supports the notion that their association with sensory nerve terminals and immune system components forms part of an integrated multicellular barrier for defense against pathogens and dentin repair.
el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C
1996-08-01
Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.
Drawnel, Faye M; Boccardo, Stefano; Prummer, Michael; Delobel, Frédéric; Graff, Alexandra; Weber, Michael; Gérard, Régine; Badi, Laura; Kam-Thong, Tony; Bu, Lei; Jiang, Xin; Hoflack, Jean-Christophe; Kiialainen, Anna; Jeworutzki, Elena; Aoyama, Natsuyo; Carlson, Coby; Burcin, Mark; Gromo, Gianni; Boehringer, Markus; Stahlberg, Henning; Hall, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto
2014-11-06
Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
de Groot, Reinoud; Lüthi, Joel; Lindsay, Helen; Holtackers, René; Pelkmans, Lucas
2018-01-23
High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Holz, Lauren E; Benseler, Volker; Vo, Michelle; McGuffog, Claire; Van Rooijen, Nico; McCaughan, Geoffrey W; Bowen, David G; Bertolino, Patrick
2012-10-01
The occurrence of primary CD8 T cell activation within the liver, unique among the non-lymphoid organs, is now well accepted. However, the outcome of intrahepatic T cell activation remains controversial. We have previously reported that activation initiated by hepatocytes results in a tolerogenic phenotype characterized by low expression of CD25 and IL-2, poor cytotoxic T lymphocyte (CTL) function, and excessive expression of the pro-apoptotic protein Bim. To investigate whether this phenotype was due to activation in the absence of co-stimulation, we generated bone marrow (bm) radiation chimeras in which adoptively transferred naïve transgenic CD8 T cells were activated in the presence of co-stimulation by liver bm-derived cells. Despite expressing pro-inflammatory cytokines, high levels of CD25 and CD54, donor T cells activated by liver bm-derived cells did not produce detectable IL-2 and displayed poor CTL function, suggesting incomplete acquisition of effector function. Simultaneously, these cells expressed high levels of Bim and died by neglect. Transfer of Bim-deficient T cells resulted in increased T cell numbers. These results imply that expression of CD25 and CD54 is co-stimulation dependent and distinguishes T cell activated by hepatocytes and liver bm-derived cells. In contrast, low expression of IL-2, poor CTL function and excess Bim production represent a more universal phenotype defining T cells undergoing primary activation by both types of hepatic antigen presenting cells (APC). These results have important implications for transplantation, in which all liver antigen presenting cells contribute to activation of T cells specific for the allograft. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Mi-Sun; Rhee, Seon-Min; Seo, Ji-Hyun; Kim, Myoung-Hee
2017-03-01
Patients' responses to a drug differ at the cellular level. Here, we present an image-based cell phenotypic feature quantification method for predicting the responses of patient-derived glioblastoma cells to a particular drug. We used high-content imaging to understand the features of patient-derived cancer cells. A 3D spheroid culture formation resembles the in vivo environment more closely than 2D adherent cultures do, and it allows for the observation of cellular aggregate characteristics. However, cell analysis at the individual level is more challenging. In this paper, we demonstrate image-based phenotypic screening of the nuclei of patient-derived cancer cells. We first stitched the images of each well of the 384-well plate with the same state. We then used intensity information to detect the colonies. The nuclear intensity and morphological characteristics were used for the segmentation of individual nuclei. Next, we calculated the position of each nucleus that is appeal of the spatial pattern of cells in the well environment. Finally, we compared the results obtained using 3D spheroid culture cells with those obtained using 2D adherent culture cells from the same patient being treated with the same drugs. This technique could be applied for image-based phenotypic screening of cells to determine the patient's response to the drug.
Bruno, Tullia C; Ebner, Peggy J; Moore, Brandon L; Squalls, Olivia G; Waugh, Katherine A; Eruslanov, Evgeniy B; Singhal, Sunil; Mitchell, John D; Franklin, Wilbur A; Merrick, Daniel T; McCarter, Martin D; Palmer, Brent E; Kern, Jeffrey A; Slansky, Jill E
2017-10-01
Effective immunotherapy options for patients with non-small cell lung cancer (NSCLC) are becoming increasingly available. The immunotherapy focus has been on tumor-infiltrating T cells (TILs); however, tumor-infiltrating B cells (TIL-Bs) have also been reported to correlate with NSCLC patient survival. The function of TIL-Bs in human cancer has been understudied, with little focus on their role as antigen-presenting cells and their influence on CD4 + TILs. Compared with other immune subsets detected in freshly isolated primary tumors from NSCLC patients, we observed increased numbers of intratumoral B cells relative to B cells from tumor-adjacent tissues. Furthermore, we demonstrated that TIL-Bs can efficiently present antigen to CD4 + TILs and alter the CD4 + TIL phenotype using an in vitro antigen-presentation assay. Specifically, we identified three CD4 + TIL responses to TIL-Bs, which we categorized as activated, antigen-associated, and nonresponsive. Within the activated and antigen-associated CD4 + TIL population, activated TIL-Bs (CD19 + CD20 + CD69 + CD27 + CD21 + ) were associated with an effector T-cell response (IFNγ + CD4 + TILs). Alternatively, exhausted TIL-Bs (CD19 + CD20 + CD69 + CD27 - CD21 - ) were associated with a regulatory T-cell phenotype (FoxP3 + CD4 + TILs). Our results demonstrate a new role for TIL-Bs in NSCLC tumors in their interplay with CD4 + TILs in the tumor microenvironment, establishing them as a potential therapeutic target in NSCLC immunotherapy. Cancer Immunol Res; 5(10); 898-907. ©2017 AACR . ©2017 American Association for Cancer Research.
Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey
2007-12-31
Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. Thesemore » cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.« less
A platform for high-throughput bioenergy production phenotype characterization in single cells
Kelbauskas, Laimonas; Glenn, Honor; Anderson, Clifford; Messner, Jacob; Lee, Kristen B.; Song, Ganquan; Houkal, Jeff; Su, Fengyu; Zhang, Liqiang; Tian, Yanqing; Wang, Hong; Bussey, Kimberly; Johnson, Roger H.; Meldrum, Deirdre R.
2017-01-01
Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers. PMID:28349963
Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M.; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Gómez, Jordi; Gastaminza, Pablo
2017-01-01
ABSTRACT Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. PMID:28275194
Wang, Zhiwei; Li, Yiwei; Kong, Dejuan; Banerjee, Sanjeev; Ahmad, Aamir; Azmi, Asfar Sohail; Ali, Shadan; Abbruzzese, James L.; Gallick, Gary E.; Sarkar, Fazlul H
2009-01-01
Despite rapid advances in many fronts, pancreatic cancer (PC) remains one of the most difficult human malignancies to treat, in part due to de novo and acquired chemo- and radio-resistance. Gemcitabine alone or in combination with other conventional therapeutics is the standard of care for the treatment of advanced PC without any significant improvement in the overall survival of patients diagnosed with this deadly disease. Previous studies have shown that PC cells that are gemcitabine-resistant (GR) acquired epithelial-mesenchymal transition (EMT) phenotype which is reminiscent of “cancer stem-like cells (CSC)”; however the molecular mechanism that led to EMT phenotype has not been fully investigated. The present study demonstrates that Notch-2 and its ligand Jagged-1 are highly up-regulated in GR cells, which is consistent with the role of Notch signaling pathway in the acquisition of EMT and CSC phenotype. We also found that the down-regulation of Notch signaling was associated with decreased invasive behavior of GR cells. Moreover, down-regulation of Notch signaling by siRNA approach led to partial reversal of the EMT phenotype, resulting in the mesenchymal-epithelial transition (MET), which was associated with decreased expression of vimentin, ZEB1, Slug, Snail and NF-κB. These results provide molecular evidence showing that the activation of Notch signaling is mechanistically linked with chemo-resistance phenotype (EMT phenotype) of PC cells, suggesting that the inactivation of Notch signaling by novel strategies could be a potential targeted therapeutic approach for overcoming chemo-resistance toward the prevention of tumor progression and/or treatment of metastatic PC. PMID:19276344
Kunwar, Fulesh; Pandya, Vidhi
2016-01-01
The heterogeneous phenotype of known syndromes is a clinical challenge, and harmonized description using globally accepted ontology is desirable. This report attempts phenotypic analysis in a patient of constitutional mosaic trisomy 13 in mesoderm and ectoderm to make globally comparable clinical description. Phenotypic features (minor/major abnormalities) were recorded and matched with the Human Phenotype Ontology terms that were used to query web-based tool Phenomizer. We report here a case of 24-year-old girl born to non consanguineous parents with history of one abortion. Her phenotypic evaluation included short columella, low-set ears, seizures, enlarged naris, bifid tongue, infra-orbital fold, smooth philtrum, microtia, microcephaly, carious teeth, downslanted palpebral fissures, proportionate short stature, high palate, thin upper lip vermilion, small for gestational age, broad fingertip, broad hallux, mandibular prognathia and dental malocclusion. Karyotype and interphase FISH (Fluorescence in situ hybridization) was done in blood cells. Interphase FISH was also performed on buccal epithelial cells. Cytogenetic analysis demonstrated trisomy 13 mosaicism in 25% cells i.e. 47, XX,+13(9)/46,XX(27). The interphase FISH in blood cells showed trisomy 13 in 15%, whereas in buccal mucosa cells showed nearly 6%. Mosaic aneuploidy in constitutional karyotype can be responsible for variation in clinical and morphological presentation of patient with genetic disorder. PMID:27134897
Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R.; Weissman, Amir; Binah, Ofer
2016-01-01
Background Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) only 3 types of action potentials (AP) exist: nodal, atrial and ventricular-like. Objective To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) during culture development a cardiac precursor cell is present that - depending on age - can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of nodal phenotype, transient appearance of atrial phenotype, evolution to ventricular phenotype, and persistence of transitional phenotypes. Methods To test these hypotheses we: (1) performed FACS analysis of nodal, atrial and ventricular markers; (2) recorded AP from 280 7-to-95 day old iPSC-CMs; (3) analyzed AP characteristics. Results The major findings were: (1) FACS analysis of 30 and 60-day old cultures showed that an iPSC-CMs population shifts from nodal into atrial/ventricular phenotype, while including significant transitional populations.(2) The AP population did not consist of 3 distinct phenotypes; (3) Culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57–70 days) appearance of atrial phenotype; (4) Beat Rate Variability was more prominent in nodal than ventricular cardiomyocytes while If density increased in older cultures. Conclusions From the onset of development the iPSC-CMs population includes nodal, atrial and ventricular AP and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial which appears only transiently, yet dominates at 57–70 days of evolution. PMID:27639456
Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.
Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey
2016-02-24
Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.
Gerlee, P.; Anderson, A.R.A.
2009-01-01
We present a cellular automaton model of clonal evolution in cancer aimed at investigating the emergence of the glycolytic phenotype. In the model each cell is equipped with a micro-environment response network that determines the behaviour or phenotype of the cell based on the local environment. The response network is modelled using a feed-forward neural network, which is subject to mutations when the cells divide. This implies that cells might react differently to the environment and when space and nutrients are limited only the fittest cells will survive. With this model we have investigated the impact of the environment on the growth dynamics of the tumour. In particular we have analysed the influence of the tissue oxygen concentration and extra-cellular matrix density on the dynamics of the model. We found that the environment influences both the growth and evolutionary dynamics of the tumour. For low oxygen concentration we observe tumours with a fingered morphology, while increasing the matrix density gives rise to more compact tumours with wider fingers. The distribution of phenotypes in the tumour is also affected, and we observe that the glycolytic phenotype is most likely to emerge in a poorly oxygenated tissue with a high matrix density. Our results suggest that it is the combined effect of the oxygen concentration and matrix density that creates an environment where the glycolytic phenotype has a growth advantage and consequently is most likely to appear. PMID:18068192
Li, Pei; Zhang, Ruijie; Wang, Liyuan; Gan, Yibo; Xu, Yuan; Song, Lei; Luo, Lei; Zhao, Chen; Zhang, Chengmin; Ouyang, Bin; Tu, Bing; Zhou, Qiang
2017-04-30
Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells. © 2017 The Author(s).
Phenotypic, molecular, and functional characterization of human peripheral blood CD34+/THY1+ cells.
Humeau, L; Bardin, F; Maroc, C; Alario, T; Galindo, R; Mannoni, P; Chabannon, C
1996-02-01
A subset of mobilized CD34+ cells present in patient aphereses expresses Thy1 (CDw90). This population contains most long-term culture initiating cells, as assayed with a murine stromal cell line. It also contains a significant proportion of colony-forming unit granulocyte macrophage, but very few burst-forming unit erythroid. The limited differentiation towards the erythroid lineage is further confirmed by the absence of GATA-1 mRNA in the CD34+/Thy1+ subset, and by the low level of c-kit expression. The CD34+/Thy1+ subset appears phenotypically and functionally heterogeneous, a finding consistent with its high representation, compared to phenotypes such as CD34+/CD38-. Therefore, while at least some of CD34+/Thy1+ cells may be infectable by retroviral vectors, as shown by the presence of a transcript for the receptor for murine amphotropic retroviruses, the use of this selection strategy to specifically target human stem cells appears questionable.
van Aalderen, Michiel C; Remmerswaal, Ester B M; Heutinck, Kirstin M; ten Brinke, Anja; Pircher, Hanspeter; van Lier, René A W; ten Berge, Ineke J M
2013-09-01
The human polyomavirus BK virus (BKV) establishes a latent and asymptomatic infection in the majority of the population. In immunocompromised individuals, the virus frequently (re)activates and may cause severe disease such as interstitial nephritis and hemorrhagic cystitis. Currently, the therapeutic options are limited to reconstitution of the antiviral immune response. T cells are particularly important for controlling this virus, and T cell therapies may provide a highly specific and effective mode of treatment. However, little is known about the phenotype and function of BKV-specific T cells in healthy individuals. Using tetrameric BKV peptide-HLA-A02 complexes, we determined the presence, phenotype, and functional characteristics of circulating BKV VP1-specific CD8(+) T cells in 5 healthy individuals. We show that these cells are present in low frequencies in the circulation and that they have a resting CD45RA(-) CD27(+) memory and predominantly CCR7(-) CD127(+) KLRG1(+) CD49d(hi) CXCR3(hi) T-bet(int) Eomesodermin(lo) phenotype. Furthermore, their direct cytotoxic capacity seems to be limited, since they do not readily express granzyme B and express only little granzyme K. We compared these cells to circulating CD8(+) T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and influenza virus (Flu) in the same donors and show that BKV-specific T cells have a phenotype that is distinct from that of CMV- and EBV-specific T cells. Lastly, we show that BKV-specific T cells are polyfunctional since they are able to rapidly express interleukin-2 (IL-2), gamma interferon (IFN-γ), tumor necrosis factor α, and also, to a much lower extent, MIP-1β and CD107a.
Remmerswaal, Ester B. M.; Heutinck, Kirstin M.; ten Brinke, Anja; Pircher, Hanspeter; van Lier, René A. W.; ten Berge, Ineke J. M.
2013-01-01
The human polyomavirus BK virus (BKV) establishes a latent and asymptomatic infection in the majority of the population. In immunocompromised individuals, the virus frequently (re)activates and may cause severe disease such as interstitial nephritis and hemorrhagic cystitis. Currently, the therapeutic options are limited to reconstitution of the antiviral immune response. T cells are particularly important for controlling this virus, and T cell therapies may provide a highly specific and effective mode of treatment. However, little is known about the phenotype and function of BKV-specific T cells in healthy individuals. Using tetrameric BKV peptide-HLA-A02 complexes, we determined the presence, phenotype, and functional characteristics of circulating BKV VP1-specific CD8+ T cells in 5 healthy individuals. We show that these cells are present in low frequencies in the circulation and that they have a resting CD45RA− CD27+ memory and predominantly CCR7− CD127+ KLRG1+ CD49dhi CXCR3hi T-betint Eomesoderminlo phenotype. Furthermore, their direct cytotoxic capacity seems to be limited, since they do not readily express granzyme B and express only little granzyme K. We compared these cells to circulating CD8+ T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and influenza virus (Flu) in the same donors and show that BKV-specific T cells have a phenotype that is distinct from that of CMV- and EBV-specific T cells. Lastly, we show that BKV-specific T cells are polyfunctional since they are able to rapidly express interleukin-2 (IL-2), gamma interferon (IFN-γ), tumor necrosis factor α, and also, to a much lower extent, MIP-1β and CD107a. PMID:23864628
UVA radiation impairs phenotypic and functional maturation of human dermal dendritic cells.
Furio, Laetitia; Berthier-Vergnes, Odile; Ducarre, Blandine; Schmitt, Daniel; Peguet-Navarro, Josette
2005-11-01
There is now strong evidence that the ultraviolet A (UVA) part of the solar spectrum contributes to the development of skin cancers. Its effect on the skin immune system, however, has not been fully investigated. Here, we analyzed the effects of UVA radiation on dermal dendritic cells (DDC), which, in addition, provided further characterization of these cells. Dermal sheets were obtained from normal human skin and irradiated, or not, with UVA at 2 or 12 J per cm2. After a 2 d incubation, the phenotype of emigrant cells was analyzed by double immunostaining and flow cytometry. Results showed that migratory DDC were best characterized by CD1c expression and that only few cells co-expressed the Langerhans cell marker Langerin. Whereas the DC extracted from the dermis displayed an immature phenotype, emigrant DDC showed increased expression of HLA-DR and acquired co-stimulation and maturation markers. We showed here that UVA significantly decreased the number of viable emigrant DDC, a process related to increased apoptosis. Furthermore, UVA irradiation impaired the phenotypic and functional maturation of migrating DDC into potent antigen-presenting cells, in a concentration-dependent manner. The results provide further evidence that UVA are immunosuppressive and suggest an additional mechanism by which solar radiation impairs immune response.
Generation of diverse neuronal subtypes in cloned populations of stem-like cells
Varga, Balázs V; Hádinger, Nóra; Gócza, Elen; Dulberg, Vered; Demeter, Kornél; Madarász, Emília; Herberth, Balázs
2008-01-01
Background The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. Results In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish glutamatergic and GABAergic neuronal phenotypes but failed to manifest cathecolaminergic neurons. Conclusion The data indicate that genes involved in positional determination are activated along with pro-neuronal genes in conditions excluding any outside influences. Interactions among progenies of one cell derived neural stem cells are sufficient for the activation of diverse region specific genes and initiate different routes of neuronal specification. PMID:18808670
Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik
2015-01-01
Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are no phenotypic differences between cryopreserved and fresh B-cell subsets." Subsequently, we performed an uncontrolled comparison of tonsil tissue samples. By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue-specific comparative analysis. © 2014 Clinical Cytometry Society.
Rasmussen, Simon Mylius; Bilgrau, Anders Ellern; Schmitz, Alexander; Falgreen, Steffen; Bergkvist, Kim Steve; Tramm, Anette Mai; Baech, John; Jacobsen, Chris Ladefoged; Gaihede, Michael; Kjeldsen, Malene Krag; Bødker, Julie Støve; Dybkaer, Karen; Bøgsted, Martin; Johnsen, Hans Erik
2014-09-20
Background Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. Methods We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are phenotypic differences between cryopreserved and fresh B-cell subsets". Subsequently, we performed a consecutive uncontrolled comparison of tonsil tissue samples. Results By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. Conclusions We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue specific comparative analysis. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.
Time series modeling of live-cell shape dynamics for image-based phenotypic profiling.
Gordonov, Simon; Hwang, Mun Kyung; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A; Bathe, Mark
2016-01-01
Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.
Giant cell lesions with a Noonan-like phenotype: a case report.
Cancino, Claudia Marcela H; Gaião, Léonilson; Sant'Ana Filho, Manoel; Oliveira, Flavio Augusto Marsiaj
2007-05-01
The purpose of this article is to describe a case of multiple giant cell lesions of the mandible that occurred in a 14-year-old girl with phenotypic characteristics associated with Noonan Syndrome (NS). NS is a dysmorphic disorder characterized by hypertelorism, short stature, congenital heart defects, short and webbed neck, skeletal anomalies, and bleeding diathesis. A 14-year-old girl with a previous diagnosis of NS (sporadic case) presented with multiple radiolucent lesions in the body and ramus of her mandible. In terms of clinical behavior and the described radiographic characteristics, giant cells lesions with Noonan-like phenotype can be considered a form of cherubism. Therefore, surgical intervention is not necessary, but radiographic follow-up and observation is very important during the control and gradual regression of the lesions.
Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.
2013-01-01
A major challenge of the postgenomic era is to understand how human genes function together in normal and disease states. In microorganisms, high-density genetic interaction (GI) maps are a powerful tool to elucidate gene functions and pathways. We have developed an integrated methodology based on pooled shRNA screening in mammalian cells for genome-wide identification of genes with relevant phenotypes and systematic mapping of all GIs among them. We recently demonstrated the potential of this approach in an application to pathways controlling the susceptibility of human cells to the toxin ricin. Here we present the complete quantitative framework underlying our strategy, including experimental design, derivation of quantitative phenotypes from pooled screens, robust identification of hit genes using ultra-complex shRNA libraries, parallel measurement of tens of thousands of GIs from a single double-shRNA experiment, and construction of GI maps. We describe the general applicability of our strategy. Our pooled approach enables rapid screening of the same shRNA library in different cell lines and under different conditions to determine a range of different phenotypes. We illustrate this strategy here for single- and double-shRNA libraries. We compare the roles of genes for susceptibility to ricin and Shiga toxin in different human cell lines and reveal both toxin-specific and cell line-specific pathways. We also present GI maps based on growth and ricin-resistance phenotypes, and we demonstrate how such a comparative GI mapping strategy enables functional dissection of physical complexes and context-dependent pathways. PMID:23739767
Fehres, Cynthia M; Bruijns, Sven C M; Sotthewes, Brigit N; Kalay, Hakan; Schaffer, Lana; Head, Steven R; de Gruijl, Tanja D; Garcia-Vallejo, Juan J; van Kooyk, Yvette
2015-01-01
Cutaneous antigen presenting cells (APCs) are critical for the induction and regulation of skin immune responses. The human skin contains phenotypically and functionally distinct APCs subsets that are present at two separated locations. While CD1ahigh LCs form a dense network in the epidermis, the CD14+ and CD1a+ APCs reside in the dermal compartment. A better understanding of the biology of human skin APC subsets is necessary for the improvement of vaccine strategies that use the skin as administration route. In particular, progress in the characterization of uptake and activatory receptors will certainly improve APC-targeting strategies in vaccination. Here we performed a detailed analysis of the expression and function of glycan-binding and pattern-recognition receptors in skin APC subsets. The results demonstrate that under steady state conditions human CD1a+ dermal dendritic cells (DCs) were phenotypically most mature as measured by the expression of CD83 and CD86, whereas the CD14+ cells showed a higher expression of the CLRs DC-SIGN, mannose receptor and DCIR and had potent antigen uptake capacity. Furthermore, steady state LCs showed superior antigen cross-presentation as compared to the dermal APC subsets. Our results also demonstrate that the TLR3 ligand polyribosinic-polyribocytidylic acid (pI:C) was the most potent stimulator of cytokine production by both LCs and dDCs. These studies warrant further exploration of human CD1a+ dDCs and LCs as target cells for cancer vaccination to induce anti-tumor immune responses.
Lacotte, Stéphanie; Slits, Florence; Orci, Lorenzo A.; Meyer, Jeremy; Oldani, Graziano; Gonelle-Gispert, Carmen; Morel, Philippe; Toso, Christian
2016-01-01
ABSTRACT Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver. PMID:27999748
Abos Gracia, Beatriz; López Relaño, Juan; Revilla, Ana; Castro, Lourdes; Villalba, Mayte; Martín Adrados, Beatriz; Regueiro, Jose Ramon; Fernández-Malavé, Edgar; Martínez Naves, Eduardo; Gómez Del Moral, Manuel
2017-01-01
Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses. © 2017 S. Karger AG, Basel.
Vigilance or Subversion? Constitutive and Inducible M Cells in Mucosal Tissues.
Lo, David D
2018-03-01
Microfold (M) cells are epithelial cells present in mucosal tissues and specialized for the capture of luminal microparticles and their delivery to underlying immune cells; thus, they are crucial participants in mucosal immune surveillance. Multiple phenotypic subsets of M cells have now been described, all sharing a unique apical morphology that provides clues to their ability to capture microbial particles. The existence of diverse M cell phenotypes, especially inflammation-inducible M cells, provides an intriguing puzzle: some variants may augment luminal surveillance to boost mucosal immunity, while others may promote microbial access to tissues. Here, I consider the unique induction requirements of each M cell subset and functional differences, highlighting the potentially distinct consequences in mucosal immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ramesh, Mathangi; Krishnan, Navasona; Muthuswamy, Senthil K.; Tonks, Nicholas K.
2015-01-01
We used a loss-of-function screen to investigate the role of classical protein-tyrosine phosphatases (PTPs) in three-dimensional mammary epithelial cell morphogenesis and ERBB2 signaling. The study revealed a novel role for PTPD2 as a positive regulator of ERBB2 signaling. Suppression of PTPD2 attenuated the ERBB2-induced multiacinar phenotype in three-dimensional cultures specifically by inhibiting ERBB2-mediated loss of polarity and lumen filling. In contrast, overexpression of PTPD2 enhanced the ERBB2 phenotype. We also found that a lipid second messenger, phosphatidic acid, bound PTPD2 in vitro and enhanced its catalytic activity. Small molecule inhibitors of phospholipase D (PLD), an enzyme that produces phosphatidic acid in cells, also attenuated the ERBB2 phenotype. Exogenously added phosphatidic acid rescued the PLD-inhibition phenotype, but only when PTPD2 was present. These findings illustrate a novel pathway involving PTPD2 and the lipid second messenger phosphatidic acid that promotes ERBB2 function. PMID:25681440
Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter
2017-06-28
High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.
Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy
NASA Astrophysics Data System (ADS)
Qian, Hong; Elson, Elliot L.
Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.
Gatenby, Robert A; Silva, Ariosto S; Gillies, Robert J; Frieden, B Roy
2009-06-01
A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.
Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M
1994-02-01
Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.
Effects of vitamin D receptor knockout on cornea epithelium gap junctions.
Lu, Xiaowen; Watsky, Mitchell A
2014-05-06
Gap junctions are present in all corneal cell types and have been shown to have a critical role in cell phenotype determination. Vitamin D has been shown to influence cell differentiation, and recent work demonstrates the presence of vitamin D in the ocular anterior segment. This study measured and compared gap junction diffusion coefficients among different cornea epithelium phenotypes and in keratocytes using a noninvasive technique, fluorescence recovery after photobleaching (FRAP), and examined the influence of vitamin D receptor (VDR) knockout on epithelial gap junction communication in intact corneas. Previous gap junction studies in cornea epithelium and keratocytes were performed using cultured cells or ex vivo invasive techniques. These invasive techniques were unable to measure diffusion coefficients and likely were disruptive to normal cell physiology. Corneas from VDR knockout and control mice were stained with 5(6)-carboxyfluorescein diacetate (CFDA). Gap junction diffusion coefficients of the corneal epithelium phenotypes and of keratocytes, residing in intact corneas, were detected using FRAP. Diffusion coefficients equaled 18.7, 9.8, 5.6, and 4.2 μm(2)/s for superficial squamous cells, middle wing cells, basal cells, and keratocytes, respectively. Corneal thickness, superficial cell size, and the superficial squamous cell diffusion coefficient of 10-week-old VDR knockout mice were significantly lower than those of control mice (P < 0.01). The superficial cell diffusion coefficient of heterozygous mice was significantly lower than control mice (P < 0.05). Our results demonstrate differences in gap junction dye spread among the epithelial cell phenotypes, mirroring the epithelial developmental axis. The VDR knockout influences previously unreported cell-to-cell communication in superficial epithelium.
Induction of appropriate Th-cell phenotypes: cellular decision-making in heterogeneous environments.
van den Ham, H-J; Andeweg, A C; de Boer, R J
2013-11-01
Helper T (Th)-cell differentiation is a key event in the development of the adaptive immune response. By the production of a range of cytokines, Th cells determine the type of immune response that is raised against an invading pathogen. Th cells can adopt many different phenotypes, and Th-cell phenotype decision-making is crucial in mounting effective host responses. This review discusses the different Th-cell phenotypes that have been identified and how Th cells adopt a particular phenotype. The regulation of Th-cell phenotypes has been studied extensively using mathematical models, which have explored the role of regulatory mechanisms such as autocrine cytokine signalling and cross-inhibition between self-activating transcription factors. At the single cell level, Th responses tend to be heterogeneous, but corrections can be made soon after T-cell activation. Although pathogens and the innate immune system provide signals that direct the induction of Th-cell phenotypes, these instructive mechanisms could be easily subverted by pathogens. We discuss that a model of success-driven feedback would select the most appropriate phenotype for clearing a pathogen. Given the heterogeneity in the induction phase of the Th response, such a success-driven feedback loop would allow the selection of effective Th-cell phenotypes while terminating incorrect responses. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye
2014-01-01
We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.
Zhao, Zhe; Shi, Yan; Ke, Fei; Wei, Sun; Gui, Jianfang; Zhang, Qiya
2008-03-01
Thymidylate synthase (TS), an essential enzyme in DNA synthesis and repair, plays a key role in the events of cell cycle regulation and tumor formation. Here, an investigation was presented about subcellular location and biological function of viral TS from lymphocystis disease virus from China (LCDV-C) in fish cells. Fluorescence microscopy revealed that LCDV-C TS was predominantly localized in the cytoplasm in fish cells. Cell cycle analysis demonstrated that LCDV-C TS promoted cell cycle progression into S and G2/M phase in the constitutive expressed cells. As a result, the cells have a faster growth rate compared with the control cells as revealed by cell growth curves. For foci assay, the TS-expressed cells gave rise to foci 4-5 weeks after incubation. Microscopic examination of the TS-induced foci revealed multilayered growth and crisscross morphology characteristic of transformed cells. Moreover, LCDV-C TS predisposed the transfected cells to acquire an anchorage-independent phenotype and could grow in 0.3% soft agar. So the data reveal LCDV-C TS is sufficient to induce a transformed phenotype in fish cells in vitro and exhibits its potential ability in cell transformation. To our knowledge, it is the first report on viral TS sequences associated with transforming activity.
Xu, Ling; Zhang, Ye; Qu, Xiujuan; Che, Xiaofang; Guo, Tianshu; Cai, Ying; Li, Aodi; Li, Danni; Li, Ce; Wen, Ti; Fan, Yibo; Hou, Kezuo; Ma, Yanju; Hu, Xuejun; Liu, Yunpeng
2017-04-01
Multiple drug resistance (MDR) and metastasis are two major factors that contribute to the failure of cancer treatment. However, the relationship between MDR and metastasis has not been characterized. Additionally, the role of the E3 ubiquitin ligase Cbl-b in metastasis of MDR gastric and breast cancer is not well known. In the present study, we found that MDR gastric and breast cancer cells possess a typical mesenchymal phenotype and enhanced cell migration capacity. Additionally, Cbl-b is poorly expressed in MDR gastric and breast cancer cells. In MDR gastric adenocarcinoma tissues, gastric cancer patients with low Cbl-b expression were more likely to have tumor invasion (P=.016) and lymph node metastasis (P=.007). Moreover, overexpression of Cbl-b reduced cell migration in MDR cell cultures both in vitro and in vivo. Cbl-b overexpression also prevented EMT by inducing ubiquitination and degradation of EGFR, leading to inhibition of the EGFR-ERK/Akt-miR-200c-ZEB1 axis. However, further overexpression of EGFR on a background of Cbl-b overexpression restored both the mesenchymal phenotype and cell migration capacity of MDR gastric and breast cancer cells. These results suggest that Cbl-b is an important factor for maintenance of the epithelial phenotype and inhibition of cell migration in MDR gastric and breast cancer cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Tincati, Camilla; Savoldi, Alessia; Cannizzo, E Stefania; Bellistrì, Giusi M; Termini, Roberta; Garau, Marzia; Mancusi, Daniela; d'Arminio Monforte, Antonella; Marchetti, Giulia
2016-01-01
We aimed to comparatively assess darunavir/ritonavir (DRV/r) and efavirenz (EFV)-based first-line cART regimens in the reconstitution of T-cell phenotype and function in HIV-infected, late presenter subjects. Retrospective, ex vivo study on stored peripheral blood mononuclear cell samples of cART-naive, HIV-infected individuals with CD4(+) T-cell counts <50>250/µl upon cART initiation with either DRV/r or EFV as third drugs of standard antiretroviral regimens. CD4(+) and CD8(+) T-cell maturation (CCR7/CD45RA) and proliferation (Ki67), CD8(+) T-cell activation (CD38/HLA-DR) as well as HIV- and cytomegalovirus (CMV)-specific responses (CD4/CD8/IL-2/IFN-γ) were studied by flow cytometry at baseline (T0), T3, T6 and T12 months. Soluble inflammatory markers (IL-6 and sCD14) were measured in plasma at T0 and T12. Wilcoxon and Mann-Whitney tests were used for statistics. A total of 19 patients started DRV/r and 15 EFV. Both regimens accounted for suppression of the HIV RNA load (<40 copies/ml), reconstitution of absolute CD4(+) T-cells and CD4(+)/CD8(+) T-cell ratio. All study participants displayed a significant decrease of activated HLA-DR(+)CD38(+) CD8(+) T-cells at all study time points, yet no differences were found between study groups in T-cell activation and maturation phenotype. From a functional standpoint, only individuals receiving DRV/r displayed transitory recovery of HIV-specific IL-2(+)IFN-γ(-) CD4(+) T-cells (T3: P=0.006) and IL-2(-)IFN-γ(+) CD8(+) T-cells (T3: P=0.032). DRV/r- and EFV-based regimens have an equal effect on T-cell phenotype and function in HIV late presenters. A temporary restoration of HIV-specific T-cell immunity early in the course of therapy with DRV/r possibly implies a more effective control over HIV in the first months following a PI/r-based regimen, even at late stage of disease.
Peng, Chunlian; Zhang, Siming; Liu, Haixin; Jiao, Yanxiao; Su, Guifa; Zhu, Yan
2017-11-05
Vascular Smooth muscle cells (VSMCs) possess remarkable phenotype plasticity that allows it to rapidly adapt to fluctuating environmental cues, including the period of development and progression of vascular diseases such as atherosclerosis and restenosis subsequent to vein grafting or coronary intervention. Although VSMC phenotypic switch is an attractive target, there is no effective drug so far. Using rat aortic VSMCs, we investigate the effects of Ligustrazine and its synthetic derivatives on platelet-derived growth factor-BB (PDGF-BB) induced proliferation and phenotypic switch by a cell image-based screening of 60 Ligustrazine stilbene derivatives. We showed that one of the Ligustrazine stilbene derivatives TMP-C 4a markedly inhibited PDGF-BB-induced VSMCs proliferation in a time and dose-dependent manner, which is more potent than Ligustrazine. Stimulation of contractile VSMCs with PDGF-BB significantly reduced the contractile marker protein α-smooth muscle actin expression and increased the synthetic marker proteins osteopontin expression. However, TMP-C 4a effectively reversed this phenotypic switch, which was accompanied by a decreased expression of Matrix metalloproteinase 2 and 9 (MMP2 and MMP9) and cell cycle related proteins, including cyclin D1 and CDK4. In conclusion, the present study showed that a new Ligustrazine stilbene derivative TMP-C 4a suppressed PDGF-induced VSMC proliferation and phenotypic switch, indicating that it has a potential to become a promising therapeutic agent for treating VSMC-related atherosclerosis and restenosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Yugang; Yuan, Lei; Lu, Qicheng; Xu, Haiyan; He, Xiaozhou
2018-03-01
Tumor-infiltrating immune cells are heterogeneous and consist of characteristic compartments, including T helper (Th)1 and regulatory T (Treg) cells that exhibit distinctive biological functions. The present study investigated the profile of infiltrating immune cells from surgically removed tumor tissues from patients with colorectal cancer. The characteristic transcription factors of Th1 and Th2 cells, Treg cells, Th17 cells and T follicular helper (Tfh) cells were analyzed. The results demonstrated that a marked increased number of Treg cells presented in tumor infiltrates when compared with non-tumor adjacent tissues. An increased number of Th1 and Tfh cells existed in tumor infiltrates compared with non-tumorous adjacent tissues, while the infiltration of Th17 and Th2 cells was similar between tumor and non-tumor adjacent tissues. Furthermore, there were an increased number of Treg cells in tumors with low infiltration compared with those with high infiltration. The expression of CXC motif chemokine (CXC) receptor 3, CXC ligand (CXCL)L9 and CXCL10 was significantly increased on infiltrating T cells in tumors with high infiltration as compared with those with low infiltration. Macrophages exhibited a dominant M2 phenotype in tumor infiltrates of colorectal cancer, whereas a balanced M1 and M2 phenotype presented in macrophages from the peripheral blood. In vitro stimulation of macrophages isolated from tumor tissue of colorectal cancer with granulocyte macrophage colony-stimulating factor and lipopolysaccharide did not drive to an inflammatory phenotype. The results provide insights into the pattern of immune cell infiltration in Chinese patients with colorectal cancer. It may be beneficial that patients with colorectal cancer are screened for the defined profile along with the expression of CXCL9 and CXCL10 in order to achieve better efficacy in clinical applications of immune-based therapy, including anti-programmed cell death protein 1 therapy.
Alternative Sources of Adult Stem Cells: Human Amniotic Membrane
NASA Astrophysics Data System (ADS)
Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja
Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.
NASA Astrophysics Data System (ADS)
Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei
2016-02-01
Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.
Liver-resident NK cells and their potential functions.
Peng, Hui; Sun, Rui
2017-09-18
Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.
NASA Astrophysics Data System (ADS)
Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi
2016-03-01
Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.
Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Gómez, Jordi; Gastaminza, Pablo; Domingo, Esteban; Perales, Celia
2017-05-15
Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. Copyright © 2017 American Society for Microbiology.
Ashili, Shashanka P.; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen B.; Forrester, Jessica; Kumar, Ashok; Anis, Yasser H.; Paulson, Thomas G.; Youngbull, Cody A.; Tian, Yanqing; Holl, Mark R.; Johnson, Roger H.; Meldrum, Deirdre R.
2012-01-01
Abstract. Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system’s capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates. PMID:22502580
Kelbauskas, Laimonas; Ashili, Shashanka P; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen B; Forrester, Jessica; Kumar, Ashok; Anis, Yasser H; Paulson, Thomas G; Youngbull, Cody A; Tian, Yanqing; Holl, Mark R; Johnson, Roger H; Meldrum, Deirdre R
2012-03-01
Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Alizadeh, Darya; Larmonier, Claire; LaCasse, Collin J; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard
2015-01-01
T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme.
Chokeshai-u-saha, Kaj; Buranapraditkun, Supranee; Jacquet, Alain; Nguyen, Catherine; Ruxrungtham, Kiat
2012-09-01
To study the role of human naïve B cells in antigen presentation and stimulation to naïve CD4+ T cell, a suitable method to reproducibly isolate sufficient naïve B cells is required. To improve the purity of isolated naive B cells obtained from a conventional one-step magnetic bead method, we added a rosetting step to enrich total B cell isolates from human whole blood samples prior to negative cell sorting by magnetic beads. The acquired naïve B cells were analyzed for phenotypes and for their role in Staphylococcal enterotoxin B (SEB) presentation to naïve CD4+ T cells. The mean (SD) naïve B cell (CD19+/CD27-) purity obtained from this two-step method compared with the one-step method was 97% (1.0) versus 90% (1.2), respectively. This two-step method can be used with a sample of whole blood as small as 10 ml. The isolated naive B cells were phenotypically at a resting state and were able to prime naïve CD4+ T cell activation by Staphylococcal enterotoxin B (SEB) presentation. This two-step non-flow cytometry-based approach improved the purity of isolated naïve B cells compared with conventional one-step magnetic bead method. It also worked well with a small blood volume. In addition, this study showed that the isolated naïve B cells can present a super-antigen "SEB" to activate naïve CD4 cells. These methods may thus be useful for further in vitro characterization of human naïve B cells and their roles as antigen presenting cells in various diseases.
Phenotype and function of nasal dendritic cells
Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh
2015-01-01
Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151
Xue, Fei; Liang, Yuntian; Li, Zhenrong; Liu, Yanhui; Zhang, Hongwei; Wen, Yu; Yan, Lei; Tang, Qiang; Xiao, Erhui; Zhang, Dongyi
2018-01-01
Hepatocellular carcinoma (HCC) is one of the most widespread malignant human tumors worldwide. Treatment options include radiotherapy, surgical intervention and chemotherapy; however, drug resistance is an ongoing treatment concern. In the present study, the effects of a microRNA (miR/miRNA), miR-9, on the sensitivity of HCC cell lines to the epidermal growth factor receptor inhibitor, cetuximab, were examined. miR-9 has been proposed to serve a role in tumorigenesis and tumor progression. In the present study, bioinformatics analyses identified the eukaryotic translation initiation factor 5A2 (eIF-5A-2) as a target of miR-9. The expression levels of miR-9 and eIF-5A-2 were examined by reverse transcription-quantitative polymerase chain reaction and HCC cell lines were transfected with miR-9 mimics and inhibitors to determine the effects of the miRNA on cell proliferation and viability. The miR-9 mimic was revealed to significantly increase the sensitivity of epithelial phenotype HCC cells (Hep3B and Huh7) to cetuximab, while the miR-9 inhibitor triggered the opposite effect. There were no significant differences in sensitivity to cetuximab observed in mesenchymal phenotype HCC cells (SNU387 and SNU449). Cells lines displaying high expression levels of eIF-5A-2 were more resistant to cetuximab. Transfection of cells with a miR-9 mimic resulted in downregulation of the expression of eIF-5A-2 mRNA, while an miR-9 inhibitor increased expression. When expression of eIF-5A-2 was knocked down with siRNA, the effects of miR-9 on cetuximab sensitivity were no longer observed. Taken together, these data support a role for miR-9 in enhancing the sensitivity of epithelial phenotype HCC cells to cetuximab through regulation of eIF-5A-2.
