DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha, A.; Ferrel, R.E.; Hittner, H.M.
1994-09-01
Aniridia (iris hyplasia) is a autosomal dominant congenital disorder of the eye. Mutations in the human aniridia (PAX6) gene have now been identified in many patients from various ethnic groups. In the present study we describe new mutations in this gene. Out of four mutations found, three were novel mutations; the fourth one is identical to the previously reported mutations (C{yields}T transition at nt 240). The three novel mutations analyzed were in the glycine-rich region (two) and in the proline/serine/threonine-rich (PST) region (one). Previously no mutations were reported for the glycine-rich region in humans. One of the mutations found inmore » this region is associated with cataracts in an aniridia family. The other splice mutation found in the PST domain is associated with anosmia (lack of sensation to smell) in a sporadic aniridia case. Two of the mutations presented here, one in the glycine-rich region and the other in the PST domain, were not detected by SSCR. These mutations could be detected by using MDE gel and heteroduplex information. All mutations found in the present study are similar in that 32 of 33 PAX6 mutations result in protein truncation and haploinsufficiency.« less
Marttila, Minttu; Lehtokari, Vilma-Lotta; Marston, Steven; Nyman, Tuula A.; Barnerias, Christine; Beggs, Alan H.; Bertini, Enrico; Ceyhan-Birsoy, OÖzge; Cintas, Pascal; Gerard, Marion; Gilbert-Dussardier, Brigitte; Hogue, Jacob S.; Longman, Cheryl; Eymard, Bruno; Frydman, Moshe; Kang, Peter B.; Klinge, Lars; Kolski, Hanna; Lochmüller, Hans; Magy, Laurent; Manel, Véronique; Mayer, Michèle; Mercuri, Eugenio; North, Kathryn N.; Peudenier-Robert, Sylviane; Pihko, Helena; Probst, Frank J.; Reisin, Ricardo; Stewart, Willie; Taratuto, Ana Lia; de Visser, Marianne; Wilichowski, Ekkehard; Winer, John; Nowak, Kristen; Laing, Nigel G.; Winder, Tom L.; Monnier, Nicole; Clarke, Nigel F.; Pelin, Katarina; Grönholm, Mikaela; Wallgren-Pettersson, Carina
2014-01-01
Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding. PMID:24692096
Urzúa, Blanca; Ortega-Pinto, Ana; Farias, Daniela Adorno; Franco, Eugenia; Morales-Bozo, Irene; Moncada, Gustavo; Escobar-Pezoa, Nicolás; Scholz, Ursula; Cifuentes, Victor
2012-01-01
The purpose of this study was to conduct a multidisciplinary analysis of a specific type of tooth enamel disturbance (amelogenesis imperfecta) affecting two Chilean families to obtain a precise diagnosis and to investigate possible underlying mutations. Two non-related families affected with amelogenesis imperfecta were evaluated with clinical, radiographic and histopathological methods. Furthermore, pedigrees of both families were constructed and the presence of eight mutations in the enamelin gene (ENAM) and three mutations in the enamelysin gene (MMP-20) were investigated by PCR and direct sequencing. In the two affected patients, the dental malformation presented as soft and easily disintegrated enamel and exposed dark dentin. Neither of the affected individuals presented with a dental and skeletal open bite. Histologically, a high level of an organic matrix with prismatic organization was found. Genetic analysis indicated that the condition is autosomal recessive in one family and either autosomal recessive or due to a new mutation in the other family. Molecular mutational analysis revealed that none of the eight mutations previously described in the ENAM gene or the three mutations in the MMP-20 gene were present in the probands. A multidisciplinary analysis allowed for a diagnosis of hypocalcified amelogenesis imperfecta, Witkop type III, which was unrelated to previously described mutations in the ENAM or MMP-20 genes.
Minucci, Angelo; Moradkhani, Kamran; Hwang, Ming Jing; Zuppi, Cecilia; Giardina, Bruno; Capoluongo, Ettore
2012-03-15
In the present paper we have updated the G6PD mutations database, including all the last discovered G6PD genetic variants. We underline that the last database has been published by Vulliamy et al. [1] who analytically reported 140 G6PD mutations: along with Vulliamy's database, there are two main sites, such as http://202.120.189.88/mutdb/ and www.LOVD.nl/MR, where almost all G6PD mutations can be found. Compared to the previous mutation reports, in our paper we have included for each mutation some additional information, such as: the secondary structure and the enzyme 3D position involving by mutation, the creation or abolition of a restriction site (with the enzyme involved) and the conservation score associated with each amino acid position. The mutations reported in the present tab have been divided according to the gene's region involved (coding and non-coding) and mutations affecting the coding region in: single, multiple (at least with two bases involved) and deletion. We underline that for the listed mutations, reported in italic, literature doesn't provide all the biochemical or bio-molecular information or the research data. Finally, for the "old" mutations, we tried to verify features previously reported and, when subsequently modified, we updated the specific information using the latest literature data. Copyright © 2012 Elsevier Inc. All rights reserved.
Luscan, A; Just, P A; Briand, A; Burin des Roziers, C; Goussard, P; Nitschké, P; Vidaud, M; Avril, M F; Terris, B; Pasmant, E
2015-04-01
Uveal melanoma (UM) is the most common malignant tumour of the eye. Diagnosis often occurs late in the course of disease, and prognosis is generally poor. Recently, recurrent somatic mutations were described, unravelling additional specific altered pathways in UM. Targeted next-generation sequencing (NGS) can now be applied to an accurate and fast identification of somatic mutations in cancer. The aim of the present study was to characterise the mutation pattern of five UM hepatic metastases with well-defined clinical and pathological features. We analysed the UM mutation spectrum using targeted NGS on 409 cancer genes. Four previous reported genes were found to be recurrently mutated. All tumours presented mutually exclusive GNA11 or GNAQ missense mutations. BAP1 loss-of-function mutations were found in three UMs. SF3B1 missense mutations were found in the two UMs with no BAP1 mutations. We then searched for additional mutation targets. We identified the Arg505Cys mutation in the tumour suppressor FBXW7. The same mutation was previously described in different cancer types, and FBXW7 was recently reported to be mutated in UM exomes. Further studies are required to confirm FBXW7 implication in UM tumorigenesis. Elucidating the molecular mechanisms underlying UM tumorigenesis holds the promise for novel and effective targeted UM therapies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Elahi, Elahe; Shafaghati, Yousef; Asadi, Sareh; Absalan, Farnaz; Goodarzi, Hani; Gharaii, Nava; Karimi-Nejad, Mohammad Hassan; Shahram, Farhad; Hughes, Anne E
2007-01-01
Familial expansile osteolysis (FEO) is a rare disorder causing bone dysplasia. The clinical features of FEO include early-onset hearing loss, tooth destruction, and progressive lytic expansion within limb bones causing pain, fracture, and deformity. An 18-bp duplication in the first exon of the TNFRSF11A gene encoding RANK has been previously identified in four FEO pedigrees. Despite having the identical mutation, phenotypic variations among affected individuals of the same and different pedigrees were noted. Another 18-bp duplication, one base proximal to the duplication previously reported, was subsequently found in two unrelated FEO patients. Finally, mutations overlapping with the mutations found in the FEO pedigrees have been found in ESH and early-onset PDB pedigrees. An Iranian FEO pedigree that contains six affected individuals dispersed in three generations has previously been introduced; here, the clinical features of the proband are reported in greater detail, and the genetic defect of the pedigree is presented. Direct sequencing of the entire coding region and upstream and downstream noncoding regions of TNFRSF11A in her DNA revealed the same 18-bp duplication mutation as previously found in the four FEO pedigrees. Additionally, eight sequence variations as compared to the TNFRSF11A reference sequence were identified, and a haplotype linked to the mutation based on these variations was defined. Although the mutation in the Iranian and four of the previously described FEO pedigrees was the same, haplotypes based on the intragenic SNPs suggest that the mutations do not share a common descent.
Mørk, N; Kofod-Olsen, E; Sørensen, K B; Bach, E; Ørntoft, T F; Østergaard, L; Paludan, S R; Christiansen, M; Mogensen, T H
2015-12-01
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon production downstream of Toll-like receptor (TLR)3. In the present study, we used whole-exome sequencing to investigate the genetic profile of 16 adult patients with a history of HSE. We identified novel mutations in IRF3, TYK2 and MAVS, molecules involved in generating innate antiviral immune responses, which have not previously been associated with HSE. Moreover, data revealed mutations in TLR3, TRIF, TBK1 and STAT1 known to be associated with HSE in children but not previously described in adults. All discovered mutations were heterozygous missense mutations, the majority of which were associated with significantly decreased antiviral responses to HSV-1 infection and/or the TLR3 agonist poly(I:C) in patient peripheral blood mononuclear cells compared with controls. Altogether, this study demonstrates novel mutations in the TLR3 signaling pathway in molecules previously identified in children, suggesting that impaired innate immunity to HSV-1 may also increase susceptibility to HSE in adults. Importantly, the identification of mutations in innate signaling molecules not directly involved in TLR3 signaling suggests the existence of innate immunodeficiencies predisposing to HSE beyond the TLR3 pathway.
Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi
Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes AP; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G
2017-01-01
Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n = 61), followed by less frequent mutations in GNA11 (16%, n = 17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T > A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi. PMID:27934878
Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi.
Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes Ap; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G
2017-03-01
Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n=61), followed by less frequent mutations in GNA11 (16%, n=17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T>A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi.
Sunga, Annette Y; Ricker, Charité; Espenschied, Carin R; Castillo, Danielle; Melas, Marilena; Herzog, Josef; Bannon, Sarah; Cruz-Correa, Marcia; Lynch, Patrick; Solomon, Ilana; Gruber, Stephen B; Weitzel, Jeffrey N
2017-04-01
Lynch syndrome (LS), the most common hereditary colorectal cancer syndrome, is caused by mismatch repair (MMR) gene mutations. However, data about MMR mutations in Hispanics are limited. This study aims to describe the spectrum of MMR mutations in Hispanics with LS and explore ancestral origins. This case series involved an IRB-approved retrospective chart review of self-identified Hispanic patients (n = 397) seen for genetic cancer risk assessment at four collaborating academic institutions in California, Texas, and Puerto Rico who were evaluated by MMR genotyping and/or tumor analysis. A literature review was conducted for all mutations identified. Of those who underwent clinical genetic testing (n = 176), 71 had MMR gene mutations. Nine mutations were observed more than once. One third (3/9) of recurrent mutations and two additional mutations (seen only once) were previously reported in Spain, confirming the influence of Spanish ancestry on MMR mutations in Hispanic populations. The recurrent mutations identified (n = 9) included both previously reported mutations as well as unique mutations not in the literature. This is the largest report of Hispanic MMR mutations in North America; however, a larger sample and haplotype analyses are needed to better understand recurrent MMR mutations in Hispanic populations. Copyright © 2017. Published by Elsevier Inc.
The identification of HESX1 mutations in Kallmann syndrome
Newbern, Kayce; Natrajan, Nithya; Kim, Hyung-Goo; Chorich, Lynn .P.; Halvorson, Lisa; Cameron, Richard S.; Layman, Lawrence C.
2013-01-01
Objective To determine if HESX1 mutations are present in patients with idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS). HESX1 mutations have previously been characterized in patients with septo-optic dysplasia (SOD), isolated growth hormone deficiency (IGHD), and combined pituitary hormone deficiency (CPHD). We hypothesized that IHH/KS represents a milder phenotypic variant of SOD. Design PCR-based DNA sequencing was performed on 217 well-characterized IHH/KS patients. Putative missense mutations were analyzed by sorting intolerant from tolerant (SIFT) and Clustal Ω. Setting An academic medical center Patients 217 IHH/KS and 192 controls Interventions DNA was extracted from patients and controls; genotype/phenotype comparisons were made Main Outcome Measures DNA sequence of HESX1, SIFT analysis, and ortholog alignment Results Two novel heterozygous missense mutations (p.H42Y and p.V75L) and previously reported heterozygous missense mutation p.Q6H in HESX1 were identified in 3/217 (1.4%) patients. All were males with KS. Both p.Q6H and p.H42Y were predicted to be deleterious by SIFT, while p.V75L was conserved in 8/9 species. No other IHH/KS gene mutations were present. Conclusions HESX1 mutations may cause KS in addition to more severe phenotypes. Our findings expand the phenotypic spectrum of HESX1 mutations in humans, thereby broadening its role in development. PMID:23465708
Identification of novel mutations in Mexican patients with Aarskog-Scott syndrome.
Pérez-Coria, Mariana; Lugo-Trampe, José J; Zamudio-Osuna, Michell; Rodríguez-Sánchez, Iram P; Lugo-Trampe, Angel; de la Fuente-Cortez, Beatriz; Campos-Acevedo, Luis D; Martínez-de-Villarreal, Laura E
2015-05-01
Aarskog-Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS.
Identification of novel mutations in Mexican patients with Aarskog–Scott syndrome
Pérez-Coria, Mariana; Lugo-Trampe, José J; Zamudio-Osuna, Michell; Rodríguez-Sánchez, Iram P; Lugo-Trampe, Angel; de la Fuente-Cortez, Beatriz; Campos-Acevedo, Luis D; Martínez-de-Villarreal, Laura E
2015-01-01
Aarskog–Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS. PMID:26029706
Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis.
Skorczyk, Anna; Krawczyński, Maciej R
2012-01-01
To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data.
Tee, Meng Kian; Abramsohn, Michal; Loewenthal, Neta; Harris, Mark; Siwach, Sudeep; Kaplinsky, Ana; Markus, Barak; Birk, Ohad; Sheffield, Val C; Parvari, Ruti; Pavari, Ruti; Hershkovitz, Eli; Miller, Walter L
2013-02-01
The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. We sought to expand clinical and genetic experience with P450scc deficiency. We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.
Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine.
Antón-Martín, Pilar; Aparicio López, Cristina; Ramiro-León, Soraya; Santillán Garzón, Sonia; Santos-Simarro, Fernando; Gil-Fournier, Belén
2012-01-01
Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. A new mutation determining a nucleotide change c.3614G > T (p.Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.
Daoud, Hussein; Zhang, Dong; McMurray, Fiona; Yu, Andrea; Luco, Stephanie M; Vanstone, Jason; Jarinova, Olga; Carson, Nancy; Wickens, James; Shishodia, Shifali; Choi, Hwanho; McDonough, Michael A; Schofield, Christopher J; Harper, Mary-Ellen; Dyment, David A; Armour, Christine M
2016-03-01
A homozygous loss-of-function mutation p.(Arg316Gln) in the fat mass and obesity-associated (FTO) gene, which encodes for an iron and 2-oxoglutarate-dependent oxygenase, was previously identified in a large family in which nine affected individuals present with a lethal syndrome characterised by growth retardation and multiple malformations. To date, no other pathogenic mutation in FTO has been identified as a cause of multiple congenital malformations. We investigated a 21-month-old girl who presented distinctive facial features, failure to thrive, global developmental delay, left ventricular cardiac hypertrophy, reduced vision and bilateral hearing loss. We performed targeted next-generation sequencing of 4813 clinically relevant genes in the patient and her parents. We identified a novel FTO homozygous missense mutation (c.956C>T; p.(Ser319Phe)) in the affected individual. This mutation affects a highly conserved residue located in the same functional domain as the previously characterised mutation p.(Arg316Gln). Biochemical studies reveal that p.(Ser319Phe) FTO has reduced 2-oxoglutarate turnover and N-methyl-nucleoside demethylase activity. Our findings are consistent with previous reports that homozygous mutations in FTO can lead to rare growth retardation and developmental delay syndrome, and further support the proposal that FTO plays an important role in early development of human central nervous and cardiovascular systems. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Bollela, V R; Namburete, E I; Feliciano, C S; Macheque, D; Harrison, L H; Caminero, J A
2016-08-01
Depending on the presence of mutations that determine isoniazid (INH) susceptibility (katG and inhA), Mycobacterium tuberculosis may be susceptible to high doses of INH or ethionamide (ETH). To describe the INH resistance profile and association of katG mutation with previous INH treatment and level of drug resistance based on rapid molecular drug susceptibility testing (DST) in southern Brazil and central Mozambique. Descriptive study of 311 isolates from Ribeirão Preto, São Paulo, Brazil (2011-2014) and 155 isolates from Beira, Mozambique (2014-2015). Drug resistance patterns and specific gene mutations were determined using GenoType(®) MTBDRplus. katG gene mutations were detected in 12/22 (54.5%) Brazilian and 32/38 (84.2%) Mozambican isolates. inhA mutations were observed in 9/22 (40.9%) isolates in Brazil and in 4/38 (10.5%) in Mozambique. Both katG and inhA mutations were detected in respectively 1/22 (5%) and 2/38 (5.2%). The difference in the frequency of katG mutations in Brazil and Mozambique was statistically significant (P = 0.04). katG mutations were present in 68.8% (33/48) of patients previously treated with INH and 31.2% (15/48) of patients without previous INH. This difference was not statistically significant (P = 0.223). INH mutations varied geographically; molecular DST can be used to guide and accelerate decision making in the use of ETH or high doses of INH.
Anfossi, Maria; Colao, Rosanna; Gallo, Maura; Bernardi, Livia; Conidi, M Elena; Frangipane, Francesca; Vasso, Franca; Puccio, Gianfranco; Clodomiro, Alessandra; Mirabelli, Maria; Curcio, Sabrina A M; Torchia, Giusi; Smirne, Nicoletta; Di Lorenzo, Raffaele; Maletta, Raffaele; Bruni, Amalia C
2014-01-01
LRRK2 mutations are common in familial and sporadic Parkinson's disease (PD) cases. We present a screening of the most frequently mutated exons of LRRK2 in Calabrian population. Eighty-eight PD patients diagnosed according to standard criteria, underwent screening for LRRK2 mutations in exons 19, 21, 24, 25, 27, 29, 31, 32, 33, 35, 38, 40, 41, and 48. Eight LRRK2 variations were identified in nine patients affected by PD, including three novel missense variations (p.Phe1227Leu, p.Gly1520Ala, p.Ile2020Ser) and five previously identified mutations (p.Ala1151Thr, IVS31+3A>G, p.Arg1514Gln, p.Gly2019Ser, p.Thr2356Ile). LRRK2 frequency mutations were approximately 10.2% in all PD patients, 12% in familial, 8% in sporadic cases. The p.Gly2019Ser mutation was found in 2.3% of the total cohort and in 3.2% of sporadic cases. The clinical features of LRRK2-associated with PD in our patients were similar to those of idiopathic PD although most LRRK2 mutated patients presented with bradykinesia instead of tremor; 33.3% developed dementia. We identified three novel LRRK2 mutations and reported a higher frequency in Calabria compared to previously reported data possibly due to the relative genetic isolation of the Calabrian population. These findings contribute to the understanding of the role of LRKK2 variations in PD and provide additional genetic insight into this disease.
The spectrum and clinical impact of epigenetic modifier mutations in myeloma
Pawlyn, Charlotte; Kaiser, Martin F; Heuck, Christoph; Melchor, Lorenzo; Wardell, Christopher P; Murison, Alex; Chavan, Shweta; Johnson, David C; Begum, Dil; Dahir, Nasrin; Proszek, Paula; Cairns, David A; Boyle, Eileen M; Jones, John R; Cook, Gordon; Drayson, Mark T; Owen, Roger G; Gregory, Walter M; Jackson, Graham H; Barlogie, Bart; Davies, Faith E; Walker, Brian A; Morgan, Gareth J
2016-01-01
Purpose Epigenetic dysregulation is known to be an important contributor to myeloma pathogenesis but, unlike in other B cell malignancies, the full spectrum of somatic mutations in epigenetic modifiers has not been previously reported. We sought to address this using results from whole-exome sequencing in the context of a large prospective clinical trial of newly diagnosed patients and targeted sequencing in a cohort of previously treated patients for comparison. Experimental Design Whole-exome sequencing analysis of 463 presenting myeloma cases entered in the UK NCRI Myeloma XI study and targeted sequencing analysis of 156 previously treated cases from the University of Arkansas for Medical Sciences. We correlated the presence of mutations with clinical outcome from diagnosis and compared the mutations found at diagnosis with later stages of disease. Results In diagnostic myeloma patient samples we identify significant mutations in genes encoding the histone 1 linker protein, previously identified in other B-cell malignancies. Our data suggest an adverse prognostic impact from the presence of lesions in genes encoding DNA methylation modifiers and the histone demethylase KDM6A/UTX. The frequency of mutations in epigenetic modifiers appears to increase following treatment most notably in genes encoding histone methyltransferases and DNA methylation modifiers. Conclusions Numerous mutations identified raise the possibility of targeted treatment strategies for patients either at diagnosis or relapse supporting the use of sequencing-based diagnostics in myeloma to help guide therapy as more epigenetic targeted agents become available. PMID:27235425
Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.
Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G
2015-07-01
Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96 new genes in which mutations occurred during seminoma development, some of which might contribute to cancer development or progression. The study also showed that the rates of DNA mutations during seminoma development are higher than previously thought, but still lower than for other common solid-organ cancers. Such low rates are also observed among other cancers that, like seminomas, show excellent rates of disease remission after chemotherapy. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
SAM syndrome is characterized by extensive phenotypic heterogeneity.
Taiber, Shahar; Samuelov, Liat; Mohamad, Janan; Cohen Barak, Eran; Sarig, Ofer; Shalev, Stavit Allon; Lestringant, Gilles; Sprecher, Eli
2018-03-31
Severe skin dermatitis, multiple allergies and metabolic wasting (SAM) syndrome is a rare life-threatening inherited condition caused by bi-allelic mutations in DSG1 encoding desmoglein 1. The disease was initially reported to manifest with severe erythroderma, failure to thrive, atopic manifestations, recurrent infections, hypotrichosis and palmoplantar keratoderma. We present 3 new cases of SAM syndrome in 2 families and review the cases published so far. Whole exome and direct sequencing were used to identify SAM syndrome-causing mutations. Consistent with previous data, SAM syndrome was found in all 3 patients to result from homozygous mutations in DSG1 predicted to result in premature termination of translation. In contrast, as compared with patients previously reported, the present cases were found to display a wide range of clinical presentations of variable degrees of severity. The present data emphasizes the fact that SAM syndrome is characterized by extensive phenotypic heterogeneity, suggesting the existence of potent modifier traits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Neoh, Ching Yin; Chen, Huijia; Ng, See Ket; Lane, Ellen Birgitte; Common, John Edmund Armourer
2009-10-01
Keratitis-ichthyosis-deafness (KID) syndrome is a rare ectodermal dysplasia characterized by generalized erythrokeratotic plaques, sensorineural hearing loss, and vascularizing keratitis. Cutaneous changes and hearing loss typically present in early childhood, whereas ocular symptoms present later. Mutations in the connexin (Cx) 26 gene, GJB2, are now established to underlie many of the affected cases, with the majority of patients harboring the p.D50N mutation. A rare patient demonstrating features of incomplete KID syndrome associated with an uncommon Cx26 gene mutation is described. The patient presented late in adolescence with partial features of KID syndrome. There was limited cutaneous involvement and the rare association of cystic acne. Both hearing impairment and ophthalmic involvement were mild in severity. Genetic mutation analysis revealed a previously described, rare mutation in GJB2, resulting in a glycine to arginine change at codon 12 (p.G12R). This report describes a patient exhibiting characteristics suggestive of a late-onset, incomplete form of KID syndrome with the GJB2 mutation (p.G12R). The p.G12R mutation has only been described in one other patient with KID syndrome, whose clinical presentation was not characterized.
King, Kathryn S.; Prodanov, Tamara; Kantorovich, Vitaly; Fojo, Tito; Hewitt, Jacqueline K.; Zacharin, Margaret; Wesley, Robert; Lodish, Maya; Raygada, Margarita; Gimenez-Roqueplo, Anne-Paule; McCormack, Shana; Eisenhofer, Graeme; Milosevic, Dragana; Kebebew, Electron; Stratakis, Constantine A.; Pacak, Karel
2011-01-01
Purpose To present data on the high rate of SDHB mutations in patients with metastatic pheochromocytoma/paraganglioma whose initial tumor presentation began in childhood or adolescence. Patients and Methods From 2000 to 2010, 263 patients with pheochromocytoma/paraganglioma were evaluated through the National Institutes of Health (NIH), Bethesda, MD. Of the 263 patients, 125 patients were found to have metastatic disease; of these 125 patients, 32 patients presented with a tumor before 20 years of age. An additional 17 patients presented with a tumor before 20 years of age but demonstrated no development of metastatic disease. Genetic testing for mutations in the VHL, MEN, and SDHB/C/D genes was performed on patients without previously identified genetic mutations. Results Of the 32 patients who presented with metastatic disease and had their primary tumor in childhood or adolescence, sequence analysis of germline DNA showed SDHB mutations in 23 patients (71.9%), SDHD mutations in three patients (9.4%), VHL mutations in two patients (6.3%), and an absence of a known mutation in four patients (12.5%). The majority of these 32 patients (78.1%) presented with primary tumors in an extra-adrenal location. Conclusion The majority of patients with metastatic pheochromocytoma/paraganglioma who presented with a primary tumor in childhood/adolescence had primary extra-adrenal tumors and harbored SDHB mutations. Except for primary tumors located in the head and neck where SDHD genetic testing is advised, we recommend that patients who present with metastatic pheochromocytoma/paraganglioma with primary tumor development in childhood or adolescence undergo SDHB genetic testing before they undergo testing for other gene mutations, unless clinical presentation or family history suggests a different mutation. PMID:21969497
Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D
2014-05-01
Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. Copyright © 2014 Elsevier B.V. All rights reserved.
Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa
Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying
2014-01-01
Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031
Abbasi, Ansar A; Blaesius, Kathrin; Hu, Hao; Latif, Zahid; Picker-Minh, Sylvie; Khan, Muhammad N; Farooq, Sundas; Khan, Muzammil A; Kaindl, Angela M
2017-12-01
TRAPPC9 gene mutations have been linked recently to autosomal recessive mental retardation 13 (MRT13; MIM#613192) with only eight families reported world-wide. We assessed patients from two consanguineous pedigrees of Pakistani descent with non-syndromic intellectual disability and postnatal microcephaly through whole exome sequencing (WES) and cosegregation analysis. Here we report six further patients from two pedigrees with homozygous TRAPPC9 gene mutations, the novel nonsense mutation c.2065G>T (p.E689*) and the previously identified nonsense mutation c.1423C>T (p.R475*). We provide an overview of previously reported clinical features and highlight common symptoms and variability of MRT13. Common findings are intellectual disability and absent speech, and frequently microcephaly, motor delay and pathological findings on MRI including diminished cerebral white matter volume are present. Mutations in TRAPPC9 should be considered in non-syndromic autosomal recessive intellectual disability with severe speech disorder. © 2017 Wiley Periodicals, Inc.
Gucev, Z S; Slaveska, N; Laban, N; Danilovski, D; Tasic, V; Pop-Jordanova, N; Zatkova, A
2011-01-01
Alkaptonuria (AKU) is a disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD). This recessive disease is caused by mutations in the HGD gene. We report a 14-year-old girl who was referred after presenting black urine. Careful examination revealed ochronosis of the conjunctiva. There was no affection of the cardiac valves. Elevated excretion of homogentisic acid in urine was found. Sequence analysis of the HGD gene from genomic DNA revealed that the patient is a compound heterozygote with a previously described mutation (c.473C>T, p.Pro158Leu), and a novel one (c.821C>T, p.Pro274Leu). Her mother is heterozygous for the novel mutation, while the brother is heterozygous for the previously described mutation. In summary, we describe an alkaptonuric patient with ocular ochronosis and a novel HGD mutation, c.821C>T, p.Pro274Leu.
Aguilar-Martinez, Patricia; Grandchamp, Bernard; Cunat, Séverine; Cadet, Estelle; Blanc, François; Nourrit, Marlène; Lassoued, Kaiss; Schved, Jean-François; Rochette, Jacques
2011-04-01
Heterozygotes for the p.Cys282Tyr (C282Y) mutation of the HFE gene do not usually express a hemochromatosis phenotype. Apart from the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele, other rare HFE mutations can be found in trans on chromosome 6. We performed molecular investigation of the genes implicated in hereditary hemochromatosis in six patients who presented with iron overload but were simple heterozygotes for the HFE C282Y mutation at first genetic testing. Functional impairment of new variants was deduced from computational methods including molecular modeling studies. We identified four rare HFE mutant alleles, three of which have not been previously described. One mutation is a 13-nucleotide deletion in exon 6 (c.1022_1034del13, p.His341_Ala345 > LeufsX119), which is predicted to lead to an elongated and unstable protein. The second one is a substitution of the last nucleotide of exon 2 (c.340G > A, p.Glu114Lys) which modifies the relative solvent accessibility in a loop interface. The third mutation, p.Arg67Cys, also lies in exon 2 and introduces a destabilization of the secondary structure within a loop of the α1 domain. We also found the previously reported c.548T > C (p.Leu183Pro) missense mutation in exon 3. No other known iron genes were mutated. We present an algorithm at the clinical and genetic levels for identifying patients deserving further investigation. Conclusions Our results suggest that additional mutations in HFE may have a clinical impact in C282Y carriers. In conjunction with results from previously described cases we conclude that an elevated transferrin saturation level and elevated hepatic iron index should indicate the utility of searching for further HFE mutations in C282Y heterozygotes prior to other iron gene studies.
Kempers, M J E; van der Crabben, S N; de Vroede, M; Alfen-van der Velden, J; Netea-Maier, R T; Duim, R A J; Otten, B J; Losekoot, M; Wit, J M
2013-01-01
Congenital isolated growth hormone deficiency (IGHD) is a rare endocrine disorder that presents with severe proportionate growth failure. Dominant (type II) IGHD is usually caused by heterozygous mutations of GH1. The presentation of newly affected family members in 3 families with dominant IGHD in whom previous genetic testing had not demonstrated a GH1 mutation or had not been performed, prompted us to identify the underlying genetic cause. GH1 was sequenced in 3 Caucasian families with a clinical autosomal dominant IGHD. All affected family members had severe growth hormone (GH) deficiency that became apparent in the first 2 years of life. GH treatment led to a marked increase in height SDS. So far, no other pituitary dysfunctions have become apparent. In the first family a novel splice site mutation in GH1 was identified (c.172-1G>C, IVS2-1G>C). In two other families a previously reported splice site mutation (c.291+1G>A, IVS3+1G>A) was found. These data show that several years after negative genetic testing it was now possible to make a genetic diagnosis in these families with a well-defined, clearly heritable, autosomal dominant IGHD. This underscores the importance of clinical and genetic follow-up in a multidisciplinary setting. It also shows that even without a positive family history, genetic testing should be considered if the phenotype is strongly suggestive for a genetic syndrome. Identification of pathogenic mutations, like these GH1 mutations, has important clinical implications for the surveillance and genetic counseling of patients and expands our knowledge on the genotype-phenotype correlation. © 2013 S. Karger AG, Basel.
Bollela, V. R.; Namburete, E. I.; Feliciano, C. S.; Macheque, D.; Harrison, L. H.; Caminero, J. A.
2017-01-01
SUMMARY BACKGROUND Depending on the presence of mutations that determine isoniazid (INH) susceptibility (katG and inhA), Mycobacterium tuberculosis may be susceptible to high doses of INH or ethionamide (ETH). OBJECTIVE To describe the INH resistance profile and association of katG mutation with previous INH treatment and level of drug resistance based on rapid molecular drug susceptibility testing (DST) in southern Brazil and central Mozambique. DESIGN Descriptive study of 311 isolates from Ribeirão Preto, São Paulo, Brazil (2011–2014) and 155 isolates from Beira, Mozambique (2014–2015). Drug resistance patterns and specific gene mutations were determined using GenoType® MTBDRplus. RESULTS katG gene mutations were detected in 12/22 (54.5%) Brazilian and 32/38 (84.2%) Mozambican isolates. inhA mutations were observed in 9/22 (40.9%) isolates in Brazil and in 4/38 (10.5%) in Mozambique. Both katG and inhA mutations were detected in respectively 1/22 (5%) and 2/38 (5.2%). The difference in the frequency of katG mutations in Brazil and Mozambique was statistically significant (P = 0.04). katG mutations were present in 68.8% (33/48) of patients previously treated with INH and 31.2% (15/48) of patients without previous INH. This difference was not statistically significant (P = 0.223). CONCLUSION INH mutations varied geographically; molecular DST can be used to guide and accelerate decision making in the use of ETH or high doses of INH. PMID:27393546
Nahleh, Zeina; Otoukesh, Salman; Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Sanchez, Luis; Saldivar, J Salvador; Cataneda, Kayla; Heydarian, Rosalinda
2015-01-01
Hispanics in El Paso, TX, a large American-Mexican border city constitute 85% of the population. Limited cancer research has been conducted in this population. We sought to study the prevalence of BRCA mutations among Hispanic patients of Mexican origin, identify reported Mexican founder or recurrent mutations, and study the breast cancer characteristics in mutation carriers. Hispanic women of Mexican descent with a personal history of breast cancer, who presented consecutively for genetic cancer risk assessment, were enrolled in an Institutional Review Board-approved registry and underwent BRCA testing based on national guidelines. The characteristics of tumors and patients with positive BRCA mutation were analyzed. 88 patients were screened; 18 patients (20%) were BRCA carriers. Among BRCA carriers, 72% were diagnosed with breast cancer at younger than 50 years, 61% had "Triple negative disease". BRCA carriers had a significantly higher Body Mass Index (BMI) than non-carriers. Thirteen patients had BRCA1 mutations and five had BRCA2 mutations. A total of 17 deleterious BRCA Mutations were observed. Seven have been previously reported as specific genes from Mexico as country of origin. Five new mutations in BRCA carriers of Mexican descent were identified. Hispanic breast cancer patients of Mexican origin present at a younger age, and have predominantly triple negative tumors and high BMI. We identified 5 new mutations not reported previously in Hispanic BRCA carriers of Mexican descent. Interestingly, 41% of BRCA mutations identified have been reported as recurrent mutations in Hispanic individuals from Mexico as the country of origin. A more cost-effective approach to initial screening of Hispanic individuals based on country of origin is desirable and would potentially decrease the number of cases requiring complete sequencing.
Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families
Ullah, Asmat; Umair, Muhammad; Yousaf, Maryam; Khan, Sher Alam; Nazim-ud-din, Muhammad; Shah, Khadim; Ahmad, Farooq; Azeem, Zahid; Ali, Ghazanfar; Alhaddad, Bader; Rafique, Afzal; Jan, Abid; Haack, Tobias B.; Strom, Tim M.; Meitinger, Thomas; Ghous, Tahseen
2017-01-01
Purpose To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin. Methods Linkage in two families (A and B) was established to BBS7 on chromosome 4q27, in family C to BBS8 on chromosome 14q32.1, and in family D to BBS10 on chromosome 12q21.2. Family E was investigated directly with exome sequence analysis. Results Sanger sequencing revealed two novel mutations and three previously reported mutations in the BBS genes. These mutations include two deletions (c.580_582delGCA, c.1592_1597delTTCCAG) in the BBS7 gene, a missense mutation (p.Gln449His) in the BBS8 gene, a frameshift mutation (c.271_272insT) in the BBS10 gene, and a nonsense mutation (p.Ser40*) in the MKKS (BBS6) gene. Conclusions Two novel mutations and three previously reported variants, identified in the present study, further extend the body of evidence implicating BBS6, BBS7, BBS8, and BBS10 in causing BBS. PMID:28761321
Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis
Skorczyk, Anna
2012-01-01
Purpose To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Methods Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. Results All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). Conclusions This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data. PMID:23288992
C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma.
Topaloglu, Rezan; Taskiran, Ekim Z; Tan, Cagman; Erman, Baran; Ozaltin, Fatih; Sanal, Ozden
2012-07-01
A Turkish patient with C1q deficiency presented with a lupus-like disease, and a new missense mutation at A chain is presented. To characterize the genetic defect, all exons of the genes for the A, B, and C chains of C1q were sequenced in the patient. This revealed a missense mutation in the collagen-like domain of the A chain, p.Gly31 Arg. No other sequence variants, including the common silent mutations, were found in the three chains. Exon 1 of the C1q A chain was sequenced in 105 samples from healthy controls for this particular mutation. None of these carried the mutation. The C1q-deficient patient was treated with fresh frozen plasma infusions. Our findings showed that Turkish patients may have different mutations than the previously described common mutation, and once again, not only nonsense mutations but also missense mutations cause hereditary C1q deficiency. Regular fresh frozen plasma infusions to the patient have been clinically and therapeutically successful.
A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.
Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A
2012-08-01
A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.