Moliterno, Alison R.; Williams, Donna M.; Rogers, Ophelia; Isaacs, Mary Ann; Spivak, Jerry L.
2008-01-01
(1) Objective The myeloproliferative disorders (MPD), polycythemia vera (PV), essential thrombocytosis (ET) and primary myelofibrosis (PMF) differ phenotypically but share the same JAK2V617F mutation. We examined the relationship of the quantitative JAK2V617F allele burden to MPD disease phenotype among the three MPD classes and within PV. (2) Methods We measured the JAK2V617F allele percentage in genomic DNA from neutrophils, CD34+ cells, and cloned progenitors in 212 JAK2V617F –positive MPD patients and correlated the allele burdens to both disease class and disease features. (3) Results In ET and PV, the mean CD34+ cell JAK2V617F allele burdens were lower than the corresponding neutrophil allele burdens, but these were equivalent in PMF. JAK2WT progenitors were present in ET and PV when the CD34+ JAK2V617F allele burden was lower than the neutrophil allele burden, but not in PV and PMF subjects in whom the CD34+ cell and neutrophil allele burdens were similar. CD34+ cell JAK2V617F clonal dominance, defined as coherence between the CD34+ cell and neutrophil JAK2V617F allele burdens, was present in 24% of ET, 56% of PV and 93% of PMF patients, and was independent of the CD34+ cell JAK2V617F genotype. Clonally-dominant PV patients had significantly longer disease durations, higher white cell counts and larger spleens than nondominant PV patients. (4) Conclusions We conclude that the extent of JAK2V617F CD34+ cell clonal dominance is associated with disease phenotype within the MPD, and in PV, is associated with extramedullary disease, leukocytosis and disease duration. PMID:18723264
2006-06-01
Tumor Foundation, Molecular Biology of NF1, NF2, and Schwannomatosis Meeting, poster presentation. "A mild mutator phenotype arises in NF1-associated...malignancies" June 2006: Children’s Tumor Foundation, Molecular Biology of NF1, NF2, and Schwannomatosis Meeting, platform presentation. “DNA
Fast Raman single bacteria identification: toward a routine in-vitro diagnostic
NASA Astrophysics Data System (ADS)
Douet, Alice; Josso, Quentin; Marchant, Adrien; Dutertre, Bertrand; Filiputti, Delphine; Novelli-Rousseau, Armelle; Espagnon, Isabelle; Kloster-Landsberg, Meike; Mallard, Frédéric; Perraut, Francois
2016-04-01
Timely microbiological results are essential to allow clinicians to optimize the prescribed treatment, ideally at the initial stage of the therapeutic process. Several approaches have been proposed to solve this issue and to provide the microbiological result in a few hours directly from the sample such as molecular biology. However fast and sensitive those methods are not based on single phenotypic information which presents several drawbacks and limitations. Optical methods have the advantage to allow single-cell sensitivity and to probe the phenotype of measured cells. Here we present a process and a prototype that allow automated single-bacteria phenotypic analysis. This prototype is based on the use of Digital In-line Holography techniques combined with a specially designed Raman spectrometer using a dedicated device to capture bacteria. The localization of single-cell is finely determined by using holograms and a proper propagation kernel. Holographic images are also used to analyze bacteria in the sample to sort potential pathogens from flora dwelling species or other biological particles. This accurate localization enables the use of a small confocal volume adapted to the measurement of single-cell. Along with the confocal volume adaptation, we also have modified every components of the spectrometer to optimize single-bacteria Raman measurements. This optimization allowed us to acquire informative single-cell spectra using an integration time of 0.5s only. Identification results obtained with this prototype are presented based on a 65144 Raman spectra database acquired automatically on 48 bacteria strains belonging to 8 species.
Högfors-Rönnholm, Eva; Wiklund, Tom
2010-12-01
The hemolytic activity of cells of smooth and rough phenotypic variants of the Gram-negative fish pathogen Flavobacterium psychrophilum was investigated in two different assays, a microplate and an agarose hemolysis assay, using rainbow trout erythrocytes. The smooth cells showed a high and the rough cells a negligible, concentration dependent, hemolytic activity in the microplate assay. Both smooth and rough cells showed a rather weak hemolytic activity, with two distinct hemolytic patterns, in the agarose assay. The hemolytic activity of the cells was not regulated by iron availability and cell-free extracellular products did not show any hemolytic activity. The smooth cells, in contrast to the rough cells, showed a high ability to agglutinate erythrocytes and both hemagglutination and hemolytic activity was impaired by treatment of the cells with sialic acid. The hemolytic activity was furthermore reduced after proteolytic and heat treatment of the cells. The results from the present study suggest that the hemolytic activity in F. psychrophilum is highly expressed in the smooth phenotype, and that it is a contact-dependent and two-step mechanism that is initiated by the binding of the bacterial cells to the erythrocytes through sialic acid-binding lectins and then executed by thermolabile proteinaceous hemolysins. Copyright © 2010 Elsevier Ltd. All rights reserved.
Young, M Rita I; Levingston, Corinne A; Johnson, Sara D
2016-05-15
While immune suppression is a hallmark of head and neck squamous cell carcinoma (HSNCC), the immunological impact of premalignant oral lesions, which often precedes development of HNSCC, is unknown. The present study assessed the changes in splenic and draining lymph node CD4(+) cell populations and their production of select cytokines that occur in mice with carcinogen-induced premalignant oral lesions and the changes that occur as lesions progress to oral cancer. These studies found skewing toward Th1 and Th17-type phenotypes in the spleen and lymph nodes of mice with premalignant oral lesions and a shift to Treg as lesions progress to cancer. Since the role of Th17 cells in the progression from premalignant lesions to cancer is not clear, studies determined the immunological and clinical effect of treating mice bearing premalignant oral lesions with a TGF-β type 1 receptor inhibitor plus IL-23 as an approach to sustain the Th17 phenotype. These studies showed that the treatment approach not only sustained the Th17 phenotype, but also increased distal spleen cell and regional lymph node cell production of other stimulatory/inflammatory mediators and slowed premalignant lesion progression to cancer. © 2016 UICC.
Young, M. Rita I.; Levingston, Corinne A.; Johnson, Sara D.
2018-01-01
While immune suppression is a hallmark of head and neck squamous cell carcinoma (HSNCC), the immunological impact of premalignant oral lesions, which often precedes development of HNSCC, is unknown. The present study assessed the changes in splenic and draining lymph node CD4+cell populations and their production of select cytokines that occur in mice with carcinogen-induced premalignant oral lesions and the changes that occur as lesions progress to oral cancer. These studies found skewing toward Th1 and Th17-type phenotypes in the spleen and lymph nodes of mice with premalignant oral lesions and a shift to Treg as lesions progress to cancer. Since the role of Th17 cells in the progression from premalignant lesions to cancer is not clear, studies determined the immunological and clinical effect of treating mice bearing premalignant oral lesions with a TGF-β type 1 receptor inhibitor plus IL-23 as an approach to sustain the Th17 phenotype. These studies showed that the treatment approach not only sustained the Th17 phenotype, but also increased distal spleen cell and regional lymph node cell production of other stimulatory/inflammatory mediators and slowed premalignant lesion progression to cancer. PMID:26756968
Eladl, Ahmed E; Satou, Akira; Elsayed, Ahmed Ali; Suzuki, Yuka; Kato, Seiichi; Asano, Naoko; Nakamura, Shigeo
2017-04-01
The presence of Hodgkin and Reed-Sternberg (HRS)-like B-cells in peripheral T-cell lymphoma (PTCL) is rare and its clinicopathological features still remain unclear. Here, we describe 30 cases of PTCL with HRS-like B-cells from Japan. Twenty-three cases (77%) presented evidence of follicular T-helper phenotype (TFH) derivation: 12 were angioimmunoblastic T-cell lymphoma and 11 PTCL with TFH phenotype (PTCL-TFH). The remaining seven cases were diagnosed as PTCL, not otherwise specified (PTCL-NOS). Epstein-Barr virus (EBV) reactivation was detected in 25 cases (83%), but HRS-like B-cells were EBER in only 20 cases (67%). The median age at diagnosis was 77 years (range, 39-91 y), including 24 patients (80%) were older than 60 years of age. Most of the patients presented at an advanced clinical stage and were associated with higher risk according to the International Prognostic Index. The 3-year overall and progression-free survival rates were 44% and 27%, respectively. No significant clinicopathological differences were detected between PTCL-TFH, PTCL-NOS and the angioimmunoblastic cases. Cases with EBER HRS-like B-cells were associated with inferior overall and progression-free survival compared to those with EBER HRS-like B-cells, but the difference was not significant. In conclusion, HRS-like B-cells were found in a subset of T-cell lymphomas, especially in association with the TFH phenotype and EBV reactivation. These cells have a tendency to affect elderly patients and to be associated with advanced clinical stages and dismal prognosis. The EBV status of HRS-like B-cells does not seem to affect the clinicopathological features of this group of PTCLs.
Rab5a‑mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells.
Tan, Jin-Yun; Jia, Luo-Qi; Shi, Wei-Hao; He, Qing; Zhu, Lei; Yu, Bo
2016-11-01
Rab5a, a key member of the Rab family of GTPases, was determined to be a regulator of vascular smooth muscle cell (VSMC) proliferation and migration. However, the exact regulatory mechanism remains unclear. As Rab5a has been shown to be associated with autophagy, which is essential for the conversion of VSMCs from a contractile to a synthetic phenotype in order to prevent cell death due to oxidative stress. The present study hypothesized that autophagy may be responsible for the proliferation and migration of VSMCs via the Rab5a protein. The aim of the present study was to evaluate the effect of Rab5a on autophagy in VSMCs. The human aorta vascular smooth muscle cell line, T/G HA‑VSMCs, was treated with small interfering (si)RNA against Rab5a and/or platelet‑derived growth factor (PDGF). Following treatment, the phenotype transition of the VSMCs was evaluated by detecting the mRNA and protien expression levels of VSMC molecular markers using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In addition, autophagy in VSMCs was evaluated by western blotting for autophagy‑associated proteins, flow cytometry of acidic vesicular organelles, punctate fluorescence of microtubule associated protein light chain 3 and transmission electron microscopy of typical scattered double‑membrane vacuolar structures. Additionally, the proliferation, migration, cell cycle and apoptotic response of VSMCs were detected by sulforhodamine B assay, transwell assay and flow cytometry, respectively. The results revealed that transfection with siRNA against Rab5a led to a significant decrease in Rab5a protein expression, while the reduced expression trend of Rab5a was rescued by intervention with PDGF. Furthermore, cells transfected with siRNA against Rab5a inhibited the autophagy of VSMCs. Downregulated Rab5a inhibited the phenotype transition of VSMCs. Additionally, downregulated Rab5a led to slowed cell growth, decreased numbers of migrated cells, decreased numbers of cells at the G0‑G1 phase and a higher apoptosis rate. However, PDGF significantly rescued these phenomena caused by siRNA against Rab5a. These results indicated that Rab5a‑mediated autophagy may regulate the phenotype transition and cell behavior of VSMCs through the activation of the extracellular‑regulated kinase 1/2 signaling pathway.
Cancer cell: using inflammation to invade the host
Arias, José-Ignacio; Aller, María-Angeles; Arias, Jaime
2007-01-01
Background Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms involved are not fully characterized. The invasive capacity of cancers is reflected in the classic metastatic cascade: tumor (T), node (N) and metastasis (M). However, this staging system for cancer would also have a tumoral biological significance. Presentation of the hypothesis To integrate the mechanisms that control the inflammatory response in the actual staging system of cancer. It is considered that in both processes of inflammation and cancer, three successive phenotypes are presented that represent the expression of trophic functional systems of increasing metabolic complexity for using oxygen. Testing the hypothesis While a malignant tumor develops it express phenotypes that also share the inflammatory response such as: an ischemic phenotype (anoxic-hypoxic), a leukocytic phenotype with anaerobic glycolysis and migration, and an angiogenic phenotype with hyperactivity of glycolytic enzymes, tumor proliferation and metastasis, and cachexia of the host. The increasing metabolic complexity of the tumor cell to use oxygen allows for it to be released, migrate and proliferate, thus creating structures of growing complexity. Implication of the hypothesis One aim of cancer gene therapy could be the induction of oxidative phosphorylation, the last metabolic step required by inflammation in order to differentiate the tissue that it produces. PMID:17437633
Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong
2018-06-11
We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.
Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley
2011-07-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.
2011-01-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors. PMID:21722364
Lewis, Natasha S; Lewis, Emily EL; Mullin, Margaret; Wheadon, Helen; Dalby, Matthew J; Berry, Catherine C
2017-01-01
Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein, mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for drug delivery studies. PMID:28616152
Demberg, Thorsten; Mohanram, Venkatramanan; Venzon, David; Robert-Guroff, Marjorie
2014-01-01
As vaccine-elicited antibodies have now been associated with HIV protective efficacy, a thorough understanding of mucosal and systemic B-cell development and maturation is needed. We phenotyped mucosal memory B-cells, investigated isotype expression and homing patterns, and defined plasmablasts and plasma cells at three mucosal sites (duodenum, jejunum and rectum) in rhesus macaques, the commonly used animal model for pre-clinical vaccine studies. Unlike humans, macaque mucosal memory B-cells lacked CD27 expression; only two sub-populations were present: naïve (CD21+CD27−) and tissue-like (CD21−CD27−) memory. Similar to humans, IgA was the dominant isotype expressed. The homing markers CXCR4, CCR6, CCR9 and α4β7 were differentially expressed between naïve and tissue-like memory B-cells. Mucosal plasmablasts were identified as CD19+CD20+/−HLA-DR+Ki-67+IRF4+CD138+/− and mucosal plasma cells as CD19+CD20−HLA-DR−Ki-67−IRF4+CD138+. Both populations were CD39+/−CD27−. Plasma cell phenotype was confirmed by spontaneous IgA secretion by ELISpot of positively-selected cells and J-chain expression by real-time PCR. Duodenal, jejunal and rectal samples were similar in B-cell memory phenotype, isotype expression, homing receptors and plasmablast/plasma cell distribution among the three tissues. Thus rectal biopsies adequately monitor B-cell dynamics in the gut mucosa, and provide a critical view of mucosal B-cell events associated with development of vaccine-elicited protective immune responses and SIV/SHIV pathogenesis and disease control. PMID:24814239
Henderson, Wendy A; Shankar, Ravi; Taylor, Tara J; Del Valle-Pinero, Arseima Y; Kleiner, David E; Kim, Kevin H; Youssef, Nader N
2012-01-01
AIM: To investigate interleukin-6 (IL-6), mast cells, enterochromaffin cells, 5-hydroxytryptamine, and substance P in the gastrointestinal mucosa of children with abdominal pain. METHODS: Formalin-fixed paraffin-embedded gastrointestinal biopsy blocks from patients (n = 48) with non-inflammatory bowel disease (irritable bowel syndrome and functional abdominal pain) and inflammatory bowel disease were sectioned and stained for IL-6, mast cells, enterochromaffin cells, 5-hydroxytryptamine, and substance P. All children had chronic abdominal pain as part of their presenting symptoms. Biopsy phenotype was confirmed by a pathologist, blinded to patient information. Descriptive statistics, chi-square, and independent sample t tests were used to compare differences between the inflammatory and non-inflammatory groups. RESULTS: The cohort (n = 48), mean age 11.9 years (SD = 2.9), 54.2% females, 90% Caucasian, was comprised of a non-inflammatory (n = 26) and an inflammatory (n = 22) phenotype. There was a significant negative correlation between substance P expression and mast cell count (P = 0.05, r = -0.373). Substance P was found to be expressed more often in female patient biopsies and more intensely in the upper gastrointestinal mucosa as compared to the lower mucosa. There were significantly increased gastrointestinal mucosal immunoreactivity to IL-6 (P = 0.004) in the inflammatory phenotype compared to non-inflammatory. Additionally, we found significantly increased mast cells (P = 0.049) in the mucosa of the non-inflammatory phenotype compared to the inflammatory group. This difference was particularly noted in the lower colon biopsies. CONCLUSION: The findings of this study yield preliminary evidence in identifying biomarkers of undiagnosed abdominal pain in children and may suggest candidate genes for future evaluation. PMID:23516176
Rousset, F; Souillet, G; Roncarolo, M G; Lamelin, J P
1986-02-01
Two X-linked lymphoproliferative syndrome (XLP) patients with the hypogammaglobulinemia phenotype were investigated at a time remote from their primary infection with the Epstein-Barr virus (EBV). The lymphoblastoid cell lines derived from these patients expressed the phenotypic markers characteristic of normal mature B lymphocytes and produced normal levels of immunoglobulins (Ig). These observations imply that at least some of their B cells are phenotypically normal. The natural killer (NK) activity of the two patients was low. In one patient, activated lymphocyte killer (ALK) activity was inefficient. These two XLP patients expressed a normal EBV-specific, HLA-restricted cytotoxic activity. It thus appears, from the present findings and those in cases published previously (6/11 patients expressing normal EBV-specific cytotoxic activity), that the notion of poor specific T cell memory for EBV may not be as pivotal ass suggested or, alternatively, that this defect may not be common in hypogammaglobulinemic survivors.
Mature phenotype in Hemerocallis plantlets fortuitously generated in vitro
NASA Technical Reports Server (NTRS)
Fitter, M. S.; Krikorian, A. D.
1985-01-01
Daylily plantlets generated on semi-solid media from morphogenetically competent cells or morphogenetically competent cells regenerated from protoplasts can give rise in aseptic culture to plantlets with a mature phenotype. The individual leaves of these plantlets open to the extreme base so that no encircling leaf sheath is present. This permits the overlapping bases and leaves to assume an open fan-like arrangement. The occurrence of fans correlates with exceptionally tightly sealed culture vessels and experiments to date suggest a gaseous component is associated with this change of growth form. It has not been possible to fix the mature growth mode, however, and new leaf growth assumes the more normal juvenile phenotype when the gaseous environment is altered by admitting or exposure to room air.
Receptor control in mesenchymal stem cell engineering
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel
2018-03-01
Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.
Rivera, Francisco J; Sierralta, Walter D; Minguell, Jose J; Aigner, Ludwig
2006-10-02
Bone marrow-derived mesenchymal stem cells (MSCs) are not restricted in their differentiation fate to cells of the mesenchymal lineage. They acquire a neural phenotype in vitro and in vivo after transplantation in the central nervous system. Here we investigated whether soluble factors derived from different brain regions are sufficient to induce a neuronal phenotype in MSCs. We incubated bone marrow-derived MSCs in conditioned medium (CM) derived from adult hippocampus (HCM), cortex (CoCM) or cerebellum (CeCM) and analyzed the cellular morphology and the expression of neuronal and glial markers. In contrast to muscle derived conditioned medium, which served as control, conditioned medium derived from the different brain regions induced a neuronal morphology and the expression of the neuronal markers GAP-43 and neurofilaments in MSCs. Hippocampus derived conditioned medium had the strongest activity. It was independent of NGF or BDNF; and it was restricted to the neuronal differentiation fate, since no induction of the astroglial marker GFAP was observed. The work indicates that soluble factors present in the brain are sufficient to induce a neuronal phenotype in MSCs.
Czerniecki, Stefan M; Cruz, Nelly M; Harder, Jennifer L; Menon, Rajasree; Annis, James; Otto, Edgar A; Gulieva, Ramila E; Islas, Laura V; Kim, Yong Kyun; Tran, Linh M; Martins, Timothy J; Pippin, Jeffrey W; Fu, Hongxia; Kretzler, Matthias; Shankland, Stuart J; Himmelfarb, Jonathan; Moon, Randall T; Paragas, Neal; Freedman, Benjamin S
2018-05-15
Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening. Copyright © 2018 Elsevier Inc. All rights reserved.
Ramesh, Mathangi; Krishnan, Navasona; Muthuswamy, Senthil K; Tonks, Nicholas K
2015-04-10
We used a loss-of-function screen to investigate the role of classical protein-tyrosine phosphatases (PTPs) in three-dimensional mammary epithelial cell morphogenesis and ERBB2 signaling. The study revealed a novel role for PTPD2 as a positive regulator of ERBB2 signaling. Suppression of PTPD2 attenuated the ERBB2-induced multiacinar phenotype in three-dimensional cultures specifically by inhibiting ERBB2-mediated loss of polarity and lumen filling. In contrast, overexpression of PTPD2 enhanced the ERBB2 phenotype. We also found that a lipid second messenger, phosphatidic acid, bound PTPD2 in vitro and enhanced its catalytic activity. Small molecule inhibitors of phospholipase D (PLD), an enzyme that produces phosphatidic acid in cells, also attenuated the ERBB2 phenotype. Exogenously added phosphatidic acid rescued the PLD-inhibition phenotype, but only when PTPD2 was present. These findings illustrate a novel pathway involving PTPD2 and the lipid second messenger phosphatidic acid that promotes ERBB2 function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Dynamics of phenotypic switching of bacterial cells with temporal fluctuations in pressure
NASA Astrophysics Data System (ADS)
Nepal, Sudip; Kumar, Pradeep
2018-05-01
Phenotypic switching is one of the mechanisms by which bacteria thrive in ever changing environmental conditions around them. Earlier studies have shown that the application of steady high hydrostatic pressure leads to stochastic switching of mesophilic bacteria from a cellular phenotype having a normal cell cycle to another phenotype lacking cell division. Here, we have studied the dynamics of this phenotypic switching with fluctuating periodic pressure using a set of experiments and a theoretical model. Our results suggest that the phenotypic switching rate from high-pressure phenotype to low-pressure phenotype in the reversible regime is larger as compared to the switching rate from low-pressure phenotype to high-pressure phenotype. Furthermore, we find that even though the cell division and elongation are presumably regulated by a large number of genes the underlying physics of the dynamics of stochastic switching at high pressure is captured reasonably well by a simple two-state model.
Strong, Averey D; Daniels, Richard L
2017-08-02
The tumor-derived GL261 cell line is used as a model for studying glioblastoma and other high-grade gliomas, and can be cultured adherently or as free-floating aggregates known as neurospheres. These different culture conditions give rise to distinct phenotypes, with increased tumorigenicity displayed by neurosphere-cultured cells. An important technique for understanding GL261 pathobiology is live cell fluorescent imaging of intracellular calcium. However, live cell imaging of GL261 neurospheres presents a technical challenge, as experimental manipulations where drugs are added to the extracellular media cause the cells to move during analysis. Here we present a method to immobilize GL261 neurospheres with low melting point agarose for calcium imaging using the fluorescent calcium sensor fura-2. GL261 cells were obtained from the NCI-Frederick Cancer Research Tumor Repository and cultured as adherent cells or induced to form neurospheres by placing freshly trypsinized cells into serum-free media containing fibroblast growth factor 2, epidermal growth factor, and B-27 supplement. Prior to experiments, adherent cells were loaded with fura-2 and cultured on 8-well chamber slides. Non-adherent neurospheres were first loaded with fura-2, placed in droplets onto an 8-well chamber slide, and finally covered with a thin layer of low melting point agarose to immobilize the cells. Ratiometric pseudocolored images were obtained during treatment with ATP, capsaicin, or vehicle control. Cells were marked as responsive if fluorescence levels increased more than 30% above baseline. Differences between treatment groups were tested using Student's t-tests and one-way ANOVA. We found that cellular responses to pharmacological treatments differ based on cellular phenotype. Adherent cells and neurospheres both responded to ATP with a rise in intracellular calcium. Notably, capsaicin treatment led to robust responses in GL261 neurospheres but not adherent cells. We demonstrate the use of low melting point agarose for immobilizing GL261 cells, a method that is broadly applicable to any cell type cultured in suspension, including acutely trypsinized cells and primary tumor cells. Our results indicate that it is important to consider GL261 phenotype (adherent or neurosphere) when interpreting data regarding physiological responses to experimental compounds.
Dynamic self-organisation of haematopoiesis and (a)symmetric cell division.
Måløy, Marthe; Måløy, Frode; Jakobsen, Per; Olav Brandsdal, Bjørn
2017-02-07
A model of haematopoiesis that links self-organisation with symmetric and asymmetric cell division is presented in this paper. It is assumed that all cell divisions are completely random events, and that the daughter cells resulting from symmetric and asymmetric stem cell divisions are, in general, phenotypically identical, and still, the haematopoietic system has the flexibility to self-renew, produce mature cells by differentiation, and regenerate undifferentiated and differentiated cells when necessary, due to self-organisation. As far as we know, no previous model implements symmetric and asymmetric division as the result of self-organisation. The model presented in this paper is inspired by experiments on the Drosophila germline stem cell, which imply that under normal conditions, the stem cells typically divide asymmetrically, whereas during regeneration, the rate of symmetric division increases. Moreover, the model can reproduce several of the results from experiments on female Safari cats. In particular, the model can explain why significant fluctuation in the phenotypes of haematopoietic cells was observed in some cats, when the haematopoietic system had reached normal population level after regeneration. To our knowledge, no previous model of haematopoiesis in Safari cats has captured this phenomenon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Proinflammatory T Cell Status Associated with Early Life Adversity.
Elwenspoek, Martha M C; Hengesch, Xenia; Leenen, Fleur A D; Schritz, Anna; Sias, Krystel; Schaan, Violetta K; Mériaux, Sophie B; Schmitz, Stephanie; Bonnemberger, Fanny; Schächinger, Hartmut; Vögele, Claus; Turner, Jonathan D; Muller, Claude P
2017-12-15
Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA ( n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69 + CD8 + T cells ( p = 0.022), increased numbers of HLA-DR + CD4 and HLA-DR + CD8 T cells ( p < 0.001), as well as increased numbers of CD25 + CD8 + T cells ( p = 0.036). ELA also showed a trend toward higher numbers of CCR4 + CXCR3 - CCR6 + CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells. Copyright © 2017 by The American Association of Immunologists, Inc.
Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Larmonier, Claire; LaCasse, Collin J.; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard
2015-01-01
T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme. PMID:26491691
Martin, Matthew D; Kim, Marie T; Shan, Qiang; Sompallae, Ramakrishna; Xue, Hai-Hui; Harty, John T; Badovinac, Vladimir P
2015-10-01
Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory CD8 T cells using single or prime-boost immunizations depends upon the timing between antigen encounters.
Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.
Loneker, Abigail E; Faulk, Denver M; Hussey, George S; D'Amore, Antonio; Badylak, Stephen F
2016-04-01
Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRH's supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRH's supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes. © 2016 Wiley Periodicals, Inc.
Gallie, Jenna; Libby, Eric; Bertels, Frederic; Remigi, Philippe; Jendresen, Christian B.; Ferguson, Gayle C.; Desprat, Nicolas; Buffing, Marieke F.; Sauer, Uwe; Beaumont, Hubertus J. E.; Martinussen, Jan; Kilstrup, Mogens; Rainey, Paul B.
2015-01-01
Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution. PMID:25763575
Ishikawa, F; Ushida, K; Mori, K; Shibanuma, M
2015-01-22
Anchorage dependence of cellular growth and survival prevents inappropriate cell growth or survival in ectopic environments, and serves as a potential barrier to metastasis of cancer cells. Therefore, obtaining a better understanding of anchorage-dependent responses in normal cells is the first step to understand and impede anchorage independence of growth and survival in cancer cells and finally to eradicate cancer cells during metastasis. Anoikis, a type of apoptosis specifically induced by lack of appropriate cell-extracellular matrix adhesion, has been established as the dominant response of normal epithelial cells to anchorage loss. For example, under detached conditions, the untransformed mammary epithelial cell (MEC) line MCF-10 A, which exhibits myoepithelial characteristics, underwent anoikis dependent on classical ERK signaling. On the other hand, recent studies have revealed a variety of phenotypes resulting in cell death modalities distinct from anoikis, such as autophagy, necrosis, and cornification, in detached epithelial cells. In the present study, we characterized detachment-induced cell death (DICD) in primary human MECs immortalized with hTERT ((Tert)HMECs), which are bipotent progenitor-like cells with a differentiating phenotype to luminal cells. In contrast to MCF-10 A cells, apoptosis was not observed in detached (Tert)HMECs; instead, non-apoptotic cell death marked by features of entosis, cornification, and necrosis was observed along with downregulation of focal adhesion kinase (FAK) signaling. Cell death was overcome by anchorage-independent activities of FAK but not PI3K/AKT, SRC, and MEK/ERK, suggesting critical roles of atypical FAK signaling pathways in the regulation of non-apoptotic cell death. Further analysis revealed an important role of TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand) as a mediator of FAK signaling in regulation of entosis and necrosis and a role of p38 MAPK in the induction of necrosis. Overall, the present study highlighted outstanding cell subtype or differentiation stage specificity in cell death phenotypes induced upon anchorage loss in human MECs.
Mariucci, S; Rovati, B; Chatzileontiadou, S; Bencardino, K; Manzoni, M; Delfanti, S; Danova, M
2009-01-01
Blood circulating endothelial cells (CECs), with their resting and activated subsets, (rCECs and aCECs) and circulating progenitors cells (CEPs) are two extremely rare cell populations that are important in tissue vascularization. Their number and function are modulated in diseases involving vascular injury, such as human tumours. Although a consensus on the phenotypic definition of endothelial cells, as well as on the optimal enumeration technique, is still lacking, the number of clinical studies based on assessment of these cells is rapidly expanding, as well as the analytical methods employed. The present study aimed to develop a rapid and sensitive flow cytometric method of quantifying and characterizing CECs (with both their subsets and the apoptotic fraction) and CEPs. We analysed peripheral blood samples from 21 subjects with a six-colour flow cytometric approach allowing detection of the cell phenotype of CECs and CEPs using a monoclonal antibodies panel and a dedicated gating strategy. Apoptotic CECs were detected with Annexin V and dead cells with 7-amino-actinomycin D staining. The described technique proved to be a new, reliable, tool increasing our knowledge of the biology of CECs and CEPs and can readily be applied in the study of many pathological conditions characterized by endothelial damage.
Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing.
Lin, Hsi-Hui; Lin, Hsiu-Kuan; Lin, I-Hsuan; Chiou, Yu-Wei; Chen, Horn-Wei; Liu, Ching-Yi; Harn, Hans I-Chen; Chiu, Wen-Tai; Wang, Yang-Kao; Shen, Meng-Ru; Tang, Ming-Jer
2015-08-28
The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.
Bajek, Anna; Gurtowska, Natalia; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz
2015-05-14
Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from healthy donors, due to mechanical and ultrasound-assisted liposuction and cultured in standard medium to the second passage. Differentiation potential and markers expression was evaluated to confirm the mesenchymal nature of cells. Then, the BD LyoplateTM Human Cell Surface Marker Screening Panel was used. Results shown that both population of ASCs are characterized by high expression of markers specific for ASCs: cluster of differentiation (CD)9, CD10, CD34, CD44, CD49d, CD54, CD55, CD59, CD71 and low expression of CD11a, CD11c and CD144. Moreover, we have noticed significant differences in antigen expression in 58 markers from the 242 studied. Presented study shows for the first time that different liposuction methods are not a significant factor which can influence the expression of human ASCs surface markers. © 2015 The Authors.
Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells
Sundelacruz, Sarah; Levin, Michael
2013-01-01
Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies. PMID:23738690
Tong, Lijian; Qi, Guoxian
2018-06-01
The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet‑derived growth factor‑BB (PDGF‑BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF‑BB‑induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit‑8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF‑BB‑induced VSMCs proliferation compared with the PDGF‑BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF‑BB‑induced increase in contractile protein α‑smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF‑BB‑induced Janus kinase (JAK)‑signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated kinase (ERK)/Kruppel‑like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF‑BB‑induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.
Munoz, Jessian L; Greco, Steven J; Patel, Shyam A; Sherman, Lauren S; Bhatt, Suresh; Bhatt, Rekha S; Shrensel, Jeffrey A; Guan, Yan-Zhong; Xie, Guiqin; Ye, Jiang-Hong; Rameshwar, Pranela; Siegel, Allan
2012-09-01
Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin βIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke. Copyright © 2012 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) is a highly pathogenic, double-stranded DNA virus with a marked tropism for cells of the monocyte-macrophage lineage, affecting swine species and provoking severe economic losses and health threats. In the present study, four established porcine cell lines, IPAM-WT, ...
Collins, Adam; Huett, Alan
2018-05-15
We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are exogenously expressed.
Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms.
Liu, Tsung-Li; Upadhyayula, Srigokul; Milkie, Daniel E; Singh, Ved; Wang, Kai; Swinburne, Ian A; Mosaliganti, Kishore R; Collins, Zach M; Hiscock, Tom W; Shea, Jamien; Kohrman, Abraham Q; Medwig, Taylor N; Dambournet, Daphne; Forster, Ryan; Cunniff, Brian; Ruan, Yuan; Yashiro, Hanako; Scholpp, Steffen; Meyerowitz, Elliot M; Hockemeyer, Dirk; Drubin, David G; Martin, Benjamin L; Matus, David Q; Koyama, Minoru; Megason, Sean G; Kirchhausen, Tom; Betzig, Eric
2018-04-20
True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Bocsi, József; Lenz, Dominik; Mittag, Anja; Sauer, Ursula; Wild, Lena; Hess, John; Schranz, Dietmar; Hambsch, Jörg; Schneider, Peter; Tárnok, Attila
2008-02-01
Complex immunophenotyping single-cell analysis are essential for systems biology and cytomics. The application of cytomics in immunology and cardiac research and diagnostics is very broad, ranging from the better understanding of the cardiovascular cell biology to the identification of heart function and immune consequences after surgery. TCPC or Fontan-type circulation is an accepted palliative surgery for patients with a functionally univentricular heart. Protein-losing enteropathy (PLE), the enteric loss of proteins, is a potential late complication after TCPC surgery. PLE etiology is poorly understood, but immunological factors seem to play a role. This study was aimed to gain insight into immune phenotype alterations following post-TCPC PLE. Patients were studied during routine follow-up up to 5yrs after surgery, blood samples of TCPC patients without (n=21, age 6.8+/-2.6 years at surgery; mean+/-SD) and with manifest PLE (n=12, age 12.8+/- 4.5 years at sampling) and age matched healthy children (control, n=22, age 8.6+/-2.5 years) were collected. Routine laboratory, immune phenotype and serological parameters were determined. Following PLE the immune phenotype dramatically changed with signs of acute inflammation (increased neutrophil and monocyte count, CRP, IL-8). In contrast, lymphocyte count (NK-cells, αβTCR +CD4 +, αβTCR +CD8 + cells) decreased (p<0.001). The residual T-cells had elevated CD25 and CD69 expression. In PLE-patients unique cell populations with CD3 +αβ/γδTCR - and αβTCR +CD4 -8 - phenotype were present in increased frequencies. Our studies show dramatically altered leukocyte phenotype after PLE in TCPC patients. These alterations resemble to changes in autoimmune diseases. We conclude that autoimmune processes may play a role in etiology and pathophysiology of PLE.
NASA Astrophysics Data System (ADS)
Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael
2012-12-01
Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting a strategy for cancer suppression that does not require gene therapy. Together, these data extend our understanding of the recently demonstrated role of transmembrane potential in tumor formation and metastatic cell behavior. Vmem is an important non-genetic biophysical aspect of the microenvironment that regulates the balance between normally patterned growth and carcinogenesis.
Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.
Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan
2018-02-21
Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.
Jia, Dongya; Jolly, Mohit Kumar; Kulkarni, Prakash; Levine, Herbert
2017-06-22
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Jayachandran, Aparna; Lo, Pu-Han; Chueh, Anderly C; Prithviraj, Prashanth; Molania, Ramyar; Davalos-Salas, Mercedes; Anaka, Matthew; Walkiewicz, Marzena; Cebon, Jonathan; Behren, Andreas
2016-02-22
The metabolism of cancer cells is often reprogrammed by dysregulation of metabolic enzymes. Transketolase-like 1 (TKTL1) is a homodimeric transketolase linking the pentose-phosphate pathway with the glycolytic pathway. It is generally silenced at a transcriptional level in somatic tissues. However, in human cancers its expression is associated with the acquisition of a glycolytic phenotype (the Warburg effect) by cancer cells that contributes to the progression of malignant tumors. In melanoma, defective promoter methylation results in the expression of genes and their products that can affect the tumor cell's phenotype including the modification of immune and functional characteristics. The present study evaluates the role of TKTL1 as a mediator of disease progression in melanoma associated with a defective methylation phenotype. The expression of TKTL1 in metastatic melanoma tumors and cell lines was analysed by qRT-PCR and immunohistochemistry. The promoter methylation status of TKTL1 in melanoma cells was evaluated by quantitative methylation specific PCR. Using qRT-PCR, the effect of a DNA demethylating agent 5-aza-2'-deoxycytidine (5aza) on the expression of TKTL1 was examined. Biochemical and molecular analyses such as glucose consumption, lactate production, invasion, proliferation and cell cycle progression together with ectopic expression and siRNA mediated knockdown were used to investigate the role of TKTL1 in melanoma cells. Expression of TKTL1 was highly restricted in normal adult tissues and was overexpressed in a subset of metastatic melanoma tumors and derived cell lines. The TKTL1 promoter was activated by hypomethylation and treatment with 5aza induced TKTL1 expression in melanoma cells. Augmented expression of TKTL1 in melanoma cells was associated with a glycolytic phenotype. Loss and gain of function studies revealed that TKTL1 contributed to enhanced invasion of melanoma cells. Our data provide evidence for an important role of TKTL1 in aerobic glycolysis and tumor promotion in melanoma that may result from defective promoter methylation. This epigenetic change may enable the natural selection of tumor cells with a metabolic phenotype and thereby provide a potential therapeutic target for a subset of melanoma tumors with elevated TKTL1 expression.
Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W.S.; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I.; Harris, David C.H.
2015-01-01
Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80+CD11c+ cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80+CD11c+ cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80+CD11c+ cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80+CD11c+ cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80+CD11c+ cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80+CD11c+ cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. PMID:25012165
Sullivan, Lisa M.; Sims, Hillary; Bastawisy, Ahmed El; Yousef, Hend F.; Zekri, Abdel-Rahman N.; Bahnassy, Abeer A.; ElShamy, Wael M.
2017-01-01
Tumor-initiating cells (TICs) are cancer cells endowed with self-renewal, multi-lineage differentiation, increased chemo-resistance, and in breast cancers the CD44+/CD24-/ALDH1+ phenotype. Triple negative breast cancers show lack of BRCA1 expression in addition to enhanced basal, epithelial-to-mesenchymal transition (EMT), and TIC phenotypes. BRCA1-IRIS (hereafter IRIS) is an oncogene produced by the alternative usage of the BRCA1 locus. IRIS is involved in induction of replication, transcription of selected oncogenes, and promoting breast cancer cells aggressiveness. Here, we demonstrate that IRIS overexpression (IRISOE) promotes TNBCs through suppressing BRCA1 expression, enhancing basal-biomarkers, EMT-inducers, and stemness-enforcers expression. IRISOE also activates the TIC phenotype in TNBC cells through elevating CD44 and ALDH1 expression/activity and preventing CD24 surface presentation by activating the internalization pathway EGFR→c-Src→cortactin. We show that the intrinsic sensitivity to an anti-CD24 cross-linking antibody-induced cell death in membranous CD24 expressing/luminal A cells could be acquired in cytoplasmic CD24 expressing IRISOE TNBC/TIC cells through IRIS silencing or inactivation. We show that fewer IRISOE TNBC/TICs cells form large tumors composed of TICs, resembling TNBCs early lesions in patients that contain metastatic precursors capable of disseminating and metastasizing at an early stage of the disease. IRIS-inhibitory peptide killed these IRISOE TNBC/TICs, in vivo and prevented their dissemination and metastasis. We propose IRIS inactivation could be pursued to prevent dissemination and metastasis from early TNBC tumor lesions in patients. PMID:28052035
Cao, Qi; Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W S; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I; Harris, David C H
2015-02-01
Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80(+)CD11c(+) cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80(+)CD11c(+) cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80(+)CD11c(+) cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80(+)CD11c(+) cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80(+)CD11c(+) cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80(+)CD11c(+) cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. Copyright © 2015 by the American Society of Nephrology.
Carvalho-Gontijo, Raquel; Moreira, Diana Raquel; Resende, Mariana; Costa-Silva, Matheus Fernandes; Peruhype-Magalhães, Vanessa; Ribeiro, Cláudia Maria Franco; Ribeiro, Daniel Dias; Silvestre, Ricardo; Cordeiro-da-Silva, Anabela; Martins-Filho, Olindo Assis; Teixeira-Carvalho, Andréa
2018-04-01
Immunosuppression is a well-established risk factor for Visceral Leishmaniasis. Post-immunosuppression leishmaniasis is characterized by an increase of parasite burden, hematopoietic disorders and unusual clinical manifestations. Although there are many reports on bone marrow findings in VL, less is known about the relationship between parasite dynamics in this organ and the function of either hematopoietic stem cells and progenitor cells themselves. In the present study, we tackle these issues using a new approach of infecting human stem cells derived from bone marrow with L. infantum. Using this strategy, we show that human hematopoietic stem cells (hHSC) are able to phagocytize L. infantum promastigotes and release modulatory and pro-inflammatory cytokines, mainly TNF-α. Our results demonstrated that L. infantum infection in vitro enhances hematopoiesis, favoring the development of erythrocitic lineage through a mechanism yet unknown. Moreover, we found that L. infantum infection alters the phenotypic profile of the hematopoietic progeny; modifying the surface markers expression of differentiated cells. Thus, our study represents a rare opportunity to monitor the in vitro differentiation of human stem cells experimentally infected by L. infantum to better understand the consequences of the infection on phenotypic and functional profile of the cell progeny. Copyright © 2017. Published by Elsevier Inc.