Deshwar, Amar; Margonis, Georgios Antonios; Andreatos, Nikolaos; Barbon, Carlotta; Wang, Jaeyun; Buettner, Stefan; Wagner, Doris; Sasaki, Kazunari; Beer, Andrea; Løes, Inger Marie; Pikoulis, Emmanouil; Damaskos, Christos; Garmpis, Nikolaos; Kamphues, Karsten; He, Jin; Kaczirek, Klaus; Poultsides, George; Lønning, Per Eystein; Mischinger, Hans Joerg; Aucejo, Federico N; Kreis, Martin E; Wolfgang, Christopher L; Weiss, Matthew J
2018-05-01
While previously believed to be mutually exclusive, concomitant mutation of Kirsten rat sarcoma viral oncogene homolog (KRAS)- and V-raf murine sarcoma b-viral oncogene homolog B1 (BRAF)-mutated colorectal carcinoma (CRC), has been described in rare instances and been associated with advanced-stage disease. The present case series is the first to report on the implications of concurrent KRAS/BRAF mutations among surgically treated patients, and the largest set of patients with surgically treated colorectal liver metastasis (CRLM) and data on KRAS/BRAF mutational status thus far described. We present cases from an international, multi-institutional cohort of patients that underwent hepatic resection for CRLM between 2000-2015 at seven tertiary centers. The incidence of KRAS/BRAF mutation in patients with CRLM was 0.5% (4/820). Of these cases, patient 1 (T2N1 primary, G13D/V600E), patient 2 (T3N1 primary, G12V/V600E) and patient 3 (T4N2 primary, G13D/D594N) succumbed to their disease within 485, 236 and 79 days respectively, post-hepatic resection. Patient 4 (T4 primary, G12S/G469S) was alive 416 days after hepatic resection. The present case series suggests that the incidence of concomitant KRAS/BRAF mutations in surgical cohorts may be higher than previously hypothesized, and associated with more variable survival outcomes than expected. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Meloni, Ilaria; Bruttini, Mirella; Longo, Ilaria; Mari, Francesca; Rizzolio, Flavio; D’Adamo, Patrizia; Denvriendt, Koenraad; Fryns, Jean-Pierre; Toniolo, Daniela; Renieri, Alessandra
2000-01-01
Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders. PMID:10986043
Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti
2010-01-01
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. PMID:20137772
Arturi, F; Capula, C; Chiefari, E; Filetti, S; Russo, D
1998-01-01
Activating mutations of Gs alpha protein (gsp) and TSH receptor (TSH-R) identified in autonomously hyperfunctioning thyroid adenomas have been proposed as the primary event responsible for this disease. Since mutations have not been detected in 100% (ranging from less than 10% to 90%) of the patients, we evaluated whether the presence of gsp and TSH-R mutations cause differences in the clinical and biochemical parameters of the affected patients. Fifteen consecutive patients (11 women and 4 men) with autonomously hyperfunctioning thyroid adenomas who underwent thyroidectomy, previously examined for the presence of gsp or TSH-R mutations, were investigated. In all of the patients we examined plasma free T3, free T4, TSH levels and ultrasound volume of the nodules. The patients with mutations in gsp or TSH-R were similar to the patients without mutations for clinical presentation, sex distribution and mean age. Furthermore, basal serum FT3, TSH and tumor volume in the patients with mutations were not significantly different from the group without mutations. Our preliminary data demonstrate that no significant differences are present in the two groups of patients examined, suggesting that factors other than gsp or TSH-R mutations play a role in the clinical presentation of the disease.
Four novel mutations in the lactase gene (LCT) underlying congenital lactase deficiency (CLD).
Torniainen, Suvi; Freddara, Roberta; Routi, Taina; Gijsbers, Carolien; Catassi, Carlo; Höglund, Pia; Savilahti, Erkki; Järvelä, Irma
2009-01-22
Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder of newborns. The diagnosis is challenging and based on clinical symptoms and low lactase activity in intestinal biopsy specimens. The disease is enriched in Finland but is also present in other parts of the world. Mutations encoding the lactase (LCT) gene have recently been shown to underlie CLD. The purpose of this study was to identify new mutations underlying CLD in patients with different ethnic origins, and to increase awareness of this disease so that the patients could be sought out and treated correctly. Disaccharidase activities in intestinal biopsy specimens were assayed and the coding region of LCT was sequenced from five patients from Europe with clinical features compatible with CLD. In the analysis and prediction of mutations the following programs: ClustalW, Blosum62, PolyPhen, SIFT and Panther PSEC were used. Four novel mutations in the LCT gene were identified. A single nucleotide substitution leading to an amino acid change S688P in exon 7 and E1612X in exon 12 were present in a patient of Italian origin. Five base deletion V565fsX567 leading to a stop codon in exon 6 was found in one and a substitution R1587H in exon 12 from another Finnish patient. Both Finnish patients were heterozygous for the Finnish founder mutation Y1390X. The previously reported mutation G1363S was found in a homozygous state in two siblings of Turkish origin. This is the first report of CLD mutations in patients living outside Finland. It seems that disease is more common than previously thought. All mutations in the LCT gene lead to a similar phenotype despite the location and/or type of mutation.
Jääskeläinen, Pertti; Heliö, Tiina; Aalto-Setälä, Katriina; Kaartinen, Maija; Ilveskoski, Erkki; Hämäläinen, Liisa; Melin, John; Kärkkäinen, Satu; Peuhkurinen, Keijo; Nieminen, Markku S; Laakso, Markku; Kuusisto, Johanna
2014-09-01
In the nationwide FinHCM Study including 306 Finnish patients with hypertrophic cardiomyopathy (HCM), we have previously identified two founder mutations in the alpha-tropomyosin (TPM1-D175N) and myosin-binding protein C (MYBPC3-Q1061X) genes, accounting for 18% of all cases. Objective. To screen additional mutations, previously identified in eastern Finnish cohorts with HCM, in the FinHCM Study population. Ten mutations in the beta-myosin heavy chain gene (MYH7), TPM1, and MYBPC3 were screened. MYH7-R1053Q was found in 17 of 306 patients (5.6%). No carriers of MYH7-R719W or N696S were found. A novel TPM1-D175G mutation was found in a single patient. MYBPC3 mutations were found in 14 patients: IVS5-2A-C in two, IVS14-13G-A in two, K811del in six, and A851insT in four patients. Altogether, a HCM-causing mutation was identified in 32 patients, accounting for 10.5% of all cases. In addition, two MYBPC3 variants R326Q and V896M with uncertain pathogenicity were found in eight and in 10 patients, respectively. Combining the present findings with our previous results, a causative mutation was identified in 28% of the FinHCM cohort. MYH7-R1053Q was the third most common mutation, and should be screened in all new cases of HCM in Finland.
Hasan, Sonia; Balobaid, Ameera; Grottesi, Alessandro; Dabbagh, Omar; Cenciarini, Marta; Rawashdeh, Rifaat; Al-Sagheir, Afaf; Bove, Cecilia; Macchioni, Lara; Pessia, Mauro; Al-Owain, Mohammed; D'Adamo, Maria Cristina
2017-10-01
A 2-yr-old boy presented profound developmental delay, failure to thrive, ataxia, hypotonia, and tonic-clonic seizures that caused the death of the patient. Targeted and whole exome sequencing revealed two heterozygous missense variants: a novel mutation in the KCNJ10 gene that encodes for the inward-rectifying K + channel Kir4.1 and another previously characterized mutation in KCNT1 that encodes for the Na + -activated K + channel known as Slo2.2 or SLACK. The objectives of this study were to perform the clinical and genetic characterization of the proband and his family and to examine the functional consequence of the Kir4.1 mutation. The mutant and wild-type KCNJ10 constructs were generated and heterologously expressed in Xenopus laevis oocytes, and whole cell K + currents were measured using the two-electrode voltage-clamp technique. The KCNJ10 mutation c.652C>T resulted in a p.L218F substitution at a highly conserved residue site. Wild-type KCNJ10 expression yielded robust Kir current, whereas currents from oocytes expressing the mutation were reduced, remarkably. Western Blot analysis revealed reduced protein expression by the mutation. Kir5.1 subunits display selective heteromultimerization with Kir4.1 constituting channels with unique kinetics. The effect of the mutation on Kir4.1/5.1 channel activity was twofold: a reduction in current amplitudes and an increase in the pH-dependent inhibition. We thus report a novel loss-of-function mutation in Kir4.1 found in a patient with a coexisting mutation in SLACK channels that results in a fatal disease. NEW & NOTEWORTHY We present and characterize a novel mutation in KCNJ10 Unlike previously reported EAST/SeSAME patients, our patient was heterozygous, and contrary to previous studies, mimicking the heterozygous state by coexpression resulted in loss of channel function. We report in the same patient co-occurrence of a KCNT1 mutation resulting in a more severe phenotype. This study provides new insights into the phenotypic spectrum and to the genotype-phenotype correlations associated with EAST/SeSAME and MMFSI. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vries, D.D.; Oost, B.A. van; Went, L.N.
1996-04-01
A rare form of Leber hereditary optic neuropathy (LHON) that is associated with hereditary spastic dystonia has been studied in a large Dutch family. Neuropathy and ophthalmological lesions were present together in some family members, whereas only one type of abnormality was found in others. mtDNA mutations previously reported in LHON were not present. Sequence analysis of the protein-coding mitochondrial genes revealed two previously unreported mtDNA mutations. A heteroplasmic A{yields}G transition at nucleotide position 11696 in the ND4 gene resulted in the substitution of an isoleucine for valine at amino acid position 312. A second mutation, a homoplasmic T{yields}A transitionmore » at nucleotide position 14596 in the ND6 gene, resulted in the substitution of a methionine for the isoleucine at amino acid residue 26. Biochemical analysis of a muscle biopsy revealed a severe complex I deficiency, providing a link between these unique mtDNA mutations and this rare, complex phenotype including Leber optic neuropathy. 80 refs., 2 figs., 3 tabs.« less
Cario, Holger; Schwarz, Klaus; Jorch, Norbert; Kyank, Ulrike; Petrides, Petro E; Schneider, Dominik T; Uhle, Renate; Debatin, Klaus-Michael; Kohne, Elisabeth
2005-01-01
Congenital erythrocytoses or polycythemias are rare and heterogeneous. A homozygous mutation (C598T->Arg200Trp) in the von Hippel-Lindau (VHL) gene was originally identified as the cause of the endemic Chuvash polycythemia. Subsequently this and other mutations in the VHL gene were also detected in several patients of different ethnic origin. Haplotype analyses of the VHL gene suggested a common origin for the Chuvash-type mutation. Thirty-four patients with presumable congenital erythrocytosis due to an unknown underlying disorder were examined for VHL gene mutations and VHL region haplotypes. Four patients were homozygous and one patient heterozygous for the Chuvash-type mutation. One additional patient presented a previously not described heterozygous mutation G311->T VHL in exon 1. The haplotype analyses were in agreement with recently published data for three of the four patients with homozygous mutations as well as for the patient with a heterozygous Chuvash-type mutation. One patient of Turkish origin with homozygous Chuvash-type mutation had a haplotype not previously found in individuals with Chuvash-type mutation. These results confirm that mutations in the VHL gene are responsible for a substantial proportion of patients with congenital erythrocytoses. Erythrocytoses due to a C598->T mutation of the VHL gene are not geographically restricted. The majority of patients with Chuvash polycythemia share a common VHL gene haplotype. The different haplotype in one of the patients with Chuvash-type mutation indicates that this mutation was not spread only from a single founder but developed independently in other individuals.
Kazemi Nezhad, Seyed Reza; Fahmi, Fatemeh; Khatami, Saeid Reza; Musaviun, Mohsen
2011-01-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common hereditary enzymatic disorders in human, increases the vulnerability of erythrocytes to oxidative stress. It is also characterized by remarkable molecular and biochemical heterogeneity. According to previous investigations, G6PD Cosenza (G1376C) is a common G6PD mutation in some parts of . Therefore in the present study we have characterized mutation among G6PD deficient individuals in Khuzestan province. In order to identify G6PD Cosenza, we analyzed the G6PD gene in 64 samples out of 231 deficient individuals who had not G6PD Mediterranean mutation, using PCR- restriction fragment length polymorphism (RFLP) method. G6PD Cosenza mutation was found in 6 males of 231 samples, resulting in the relative rate of 2.6% and allele frequency of 0.023 among Khuzestanian G6PD deficient subjects. A comparison of these results with previous findings in some parts of suggests that G6PD Cosenza is a common mutation in Khuzestanian G6PD deficient individuals. PMID:23365477
Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis
Jalili, Mahdi; Yaghmaie, Marjan; Ahmadvand, Mohammad; Alimoghaddam, Kamran; Mousavi, Seyed Asadollah; Vaezi, Mohammad; Ghavamzadeh, Ardeshir
2018-02-26
The RUNX1 (AML1) gene is a relatively infrequent mutational target in cases of acute myeloid leukemia (AML). Previous work indicated that RUNX1 mutations can have pathological and prognostic implications. To evaluate prognostic value, we conducted a meta-analysis of 4 previous published works with data for survival according to RUNX1 mutation status. Pooled hazard ratios for overall survival and disease-free survival were 1.55 (95% confidence interval (CI) = 1.11–2.15; p-value = 0.01) and 1.76 (95% CI = 1.24–2.52; p-value = 0.002), respectively, for cases positive for RUNX1 mutations. This evidence supports clinical implications of RUNX1 mutations in the development and progression of AML cases and points to the possibility of a distinct category within the newer WHO classification. Though it must be kept in mind that the present work was based on data extracted from observational studies, the findings suggest that the RUNX1 status can contribute to risk-stratification and decision-making in management of AML. Creative Commons Attribution License
Gruber, Barry L.; Couto, Ana Rita; Armas, Jácome Bruges; Brown, Matthew A.; Finzel, Kathleen; Terkeltaub, Robert A.