Dobrovolsky, Vasily N; Revollo, Javier; Petibone, Dayton M; Heflich, Robert H
2017-01-01
The Pig-a assay is being developed as an in vivo gene mutation assay for regulatory safety assessments. The assay is based on detecting mutation in the endogenous Pig-a gene of treated rats by using flow cytometry to measure changes in cell surface markers of peripheral blood cells. Here we present a methodology for demonstrating that phenotypically mutant rat T-cells identified by flow cytometry contain mutations in the Pig-a gene, an important step for validating the assay. In our approach, the mutant phenotype T-cells are sorted into individual wells of 96-well plates and expanded into clones. Subsequent sequencing of genomic DNA from the expanded clones confirms that the Pig-a assay detects exactly what it claims to detect-cells with mutations in the endogenous Pig-a gene. In addition, determining the spectra of Pig-a mutations provides information for better understanding the mutational mechanism of compounds of interest. Our methodology of combining phenotypic antibody labeling, magnetic enrichment, sorting, and single-cell clonal expansion can be used in genotoxicity/mutagenicity studies and in other general immunotoxicology research requiring identification, isolation, and expansion of extremely rare subpopulations of T-cells.
Yu, Jian-Bo; Zuo, Zhuo; Zhang, Wen-Yan; Yang, Qun-Pei; Zhang, Ying-Chun; Tang, Yuan; Zhao, Sha; Mo, Xian-Ming; Liu, Wei-Ping
2014-11-01
To analyze the differentiation characteristics of extranodal natural killer/T-cell lymphoma, nasal type, one nude mouse model, cell lines SNK6 and SNT8, and 16 fresh human samples were analyzed by flow cytometry immunophenotyping and immunohistochemistry staining; and 115 archived cases were used for phenotypic detection and prognostic analysis. We found that CD25 was expressed by most tumor cells in all samples, and CD56(+)CD25(+) cells were the predominant population in the mouse model, the 2 cell lines, and 10 of the 16 fresh tumor samples; in the other 6 fresh tumor samples, the predominant cell population was of the CD16(+)CD25(+) phenotype, and only a minor population showed the CD56(+)CD25(+) phenotype. The phenotype detected by immunohistochemistry staining generally was consistent with the phenotype found by flow cytometry immunophenotyping. According to the expression of CD56 and CD16, 115 cases could be classified into 3 phenotypic subtypes: CD56(-)CD16(-), CD56(+)CD16(-), and CD56(dim/-)CD16(+). Patients with tumors of the CD56(dim/-)CD16(+) phenotype had a poorer prognosis than patients with tumors of the other phenotypes. Differentiation of extranodal natural killer/T-cell lymphoma, nasal type apparently resembles the normal natural killer cell developmental pattern, and these tumors can be classified into 3 phenotypic subtypes of different aggressiveness. Expression of CD56(dim/-)CD16(+) implies a poorer prognosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Iris phenotypes and pigment dispersion caused by genes influencing pigmentation
Hawes, Norman L.; Trantow, Colleen M.; Chang, Bo; John, Simon W.M.
2010-01-01
Summary Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among sixteen mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease. PMID:18715234
Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.
Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M
2008-10-01
Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.
Kong, Hyun Joon; Polte, Thomas R; Alsberg, Eben; Mooney, David J
2005-03-22
The mechanical properties of cell adhesion substrates regulate cell phenotype, but the mechanism of this relation is currently unclear. It may involve the magnitude of traction force applied by the cell, and/or the ability of the cells to rearrange the cell adhesion molecules presented from the material. In this study, we describe a FRET technique that can be used to evaluate the mechanics of cell-material interactions at the molecular level and simultaneously quantify the cell-based nanoscale rearrangement of the material itself. We found that these events depended on the mechanical rigidity of the adhesion substrate. Furthermore, both the proliferation and differentiation of preosteoblasts (MC3T3-E1) correlated to the magnitude of force that cells generate to cluster the cell adhesion ligands, but not the extent of ligand clustering. Together, these data demonstrate the utility of FRET in analyzing cell-material interactions, and suggest that regulation of phenotype with substrate stiffness is related to alterations in cellular traction forces.
In Vivo Cytometry of Antigen-Specific T Cells Using 19F MRI
Srinivas, Mangala; Turner, Michael S.; Janjic, Jelena M.; Morel, Penelope A.; Laidlaw, David H.; Ahrens, Eric T.
2009-01-01
Noninvasive methods to image the trafficking of phenotypically defined immune cells are paramount as we attempt to understand adaptive immunity. A 19F MRI-based methodology for tracking and quantifying cells of a defined phenotype is presented. These methods were applied to a murine inflammation model using antigen-specific T cells. The T cells that were intracellularly labeled ex vivo with a perfluoropolyether (PFPE) nanoemulsion and cells were transferred to a host receiving a localized inoculation of antigen. Longitudinal 19F MRI over 21 days revealed a dynamic accumulation and clearance of T cells in the lymph node (LN) draining the antigen. The apparent T-cell numbers were calculated in the LN from the time-lapse 19F MRI data. The effect of in vivo T-cell division on the 19F MRI cell quantification accuracy was investigated using fluorescence assays. Overall, in vivo cytometry using PFPE labeling and 19F MRI is broadly applicable to studies of whole-body cell biodistribution. PMID:19585593
van der Post, Rachel S; Gullo, Irene; Oliveira, Carla; Tang, Laura H; Grabsch, Heike I; O'Donovan, Maria; Fitzgerald, Rebecca C; van Krieken, Han; Carneiro, Fátima
Familial clustering is seen in 10 % of gastric cancer cases and approximately 1-3 % of gastric cancer arises in the setting of hereditary diffuse gastric cancer (HDGC). In families with HDGC, gastric cancer presents at young age. HDGC is predominantly caused by germline mutations in CDH1 and in a minority by mutations in other genes, including CTNNA1. Early stage HDGC is characterized by a few, up to dozens of intramucosal foci of signet ring cell carcinoma and its precursor lesions. These include in situ signet ring cell carcinoma and pagetoid spread of signet ring cells. Advanced HDGC presents as poorly cohesive/diffuse type carcinoma, normally with very few typical signet ring cells, and has a poor prognosis. Currently, it is unknown which factors drive the progression towards aggressive disease, but it is clear that most intramucosal lesions will not have such progression.Immunohistochemical profile of early and advanced HDGC is often characterized by abnormal E-cadherin immunoexpression, including absent or reduced membranous expression, as well as "dotted" or cytoplasmic expression. However, membranous expression of E-cadherin does not exclude HDGC. Intramucosal HDGC (pT1a) presents with an "indolent" phenotype, characterized by typical signet ring cells without immunoexpression of Ki-67 and p53, while advanced carcinomas (pT > 1) display an "aggressive" phenotype with pleomorphic cells, that are immunoreactive for Ki-67 and p53. These features show that the IHC profile is different between intramucosal and more advanced HDGC, providing evidence of phenotypic heterogeneity, and may help to define predictive biomarkers of progression from indolent to aggressive, widely invasive carcinomas.
Ma, Xueqing; Li, Pinghua; Sun, Pu; Lu, Zengjun; Bao, Huifang; Bai, Xingwen; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin
2016-07-15
The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV) is associated with the inability of FMDV to grow in bovine cells and attenuated virulence in cattle.Whereas, a previously reported FMDV strain O/HKN/21/70 harboring 93-102 deletion in 3A protein grew equally well in bovine and swine cells. This suggests that changes inFMDV genome sequence, in addition to 93-102 deletion in 3A, may also affectthe viral growth phenotype in bovine cellsduring infection and replication.However, it is nuclear that changes in which region (inside or outside of 3A region) influences FMDV growth phenotype in bovine cells.In this study, to determine the region in FMDV genomeaffecting viral growth phenotype in bovine cells, we constructed chimeric FMDVs, rvGZSB-HKN3A and rvHN-HKN3A, by introducing the 3A coding region of O/HKN/21/70 into the context of O/SEA/Mya-98 strain O/GZSB/2011 and O Cathay topotype strain O/HN/CHA/93, respectively, since O/GZSB/2011 containing full-length 3A protein replicated well in bovine and swine cells, and O/HN/CHA/93 harboring 93-102 deletion in 3A protein grew poorly in bovine cells.The chimeric virusesrvGZSB-HKN3A and rvHN-HKN3A displayed growth properties and plaque phenotypes similar to those of the parental virus rvGZSB and rv-HN in BHK-21 and primary fetal porcine kidney (FPK) cells. However, rvHN-HKN3A and rv-HN replicated poorly in primary fetal bovine kidney (FBK) cells with no visible plaques, and rvGZSB-HKN3A exhibited lower growth rate and smaller plaque size phenotypes than those of the parental virus in FBK cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the difference present in FMDV genome sequence outside the 3A coding region also have influence on FMDV replication ability in bovine cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation
NASA Astrophysics Data System (ADS)
Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian
2017-12-01
Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.
Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC
2008-01-01
Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms. Conclusion We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens. PMID:18534020
A rare case of anti-jk3 antibody detected on pre-transfusion investigation.
Yousuf, Rabeya; Abdul Aziz, Suria; Yusof, Nurasyikin; Leong, Chooi-Fun
2014-09-01
We report a 47-year-old Malay lady, para 4 + 1, with known medical history of hypertension whom presented at Emergency Department with severe anaemia, most likely secondary to menorrhagia caused by uterine fibroids. Her haemoglobin was 5.5 g/dl and she was transfused with three units of packed cell without any adverse reaction, her haemoglobin level increased to 9.8 g/dl. She was then planned for total abdominal hysterectomy and bilateral salpingo-oophorectomy later. Four months later when she came for the elective surgery, her pre transfusion investigations showed blood group as B Rh D positive, with a probable R1R1 phenotype. Her antibody screening was positive in all the three panel cells. Further testings showed a negative Direct Coomb's test and negative autocontrol, antibody identification showed pan-agglutination reaction on all 11 panel cells with enzyme enhancement. Patient's red cell phenotype was Jk(a-b-). Anti-Jk3 was suspected and further confirmed in the reference laboratory by phenotyping as well as negative urea lysis test. This case report highlights an extremely rare but clinically significant anti-JK3 antibody detected during pretransfusion testing. This phenotype is rare in the white population, more commonly seen in various polynesians. Increased awareness among the blood bank personnel regarding the variability of the blood group phenotype and the capricious nature of the Kidd antibodies may contribute to the better management of these patients.
Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.
Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim
2013-10-04
Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.
Eccles, Michael R; He, Shujie; Ahn, Antonio; Slobbe, Lynn J; Jeffs, Aaron R; Yoon, Han-Seung; Baguley, Bruce C
2013-09-11
Melanoma is a very aggressive neoplasm with a propensity to undergo progression and invasion early in its evolution. The molecular pathways underpinning invasion in melanoma are now just beginning to be elucidated, but a clear understanding of the transition from non-invasive to invasive melanoma cells remains elusive. Microphthalmia-associated transcription factor (MITF), is thought to be a central player in melanoma biology, and it controls many aspects of the phenotypic expression of the melanocytic lineage. However, recently the paired box transcription factor PAX3 was shown to transcriptionally activate POU3F2/BRN2, leading to direct repression of MITF expression. Here we present a theory to explain melanoma phenotype switching and discuss the predictions that this theory makes. One prediction is that independent and opposing roles for MITF and PAX3 in melanoma would be expected, and we present empirical evidence supporting this: in melanoma tissues PAX3 expression occurs independently of MITF, and PAX3 does not play a key role in melanoma cell proliferation. Furthermore, we show that knockdown of PAX3 inhibits cell migration in a group of "lower MITF" melanoma cell lines, while knockdown of MITF promotes cell migration in a complementary "higher MITF" group of melanoma cell lines. Moreover, the morphological effects of knocking down PAX3 versus MITF in melanoma cells were found to differ. While these data support the notion of independent roles for MITF and PAX3, additional experiments are required to provide robust examination of the proposed genetic switch theory. Only upon clear delineation of the mechanisms associated with progression and invasion of melanoma cells will successful treatments for invasive melanoma be developed.
Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M; Wells, Alan
2016-07-07
Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due to malignant metastases in breast cancer.
Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen
2012-01-01
Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract. PMID:22860096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es
2015-07-15
Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT inductionmore » (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the acquisition of a malignant phenotype.« less
Urbanska, Marta; Winzi, Maria; Neumann, Katrin; Abuhattum, Shada; Rosendahl, Philipp; Müller, Paul; Taubenberger, Anna; Anastassiadis, Konstantinos; Guck, Jochen
2017-12-01
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells. © 2017. Published by The Company of Biologists Ltd.
Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo
2011-01-01
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257
Antigen presenting capacity of murine splenic myeloid cells.
Hey, Ying-Ying; Quah, Benjamin; O'Neill, Helen C
2017-01-11
The spleen is an important site for hematopoiesis. It supports development of myeloid cells from bone marrow-derived precursors entering from blood. Myeloid subsets in spleen are not well characterised although dendritic cell (DC) subsets are clearly defined in terms of phenotype, development and functional role. Recently a novel dendritic-like cell type in spleen named 'L-DC' was distinguished from other known dendritic and myeloid cells by its distinct phenotype and developmental origin. That study also redefined splenic eosinophils as well as resident and inflammatory monocytes in spleen. L-DC are shown to be distinct from known splenic macrophages and monocyte subsets. Using a new flow cytometric procedure, it has been possible to identify and isolate L-DC in order to assess their functional competence and ability to activate T cells both in vivo and in vitro. L-DC are readily accessible to antigen given intravenously through receptor-mediated endocytosis. They are also capable of CD8 + T cell activation through antigen cross presentation, with subsequent induction of cytotoxic effector T cells. L-DC are MHCII - cells and unable to activate CD4 + T cells, a property which clearly distinguishes them from conventional DC. The myeloid subsets of resident monocytes, inflammatory monocytes, neutrophils and eosinophils, were found to have varying capacities to take up antigen, but were uniformly unable to activate either CD4 + T cells or CD8 + T cells. The results presented here demonstrate that L-DC in spleen are distinct from other myeloid cells in that they can process antigen for CD8 + T cell activation and induction of cytotoxic effector function, while both L-DC and myeloid subsets remain unable to activate CD4 + T cells. The L-DC subset in spleen is therefore distinct as an antigen presenting cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae; Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com; Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae
In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, andmore » reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.« less
Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan
2016-03-01
The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced EMT by activating the NF-κB pathway of MCF-7 cells and further induced the formation of CSC-like phenotypes, ultimately promoting the proliferation and metastasis of MCF-7 cells. Therefore, SDF-1 may further be assessed as a potential target for gene therapy of breast cancer.
NASA Astrophysics Data System (ADS)
Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2018-02-01
Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.
Mohamad, Janan; Sarig, Ofer; Godsel, Lisa M; Peled, Alon; Malchin, Natalia; Bochner, Ron; Vodo, Dan; Rabinowitz, Tom; Pavlovsky, Mor; Taiber, Shahar; Fried, Maya; Eskin-Schwartz, Marina; Assi, Siwar; Shomron, Noam; Uitto, Jouni; Koetsier, Jennifer L; Bergman, Reuven; Green, Kathleen J; Sprecher, Eli
2018-05-11
Peeling skin syndromes form a large and heterogeneous group of inherited disorders characterized by superficial detachment of the epidermal cornified cell layers, often associated with inflammatory features. Here we report on a consanguineous family featuring non-inflammatory peeling of the skin exacerbated by exposure to heat and mechanical stress. Whole exome sequencing revealed a homozygous nonsense mutation in FLG2, encoding filaggrin 2, which co-segregated with the disease phenotype in the family. The mutation was found to result in decreased FLG2 RNA levels as well almost total absence of filaggrin 2 in the patient epidermis. Filaggrin 2 was found to be expressed throughout the cornified cell layers and to co-localize with corneodesmosin which plays a crucial role in maintaining cell-cell adhesion in this region of the epidermis. Absence of filaggrin 2 in the patient skin was associated with markedly decreased corneodesmosin expression, which may contribute to the peeling phenotype displayed by the patients. Accordingly, using the dispase dissociation assay, we showed that FLG2 down-regulation interferes with keratinocyte cell-cell adhesion. Of particular interest, this effect was aggravated by temperature elevation, consistent with the clinical phenotype. Restoration of CDSN levels by ectopic expression rescued cell-cell adhesion.Taken together, the present data suggest that filaggrin 2 is essential for normal cell-cell adhesion in the cornified cell layers. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
The unforeseen challenge: from genotype-to-phenotype in cell populations
NASA Astrophysics Data System (ADS)
Braun, Erez
2015-02-01
Biological cells present a paradox, in that they show simultaneous stability and flexibility, allowing them to adapt to new environments and to evolve over time. The emergence of stable cell states depends on genotype-to-phenotype associations, which essentially reflect the organization of gene regulatory modes. The view taken here is that cell-state organization is a dynamical process in which the molecular disorder manifests itself in a macroscopic order. The genome does not determine the ordered cell state; rather, it participates in this process by providing a set of constraints on the spectrum of regulatory modes, analogous to boundary conditions in physical dynamical systems. We have developed an experimental framework, in which cell populations are exposed to unforeseen challenges; novel perturbations they had not encountered before along their evolutionary history. This approach allows an unbiased view of cell dynamics, uncovering the potential of cells to evolve and develop adapted stable states. In the last decade, our experiments have revealed a coherent set of observations within this framework, painting a picture of the living cell that in many ways is not aligned with the conventional one. Of particular importance here, is our finding that adaptation of cell-state organization is essentially an efficient exploratory dynamical process rather than one founded on random mutations. Based on our framework, a set of concepts underlying cell-state organization—exploration evolving by global, non-specific, dynamics of gene activity—is presented here. These concepts have significant consequences for our understanding of the emergence and stabilization of a cell phenotype in diverse biological contexts. Their implications are discussed for three major areas of biological inquiry: evolution, cell differentiation and cancer. There is currently no unified theoretical framework encompassing the emergence of order, a stable state, in the living cell. Hopefully, the integrated picture described here will provide a modest contribution towards a physics theory of the cell.
Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design
Zhang, Weijia; Choi, Dong Soon; Nguyen, Yen H.; Chang, Jenny; Qin, Lidong
2013-01-01
This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes. PMID:23900274
De Bari, Cosimo; Dell'Accio, Francesco; Luyten, Frank P
2004-01-01
We previously reported the identification in a nude mouse assay of molecular markers predictive of the capacity of articular cartilage-derived cells (ACDCs) to form ectopic stable cartilage that is resistant to vascular invasion and endochondral ossification. In the present study, we investigated whether in vitro-differentiated mesenchymal stem cells (MSCs) from the synovial membrane (SM) express the stable-chondrocyte markers and form ectopic stable cartilage in vivo. Chondrogenesis was induced in micromass culture with the addition of transforming growth factor beta1 (TGFbeta1). After acquisition of the cartilage phenotype, micromasses were implanted subcutaneously into nude mice. Alternatively, cells were released enzymatically and either replated in monolayer or injected intramuscularly into nude mice. Marker analysis was performed by quantitative reverse transcription-polymerase chain reaction. Cell death was detected with TUNEL assay. Cartilage-like micromasses and released cells expressed the stable-chondrocyte markers at levels comparable with those expressed by stable ACDCs. The released cells lost chondrocyte marker expression by 24 hours in monolayer and failed to form cartilage when injected intramuscularly into nude mice. Instead, myogenic differentiation was detected. When intact TGFbeta1-treated micromasses were implanted subcutaneously, they partially lost their cartilage phenotype and underwent cell death and neoangiogenesis within 1 week. At later time points (15-40 days), we retrieved neither cartilage nor bone, and human cells were not detectable. The chondrocyte-like phenotype of human SM MSCs, induced in vitro under specific conditions, appears to be unstable and is not sufficient to obtain ectopic formation of stable cartilage in vivo. Studies in animal models of joint surface defect repair are necessary to evaluate the stability of the SM MSC chondrocyte-like phenotype within the joint environment.
Begum, Jusnara; Lal, Neeraj; Zuo, Jianmin; Beggs, Andrew; Moss, Paul
2016-01-01
Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people. PMID:27606804
Martín-Martín, Lourdes; López, Antonio; Vidriales, Belén; Caballero, María Dolores; Rodrigues, António Silva; Ferreira, Silvia Inês; Lima, Margarida; Almeida, Sérgio; Valverde, Berta; Martínez, Pilar; Ferrer, Ana; Candeias, Jorge; Ruíz-Cabello, Francisco; Buadesa, Josefa Marco; Sempere, Amparo; Villamor, Neus
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56− phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment. PMID:26056082
NASA Astrophysics Data System (ADS)
de Astis, Silvia; Corradini, Irene; Morini, Raffaella; Rodighiero, Simona; Tomasoni, Romana; Lenardi, Cristina; Verderio, Claudia; Milani, Paolo; Matteoli, Michela
2013-10-01
Activation of glial cells, including astrocytes and microglia, has been implicated in the inflammatory responses underlying brain injury and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The classic activation state (M1) is characterized by high capacity to present antigens, high production of nitric oxide (NO) and reactive oxygen species (ROS) and proinflammatory cytokines. Classically activated cells act as potent effectors that drive the inflammatory response and may mediate detrimental effects on neural cells. The second phenotype (M2) is an alternative, apparently beneficial, activation state, more related to a fine tuning of inflammation, scavenging of debris, promotion of angiogenesis, tissue remodeling and repair. Specific environmental chemical signals are able to induce these different polarization states. We provide here evidence that nanostructured substrates are able, exclusively in virtue of their physical properties, to push microglia toward the proinflammatory activation phenotype, with an efficacy which reflects the graded nanoscale rugosity. The acquisition of a proinflammatory phenotype appears specific for microglia and not astrocytes, indicating that these two cell types, although sharing common innate immune responses, respond differently to external physical stimuli.
Regulation of diet-induced adipose tissue and systemic inflammation by salicylates and pioglitazone.
Kim, Myung-Sunny; Yamamoto, Yasuhiko; Kim, Kyungjin; Kamei, Nozomu; Shimada, Takeshi; Liu, Libin; Moore, Kristin; Woo, Ju Rang; Shoelson, Steven E; Lee, Jongsoon
2013-01-01
It is increasingly accepted that chronic inflammation participates in obesity-induced insulin resistance and type 2 diabetes (T2D). Salicylates and thiazolidinediones (TZDs) both have anti-inflammatory and anti-hyperglycemic properties. The present study compared the effects of these drugs on obesity-induced inflammation in adipose tissue (AT) and AT macrophages (ATMs), as well as the metabolic and immunological phenotypes of the animal models. Both drugs improved high fat diet (HFD)-induced insulin resistance. However, salicylates did not affect AT and ATM inflammation, whereas Pioglitazone improved these parameters. Interestingly, HFD and the drug treatments all modulated systemic inflammation as assessed by changes in circulating immune cell numbers and activation states. HFD increased the numbers of circulating white blood cells, neutrophils, and a pro-inflammatory monocyte subpopulation (Ly6C(hi)), whereas salicylates and Pioglitazone normalized these cell numbers. The drug treatments also decreased circulating lymphocyte numbers. These data suggest that obesity induces systemic inflammation by regulating circulating immune cell phenotypes and that anti-diabetic interventions suppress systemic inflammation by normalizing circulating immune phenotypes.
CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells
Kurioka, Ayako; Cosgrove, Cormac; Simoni, Yannick; van Wilgenburg, Bonnie; Geremia, Alessandra; Björkander, Sophia; Sverremark-Ekström, Eva; Thurnheer, Christine; Günthard, Huldrych F.; Khanna, Nina; Aubert, V; Arancibia-Cárcamo, CV; Walker, Lucy Jane; Arancibia-Cárcamo, Carolina V.; Newell, Evan W.; Willberg, Christian B.; Klenerman, Paul
2018-01-01
CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells. PMID:29686665
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria
2016-01-01
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de
2016-03-31
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.
Briere, Carrie-Ellen; Jensen, Todd; McGrath, Jacqueline M; Young, Erin E; Finck, Christine
2017-04-01
Breast milk stem cells are hypothesized to be involved in infant health and development. Our research team is the first known team to enroll mothers of hospitalized preterm infants during the first few weeks of lactation and compare stem cell phenotypes and gene expression to mothers of healthy full-term infants. Participants were recruited from a Level IV Neonatal Intensive Care Unit (preterm dyads) and the community (full-term dyads) in the northeastern United States. Mothers of hospitalized preterm infants (<37 weeks gestational age at birth) and mothers of healthy full-term infants (>39 weeks gestational age at birth). Breast milk stem-like cell populations were identified in both preterm and full-term breast milk samples. The data suggest variability in the proportion of stem cell phenotypes present, as well as statistically significant differential expression (both over- and underexpression) of stem cell-specific genetic markers when comparing mothers' milk for preterm and full-term births. Our findings indicate that (1) stem cells are present in preterm breast milk; (2) differential expression of stem cell-specific markers can be detected in preterm and full-term breast milk samples; and (3) the percentage of cells expressing the various stem cell-specific markers differs when preterm and full-term breast milk samples are compared.
Luu, Rachel A.; Gurnani, Komal; Dudani, Renu; Kammara, Rajagopal; van Faassen, Henk; Sirard, Jean-Claude; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Ag presentation to CD8+ T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (~7 days), resistant mice (129×1SvJ) harbor a chronic infection lasting ~60–90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8+ T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62LhighIL-7RαhighCD44high) CD8+ T cells. However, by day 14–21, majority of the primed CD8+ T cells display an effector phenotype (CD62LlowIL-7RαlowCD44high). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62LlowIL-7RαhighCD44high) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8+ T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8+ T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8+ T cell recognition, conferring a survival advantage to the pathogen. PMID:16849458
Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye
Tare, Meghana; Sarkar, Ankita; Bedi, Shimpi; Kango-Singh, Madhuri; Singh, Amit
2016-01-01
In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye. PMID:28032862
Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
Kussell, Edo
2017-01-01
Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748
Guan, Guobo; Dai, Yu; Nobile, Clarissa J.; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua
2014-01-01
Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the “gray” phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide range of biological aspects in this common commensal and pathogenic fungus. PMID:24691005
Tao, Li; Du, Han; Guan, Guobo; Dai, Yu; Nobile, Clarissa J; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua
2014-04-01
Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the "gray" phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide range of biological aspects in this common commensal and pathogenic fungus.
De, Pradip; Carlson, Jennifer H; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini
2016-07-12
Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronectin-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship between WP activation and MA-phenotypes, our data mechanistically explains (1) why different components of WP are upregulated in TNBC, (2) how WP activation is associated with metastasis and (3) how integrin-dependent MA-phenotypes can be regulated by mitigating the WP.
De, Pradip; Carlson, Jennifer H.; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini
2016-01-01
Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronection-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship between WP activation and MA-phenotypes, our data mechanistically explains (1) why different components of WP are upregulated in TNBC, (2) how WP activation is associated with metastasis and (3) how integrin-dependent MA-phenotypes can be regulated by mitigating the WP. PMID:27281609
Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry.
Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M; Tourkina, Elena; Visconti, Richard P; Hoffman, Stanley
2014-01-01
Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45(high) fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47(high)/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ.
Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry
Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M.; Tourkina, Elena; Visconti, Richard P.; Hoffman, Stanley
2014-01-01
Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ. PMID:24999331
Calhoun, Colonya C; Lu, Ying-Chun; Song, Jun; Chiu, Robert
2009-01-01
Cyclophilin A (CypA) was originally identified as a cytosolic protein possessing peptidyl-prolyl isomerase activity. CypA has been shown to play a pivotal role in the immune response, but little is known about other molecular mechanisms of CypA-mediated biologic events. In our present study, we demonstrate that knockdown CypA expression using RNAi in U2OS cells resulted in disruption of the F-actin structure, as well as decreased anchorage-independent growth, proliferation, and migration. Wild-type U2OS cells treated with cyclosporine A (CsA), a peptidyl-prolyl isomerase inhibitor, displayed the same phenotype as knockdown CypA cells, suggesting that the isomerase activity of CypA is required to maintain a normal phenotype. In vitro and in vivo binding assays revealed that CypA binds to N-WASP, which functions in the nucleation of actin via the Arp2/3 complex. Pulse-chase labeling study indicated an enhanced degradation of N-WASP in cell lacking CypA, suggesting that CypA is required for stabilizing N-WASP to form a N-WASP/Arp2/3 complex for the nucleation/initiation of F-actin polymerization.
Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas
2017-09-01
AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...CA130273 - Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM...hypothesis, we originally proposed to transform neural stem cells (NSCs) and neural progenitor cells (NPCs) in vivo by expressing an activated form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp; Naganuma, Kaori; Kato, Kenichi
In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histonemore » H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.« less
Konen, J.; Summerbell, E.; Dwivedi, B.; Galior, K.; Hou, Y.; Rusnak, L.; Chen, A.; Saltz, J.; Zhou, W.; Boise, L. H.; Vertino, P.; Cooper, L.; Salaita, K.; Kowalski, J.; Marcus, A. I.
2017-01-01
Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. PMID:28497793
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory
Kulkarni, Prakash; Levine, Herbert
2017-01-01
Waddington’s epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of “landscape” in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an “attractor” that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of “cancer attractors”—hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes “recanalization”, i.e., the exit from “cancer attractors” and re-entry into “normal attractors”, is more likely to succeed rather than a conventional approach that targets individual molecules/pathways. PMID:28640191
Immune and hemorheological changes in Chronic Fatigue Syndrome
2010-01-01
Background Chronic Fatigue Syndrome (CFS) is a multifactorial disorder that affects various physiological systems including immune and neurological systems. The immune system has been substantially examined in CFS with equivocal results, however, little is known about the role of neutrophils and natural killer (NK) phenotypes in the pathomechanism of this disorder. Additionally the role of erythrocyte rheological characteristics in CFS has not been fully expounded. The objective of this present study was to determine deficiencies in lymphocyte function and erythrocyte rheology in CFS patients. Methods Flow cytometric measurements were performed for neutrophil function, lymphocyte numbers, NK phenotypes (CD56dimCD16+ and CD56brightCD16-) and NK cytotoxic activity. Erythrocyte aggregation, deformability and fibrinogen levels were also assessed. Results CFS patients (n = 10) had significant decreases in neutrophil respiratory burst, NK cytotoxic activity and CD56brightCD16- NK phenotypes in comparison to healthy controls (n = 10). However, hemorheological characteristic, aggregation, deformability, fibrinogen, lymphocyte numbers and CD56dimCD16+ NK cells were similar between the two groups. Conclusion These results indicate immune dysfunction as potential contributors to the mechanism of CFS, as indicated by decreases in neutrophil respiratory burst, NK cell activity and NK phenotypes. Thus, immune cell function and phenotypes may be important diagnostic markers for CFS. The absence of rheological changes may indicate no abnormalities in erythrocytes of CFS patients. PMID:20064266
Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors
NASA Astrophysics Data System (ADS)
Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan
The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.
Discordant sex in monozygotic XXY/XX twins: a case report.
Tachon, G; Lefort, G; Puechberty, J; Schneider, A; Jeandel, C; Boulot, P; Prodhomme, O; Meyer, P; Taviaux, S; Touitou, I; Pellestor, F; Geneviève, D; Gatinois, V
2014-12-01
We report a case of discordant phenotypic sex in monozygotic twins mosaic 47,XXY/46,XX: monozygotic heterokaryotypic twins. The twins presented with cognitive and comprehension delay, behavioural and language disorders, all symptoms frequently reported in Klinefelter syndrome. Molecular zygosity analysis with several markers confirmed that the twins are in effect monozygotic (MZ). Array comparative genomic hybridization found no evidence for the implication of copy number variation in the phenotypes. Ultrasound scans of the reproductive organs revealed no abnormalities. Endocrine tests showed a low testosterone level in Twin 1 (male phenotype) and a low gonadotrophin level in Twin 2 (female phenotype) which, combined with the results from ultrasound examination, provided useful information for potentially predicting the future fertility potential of the twins. Blood karyotypes revealed the presence of a normal 46,XX cell line and an aneuploïd 47,XXY cell line in both patients. Examination of the chromosome constitutions of various tissues such as blood, buccal smear and urinary sediment not surprisingly showed different proportions for the 46,XX and 47,XXY cell lines, which most likely explains the discordant phenotypic sex and mild Klinefelter features. The most plausible underlying biological mechanism is a post-zygotic loss of the Y chromosome in an initially 47,XXY zygote. This would result in an embryo with both 46,XX and 47,XXY cells lines which could subsequently divide into two monozygotic embryos through a twinning process. The two cell lines would then be distributed differently between tissues which could result in phenotypic discordances in the twins. These observations emphasize the importance of regular paediatric evaluations to determine the optimal timing for fertility preservation measures and to detect new Klinefelter features which could appear throughout childhood in the two subjects. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Riquelme, Paloma; Wundt, Judith; Hutchinson, James A; Brulport, Marc; Jun, Yu; Sotnikova, Anna; Girreser, Ulrich; Braun, Felix; Gövert, Felix; Soria, Bernat; Nüssler, Andreas; Clement, Bernd; Hengstler, Jan G; Fändrich, Fred
2009-03-01
Under certain culture conditions human peripheral blood monocytes may be induced to express phenotypic markers of non-haematopoietic lineages, including hepatocyte-defining traits. One such example, the NeoHepatocyte, was previously shown to express a broad panel of hepatocyte-like marker antigens and metabolic activities, both in vitro and following engraftment in the liver of immunodeficient mice. In this report, a refined description of NeoHepatocytes, with regard to their expression of xenobiotic-metabolising enzymes, morphology, hepatocyte marker expression and cell surface phenotype, is presented in comparison with human macrophages in defined states of activation. Contrary to prior assertions, it would seem more likely that NeoHepatocytes express particular hepatocyte-defining genes during a normal programme of macrophage differentiation rather than undergoing a process of transdifferentiation to become hepatocyte-like cells.
Synnergren, Jane; Améen, Caroline; Jansson, Andreas; Sartipy, Peter
2012-02-27
It is now well documented that human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes. These cells constitute a promising source of material for use in drug development, toxicity testing, and regenerative medicine. To assess their utility as replacement or complement to existing models, extensive phenotypic characterization of the cells is required. In the present study, we used microarrays and analyzed the global transcription of hESC-derived cardiomyocyte clusters (CMCs) and determined similarities as well as differences compared with reference samples from fetal and adult heart tissue. In addition, we performed a focused analysis of the expression of cardiac ion channels and genes involved in the Ca(2+)-handling machinery, which in previous studies have been shown to be immature in stem cell-derived cardiomyocytes. Our results show that hESC-derived CMCs, on a global level, have a highly similar gene expression profile compared with human heart tissue, and their transcriptional phenotype was more similar to fetal than to adult heart. Despite the high similarity to heart tissue, a number of significantly differentially expressed genes were identified, providing some clues toward understanding the molecular difference between in vivo sourced tissue and stem cell derivatives generated in vitro. Interestingly, some of the cardiac-related ion channels and Ca(2+)-handling genes showed differential expression between the CMCs and heart tissues. These genes may represent candidates for future genetic engineering to create hESC-derived CMCs that better mimic the phenotype of the cardiomyocytes present in the adult human heart.
Versican and the regulation of cell phenotype in disease.
Wight, Thomas N; Kinsella, Michael G; Evanko, Stephen P; Potter-Perigo, Susan; Merrilees, Mervyn J
2014-08-01
Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM. The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted. Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease. ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Human Cytomegalovirus-Infected Glioblastoma Cells Display Stem Cell-Like Phenotypes
Liu, Che; Clark, Paul A.; Kuo, John S.
2017-01-01
ABSTRACT Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Human cytomegalovirus (HCMV) genomes are present in GBM tumors, yielding hope that antiviral treatments could prove therapeutic and improve the poor prognosis of GBM patients. We discovered that GBM cells infected in vitro with HCMV display properties of cancer stem cells. HCMV-infected GBM cells grow more slowly than mock-infected controls, demonstrate a higher capacity for self-renewal determined by a sphere formation assay, and display resistance to the chemotherapeutic drug temozolomide. Our data suggest that HCMV, while present in only a minority of the cells within a tumor, could contribute to the pathogenesis of GBMs by promoting or prolonging stem cell-like phenotypes, thereby perpetuating tumors in the face of chemotherapy. Importantly, we show that temozolomide sensitivity is restored by the antiviral drug ganciclovir, indicating a potential mechanism underlying the positive effects observed in GBM patients treated with antiviral therapy. IMPORTANCE A role for HCMV in GBMs remains controversial for several reasons. Some studies find HCMV in GBM tumors, while others do not. Few cells within a GBM may harbor HCMV, making it unclear how the virus could be contributing to the tumor phenotype without infecting every cell. Finally, HCMV does not overtly transform cells in vitro. However, tumors induced by other viruses can be treated with antiviral remedies, and initial results indicate that this may be true for anti-HCMV therapies and GBMs. With such a poor prognosis for GBM patients, any potential new intervention deserves exploration. Our work here describes an evidence-based model for how HCMV could contribute to GBM biology while infecting very few cells and without transforming them. It also illuminates why anti-HCMV treatments may be beneficial to GBM patients. Our observations provide blueprints for future in vitro studies examining how HCMV manipulates stem cell-specific pathways and future clinical studies of anti-HCMV measures as GBM therapeutics. PMID:28656174
Maggioli, Mayara F.; Palmer, Mitchell V.; Thacker, Tyler C.; Vordermeier, H. Martin; Waters, W. Ray
2015-01-01
Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection. PMID:25879774
Cytokeratin characterization of human prostatic carcinoma and its derived cell lines.
Nagle, R B; Ahmann, F R; McDaniel, K M; Paquin, M L; Clark, V A; Celniker, A
1987-01-01
Two murine monoclonal anti-cytokeratin antibodies with defined specificity were shown to distinguish between basal cells and luminal cells in human prostate tissue. Forty-one biopsies or transurethral resection specimens were characterized using these two antibodies. In cases of benign prostatic hyperplasia, focal loss of the basal cell layer was noted in areas of glandular proliferation. Ten cases of adenocarcinoma of the prostate, varying in Gleason's histological grade from 2 to 4, were also studied. In each case the carcinoma was shown to represent the luminal cell phenotype with no evidence of involvement of the basal cell phenotype. An analysis of three established metastatic prostatic carcinoma cell lines (DU-145, PC-3, and LNCaP) using two-dimensional electrophoresis showed that the cytokeratin complement of each cell line was slightly different but retained the phenotype of the luminal cell. It was concluded that during both hyperplasia and neoplastic transformation of the prostate, the luminal cell phenotype is primarily involved and that the basal cell phenotype does not appear to contribute to either intraluminal proliferation or invasive cell populations.
A method to measure cellular adhesion utilizing a polymer micro-cantilever
NASA Astrophysics Data System (ADS)
Gaitas, Angelo; Malhotra, Ricky; Pienta, Kenneth
2013-09-01
In the present study we engineered a micro-machined polyimide cantilever with an embedded sensing element to investigate cellular adhesion, in terms of its relative ability to stick to a cross-linker, 3,3'-dithiobis[sulfosuccinimidylpropionate], coated on the cantilever surface. To achieve this objective, we investigated adhesive properties of three human prostate cancer cell lines, namely, a bone metastasis derived human prostate cancer cell line (PC3), a brain metastasis derived human prostate cancer cell line (DU145), and a subclone of PC3 (PC3-EMT14). We found that PC3-EMT14, which displays a mesenchymal phenotype, has the least adhesion compared to PC3 and DU145, which exhibit an epithelial phenotype.
Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Hwang, Yun-Ho; Jeong, Gil-Yeon; Jo, Sung-kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae
2016-02-19
HemoHIM, which is an herbal preparation of three edible herbs (Angelicam gigas Nakai, Cnidium offinale Makino, and Peaonia japonica Miyabe), is known to have various biological and immunological activities, but the modulatory effects of this preparation on dendritic cells (DCs)-mediated immune responses have not been examined previously. DCs are a unique group of white blood cells that initiate primary immune responses by capturing, processing, and presenting antigens to T cells. In the present study, we investigated the effect of HemoHIM on the functional and phenotypic maturation of murine bone marrow-derived dendritic cells (BMDCs) both in vitro and in vivo. The expression of co-stimulatory molecules (CD40, CD80, CD86, MHC I, and MHC II) and the production of cytokines (IL-1β, IL-6, IL-12p70, and TNF-α) were increased by HemoHIM in BMDCs. Furthermore, the antigen-uptake ability of BMDCs was decreased by HemoHIM, and the antigen-presenting ability of HemoHIM-treated mature BMDCs increased TLR4-dependent CD4(+) and CD8(+) T cell responses. Our findings demonstrated that HemoHIM induces TLR4-mediated BMDCs functional and phenotypic maturation through in vivo and in vitro. And our study showed the antigen-presenting ability that HemoHIM-treated mature BMDCs increase CD4(+) and CD8(+) T cell responses by in vitro. These results suggest that HemoHIM has the potential to mediate DC immune responses.
Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells
Thirunavukkarasan, Madhumathi; Wang, Chao; Rao, Angad; Hind, Tatsuma; Teo, Yuan Ru; Siddiquee, Abrar Al-Mahmood; Goghari, Mohamed Ally Ibrahim; Kumar, Alan Prem
2017-01-01
Short chain fatty acids (2 to 6 carbons in length) are ubiquitous lipids that are present in human plasma at micromolar concentrations. In addition to serving as metabolic precursors for lipid and carbohydrate synthesis, they also act as cognate ligands for two known G protein-coupled receptors (GPCRs), FFAR2 and FFAR3. While there is evidence that these receptors may inhibit the progression of colorectal cancer, their roles in breast cancer cells are largely unknown. We evaluated the effects of enforced overexpression of these receptors in two phenotypically distinct breast cancer cell lines: MCF7 and MDA-MD-231. Our results demonstrate that both receptors inhibit cell invasiveness, but through different signaling processes. In invasive, mesenchymal-like MDA-MB-231 cells, FFAR2 inhibits the Hippo-Yap pathway and increases expression of adhesion protein E-cadherin, while FFAR3 inhibits MAPK signaling. Both receptors have the net effect of reducing actin polymerization and invasion of cells through a Matrigel matrix. These effects were absent in the less invasive, epithelial-like MCF7 cells. Correspondingly, there is reduced expression of both receptors in invasive breast carcinoma and in aggressive triple-negative breast tumors, relative to normal breast tissue. Cumulatively, our data suggest that the activation of cognate receptors by short chain fatty acids drives breast cancer cells toward a non-invasive phenotype and therefore may inhibit metastasis. PMID:29049318
Wieten, Rosanne W; Jonker, Emile F F; van Leeuwen, Ester M M; Remmerswaal, Ester B M; Ten Berge, Ineke J M; de Visser, Adriëtte W; van Genderen, Perry J J; Goorhuis, Abraham; Visser, Leo G; Grobusch, Martin P; de Bree, Godelieve J
2016-01-01
Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07-3.1%). On day 180, these cells were still present (median 0.06%, range 0.02-0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. The presence of a functionally competent YF-specific memory T-cell pool 18 years and sufficient titers of neutralizing antibodies 35-40 years after first vaccination suggest that single vaccination may be sufficient to provide long-term immunity.
Aufderheide, Michaela; Emura, Makito
2017-07-05
3D constructs composed of differentiated immortalized primary normal human bronchial epithelial (NHBE) cells (CL-1548) were repeatedly exposed at the air-liquid interface to non-lethal concentrations of mainstream cigarette smoke (4 cigarettes a day, 5days/week, 8 repetitions in total) and e-cigarette vapor (50 puffs a day, 5 days/week, 8 repetitions in total) to build up a permanent burden on the cells. Samples were taken after 4, 6 and 8 times of repeated smoke exposure and the cultures were investigated using histopathological methods Compared to the clean air-exposed cultures (process control) and incubator control, the aerosol-exposed cultures showed a reduction of ciliated, mucus-producing and club cells. At the end of the exposure phase, we even found metaplastic areas positive for CK13 antibody in the cultures exposed to mainstream cigarette smoke and e-liquid vapor, commonly seen in squamous cells as a marker for non-cornified squamous epithelium. The control cultures (incubator cells) showed no comparable phenotypical changes. In conclusion, our in vitro model presents a valuable tool to study the induction of phenotypical changes after exposure to hazardous airborne material. Copyright © 2017. Published by Elsevier GmbH.
27-hydroxycholesterol induces the transition of MCF7 cells into a mesenchymal phenotype.
Torres, Cristian G; Ramírez, María E; Cruz, Pamela; Epuñan, María J; Valladares, Luis E; Sierralta, Walter D
2011-08-01
A decrease in the expression of E-cadherin and β-catenin, paralleling the loss of adherens junction complex, was observed in MCF7 cells exposed for longer than 48 h to 2 µM 27-hydroxycholesterol (27OHC), indicating an epithelial-mesenchymal transition (EMT). Upon removal of 27OHC from the culture medium, the cells released by the exposure of 72 h to the oxysterol grew as loosely packed cell groups. In these cells, accumulation of E-cadherin and β-catenin in the cytoplasm and the prolonged expression of epidermal growth factor receptor 2 (EGFR2/neu) in the plasma membrane were observed, suggesting that the acquired phenotype was related to the expression of this tyrosine kinase-growth factor receptor. The results presented here are discussed on the basis of the claimed relationship between 27OHC, hypercholesterolemia, macrophage infiltration and therapy-resistant ERα+ breast cancer incidence.
Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon
2016-08-27
Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gayoung; Kim, Hyun-Man
Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherinmore » was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.« less
Gallerani, Giulia; Cocchi, Claudia; Bocchini, Martine; Piccinini, Filippo; Fabbri, Francesco
2017-01-01
Circulating tumor cells (CTCs) are associated with poor survival in metastatic cancer. Their identification, phenotyping, and genotyping could lead to a better understanding of tumor heterogeneity and thus facilitate the selection of patients for personalized treatment. However, this is hampered because of the rarity of CTCs. We present an innovative approach for sampling a high volume of the patient blood and obtaining information about presence, phenotype, and gene translocation of CTCs. The method combines immunofluorescence staining and DNA fluorescent-in-situ-hybridization (DNA FISH) and is based on a functionalized medical wire. This wire is an innovative device that permits the in vivo isolation of CTCs from a large volume of peripheral blood. The blood volume screened by a 30-min administration of the wire is approximately 1.5-3 L. To demonstrate the feasibility of this approach, epithelial cell adhesion molecule (EpCAM) expression and the chromosomal translocation of the ALK gene were determined in non-small-cell lung cancer (NSCLC) cell lines captured by the functionalized wire and stained with an immuno-DNA FISH approach. Our main challenge was to perform the assay on a 3D structure, the functionalized wire, and to determine immuno-phenotype and FISH signals on this support using a conventional fluorescence microscope. The results obtained indicate that catching CTCs and analyzing their phenotype and chromosomal rearrangement could potentially represent a new companion diagnostic approach and provide an innovative strategy for improving personalized cancer treatments. PMID:29286485
Phenotypic heterogeneity in a bacteriophage population only appears as stress-induced mutagenesis.
Yosef, Ido; Edgar, Rotem; Qimron, Udi
2016-11-01
Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.
Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells.
Nami, Babak; Ghasemi-Dizgah, Armin; Vaseghi, Akbar
2016-01-01
Breast cancer stem cell with CD44(hi)/CD24(lo) phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44(hi)/CD24(lo) phenotype breast cancer stem cells (BCSCs). MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44(hi)/CD24(lo) phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. RESULTS showed different proportion of CD44(hi)/CD24(lo) phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44(hi)/CD24(lo) phenotype cell population was as MCF7
Musk, P; Szmania, S; Galloway, A T; Johnson, K; Scott, A; Guttman, S; Bridges, K; Bruorton, M; Gatlin, J; Garcia, J V; Lamb, L; Chiang, K Y; Spencer, T; Henslee-Downey, J; van Rhee, F
2001-01-01
Use of a partially mismatched related donor (PMRD) is an option for patients who require allogeneic transplantation but do not have a matched sibling or unrelated donor. Epstein-Barr virus (EBV)-induced lymphoma is a major cause of mortality after PMRD transplantation. In this study, we present a clinical grade culture system for donor-derived EBV-specific cytotoxic T cells (CTLs) that do not recognize haplo-identical recipient cells. The EBV-specific CTLs were tested for cytolytic specificity and other functional properties, including ability to transgress into tissues, propensity for apoptosis, degree of clonality, stability of dominant T-cell clones, and Tc and Th phenotypes. The EBV-specific CTLs were routinely expanded to greater than 80 x 10(6) over a period of 5 weeks, which is sufficient for clinical application. A CD8+ phenotype predominated, and the CTLs were highly specific for donor lymphoblastoid cell lines (LCLs) without killing of recipient targets or K562. Vbeta spectratyping showed an oligoclonal population that was stable on prolonged culture. The EBV-specific CTLs were activated (D-related human leukocyte antigen [HLA-DR+], L-selectin+/-) and of memory phenotype (CD45RO+). Expression of the integrin VLA-4 suggested that these CTLs could adhere to endothelium and migrate into tissues. The Bcl-2 message was upregulated, which may protect the CTLs from the apoptosis. The first demonstration of overexpression of bcl-2 in human memory CTLs. In addition, we show that lymphoblastoid cell lines used to generate CTLs are readily genetically modified with recombinant lentivirus, indicating that genetically engineered antigen presentation is feasible.
Flores-Santibáñez, Felipe; Cuadra, Bárbara; Fernández, Dominique; Rosemblatt, Mariana V.; Núñez, Sarah; Cruz, Pablo; Gálvez-Cancino, Felipe; Cárdenas, J. César; Lladser, Alvaro; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela
2018-01-01
Memory CD8+ T cells are ideal candidates for cancer immunotherapy because they can mediate long-term protection against tumors. However, the therapeutic potential of different in vitro-generated CD8+ T cell effector subsets to persist and become memory cells has not been fully characterized. Type 1 CD8+ T (Tc1) cells produce interferon-γ and are endowed with high cytotoxic capacity, whereas IL-17-producing CD8+ T (Tc17) cells are less cytotoxic but display enhanced self-renewal capacity. We sought to evaluate the functional properties of in vitro-generated Tc17 cells and elucidate their potential to become long lasting memory cells. Our results show that in vitro-generated Tc17 cells display a greater in vivo persistence and expansion in response to secondary antigen stimulation compared to Tc1 cells. When transferred into recipient mice, Tc17 cells persist in secondary lymphoid organs, present a recirculation behavior consistent with central memory T cells, and can shift to a Tc1 phenotype. Accordingly, Tc17 cells are endowed with a higher mitochondrial spare respiratory capacity than Tc1 cells and express higher levels of memory-related molecules than Tc1 cells. Together, these results demonstrate that in vitro-generated Tc17 cells acquire a central memory program and provide a lasting reservoir of Tc1 cells in vivo, thus supporting the use of Tc17 lymphocytes in the design of novel and more effective therapies. PMID:29472932
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.
Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong
2015-06-09
Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Skala, Melissa C.
2014-02-01
The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.
How does the metabolism of tumour cells differ from that of normal cells
Amoêdo, Nívea Dias; Valencia, Juan Perez; Rodrigues, Mariana Figueiredo; Galina, Antonio; Rumjanek, Franklin David
2013-01-01
Tumour cells thrive in environments that would be hostile to their normal cell counterparts. Survival depends on the selection of cell lines that harbour modifications of both, gene regulation that shifts the balance between the cell cycle and apoptosis and those that involve the plasticity of the metabolic machinery. With regards to metabolism, the selected phenotypes usually display enhanced anaerobic glycolysis even in the presence of oxygen, the so-called Warburg effect, and anabolic pathways that provide precursors for the synthesis of lipids, proteins and DNA. The review will discuss the original ideas of Otto Warburg and how they initially led to the notion that mitochondria of tumour cells were dysfunctional. Data will be presented to show that not only the organelles are viable and respiring, but that they are key players in tumorigenesis and metastasis. Likewise, interconnecting pathways that stand out in the tumour phenotype and that require intact mitochondria such as glutaminolysis will be addressed. Furthermore, comments will be made as to how the peculiarities of the biochemistry of tumour cells renders them amenable to new forms of treatment by highlighting possible targets for inhibitors. In this respect, a case study describing the effect of a metabolite analogue, the alkylating agent 3BP (3-bromopyruvate), on glycolytic enzyme targets will be presented. PMID:24079832
The role of regulatory B cells in digestive system diseases.
Zhou, Zhenyu; Gong, Lei; Wang, Xiaoyun; Hu, Zhen; Wu, Gaojue; Tang, Xuejun; Peng, Xiaobin; Tang, Shuan; Meng, Miao; Feng, Hui
2017-04-01
The past decade has provided striking insights into a newly identified subset of B cells known as regulatory B cells (Bregs). In addition to producing antibody, Bregs also regulate diseases via cytokine production and antigen presentation. This subset of B cells has protective and potentially therapeutic effects. However, the particularity of Bregs has caused some difficulties in conducting research on their roles. Notably, human B10 cells, which are Bregs that produce interleukin 10, share phenotypic characteristics with other previously defined B cell subsets, and currently, there is no known surface phenotype that is unique to B10 cells. An online search was performed in the PubMed and Web of Science databases for articles published providing evidences on the role of regulatory B cells in digestive system diseases. Abundant evidence has demonstrated that Bregs play a regulatory role in inflammatory, autoimmune, and tumor diseases, and regulatory B cells play different roles in different diseases, but future work needs to determine the mechanisms by which Bregs are activated and how these cells affect their target cells.
Yap1 Protein Regulates Vascular Smooth Muscle Cell Phenotypic Switch by Interaction with Myocardin*
Xie, Changqing; Guo, Yanhong; Zhu, Tianqing; Zhang, Jifeng; Ma, Peter X.; Chen, Y. Eugene
2012-01-01
The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs. PMID:22411986
Senju, Hiroaki; Kumagai, Asuka; Nakamura, Yoichi; Yamaguchi, Hiroyuki; Nakatomi, Katsumi; Fukami, Shota; Shiraishi, Kengo; Harada, Yuka; Nakamura, Mitsuhiro; Okamura, Haruki; Tanaka, Yoshimasa; Mukae, Hiroshi
2018-01-01
When pathogenic stresses are recognized by innate immune cells, inflammasomes are assembled and caspase-1 is activated, resulting in the conversion of pro-IL-18 into mature IL-18. Because natural killer (NK) cells express IL-18 receptors, IL-18 may play roles in immune functions of NK cells. In the present study, we examined the effect of IL-18 on NK cells derived from lung cancer patients and healthy adult volunteers. When peripheral blood NK cells were stimulated with IL-2, the cells formed clusters beginning on day 5-6 and proliferated thereafter, in which the number of NK cells increased by 10-fold in 10 days. When IL-18 was added, cell clusters were observed as early as on day 4 and NK cells proliferated vigorously. On day 10, the expansion rate was 56-fold on average, showing that IL-18 promoted the expansion of NK cells. It was also notable that IL-18 enhanced the expression of CD80, CD86, HLA-DR and HLA-DQ on NK cells, suggesting that IL-18 conferred NK cells an APC-like phenotype. When cellular cytotoxicity was determined, APC-like NK cells efficiently killed tumor cells and anti-tumor activity was augmented by the addition of tumor antigen-specific mAbs. In addition, IFN-γ was produced by APC-like NK cells in response to tumor cells, and the cytokine production was further enhanced by mAbs. Taken together, IL-18 not only promoted the expansion of NK cells, but also changed the phenotype of NK cells. IL-2/IL-18-induced NK cells might, therefore, serve as a bridge between innate immunity and adaptive immunity and be useful for cancer immunotherapy.
Katsanos, Dimitris; Koneru, Sneha L.; Mestek Boukhibar, Lamia; Gritti, Nicola; Ghose, Ritobrata; Appleford, Peter J.; Doitsidou, Maria; Woollard, Alison; van Zon, Jeroen S.; Poole, Richard J.
2017-01-01
Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens. PMID:29108019
2010-01-01
Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR) was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers. PMID:20525401
Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik
2016-08-07
Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.
Kammermeier, Jochen; Dziubak, Robert; Pescarin, Matilde; Drury, Suzanne; Godwin, Heather; Reeve, Kate; Chadokufa, Sibongile; Huggett, Bonita; Sider, Sara; James, Chela; Acton, Nikki; Cernat, Elena; Gasparetto, Marco; Noble-Jamieson, Gabi; Kiparissi, Fevronia; Elawad, Mamoun; Beales, Phil L; Sebire, Neil J; Gilmour, Kimberly; Uhlig, Holm H; Bacchelli, Chiara; Shah, Neil
2017-01-01
Inflammatory bowel disease [IBD] presenting in early childhood is extremely rare. More recently, progress has been made to identify children with monogenic forms of IBD predominantly presenting very early in life. In this study, we describe the heterogeneous phenotypes and genotypes of patients with IBD presenting before the age of 2 years and establish phenotypic features associated with underlying monogenicity. Phenotype data of 62 children with disease onset before the age of 2 years presenting over the past 20 years were reviewed. Children without previously established genetic diagnosis were prospectively recruited for next-generation sequencing. In all, 62 patients [55% male] were identified. The median disease onset was 3 months of age (interquartile range [IQR]: 1 to 11). Conventional IBD classification only applied to 15 patients with Crohn's disease [CD]-like [24%] and three with ulcerative colitis [UC]-like [5%] phenotype; 44 patients [71%] were diagnosed with otherwise unclassifiable IBD. Patients frequently required parenteral nutrition [40%], extensive immunosuppression [31%], haematopoietic stem-cell transplantation [29%], and abdominal surgery [19%]. In 31% of patients, underlying monogenic diseases were established [EPCAM, IL10, IL10RA, IL10RB, FOXP3, LRBA, SKIV2L, TTC37, TTC7A]. Phenotypic features significantly more prevalent in monogenic IBD were: consanguinity, disease onset before the 6th month of life, stunting, extensive intestinal disease and histological evidence of epithelial abnormalities. IBD in children with disease onset before the age of 2 years is frequently unclassifiable into Crohn's disease and ulcerative colitis, particularly treatment resistant, and can be indistinguishable from monogenic diseases with IBD-like phenotype. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Dziubak, Robert; Pescarin, Matilde; Drury, Suzanne; Godwin, Heather; Reeve, Kate; Chadokufa, Sibongile; Huggett, Bonita; Sider, Sara; James, Chela; Acton, Nikki; Cernat, Elena; Gasparetto, Marco; Noble-Jamieson, Gabi; Kiparissi, Fevronia; Elawad, Mamoun; Beales, Phil L.; Sebire, Neil J.; Gilmour, Kimberly; Uhlig, Holm H.; Bacchelli, Chiara; Shah, Neil
2017-01-01
Abstract Objectives: Inflammatory bowel disease [IBD] presenting in early childhood is extremely rare. More recently, progress has been made to identify children with monogenic forms of IBD predominantly presenting very early in life. In this study, we describe the heterogeneous phenotypes and genotypes of patients with IBD presenting before the age of 2 years and establish phenotypic features associated with underlying monogenicity. Methods: Phenotype data of 62 children with disease onset before the age of 2 years presenting over the past 20 years were reviewed. Children without previously established genetic diagnosis were prospectively recruited for next-generation sequencing. Results: In all, 62 patients [55% male] were identified. The median disease onset was 3 months of age (interquartile range [IQR]: 1 to 11). Conventional IBD classification only applied to 15 patients with Crohn’s disease [CD]-like [24%] and three with ulcerative colitis [UC]-like [5%] phenotype; 44 patients [71%] were diagnosed with otherwise unclassifiable IBD. Patients frequently required parenteral nutrition [40%], extensive immunosuppression [31%], haematopoietic stem-cell transplantation [29%], and abdominal surgery [19%]. In 31% of patients, underlying monogenic diseases were established [EPCAM, IL10, IL10RA, IL10RB, FOXP3, LRBA, SKIV2L, TTC37, TTC7A]. Phenotypic features significantly more prevalent in monogenic IBD were: consanguinity, disease onset before the 6th month of life, stunting, extensive intestinal disease and histological evidence of epithelial abnormalities. Conclusions: IBD in children with disease onset before the age of 2 years is frequently unclassifiable into Crohn’s disease and ulcerative colitis, particularly treatment resistant, and can be indistinguishable from monogenic diseases with IBD-like phenotype. PMID:27302973
Lucena-Araujo, Antonio R.; Coelho-Silva, Juan L.; Pereira-Martins, Diego A.; Thomé, Carolina; Scheucher, Priscila S.; Lange, Ana P.; Paiva, Helder H.; Hemmelgarn, Benjamin T.; Morais-Sobral, Mariana C.; Azevedo, Elisa A.; Franca-Neto, Pedro L.; Franca, Rafael F.; Silva, Cleide L.; Krause, Alexandre; Rego, Eduardo M.
2017-01-01
Here, we evaluated whether the overexpression of transcriptionally inactive ΔNp73 cooperates with PML/RARA fusion protein in the induction of an APL-leukemic phenotype, as well as its role in vitro in proliferation, myeloid differentiation, and drug-induced apoptosis. Using lentiviral gene transfer, we showed in vitro that ΔNp73 overexpression resulted in increased proliferation in murine bone marrow (BM) cells from hCG-PML/RARA transgenic mice and their wild-type (WT) counterpart, with no accumulation of cells at G2/M or S phases; instead, ΔNp73-expressing cells had a lower rate of induced apoptosis. Next, we evaluated the effect of ΔNp73 on stem-cell self-renewal and myeloid differentiation. Primary BM cells lentivirally infected with human ΔNp73 were not immortalized in culture and did not present significant changes in the percentage of CD11b. Finally, we assessed the impact of ΔNp73 on leukemogenesis or its possible cooperation with PML/RARA fusion protein in the induction of an APL-leukemic phenotype. After 120 days of follow-up, all transplanted mice were clinically healthy and, no evidence of leukemia/myelodysplasia was apparent. Taken together, our data suggest that ΔNp73 had no leukemic transformation capacity by itself and apparently did not cooperate with the PML/RARA fusion protein to induce a leukemic phenotype in a murine BM transplantation model. In addition, the forced expression of ΔNp73 in murine BM progenitors did not alter the ATRA-induced differentiation rate in vitro or induce aberrant cell proliferation, but exerted an important role in cell survival, providing resistance to drug-induced apoptosis. PMID:28035072
In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.
Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica
2018-01-01
microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.
Jung, A Ra; Yoo, Jeong Eun; Shim, Yhong-Hee; Choi, Ye-Na; Jeung, Hei-Cheul; Chung, Hyun Cheol; Rha, Sun Young; Oh, Bong-Kyeong
2013-03-01
Human immortal cells maintain their telomeres either by telomerase or by alternative lengthening of telomeres (ALT) that is based on homologous telomeric recombination. Previous studies showed that the ALT mechanism is activated in non-ALT cells when heterochromatic features are reduced. In this study, we examined the ALT phenotypes of ALT cells after treatment with trichostatin-A (TSA), which is an inhibitor of histone deacetylases and causes global chromatin decondensation. The ALT cells remained telomerase-negative after TSA treatment. ALT-associated promyelocytic leukemia (PML) nuclear bodies and telomere sister chromatid exchanges, typical ALT phenotypes, markedly increased in the TSA-treated cells, while the telomere length remained unchanged. In addition, telomerase expression in the ALT cells suppressed TSA-mediated ALT phenotype enhancement. Our results show that certain ALT phenotypes become more pronounced when chromatin is decondensed, and also suggest that the ALT mechanism may compete with telomerase for telomere maintenance in cells that lack heterochromatin.
The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer.
Ng, Charlotte K Y; Cooke, Susanna L; Howe, Kevin; Newman, Scott; Xian, Jian; Temple, Jillian; Batty, Elizabeth M; Pole, Jessica C M; Langdon, Simon P; Edwards, Paul A W; Brenton, James D
2012-04-01
High-grade serous ovarian carcinoma (HGSOC) is characterized by genomic instability, ubiquitous TP53 loss, and frequent development of platinum resistance. Loss of homologous recombination (HR) is a mutator phenotype present in 50% of HGSOCs and confers hypersensitivity to platinum treatment. We asked which other mutator phenotypes are present in HGSOC and how they drive the emergence of platinum resistance. We performed whole-genome paired-end sequencing on a model of two HGSOC cases, each consisting of a pair of cell lines established before and after clinical resistance emerged, to describe their structural variants (SVs) and to infer their ancestral genomes as the SVs present within each pair. The first case (PEO1/PEO4), with HR deficiency, acquired translocations and small deletions through its early evolution, but a revertant BRCA2 mutation restoring HR function in the resistant lineage re-stabilized its genome and reduced platinum sensitivity. The second case (PEO14/PEO23) had 216 tandem duplications and did not show evidence of HR or mismatch repair deficiency. By comparing the cell lines to the tissues from which they originated, we showed that the tandem duplicator mutator phenotype arose early in progression in vivo and persisted throughout evolution in vivo and in vitro, which may have enabled continual evolution. From the analysis of SNP array data from 454 HGSOC cases in The Cancer Genome Atlas series, we estimate that 12.8% of cases show patterns of aberrations similar to the tandem duplicator, and this phenotype is mutually exclusive with BRCA1/2 carrier mutations. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Shamah, S M; Stiles, C D; Guha, A
1993-01-01
Malignant astrocytoma is the most common primary human brain tumor. Most astrocytomas express a combination of platelet-derived growth factor (PDGF) and PDGF receptor which could close an autocrine loop. It is not known whether these autocrine loops contribute to the transformed phenotype of astrocytoma cells or are incidental to that phenotype. Here we show that dominant-negative mutants of the PDGF ligand break the autocrine loop and revert the phenotype of BALB/c 3T3 cells transformed by the PDGF-A or PDGF-B (c-sis) gene. Then, we show that these mutants are selective in that they do not alter the phenotype of 3T3 cells transformed by an activated Ha-ras or v-src gene or by simian virus 40. Finally, we show that these mutants revert the transformed phenotype of two independent human astrocytoma cell lines. They have no effect on the growth of human medulloblastoma, bladder carcinoma, or colon carcinoma cell lines. These observations are consistent with the view that PDGF autocrine loops contribute to the transformed phenotype of at least some human astrocytomas. Images PMID:8246942
A novel method for multiparameter physiological phenotype characterization at the single-cell level
NASA Astrophysics Data System (ADS)
Kelbauskas, Laimonas; Ashili, Shashanka; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen; Kumar, Ashok; Anis, Yasser; Paulson, Tom; Youngbull, Cody; Tian, Yanqing; Johnson, Roger; Holl, Mark; Meldrum, Deirdre
2011-02-01
Non-genetic intercellular heterogeneity has been increasingly recognized as one of the key factors in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis and drug resistance. Many diseases, including cancer, originate in a single or a few cells. Early detection and characterization of these abnormal cells can provide new insights into the pathogenesis and serve as a tool for better disease diagnosis and treatment. We report on a novel technology for multiparameter physiological phenotype characterization at the single-cell level. It is based on real-time measurements of concentrations of several metabolites by means of extracellular optical sensors in microchambers of sub-nL volume containing single cells. In its current configuration, the measurement platform features the capability to detect oxygen consumption rate and pH changes under normoxic and hypoxic conditions at the single-cell level. We have conceived, designed and developed a semi-automated method for single-cell manipulation and loading into microwells utilizing custom, high-precision fluid handling at the nanoliter scale. We present the results of a series of measurements of oxygen consumption rates (OCRs) of single human metaplastic esophageal epithelial cells. In addition, to assess the effects of cell-to-cell interactions, we have measured OCRs of two and three cells placed in a single well. The major advantages of the approach are a) multiplexed characterization of cell phenotype at the single-cell level, b) minimal invasiveness due to the distant positioning of sensors, and c) flexibility in terms of accommodating measurements of other metabolites or biomolecules of interest.
Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S
2012-01-01
AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167
Genetic and phenotypic intra-species variation in Candida albicans
Hirakawa, Matthew P.; Martinez, Diego A.; Sakthikumar, Sharadha; Anderson, Matthew Z.; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M.; Greenberg, Joshua M.; Berman, Judith
2015-01-01
Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. PMID:25504520
Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus.
Upton, Maureen L; Guilak, Farshid; Laursen, Tod A; Setton, Lori A
2006-06-01
The knee meniscus exhibits significant spatial variations in biochemical composition and cell morphology that reflect distinct phenotypes of cells located in the radial inner and outer regions. Associated with these cell phenotypes is a spatially heterogeneous microstructure and mechanical environment with the innermost regions experiencing higher fluid pressures and lower tensile strains than the outer regions. It is presently unknown, however, how meniscus tissue mechanics correlate with the local micromechanical environment of cells. In this study, theoretical models were developed to study mechanics of inner and outer meniscus cells with varying geometries. The results for an applied biaxial strain predict significant regional differences in the cellular mechanical environment with evidence of tensile strains along the collagen fiber direction of approximately 0.07 for the rounded inner cells, as compared to levels of 0.02-0.04 for the elongated outer meniscus cells. The results demonstrate an important mechanical role of extracellular matrix anisotropy and cell morphology in regulating the region-specific micromechanics of meniscus cells, that may further play a role in modulating cellular responses to mechanical stimuli.
Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.
Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas
2017-08-01
Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.
‘Particle genetics’: treating every cell as unique
Yvert, Gaël
2014-01-01
Genotype-phenotype relations are usually inferred from a deterministic point of view. For example, quantitative trait loci (QTL), which describe regions of the genome associated with a particular phenotype, are based on a mean trait difference between genotype categories. However, living systems comprise huge numbers of cells (the ‘particles’ of biology). Each cell can exhibit substantial phenotypic individuality, which can have dramatic consequences at the organismal level. Now, with technology capable of interrogating individual cells, it is time to consider how genotypes shape the probability laws of single cell traits. The possibility of mapping single cell probabilistic trait loci (PTL), which link genomic regions to probabilities of cellular traits, is a promising step in this direction. This approach requires thinking about phenotypes in probabilistic terms, a concept that statistical physicists have been applying to particles for a century. Here, I describe PTL and discuss their potential to enlarge our understanding of genotype-phenotype relations. PMID:24315431
Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K
1994-10-01
Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.
2018-05-14
B Acute Lymphoblastic Leukemia; B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; CD19-Positive Neoplastic Cells Present; Mixed Phenotype Acute Leukemia; Mixed Phenotype Acute Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Recurrent B Acute Lymphoblastic Leukemia; Refractory B Acute Lymphoblastic Leukemia
Frizzell, Hannah; Park, Jaehyung; Comandante Lou, Natacha; Woodrow, Kim A
2017-01-01
Dendritic cell (DC)-based immunotherapies have much utility in their ability to prime antigen-specific adaptive immune responses. However, there does not yet exist a consensus standard to how DCs should be primed. In this study, we aimed to determine the role of heterogeneous co-cultures, composed of both CD11c+ (DCs) and CD11c- cells, in combination with monophosphoryl lipid A (MPLA) stimulation on DC phenotype and function. Upon DC priming in different co-culture ratios, we observed reduced expression of MHCII and CD86 and increased antigen uptake among CD11c+ cells in a CD11c- dependent manner. DCs from all culture conditions were induced to mature by MPLA treatment, as determined by secretion of pro-inflammatory cytokines IL-12 and TNF-α. Antigen-specific stimulation of CD4+ T cells was not modulated by co-culture composition, in terms of proliferation nor levels of IFN-γ. However, the presence of CD11c- cells enhanced cross-presentation to CD8+ T cells compared to purified CD11c+ cells, resulting in increased cell proliferation along with higher IFN-γ production. These findings demonstrate the impact of cell populations present during DC priming, and point to the use of heterogeneous cultures of DCs and innate immune cells to enhance cell-mediated immunity. Copyright © 2016 Elsevier Inc. All rights reserved.
Blom, Kim; Braun, Monika; Ivarsson, Martin A; Gonzalez, Veronica D; Falconer, Karolin; Moll, Markus; Ljunggren, Hans-Gustaf; Michaëlsson, Jakob; Sandberg, Johan K
2013-03-01
The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage. Furthermore, HLA-A2- and HLA-B7-restricted YFV epitope-specific effector cells predominantly displayed a CD45RA(-)CCR7(-)PD-1(+)CD27(high) phenotype, which transitioned into a CD45RA(+)CCR7(-)PD-1(-)CD27(low) memory population phenotype. The functional profile of the YFV-specific CD8 T cell response changed in composition as it matured from an effector- to a memory-type response, and it tended to become less polyfunctional during the course of this transition. Interestingly, activation of CD4 T cells, as well as FOXP3(+) T regulatory cells, in response to YFV vaccination preceded the kinetics of the CD8 T cell response. The present results contribute to our understanding of how immunodominance patterns develop, as well as the phenotypic and functional characteristics of the primary human T cell response to a viral infection as it evolves and matures into memory.
Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation.
Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian
2017-12-01
Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (∼9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis
2016-01-01
1 AWARD NUMBER: W81XWH-15-1-0003 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR...Annual 3. DATES COVERED 10 Dec 2014 – 09 Dec 2015 4. TITLE AND SUBTITLE In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis ...cells present in rheumatoid arthritis (RA) patients exhibit a distinct cell surface phenotype and transcriptional signature that could be used to
Cepeda, Edgar B; Dediulia, Tatjana; Fernando, Joan; Bertran, Esther; Egea, Gustavo; Navarro, Estanislao; Fabregat, Isabel
2015-05-01
Hepatocellular carcinoma (HCC) cells with a mesenchymal phenotype show an asymmetric subcellular distribution of the chemokine receptor CXCR4, which is required for cell migration and invasion. In this work we examine the mechanisms that regulate the intracellular trafficking of CXCR4 in HCC cells. Results indicate that HCC cells present CXCR4 at the cell surface, but most of this protein is in endomembranes colocalizing with markers of the Golgi apparatus and recycling endosomes. The presence of high protein levels of CXCR4 present at the cell surface correlates with a mesenchymal-like phenotype and a high autocrine activation of the Transforming Growth Factor-beta (TGF-β) pathway. CXCR4 traffics along the Golgi/exocyst/plasma membrane pathway and requires EXOC4 (Sec8) component of the exocyst complex. HCC cells use distinct mechanisms for the CXCR4 internalization such as dynamin-dependent endocytosis and macropinocytosis. Regardless of the endocytic mechanisms, colocalization of CXCR4 and Rab11 is observed, which could be involved not only in receptor recycling but also in its post-Golgi transport. In summary, this work highlights membrane trafficking pathways whose pharmacological targeting could subsequently result in the inactivation of one of the main guiding mechanisms used by metastatic cells to colonize secondary organs and tissues. Copyright © 2015 Elsevier B.V. All rights reserved.
S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells
Silva, Emmanuel J.; Argyris, Prokopios P.; Zou, Xianqiong; Ross, Karen F.; Herzberg, Mark C.
2014-01-01
Intracellular calprotectin (S100A8/A9) functions in the control of the cell cycle checkpoint at G2/M. Dysregulation of S100A8/A9 appears to cause loss of the checkpoint, which frequently characterizes head and neck squamous cell carcinoma (HNSCC). In the present study, we analyzed carcinoma cells for other S100A8/A9-directed changes in malignant phenotype. Using a S100A8/A9-negative human carcinoma cell line (KB), transfection to express S100A8 and S100A9 caused selective down-regulation of MMP-2 and inhibited in vitro invasion and migration. Conversely, silencing of endogenous S100A8 and S100A9 expression in TR146 cells, a well-differentiated HNSCC cell line, increased MMP-2 activity and in vitro invasion and migration. When MMP-2 expression was silenced, cells appeared to assume a less malignant phenotype. To more closely model the architecture of cell growth in vivo, cells were grown in a 3D collagen substrate, which was compared to 2D. Growth on 3D substrates caused greater MMP-2 expression. Whereas hypermethylation of CpG islands occurs frequently in HNSCC, S100A8/A9-dependent regulation of MMP-2 could not be explained by modification of the upstream promoters of MMP2 or TIMP2. Collectively, these results suggest that intracellular S100A8/A9 contributes to the cancer cell phenotype by modulating MMP-2 expression and activity to regulate cell migration and mobility. PMID:25236491
Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas
2015-07-01
AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE July 2015 2. REPORT TYPE Annual 3. DATES COVERED 1 Jul 2014 - 30 Jun 2015 4. TITLE AND SUBTITLE Cell ...of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM ELEMENT NUMBER 6
Restraint stress alters neutrophil and macrophage phenotypes during wound healing
Tymen, Stéphanie D.; Rojas, Isolde G.; Zhou, Xiaofeng; Fang, Zong Juan; Zhao, Yan; Marucha, Phillip T.
2013-01-01
Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting. PMID:22884902
Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines
Noguchi, Ken; Dalton, Annamarie C.; Howley, Breege V.; McCall, Buckley J.; Yoshida, Akihiro; Diehl, J. Alan
2017-01-01
ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines. PMID:28545079
Report from the second cytomegalovirus and immunosenescence workshop
2011-01-01
The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion. PMID:22035114
PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials
Vamecq, Joseph; Colet, Jean-Marie; Vanden Eynde, Jean Jacques; Briand, Gilbert; Porchet, Nicole; Rocchi, Stéphane
2012-01-01
The metabolic/cell signaling basis of Warburg's effect (“aerobic glycolysis”) and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date. PMID:22654896
USDA-ARS?s Scientific Manuscript database
Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...
The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy.
Trendowski, Matthew
2015-05-01
Nearly all cancers are linked by the inexorable phenotype of metastasis as malignant growths have the capability to spread from their place of origin to distant sites throughout the body. While different cancers may have various propensities to migrate towards specific locations, they are all linked by this unifying principal. Unlike most neoplasms, leukaemia has inherent cell motility as leukocytes are required to move throughout the vascular system, suggesting that no mutations are required for anchorage independent growth. As such, it seems likely that leukaemias are inherently metastatic, endowed with the deadliest phenotype of cancer simply due to cell of origin. This article presents the biology of metastasis development and how leukaemia cells are inherently provided these phenotypic characteristics. It is then proposed how clinicians may be able to exploit the motility of leukaemia and metastatic emboli of other cancer types through an approach known as sonodynamic therapy (SDT), a treatment modality that combines chemotherapeutic agents with ultrasound to preferentially damage malignant cells. As experimental evidence has indicated, SDT is a promising therapeutic approach in need of clinical testing for further validation. Copyright © 2014 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G
2018-06-01
Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-08-24
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition.
Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells.
Sidney, Laura E; Branch, Matthew J; Dua, Harminder S; Hopkinson, Andrew
2015-12-01
The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Xu, Xiao-Jun; Song, De-Gang; Poussin, Mathilde; Ye, Qunrui; Sharma, Prannda; Rodríguez-García, Alba; Tang, Yong-Min; Powell, Daniel J.
2016-01-01
Exogenous cytokines are widely applied to enhance the anti-tumor ability of immune cells. However, systematic comparative studies of their effects on chimeric antigen receptor (CAR)-engineered T (CART) cells are lacking. In this study, CART cells targeting folate receptor-alpha were generated and expanded ex vivo in the presence of different cytokines (IL-2, IL-7, IL-15, IL-18, and IL-21), and their expansion, phenotype and cytotoxic capacity were evaluated, in vitro and in vivo. Moreover, the effect of the administration of these cytokines along with CART cells in vivo was also studied. IL-2, IL-7, and IL-15 favored the ex vivo expansion of CART cells compared to other cytokines or no cytokine treatment. IL-7 induced the highest proportion of memory stem cell-like CART cells in the final product, and IL-21 supported the expansion of CART cells with a younger phenotype, while IL-2 induced more differentiated CART cells. IL-2 and IL-15-exposed CART cells secreted more proinflammatory cytokines and presented stronger tumor-lysis ability in vitro. However, when tested in vivo, CART cells exposed to IL-2 ex vivo showed the least anti-tumor effect. In contrast, the administration of IL-15 and IL-21 in combination with CART cells in vivo increased their tumor killing capacity. According to our results, IL-7 and IL-15 show promise to promote ex vivo expansion of CART cells, while IL-15 and IL-21 seem better suited for in vivo administration after CART cell infusion. Collectively, these results may have a profound impact on the efficacy of CART cells in both hematologic and solid cancers. PMID:27409425
A strategy to apply quantitative epistasis analysis on developmental traits.
Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei
2017-05-15
Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.
Thyrotoxicosis Presenting as Unilateral Drop Foot
Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki
2017-01-01
Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot. PMID:28768980
Thyrotoxicosis Presenting as Unilateral Drop Foot.
Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki
2017-01-01
Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot.
Edge effects in game-theoretic dynamics of spatially structured tumours.
Kaznatcheev, Artem; Scott, Jacob G; Basanta, David
2015-07-06
Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary--such as a blood vessel, organ capsule or basement membrane--we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial-mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells
Ramirez, Oscar
2014-01-01
Leptin is a pleiotropic adipokine that is critical for regulating food intake and energy expenditure and also participates in functions of the immune system, including those of antigen-presenting cells. Here, we assess the effect of leptin deficiency on the function splenic dendritic cells (sDC). sDC from leptin-deficient mice (Lepob) were evaluated ex vivo for phenotype, ability to respond to inflammatory stimuli, to acquire and process antigens and to activate T cells. The data show that Lepob sDC express activation markers similar to controls and respond similarly to LPS activation or anti-CD40 cross-linking. In addition, antigen acquisition and processing by Lepob sDC was similar to controls. However, Lepob sDC elicited higher production of IFN-γ in mixed lymphocyte reactions and increased production of IL-2 by antigen-specific T-cell hybridoma relative to controls. To assess Lepob sDC activation of T cells in vivo, Lepob and control mice were infected systemically with Mycobacterium avium. Lepob mice were significantly better at neutralizing the infection as measured by splenic bacterial load over time. This was mirrored with an increased percentage of activated T cells in M. avium-infected Lepob mice. Thus, although no changes were detected in sDC phenotype, activation, antigen processing or presentation, these DC surprisingly presented an enhanced ability to activate T cells ex vivo and in vivo. These data demonstrate that leptin can modulate DC function and suggest that leptin may dampen T-cell responsiveness in the physiological setting. PMID:24966213
Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J
2013-01-01
Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.
Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution
Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D.; Rainey, Paul B.; de Visser, J. Arjan G. M.; Baudry, Jean; Bibette, Jérôme
2016-01-01
Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology. PMID:27077662
Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution.
Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D; Rainey, Paul B; de Visser, J Arjan G M; Baudry, Jean; Bibette, Jérôme
2016-01-01
Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes-via growth-over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.
Kisspeptin-10 induces endothelial cellular senescence and impaired endothelial cell growth.
Usui, Sayaka; Iso, Yoshitaka; Sasai, Masahiro; Mizukami, Takuya; Mori, Hiroyoshi; Watanabe, Takuya; Shioda, Seiji; Suzuki, Hiroshi
2014-07-01
The KPs (kisspeptins) are a family of multifunctional peptides with established roles in cancer metastasis, puberty and vasoconstriction. The effects of KPs on endothelial cells have yet to be determined. The aim of the present study was to investigate the effects of KP-10 on endothelial cell growth and the mechanisms underlying those effects. The administration of recombinant KP-10 into the hindlimbs of rats with ischaemia significantly impaired blood flow recovery, as shown by laser Doppler, and capillary growth, as shown using histology, compared with the controls. HUVECs (human umbilical vein endothelial cells) express the KP receptor and were treated with KP-10 in culture studies. KP-10 inhibited endothelial cell tube formation and proliferation in a significant and dose-dependent manner. The HUVECs treated with KP exhibited the senescent phenotype, as determined using a senescence-associated β-galactosidase assay, cell morphology analysis, and decreased Sirt1 (sirtuin 1) expression and increased p53 expression shown by Western blot analysis. Intriguingly, a pharmacological Rho kinase inhibitor, Y-27632, was found to increase the proliferation of HUVECs and to reduce the number of senescent phenotype cells affected by KP-10. In conclusion, KP-10 suppressed endothelial cells growth both in vivo and in vitro in the present study. The adverse effect of KP on endothelial cells was attributable, at least in part, to the induction of cellular senescence.