2015-01-01
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband’s DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband’s father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband’s father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband’s father. PMID:22647861
Gruber, Barry L; Couto, Ana Rita; Armas, Jácome Bruges; Brown, Matthew A; Finzel, Kathleen; Terkeltaub, Robert A
2012-06-01
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.
Huang, Zhuo; Ye, Jun; Han, Lianshu; Qiu, Wenjuan; Zhang, Huiwen; Yu, Yongguo; Liang, Lili; Gong, Zhuwen; Gu, Xuefan
2016-04-01
Congenital lipoid adrenal hyperplasia (CLAH) is a rare autosomal recessive disorder caused by defective synthesis of all steroids. This disorder is characterized by 46,XY sex reversal, skin hyperpigmentation, early-onset adrenal crisis and enlarged adrenal with fatty accumulation. CLAH is caused by mutations in the STAR gene. The clinical features and STAR gene mutation spectrum of a large cohort of Chinese patients with CLAH were not reported previously. We performed clinical retrospective review and genetic analysis of the STAR gene in ten unrelated Chinese phenotypic female patients who were clinically diagnosed with CLAH and followed up in our hospital from 2006 to 2015. All ten patients, including two 46,XY females and eight 46,XX females, presented skin hyperpigmentation and early salt-wasting episode, and showed normal growth and development after steroid replacement treatment. Totally 20 mutant alleles containing 11 different STAR gene mutations were identified in these ten patients, including five novel variants (two missense and three null variants), all predicted to be pathogenic in bioinformatics analysis, and six mutations described in previous literature. Among these 11 mutations, a reported mutation c.772C>T and a novel variant c.707_708delinsCTT were most frequent, accounting for 35% and 15% of the total mutant alleles, respectively. This is the first report of a large Chinese cohort with CLAH, presenting the mutation spectrum of the STAR gene and two possible founder mutations in the Chinese population, which may contribute to better genetic counseling and prenatal diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Taïeb, David; Yang, Chunzhang; Delenne, Blandine; Zhuang, Zhengping; Barlier, Anne; Sebag, Fréderic; Pacak, Karel
2013-05-01
Molecular genetic research has so far resulted in the identification of 10 well-characterized susceptibility genes for hereditary pheochromocytoma (PHEO) or paraganglioma (PGL). Recently, a new syndrome characterized by multiple PGLs and somatostatinomas associated with congenital polycythemia due to somatic mutations in HIF2A has been reported. The aim of the study was to define the genetic defect in a new case of bilateral PHEO and multiple PGLs associated with congenital polycythemia. A female patient presented with neonatal polycythemia (treated by phlebotomies, 1 session approximately every 4 mo), mildly enlarged cerebral ventricles, and bilateral PHEO and multiple PGLs. There was no family history of any neuroendocrine tumor or polycythemia. Surgical removal of the tumors only temporarily normalized plasma erythropoietin (Epo) levels and discontinued phlebotomies. No germline mutations were initially detected in the SDHB, SDHC, SDHD, VHL, and PHD2 genes, known to be associated with polycythemia. The PHEOs presented with a typical noradrenergic biochemical phenotype. A heterozygous missense mutation (c.1589C>T) was identified in exon 12 of HIF2A, resulting in an alanine 530 substitution in the HIF-2α protein with valine (A530V). This somatic mutation was detected in the tissue from 1 PHEO and 1 PGL, with no HIF2A germline mutation found. This mutation led to stabilization of HIF-2α and hence a gain-of-function phenotype, as in previously published studies. This case represents the first association of a somatic HIF2A gain-of-function mutation with PHEO and congenital polycythemia, and it alerts physicians to perform proper genetic screening in patients presenting with multiple norepinephrine-producing PHEOs and polycythemia. This report also extends the previous findings of a new syndrome of only multiple PGLs, somatostatinomas, and polycythemia to multiple PHEOs.
Sahli, Chaima Abdelhafidh; Ben Salem, Ikbel; Jouini, Latifa; Laouini, Naouel; Dabboubi, Rym; Hadj Fredj, Sondes; Siala, Hajer; Othmeni, Rym; Dakhlaoui, Boutheina; Fattoum, Slaheddine; Bibi, Amina; Messaoud, Taieb
2016-09-01
β-Thalassemia is one of the most prevalent worldwide autosomal recessive disorders. It presents a great molecular heterogeneity resulting from more than 200 causative mutations in the β-globin gene. In Tunisia, β-thalassemia represents the most prevalent monogenic hemoglobin disorder with 2.21% of carriers. Efficient and reliable mutation-screening methods are essential in order to establish appropriate prevention programs for at risk couples. The aim of the present study is to develop an efficient method based on the denaturing high-performance liquid chromatography (DHPLC) in which the whole β-globin gene (HBB) is screened for mutations covering about 90% of the spectrum. We have performed the validation of a DHPLC assay for direct genotyping of 11 known β-thalassemia mutations in the Tunisian population. DHPLC assay was established based on the analysis of 62 archival β-thalassemia samples previously genotyped then validated with full concordance on 50 tests with blind randomized samples previously genotyped with DNA sequencing and with 96% of consistency on 40 samples as a prospective study. Compared to other genotyping techniques, the DHPLC method can meet the requirements of direct genotyping of known β-thalassemia mutations in Tunisia and to be applied as a powerful tool for the genetic screening of prenatal and postnatal individuals. © 2016 Wiley Periodicals, Inc.
Montané, Lucia Sentchordi; Marín, Oliver R; Rivera-Pedroza, Carlos I; Vallespín, Elena; Del Pozo, Ángela; Heath, Karen E
2016-06-01
Progressive pseudorheumatoid dysplasia (PPD) is a rare autosomal recessive disorder characterized by spondyloepiphyseal dysplasia associated with pain and stiffness of multiple joints, enlargement of the interphalangeal joints, normal inflammatory parameters, and absence of extra-skeletal manifestations. Homozygous or compound heterozygous WISP3 mutations cause PPD. We report two siblings from a non-consanguineous Ecuadorian family with a late-onset spondyloepiphyseal dysplasia. Mutation screening was undertaken in the two affected siblings using a customized skeletal dysplasia next generation sequencing (NGS) panel and confirmed by Sanger sequencing. Two compound heterozygous mutations were identified in WISP3 exon 2, c.[190G>A];[197G>A] (p.[(Gly64Arg)];[(Ser66Asn)]) in the two siblings, both of which had been inherited. The p. (Gly64Arg) mutation has not been previously described whilst the p. (Ser66Asn) mutation has been reported in two PPD families. The two siblings presented with atypical PPD, as they presented during late childhood, yet the severity was different between them. The progression was particularly aggressive in the male sibling who suffered severe scoliosis by the age of 13 years. This case reaffirms the clinical heterogeneity of this disorder and the clinical utility of NGS to genetically diagnose skeletal dysplasias, enabling adequate management, monitorization, and genetic counseling. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Khani, Marzieh; Alavi, Afagh; Nafissi, Shahriar; Elahi, Elahe
2015-07-06
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder in European populations. ALS can be sporadic ALS (SALS) or familial ALS (FALS). Among 20 known ALS genes, mutations in C9orf72 and superoxide dismutase 1 (SOD1) are the most common genetic causes of the disease. Whereas C9orf72 mutations are more common in Western populations, the contribution of SOD1 to ALS in Iran is more than C9orf72. At present, a clear genotype/phenotype correlation for ALS has not been identified. We aimed to perform mutation screening of SOD1 in a newly identified Iranian FALS patient and to assess whether a genotype/phenotype correlation for the identified mutation exists. The five exons of SOD1 and flanking intronic sequences of a FALS proband were screened for mutations by direct sequencing. The clinical features of the proband were assessed by a neuromuscular specialist (SN). The phenotypic presentations were compared to previously reported patients with the same mutation. Heterozygous c.260A > G mutation in SOD1 that causes Asn86Ser was identified in the proband. Age at onset was 34 years and site of the first presentation was in the lower extremities. Comparisons of clinical features of different ALS patients with the same mutation evidenced variable presentations. The c.260A > G mutation in SOD1 that causes Asn86Ser appears to cause ALS with variable clinical presentations.
Unusual AIP mutation and phenocopy in the family of a young patient with acromegalic gigantism.
Imran, Syed Ali; Aldahmani, Khaled A; Penney, Lynette; Croul, Sidney E; Clarke, David B; Collier, David M; Iacovazzo, Donato; Korbonits, Márta
2018-01-01
Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein ( AIP ) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy. Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions.Unusual, previously not described AIP variant with loss of the stop codon.Phenocopy may occur in families with a disease-causing germline mutation.
Unusual AIP mutation and phenocopy in the family of a young patient with acromegalic gigantism
Aldahmani, Khaled A; Penney, Lynette; Croul, Sidney E; Clarke, David B; Collier, David M; Iacovazzo, Donato; Korbonits, Márta
2018-01-01
Summary Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein (AIP) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy. Learning points: Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions. Unusual, previously not described AIP variant with loss of the stop codon. Phenocopy may occur in families with a disease-causing germline mutation. PMID:29472986
Mouton, Jomien M; Kinnear, Craig J; Moolman-Smook, Johanna C; Herbst, Philip G; Pellizzon, Adriano S; Goosen, Althea; Brink, Paul A
2015-01-01
Summary Introduction The minimum criterion for the diagnosis of hypertrophic cardiomyopathy (HCM) is thickening of the left ventricular wall, typically in an asymmetrical or focal fashion, and it requires no functional deficit. Using this criterion, we identified a family with four affected individuals and a single unrelated individual essentially with restrictive cardiomyopathy (RCM). Mutations in genes coding for the thin filaments of cardiac muscle have been described in RCM and HCM with ‘restrictive features’. One such gene encodes for cardiac troponin I (TNNI3), a sub-unit of the troponin complex involved in the regulation of striated muscle contraction. We hypothesised that mutations in TNNI3 could underlie this particular phenotype, and we therefore screened TNNI3 for mutations in 115 HCM probands. Methods Clinical investigation involved examination, echocardiography, chest X-ray and an electrocardiogram of both the index cases and close relatives. The study cohort consisted of 113 South African HCM probands, with and without known founder HCM mutations, and 100 ethnically matched control individuals. Mutation screening of TNNI3 for disease-causing mutations were performed using high-resolution melt (HRM) analysis. Results HRM analyses identified three previously described HCM-causing mutations (p.Pro82Ser, p.Arg162Gln, p.Arg170Gln) and a novel exonic variant (p.Leu144His). A previous study involving the same amino acid identified a p.Leu144Gln mutation in a patient presenting with RCM, with clinical features of HCM. We observed the novel p.Leu144His mutation in three siblings with clinical RCM and varying degrees of ventricular hypertrophy. The isolated index case with the de novo p.Arg170Gln mutation presented with a similar phenotype. Both mutations were absent in a healthy control group. Conclusion We have identified a novel disease-causing p.Leu144His mutation and a de novo p.Arg170Gln mutation associated with RCM and focal ventricular hypertrophy, often below the typical diagnostic threshold for HCM. Our study provides information regarding TNNI3 mutations underlying RCM in contrast to other causes of a similar presentation, such as constrictive pericarditis or infiltration of cardiac muscle, all with marked right-sided cardiac manifestations. This study therefore highlights the need for extensive mutation screening of genes encoding for sarcomeric proteins, such as TNNI3 to identify the underlying cause of this particular phenotype. PMID:25940119
Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene.
Graul-Neumann, Luitgard M; Hausser, Ingrid; Essayie, Maximilian; Rauch, Anita; Kraus, Cornelia
2008-04-15
Autosomal dominant congenital cutis laxa (ADCL) is genetically heterogeneous and shows clinical variability. Only seven ADCL families with mutations in the elastin gene (ELN) have been described previously. We present morphological and molecular genetic studies in a cutis laxa kindred with a previously undescribed highly variable phenotype caused by a novel ELN mutation c.1621 C > T. The proband presented with severe cutis laxa, severe congenital lung disease previously undescribed in ADCL and pulmonary artery disease, which is often seen in ARCL but rare in ADCL. He also developed infantile spasms (OMIM 308350; West syndrome), which we consider a coincidental association although recessive cutis laxa or even digenic inheritance cannot be excluded. Electron microscopy of the proband's dermis revealed only mild rarefication of elastic fibers (in contrast to most recessive cutis laxa types). Apart from mild elastic fiber fragmentation, dermal morphology of the proband's father was within normal range. Molecular analysis of the ELN gene using genomic DNA from blood and RNA from cultured skin fibroblasts indicated a novel splice site mutation in the proband and his clinically healthy father. Analysis of ELN expression in fibroblasts provided evidence for a dominant-negative effect in the child, while due to an unknown mechanism, the father showed haploinsufficiency which might explain the significant clinical variability. Copyright 2008 Wiley-Liss, Inc.
Shen, Tao; Guan, Liping; Li, Shiqiang; Zhang, Jianguo; Xiao, Xueshan; Jiang, Hui; Yang, Jianhua; Guo, Xiangming; Wang, Jun; Zhang, Qingjiong
2015-03-01
The genetic defects underlying approximately half of all retinitis pigmentosa (RP) cases are unknown. A number of genes responsible for Leber congenital amaurosis (LCA) may also cause RP when they are mutated. Our previous study revealed that variants in the most frequently mutated nine exons accounted for approximately half of the mutations detected in a cohort of patients with LCA. The aim of the present study was to detect mutations in LCA-associated genes in patients with RP using two different strategies. Sanger sequencing was used to screen mutations in the nine exons in 293 patients with RP and exome sequencing was used to detect variants in 12 LCA-associated genes in 157 of the 293 patients with RP and then to validate the variants by Sanger sequencing. Potential pathogenic mutations were identified in four patients with early onset RP, including homozygous CRB1 mutations in two patients, compound heterozygous CRB1 mutations in one patient and compound heterozygous CEP290 mutations in one patient. The present study indicated that mutations in CEP290 may also be associated with RP but not with LCA. With the exception of CEP290, the remaining 11 genes known to be associated with LCA but not with RP are unlikely to be a common cause of RP.
A novel heterozygous mutation in the Birt-Hogg-Dubé Syndrome.
Gómez Rivas, Juan; Carrión, Diego M; Alonso Y Gregorio, Sergio; Álvarez-Maestro, Mario; Tabernero Gómez, Ángel; Cisneros Ledo, Jesus
2017-09-01
Our aim is to present a novel mutation of the Birt-Hogg-Dubé Syndrome. We present a case report of a 70-year-old male with three solid nodulary lesions of 4, 2.6, and 3 cm each in the right kidney, and two lesions of 1.5 and 1.3 cm in the left kidney. Needle biopsy was performed. The pathological analysis of right kidney lesions revealed a renal tumor suggestive of chromophobe renal cell carcinoma and medullar tumor with zones that suggested oncocytosis. Genetic test results were positive for a novel heterozygous mutation c.1198G>A; p.V400I in exon 11 of the FLCN gene. In patients presenting with bilateral multifocal renal tumors of oncocytic hybrid histology, Birt- Hogg-Dubé syndrome should be the first diagnosis in mind. The mutation found in this patient has not been previously described in the literature in the context of BHD.
Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti
2010-02-12
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Wesolowska, Maria; Gorman, Grainne S; Alston, Charlotte L; Pajak, Aleksandra; Pyle, Angela; He, Langping; Griffin, Helen; Chinnery, Patrick F; Miller, James A L; Schaefer, Andrew M; Taylor, Robert W; Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M
2015-10-07
Mitochondrial disease can present at any age, with dysfunction in almost any tissue making diagnosis a challenge. It can result from inherited or sporadic mutations in either the mitochondrial or the nuclear genome, many of which affect intraorganellar gene expression. The estimated prevalence of 1/4300 indicates these to be amongst the commonest inherited neuromuscular disorders, emphasising the importance of recognition of the diagnostic clinical features. Despite major advances in our understanding of the molecular basis of mitochondrial diseases, accurate and early diagnoses are critically dependent on the fastidious clinical and biochemical characterisation of patients. Here we describe a patient harbouring a previously reported homozygous mutation in C12orf65, a mitochondrial protein of unknown function, which does not adhere to the proposed distinct genotype-phenotype relationship. We performed clinical, biochemical and molecular analysis including whole exome sequencing on patient samples and cell lines. We report an extremely rare case of an adult presenting with Leigh-like disease, in intensive care, in the 5th decade of life, harbouring a recessively inherited mutation previously reported in children. A global reduction in intra-mitochondrial protein synthesis was observed despite normal or elevated levels of mt-RNA, leading to an isolated complex IV deficiency. All the reported C12orf65 mutations have shown an autosomal recessive pattern of inheritance. Mitochondrial disease causing mutations inherited in this manner are usually of early onset and associated with a severe, often fatal clinical phenotype. Presentations in adulthood are usually less severe. This patient's late adulthood presentation is in sharp contrast emphasising the clinical variability that is characteristic of mitochondrial disease and illustrates why making a definitive diagnosis remains a formidable challenge.
Evidence suggesting digenic inheritance of Waardenburg syndrome type II with ocular albinism.
Chiang, Pei-Wen; Spector, Elaine; McGregor, Tracy L
2009-12-01
Waardenburg syndrome (WS) is a series of auditory-pigmentary disorders inherited in an autosomal dominant manner. In most patients, WS2 results from mutations in the MITF gene. MITF encodes a basic helix-loop-helix transcription factor that activates transcription of tyrosinase and other melanocyte proteins. The clinical presentation of WS is highly variable, and we believe that Tietz syndrome and WS2 with ocular albinism (OA) are likely two variations of WS2 due to the presence of modifiers. One family with a molecular diagnosis of WS2 co-segregating with OA has previously been reported. A digenic mutation mechanism including both a MITF mutation and the TYR(R402Q) hypomorphic allele was proposed to be the cause of OA in this family. Here, we present a second WS2 family with OA and provide evidence suggesting the TYR(R402Q) allele does not cause OA in this family. We hypothesize the presence of a novel OCA3 mutation together with the MITF del p.R217 mutation account for the OA phenotype in this family. Since MITF is a transcription factor for pigmentation genes, a mutation in MITF plus a heterozygous mutation in OCA3 together provide an adverse effect crossing a quantitative threshold; therefore, WS2 with OA occurs. We have hypothesized previously that the clinical spectrum and mutation mechanism of OCA depend on the pigmentation threshold of an affected individual. This unique family has provided further evidence supporting this hypothesis. We suggest that by studying OCA patients alongside WS patients with various pigmentation profiles we can facilitate further understanding of the pigmentation pathway.
Cefalù, A B; Barbagallo, C M; Sesti, E; Caldarella, R; Polizzi, F; Marino, G; Noto, D; Rolleri, M; Travali, S; Scalisi, G; Notarbartolo, A; Corsini, A; Bertolini, S; Averna, M R
2001-09-01
Familial defective apolipoprotein (apo) B-100 together with familial hypercholesterolemia are the two common genetic conditions that cause hypercholesterolemia. Familial defective apolipoprotein B-100 is due to mutations around codon 3500 of the apo B gene. The most-characterized mutation is a G>A transition at nucleotide 10,708 that results in the substitution of arginine by glutamine at codon 3500 (Apo B Arg3500Gln). Two other mutations are caused by a C>T transition, one at nucleotide 10,800 (Apo B Arg3531Cys) and the other at nucleotide 10,707 (apo B Arg3500Trp). In the present study we describe three new Italian cases of familial defective apolipoprotein B-100 (Apo B Arg3500Gln), one from the Liguria region and two from Sicily, and the haplotype of the apo B gene co-segregating with the mutation. By screening two groups of probands, clinically diagnosed as having Familial Hypercholesterolemia (700 from mainland Italy and 305 from Sicily), the prevalence of familial defective apolipoprotein B-100 due to Arg3500Gln was found to be very low (0.28% and 0.65%, respectively). The Arg3531Cys mutation was not detected in any proband. In the three new families with Arg3500Gln mutation in the present study and in one previously described in Italy, the mutation was associated with a unique apo B haplotype, which is consistent with data previously reported for Caucasian patients [XbaI-, MspI+, EcoRI-, presence of the 5' signal peptide insertion (Ins) allele, and the 49-repeat allele of the 3'-VNTR].
Villalona, Seiichi; Glover-López, Guillermo; Ortega-García, Juan Antonio; Moya-Quiles, Rosa; Mondejar-López, Pedro; Martínez-Romero, Maria C; Rigabert-Montiel, Mariano; Pastor-Vivero, María D; Sánchez-Solís, Manuel
2017-02-15
Mutational combinations of the cystic fibrosis transmembrane conductance regulator, CFTR, gene have different phenotypic manifestations at the molecular level with varying clinical consequences for individuals possessing such mutations. Reporting cystic fibrosis transmembrane conductance regulator mutations is important in understanding the genotype-phenotype correlations and associated clinical presentations in patients with cystic fibrosis. Understanding the effects of mutations is critical in developing appropriate treatments for individuals affected with cystic fibrosis, non-classic cystic fibrosis, or cystic fibrosis transmembrane conductance regulator-related disorders. This is the first report of related individuals possessing the R248G missense cystic fibrosis transmembrane conductance regulator mutation and we present their associated clinical histories. All three patients are of Spanish descent. Deoxyribonucleic acid analysis revealed that all three siblings possessed a novel c.742A>G mutation, resulting in a p.Arg248Gly (R248G) amino acid change in exon 6 in trans with the known N1303K mutant allele. Case 1 patient is a 39-year-old infertile man presenting with congenital unilateral absence of the vas deferens and recurrent episodes of epigastric pain. Case 2 patient is a 32-year-old woman presenting with periods of infertility, two previous spontaneous abortions, recurrent epigastric pain, and recurrent pancreatitis. Case 3 patient is a 29-year-old woman presenting with recurrent pancreatitis and epigastric pain. We report the genotype-phenotype correlations and clinical manifestations of a novel R248G cystic fibrosis transmembrane conductance regulator mutation: congenital unilateral absence of the vas deferens in males, reduced female fertility, and recurrent acute pancreatitis. In addition, we discuss the possible functional consequences of the mutations at the molecular level.
Meneses, Marina; Chavez-Bourgeois, Marion; Badenas, Celia; Villablanca, Salvador; Aguilera, Paula; Bennàssar, Antoni; Alos, Llucia; Puig, Susana; Malvehy, Josep; Carrera, Cristina
2015-01-01
Xeroderma pigmentosum (XP) is a genodermatosis caused by abnormal DNA repair. XP complementation group C (XPC) is the most frequent type in Mediterranean countries. We describe a case with a novel mutation in the XPC gene. A healthy Caucasian male patient was diagnosed with multiple primary melanomas. Digital follow-up and molecular studies were carried out. During digital follow-up 8 more additional melanomas were diagnosed. Molecular studies did not identify mutations in CDKN2A, CDK4 or MITF genes. Two heterozygous mutations in the XPC gene were detected: c.2287delC (p.Leu763Cysfs*4) frameshift and c.2212A>G (p.Thr738Ala) missense mutations. The p.Thr738Ala missense mutation has not been previously described. Missense mutations in the XPC gene may allow partial functionality that could explain this unusual late onset XP. Atypical clinical presentation of XPC could be misdiagnosed when genetic aberrations allow partial DNA repair capacity. © 2015 S. Karger AG, Basel.
Rates of spontaneous mutation among RNA viruses.