Alfonso, Pilar; Pampín, Sandra; García-Rodríguez, Beatriz; Tejedor, Teresa; Domínguez, Carmen; Rodríguez-Rey, Jose C; Giraldo, Pilar; Pocoví, Miguel
2011-01-30
Gaucher disease (GD) is a rare autosomal recessive disorder caused mainly by mutations in the glucocerebrosidase (GBA) gene. Great phenotypic variability has been observed among patients with the same genotype, suggesting other factors, such as polymorphic variants, might influence GD phenotypes. We previously reported the c.(-203)A>G (g.1256A>G) variant in exon 1 of the GBA gene in Spanish GD patients. We analyzed the frequency and transcriptional activity of the promoter carrying the G-allele using restriction isotyping, electrophoretic mobility shift assay, cell culture, transfection, and luciferase assays. We found the variant is present at a similar frequency to the control group. In our patients, the G-allele was always found in combination with another mutation in the same allele, and patients carrying the c.(-203)A>G variant showed a more severe GD phenotype. The promoter containing the G-allele showed a 35% reduction in promoter activity when transfected into HepG2 cells. The c.(-203)A>G variant seems to be a polymorphism resulting in a decrease in activity of the GBA promoter. The change, per se, is not enough to elicit a GD phenotype, but it may produce a more severe phenotype in GD patients when combined with an already defective GBA protein. Copyright © 2010 Elsevier B.V. All rights reserved.
Emperador, Sonia; Bayona-Bafaluy, M Pilar; Fernández-Marmiesse, Ana; Pineda, Mercedes; Felgueroso, Blanca; López-Gallardo, Ester; Artuch, Rafael; Roca, Iria; Ruiz-Pesini, Eduardo; Couce, María Luz; Montoya, Julio
2017-01-01
Oxidative phosphorylation dysfunction has been found in many different disorders. This biochemical pathway depends on mitochondrial protein synthesis. Thus, mutations in components of the mitochondrial translation system can be responsible for some of these pathologies. We identified a new homozygous missense mutation in the mitochondrial translation elongation factor Ts gene in a patient suffering from slowly progressive childhood ataxia and hypertrophic cardiomyopathy. Using cell, biochemical and molecular-genetic protocols, we confirm it as the etiologic factor of this phenotype. Moreover, as an important functional confirmation, we rescued the normal molecular phenotype by expression of the wild-type TSFM cDNA in patient's fibroblasts. Different TSFM mutations can produce the same or very different clinical phenotypes, going from abortions to moderately severe presentations. On the other hand, the same TSFM mutation can also produce same or different phenotypes within the same range of presentations, therefore suggesting the involvement of unknown factors. PMID:27677415
A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.
Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen
2015-03-07
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.
Sánchez, Elena G; Riera, Elena; Nogal, Marisa; Gallardo, Carmina; Fernández, Paloma; Bello-Morales, Raquel; López-Guerrero, José Antonio; Chitko-McKown, Carol G; Richt, Jürgen A; Revilla, Yolanda
2017-09-04
African swine fever virus (ASFV) is a highly pathogenic, double-stranded DNA virus with a marked tropism for cells of the monocyte-macrophage lineage, affecting swine species and provoking severe economic losses and health threats. In the present study, four established porcine cell lines, IPAM-WT, IPAM-CD163, C∆2+ and WSL, were compared to porcine alveolar macrophage (PAM) in terms of surface marker phenotype, susceptibility to ASFV infection and virus production. The virulent ASFV Armenia/07, E70 or the naturally attenuated NHV/P68 strains were used as viral models. Cells expressed only low levels of specific receptors linked to the monocyte/macrophage lineage, with low levels of infection overall, with the exception of WSL, which showed more efficient production of strain NHV/P68 but not of strains E70 and Armenia/07.
Somji, Seema; Zhou, Xu Dong; Mehus, Aaron; Sens, Mary Ann; Garrett, Scott H.; Lutz, Krista L.; Dunlevy, Jane R.; Zheng, Yun; Sens, Donald. A.
2009-01-01
This laboratory has shown that a human urothelial cell line (UROtsa) transformed by cadmium (Cd+2) produced subcutaneous tumor heterotransplants that resemble human transitional cell carcinoma (TCC). In the present study, additional Cd+2 transformed cell lines were isolated to determine if independent exposures of the cell line to Cd+2 would result in malignantly transformed cell lines possessing similar phenotypic properties. Seven independent isolates were isolated and assessed for their doubling times, morphology, ability to heterotransplant subcutaneously and in the peritoneal cavity of nude mice and for the expression keratin 7. The 7 cell lines all displayed an epithelial morphology with no evidence of squamous differentiation. Doubling times were variable among the isolates, being significantly reduced or similar to the parental cells. All 7 isolates were able to form subcutaneous tumor heterotransplants with a TCC morphology and all heterotransplants displayed areas of squamous differentiation of the transitional cells. The degree of squamous differentiation varied among the isolates. In contrast to subcutaneous tumor formation, only 1 isolate of the Cd+2 transformed cells (UTCd#1) was able to effectively colonize multiple sites within the peritoneal cavity. An analysis of keratin 7 expression showed no correlation with squamous differentiation for the subcutaneous heterotransplants generated from the 7 cell lines. Keratin 7 was expressed in 6 of the 7 cell lines and their subcutaneous tumor heterotransplants. Keratin 7 was not expressed in the cell line that was able to form tumors within the peritoneal cavity. These results show that individual isolates of Cd+2 transformed cells have both similarities and differences in their phenotype. PMID:19921857
Defective immunoregulatory T-cell function in chronic lymphocytic leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, T.; Ozer, H.; Henderson, E.S.
Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patientmore » with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the ..mu..delta, ..mu cap alpha.., or ..mu.. phenotype had both helper and suppressor cell defects.« less
Remo, Andrea; Manfrin, Erminia; Parcesepe, Pietro; Ferrarini, Alberto; Han, Hye Seung; Ugnius, Mickys; Laudanna, Carmelo; Simbolo, Michele; Malanga, Donatella; Mendes Oliveira, Duarte; Baritono, Elisabetta; Colangelo, Tommaso; Sabatino, Lina; Giuliani, Jacopo; Molinari, Enrico; Garonzi, Marianna; Xumerle, Luciano; Delledonne, Massimo; Giordano, Guido; Ghimenton, Claudio; Lonardo, Fortunato; D'angelo, Fulvio; Grillo, Federica; Mastracci, Luca; Viglietto, Giuseppe; Ceccarelli, Michele; Colantuoni, Vittorio; Scarpa, Aldo; Pancione, Massimo
2018-05-21
Centrosome anomalies contribute to tumorigenesis but it remains unclear how they are generated in lethal cancer phenotypes. Here, it is demonstrated that human microsatellite instable (MSI) and BRAF(V600E) mutant colorectal cancers with a lethal rhabdoid phenotype are characterized by inactivation of centrosomal functions. A splice site mutation that causes an unbalanced dosage of rootletin (CROCC), a centrosomal-linker component required for centrosome cohesion and separation at the chromosome 1p36.13 locus, resulted in abnormally shaped centrosomes in rhabdoid cells from human colon tissues. Notably, deleterious deletions at 1p36.13 were recurrent in a subgroup of BRAF(V600E) mutant and microsatellite stable (MSS) rhabdoid colorectal cancers but not in classical colorectal cancer or pediatric rhabdoid tumors. Interfering with CROCC expression in near-diploid BRAF(V600E) mutant/MSI colon cancer cells disrupts bipolar mitotic spindle architecture, promotes tetraploid segregation errors resulting in a highly aggressive rhabdoid-like phenotype in vitro. Restoring near-wild-type levels of CROCC in a metastatic model harboring 1p36.13 deletion results in correction of centrosome segregation errors and cell death, revealing a mechanism of tolerance to mitotic errors and tetraploidization promoted by deleterious 1p36.13 loss. Accordingly, cancer cells lacking 1p36.13 display far greater sensitivity to centrosome spindle pole stabilizing agents in vitro. These data shed light on a previously unknown link between centrosome cohesion defects and lethal cancer phenotypes providing new insight into pathways underlying genome instability. Mis-segregation of chromosomes is a prominent feature of chromosome instability and intra-tumoral heterogeneity recurrent in metastatic tumors for which the molecular basis is unknown. The present study provides insight into the mechanism by which defects in rootletin, a centrosome linker component causes tetraploid segregation errors and phenotypic transition to a clinically devastating form of malignant rhabdoid tumor. Copyright ©2018, American Association for Cancer Research.
Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections
NASA Astrophysics Data System (ADS)
Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.
2017-02-01
Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically opaque tissues. Further development of soft tissue microCT, visualization and quantitative tool development will enhance its utility.
The puzzle of immune phenotypes of childhood asthma.
Landgraf-Rauf, Katja; Anselm, Bettina; Schaub, Bianca
2016-12-01
Asthma represents the most common chronic childhood disease worldwide. Whereas preschool children present with wheezing triggered by different factors (multitrigger and viral wheeze), clinical asthma manifestation in school children has previously been classified as allergic and non-allergic asthma. For both, the underlying immunological mechanisms are not yet understood in depth in children. Treatment is still prescribed regardless of underlying mechanisms, and children are not always treated successfully. This review summarizes recent key findings on the complex mechanisms of the development and manifestation of childhood asthma. Whereas traditional classification of childhood asthma is primarily based on clinical symptoms like wheezing and atopy, novel approaches to specify asthma phenotypes are under way and face challenges such as including the stability of phenotypes over time and transition into adulthood. Epidemiological studies enclose more information on the patient's disease history and environmental influences. Latest studies define endotypes based on molecular and cellular mechanisms, for example defining risk and protective single nucleotide polymorphisms (SNPs) and new immune phenotypes, showing promising results. Also, regulatory T cells and recently discovered T helper cell subtypes such as Th9 and Th17 cells were shown to be important for the development of asthma. Innate lymphoid cells (ILC) could play a critical role in asthma patients as they produce different cytokines associated with asthma. Epigenetic findings showed different acetylation and methylation patterns for children with allergic and non-allergic asthma. On a posttranscriptional level, miRNAs are regulating factors identified to differ between asthma patients and healthy controls and also indicate differences within asthma phenotypes. Metabolomics is another exciting chapter important for endotyping asthmatic children. Despite the development of new biomarkers and the discovery of new immunological molecules, the complex puzzle of childhood asthma is still far from being completed. Addressing the current challenges of distinct clinical asthma and wheeze phenotypes, including their stability and underlying endotypes, involves addressing the interplay of innate and adaptive immune regulatory mechanisms in large, interdisciplinary cohorts.
Stadler, Mira; Scherzer, Martin; Walter, Stefanie; Holzner, Silvio; Pudelko, Karoline; Riedl, Angelika; Unger, Christine; Kramer, Nina; Weil, Beatrix; Neesen, Jürgen; Hengstschläger, Markus; Dolznig, Helmut
2018-01-18
Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.
An image analysis toolbox for high-throughput C. elegans assays
Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.
2012-01-01
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656
Nasal lavage, blood or sputum: Which is best for phenotyping asthma?
de Farias, Camyla F; Amorim, Maria M F; Dracoulakis, Michel; Caetano, Lilian B; Santoro, Ilka L; Fernandes, Ana L G
2017-05-01
Determination of asthma phenotypes, particularly inflammatory phenotypes, helps guide treatment and management of this heterogeneous disease. Induced sputum cytology has been the gold standard for determination of inflammatory phenotypes, but sputum induction is fairly invasive and technically challenging. Blood and nasal lavage cytology have been suggested as substitutes, but have not been fully verified. The aim of this study is to determine the accuracy of blood and nasal lavage cytometry as indicators of inflammatory phenotypes in asthma. Clinical evaluation, Asthma Control Questionnaire (ACQ) and spirometry were performed for 121 adult asthma patients, and blood, nasal lavage and induced sputum samples were taken. Eosinophils and neutrophils were counted in three samples from each subject. Inflammatory phenotypes (eosinophilic, neutrophilic, mixed and paucicellular) and cells counts were analysed using Venn diagram and receiver operating characteristic (ROC) curve, respectively. ACQ score, spirometry and bronchodilator response did not differ among subjects with different inflammatory phenotypes. Inflammatory phenotypes defined by nasal lavage cytometry were in better concordance than those defined by blood cell counts with phenotypes determined by sputum cytology, and were significantly correlated with sputum phenotypes. For eosinophilia, nasal lavage cytology showed better accuracy than blood cytology (area under the curve (AUC): 0.89 vs 0.65). For all phenotypes, sensitivity and positive and negative predictive power were higher for nasal lavage cytometry than for blood. Blood cell counts gave a high level of false positives for all inflammatory phenotypes. We recommend nasal lavage cytology over blood cell count as a substitute for sputum cytology to identify inflammatory phenotypes in asthma. © 2016 Asian Pacific Society of Respirology.
Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.
Hey, Ying-Ying; O'Neill, Helen C
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Kim, Jong-Hyuk; Chon, Seung-Ki; Im, Keum-Soon; Kim, Na-Hyun; Sur, Jung-Hyang
2013-04-01
Abundant lymphocyte infiltration is frequently found in canine malignant mammary tumors, but the pathological features and immunophenotypes associated with the infiltration remain to be elucidated. The aim of the present study was to evaluate the relationship between lymphocyte infiltration, histopathological features, and molecular phenotype in canine mammary carcinoma (MC). The study was done with archived formalin-fixed, paraffin-embedded samples (n = 47) by histologic and immunohistochemical methods. The degree of lymphocyte infiltration was evaluated by morphologic analysis, and the T- and B-cell populations as well as the T/B-cell ratio were evaluated by morphometric analysis; results were compared with the histologic features and molecular phenotypes. The degree of lymphocyte infiltration was significantly higher in MCs with lymphatic invasion than in those without lymphatic invasion (P < 0.0001) and in tumors of high histologic grade compared with those of lower histologic grade (P = 0.045). Morphometric analysis showed a larger amount of T-cells and B-cells in MCs with a higher histologic grade and lymphatic invasion, but the T/B ratio did not change. Lymphocyte infiltration was not associated with histologic type or molecular phenotype, as assessed from the immunohistochemical expression of epidermal growth factor receptor 2, estrogen receptor, cytokeratin 14, and p63. Since intense lymphocyte infiltration was associated with aggressive histologic features, lymphocytes may be important for tumor aggressiveness and greater malignant behavior in the tumor microenvironment.
van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.
2016-01-01
Introduction Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. Methods and Findings PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07–3.1%). On day 180, these cells were still present (median 0.06%, range 0.02–0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. Conclusion The presence of a functionally competent YF-specific memory T-cell pool 18 years and sufficient titers of neutralizing antibodies 35–40 years after first vaccination suggest that single vaccination may be sufficient to provide long-term immunity. PMID:26977808
Phenotypic switching in bacteria
NASA Astrophysics Data System (ADS)
Merrin, Jack
Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial genetic networks that would implement a more general theoretical model of phenotypic switching. We will use a new cloning strategy in order to systematically assemble a large number of genetic features, such as site-specific recombination components from the R64 plasmid, which invert several coexisting DNA segments. The inversion of these segments would lead to discrete phenotypic transitions inside a living cell. These artificial phenotypic switches can be controlled precisely in experiments and may serve as a benchmark for their natural counterparts.
Shimano, Koichi; Satake, Makoto; Okaya, Atsuhito; Kitanaka, Junichi; Kitanaka, Nobue; Takemura, Motohiko; Sakagami, Masafumi; Terada, Nobuyuki; Tsujimura, Tohru
2003-01-01
Organ-specific stem cells can be identified by the side population (SP) phenotype, which is defined by the property to effectively exclude the Hoechst 33342 dye. The ATP-binding cassette transporter ABCG2/BCRP1 mediates the SP phenotype. Because hepatic oval cells possess several characteristics of stem cells, we examined whether they have the SP phenotype using the 2-acetylaminofluorene/partial hepatectomy (PH) model. Fluorescence-activated cell sorting analysis showed that a population of non-parenchymal cells containing oval cells, prepared on day 7 after PH, carried a significant number of SP cells, whereas that of non-parenchymal cells without oval cells, prepared on day 0 after PH, did not. Northern blot analysis using total liver RNA obtained on various days after PH showed that the expression of ABCG2/BCRP1 mRNA increased after PH, reaching the highest level on day 7, and then gradually decreased. This pattern of changes in the ABCG2/BCRP1 mRNA level was well correlated to that in the number of oval cells. Furthermore, in situ hybridization revealed that oval cells were the sites of expression of ABCG2/BCRP1 mRNA. These results indicate that oval cells have the SP phenotype defined by expression of ABCG2/BCRP1, suggesting that oval cells may represent stem cells in the liver. PMID:12819005
Gay, Laura; Baker, Ann-Marie; Graham, Trevor A.
2016-01-01
The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment. PMID:26973786
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Banerjee, Sanjeev; Ahmad, Aamir; Li, Yiwei; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.
2011-01-01
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of Epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein. PMID:21503965
Bottoni, Patrizia; Isgrò, Maria Antonietta; Scatena, Roberto
2016-01-01
The epithelial-mesenchymal transition (EMT) is a morphogenetic process that results in a loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. First described in embryogenesis, the EMT has been recently implicated in carcinogenesis and tumor progression. In addition, recent evidence has shown that stem-like cancer cells present the hallmarks of the EMT. Some of the molecular mechanisms related to the interrelationships between cancer pathophysiology and the EMT are well-defined. Nevertheless, the precise molecular mechanism by which epithelial cancer cells acquire the mesenchymal phenotype remains largely unknown. This review focuses on various proteomic strategies with the goal of better understanding the physiological and pathological mechanisms of the EMT process.
Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.
MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R
2006-12-19
Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo.
Following damage, the majority of bone marrow-derived airway cells express an epithelial marker
MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R
2006-01-01
Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. Conclusion The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo. PMID:17177981
Mesenchymal Stem Cell Spheroids Retain Osteogenic Phenotype Through α2β1 Signaling
Murphy, Kaitlin C.; Hoch, Allison I.; Harvestine, Jenna N.; Zhou, Dejie
2016-01-01
The induction of mesenchymal stem cells (MSCs) toward the osteoblastic lineage using osteogenic supplements prior to implantation is one approach under examination to enhance their bone-forming potential. MSCs rapidly lose their induced phenotype upon removal of the soluble stimuli; however, their bone-forming potential can be sustained when provided with continued instruction via extracellular matrix (ECM) cues. In comparison with dissociated cells, MSC spheroids exhibit improved survival and secretion of trophic factors while maintaining their osteogenic potential. We hypothesized that entrapment of MSC spheroids formed from osteogenically induced cells would exhibit better preservation of their bone-forming potential than would dissociated cells from monolayer culture. Spheroids exhibited comparable osteogenic potential and increased proangiogenic potential with or without osteogenic preconditioning versus monolayer-cultured MSCs. Spheroids were then entrapped in collagen hydrogels, and the osteogenic stimulus was removed. In comparison with entrapped dissociated MSCs, spheroids exhibited significantly increased markers of osteogenic differentiation. The capacity of MSC spheroids to retain their osteogenic phenotype upon withdrawal of inductive cues was mediated by α2β1 integrin binding to cell-secreted ECM. These results demonstrate the capacity of spheroidal culture to sustain the mineral-producing phenotype of MSCs, thus enhancing their contribution toward bone formation and repair. Significance Despite the promise of mesenchymal stem cells (MSCs) for cell-based therapies for tissue repair and regeneration, there is little evidence that transplanted MSCs directly contribute to new bone formation, suggesting that induced cells rapidly lose their osteogenic phenotype or undergo apoptosis. In comparison with dissociated cells, MSC spheroids exhibit increased trophic factor secretion and improved cell survival. The loss of phenotype represents a significant clinical challenge for cell therapies, yet there is no evidence for whether MSC spheroids retain their osteogenic phenotype upon entrapment in a clinically relevant biomaterial. These findings demonstrate that MSC spheroids retain their osteogenic phenotype better than do dissociated MSCs, and this is due to integrin engagement with the cell-secreted extracellular matrix. These data provide evidence for a novel approach for potentiating the use of MSCs in bone repair. PMID:27365484
Tropini, Carolina; Huang, Kerwyn Casey
2012-01-01
Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent flagellar pole development. We further find that allosteric regulation of PleC observed in vitro does not affect the predicted in vivo developmental phenotypes. Taken together, our model suggests that cells can tolerate perturbations to localization phenotypes, whose evolutionary origins may be connected with reducing protein expression or with decoupling pre- and post-division phenotypes. PMID:22876167
Yang, Yun-Na; Zhang, Xiang-Hua; Wang, Yan-Ming; Zhang, Xi; Gu, Zheng
2018-05-01
Malignant gliomas are treated with temozolomide (TMZ) at present, but often exhibit resistance to this agent. Cancer-initiating cells (CICs) have been suggested to lead to TMZ resistance. The mechanisms underlying CICs-based TMZ resistance are not fully understood. MicroRNAs (miRNAs) have been demonstrated to serve important roles in tumorigenesis and TMZ resistance. In the present study, a sphere forming assay and western blot analysis were performed to detect the formation of CICs and fibroblast activation protein α (FAP-α) protein expression. It was revealed that TMZ resistance promoted the formation of CICs and upregulated FAP-α expression in glioblastoma cells. Over-expressing FAP-α was also demonstrated to promote TMZ resistance and induce the formation of CICs in U251MG cells. In addition, using a reverse transcription-quantitative polymerase chain reaction, it was observed that miR-204 was downregulated in U251MG-resistant (-R) cells. miR-204 expression negatively correlated with the FAP-α levels in human glioblastoma tissues, and it may inhibit the formation of CICs and reverse TMZ resistance in U251MG-R cells. Therefore, it was concluded that miR-204 reversed temozolomide resistance and inhibited CICs phenotypes by degrading FAP-α in glioblastoma.
Yang, Yun-Na; Zhang, Xiang-Hua; Wang, Yan-Ming; Zhang, Xi; Gu, Zheng
2018-01-01
Malignant gliomas are treated with temozolomide (TMZ) at present, but often exhibit resistance to this agent. Cancer-initiating cells (CICs) have been suggested to lead to TMZ resistance. The mechanisms underlying CICs-based TMZ resistance are not fully understood. MicroRNAs (miRNAs) have been demonstrated to serve important roles in tumorigenesis and TMZ resistance. In the present study, a sphere forming assay and western blot analysis were performed to detect the formation of CICs and fibroblast activation protein α (FAP-α) protein expression. It was revealed that TMZ resistance promoted the formation of CICs and upregulated FAP-α expression in glioblastoma cells. Over-expressing FAP-α was also demonstrated to promote TMZ resistance and induce the formation of CICs in U251MG cells. In addition, using a reverse transcription-quantitative polymerase chain reaction, it was observed that miR-204 was downregulated in U251MG-resistant (-R) cells. miR-204 expression negatively correlated with the FAP-α levels in human glioblastoma tissues, and it may inhibit the formation of CICs and reverse TMZ resistance in U251MG-R cells. Therefore, it was concluded that miR-204 reversed temozolomide resistance and inhibited CICs phenotypes by degrading FAP-α in glioblastoma. PMID:29725461
In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis
2016-01-01
1 AWARD NUMBER: W81XWH-15-1-0004 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR...present in rheumatoid arthritis (RA) patients exhibit a distinct cell surface phenotype and transcriptional signature that could be used to predict...and are on track to achieve our Year 2 goals 15. SUBJECT TERMS Rheumatoid arthritis ; CD4 T cells; citrulline; HLA class II tetramers; RNAseq
Salama, S
2005-06-01
Posttransplantation lymphoproliferative disorders (PTLD) presenting clinically in the skin are rare and usually of B-cell phenotype. Only 7 cases of cutaneous T-cell PTLD have been previously reported, mostly mycosis fungoides type, with no known cases of "cutaneous" presentation by CD30 (Ki-1) anaplastic large cell lymphoma (ALCL). The case reported is a 59-year-old male who developed multiple skin nodules on the right leg, 6 years following renal transplantation. Initial biopsy showed ALCL involving the dermis with a background rich in neutrophils. The neoplastic cells were of T-cell phenotype, strongly CD30 with typical staining, and BCL-2 positive, but P53 negative. No EBV was detected by IHC, ISH, or DNA analysis. One year later, he developed painful subcutaneous nodules with surrounding erythema, resembling deep pustules or panniculitis, which on biopsy showed preferential involvement of the subcutaneous fat and prominent component of neutrophils. Twenty-two months following diagnosis, he died of cardiac failure with terminal myocardial infarct. There was however no clinical evidence of systemic spread of the lymphoma.This report adds to the clinical and morphologic spectrum of these rare "cutaneous" lymphomas of T-cell lineage arising in the posttransplantation setting, and suggests that EBV does not play a role in their pathogenesis.
Lourenço, O; Fonseca, A M; Paiva, A; Arosa, F A; Taborda-Barata, L
2006-01-01
CD8+ T suppressor cells may play a role in immunoregulation. Recent studies have characterized this population by the lack of the CD28 molecule. These CD8+CD28 T cells differ phenotypically and functionally from CD8 + CD28 + T cells. Little is known about CD8 + CD28 cells in atopy. Our aim was to analyze the phenotype and functional properties of CD8 + CD28T cells in atopic and non-atopic individuals. Peripheral blood mononuclear cells (PBMC) were obtained after density gradient centrifugation. CD8 + CD28 and CD8 + CD28 + T cells were isolated using immunomagnetic beads. Relative percentages of these cells and expression of several phenotypic markers were analyzed by flow cytometry. Proliferation was assessed by thymidine incorporation in isolated populations and in co-cultures with PBMC using Dermatophagoides pteronyssinus as stimulus. Cytokine synthesis was evaluated in culture supernatants by cytometric bead array. The relative percentages of CD8+CD28 T cells and their phenotypic expression in atopic and non-atopic volunteers were not significantly different. However, CD8 + CD28 T cells showed greater proliferation than did CD8+CD28+ T cells when stimulated with D. pteronyssinus, although cytokine synthesis patterns were similar. CD8+CD28 co-cultures with PBMC showed greater proliferation than CD8+CD28+ T cell co-cultures, but cytokine synthesis patterns were not different. Our data confirm phenotypic and functional differences between CD28+ and CD28 T cells, irrespective of atopic status. Purified human CD8+CD28 T cells, freshly isolated from peripheral blood, do not have suppressor properties on allergen-specific proliferation or on cytokine synthesis in PBMC.
Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence
de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira
2014-01-01
Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361
Radiofrequency treatment alters cancer cell phenotype
NASA Astrophysics Data System (ADS)
Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana
2015-07-01
The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-01-01
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition. DOI: http://dx.doi.org/10.7554/eLife.07935.001 PMID:26302311
Park, Jaehyung; Bryers, James D
2013-05-01
In a companion article to this study,(1) the successful programming of a JAWSII dendritic cell (DC) line's antigen uptake and processing was demonstrated based on pre-treatment of DCs with a specific 'cocktail' of select chemokines. Chemokine pre-treatment modulated cytokine production before and after DC maturation [by lipopolysaccharide (LPS)]. After DC maturation, it induced an antigen uptake and processing capacity at levels 36% and 82% higher than in immature DCs, respectively. Such programming proffers a potential new approach to enhance vaccine efficiency. Unfortunately, simply enhancing antigen uptake does not guarantee the desired activation and proliferation of lymphocytes, e.g. CD4(+) T cells. In this study, phenotype changes and antigen presentation capacity of chemokine pre-treated murine bone marrow-derived DCs were examined in long-term co-culture with antigen-specific CD4(+) T cells to quantify how chemokine pre-treatment may impact the adaptive immune response. When a model antigen, ovalbumin (OVA), was added after intentional LPS maturation of chemokine-treated DCs, OVA-biased CD4(+) T-cell proliferation was initiated from ~ 100% more undivided naive T cells as compared to DCs treated only with LPS. Secretion of the cytokines interferon-γ, interleukin-1β, interleukin-2 and interleukin-10 in the CD4(+) T cell : DC co-culture (with or without chemokine pre-treatment) were essentially the same. Chemokine programming of DCs with a 7 : 3 ratio of CCL3 : CCL19 followed by LPS treatment maintained partial immature phenotypes of DCs, as indicated by surface marker (CD80 and CD86) expression over time. Results here and in our companion paper suggest that chemokine programming of DCs may provide a novel immunotherapy strategy to obviate the natural endocytosis limit of DC antigen uptake, thus potentially increasing DC-based vaccine efficiency. © 2012 Blackwell Publishing Ltd.
Attrition of memory CD8 T cells during sepsis requires LFA-1.
Serbanescu, Mara A; Ramonell, Kimberly M; Hadley, Annette; Margoles, Lindsay M; Mittal, Rohit; Lyons, John D; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L; McConnell, Kevin W
2016-11-01
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69 + CD25 int CD62L HI ) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain "unactivated" (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44 HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis. © Society for Leukocyte Biology.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P
2016-05-31
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.
2016-01-01
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916
Attrition of memory CD8 T cells during sepsis requires LFA-1
Serbanescu, Mara A.; Ramonell, Kimberly M.; Hadley, Annette; Margoles, Lindsay M.; Mittal, Rohit; Lyons, John D.; Liang, Zhe; Coopersmith, Craig M.; Ford, Mandy L.; McConnell, Kevin W.
2016-01-01
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69+CD25intCD62LHI) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain “unactivated” (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis. PMID:27286793
Ji, Wenxiang; Yu, Yongfeng; Li, Ziming; Wang, Guan; Li, Fan; Xia, Weiliang; Lu, Shun
2016-03-22
Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed the growth of tumor spheres and reduced ALDH positive proportion in FGFR1-amplified lung cancer cells in vitro, as well as inhibited the growth of oncospheres and parental cells in xenograft models. Knockdown of FGFR1 recaptured the similar effect as AZD4547 in vitro. Furthermore, activation of FGFR1 and subsequently its downstream ERK signaling enhanced the expression and transcriptional activity of GLI2, which could be blocked by FGFR1 inhibitor/silencing or ERK inhibitor. Knockdown of GLI2 directly inhibited the stem-like phenotype of FGFR1-amilified cells, whereas overexpression of GLI2 sufficiently rescued the phenotype caused by FGFR1 knockdown. Notably we also identified a correlation between FGFR1 and GLI2 expressions from clinical data, as well as an inverse relationship with progression free survival (PFS). Together our study suggests that the FGFR1/GLI2 axis promotes the lung cancer stem cell-like phenotype. These results support a rational strategy of combination of FGFR1 and GLI inhibitors for treatment of FGFR1-amplified lung cancers, especially LSCC.
Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy.
Dale, Matthew A; Ruhlman, Melissa K; Baxter, B Timothy
2015-08-01
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. © 2015 American Heart Association, Inc.
Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy
Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy
2015-01-01
Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582
Chorzalska, Anna; Salloum, Ibrahem; Shafqat, Hammad; Khan, Saad; Marjon, Philip; Treaba, Diana; Schorl, Christoph; Morgan, John; Bryke, Christine R.; Falanga, Vincent; Zhao, Thing C.; Reagan, John; Winer, Eric; Olszewski, Adam; Al-Homsi, Samer; Kouttab, Nicola; Dubielecka, Patrycja M.
2014-01-01
The basis for persistence of leukemic stem cells in the bone marrow microenvironment (BMME) remains poorly understood. We present evidence that signaling crosstalk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl positive CD34+ progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations. This inverse correlation between Abi-1 and α4 integrin expression, as well as linkage to elevated phospho-Akt and phospho-Erk signaling, was confirmed in imatinib mesylate (IM) resistant leukemic cells. These results indicate that the α4-Abi-1 signaling pathway may mediate acquisition of the drug resistant phenotype of leukemic cells. PMID:24699303
Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.
Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara
2015-10-01
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...
2016-11-16
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
Genetic and phenotypic intra-species variation in Candida albicans.
Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A
2015-03-01
Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. © 2015 Hirakawa et al.; Published by Cold Spring Harbor Laboratory Press.
Influence of tumors on protective anti-tumor immunity and the effects of irradiation
Foulds, Gemma A.; Radons, Jürgen; Kreuzer, Mira; Multhoff, Gabriele; Pockley, Alan G.
2012-01-01
Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer. PMID:23378947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcellos-Hoff, Mary Helen
We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive andmore » negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.« less
Ruskoski, Sallie A; Champlin, Franklin R
2017-07-01
The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.
Aguado, Enrique; Garcia-Cozar, Francisco
2014-01-01
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502
S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells.
Silva, Emmanuel J; Argyris, Prokopios P; Zou, Xianqiong; Ross, Karen F; Herzberg, Mark C
2014-10-01
Intracellular calprotectin (S100A8/A9) functions in the control of the cell cycle checkpoint at G2/M. Dysregulation of S100A8/A9 appears to cause loss of the checkpoint, which frequently characterizes head and neck squamous cell carcinoma (HNSCC). In the present study, we analyzed carcinoma cells for other S100A8/A9-directed changes in malignant phenotype. Using a S100A8/A9-negative human carcinoma cell line (KB), transfection to express S100A8 and S100A9 caused selective down-regulation of MMP-2 and inhibited in vitro invasion and migration. Conversely, silencing of endogenous S100A8 and S100A9 expression in TR146 cells, a well-differentiated HNSCC cell line, increased MMP-2 activity and in vitro invasion and migration. When MMP-2 expression was silenced, cells appeared to assume a less malignant phenotype. To more closely model the architecture of cell growth in vivo, cells were grown in a 3D collagen substrate, which was compared to 2D. Growth on 3D substrates caused greater MMP-2 expression. Whereas hypermethylation of CpG islands occurs frequently in HNSCC, S100A8/A9-dependent regulation of MMP-2 could not be explained by modification of the upstream promoters of MMP2 or TIMP2. Collectively, these results suggest that intracellular S100A8/A9 contributes to the cancer cell phenotype by modulating MMP-2 expression and activity to regulate cell migration and mobility. Published by Elsevier Ltd.
Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti
2017-06-01
Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.
Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron
2017-06-26
Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.
Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma
Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary
2016-01-01
Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169
[Characterization of epithelial primary culture from human conjunctiva].
Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A
2014-01-01
To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
Lu, Helen H; Kofron, Michelle D; El-Amin, Saadiq F; Attawia, Mohammed A; Laurencin, Cato T
2003-06-13
Over 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue. Results confirmed that muscle-derived cells attached and proliferated on the PLAGA substrates. BMP-7 released from PLAGA induced the muscle-derived cells to increase bone marker expression and form mineralized cultures. These results demonstrate the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype by muscle-derived cells and present a new paradigm for bone tissue engineering.
Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype
NASA Astrophysics Data System (ADS)
Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert
Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.
Arosa, F A; Oliveira, L; Porto, G; da Silva, B M; Kruijer, W; Veltman, J; de Sousa, M
1997-03-01
The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28- T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population 'to expand', coinciding with an 'expansion' of CD8+ CD28- T cells in peripheral blood of HLA-A3+ but not HLA-A3- HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28- T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH.
Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28− T cells
AROSA, F A; OLIVEIRA, L; PORTO, G; DA SILVA, B M; KRUIJER, W; VELTMAN, J; DE SOUSA, M
1997-01-01
The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28− T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population ‘to expand’, coinciding with an ‘expansion’ of CD8+ CD28− T cells in peripheral blood of HLA-A3+ but not HLA-A3− HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28− T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH. PMID:9067531
Teasdale, Margaret E; Liu, Jiayuan; Wallace, Joselynn; Akhlaghi, Fatemeh; Rowley, David C
2009-02-01
Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 microg/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding.
Prognostic significance of monocarboxylate transporter expression in oral cavity tumors
Simões-Sousa, Susana; Granja, Sara; Pinheiro, Céline; Fernandes, Daniela; Longatto-Filho, Adhemar; Laus, Ana Carolina; Alves, Cira Danielle Casado; Suárez-Peñaranda, J. M.; Pérez-Sayáns, Mario; Lopes Carvalho, Andre; Schmitt, Fernando C.; García-García, Abel; Baltazar, Fatima
2016-01-01
ABSTRACT Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer. The majority of patients present advanced stage disease and has poor survival. Therefore, it is imperative to search for new biomarkers and new alternative and effective treatment options. Most cancer cells rely on aerobic glycolysis to generate energy and metabolic intermediates. This phenotype is a hallmark of cancer, characterized by an increase in glucose consumption and production of high amounts of lactate. Consequently, cancer cells need to up-regulate many proteins and enzymes related with the glycolytic metabolism. Thus, the aim of this study was to characterize metabolic phenotype of oral cavity cancers (OCC) by assessing the expression pattern of monocarboxylate transporters (MCTs) 1, 2 and 4 and other proteins related with the glycolytic phenotype. Material and Methods: We evaluated the immunohistochemical expression of MCT1, MCT4, CD147, GLUT1 and CAIX in 135 human samples of OCC and investigated the correlation with clinicopathological parameters and the possible association with prognosis. Results: We observed that all proteins analyzed presented significantly higher plasma membrane expression in neoplastic compared to non-neoplastic samples. MCT4 was significantly associated with T-stage and advanced tumoral stage, while CD147 was significantly correlated with histologic differentiation. Interestingly, tumors expressing both MCT1 and MCT4 but negative for MCT2 were associated with shorter overall survival. Conclusion: Overexpression of MCT1/4, CD147, GLUT1 and CAIX, supports previous findings of metabolic reprograming in OCC, warranting future studies to explore the hyper-glycolytic phenotype of these tumors. Importantly, MCT expression revealed to have a prognostic value in OCC survival. PMID:27232157
Alfredsson, Christina Fjæraa; Rendel, Filip; Liang, Qui-Li; Sundström, Birgitta E; Nånberg, Eewa
2015-12-01
Ellagic acid has previously been reported to induce reduced proliferation and activation of apoptosis in several tumor cell lines including our own previous data from non-differentiated human neuroblastoma SH-SY5Y cells. The aim of this study was now to investigate if in vitro differentiation with the phorbol ester 12-O- tetradecanoylphorbol-13-acetate or the vitamin A derivative all-trans retinoic acid altered the sensitivity to ellagic acid in SH-SY5Y cells. The methods used were cell counting and LDH-assay for evaluation of cell number and cell death, flow cytometric analysis of SubG1- and TUNEL-analysis for apoptosis and western blot for expression of apoptosis-associated proteins. In vitro differentiation was shown to reduce the sensitivity to ellagic acid with respect to cell detachment, loss of viability and activation of apoptosis. The protective effect was phenotype-specific and most prominent in all-trans retinoic acid-differentiated cultures. Differentiation-dependent up-regulation of Bcl-2 and integrin expression is introduced as possible protective mechanisms. The presented data also point to a positive correlation between proliferative activity and sensitivity to ellagic-acid-induced cell detachment. In conclusion, the presented data emphasize the need to consider degree of neuronal differentiation and phenotype of neuroblastoma cells when discussing a potential pharmaceutical application of ellagic acid in tumor treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Brown, Robin; Donnelly, Deirdre E; Allen, Derek; Loughrey, Maurice B; Morrison, Patrick J
2014-01-01
Familial Urothelial cell bladder cancer is rare. We report two families with urothelial cell carcinoma (UCC) of bladder with family history in other relatives, displaying probable autosomal dominant inheritance and a late onset pure UCC phenotype, and document the phenotype in each family. Descriptive familial study on two pedigrees over three generations. Two families with UCC bladder were identified, and the phenotype documented, each family having three cases of late onset UCC. Some cases of UCC are hereditary and may display autosomal dominant inheritance with late onset of the cancer. Clinicians should be aware of the existence of a familial late onset UCC phenotype when managing cases of UCC.
Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia
2014-01-01
Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.
Lim, Yat-Yuen; Wright, Josephine A; Attema, Joanne L; Gregory, Philip A; Bert, Andrew G; Smith, Eric; Thomas, Daniel; Lopez, Angel F; Drew, Paul A; Khew-Goodall, Yeesim; Goodall, Gregory J
2013-05-15
The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.
Orlando, Paul A; Gatenby, Robert A; Brown, Joel S
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.
Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890
Huang, Yezhou; Li, Shao
2010-01-18
Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-alpha on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-beta, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-alpha respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis.