Drake, J W
1993-01-01
Simple methods are presented to estimate rates of spontaneous mutation from mutant frequencies and population parameters in RNA viruses. Published mutant frequencies yield a wide range of mutation rates per genome per replication, mainly because mutational targets have usually been small and, thus, poor samples of the mutability of the average base. Nevertheless, there is a clear central tendency for lytic RNA viruses (bacteriophage Q beta, poliomyelitis, vesicular stomatitis, and influenza A) to display rates of spontaneous mutation of approximately 1 per genome per replication. This rate is some 300-fold higher than previously reported for DNA-based microbes. Lytic RNA viruses thus mutate at a rate close to the maximum value compatible with viability. Retroviruses (spleen necrosis, murine leukemia, Rous sarcoma), however, mutate at an average rate about an order of magnitude lower than lytic RNA viruses. PMID:8387212
Sethuraman, G; Fassihi, H; Ashton, G H S; Bansal, A; Kabra, M; Sharma, V K; McGrath, J A
2005-05-01
Kindler syndrome is an inherited skin condition that presents with blistering followed by photosensitivity and a progressive poikiloderma. The disorder results from mutations in the KIND1 gene, encoding the protein kindlin-1, a recently characterized 677-amino acid protein involved in anchorage of the actin cytoskeleton to the extracellular matrix. We report the clinical features of an 11-year-old boy with Kindler syndrome from a consanguineous Indian family and the identification of a homozygous nonsense mutation (C468X) in exon 12 of the KIND1 gene in his genomic DNA. This mutation has not been described previously but is similar to the 17 previously published KIND1 mutations that are all predicted to lead to loss of kindlin-1 protein expression and function. The clinical features in this boy highlight the relevance of kindlin-1 in skin biology, specifically to epidermal adhesion and response to acute and chronic sun exposure. Delineation of this new pathogenic mutation in KIND1 is also useful for genetic counselling in this family and in assessing carrier status in unaffected family members.
Slowly progressive retinitis pigmentosa caused by two novel mutations in the MAK gene.
Gray, Joanna Monika; Orlans, Harry Otway; Shanks, Morag; Clouston, Penny; MacLaren, Robert Elvis
2018-05-21
The growing number of clinical trials currently underway for inherited retinal diseases has highlighted the importance of achieving a molecular diagnosis for all new cases presenting to hospital eye services. The male germ cell-associated kinase (MAK) gene encodes a cilium-associated protein selectively expressed in the retina and testis, and has recently been implicated in autosomal recessive retinitis pigmentosa (RP). Whole exome sequencing has previously identified a homozygous Alu insertion in probands with recessive RP and nonsense and missense mutations have also been reported. Here we describe two novel mutations in different alleles of the MAK gene in a 75-year-old British female, who had a clinical diagnosis of RP () with onset in the fourth decade and no relevant family history. The mutations were established through next generation sequencing of a panel of 111 genes associated with RP and RP-like phenotypes. Two novel null mutations were identified within the MAK gene. The first c.1195_1196delAC p.(Thr399fs), was a two base-pair deletion creating a frame-shift in exon 9 predicted to result in nonsense-mediated decay. The second, c.279-2A>G, involved the splice acceptor consensus site upstream of exon 4, predicted to lead to aberrant splicing. The natural history of this individual's RP is consistent with previously described MAK mutations, being significantly milder than that associated with other photoreceptor ciliopathies. We suggest inclusion of MAK as part of wider genetic testing in all individuals presenting with RP.
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy
Lohr, Jens G.; Stojanov, Petar; Carter, Scott L.; Cruz-Gordillo, Peter; Lawrence, Michael S.; Auclair, Daniel; Sougnez, Carrie; Knoechel, Birgit; Gould, Joshua; Saksena, Gordon; Cibulskis, Kristian; McKenna, Aaron; Chapman, Michael A.; Straussman, Ravid; Levy, Joan; Perkins, Louise M.; Keats, Jonathan J.; Schumacher, Steven E.; Rosenberg, Mara; Getz, Gad
2014-01-01
SUMMARY We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations, and discovered putative tumor suppressor genes by determining homozygous deletions and loss-of-heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53 and DIS3 (particularly in non-hyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g. KRAS, NRAS and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of non-mutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions. PMID:24434212
Mutation analysis of GM1 gangliosidosis in a Siamese cat from Japan in the 1960s.
Uddin, Mohammad M; Tanimoto, Takeshi; Yabuki, Akira; Kotani, Takao; Kuwamura, Mitsuru; Chang, Hye-Sook; Yamato, Osamu
2012-12-01
GM1 gangliosidosis is a fatal, progressive neurodegenerative lysosomal storage disease caused by mutations of the β-galactosidase (GLB1) gene. In feline GM1 gangliosidosis, a pathogenic mutation (c.1448G>C) of the feline GLB1 gene was identified in Siamese and Korat cats previously diagnosed with the disease in the USA and Italy, respectively. The present study demonstrated the same mutation in a Siamese cat that had been diagnosed with GM1 gangliosidosis in Japan in the 1960s. The mutation was confirmed using DNA extracted from stored paraffin-embedded brain tissue by a direct sequencing method and a polymerase chain reaction-restriction fragment length polymorphism assay. This pathogenic mutation seems to have been distributed around the world.
A cognitive chameleon: Lessons from a novel MAPT mutation case
Liang, Yuying; Gordon, Elizabeth; Rohrer, Jonathan; Downey, Laura; de Silva, Rohan; Jäger, Hans Rolf; Nicholas, Jennifer; Modat, Marc; Cardoso, M. Jorge; Mahoney, Colin; Warren, Jason; Rossor, Martin; Fox, Nick; Caine, Diana
2014-01-01
We report a case of frontotemporal dementia caused by a novel MAPT mutation (Q351R) with a remarkably long amnestic presentation mimicking familial Alzheimer’s disease. Longitudinal clinical, neuropsychological and imaging data provide convergent evidence for predominantly bilateral anterior medial temporal lobe involvement consistent with previously established neuroanatomical signatures of MAPT mutations. This case supports the notion that the neural network affected in MAPT mutations is determined to a large extent by the underlying molecular pathology. We discuss the diagnostic significance of anomia in the context of atypical amnesia and the impact of impaired episodic and semantic memory systems on autobiographical memory. PMID:23998300
Spinal motor neuron involvement in a patient with homozygous PRUNE mutation.
Iacomino, Michele; Fiorillo, Chiara; Torella, Annalaura; Severino, Mariasavina; Broda, Paolo; Romano, Catia; Falsaperla, Raffaele; Pozzolini, Giulia; Minetti, Carlo; Striano, Pasquale; Nigro, Vincenzo; Zara, Federico
2018-05-01
In the last few years, whole exome sequencing (WES) allowed the identification of PRUNE mutations in patients featuring a complex neurological phenotype characterized by severe neurodevelopmental delay, microcephaly, epilepsy, optic atrophy, and brain or cerebellar atrophy. We describe an additional patient with homozygous PRUNE mutation who presented with spinal muscular atrophy phenotype, in addition to the already known brain developmental disorder. This novel feature expands the clinical consequences of PRUNE mutations and allow to converge PRUNE syndrome with previous descriptions of neurodevelopmental/neurodegenerative disorders linked to altered microtubule dynamics. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Murakoshi, Hayato; Koyanagi, Madoka; Chikata, Takayuki; Rahman, Mohammad Arif; Kuse, Nozomi; Sakai, Keiko; Gatanaga, Hiroyuki; Oka, Shinichi
2016-01-01
ABSTRACT HLA-B*52:01-C*12:02, which is the most abundant haplotype in Japan, has a protective effect on disease progression in HIV-1-infected Japanese individuals, whereas HLA-B*57 and -B*27 protective alleles are very rare in Japan. A previous study on HLA-associated polymorphisms demonstrated that the number of HLA-B*52:01-associated mutations at four Pol positions was inversely correlated with plasma viral load (pVL) in HLA-B*52:01-negative individuals, suggesting that the transmission of HIV-1 with these mutations could modulate the pVL in the population. However, it remains unknown whether these mutations were selected by HLA-B*52:01-restricted CTLs and also reduced viral fitness. In this study, we identified two HLA-B*52:01-restricted and one HLA-C*12:02-restricted novel cytotoxic T-lymphocyte (CTL) epitopes in Pol. Analysis using CTLs specific for these three epitopes demonstrated that these CTLs failed to recognize mutant epitopes or more weakly recognized cells infected with mutant viruses than wild-type virus, supporting the idea that these mutations were selected by the HLA-B*52:01- or HLA-C*12:02-restricted T cells. We further showed that these mutations reduced viral fitness, although the effect of each mutation was weak. The present study demonstrated that the accumulation of these Pol mutations selected by HLA-B*52:01- or HLA-C*12:02-restricted CTLs impaired viral replication capacity and thus reduced the pVL. The fitness cost imposed by the mutations partially accounted for the effect of the HLA-B*52:01-C*12:02 haplotype on clinical outcome, together with the effect of HLA-B*52:01-restricted CTLs on viral replication, which had been previously demonstrated. IMPORTANCE Numerous population-based studies identified HLA-associated HIV-1 mutations to predict HIV-1 escape mutations from cytotoxic T lymphocytes (CTLs). However, the majority of these HLA-associated mutations have not been identified as CTL escape mutations. Our previous population-based study showed that five HLA-B*52:01-associated mutations at four Pol positions were inversely correlated with the plasma viral load in HLA-B*52:01-negative Japanese individuals. In the present study, we demonstrated that these mutations were indeed selected by CTLs specific for novel B*52:01- and C*12:02-restricted epitopes and that the accumulation of these mutations reduced the viral fitness in vitro. This study elucidated the mechanism by which the accumulation of these CTL escape mutations contributed to the protective effect of the HLA-B*52:01-HLA-C*12:02 haplotype on disease progression in HIV-1-infected Japanese individuals. PMID:27903797
Murakoshi, Hayato; Koyanagi, Madoka; Chikata, Takayuki; Rahman, Mohammad Arif; Kuse, Nozomi; Sakai, Keiko; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi
2017-02-15
HLA-B*52:01-C*12:02, which is the most abundant haplotype in Japan, has a protective effect on disease progression in HIV-1-infected Japanese individuals, whereas HLA-B*57 and -B*27 protective alleles are very rare in Japan. A previous study on HLA-associated polymorphisms demonstrated that the number of HLA-B*52:01-associated mutations at four Pol positions was inversely correlated with plasma viral load (pVL) in HLA-B*52:01-negative individuals, suggesting that the transmission of HIV-1 with these mutations could modulate the pVL in the population. However, it remains unknown whether these mutations were selected by HLA-B*52:01-restricted CTLs and also reduced viral fitness. In this study, we identified two HLA-B*52:01-restricted and one HLA-C*12:02-restricted novel cytotoxic T-lymphocyte (CTL) epitopes in Pol. Analysis using CTLs specific for these three epitopes demonstrated that these CTLs failed to recognize mutant epitopes or more weakly recognized cells infected with mutant viruses than wild-type virus, supporting the idea that these mutations were selected by the HLA-B*52:01- or HLA-C*12:02-restricted T cells. We further showed that these mutations reduced viral fitness, although the effect of each mutation was weak. The present study demonstrated that the accumulation of these Pol mutations selected by HLA-B*52:01- or HLA-C*12:02-restricted CTLs impaired viral replication capacity and thus reduced the pVL. The fitness cost imposed by the mutations partially accounted for the effect of the HLA-B*52:01-C*12:02 haplotype on clinical outcome, together with the effect of HLA-B*52:01-restricted CTLs on viral replication, which had been previously demonstrated. Numerous population-based studies identified HLA-associated HIV-1 mutations to predict HIV-1 escape mutations from cytotoxic T lymphocytes (CTLs). However, the majority of these HLA-associated mutations have not been identified as CTL escape mutations. Our previous population-based study showed that five HLA-B*52:01-associated mutations at four Pol positions were inversely correlated with the plasma viral load in HLA-B*52:01-negative Japanese individuals. In the present study, we demonstrated that these mutations were indeed selected by CTLs specific for novel B*52:01- and C*12:02-restricted epitopes and that the accumulation of these mutations reduced the viral fitness in vitro This study elucidated the mechanism by which the accumulation of these CTL escape mutations contributed to the protective effect of the HLA-B*52:01-HLA-C*12:02 haplotype on disease progression in HIV-1-infected Japanese individuals. Copyright © 2017 American Society for Microbiology.