2010-01-01
Background Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. Methods With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. Results A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-α on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-β, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-α respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. Conclusion The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis. PMID:20122205
Engineering cells with intracellular agent–loaded microparticles to control cell phenotype
Ankrum, James A; Miranda, Oscar R; Ng, Kelvin S; Sarkar, Debanjan; Xu, Chenjie; Karp, Jeffrey M
2014-01-01
Cell therapies enable unprecedented treatment options to replace tissues, destroy tumors and facilitate regeneration. The greatest challenge facing cell therapy is the inability to control the fate and function of cells after transplantation. We have developed an approach to control cell phenotype in vitro and after transplantation by engineering cells with intracellular depots that continuously release phenotype-altering agents for days to weeks. The platform enables control of cells’ secretome, viability, proliferation and differentiation, and the platform can be used to deliver drugs or other factors (e.g., dexamethasone, rhodamine and iron oxide) to the cell’s microenvironment. The preparation, efficient internalization and intracellular stabilization of ~1-μm drug-loaded microparticles are critical for establishing sustained control of cell phenotype. Herein we provide a protocol to generate and characterize micrometer-sized agent-doped poly(lactic-co-glycolic) acid (PLGA) particles by using a single-emulsion evaporation technique (7 h), to uniformly engineer cultured cells (15 h), to confirm particle internalization and to troubleshoot commonly experienced obstacles. PMID:24407352
Lee, Soo-Hyeon; Shin, Dong-Jun; Kim, Yoseop; Kim, Cheol-Jung; Lee, Je-Jung; Yoon, Mee Sun; Uong, Tung Nguyen Thanh; Yu, Dohyeon; Jung, Ji-Youn; Cho, Duck; Jung, Bock-Gie; Kim, Sang-Ki; Suh, Guk-Hyun
2018-01-01
Natural killer (NK) cells play a pivotal role in the immune response against infections and malignant transformation, and adopted transfer of NK cells is thought to be a promising therapeutic approach for cancer patients. Previous reports describing the phenotypic features of canine NK cells have produced inconsistent results. Canine NK cells are still defined as non-B and non-T (CD3 - CD21 - ) large granular lymphocytes. However, a few reports have demonstrated that canine NK cells share the phenotypic characteristics of T lymphocytes, and that CD3 + CD5 dim CD21 - lymphocytes are putative canine NK cells. Based on our previous reports, we hypothesized that phenotypic modulation could occur between these two populations during activation. In this study, we investigated the phenotypic and functional differences between CD3 + CD5 dim CD21 - (cytotoxic large granular lymphocytes) and CD3 - CD5 - CD21 - NK lymphocytes before and after culture of peripheral blood mononuclear cells isolated from normal dogs. The results of this study show that CD3 + CD5 dim CD21 - lymphocytes can be differentiated into non-B, non-T NK (CD3 - CD5 - CD21 - TCRαβ - TCRγδ - GranzymeB + ) lymphocytes through phenotypic modulation in response to cytokine stimulation. In vitro studies of purified CD3 + CD5 dim CD21 - cells showed that CD3 - CD5 - CD21 - cells are derived from CD3 + CD5 dim CD21 - cells through phenotypic modulation. CD3 + CD5 dim CD21 - cells share more NK cell functional characteristics compared with CD3 - CD5 - CD21 - cells, including the expression of T-box transcription factors (Eomes, T-bet), the production of granzyme B and interferon-γ, and the expression of NK cell-related molecular receptors such as NKG2D and NKp30. In conclusion, the results of this study suggest that CD3 + CD5 dim CD21 - and CD3 - CD5 - CD21 - cells both contain a subset of putative NK cells, and the difference between the two populations may be due to the degree of maturation.
Hamouda, Faiza; El-Sissy, Azza H; Radwan, Ashraf K; Hussein, Hany; Gadallah, Farida H; Al-Sharkawy, Nahla; Sedhom, Eman; Ebeid, Emad; Salem, Shereen I
2007-06-01
To identify chromosomal pattern among the major immunophenotypic subgroups in Egyptian children with ALL, and its correlation with clinical presentation and disease free survival. Cytogenetic and immunophenotypic analysis were done for all patients. Patients received ALL-PNCI-III/98 chemotherapy protocol used at NCI, Cairo University. The frequency of pseudodiploidy and normal karyotype in the whole group was 42.9% and 33.3% respectively. The frequency of pseudodiploidy was 36.8% in CALLA positive early pre B, 30.7% in pre B cases, 71.4% in T cell cases and 100% in mature B cell cases. At 12 months, DFS was 50% for pseudodiploid group having pre B phenotype, compared to 16.6% for pseudodiploid group with CALLA positive early pre B ALL. Sixteen percent of the studied cases showed T cell phenotype, 71.4% of them showed pseudodiploid karyotype, all of them had high risk features. Hyperdiploidy was found in 31.5% of CALLA positive early pre B cases and was associated with favorable prognostic features and DFS of 66.6% at 12 months. Hyperdiploidy of >50 chromosome represented 62.5% of hyperdipoid cases, 80% of them were CALLA positive early pre B ALL carrying good risk features. Fifty percent of normal karyotypic patients showed pre B phenotype, while 42.8% showed CALLA positive early pre B ALL. Their age, TLC, DFS, were almost comparable. CALLA early pre B phenotype has a positive impact on chromosomal pattern having best outcome among patients with hyperdiploidy. The Pseudodiploid karyotype carries a better outcome with pre B phenotype.
Macrophage polarization at the crossroad between HIV-1 infection and cancer development.
Alfano, Massimo; Graziano, Francesca; Genovese, Luca; Poli, Guido
2013-06-01
Mononuclear phagocytes play a fundamental role in the tissue homeostasis and innate defenses against viruses and other microbial pathogens. In addition, they are likely involved in several steps of cancer development. Circulating monocytes and tissue macrophages are target cells of viral infections, including human cytomegalovirus, human herpes virus 8, and the HIV, and alterations of their functional and phenotypic properties are likely involved in many tissue-degenerative diseases, including atherosclerosis and cancer. Different tissue microenvironments as well as their pathological alterations can profoundly affect the polarization state of macrophages toward the extreme phenotypes conventionally termed M1 and M2. Thus, targeting disease-associated macrophages is considered a potential approach particularly in the context of cancer-associated tumor-associated macrophages, supporting malignant cell growth and progression toward a metastatic phenotype. Of note is the fact that tumor-associated macrophages isolated from established tumors display phenotypic and functional features similar to those of in vitro-derived M2-polarized cells. Concerning HIV-1 infection, viral eradication strategies in the context of combination antiretroviral therapy should also consider the possibility to deplete, at least transiently, certain mononuclear phagocytes subsets, although the possibility of distinguishing those that are either infected or pathogenically altered remains a goal of future research. In the present review, we will focus on the recent literature concerning the role of human macrophage polarization in viral infections and cancer.
2010-01-01
Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822
Schulze, Katja; Lang, Imke; Enke, Heike; Grohme, Diana; Frohme, Marcus
2015-04-17
Ethanol production via genetically engineered cyanobacteria is a promising solution for the production of biofuels. Through the introduction of a pyruvate decarboxylase and alcohol dehydrogenase direct ethanol production becomes possible within the cells. However, during cultivation genetic instability can lead to mutations and thus loss of ethanol production. Cells then revert back to the wild type phenotype. A method for a rapid and simple detection of these non-producing revertant cells in an ethanol producing cell population is an important quality control measure in order to predict genetic stability and the longevity of a producing culture. Several comparable cultivation experiments revealed a difference in the pigmentation for non-producing and producing cells: the accessory pigment phycocyanin (PC) is reduced in case of the ethanol producer, resulting in a yellowish appearance of the culture. Microarray and western blot studies of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002 confirmed this PC reduction on the level of RNA and protein. Based on these findings we developed a method for fluorescence microscopy in order to distinguish producing and non-producing cells with respect to their pigmentation phenotype. By applying a specific filter set the emitted fluorescence of a producer cell with a reduced PC content appeared orange. The emitted fluorescence of a non-producing cell with a wt pigmentation phenotype was detected in red, and dead cells in green. In an automated process multiple images of each sample were taken and analyzed with a plugin for the image analysis software ImageJ to identify dead (green), non-producing (red) and producing (orange) cells. The results of the presented validation experiments revealed a good identification with 98 % red cells in the wt sample and 90 % orange cells in the producer sample. The detected wt pigmentation phenotype (red cells) in the producer sample were either not fully induced yet (in 48 h induced cultures) or already reverted to a non-producing cells (in long-term photobioreactor cultivations), emphasizing the sensitivity and resolution of the method. The fluorescence microscopy method displays a useful technique for a rapid detection of non-producing single cells in an ethanol producing cell population.
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-01-01
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-06-06
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Genetics and epithelial cell dysfunction in cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riordan, J.R.; Buchwald, M.
1987-01-01
This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.
Fulminant infectious mononucleosis and recurrent Epstein-Barr virus reactivation in an adolescent.
Nourse, Jamie P; Jones, Kimberley; Dua, Ujjwal; Runnegar, Naomi; Looke, David; Schmidt, Chris; Tey, Siok-Keen; Kennedy, Glen; Gandhi, Maher K
2010-03-15
We describe a unique case of fulminant infectious mononucleosis and recurrent Epstein-Barr virus reactivation presenting in an adolescent. Detailed assays of Epstein-Barr virus-specific T cell immunity revealed defects in the patient's T cell receptor signalling pathway characterized by a lack of interleukin-2 and CD25 expression, which may have contributed to her clinical course. Allogeneic stem cell transplantation reversed the clinical and laboratory phenotype.
Peripheral blood antigen presenting cell responses in otitis-prone and non-otitis-prone infants.
Surendran, Naveen; Nicolosi, Ted; Kaur, Ravinder; Pichichero, Michael E
2016-01-01
Stringently defined otitis-prone (sOP) children represent a new classification of the otitis-prone condition. Previous studies showed dysfunction in Ab, B-cell memory and T-cell memory responses. We sought to determine whether there are defects in numbers, phenotype and/or function of professional APC in the peripheral blood of sOP infants. APC phenotypic counts, MHC II expression and intracellular cytokine levels were determined in response to TLR7/8 (R848) stimulation by flow cytometry. Innate immune mRNA expression was measured using RT-PCR and cytokines were measured using Luminex technology. Significant (P < 0.05) increases in the phenotypic counts of monocytes and conventional dendritic cells but not plasmacytoid DCs were observed in sOP compared with non-otitis-prone (NOP) age-matched infants. No significant differences in APC activation or function were observed. Expression of various TLRs, intracellular signaling molecules and downstream cytokines was also not found to be significantly different between sOP and NOP infants. Higher numbers of APCs in sOP infants suggest the possibility of a persistent mucosal inflammatory status. Transcriptional and cytokine profiles of PBMCs among sOP infants suggest their systemic innate responses are not different compared to NOP infants. © The Author(s) 2015.
Tan, W; Wang, J; Zhou, F; Gao, L; Yin, R; Liu, H; Sukanthanag, A; Wang, G; Mihm, M C; Chen, D-B; Nelson, J S
2017-12-01
Port-wine stain (PWS) is a vascular malformation characterized by progressive dilatation of postcapillary venules, but the molecular pathogenesis remains obscure. To illustrate that PWS endothelial cells (ECs) present a unique molecular phenotype that leads to pathoanatomical PWS vasculatures. Immunohistochemistry and transmission electron microscopy were used to characterize the ultrastructure and molecular phenotypes of PWS blood vessels. Primary culture of human dermal microvascular endothelial cells and in vitro tube formation assay were used for confirmative functional studies. Multiple clinicopathological features of PWS blood vessels during the development and progression of the disease were shown. There were no normal arterioles and venules observed phenotypically and morphologically in PWS skin; arterioles and venules both showed differentiation impairments, resulting in a reduction of arteriole-like vasculatures and defects in capillary loop formation in PWS lesions. PWS ECs showed stemness properties with expression of endothelial progenitor cell markers CD133 and CD166 in non-nodular lesions. They also expressed dual venous/arterial identities, Eph receptor B1 (EphB1) and ephrin B2 (EfnB2). Co-expression of EphB1 and EfnB2 in normal human dermal microvascular ECs led to the formation of PWS-like vasculatures in vitro, for example larger-diameter and thick-walled capillaries. PWS ECs are differentiation-impaired, late-stage endothelial progenitor cells with a specific phenotype of CD133 + /CD166 + /EphB1 + /EfnB2 + , which form immature venule-like pathoanatomical vasculatures. The disruption of normal EC-EC interactions by coexistence of EphB1 and EfnB2 contributes to progressive dilatation of PWS vasculatures. © 2017 British Association of Dermatologists.
Torella, Daniele; Iaconetti, Claudio; Catalucci, Daniele; Ellison, Georgina M; Leone, Angelo; Waring, Cheryl D; Bochicchio, Angela; Vicinanza, Carla; Aquila, Iolanda; Curcio, Antonio; Condorelli, Gianluigi; Indolfi, Ciro
2011-09-30
MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.
Watmuff, Bradley; Berkovitch, Shaunna S; Huang, Joanne H; Iaconelli, Jonathan; Toffel, Steven; Karmacharya, Rakesh
2016-06-01
Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances. Copyright © 2016 Elsevier Inc. All rights reserved.
DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling.
Liao, Wen-Chieh; Liao, Chih-Kai; Tsai, You-Huan; Tseng, To-Jung; Chuang, Li-Ching; Lan, Chyn-Tair; Chang, Hung-Ming; Liu, Chiung-Hui
2018-01-01
Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.
NASA Astrophysics Data System (ADS)
Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen
2011-03-01
RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.
Martewicz, Sebastian; Gabrel, Giulia; Campesan, Marika; Canton, Marcella; Di Lisa, Fabio; Elvassore, Nicola
2018-05-01
Analyses of cellular responses to fast oxygen dynamics are challenging and require ad hoc technological solutions, especially when decoupling from liquid media composition is required. In this work, we present a microfluidic device specifically designed for culture analyses with high resolution and magnification objectives, providing full optical access to the cell culture chamber. This feature allows fluorescence-based assays, photoactivated surface chemistry, and live cell imaging under tightly controlled pO 2 environments. The device has a simple design, accommodates three independent cell cultures, and can be employed by users with basic cell culture training in studies requiring fast oxygen dynamics, defined media composition, and in-line data acquisition with optical molecular probes. We apply this technology to produce an oxygen/glucose deprived (OGD) environment and analyze cell mortality in murine and human cardiac cultures. Neonatal rat ventricular cardiomyocytes show an OGD time-dependent sensitivity, resulting in a robust and reproducible 66 ± 5% death rate after 3 h of stress. Applying an equivalent stress to human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) provides direct experimental evidence for fetal-like OGD-resistant phenotype. Investigation on the nature of such phenotype exposed large glycogen deposits. We propose a culture strategy aimed at depleting these intracellular energy stores and concurrently activate positive regulation of aerobic metabolic molecular markers. The observed process, however, is not sufficient to induce an OGD-sensitive phenotype in hiPS-CMs, highlighting defective development of mature aerobic metabolism in vitro.
Phenotypic plasticity and longevity in plants and animals: cause and effect?
Borges, Renee M
2009-10-01
Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.
Smith, Edward; Croca, Sara; Waddington, Kirsty E; Sofat, Reecha; Griffin, Maura; Nicolaides, Andrew; Isenberg, David A; Torra, Ines Pineda; Rahman, Anisur; Jury, Elizabeth C
2016-12-02
Accelerated atherosclerosis is a complication of the autoimmune rheumatic disease systemic lupus erythematosus (SLE). We questioned the role played by invariant natural killer T (iNKT) cells in this process because they not only are defective in autoimmunity but also promote atherosclerosis in response to CD1d-mediated lipid antigen presentation. iNKT cells from SLE patients with asymptomatic plaque (SLE-P) had increased proliferation and interleukin-4 production compared with those from SLE patients with no plaque. The anti-inflammatory iNKT cell phenotype was associated with dyslipidemia and was driven by altered monocyte phospholipid expression and CD1d-mediated cross-talk between iNKT cells and monocytes but not B cells. Healthy iNKT cells differentiated in the presence of healthy monocytes and SLE-P serum polarized macrophages toward an anti-inflammatory M2 phenotype. Conversely, patients with clinical cardiovascular disease had unresponsive iNKT cells and increased proinflammatory monocytes. iNKT cell function could link immune responses, lipids, and cardiovascular disease in SLE patients and, together with serum lipid taxonomy, help predict preclinical atherosclerosis in SLE patients. Copyright © 2016, American Association for the Advancement of Science.
Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas
2014-01-01
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532
Qeska, Visar; Barthel, Yvonne; Herder, Vanessa; Stein, Veronika M; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas
2014-01-01
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.
Mueller, A J; Tew, S R; Vasieva, O; Clegg, P D; Canty-Laird, E G
2016-09-27
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
NASA Astrophysics Data System (ADS)
Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul
The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.
A Computational Study of Phenotype Switching in Bacillus Subtilis Biofilm
NASA Astrophysics Data System (ADS)
Smith, Howard; Wang, Xiaoling; Jiang, Yi
Bacillus Subtilis (B. Subtilis), is known to differentiate into three main phenotypes during biofilm growth. Novel techniques to track the spatial and temporal evolution of the three main phenotypes exhibited by B. Subtilis have been developed. However, the techniques do not explain the environmental causes of the phenotype switching and how this leads to the spatiotemporal organization of the biofilm. We hypothesize that cells switch their phenotype according to nutrients and autoinducer levels. We test the hypothesis using a hybrid agent-based and continuous model. The bacteria in our model are individual cells that can (i) grow and divide by the intake of nutrients, (ii) produce and secrete EPS, (iii) form spores and (iv) produce an auto inducer. Using a threshold for nutrient and thresholds for autoinducers, we were able to reproduce the experimental spatiotemporal dynamics. From our simulations we observed that in order to reproduce experimental results, two different autoinducers were necessary. The results also suggest that low-EPS producing biofilms generally obtained higher cell populations. Furthermore, most of the cells that become spore forming cells arise from matrix producing cells.
Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.
Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M
2018-03-01
Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Protocols for Migration and Invasion Studies in Prostate Cancer.
van de Merbel, Arjanneke F; van der Horst, Geertje; Buijs, Jeroen T; van der Pluijm, Gabri
2018-01-01
Prostate cancer is the most common malignancy diagnosed in men in the western world. The development of distant metastases and therapy resistance are major clinical problems in the management of prostate cancer patients. In order for prostate cancer to metastasize to distant sites in the human body, prostate cancer cells have to migrate and invade neighboring tissue. Cancer cells can acquire a migratory and invasive phenotype in several ways, including single cell and collective migration. As a requisite for migration, epithelial prostate cancer cells often need to acquire a motile, mesenchymal-like phenotype. This way prostate cancer cells often lose polarity and epithelial characteristics (e.g., expression of E-cadherin homotypic adhesion receptor), and acquire mesenchymal phenotype (for example, cytoskeletal rearrangements, enhanced expression of proteolytic enzymes and other repertory of integrins). This process is referred to as epithelial-to-mesenchymal transition (EMT). Cellular invasion, one of the hallmarks of cancer, is characterized by the movement of cells through a three-dimensional matrix, resulting in remodeling of the cellular environment. Cellular invasion requires adhesion, proteolysis of the extracellular matrix, and migration of cells. Studying the migratory and invasive ability of cells in vitro represents a useful tool to assess the aggressiveness of solid cancers, including those of the prostate.This chapter provides a comprehensive description of the Transwell migration assay, a commonly used technique to investigate the migratory behavior of prostate cancer cells in vitro. Furthermore, we will provide an overview of the adaptations to the Transwell migration protocol to study the invasive capacity of prostate cancer cells, i.e., the Transwell invasion assay. Finally, we will present a detailed description of the procedures required to stain the Transwell filter inserts and quantify the migration and/or invasion.
Ovarian tumor-initiating cells display a flexible metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.
2014-10-15
An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells,more » TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.« less
Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M
2016-03-21
Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.
Calcium-mediated shaping of naive CD4 T-cell phenotype and function
Guichard, Vincent; Bonilla, Nelly; Durand, Aurélie; Audemard-Verger, Alexandra; Guilbert, Thomas; Martin, Bruno
2017-01-01
Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state. PMID:29239722
Modeling Human Bone Marrow Failure Syndromes Using Pluripotent Stem Cells and Genome Engineering.
Jung, Moonjung; Dunbar, Cynthia E; Winkler, Thomas
2015-12-01
The combination of epigenetic reprogramming with advanced genome editing technologies opened a new avenue to study disease mechanisms, particularly of disorders with depleted target tissue. Bone marrow failure syndromes (BMFS) typically present with a marked reduction of peripheral blood cells due to a destroyed or dysfunctional bone marrow compartment. Somatic and germline mutations have been etiologically linked to many cases of BMFS. However, without the ability to study primary patient material, the exact pathogenesis for many entities remained fragmentary. Capturing the pathological genotype in induced pluripotent stem cells (iPSCs) allows studying potential developmental defects leading to a particular phenotype. The lack of hematopoietic stem and progenitor cells in these patients can also be overcome by differentiating patient-derived iPSCs into hematopoietic lineages. With fast growing genome editing techniques, such as CRISPR/Cas9, correction of disease-causing mutations in iPSCs or introduction of mutations in cells from healthy individuals enable comparative studies that may identify other genetic or epigenetic events contributing to a specific disease phenotype. In this review, we present recent progresses in disease modeling of inherited and acquired BMFS using reprogramming and genome editing techniques. We also discuss the challenges and potential shortcomings of iPSC-based models for hematological diseases.
Clark, A M; Garland, K K; Russell, L D
2000-12-01
Testes from adult and prepubertal mice lacking the Desert hedgehog (DHH:) gene were examined in order to describe further the role of Dhh in spermatogenesis because, in a previous report, DHH:-null male mice were shown to be sterile. Dhh is a signaling molecule expressed by Sertoli cells. Its receptor, patched (Ptc), has been previously localized to Leydig cells and is herein described as being localized also to peritubular cells. Two phenotypes of the mice were observed: masculinized (7.5% of DHH:-null males) and feminized (92.5%), both of which displayed abnormal peritubular tissue and severely restricted spermatogenesis. Testes from adult feminized animals lacked adult-type Leydig cells and displayed numerous undifferentiated fibroblastic cells in the interstitium that produced abundant collagen. The basal lamina, normally present between the myoid cells and Sertoli cells, was focally absent. We speculate that the abnormal basal lamina contributed to other characteristics, such as extracordal gonocytes, apolar Sertoli cells, and anastomotic seminiferous tubules. The two DHH:-null phenotypes described have common peritubular cell defects that may be indicative of the essential role of peritubular cells in development of tubular morphology, the differentiation of Leydig cells, and the ultimate support of spermatogenesis.
Matveeva, Natalia M; Fishman, Veniamin S; Zakharova, Irina S; Shevchenko, Alexander I; Pristyazhnyuk, Inna E; Menzorov, Aleksei G; Serov, Oleg L
2017-12-22
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation
Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.
2017-01-01
Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought, whereby their surface marker and gene expression profile are highly dynamic. PMID:29250067
McComb, Scott; Mulligan, Rebecca; Sad, Subash
2010-01-01
Background CD8+ T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8+ T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8+ T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8+ T cell responses has yet to be examined. Methods and Findings We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8+ T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8+ T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3hi and caspase-3low CD8+ T cells. The expression of active caspase-3 peaked before effector phenotype (CD62Llow) CD8+ T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8+ cells remained active caspase-3low throughout the contraction phase. Conclusions Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8+ T cells. Furthermore, the contraction of CD8+ T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3. PMID:21203525
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer.
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-05-30
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-01-01
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957
Strobel, Oliver; Dadabaeva, Nigora; Felix, Klaus; Hackert, Thilo; Giese, Nathalia A; Jesenofsky, Ralf; Werner, Jens
2016-02-01
Pancreatic stellate cells (PSCs) play a critical role in pancreatic ductal adenocarcinoma (PDAC). Activated PSCs are the main source of fibrosis in chronic pancreatitis and of desmoplasia in PDAC. The majority of studies on PSC are based on in vitro experiments relying on immortalized cell lines derived from diseased human pancreas or from animal models. These PSCs are usually activated and may not represent the biological context of their tissue of origin. (1) To isolate and culture primary human PSC from different disease contexts with minimal impact on their state of activation. (2) To perform a comparative analysis of phenotypes of PSC derived from different contexts. PSCs were isolated from normal pancreas, chronic pancreatitis, and PDAC using a hybrid method of digestion and outgrowth. To minimize activation by serum compounds, cells were cultured in a low-serum environment (2.5 % fetal bovine serum (FBS)). Expression patterns of commonly used markers for PSC phenotype and activity were compared between primary PSC lines derived from different contexts and correlated to expression in their original tissues. Isolation was successful from 14 of 17 tissues (82 %). Isolated PSC displayed stable viability and phenotype in low-serum environment. Expression profiles of isolated PSC and matched original tissues were closely correlated. PDAC-derived PSC tended to have a higher status of activation if compared to PSC derived from non-cancerous tissues. Primary human PSCs isolated from different contexts and cultured in a low-serum environment maintain a phenotype that reflects the stromal activity present in their tissue of origin.
Korecka, Joanna A.; van Kesteren, Ronald E.; Blaas, Eva; Spitzer, Sonia O.; Kamstra, Jorke H.; Smit, August B.; Swaab, Dick F.; Verhaagen, Joost; Bossers, Koen
2013-01-01
Multiple genetic and environmental factors play a role in the development and progression of Parkinson’s disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD. PMID:23724009
Phenotypic variability in patients with ADA2 deficiency due to identical homozygous R169Q mutations.
Van Montfrans, Joris M; Hartman, Esther A R; Braun, Kees P J; Hennekam, Eric A M; Hak, Elisabeth A; Nederkoorn, Paul J; Westendorp, Willeke F; Bredius, Robbert G M; Kollen, Wouter J W; Schölvinck, Elisabeth H; Legger, G Elizabeth; Meyts, Isabelle; Liston, Adrian; Lichtenbelt, Klaske D; Giltay, Jacques C; Van Haaften, Gijs; De Vries Simons, Gaby M; Leavis, Helen; Sanders, Cornelis J G; Bierings, Marc B; Nierkens, Stefan; Van Gijn, Marielle E
2016-05-01
To determine the genotype-phenotype association in patients with adenosine deaminase-2 (ADA2) deficiency due to identical homozygous R169Q mutations inCECR1 METHODS: We present a case series of nine ADA2-deficient patients with an identical homozygous R169Q mutation. Clinical and diagnostic data were collected and available MRI studies were reviewed. We performed genealogy and haplotype analyses and measured serum ADA2 activity. ADA2 activity values were correlated to clinical symptoms. Age of presentation differed widely between the nine presented patients (range: 0 months to 8 years). The main clinical manifestations were (hepato)splenomegaly (8/9), skin involvement (8/9) and neurological involvement (8/9, of whom 6 encountered stroke). Considerable variation was seen in type, frequency and intensity of other symptoms, which included aplastic anaemia, acute myeloid leukaemia and cutaneous ulcers. Common laboratory abnormalities included cytopenias and hypogammaglobulinaemia. ADA2 enzyme activity in patients was significantly decreased compared with healthy controls. ADA2 activity levels tended to be lower in patients with stroke compared with patients without stroke. Genealogical studies did not identify a common ancestor; however, based on allele frequency, a North-West European founder effect can be noted. Three patients underwent haematopoietic cell transplantation, after which ADA2 activity was restored and clinical symptoms resolved. This case series revealed large phenotypic variability in patients with ADA2 deficiency though they were homozygous for the same R169Q mutation inCECR1 Disease modifiers, including epigenetic and environmental factors, thus seem important in determining the phenotype. Furthermore, haematopoietic cell transplantation appears promising for those patients with a severe clinical phenotype. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Isodicentric Y mosaicism involving a 46, XX cell line: Implications for management.
Hipp, Lauren E; Mohnach, Lauren H; Wei, Sainan; Thomas, Inas H; Elhassan, Maha E; Sandberg, David E; Quint, Elisabeth H; Keegan, Catherine E
2016-01-01
Carriers of isodicentric Y (idicY) mosaicism exhibit a wide range of clinical features, including short stature, gonadal abnormalities, and external genital anomalies. However, the phenotypic spectrum for individuals carrying an idicY and a 46, XX cell line is less clearly defined. A more complete description of the phenotype related to idicY is thus essential to guide management related to pubertal development, fertility, and gonadoblastoma risk in mosaic carriers. Findings from the evaluation of twin females with an abnormal karyotype, 48, XX, +idic(Yq) x2/47, XX, +idic(Yq)/46, XX, are presented to highlight the importance of interdisciplinary care in the management of multifaceted disorders of sex development. © 2015 Wiley Periodicals, Inc.
Nikolov, Svetoslav; Santos, Guido; Wolkenhauer, Olaf; Vera, Julio
2018-02-01
Mathematical modeling of cell differentiated in colonic crypts can contribute to a better understanding of basic mechanisms underlying colonic tissue organization, but also its deregulation during carcinogenesis and tumor progression. Here, we combined bifurcation analysis to assess the effect that time delay has in the complex interplay of stem cells and semi-differentiated cells at the niche of colonic crypts, and systematic model perturbation and simulation to find model-based phenotypes linked to cancer progression. The models suggest that stem cell and semi-differentiated cell population dynamics in colonic crypts can display chaotic behavior. In addition, we found that clinical profiling of colorectal cancer correlates with the in silico phenotypes proposed by the mathematical model. Further, potential therapeutic targets for chemotherapy resistant phenotypes are proposed, which in any case will require experimental validation.
Epithelial phenotype and the RPE: is the answer blowing in the Wnt?
Burke, Janice M
2008-11-01
Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell-cell adhesion and melanization are linked by a common signaling pathway: the Wnt/beta-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/beta-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function.
Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo
2017-09-01
The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank
2015-01-01
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature. PMID:25932020
Beirão, Breno C B; Raposo, Teresa; Pang, Lisa Y; Argyle, David J
2015-07-15
Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators.
Zhou, Jing; Bethune, Michael T; Malkova, Natalia; Sutherland, Alexander M; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni; Heath, James R
2018-01-01
For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.
Degaki, Theri Leica; Demasi, Marcos Angelo Almeida; Sogayar, Mari Cleide
2009-11-01
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 amino acids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressor gene, with possible relevance for glioblastoma therapy.
de Matos, Cristina Teixeira; Berg, Louise; Michaëlsson, Jakob; Felländer-Tsai, Li; Kärre, Klas; Söderström, Kalle
2007-01-01
Natural killer (NK) cells are activated early during inflammatory events and contribute to the shaping of the ensuing adaptive immune response. To further understand the role for NK cells in inflammation, we investigated the phenotype and function of synovial fluid (SF) NK cells from patients with chronic joint inflammation, as well as from patients with transient inflammation of the knee following trauma. We confirm that synovial NK cells are similar to the well-characterized CD56bright peripheral blood (PB) NK-cell subset present in healthy individuals. However, compared to this PB subset the synovial NK cells express a higher degree of activation markers including CD69 and NKp44, the latter being up-regulated also on CD56bright NK cells in the PB of patients. Activated synovial NK cells produced interferon-γ and tumour necrosis factor, and the production was further up-regulated by antibody masking of CD94/NKG2A, and down-regulated by target cells expressing human leucocyte antigen-E in complex with peptides known to engage CD94/NKG2A. We conclude that synovial NK cells have an activated phenotype and that CD94/NKG2A is a key regulator of synovial NK-cell cytokine synthesis. PMID:17521371
Gumbleton, Matthew; Vivier, Eric; Kerr, William G
2015-03-15
NK cells are an important component of host immune defense against malignancy and infection. NK cells are educated by MHC class I ligands to ensure self-tolerance while also promoting lytic competency against altered self and damaged self targets. However, the intracellular molecular events that culminate in tolerance and functional competency of educated NK cells remain undefined. Mice with germline deficiency in SHIP1 were shown to have a defective NK cell compartment. However, SHIP1 is expressed in all hematopoietic lineages, and consequently several hematolymphoid phenotypes have already been identified in certain cell types that are the result of SHIP1 deficiency in cells in separate and distinct lineages, that is, cell-extrinsic phenotypes. Thus, it was previously impossible to determine the NK cell-intrinsic role of SHIP1. In the present study, through the creation of an NK cell-specific deletion mouse model of SHIP1, we show that SHIP1 plays a profound NK lineage-intrinsic role in NK cell homeostasis, development, education, and cytokine production. Moreover, we show SHIP1 expression by NK cells is required for in vivo-mismatched bone marrow allograft rejection as well as for NK memory responses to hapten. Copyright © 2015 by The American Association of Immunologists, Inc.
Mesenchymal Stem Cells: New Players in Retinopathy Therapy
Rajashekhar, Gangaraju
2014-01-01
Retinopathies in human and animal models have shown to occur through loss of pericytes resulting in edema formation, excessive immature retinal angiogenesis, and neuronal apoptosis eventually leading to blindness. In recent years, the concept of regenerating terminally differentiated organs with a cell-based therapy has evolved. The cells used in these approaches are diverse and include tissue-specific endogenous stem cells, endothelial progenitor (EPC), embryonic stem cells, induced pluripotent stem cells (iPSC) and mesenchymal stem cells (MSC). Recently, MSC derived from the stromal fraction of adipose tissue have been shown to possess pluripotent differentiation potential in vitro. These adipose stromal cells (ASC) have been differentiated in a number of laboratories to osteogenic, myogenic, vascular, and adipocytic cell phenotypes. In vivo, ASC have been shown to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. Furthermore, these cells either in paracrine mode or physical proximity with endothelial cells, promoted angiogenesis, improved ischemia–reperfusion, protected from myocardial infarction, and were neuroprotective. Owing to the easy isolation procedure and abundant supply, fat-derived ASC are a more preferred source of autologous mesenchymal cells compared to bone marrow MSC. In this review, we present evidence that these readily available ASC from minimally invasive liposuction will facilitate translation of ASC research into patients with retinal diseases in the near future. PMID:24795699
Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane
2014-01-01
Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein fibronectin polymerization promotes the SMC synthetic phenotype by modulating the expression of smooth muscle cell differentiation proteins. PMID:24752318
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Atsushi; Graduate School of Science and Engineering, Saitama University, Saitama 338-8570; Green Tea Laboratory, Saitama Prefectural Agriculture and Forestry Research Center, Saitama 358-0042
Highlights: •EGCG reduced cell motility of highly metastatic human lung cancer cells. •EGCG increased cell stiffness of the cells, indicating the inhibition of phenotypes of EMT. •EGCG inhibited expression of vimentin and Slug in the cells at the leading edge of scratch. •Treatment of MβCD increased cell stiffness, and inhibited cell motility and vimentin expression. •Inhibition of EMT phenotypes with EGCG is a mechanism-based inhibition of cancer metastasis. -- Abstract: Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (−)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into themore » lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial–mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 μM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 μM EGCG increased Young’s modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 μM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-β-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.« less
Biomimetic and synthetic esophageal tissue engineering.
Jensen, Todd; Blanchette, Alex; Vadasz, Stephanie; Dave, Apeksha; Canfarotta, Michael; Sayej, Wael N; Finck, Christine
2015-07-01
A tissue-engineered esophagus offers an alternative for the treatment of pediatric patients suffering from severe esophageal malformations, caustic injury, and cancer. Additionally, adult patients suffering from carcinoma or trauma would benefit. Donor rat esophageal tissue was physically and enzymatically digested to isolate epithelial and smooth muscle cells, which were cultured in epithelial cell medium or smooth muscle cell medium and characterized by immunofluorescence. Isolated cells were also seeded onto electrospun synthetic PLGA and PCL/PLGA scaffolds in a physiologic hollow organ bioreactor. After 2 weeks of in vitro culture, tissue-engineered constructs were orthotopically transplanted. Isolated cells were shown to give rise to epithelial, smooth muscle, and glial cell types. After 14 days in culture, scaffolds supported epithelial, smooth muscle and glial cell phenotypes. Transplanted constructs integrated into the host's native tissue and recipients of the engineered tissue demonstrated normal feeding habits. Characterization after 14 days of implantation revealed that all three cellular phenotypes were present in varying degrees in seeded and unseeded scaffolds. We demonstrate that isolated cells from native esophagus can be cultured and seeded onto electrospun scaffolds to create esophageal constructs. These constructs have potential translatable application for tissue engineering of human esophageal tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Khanna, A K; Buskirk, D R; Williams, R C; Gibofsky, A; Crow, M K; Menon, A; Fotino, M; Reid, H M; Poon-King, T; Rubinstein, P
1989-01-01
Numerous investigators have suspected that there is a genetic predisposition to rheumatic fever (RF). In this context we have recently produced a series of monoclonal antibodies directed against B cells obtained from RF patients one of which, labeled D8/17, identifies a B cell antigen present in 100% of all RF patients studied. While the highest percentage of positive cells were exhibited by RF probands (33.5% +/- SE), the percentage of cells in unaffected siblings and parents was 14.6 and 13%, respectively. The percentage of positive cells in APSGN probands, unaffected siblings, and parents was 2.96, 3.86, and 2.8%, respectively. A low level of B cells (5-7%) bearing the D8/17 marker was seen in control patients. The segregation pattern of the phenotypes defined by the percentage of D8/17 positive cells within HLA-typed RF families are consistent with an autosomal recessive mode of inheritance not associated with the human MHC system. We postulate that these phenotypes indicate the presence of at least one necessary genetic factor for susceptibility to RF. PMID:2785121
Ting, Harold J; Deep, Gagan; Jain, Anil K; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M; Cramer, Scott D; Agarwal, Chapla; Agarwal, Rajesh
2015-09-01
Tumor microenvironment (TM) is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. TM includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into 'cancer-associated fibroblasts' (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin's direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased alpha-smooth muscle actin (α-SMA) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of α-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate TM. © 2014 Wiley Periodicals, Inc.
Zhou, Jing; Bethune, Michael T.; Malkova, Natalia; Sutherland, Alexander M.; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni
2018-01-01
For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell—T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma. PMID:29360859
Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease
Calzada, David; Mayayo, Teodoro; González-Rodríguez, María Luisa; Rabasco, Antonio María; Lahoz, Carlos
2014-01-01
This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4+ and CD8+ T-cells, NK, and monocytes) and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs). Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction) and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient's stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies. PMID:24818126
2016-01-01
In the last decade, the immunomodulatory properties of mesenchymal stromal cells (MSCs) have attracted a lot of attention, due to their potential applicability in the treatment of graft-versus-host disease (GVHD), a condition frequently associated with opportunistic infections. The present review addresses how Pathogen-Associated Molecular Patterns (PAMPS) modulate the immunosuppressive phenotype of human MSCs by signaling through Toll-like receptors (TLRs). Overall, we observed that regardless of the source tissue, human MSCs express TLR2, TLR3, TLR4, and TLR9. Stimulation of distinct TLRs on MSCs elicits distinct inflammatory signaling pathways, differentially influencing the expression of inflammatory factors and the ability of MSCs to suppress the proliferation of immune system cells. The capacity to enhance the immunosuppressive phenotype of MSCs through TLRs stimulation might be properly elucidated in order to improve the MSC-based immunotherapy against GVHD. PMID:27738438
Bertram, M. J.; Bérubé, N. G.; Hang-Swanson, X.; Ran, Q.; Leung, J. K.; Bryce, S.; Spurgers, K.; Bick, R. J.; Baldini, A.; Ning, Y.; Clark, L. J.; Parkinson, E. K.; Barrett, J. C.; Smith, J. R.; Pereira-Smith, O. M.
1999-01-01
Based on the dominance of cellular senescence over immortality, immortal human cell lines have been assigned to four complementation groups for indefinite division. Human chromosomes carrying senescence genes have been identified, including chromosome 4. We report the cloning and identification of a gene, mortality factor 4 (MORF 4), which induces a senescent-like phenotype in immortal cell lines assigned to complementation group B with concomitant changes in two markers for senescence. MORF 4 is a member of a novel family of genes with transcription factor-like motifs. We present here the sequences of the seven family members, their chromosomal locations, and a partial characterization of the three members that are expressed. Elucidation of the mechanism of action of these genes should enhance our understanding of growth regulation and cellular aging. PMID:9891081
Sant'Ana, Adriana Campos Passanezi; Damante, Carla Andreotti; Martinez, Maria Alejandra Frias; Valdivia, Maria Alejandra Medina; Karam, Paula Stefânia Hage; de Oliveira, Flavia Amadeu; de Oliveira, Rodrigo Cardoso; Gasparoto, Thais Helena; Campanelli, Ana Paula; Zangrando, Mariana Schutzer Ragghianti; de Rezende, Maria Lúcia Rubo; Greghi, Sebastião Luiz Aguiar; Passanezi, Euloir
2018-05-30
The granulation tissue (GT) present in surgically-created early healing sockets has been considered as a possible source of osteoprogenitor cells for periodontal regeneration, as demonstrated in animal studies. However, the in vitro osteogenic properties of tissue removed from human surgically-created early healing alveolar defects (SC-EHAD) remains to be established, being that the aim of this study. Surgical defects were created in the edentulous ridge of two systemically healthy adults. The healing tissue present in these defects was removed 21 days later for the establishment of primary culture. The in vitro characteristics of the cultured cells were determined by Armelin method, MTT assay, immunohistochemistry, alkaline phosphatase (ALP) activity, mineralization assay and flow cytometry for detection of stem cells/osteoprogenitor cell markers. Cells were able to adhere to the plastic and assumed spindle-shaped morphology at earlier passages, changing to a cuboidal one with increasing passages. Differences in the proliferation rate were observed with increasing passages, suggesting osteogenic differentiation. ALP and mineralization activities were detected in conventional and osteogenic medium. Fresh samples of SC-EHAD tissue exhibited CD34 - and CD45 - phenotypes. Cells at later passages (14 th ) exhibited CD34 - , CD45 - , CD105 - , CD166 - and collagen type I + phenotype. Tissue removed from SC-EHAD is a possible source of progenitor cells. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.
Rivas, Jose Luis; Palencia, Teresa; Fernández, Guerau; García, Milagros
2018-01-01
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a pathological condition characterized by incapacitating fatigue and a combination of neurologic, immunologic, and endocrine symptoms. At present its diagnosis is based exclusively on clinical criteria. Several studies have described altered immunologic profiles; therefore, we proposed to further examine the more significant differences, particularly T and NK cell subpopulations that could be conditioned by viral infections, to discern their utility in improving the diagnosis and characterization of the patients. The study included 76 patients that fulfilled the revised Canadian Consensus Criteria (CCC 2010) for ME/CFS and 73 healthy controls, matched for age and gender. Immunophenotyping of different T cell and natural killer cell subpopulations in peripheral blood was determined by flow cytometry. ME/CFS patients showed significantly lower values of T regulatory cells (CD4 + CD25 ++(high) FOXP3 + ) and higher NKT-like cells (CD3 + CD16 +/- CD56 + ) than the healthy individuals. Regarding NK phenotypes, NKG2C was significantly lower and NKCD69 and NKCD56 bright were significantly higher in the patients group. A classification model was generated using the more relevant cell phenotype differences (NKG2C and T regulatory cells) that was able to classify the individuals as ME/CFS patients or healthy in a 70% of cases. The observed differences in some of the subpopulations of T and NK cells between patients and healthy controls could define a distinct immunological profile that can help in the diagnostic process of ME/CFS patients, contribute to the recognition of the disease and to the search of more specific treatments. However, more studies are needed to corroborate these findings and to contribute to establish a consensus in diagnosis.
Rivas, Jose Luis; Palencia, Teresa; Fernández, Guerau; García, Milagros
2018-01-01
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a pathological condition characterized by incapacitating fatigue and a combination of neurologic, immunologic, and endocrine symptoms. At present its diagnosis is based exclusively on clinical criteria. Several studies have described altered immunologic profiles; therefore, we proposed to further examine the more significant differences, particularly T and NK cell subpopulations that could be conditioned by viral infections, to discern their utility in improving the diagnosis and characterization of the patients. The study included 76 patients that fulfilled the revised Canadian Consensus Criteria (CCC 2010) for ME/CFS and 73 healthy controls, matched for age and gender. Immunophenotyping of different T cell and natural killer cell subpopulations in peripheral blood was determined by flow cytometry. ME/CFS patients showed significantly lower values of T regulatory cells (CD4+CD25++(high)FOXP3+) and higher NKT-like cells (CD3+CD16+/−CD56+) than the healthy individuals. Regarding NK phenotypes, NKG2C was significantly lower and NKCD69 and NKCD56 bright were significantly higher in the patients group. A classification model was generated using the more relevant cell phenotype differences (NKG2C and T regulatory cells) that was able to classify the individuals as ME/CFS patients or healthy in a 70% of cases. The observed differences in some of the subpopulations of T and NK cells between patients and healthy controls could define a distinct immunological profile that can help in the diagnostic process of ME/CFS patients, contribute to the recognition of the disease and to the search of more specific treatments. However, more studies are needed to corroborate these findings and to contribute to establish a consensus in diagnosis. PMID:29867995
NF-κB Participates in the Stem Cell Phenotype of Ovarian Cancer Cells.
Gonzalez-Torres, Carolina; Gaytan-Cervantes, Javier; Vazquez-Santillan, Karla; Mandujano-Tinoco, Edna Ayerim; Ceballos-Cancino, Gisela; Garcia-Venzor, Alfredo; Zampedri, Cecilia; Sanchez-Maldonado, Paulina; Mojica-Espinosa, Raul; Jimenez-Hernandez, Luis Enrique; Maldonado, Vilma
2017-05-01
NF-κB is a transcription factor involved in cancer stem cells maintenance of many tumors. Little is known about the specific stem-associated upstream regulators of this pathway in ovarian cancer. The Aim of the study was to analyze the role of the canonical and non-canonical NF-κB pathways in stem cells of ovarian cancer cell lines. Stem cells were isolated using sorting cytometry. Western blot and RT-PCR were used to quantify protein and messenger RNA levels. Loss and gain of function assays were performed using siRNAs and dominant-negative proteins, respectively. NF-κB binding activity was measured with a reporter gene assay. The stem phenotype was estimated with clonogenic assays using soft agar, colony formation, ovospheres formation and in vivo tumorigenicity assays. The CD44+ subpopulation of SKOV3 ovarian cancer cell line presented higher mRNA levels of key stemness genes, an increased tumorigenic capacity and higher expression of the RelA, RelB and IKKα. When the canonical pathway was inhibited by means of a dominant-negative version of IkBα, the stem cell population was reduced, as shown by a reduced CD44+ subpopulation, a decrease in the expression of the stemness genes and a reduction of the stem phenotype. In addition, IKKα, the main upstream non-canonical kinase, was highly expressed in the CSC population. Accordingly, when IKKα was inhibited using shRNAs, the expression of the stemness genes was reduced. This report is the first to show the importance of several elements of both NF-κB pathway in maintaining the ovarian cancer stem cell population. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.
Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.
Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary
2016-01-14
Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).
Pax-5 is a potent regulator of E-cadherin and breast cancer malignant processes
Benzina, Sami; Beauregard, Annie-Pier; Guerrette, Roxann; Jean, Stéphanie; Faye, Mame Daro; Laflamme, Mark; Maïcas, Emmanuel; Crapoulet, Nicolas; Ouellette, Rodney J.; Robichaud, Gilles A.
2017-01-01
Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression. PMID:28076843
Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, A.K.; Hubbard, K.; Kaur, G.P.
1994-06-07
In these studies the authors show that introduction of a normal human chromosome 6 or 6q can suppress the immortal phenotype of simian virus 40-transformed human fibroblasts (SV/HF). Normal human fibroblasts have a limited life span in culture. Immortal clones of SV/HF displayed nonrandom rearrangements in chromosome 6. Single human chromosomes present in mouse/human monochromosomal hybrids were introduced into SV/HF via microcell fusion and maintained by selection for a dominant selectable marker gpt, previously integrated into the human chromosome. Clones of SV/HF cells bearing chromosome 6 displayed limited potential for cell division and morphological characteristics of senescent cells. The lossmore » of chromosome 6 from the suppressed clones correlated with the reappearance of immortal clones. Introduced chromosome 6 in the senescing cells was distinguished from those of parental cells by analysis for DNA sequences specific for the donor chromosome. The results further show that suppression of immortal phenotype in SV/HF is specific to chromosome 6. Introduction of individual human chromosomes 2, 8, or 19 did not impart cellular senescence in SV/HF. In addition, introduction of chromosome 6 into human glioblastoma cells did not lead to senescence. Based upon these results the authors propose that at least one of the genes (SEN6) for cellular senescence in human fibroblasts is present on the long arm of chromosome 6.« less
Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity.
Doignon, François; Laquel, Patricia; Testet, Eric; Tuphile, Karine; Fouillen, Laetitia; Bessoule, Jean-Jacques
2015-12-28
Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Reyes-Reyes, Elsa M; Aispuro, Ivan; Tavera-Garcia, Marco A; Field, Matthew; Moore, Sara; Ramos, Irma; Ramos, Kenneth S
2017-11-28
Although several lines of evidence have established the central role of epithelial-to-mesenchymal-transition (EMT) in malignant progression of non-small cell lung cancers (NSCLCs), the molecular events connecting EMT to malignancy remain poorly understood. This study presents evidence that Long Interspersed Nuclear Element-1 (LINE-1) retrotransposon couples EMT programming with malignancy in human bronchial epithelial cells (BEAS-2B). This conclusion is supported by studies showing that: 1) activation of EMT programming by TGF-β1 increases LINE-1 mRNAs and protein; 2) the lung carcinogen benzo(a)pyrene coregulates TGF-β1 and LINE-1 mRNAs, with LINE-1 positioned downstream of TGF-β1 signaling; and, 3) forced expression of LINE-1 in BEAS-2B cells recapitulates EMT programming and induces malignant phenotypes and tumorigenesis in vivo . These findings identify a TGFβ1-LINE-1 axis as a critical effector pathway that can be targeted for the development of precision therapies during malignant progression of intractable NSCLCs.
Restoration of normal phenotype in cancer cells
Bissell, M.J.; Weaver, V.M.
1998-12-08
A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.
Method for restoration of normal phenotype in cancer cells
Bissell, Mina J.; Weaver, Valerie M.
2000-01-01
A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.
Restoration of normal phenotype in cancer cells
Bissell, Mina J.; Weaver, Valerie M.
1998-01-01
A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.
Xing, Ai-Yan; Shi, Duan-bo; Liu, Wei; Chen, Xu; Sun, Yan-Lin; Wang, Xiao; Zhang, Jian-ping; Gao, Peng
2013-06-01
One of the main mechanisms for multidrug resistance (MDR) involves multidrug resistance gene 1 (MDR1) which encodes P-glycoprotein (Pgp). Pgp acts as a drug efflux pump and exports chemotherapeutic agents from cancer cells. Specific inhibition of Pgp expression by gene therapy is considered a well-respective strategy having less innate toxicities. At present, the investigation of DRz in reversal MDR is scarce. In the study, phosphorothioate DRz that targets to the translation initiation codon AUG was synthesized and transfected into breast cancer cells and leukemia cells with MDR phenotype. ASODN (antisense oligonucleotide) and ribozyme targets to the same region were also synthesized for comparison analysis. Alterations in MDR1 mRNA and Pgp were determined by RT-PCR, Northern blot, flow cytometry and Rh123 retention tests. Chemosensitivity of the treated cells was determined by MTT assay. The results showed that DRz could significantly suppress expression of MDR1 mRNA and inhibit synthesis of Pgp. The efflux activity of Pgp was inhibited accordingly. Chemosensitivity assay showed that a 21-fold reduction in drug resistance for Adriamycin and a 45-fold reduction in drug resistance for Vinblastine were found in the treated cells 36h after transfection. These data suggest that DRz targeted to the translation initiation codon AUG can reverse MDR phenotype in cancer cells and restore their chemosensitivity. Moreover, the reversal efficiency of DRz is better than that of ribozyme and ASODN targets to the same region of MDR1 mRNA. Copyright © 2013 Elsevier Inc. All rights reserved.
Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”
Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.
2010-01-01
Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734
Induction of mesenchymal cell phenotypes in lung epithelial cells by adenovirus E1A.
Behzad, A R; Morimoto, K; Gosselink, J; Green, J; Hogg, J C; Hayashi, S
2006-12-01
Epithelial-mesenchymal transformation is now recognised as an important feature of tissue remodelling. The present report concerns the role of adenovirus infection in inducing this transformation in an animal model of chronic obstructive pulmonary disease. Guinea pig primary peripheral lung epithelial cells (PLECs) transfected with adenovirus E1A (E1A-PLECs) were compared to guinea pig normal lung fibroblasts (NLFs) transfected with E1A (E1A-NLFs). These cells were characterised by PCR, immunocytochemistry, electron microscopy, and Western and Northern blot analyses. Electrophoretic mobility shift assays were performed in order to examine nuclear factor (NF)-kappaB and activator protein (AP)-1 binding activities. E1A-PLECs and E1A-NLFs positive for E1A DNA, mRNA and protein expressed cytokeratin and vimentin but not smooth muscle alpha-actin. Both exhibited cuboidal morphology and junctional complexes, but did not contain lamellar bodies or express surfactant protein A, B or C mRNAs. These two cell types differed, however, in their NF-kappaB and AP-1 binding after lipopolysaccharide stimulation, possibly due to differences in the expression of the subunits that comprise these transcriptional complexes. E1A transfection results in the transformation of peripheral lung epithelial cells and normal lung fibroblasts to a phenotype intermediate between that of the two primary cells. It is postulated that this intermediate phenotype may play a major role in the remodelling of the airways in chronic obstructive pulmonary disease associated with persistence of adenovirus E1A DNA.
Dixon, Laura J.; Barnes, Mark; Tang, Hui; Pritchard, Michele T.; Nagy, Laura E.
2016-01-01
Kupffer cells are a critical component of the mononuclear phagocytic system and are central to both the hepatic and systemic response to pathogens. Kupffer cells are reemerging as critical mediators of both liver injury and repair. Kupffer cells exhibit a tremendous plasticity; depending on the local metabolic and immune environment, then can express a range of polarized phenotypes, from the proinflammatory M1 phenotype to the alternative/M2 phenotype. Multiple M2 phenotypes can be distinguished, each involved in the resolution of inflammation and wound healing. Here, we have provided an update on recent research that has contributed to the developing delineation of the contribution of Kupffer cells to different types of liver injury, with an emphasis on alcoholic and nonalcoholic liver diseases. These recent advances in our understanding of Kupffer cell function and regulation will likely provide new insights into the potential for therapeutic manipulation of Kupffer cells to promote the resolution of inflammation and enhance wound healing in liver disease. PMID:23720329
McGowan, Patricia M; Simedrea, Carmen; Ribot, Emeline J; Foster, Paula J; Palmieri, Diane; Steeg, Patricia S; Allan, Alison L; Chambers, Ann F
2011-07-01
Brain metastasis from breast cancer is an increasingly important clinical problem. Here we assessed the role of CD44(hi)/CD24(lo) cells and pathways that regulate them, in an experimental model of brain metastasis. Notch signaling (mediated by γ-secretase) has been shown to contribute to maintenance of the cancer stem cell (CSC) phenotype. Cells sorted for a reduced stem-like phenotype had a reduced ability to form brain metastases compared with unsorted or CD44(hi)/CD24(lo) cells (P < 0.05; Kruskal-Wallis). To assess the effect of γ-secretase inhibition, cells were cultured with DAPT and the CD44/CD24 phenotypes quantified. 231-BR cells with a CD44(hi)/CD24(lo) phenotype was reduced by about 15% in cells treated with DAPT compared with DMSO-treated or untreated cells (P = 0.001, ANOVA). In vivo, mice treated with DAPT developed significantly fewer micro- and macrometastases compared with vehicle treated or untreated mice (P = 0.011, Kruskal-Wallis). Notch1 knockdown reduced the expression of CD44(hi)/CD24(lo) phenotype by about 20%. In vitro, Notch1 shRNA resulted in a reduction in cellular growth at 24, 48, and 72 hours time points (P = 0.033, P = 0.002, and P = 0.009, ANOVA) and about 60% reduction in Matrigel invasion was observed (P < 0.001, ANOVA). Cells transfected with shNotch1 formed significantly fewer macrometastases and micrometastases compared with scrambled shRNA or untransfected cells (P < 0.001; Kruskal-Wallis). These data suggest that the CSC phenotype contributes to the development of brain metastases from breast cancer, and this may arise in part from increased Notch activity. ©2011 AACR.
Povey, Jane F; O'Malley, Christopher J; Root, Tracy; Martin, Elaine B; Montague, Gary A; Feary, Marc; Trim, Carol; Lang, Dietmar A; Alldread, Richard; Racher, Andrew J; Smales, C Mark
2014-08-20
Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
Archila, L D; DeLong, J H; Wambre, E; James, E A; Robinson, D M; Kwok, W W
2014-07-01
Conceptually, allergic responses may involve cross-reactivity by antibodies or T-cells. While IgE cross-reactivity among grass-pollen allergens has been observed, cross-reactivity at the allergen-specific T-cell level has been less documented. Identification of the patterns of cross-reactivity may improve our understanding, allowing optimization of better immunotherapy strategies. We use Phleum pratense as model for the studying of cross-reactivity at the allergen-specific CD4(+) T cell level among DR04:01 restricted Pooideae grass-pollen T-cell epitopes. After in vitro culture of blood mono-nucleated cells from grass-pollen-allergic subjects with specific Pooideae antigenic epitopes, dual tetramer staining with APC-labelled DR04:01/Phleum pratense tetramers and PE-labelled DR04:01/Pooideae grass homolog tetramers was assessed to identify cross-reactivity among allergen-specific DR04:01-restricted T-cells in six subjects. Direct ex vivo staining enabled the comparison of frequency and phenotype of different Pooideae grass-pollen reactive T-cells. Intracellular cytokine staining (ICS) assays were also used to examine phenotypes of these T-cells. T-cells with various degrees of cross-reactive profiles could be detected. Poa p 1 97-116 , Lol p 1 221-240 , Lol p 5a 199-218 , and Poa p 5a 199-218 were identified as minimally cross-reactive T-cell epitopes that do not show cross-reactivity to Phl p 1 and Phl p 5a epitopes. Ex vivo tetramer staining assays demonstrated T-cells that recognized these minimally cross-reactive T-cell epitopes are present in Grass-pollen-allergic subjects. Our results suggest that not all Pooideae grass epitopes with sequence homology are cross-reactive. Non-cross-reactive T-cells with comparable frequency, phenotype and functionality to Phl p-specific T-cells suggest that a multiple allergen system should be considered for immunotherapy instead of a mono-allergen system. © 2014 John Wiley & Sons Ltd.
A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.
Cassereau, Luke; Miroshnikova, Yekaterina A; Ou, Guanqing; Lakins, Johnathon; Weaver, Valerie M
2015-01-10
Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.
Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1
2015-01-01
controlling for age and sex was used. However, there were no statistically significant differences between NF1 individuals with and without tibial...Dinorah Friedmann-Morvinski (The Salk Institute) presented a different model of glioblastoma in which tumors were induced from fully differentiated...a driver of Schwann cell tumorigenesis. Induction ofWnt signaling was sufficient to induce a transformed phenotype in human Schwann cells, while
Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.
2010-01-01
Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164
Characterization of antigen-presenting cells from the porcine respiratory system.
López-Robles, Guadalupe; Silva-Campa, Erika; Burgara-Estrella, Alexel; Hernández, Jesús
2015-06-01
Antigen-presenting cells (APCs) are strategically placed in all anatomic sites with high antigen exposure such as the respiratory system. The aim of this study was to evaluate phenotypic and functional properties of APCs from the lung (L-Cs), mediastinal lymph node (LN-Cs) and bronchoalveolar lavage cells (BAL-Cs). The APCs were first analyzed based on forward scatter and side scatter profiles and the selection of MHC-II(high)CD172a(+) cells (referred to as APCs); then the expression of CD1a, CD163, CD206, CD16 and CD11R3 was evaluated in the APCs. The results showed that CD1a, CD163 and CD206 were differentially expressed among L-Cs, LN-Cs and BAL-Cs, suggesting the phenotype MHC-II(high)CD172a(+)CD1a(low/-)CD163(low)CD206(-) for L-Cs and MHC-II(high)CD172a(+)CD1a(+)CD163(low/-)CD206(+) for LN-Cs. BAL-Cs were MHC-II(high)CD172a(+)CD1a(-)CD163(high)CD206(+/-). The functional characteristics of L-Cs and LN-Cs were different from those of BAL-Cs, confirming that L-Cs and LN-Cs resemble specialized APCs. In conclusion, we present the characterization of APCs from L-Cs, LN-Cs and BAL-Cs of the porcine respiratory system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Epithelial phenotype and the RPE: Is the answer blowing in the Wnt?
Burke, Janice M.
2008-01-01
Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell–cell adhesion and melanization are linked by a common signaling pathway: the Wnt/β-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/β-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function. PMID:18775790
The Effects of Combined Cyclic Stretch and Pressure on the Aortic Valve Interstitial Cell Phenotype
Thayer, Patrick; Balachandran, Kartik; Rathan, Swetha; Yap, Choon Hwai; Arjunon, Sivakkumar; Jo, Hanjoong; Yoganathan, Ajit P.
2017-01-01
Aortic valve interstitial cells (VIC) can exhibit phenotypic characteristics of fibroblasts, myofibroblasts, and smooth muscle cells. Others have proposed that valve cells become activated and exhibit myofibroblast or fibroblast characteristics during disease initiation and progression; however, the cues that modulate this phenotypic change remain unclear. We hypothesize that the mechanical forces experienced by the valve play a role in regulating the native phenotype of the valve and that altered mechanical forces result in an activated phenotype. Using a novel ex vivo cyclic stretch and pressure bioreactor, we subjected porcine aortic valve (AV) leaflets to combinations of normal and pathological stretch and pressure magnitudes. The myofibroblast markers α-SMA and Vimentin, along with the smooth muscle markers Calponin and Caldesmon, were analyzed using immunohistochemistry and immunoblotting. Tissue structure was analyzed using Movat’s pentachrome staining. We report that pathological stretch and pressure inhibited the contractile and possibly myofibroblast phenotypes as indicated by downregulation of the proteins α-SMA, Vimentin, and Calponin. In particular, Calponin downregulation implies depolymerization of actin filaments and possible conversion to a more synthetic (non-contractile) phenotype. This agreed well with the increase in spongiosa and fibrosa thickness observed under elevated pressure and stretch that are typically indicative of increased matrix synthesis. Our study therefore demonstrates how cyclic stretch and pressure may possibly act together to modulate the AVIC phenotype. PMID:21347552
Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone
Mukhina, Svetlana; Mertani, Hichem C.; Guo, Ke; Lee, Kok-Onn; Gluckman, Peter D.; Lobie, Peter E.
2004-01-01
We report here that autocrine production of human growth hormone (hGH) results in a phenotypic conversion of mammary carcinoma cells such that they exhibit the morphological and molecular characteristics of a mesenchymal cell, including expression of fibronectin and vimentin. Autocrine production of hGH resulted in reduced plakoglobin expression and relocalization of E-cadherin to the cytoplasm, leading to dissolution of cell-cell contacts and decreased cell height. These phenotypic changes were accompanied by an increase in cell motility, elevated activity of specific matrix metalloproteinases, and an acquired ability to invade a reconstituted basement membrane. Forced expression of plakoglobin significantly decreased mammary carcinoma cell migration and invasion stimulated by autocrine hGH. In vivo, autocrine hGH stimulated local invasion of mammary carcinoma cells concomitant with a prominent stromal reaction in comparison with well delineated and capsulated growth of mammary carcinoma cells lacking autocrine production of hGH. Thus, autocrine production of hGH by mammary carcinoma cells is sufficient for generation of an invasive phenotype. Therapeutic targeting of autocrine hGH may provide a mechanistic approach to prevent metastatic extension of human mammary carcinoma. PMID:15353581
Schroeder, Barbara; Park, Cheol Hong; Chandra Mohan, KVP; Khurana, Ashwani; Corominas-Faja, Bruna; Cuyàs, Elisabet; Alarcón, Tomás; Kleer, Celina; Menendez, Javier A.; Lupu, Ruth
2016-01-01
The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression. FASN knockdown dramatically reduced tumorigenicity of BC cells and restored tissue architecture, which was reminiscent of normal ductal-like structures in the mammary gland. Loss of FASN signaling was sufficient to direct tumors to a reversed phenotype that was near normal when considering the development of polarized growth-arrested acinar-like structure similar to those formed by nonmalignant breast cells in a 3D reconstituted basement membrane in vitro. This process, in vivo, resulted in a low proliferation index, mesenchymal-epithelial transition, and shut-off of the angiogenic switch in FASN-depleted BC cells orthotopically implanted into mammary fat pads. The role of FASN as a negative regulator of correct breast tissue architecture and terminal epithelial cell differentiation was dominant over the malignant phenotype of tumor cells possessing multiple cancer-driving genetic lesions as it remained stable during the course of serial in vivo passage of orthotopic tumor-derived cells. Transient knockdown of FASN suppressed hallmark structural and cytosolic/secretive proteins (vimentin, N-cadherin, fibronectin) in a model of EMT-induced cancer stem cells (CSC). Indirect pharmacological inhibition of FASN promoted a phenotypic switch from basal- to luminal-like tumorsphere architectures with reduced intrasphere heterogeneity. The fact that sole correction of exacerbated lipogenesis can stably reprogram cancer cells back to normal-like tissue architectures might open a new avenue to chronically restrain BC progression by using FASN-based differentiation therapies. PMID:27223424
Ko, Hyun-Jeong; Lee, Jung-Mi; Kim, Yeon-Jeong; Kim, Yun-Sun; Lee, Kyoo-A; Kang, Chang-Yuil
2009-02-15
Myeloid-derived suppressor cells (MDSCs), which are known to be accumulated in the blood, spleen, and bone marrow of tumor-bearing mice and cancer patients, were tested as APCs for a cellular vaccine because they have phenotypical similarity with inflammatory monocytes and may be differentiated from the same precursors as monocytes. Although MDSCs have immunosuppressive properties, in vivo transferred MDSCs, which present tumor Ag and NKT cell ligand (alpha-galactosylceramide), significantly prolonged survival time in metastatic tumor-bearing mice in a CD8(+) cell-, NK cell-, and NKT cell-dependent manner vs a CD4(+) T cell- and host dendritic cell-independent manner. Major concerns about using MDSCs as APCs in a vaccine are their suppression of CTLs and their induction of Foxp3(+) regulatory T cells. However, alpha-galactosylceramide-loaded MDSCs did not suppress CD4(+) and CD8(+) T cells and allowed for the generation of Ag-specific CTL immunity without increasing the generation of regulatory T cells. Furthermore, stimulation with activated NKT cells induced changes on MDSCs in phenotypical or maturation markers, including CD11b, CD11c, and CD86. Taken together, these findings suggest that NKT cells facilitate the conversion of immunosuppressive MDSCs into immunogenic APCs, eliciting successful antitumor immunity and providing the basis for alternative cell-based vaccines.
Cavarelli, Mariangela; Karlsson, Ingrid; Ripamonti, Chiara; Plebani, Anna; Fenyo, Eva Maria; Scarlatti, Gabriella
2010-10-23
CCR5-using HIV-1 (R5 viruses) are usually isolated during acute infection from both adults and children. We have recently demonstrated that R5 viruses with a flexible use of CCR5 (called R5broad) can be detected in children close to birth and are predictive of a fast immunological failure. The aim of the present work was to investigate viral phenotype variation during disease progression in HIV-1 infected children, six slow and eight fast progressors. A total of 74 viral isolates obtained sequentially from 14 HIV-1 infected children were tested for their ability to infect U87.CD4 cells expressing a set of six different CCR5/CXCR4 chimeric receptors or wild-type coreceptors. The sensitivity of 35 R5 viruses to inhibition with the CC-chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted) was evaluated in a peripheral blood mononuclear cells based assay. Viral evolution to R5broad or to R5X4 phenotype occurred with one exception, in all children, although at a different time point according to rate of disease progression. Immune deficiency in the children was significantly associated with the appearance of R5broad phenotype or R5X4 viruses. Analysis of the sensitivity to inhibition by RANTES revealed a significant correlation between the R5broad phenotype and an augmented resistance to this CC-chemokine. We demonstrate that the viral evolution to a more flexible CCR5-use is sufficient to explain the immunological failure in the absence of CXCR4 usage. These results warrant detailed analysis of the R5 phenotype in forthcoming clinical studies introducing CCR5 inhibitors for the treatment of pediatric HIV-1 infection.
Ge, Hao; Wu, Pingping; Qian, Hong; Xie, Xiaoliang Sunney
2018-03-01
Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and transition between phenotypic states.
Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J
2016-01-01
The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.
Bester, Michael C; Jacobson, Dan; Bauer, Florian F
2012-01-01
The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.
Severe combined immunodeficiency in Sting V154M/WT mice.
Bouis, Delphine; Kirstetter, Peggy; Arbogast, Florent; Lamon, Delphine; Delgado, Virginia; Jung, Sophie; Ebel, Claudine; Jacobs, Hugues; Knapp, Anne-Marie; Jeremiah, Nadia; Belot, Alexandre; Martin, Thierry; Crow, Yanick J; André-Schmutz, Isabelle; Korganow, Anne-Sophie; Rieux-Laucat, Frédéric; Soulas-Sprauel, Pauline
2018-05-23
Autosomal dominant gain-of-function (GOF) mutations in human STING (Stimulator of Interferon Genes) lead to a severe autoinflammatory disease called SAVI (STING Associated Vasculopathy with onset in Infancy), associated with enhanced expression of interferon (IFN) stimulated gene (ISG) transcripts. The goal of this study was to analyze the phenotype of a new mouse model of Sting hyperactivation, and the role of type I IFN in this system. We generated a knock-in model carrying an amino acid substitution (V154M) in mouse Sting, corresponding to a recurrent mutation seen in human patients with SAVI. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed in vitro. Sting V154M/WT mice were crossed to IFNAR (IFNα/β Receptor) knock-out mice in order to evaluate the type I IFN-dependence of the mutant Sting phenotype recorded. In Sting V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T and NK cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B and T cell development was present from early immature stages in bone marrow and thymus. In addition, in vitro experiments revealed an intrinsic proliferative defect of mature T cells. Whilst the V154M/WT mutant demonstrated increased expression of ISGs, the SCID phenotype was not reversed in Sting V154M/WT IFNAR knock-out mice. However, the anti-proliferative defect in T cells was partially rescued by IFNAR deficiency. Sting GOF mice developed an IFN-independent SCID phenotype with a T, B and NK cell developmental defect and hypogammaglobulinemia, associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was, partially, IFN-dependent. Copyright © 2018. Published by Elsevier Inc.
Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Ju; Chang, Hang; Giricz, Orsi
Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associationsmore » with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.« less
Phenotypes on demand via switchable target protein degradation in multicellular organisms
Faden, Frederik; Ramezani, Thomas; Mielke, Stefan; Almudi, Isabel; Nairz, Knud; Froehlich, Marceli S.; Höckendorff, Jörg; Brandt, Wolfgang; Hoehenwarter, Wolfgang; Dohmen, R. Jürgen; Schnittger, Arp; Dissmeyer, Nico
2016-01-01
Phenotypes on-demand generated by controlling activation and accumulation of proteins of interest are invaluable tools to analyse and engineer biological processes. While temperature-sensitive alleles are frequently used as conditional mutants in microorganisms, they are usually difficult to identify in multicellular species. Here we present a versatile and transferable, genetically stable system based on a low-temperature-controlled N-terminal degradation signal (lt-degron) that allows reversible and switch-like tuning of protein levels under physiological conditions in vivo. Thereby, developmental effects can be triggered and phenotypes on demand generated. The lt-degron was established to produce conditional and cell-type-specific phenotypes and is generally applicable in a wide range of organisms, from eukaryotic microorganisms to plants and poikilothermic animals. We have successfully applied this system to control the abundance and function of transcription factors and different enzymes by tunable protein accumulation. PMID:27447739
Tumeh, Paul C; Koya, Richard C; Chodon, Thinle; Graham, Nicholas A; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni
2010-10-01
Optimized conditions for the ex vivo activation, genetic manipulation, and expansion of human lymphocytes for adoptive cell therapy may lead to protocols that maximize their in vivo function. We analyzed the effects of 4 clinical grade activation and expansion protocols over 3 weeks on cell proliferative rate, immunophenotype, cell metabolism, and transduction efficiency of human peripheral blood mononuclear cells (PBMCs). Peak lentiviral transduction efficiency was early (days 2 to 4), at a time when cells showed a larger size, maximal uptake of metabolic substrates, and the highest level of proximal T-cell receptor signaling engagement. Anti-CD2/3/28 activation beads induced greater proliferation rate and skewed PBMCs early on to a CD4 phenotype when compared with the cells cultured in OKT3. Multicolor surface phenotyping demonstrated that changes in T-cell surface markers that define T-cell functional phenotypes were dependent on the time spent in culture as opposed to the particular activation protocol. In conclusion, ex vivo activation of human PBMCs for adoptive cell therapy demonstrate defined immunophenotypic and functional signatures over time, with cells early on showing larger sizes, higher transduction efficiency, maximal metabolic activity, and zeta-chain-associated protein-70 activation.
Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.
Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam
2014-05-01
The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.
[Phenotypic heterogeneity of chronic obstructive pulmonary disease].
Garcia-Aymerich, Judith; Agustí, Alvar; Barberà, Joan A; Belda, José; Farrero, Eva; Ferrer, Antoni; Ferrer, Jaume; Gáldiz, Juan B; Gea, Joaquim; Gómez, Federico P; Monsó, Eduard; Morera, Josep; Roca, Josep; Sauleda, Jaume; Antó, Josep M
2009-03-01
A functional definition of chronic obstructive pulmonary disease (COPD) based on airflow limitation has largely dominated the field. However, a view has emerged that COPD involves a complex array of cellular, organic, functional, and clinical events, with a growing interest in disentangling the phenotypic heterogeneity of COPD. The present review is based on the opinion of the authors, who have extensive research experience in several aspects of COPD. The starting assumption of the review is that current knowledge on the pathophysiology and clinical features of COPD allows us to classify phenotypic information in terms of the following dimensions: respiratory symptoms and health status, acute exacerbations, lung function, structural changes, local and systemic inflammation, and systemic effects. Twenty-six phenotypic traits were identified and assigned to one of the 6 dimensions. For each dimension, a summary is provided of the best evidence on the relationships among phenotypic traits, in particular among those corresponding to different dimensions, and on the relationship between these traits and relevant events in the natural history of COPD. The information has been organized graphically into a phenotypic matrix where each cell representing a pair of phenotypic traits is linked to relevant references. The information provided has the potential to increase our understanding of the heterogeneity of COPD phenotypes and help us plan future studies on aspects that are as yet unexplored.
Structural phenotyping of stem cell-derived cardiomyocytes.
Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit
2015-03-10
Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
2011-01-01
Background Dendritic cells (DCs) are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM) components. Results Herewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m) DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS) or commercially available endothelial medium (EGM-2). We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses. Conclusions Altogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered. PMID:21645356
Sprague, Leslee; Muccioli, Maria; Pate, Michelle; Meles, Evan; McGinty, John; Nandigam, Harika; Venkatesh, Amritha K; Gu, Ming-Yu; Mansfield, Kristen; Rutowski, Andrew; Omosebi, Omowaleola; Courreges, Maria C; Benencia, Fabian
2011-06-06
Dendritic cells (DCs) are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM) components. Herewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m) DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS) or commercially available endothelial medium (EGM-2). We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses. Altogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered.
Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.
Okubo-Kurihara, Emiko; Matsui, Minami
2018-01-01
The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.
Genetics and risk factors for basal cell carcinoma.
Madan, V; Hoban, P; Strange, R C; Fryer, A A; Lear, J T
2006-05-01
Nonmelanoma skin cancer (NMSC) is the commonest cancer in whites and its incidence is increasing worldwide. The prevalence of this cancer is predicted to equal that of all others combined and it was estimated that there were over 2 million cases diagnosed in the U.S.A. in 2004. Patients exhibit marked differences in clinical phenotype with variations in tumour numbers, rate of tumour accrual, site and histological subtype. Furthermore, patients are at increased risk of other cutaneous and noncutaneous cancers. The factors accounting for this variation are complex and still not completely understood. Clearly, ultraviolet light (UV) exposure is a major influence but its relationship to clinical phenotype is not yet clear. In addition, immunosuppression is a significant risk factor. Our group has identified high-risk groups for the development of further basal cell carcinoma (BCC), namely patients with truncal BCC and those presenting with tumour clusters. This presentation will concentrate on these clinical subgroups as well as immunosuppressed patients. These groups represent significant management challenges and are areas where novel, nonsurgical treatment options may make a significant clinical impact in patient care. The risk factors predisposing to these clinical phenotypes will be discussed, including genetic factors and UV exposure. Potential clinical applications, including predictive indices, will be considered.
Multipotent progenitor cells are present in human peripheral blood.
Cesselli, Daniela; Beltrami, Antonio Paolo; Rigo, Silvia; Bergamin, Natascha; D'Aurizio, Federica; Verardo, Roberto; Piazza, Silvano; Klaric, Enio; Fanin, Renato; Toffoletto, Barbara; Marzinotto, Stefania; Mariuzzi, Laura; Finato, Nicoletta; Pandolfi, Maura; Leri, Annarosa; Schneider, Claudio; Beltrami, Carlo Alberto; Anversa, Piero
2009-05-22
To determine whether the peripheral blood in humans contains a population of multipotent progenitor cells (MPCs), products of leukapheresis were obtained from healthy donor volunteers following the administration of granulocyte colony-stimulating factor. Small clusters of adherent proliferating cells were collected, and these cells continued to divide up to 40 population doublings without reaching replicative senescence and growth arrest. MPCs were positive for the transcription factors Nanog, Oct3/4, Sox2, c-Myc, and Klf4 and expressed several antigens characteristic of mesenchymal stem cells. However, they were negative for markers of hematopoietic stem/progenitor cells and bone marrow cell lineages. MPCs had a cloning efficiency of approximately 3%, and following their expansion, retained a highly immature phenotype. Under permissive culture conditions, MPCs differentiated into neurons, glial cells, hepatocytes, cardiomyocytes, endothelial cells, and osteoblasts. Moreover, the gene expression profile of MPCs partially overlapped with that of neural and embryonic stem cells, further demonstrating their primitive, uncommitted phenotype. Following subcutaneous transplantation in nonimmunosuppressed mice, MPCs migrated to distant organs and integrated structurally and functionally within the new tissue, acquiring the identity of resident parenchymal cells. In conclusion, undifferentiated cells with properties of embryonic stem cells can be isolated and expanded from human peripheral blood after granulocyte colony-stimulating factor administration. This cell pool may constitute a unique source of autologous cells with critical clinical import.
CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE
We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...
Atkinson, Ross G.; Schröder, Roswitha; Hallett, Ian C.; Cohen, Daniel; MacRae, Elspeth A.
2002-01-01
Polygalacturonases (PGs) cleave runs of unesterified GalUA that form homogalacturonan regions along the backbone of pectin. Homogalacturonan-rich pectin is commonly found in the middle lamella region of the wall where two adjacent cells abut and its integrity is important for cell adhesion. Transgenic apple (Malus domestica Borkh. cv Royal Gala) trees were produced that contained additional copies of a fruit-specific apple PG gene under a constitutive promoter. In contrast to previous studies in transgenic tobacco (Nicotiana tabacum) where PG overexpression had no effect on the plant (K.W. Osteryoung, K. Toenjes, B. Hall, V. Winkler, A.B. Bennett [1990] Plant Cell 2: 1239–1248), PG overexpression in transgenic apple led to a range of novel phenotypes. These phenotypes included silvery colored leaves and premature leaf shedding due to reduced cell adhesion in leaf abscission zones. Mature leaves had malformed and malfunctioning stomata that perturbed water relations and contributed to a brittle leaf phenotype. Chemical and ultrastructural analyses were used to relate the phenotypic changes to pectin changes in the leaf cell walls. The modification of apple trees by a single PG gene has offered a new and unexpected perspective on the role of pectin and cell wall adhesion in leaf morphology and stomatal development. PMID:12011344
Alvarez, Marta B; Childress, Paul; Philip, Binu K; Gerard-O'Riley, Rita; Hanlon, Michael; Herbert, Brittney-Shea; Robling, Alexander G; Pavalko, Fredrick M; Bidwell, Joseph P
2012-05-01
Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism. Copyright © 2011 Wiley Periodicals, Inc.
Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise
2016-01-01
Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs. Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients. PMID:27391263
Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise
2016-08-23
Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs.Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients.
Gangoso, E; Thirant, C; Chneiweiss, H; Medina, J M; Tabernero, A
2014-01-01
Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is downregulated in malignant gliomas. These tumors are composed of a heterogeneous population of cells that include many with stem-cell-like properties, called glioma stem cells (GSCs), which are highly tumorigenic and lack Cx43 expression. Interestingly, restoring Cx43 reverses GSC phenotype and consequently reduces their tumorigenicity. In this study, we investigated the mechanism by which Cx43 exerts its antitumorigenic effects on GSCs. We have focused on the tyrosine kinase c-Src, which interacts with the intracellular carboxy tail of Cx43. We found that Cx43 regulates c-Src activity and proliferation in human GSCs expanded in adherent culture. Thus, restoring Cx43 in GSCs inhibited c-Src activity, which in turn promoted the downregulation of the inhibitor of differentiation Id1. Id1 sustains stem cell phenotype as it controls the expression of Sox2, responsible for stem cell self-renewal, and promotes cadherin switching, which has been associated to epithelial–mesenchymal transition. Our results show that both the ectopic expression of Cx43 and the inhibition of c-Src reduced Id1, Sox2 expression and promoted the switch from N- to E-cadherin, suggesting that Cx43, by inhibiting c-Src, downregulates Id1 with the subsequent changes in stem cell phenotype. On the basis of this mechanism, we found that a cell-penetrating peptide, containing the region of Cx43 that interacts with c-Src, mimics the effect of Cx43 on GSC phenotype, confirming the relevance of the interaction between Cx43 and c-Src in the regulation of the malignant phenotype and pinpointing this interaction as a promising therapeutic target. PMID:24457967
Domogala, Anna; Madrigal, J Alejandro; Saudemont, Aurore
2016-06-01
Natural killer (NK) cells offer the potential for a powerful cellular immunotherapy because they can target malignant cells without being direct effectors of graft-versus-host disease. We have previously shown that high numbers of functional NK cells can be differentiated in vitro from umbilical cord blood (CB) CD34(+) cells. To develop a readily available, off-the-shelf cellular product, it is essential that NK cells differentiated in vitro can be frozen and thawed while maintaining the same phenotype and functions. We evaluated the phenotype and function of fresh and frozen NK cells differentiated in vitro. We also assessed whether the concentration of NK cells at the time of freezing had an impact on cell viability. We found that cell concentration of NK cells at the time of freezing did not have an impact on their viability and on cell recovery post-thaw. Moreover, freezing of differentiated NK cells in vitro did not affect their phenotype, cytotoxicity and degranulation capacity toward K562 cells, cytokine production and proliferation. We are therefore able to generate large numbers of functional NK cells from CB CD34(+) cells that maintain the same phenotype and function post-cryopreservation, which will allow for multiple infusions of a highly cytotoxic NK cell product. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
A simple and efficient method for deriving neurospheres from bone marrow stromal cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Qin; Mu Jun; Li Qi
2008-08-08
Bone marrow stromal cells (MSCs) can be differentiated into neuronal and glial-like cell types under appropriate experimental conditions. However, previously reported methods are complicated and involve the use of toxic reagents. Here, we present a simplified and nontoxic method for efficient conversion of rat MSCs into neurospheres that express the neuroectodermal marker nestin. These neurospheres can proliferate and differentiate into neuron, astrocyte, and oligodendrocyte phenotypes. We thus propose that MSCs are an emerging model cell for the treatment of a variety of neurological diseases.
Crack, L R; Chan, H W; McPherson, T; Ogg, G S
2011-11-01
Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.
Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae
2016-09-16
It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
A Chimera Analysis of Prestin Knockout Mice
Cheatham, Mary Ann; Low-Zeddies, Sharon; Naik, Khurram; Edge, Roxanne; Zheng, Jing; Anderson, Charles T.; Dallos, Peter
2009-01-01
A chimera is a genetic composite containing a unique mix of cells derived from more than one zygote. This mouse model allows one to learn how cells of contrasting genotype functionally interact in vivo. Here we investigate the effect that different proportions of prestin-containing outer hair cells (OHC) have on cochlear amplification. In order to address this issue, we developed a prestin chimeric mouse in which both ROSA26 wildtype (WT) and prestin knockout (KO) genotypes are present in a single cochlea. The WT ROSA26 mice express a cell marker, allowing one to identify cells originating from the WT genome. Examination of cochlear tissue indicated that prestin chimeric mice demonstrate a mosaic in which mutant and normal OHCs interleave along the cochlear partition, similar to all other chimeric mouse models. The anatomical distribution of prestin-containing OHCs was compared with physiological data including thresholds and tuning curves for the compound action potential (CAP) recorded in anesthetized mice. Analysis of these measures did not reveal mixed phenotypes in which the distribution of prestin-containing OHCs impacted sensitivity and frequency selectivity to different degrees. However, by reducing the number of prestin-containing OHCs, phenotypes intermediate between WT and KO response patterns were obtained. Accordingly, we demonstrate a proportional reduction in sensitivity and in the tip length of CAP tuning curves as the number of OHCs derived from the KO genome increases, i.e., genotype ratio and phenotype are closely related. PMID:19776286
2011-08-01
macrophages (MQs), on growth of breast tumor cells, and (2) to test the hypothesis that MSCs of non -breast adipose tissues, in contrast to MSCs of...macrophages in normal and malignant tissues. In contrast to all studies focused on the role of breast tissue microenvironment in growth of primary breast...the phenotype of macrophages, provide an immune environment suitable for growth of breast cancer cells, but MSCs present in non -breast adipose
Better Bet-Hedging with coupled positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Narula, Jatin; Igoshin, Oleg
2011-03-01
Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.
Forget, Marie-Andrée; Malu, Shruti; Liu, Hui; Toth, Christopher; Maiti, Sourindra; Kale, Charuta; Haymaker, Cara; Bernatchez, Chantale; Huls, Helen; Wang, Ena; Marincola, Francesco M.; Hwu, Patrick; Cooper, Laurence J. N.; Radvanyi, Laszlo G.
2014-01-01
PURPOSE Adoptive cell therapy (ACT) with autologous tumor infiltrating lymphocytes (TIL) is a therapy for metastatic melanoma with response rates up to 50%. However, the generation of the TIL transfer product is challenging, requiring pooled allogeneic normal donor peripheral blood mononuclear cells (PBMC) used in vitro as “feeders” to support a rapid expansion protocol (REP). Here, we optimized a platform to propagate TIL to a clinical scale using K562-cells genetically modified to express costimulatory molecules such as CD86, CD137-ligand and membrane-bound IL-15 to function as artificial antigen-presenting cell (aAPC) as an alternative to using PBMC feeders. EXPERIMENTAL DESIGN We used aAPC or γ-irradiated PBMC feeders to propagate TIL and measured rates of expansion. The activation and differentiation state was evaluated by flow cytometry and differential gene expression analyses. Clonal diversity was assessed based on pattern of T-cell receptor (TCR) usage. T-cell effector function was measured by evaluation of cytotoxic granule content and killing of target cells. RESULTS The aAPC propagated TIL at numbers equivalent to that found with PBMC feeders, while increasing the frequency of CD8+ T-cell expansion with a comparable effector-memory phenotype. mRNA profiling revealed an up-regulation of genes in the Wnt and stem-cell pathways with the aAPC. The aAPC platform did not skew clonal diversity and CD8+ T cells showed comparable anti-tumor function as those expanded with PBMC feeders. CONCLUSIONS TIL can be rapidly expanded with aAPC to clinical scale generating T cells with similar phenotypic and effector profiles as with PBMC feeders. These data support the clinical-application of aAPC to manufacture TIL for the treatment of melanoma. PMID:25304728
G, Swetha; Chandra, Vikash; Phadnis, Smruti; Bhonde, Ramesh
2011-01-01
Abstract Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration. PMID:19840197
Chao, Hsueh-Ping; Deng, Qu; Jeter, Collene; Liu, Can; Honorio, Sofia; Li, Hangwen; Davis, Tammy; Suraneni, Mahipal; Laffin, Brian; Qin, Jichao; Li, Qiuhui; Yang, Tao; Whitney, Pamela; Shen, Jianjun; Huang, Jiaoti; Tang, Dean G.
2015-01-01
Human cancers are heterogeneous containing stem-like cancer cells operationally defined as cancer stem cells (CSCs) that possess great tumor-initiating and long-term tumor-propagating properties. In this study, we systematically dissect the phenotypic, functional and tumorigenic heterogeneity in human prostate cancer (PCa) using xenograft models and >70 patient tumor samples. In the first part, we further investigate the PSA−/lo PCa cell population, which we have recently shown to harbor self-renewing long-term tumor-propagating cells and present several novel findings. We show that discordant AR and PSA expression in both untreated and castration-resistant PCa (CRPC) results in AR+PSA+, AR+PSA−, AR−PSA−, and AR−PSA+ subtypes of PCa cells that manifest differential sensitivities to therapeutics. We further demonstrate that castration leads to a great enrichment of PSA−/lo PCa cells in both xenograft tumors and CRPC samples and systemic androgen levels dynamically regulate the relative abundance of PSA+ versus PSA−/lo PCa cells that impacts the kinetics of tumor growth. We also present evidence that the PSA−/lo PCa cells possess distinct epigenetic profiles. As the PSA−/lo PCa cell population is heterogeneous, in the second part, we employ two PSA− (Du145 and PC3) and two PSA+ (LAPC9 and LAPC4) PCa models as well as patient tumor cells to further dissect the clonogenic and tumorigenic subsets. We report that different PCa models possess distinct tumorigenic subpopulations that both commonly and uniquely express important signaling pathways that could represent therapeutic targets. Our results have important implications in understanding PCa cell heterogeneity, response to clinical therapeutics, and cellular mechanisms underlying CRPC. PMID:26246472
Riddy, Darren M; Goy, Emily; Delerive, Philippe; Summers, Roger J; Sexton, Patrick M; Langmead, Christopher J
2018-01-01
Monocyte-like cell lines (MCLCs), including THP-1, HL-60 and U-937 cells, are used routinely as surrogates for isolated human peripheral blood mononuclear cells (PBMCs). To systematically evaluate these immortalised cells and PBMCs as model systems to study inflammation relevant to the pathogenesis of type II diabetes and immuno-metabolism, we compared mRNA expression of inflammation-relevant genes, cell surface expression of cluster of differentiation (CD) markers, and chemotactic responses to inflammatory stimuli. Messenger RNA expression analysis suggested most genes were present at similar levels across all undifferentiated cells, though notably, IDO1, which encodes for indoleamine 2,3-dioxygenase and catabolises tryptophan to kynureninase (shown to be elevated in serum from diabetic patients), was not expressed in any PMA-treated MCLC, but present in GM-CSF-treated PBMCs. There was little overall difference in the pattern of expression of CD markers across all cells, though absolute expression levels varied considerably and the correlation between MCLCs and PBMCs was improved upon MCLC differentiation. Functionally, THP-1 and PBMCs migrated in response to chemoattractants in a transwell assay, with varying sensitivity to MCP-1, MIP-1α and LTB-4. However, despite similar gene and CD expression profiles, U-937 cells were functionally impaired as no migration was observed to any chemoattractant. Our analysis reveals that the MCLCs examined only partly replicate the genotypic and phenotypic properties of human PBMCs. To overcome such issues a universal differentiation protocol should be implemented for these cell lines, similar to those already used with isolated monocytes. Although not perfect, in our hands the THP-1 cells represent the closest, simplified surrogate model of PBMCs for study of inflammatory cell migration.
Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S
2016-10-01
3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting. © 2016 Society for Laboratory Automation and Screening.
Mitochondria and the evolutionary roots of cancer
NASA Astrophysics Data System (ADS)
Davila, Alfonso F.; Zamorano, Pedro
2013-04-01
Cancer disease is inherent to, and widespread among, metazoans. Yet, some of the hallmarks of cancer such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility (metastasis) are akin to a prokaryotic lifestyle, suggesting a link between cancer disease and evolution. In this hypothesis paper, we propose that cancer cells represent a phenotypic reversion to the earliest stage of eukaryotic evolution. This reversion is triggered by the dysregulation of the mitochondria due to cumulative oxidative damage to mitochondrial and nuclear DNA. As a result, the phenotype of normal, differentiated cells gradually reverts to the phenotype of a facultative anaerobic, heterotrophic cell optimized for survival and proliferation in hypoxic environments. This phenotype matches the phenotype of the last eukaryotic common ancestor (LECA) that resulted from the endosymbiosis between an α-proteobacteria (which later became the mitochondria) and an archaebacteria. As such, the evolution of cancer within one individual can be viewed as a recapitulation of the evolution of the eukaryotic cell from fully differentiated cells to LECA. This evolutionary model of cancer is compatible with the current understanding of the disease, and explains the evolutionary basis for most of the hallmarks of cancer, as well as the link between the disease and aging. It could also open new avenues for treatment directed at reestablishing the synergy between the mitochondria and the cancerous cell.
Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E
2015-01-01
Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Asymmetric T lymphocyte division in the initiation of adaptive immune responses.
Chang, John T; Palanivel, Vikram R; Kinjyo, Ichiko; Schambach, Felix; Intlekofer, Andrew M; Banerjee, Arnob; Longworth, Sarah A; Vinup, Kristine E; Mrass, Paul; Oliaro, Jane; Killeen, Nigel; Orange, Jordan S; Russell, Sarah M; Weninger, Wolfgang; Reiner, Steven L
2007-03-23
A hallmark of mammalian immunity is the heterogeneity of cell fate that exists among pathogen-experienced lymphocytes. We show that a dividing T lymphocyte initially responding to a microbe exhibits unequal partitioning of proteins that mediate signaling, cell fate specification, and asymmetric cell division. Asymmetric segregation of determinants appears to be coordinated by prolonged interaction between the T cell and its antigen-presenting cell before division. Additionally, the first two daughter T cells displayed phenotypic and functional indicators of being differentially fated toward effector and memory lineages. These results suggest a mechanism by which a single lymphocyte can apportion diverse cell fates necessary for adaptive immunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elia, Artemis; Charalambous, Fotini; Georgiades, Pantelis, E-mail: pgeor@ucy.ac.cy
Highlights: Black-Right-Pointing-Pointer Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. Black-Right-Pointing-Pointer SA muscular phenotype prior to and during SAR in mice is underexplored. Black-Right-Pointing-Pointer SA muscular wall consists of contractile and non-contractile components. Black-Right-Pointing-Pointer SA wall non-contractile component may be synthetic smooth muscle. Black-Right-Pointing-Pointer Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledgemore » about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for {alpha}-smooth muscle actin, calponin and SM22{alpha}) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence ({alpha}-smooth muscle actin and calponin) or weak (SM22{alpha}) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7.5-E8.5, becomes drastically reduced by E10.5 and is undetectable by E12.5. In conclusion, this study reveals novel aspects of the decidual SA muscular coat phenotype prior to and during early SAR that may have important implications for understanding the mechanisms of SAR.« less
Goon, Peter K C; Hanon, Emmanuel; Igakura, Tadahiko; Tanaka, Yuetsu; Weber, Jonathan N; Taylor, Graham P; Bangham, Charles R M
2002-05-01
CD4(+) T cells are critical for inducing and maintaining efficient humoral and cellular immune responses to pathogens. The CD4(+) T-cell response in human T-lymphotropic virus 1 (HTLV-1) infection has not been studied in detail. However, CD4(+) T cells have been shown to predominate in early lesions in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). We present direct estimates of HTLV-1 Env- and Tax-specific CD4(+) T-cell frequencies in patients infected with HTLV-1. We first showed that there was a strong bias toward the Th1 phenotype in these HTLV-1-specific CD4(+) T cells in patients with HAM/TSP. We then demonstrated significantly higher frequencies of HTLV-1-specific Th1-type CD4(+) T cells in HAM/TSP patients than in asymptomatic HTLV-1 carriers. The majority of these HTLV-1-specific CD4(+) T cells did not express HTLV-1 Tax and were therefore unlikely to be infected by HTLV-1. High frequencies of activated HTLV-1-specific CD4(+) T cells of the Th1 phenotype might contribute to the initiation or pathogenesis of HAM/TSP and other HTLV-1-associated inflammatory diseases.
Jalasvuori, Matti
2012-01-01
Prokaryotic biosphere is vastly diverse in many respects. Any given bacterial cell may harbor in different combinations viruses, plasmids, transposons, and other genetic elements along with their chromosome(s). These agents interact in complex environments in various ways causing multitude of phenotypic effects on their hosting cells. In this discussion I perform a dissection for a bacterial cell in order to simplify the diversity into components that may help approach the ocean of details in evolving microbial worlds. The cell itself is separated from all the genetic replicators that use the cell vehicle for preservation and propagation. I introduce a classification that groups different replicators according to their horizontal movement potential between cells and according to their effects on the fitness of their present host cells. The classification is used to discuss and improve the means by which we approach general evolutionary tendencies in microbial communities. Moreover, the classification is utilized as a tool to help formulating evolutionary hypotheses and to discuss emerging bacterial pathogens as well as to promote understanding on the average phenotypes of different replicators in general. It is also discussed that any given biosphere comprising prokaryotic cell vehicles and genetic replicators may naturally evolve to have horizontally moving replicators of various types. PMID:22567533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceman, S.; Rudersdorf, R.A.; Petersen, J.M.
1995-03-15
Previous studies have shown that homozygous mutations between the LMP2 and DNA loci in the human MHC cause class II molecules to be abnormally conformed and unstable in the presence of SDS at low temperature, and impede class II-associated Ag processing and presentation. These abnormalities result from impaired ability to form intracellular class II/peptide complexes that predominate in normal cells. We show in this work that this defect results from deficient expression of either the DMA or the DMB gene. Human B-LCL.174 (DR3) cells, which have a deletion of all known expressible genes in the class II region, express transgene-encodedmore » HLA-DR3, but have the abnormalities. Transfer of cosmid HA14, which contains the DMA and DMB genes, into .174 (DR3) cells restored normal DR3 conformation, stability in 0.4% SDS at 0{degrees}, and ability to process and present tetanus toxoid, but only when both DMA and DMB mRNAs were present. The requirement for both genetic expressions in engendering normal phenotypes was confirmed by transferring the cloned genes into .174 (DR3) cells separately or together. Because normal phenotypes were fully restored in transferent cells expressing DMA plus DMB, other genes in the {approximately} 1-mb homozygous class II region deletion in .174 (DR3) cells either do not participate in or are dispensable for apparently normal production of intracellular class II/peptide complexes. The properties of DM-deficient EBV-transformed B lymphoblastoid cell lines (LCLs) suggest ways of identifying humans in whom DM deficiency contributes to congenital immunodeficiency and malignancy. 67 refs., 5 figs., 1 tab.« less
Testicular neoplasia in the retained testicles of an intersex male dog.
Herndon, Aaron M; Casal, Margret L; Jaques, John T Scott
2012-01-01
This case describes the presentation and management of an 8 yr old phenotypically female intersex male dog presented for evaluation of a mass in the right inguinal region. The right inguinal space was surgically explored, and a large irregular mass resembling a fully developed testicle was identified in the right vaginal tunic. A second mass resembling an atrophied, but anatomically mature testicle, was identified in the left tunic. The larger mass was identified as a Sertoli cell tumor that had replaced all normal testicular tissue. The smaller mass was identified as a testicle that contained a small intratubular seminoma. The patient was diagnosed as having a phenotypic female sex, chromosomal male sex, and a gonadal male sex. Hormone assays completed before and after the gonadectomy and mass removal document an elevation of circulating progesterone presurgically that returned to baseline by 1 mo postsurgically. The source of the progesterone was identified to be the Leydig cells of the atrophied testicle.
Testicular Neoplasia in the Retained Testicles of an Intersex Male Dog
Herndon, Aaron M.; Casal, Margret L.; Jaques, John T. (Scott)
2012-01-01
This case describes the presentation and management of an 8 yr old phenotypically female intersex male dog presented for evaluation of a mass in the right inguinal region. The right inguinal space was surgically explored, and a large irregular mass resembling a fully developed testicle was identified in the right vaginal tunic. A second mass resembling an atrophied, but anatomically mature testicle, was identified in the left tunic. The larger mass was identified as a Sertoli cell tumor that had replaced all normal testicular tissue. The smaller mass was identified as a testicle that contained a small intratubular seminoma. The patient was diagnosed as having a phenotypic female sex, chromosomal male sex, and a gonadal male sex. Hormone assays completed before and after the gonadectomy and mass removal document an elevation of circulating progesterone presurgically that returned to baseline by 1 mo postsurgically. The source of the progesterone was identified to be the Leydig cells of the atrophied testicle. PMID:22267173
Tumeh, Paul C.; Koya, Richard C.; Chodon, Thinle; Graham, Nicholas A.; Graeber, Thomas G.; Comin-Anduix, Begoña; Ribas, Antoni
2011-01-01
Optimized conditions for the ex vivo activation, genetic manipulation, and expansion of human lymphocytes for adoptive cell therapy (ACT) may lead to protocols that maximize their in vivo function. We analyzed the effects of four clinical grade activation and expansion protocols over three weeks on cell proliferative rate, immunophenotype, cell metabolism, and transduction efficiency of human peripheral blood mononuclear cells (PBMCs). Peak lentiviral transduction efficiency was early (days 2 to 4), at a time when cells demonstrated a larger size, maximal uptake of metabolic substrates, and the highest level of proximal TCR signaling engagement. Anti-CD2/3/28 activation beads induced greater proliferation rate and skewed PBMCs early on to a CD4 phenotype when compared to the cells cultured in OKT3. Multicolor surface phenotyping demonstrated that changes in T cell surface markers that define T cell functional phenotypes were dependent on the time spent in culture as opposed to the particular activation protocol. In conclusion, ex vivo activation of human PBMCs for ACT demonstrate defined immunophenotypic and functional signatures over time, with cells early on showing larger sizes, higher transduction efficiency, maximal metabolic activity and ZAP-70 activation. PMID:20842061
Wallace, Ian S.
2015-01-01
The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.
2011-01-01
Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes 1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment. PMID:21463919
A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells
2012-01-01
Background CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations of CD4+ T cells under physiological conditions. Results We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous differentiated states, depending upon particular combinations of input signals. We provide three prototype models illustrating how to use this framework to explain experimental observations and make specific testable predictions. Conclusions The process in which several types of T helper cells are generated simultaneously to mount complex immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can be responsible for generating all possible types of heterogeneous populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be helpful for interpreting experimental results. Mathematical models based on the framework make specific testable predictions that may improve our understanding of this differentiation system. PMID:22697466
IL-10-overexpressing B cells regulate innate and adaptive immune responses.
Stanic, Barbara; van de Veen, Willem; Wirz, Oliver F; Rückert, Beate; Morita, Hideaki; Söllner, Stefan; Akdis, Cezmi A; Akdis, Mübeccel
2015-03-01
Distinct human IL-10-producing B-cell subsets with immunoregulatory properties have been described. However, the broader spectrum of their direct cellular targets and suppressive mechanisms has not been extensively studied, particularly in relation to direct and indirect IL-10-mediated functions. The aim of the study was to investigate the effects of IL-10 overexpression on the phenotype and immunoregulatory capacity of B cells. Primary human B cells were transfected with hIL-10, and IL-10-overexpressing B cells were characterized for cytokine and immunoglobulin production by means of specific ELISA and bead-based assays. Antigen presentation, costimulation capacity, and transcription factor signatures were analyzed by means of flow cytometry and quantitative RT-PCR. Effects of IL-10-overexpresing B cells on Toll-like receptor-triggered cytokine release from PBMCs, LPS-triggered maturation of monocyte-derived dendritic cells, and tetanus toxoid-induced PBMC proliferation were assessed in autologous cocultures. IL-10-overexpressing B cells acquired a prominent immunoregulatory profile comprising upregulation of suppressor of cytokine signaling 3 (SOCS3), glycoprotein A repetitions predominant (GARP), the IL-2 receptor α chain (CD25), and programmed cell death 1 ligand 1 (PD-L1). Concurrently, their secretion profile was characterized by a significant reduction in levels of proinflammatory cytokines (TNF-α, IL-8, and macrophage inflammatory protein 1α) and augmented production of anti-inflammatory IL-1 receptor antagonist and vascular endothelial growth factor. Furthermore, IL-10 overexpression was associated with a decrease in costimulatory potential. IL-10-overexpressing B cells secreted less IgE and potently suppressed proinflammatory cytokines in PBMCs, maturation of monocyte-derived dendritic cells (rendering their profile to regulatory phenotype), and antigen-specific proliferation in vitro. Our data demonstrate an essential role for IL-10 in inducing an immunoregulatory phenotype in B cells that exerts substantial anti-inflammatory and immunosuppressive functions. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Vig, Navin; Mackenzie, Ian C; Biddle, Adrian
2015-10-01
It is increasingly recognised that phenotypic plasticity, apparently driven by epigenetic mechanisms, plays a key role in tumour behaviour and markedly influences the important processes of therapeutic survival and metastasis. An important source of plasticity in malignancy is epithelial-to-mesenchymal transition (EMT), a common epigenetically controlled event that results in transition of malignant cells between different phenotypic states that confer motility and enhance survival. In this review, we discuss the importance of phenotypic plasticity and its contribution to cellular heterogeneity in oral squamous cell carcinoma with emphasis on aspects of drug resistance and EMT. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cell-surface central nervous system autoantibodies: Clinical relevance and emerging paradigms
Irani, Sarosh R; Gelfand, Jeffrey M; Al-Diwani, Adam; Vincent, Angela
2014-01-01
The recent discovery of several potentially pathogenic autoantibodies has helped identify patients with clinically distinctive central nervous system diseases that appear to benefit from immunotherapy. The associated autoantibodies are directed against the extracellular domains of cell-surface–expressed neuronal or glial proteins such as LGI1, N-methyl-D-aspartate receptor, and aquaporin-4. The original descriptions of the associated clinical syndromes were phenotypically well circumscribed. However, as availability of antibody testing has increased, the range of associated patient phenotypes and demographics has expanded. This in turn has led to the recognition of more immunotherapy-responsive syndromes in patients presenting with cognitive and behavioral problems, seizures, movement disorders, psychiatric features, and demyelinating disease. Although antibody detection remains diagnostically important, clinical recognition of these distinctive syndromes should ensure early and appropriate immunotherapy administration. We review the emerging paradigm of cell-surface–directed antibody–mediated neurological diseases, describe how the associated disease spectrums have broadened since the original descriptions, discuss some of the methodological issues regarding techniques for antibody detection and emphasize considerations surrounding immunotherapy administration. As these disorders continue to reach mainstream neurology and even psychiatry, more cell-surface–directed antibodies will be discovered, and their possible relevance to other more common disease presentations should become more clearly defined. PMID:24930434
USDA-ARS?s Scientific Manuscript database
Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10+ cells. Eight healthy subjects were given a TT booster vacci...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The activated monocyte-like phenotype is mediated by TLR2/TLR4 signaling.« less
Herrera-Moyano, Emilia; Moriel-Carretero, María; Montelone, Beth A; Aguilera, Andrés
2014-12-01
The eukaryotic TFIIH complex is involved in Nucleotide Excision Repair and transcription initiation. We analyzed three yeast mutations of the Rad3/XPD helicase of TFIIH known as rem (recombination and mutation phenotypes). We found that, in these mutants, incomplete NER reactions lead to replication fork breaking and the subsequent engagement of the homologous recombination machinery to restore them. Nevertheless, the penetrance varies among mutants, giving rise to a phenotype gradient. Interestingly, the mutations analyzed reside at the ATP-binding groove of Rad3 and in vivo experiments reveal a gain of DNA affinity upon damage of the mutant Rad3 proteins. Since mutations at the ATP-binding groove of XPD in humans are present in the Xeroderma pigmentosum-Cockayne Syndrome (XP-CS), we recreated rem mutations in human cells, and found that these are XP-CS-like. We propose that the balance between the loss of helicase activity and the gain of DNA affinity controls the capacity of TFIIH to open DNA during NER, and its persistence at both DNA lesions and promoters. This conditions NER efficiency and transcription resumption after damage, which in human cells would explain the XP-CS phenotype, opening new perspectives to understand the molecular basis of the role of XPD in human disease.
Sussman, Mark A.; Welch, Sara; Walker, Angela; Klevitsky, Raisa; Hewett, Timothy E.; Price, Robert L.; Schaefer, Erik; Yager, Karen
2000-01-01
The ras family of small GTP-binding proteins exerts powerful effects upon cell structure and function. One member of this family, rac, induces actin cytoskeletal reorganization in nonmuscle cells and hypertrophic changes in cultured cardiomyocytes. To examine the effect of rac1 activation upon cardiac structure and function, transgenic mice were created that express constitutively activated rac1 specifically in the myocardium. Transgenic rac1 protein was expressed at levels comparable to endogenous rac levels, with activation of the rac1 signaling pathway resulting in two distinct cardiomyopathic phenotypes: a lethal dilated phenotype associated with neonatal activation of the transgene and a transient cardiac hypertrophy seen among juvenile mice that resolved with age. Neither phenotype showed myofibril disarray and hypertrophic hearts were hypercontractilein working heart analyses. The rac1 target p21-activated kinase translocated from a cytosolic to a cytoskeletal distribution, suggesting that rac1 activation was inducing focal adhesion reorganization. Corroborating results showed altered localizations of src in dilated cardiomyopathy and paxillin in both cardiomyopathic phenotypes. This study, the first examination of rac1-mediated cardiac effects in vivo, demonstrates that dilation and hypertrophy can share a common molecular origin and presents evidence that both timing and concurrent signaling from multiple pathways can influence cardiac remodeling. PMID:10749567
Goldenring, James R.
2014-01-01
Epithelial cell carcinogenesis involves the loss of polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation and increased cell motility and invasion. Elements of membrane vesicle trafficking underlie all of these processes. Specific membrane trafficking regulators, including Rab small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine cell surface presentation of proteins and overall function of both differentiated and neoplastic cells. While mutations in vesicle trafficking proteins may not be direct drivers of transformation, elements of the machinery of vesicle movement play critical roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are critical mediators of the full spectrum of cell physiologies driving cancer cell biology, including initial loss of polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may provide important points for manipulation of cancer cell behaviour. PMID:24108097
Abbott, Jared J; Amirkhan, Robin H; Hoang, Mai P
2004-06-01
Malignant melanoma is known to display tremendous histologic diversity. One rare variant is the rhabdoid phenotype, so called because of the appearance of cells resembling rhabdomyoblasts seen in malignant rhabdoid tumors of the kidney. We present the histologic, immunohistochemical, and ultrastructural features of a malignant melanoma composed entirely of rhabdoid cells. A 62-year-old man presented with a 6.5-cm lung mass. Although presumed to be a metastatic lesion, extensive workup failed to reveal a primary tumor site. Histologic sections showed a mass composed entirely of polygonal neoplastic cells with prominent nucleoli and large hyaline cytoplasmic inclusions. The tumor cells were strongly immunoreactive with S100 protein, vimentin, and CD56, and were focally reactive with Mart-1. Tumor cells were negative for Melan-A, tyrosinase, HMB-45, AE1/AE3, cytokeratin (CK) 7, CK8/ 18, CK20, CK903, CAM 5.2, epithelial membrane antigen, smooth muscle actin, desmin, leukocyte common antigen, Bcl-2, CD3, CD20, CD30, CD138, kappa and lambda light chains, CD68, CD34, factor VIII, synaptophysin, and glial fibrillary acidic protein. Electron microscopy showed cytoplasmic whorls of intermediate filaments containing entrapped rough endoplasmic reticulum, mitochondria, and lipid. Recognition of this rare variant of malignant melanoma is important in the evaluation of tumors with rhabdoid morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lochter, A.; Galosy, S.; Muschler, J.
1997-08-11
Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, andmore » progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.« less
Guyon, Laurent; Lajaunie, Christian; Fer, Frédéric; Bhajun, Ricky; Sulpice, Eric; Pinna, Guillaume; Campalans, Anna; Radicella, J Pablo; Rouillier, Philippe; Mary, Mélissa; Combe, Stéphanie; Obeid, Patricia; Vert, Jean-Philippe; Gidrol, Xavier
2015-09-18
Phenotypic screening monitors phenotypic changes induced by perturbations, including those generated by drugs or RNA interference. Currently-used methods for scoring screen hits have proven to be problematic, particularly when applied to physiologically relevant conditions such as low cell numbers or inefficient transfection. Here, we describe the Φ-score, which is a novel scoring method for the identification of phenotypic modifiers or hits in cell-based screens. Φ-score performance was assessed with simulations, a validation experiment and its application to gene identification in a large-scale RNAi screen. Using robust statistics and a variance model, we demonstrated that the Φ-score showed better sensitivity, selectivity and reproducibility compared to classical approaches. The improved performance of the Φ-score paves the way for cell-based screening of primary cells, which are often difficult to obtain from patients in sufficient numbers. We also describe a dedicated merging procedure to pool scores from small interfering RNAs targeting the same gene so as to provide improved visualization and hit selection.
Guyon, Laurent; Lajaunie, Christian; fer, Frédéric; bhajun, Ricky; sulpice, Eric; pinna, Guillaume; campalans, Anna; radicella, J. Pablo; rouillier, Philippe; mary, Mélissa; combe, Stéphanie; obeid, Patricia; vert, Jean-Philippe; gidrol, Xavier
2015-01-01
Phenotypic screening monitors phenotypic changes induced by perturbations, including those generated by drugs or RNA interference. Currently-used methods for scoring screen hits have proven to be problematic, particularly when applied to physiologically relevant conditions such as low cell numbers or inefficient transfection. Here, we describe the Φ-score, which is a novel scoring method for the identification of phenotypic modifiers or hits in cell-based screens. Φ-score performance was assessed with simulations, a validation experiment and its application to gene identification in a large-scale RNAi screen. Using robust statistics and a variance model, we demonstrated that the Φ-score showed better sensitivity, selectivity and reproducibility compared to classical approaches. The improved performance of the Φ-score paves the way for cell-based screening of primary cells, which are often difficult to obtain from patients in sufficient numbers. We also describe a dedicated merging procedure to pool scores from small interfering RNAs targeting the same gene so as to provide improved visualization and hit selection. PMID:26382112
Aberrant phenotypes in peripheral T cell lymphomas.
Hastrup, N; Ralfkiaer, E; Pallesen, G
1989-01-01
Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701
Sánchez-Palomino, S; Rojas, J M; Martínez, M A; Fenyö, E M; Nájera, R; Domingo, E; López-Galíndez, C
1993-01-01
We have studied the extent of genetic and phenotypic diversification of human immunodeficiency virus type 1 (HIV-1) upon 15 serial passages of clonal viral populations in MT-4 cell cultures. Several genetic and phenotypic modifications previously noted during evolution of HIV-1 in infected humans were also observed upon passages of the virus in cell culture. Notably, the transition from non-syncytium-inducing to syncytium-inducing phenotype (previously observed during disease progression) and fixation of amino acid substitutions at the main antigenic loop V3 of gp120 were observed in the course of replication of the virus in MT-4 cell cultures in the absence of immune selection. Interestingly, most genetic and phenotypic alterations occurred upon passage of the virus at a low multiplicity of infection (0.001 infectious particles per cell) rather than at a higher multiplicity of infection (0.1 infectious particles per cell). The degree of genetic diversification attained by HIV-1, estimated by the RNase A mismatch cleavage method and by nucleotide sequencing, is of about 0.03% of genomic sites mutated after 15 serial passages. This value is not significantly different from previous estimates for foot-and-mouth disease virus when subjected to a similar process and analysis. We conclude that several genetic and phenotypic modifications of HIV-1 previously observed in vivo occur also in the constant environment provided by a cell culture system. Dilute passage promotes in a highly significant way the expression of deviant HIV-1 genomes. Images PMID:8474182
van Rensburg, Ilana C; Loxton, Andre G
2018-01-01
Regulatory B cells (Bregs) have been shown to be present during several disease states. The phenotype of the cells is not completely defined and the function of these cells differ between disease. The presence of FASL expressing (killer) B cells during latent and successfully treated TB disease have been shown but whether these cells are similar to regulatory B cells remain unclear. We assessed the receptor expression of FASL/IL5 (killer B cells), CD24/CD38 (regulatory B cells) on whole peripheral blood of participants with untreated active TB and healthy controls. We then isolated B cells from a second cohort of M.tb exposed (Quantiferon (QFN) positive) and unexposed (Quantiferon negative) HIV negative participants, and evaluated the frequency of killer B cells induced following stimulation with BCG and/or CD40 and IL5. Our data reveal no difference in the expression on CD24 and CD38 between participants with active TB and the controls. There was also no difference in the frequency of regulatory B cells measured in the peripheral blood mononuclear cells (PBMC) fraction between latent TB and uninfected controls. We did however notice that regulatory B cells (CD24hiCD38hi) population express the FASL receptor. The expression of killer B cell phenotype (CD178+IL5RA+) was significantly higher in controls compared to those with active TB disease (1,06% vs 0,455%). Furthermore, we found that BCG restimulation significantly induced the FASL/IL5RA B cells but this was only evident in the QFN positive group. Our data suggest that both regulatory and killer B cells are present during latent and active TB disease but that the frequency of these populations are increased during latent disease. We also show that the FASL+IL5RA+ B killer B cells are induced in latent TB infection following BCG restimulation but whether these cells are indicative of protection remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ponsonby, Anne-Louise; Pezic, Angela; Cameron, Fergus J; Rodda, Christine; Ellis, Justine A; Kemp, Andrew S; Carlin, John; Dwyer, Terence
2012-01-01
To examine possible determinants of autoantibody levels at type 1 diabetes mellitus (T1DM) onset. We assessed levels of glutamic acid decarboxylase 65 islet cell antigen (GADA) and anti-insulin antibodies (IAA) in 247 incident T1DM cases presenting <15 years of age in Melbourne from 1st March 2008 to 30th June 2010. 58.9% (142/241) of cases were GADA seropositive and 42.3% (94/222) were IAA seropositive. Factors associated with elevated IAA antibodies included younger age and red hair phenotype. Factors associated with elevated GAD antibodies included lower birthweight and recent eczema. Intriguingly, low recent or past sun exposure was only associated with elevated GADA levels among children presenting at age <5 years, not older (difference in effect, p<0.05 for 4 of 5 associations). These findings show that environmental and phenotypic factors are associated with autoantibody levels at time of presentation for T1DM. We recommend such environmental and phenoytypic factors should be examined in further detail.
Innate lymphoid cells and asthma.
Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T
2014-04-01
Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Liu, Xiao Hong; Xu, Shuang Bing; Yuan, Jia; Li, Ben Hui; Zhang, Yan; Yuan, Qin; Li, Pin Dong; Li, Feng; Zhang, Wen Jie
2009-12-01
Interleukin-4 (IL-4)-induced Stat6 activities (phenotypes) vary among human cancer cells, of which the HT-29 cell line carries an active Stat6(high) phenotype, while Caco-2 carries a defective Stat6(null) phenotype, respectively. Cancer cells with Stat6(high) show resistance to apoptosis and exaggerated metastasis, suggesting the clinical significance of Stat6 phenotypes. We previously showed that Stat6(high) HT-29 cells exhibited low constitutive expression of Stat6-negative regulators SOCS-1 and SHP-1 because of gene hypermethylation. This study further examined the constitutive expression of other closely related SOCS family numbers including SOCS-3, SOCS-5, SOCS-7, and CISH using RT-PCR. Similar to SOCS-1 and SHP-1, Stat6(high) HT-29 cells expressed low constitutive mRNA of SOCS-3, SOCS-7, and CISH than Stat6(null) Caco-2 cells. Interestingly, DNA demethylation using 5-aza-2'-deoxycytidine in HT-29 cells up-regulated mRNA expression of the above genes, indicating a hypermethylation status, which was confirmed by methylation-specific sequencing in selected SOCS-3 gene. Furthermore, defective Stat6(null) Caco-2 exhibited impaired phosphorylation of Stat6 after IL-4 stimulation by flow cytometry, in keeping with the notion of an over-performed negative regulation. The findings that IL-4/Stat6 phenotypes show differential expression of multiple negative regulators suggest a model that a collective force of powerful negative regulators, directly and indirectly, acts on Stat6 activation, which may result in differential Stat6 phenotypes.
Carroll, S F; Buckley, C T; Kelly, D J
2014-06-27
The objective of this study was to investigate how joint specific biomechanical loading influences the functional development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in chondrogenic medium, while simultaneously subjected to 10MPa of cyclic hydrostatic pressure (HP). To mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-β3 from the media. The application of HP was found to enhance the functional development of cartilaginous tissues engineered using both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore, demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues might also be considered as an additional functional assay for evaluating their therapeutic potential. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wachtel, Marco; Rakic, Jelena; Okoniewski, Michal; Bode, Peter; Niggli, Felix; Schäfer, Beat W
2014-10-01
Biological heterogeneity represents a major obstacle for cancer treatment. Therefore, characterization of treatment-relevant tumor heterogeneity is necessary to develop more effective therapies in the future. Here, we uncovered population heterogeneity among PAX/FOXO1-positive alveolar rhabdomyosarcoma by characterizing prosurvival networks initiated by FGFR4 signaling. We found that FGFR4 signaling rescues only subgroups of alveolar rhabdomyosarcoma cells from apoptosis induced by compounds targeting the IGF1R-PI3K-mTOR pathway. Differences in both proapoptotic machinery and FGFR4-activated signaling are involved in the different behavior of the phenotypes. Proapoptotic stress induced by the kinase inhibitors is sensed by Bim/Bad in rescue cells and by Bmf in nonrescue cells. Anti-apoptotic ERK1/2 signaling downstream of FGFR4 is long-lasting in rescue and short-termed in most non-rescue cells. Gene expression analysis detected signatures specific for these two groups also in biopsy samples. The different cell phenotypes are present in different ratios in alveolar rhabdomyosarcoma tumors and can be identified by AP2β expression levels. Hence, inhibiting FGFR signaling might represent an important strategy to enhance efficacy of current RMS treatments. © 2014 UICC.
Lee, Kijun; Ahn, Ji-Hye; Lee, Kyung-Tae; Jang, Dae Sik; Choi, Jung-Hye
2018-01-15
Deoxyschizandrin, a major lignan of Schisandra berries, has been demonstrated to have various biological activities such as antioxidant, hepatoprotective, and antidiabetic effects. However, the anti-cancer effects of deoxyschizandrin are poorly characterized. In the present study, we investigated the anti-cancer effect of deoxyschizandrin on human ovarian cancer cell lines and tumour-associated macrophages (TAMs). Deoxyschizandrin induced G₀/G₁ phase cell cycle arrest and inhibited cyclin E expression in human ovarian cancer cells. Overexpression of cyclin E significantly reversed the deoxyschizandrin-induced cell growth inhibition. Interestingly, increased production of reactive oxygen species and decreased activation of Akt were observed in A2780 cells treated with deoxyschizandrin, and the antioxidant compromised the deoxyschizandrin-induced cell growth inhibition and Akt inactivation. Moreover, deoxyschizandrin-induced cell growth inhibition was markedly suppressed by Akt overexpression. In addition, deoxyschizandrin was found to inhibit the expression of the M2 phenotype markers CD163 and CD209 in TAMs, macrophages stimulated by the ovarian cancer cells. Moreover, expression and production of the tumour-promoting factors MMP-9, RANTES, and VEGF, which are highly enhanced in TAMs, was significantly suppressed by deoxyschizandrin treatment. Taken together, these data suggest that deoxyschizandrin exerts anti-cancer effects by inducing G₀/G₁ cell cycle arrest in ovarian cancer cells and reducing the protumoural phenotype of TAMs.
Bangert, Christine; Friedl, Josef; Stary, Georg; Stingl, Georg; Kopp, Tamara
2003-12-01
Contrary to our abundant knowledge about the sensitization phase of human contact hypersensitivity, little is known about the cell types orchestrating the effector phase. In order to address this issue, we phenotypically analyzed biopsies from 72 h epicutaneous patch test reactions (n=10) and normal human skin (n=5) for the presence of various leukocyte differentiation antigens. The inflammatory infiltrate was dominated by CD3+/CD4+ T cells with approximately 30% of the cells coexpressing CD25 and CTLA-4, a phenotype consistent with either activated effector or regulatory T cells. In our search for professional antigen-presenting cells, we were surprised to find not only sizeable numbers of CD1a+ dendritic cells and CD1c+ dendritic cells, but also of CD123+, CD45RA+, BDCA-2+, CLA+, and CD62L+ plasmacytoid dendritic cells. Although virtually absent in normal human skin, these cells were detectable already 6 h after hapten challenge and were often found in close proximity to CD56+ natural killer cells, indicative of a functional interaction between these cell types. The detailed knowledge of the cellular composition of the inflammatory infiltrate in allergic contact dermatitis and its kinetics should form the basis for the investigation of the immunologic and molecular events operative in the perpetuation and resolution of the eczematous response.
Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema
2017-05-25
The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.
Peacock, Craig D; Welsh, Raymond M
2004-07-01
CD8+ T cells that coexpress the inhibitory NK cell receptor, Ly49G2 (G2), are present in immunologically naive C57BL/6 mice but display Ags found on memory T cells. To assess how G2+CD8+ cells relate to bona fide memory cells, we examined the origin and fate of lymphocytic choriomeningitis virus (LCMV)-induced G2+CD8+ cells. During early (day 4) acute LCMV infection, both G2+ and G2-CD8+ T cell subsets underwent an attrition in number and displayed an activation (CD69(high)1B11(high)CD62L(low)) phenotype. By day 8, both subsets synthesized IFN-gamma in response to immunodominant LCMV peptides, though the expansion of G2+ cells was less than that of G2- cells. Adoptive transfer experiments with purified G2- or G2+CD8+ cells from naive mice indicated that the LCMV-specific G2+ subset was derived from a pre-existing G2+ population and not generated from G2- cells responding to LCMV infection. Their participation in the LCMV-specific T cell response increased with age, reflecting an increase in the size of the pre-existing G2+ pool. Following establishment of stable LCMV memory, the proportion of CD8+ cells coexpressing G2 was reduced in comparison to naive controls, presumably due to displacement by G2- LCMV-specific memory cells. LCMV-specific G2+ cells were present in the memory pool, but at low frequencies, and they did not exhibit the typical phenotypic changes of reactivation during secondary challenge. We suggest that G2+CD8+ cells represent a cell lineage distinct from bona fide memory T cells, but that they can participate in an acute virus-specific T cell response.