Carrillo-Tapia, Eduardo; García-García, Elizabeth; Herrera-González, Norma Estela; Yamazaki-Nakashimada, Marco Antonio; Staines-Boone, Aidee Tamara; Segura-Mendez, Nora Hilda; Scheffler-Mendoza, Selma Cecilia; O Farrill-Romanillos, Patricia; Gonzalez-Serrano, Maria E; Rodriguez-Alba, Juan Carloa; Santos-Argumedo, Leopoldo; Berron-Ruiz, Laura; Sanchez-Flores, Alejandro; López-Herrera, Gabriela
2018-01-01
X-linked agammaglobulinemia (XLA) is characterized by the absence of immunoglobulin and B cells. Patients suffer from recurrent bacterial infections from early childhood, and require lifelong immunoglobulin replacement therapy. Mutations in BTK (Bruton's Tyrosine Kinase) are associated with this phenotype. Some patients that present XLA do not show typical clinical symptoms, resulting in delayed diagnosis due to the lack of a severe phenotype. This study presents a report of five XLA patients from four different families and attempts to determine a relationship between delayed diagnosis and the occurrence of BTK mutations. Samples from patients with antibody deficiency were analyzed to determine BTK expression, immunophenotyping and mutation analysis. Clinical and laboratory data was analyzed and presented for each patient. Most patients presented here showed atypical clinical and laboratory data for XLA, including normal IgM, IgG, or IgA levels. Most patients expressed detectable BTK protein. Sequencing of BTK showed that these patients harbored missense mutations in the pleckstrin homology and Src-homology-2 domains. When it was compared to public databases, BTK sequencing exhibited a new change, along with three other previously reported changes. Delayed diagnosis and atypical manifestations in XLA might be related to mutation type and BTK expression.
K13-Propeller Polymorphisms in Plasmodium falciparum Parasites From Sub-Saharan Africa
Kamau, Edwin; Campino, Susana; Amenga-Etego, Lucas; Drury, Eleanor; Ishengoma, Deus; Johnson, Kimberly; Mumba, Dieudonne; Kekre, Mihir; Yavo, William; Mead, Daniel; Bouyou-Akotet, Marielle; Apinjoh, Tobias; Golassa, Lemu; Randrianarivelojosia, Milijaona; Andagalu, Ben; Maiga-Ascofare, Oumou; Amambua-Ngwa, Alfred; Tindana, Paulina; Ghansah, Anita; MacInnis, Bronwyn; Kwiatkowski, Dominic; Djimde, Abdoulaye A.
2015-01-01
Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa. PMID:25367300
Li, Shufeng; Xue, Jun; Chen, Baojun; Wang, Qiwei; Shi, Minke; Xie, Xiaojing; Zhang, Liang
2014-04-01
Hereditary hemochromatosis is a disorder characterized by enhanced intestinal absorption of dietary iron. Here, we report a heterozygous genotype at two mutation sites in hemojuvelin (HJV) present in two brothers with middle-age-onset hemochromatosis in a Chinese family. To date, only homozygous or compound heterozygous states of HJV gene have been reported as associated with iron overload. However, the patients here were heterozygous for two mutations in one HJV allele in cis: a premature termination mutation (962G>A and 963C>A; C321X) and a mutation in the signal peptide (18G>C; Q6H). Previously unrecognized environmental or other genetic factors may have interacted with the heterozygous genotype in these patients.
[Leigh syndrome caused by the mitochondrial DNA G14459A mutation in a Mexican family].
Gutiérrez, A; Saldaña-Martínez, A; García-Ramírez, R; Rayo-Mares, D; Carreras, M; López-Pérez, M J; Ruiz-Pesini, E; Montoya, J; Montiel-Sosa, J F
Leigh syndrome is a neurodegenerative and progressive disease that appears usually in childhood due to defects in nuclear or mitochondrial genome. The mutation G14459A in mitochondrial DNA has been associated previously to Leber hereditary optic neuropathy and recently to Leigh syndrome. A 10 months-old Mexican girl diagnosed of Leigh syndrome. Molecular-genetic studies detected the mutation G14459A in a percentage close to homoplasmy and in low heteroplasmy in her mother. The rest of the maternally related family members analyzed were negative. The G14459A mutation, although not very frequently associated to Leigh syndrome, should be analyzed in patients that do not present the most common point mutations.
Shalev, Stavit Allon; Khayat, Morad; Etty, Daniel-Spiegl; Elpeleg, Orly
2015-03-01
Mutations in genes encoding the origin recognition complex subunits cause Meier-Gorlin syndrome. The disease manifests a triad of short stature, small ears, and small and/or absent patellae with variable expressivity. We report on the identification of a homozygous deleterious mutation in the ORC6 gene in previously described fetuses at the severe end of the Meier-Gorlin spectrum. The phenotype included severe intrauterine growth retardation, dislocation of knees, gracile bones, clubfeet, and small mandible and chest. To date, the clinical presentation of ORC6-associated Meier-Gorlin syndrome has been mild compared to other the phenotype associated with other loci. The present report expands the clinical phenotype associated with ORC6 mutations to include severely abnormal embryological development suggesting a possible genotype-phenotype correlation. © 2015 Wiley Periodicals, Inc.
Identification of mutations in Colombian patients affected with Fabry disease.
Uribe, Alfredo; Mateus, Heidi Eliana; Prieto, Juan Carlos; Palacios, Maria Fernanda; Ospina, Sandra Yaneth; Pasqualim, Gabriela; da Silveira Matte, Ursula; Giugliani, Roberto
2015-12-15
Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal α-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions. Copyright © 2015 Elsevier B.V. All rights reserved.
Al-Muhaizea, Mohammad A; AlMutairi, Faten; Almass, Rawan; AlHarthi, Safinaz; Aldosary, Mazhor S; Alsagob, Maysoon; AlOdaib, Ali; Colak, Dilek; Kaya, Namik
2018-06-01
The objective of this study was the identification of likely genes and mutations associated with an autosomal recessive (AR) rare spinocerebellar ataxia (SCA) phenotype in two patients with infantile onset, from a consanguineous family. Using genome-wide SNP screening, autozygosity mapping, targeted Sanger sequencing and nextgen sequencing, family segregation analysis, and comprehensive neuropanel, we discovered a novel mutation in SPTBN2. Next, we utilized multiple sequence alignment of amino acids from various species as well as crystal structures provided by protein data bank (PDB# 1WYQ and 1WJM) to model the mutation site and its effect on β-III-spectrin. Finally, we used various bioinformatic classifiers to determine pathogenicity of the missense variant. A comprehensive clinical and diagnostic workup including radiological exams were performed on the patients as part of routine patient care. The homozygous missense variant (c.1572C>T; p.R414C) detected in exon 2 was fully segregated in the family and absent in a large ethnic cohort as well as publicly available data sets. Our comprehensive targeted sequencing approaches did not reveal any other likely candidate variants or mutations in both patients. The two male siblings presented with delayed motor milestones and cognitive and learning disability. Brain MRI revealed isolated cerebellar atrophy more marked in midline inferior vermis at ages of 3 and 6.5 years. Sequence alignments of the amino acids for β-III-spectrin indicated that the arginine at 414 is highly conserved among various species and located towards the end of first spectrin repeat domain. Inclusive bioinformatic analysis predicted that the variant is to be damaging and disease causing. In addition to the novel mutation, a brief literature review of the previously reported mutations as well as clinical comparison of the cases were also presented. Our study reviews the previously reported SPTBN2 mutations and cases. Moreover, the novel mutation, p.R414C, adds up to the literature for the infantile-onset form of autosomal recessive ataxia associated with SPTBN2. Previously, few SPTBN2 recessive mutations have been reported in humans. Animal models especially the β-III -/- mouse model provided insights into early coordination and gait deficit suggestive of loss-of-function. It is expected to see more recessive SPTBN2 mutations appearing in the literature during the upcoming years.
Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.
Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A
2015-01-01
Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.
Poor phenotype-genotype association in a large series of patients with Type III Bartter syndrome.
García Castaño, Alejandro; Pérez de Nanclares, Gustavo; Madariaga, Leire; Aguirre, Mireia; Madrid, Álvaro; Chocrón, Sara; Nadal, Inmaculada; Navarro, Mercedes; Lucas, Elena; Fijo, Julia; Espino, Mar; Espitaletta, Zilac; García Nieto, Víctor; Barajas de Frutos, David; Loza, Reyner; Pintos, Guillem; Castaño, Luis; Ariceta, Gema
2017-01-01
Type III Bartter syndrome (BS) is an autosomal recessive renal tubule disorder caused by loss-of-function mutations in the CLCNKB gene, which encodes the chloride channel protein ClC-Kb. In this study, we carried out a complete clinical and genetic characterization in a cohort of 30 patients, one of the largest series described. By comparing with other published populations, and considering that 80% of our patients presented the p.Ala204Thr Spanish founder mutation presumably associated with a common phenotype, we aimed to test the hypothesis that allelic differences could explain the wide phenotypic variability observed in patients with type III BS. Clinical data were retrieved from the referral centers. The exon regions and flanking intronic sequences of the CLCNKB gene were screened for mutations by polymerase chain reaction (PCR) followed by direct Sanger sequencing. Presence of gross deletions or duplications in the region was checked for by MLPA and QMPSF analyses. Polyuria, polydipsia and dehydration were the main common symptoms. Metabolic alkalosis and hypokalemia of renal origin were detected in all patients at diagnosis. Calciuria levels were variable: hypercalciuria was detected in 31% of patients, while 23% had hypocalciuria. Nephrocalcinosis was diagnosed in 20% of the cohort. Two novel CLCNKB mutations were identified: a small homozygous deletion (c.753delG) in one patient and a small deletion (c.1026delC) in another. The latter was present in compound heterozygosis with the already previously described p.Glu442Gly mutation. No phenotypic association was obtained regarding the genotype. A poor correlation was found between a specific type of mutation in the CLCNKB gene and type III BS phenotype. Importantly, two CLCNKB mutations not previously described were found in our cohort.
Poor phenotype-genotype association in a large series of patients with Type III Bartter syndrome
Pérez de Nanclares, Gustavo; Madariaga, Leire; Aguirre, Mireia; Madrid, Álvaro; Chocrón, Sara; Nadal, Inmaculada; Navarro, Mercedes; Lucas, Elena; Fijo, Julia; Espino, Mar; Espitaletta, Zilac; García Nieto, Víctor; Barajas de Frutos, David; Loza, Reyner; Pintos, Guillem; Castaño, Luis; Ariceta, Gema
2017-01-01
Introduction Type III Bartter syndrome (BS) is an autosomal recessive renal tubule disorder caused by loss-of-function mutations in the CLCNKB gene, which encodes the chloride channel protein ClC-Kb. In this study, we carried out a complete clinical and genetic characterization in a cohort of 30 patients, one of the largest series described. By comparing with other published populations, and considering that 80% of our patients presented the p.Ala204Thr Spanish founder mutation presumably associated with a common phenotype, we aimed to test the hypothesis that allelic differences could explain the wide phenotypic variability observed in patients with type III BS. Methods Clinical data were retrieved from the referral centers. The exon regions and flanking intronic sequences of the CLCNKB gene were screened for mutations by polymerase chain reaction (PCR) followed by direct Sanger sequencing. Presence of gross deletions or duplications in the region was checked for by MLPA and QMPSF analyses. Results Polyuria, polydipsia and dehydration were the main common symptoms. Metabolic alkalosis and hypokalemia of renal origin were detected in all patients at diagnosis. Calciuria levels were variable: hypercalciuria was detected in 31% of patients, while 23% had hypocalciuria. Nephrocalcinosis was diagnosed in 20% of the cohort. Two novel CLCNKB mutations were identified: a small homozygous deletion (c.753delG) in one patient and a small deletion (c.1026delC) in another. The latter was present in compound heterozygosis with the already previously described p.Glu442Gly mutation. No phenotypic association was obtained regarding the genotype. Conclusion A poor correlation was found between a specific type of mutation in the CLCNKB gene and type III BS phenotype. Importantly, two CLCNKB mutations not previously described were found in our cohort. PMID:28288174
Cystic fibrosis Δf508 mutation screening in Brazilian women with altered fertility.
Brunoro, G V F; Wolfgramm, E V; Louro, I D; Degasperi, I I; Busatto, V C W; Perrone, A M S; Batitucci, M C P
2011-10-01
Cystic Fibrosis (CF) is an autosomal recessive disease, caused by mutations in the Cystic Fibrosis Transmembrane Regulator gene (CFTR). The most frequent mutation in CF is ΔF508. The disease is clinically characterized by elevated concentrations of sweat chlorides and abnormally thick mucus. It affects organs such as lung, pancreas, gastrointestinal and reproductive tract. Women with CF commonly present delayed puberty and amenorrhea due to malnutrition. Our objective was to screen the presence of ΔF508 mutation in 24 women with altered fertility. Nine of these women presented reduced fertility without a known cause, four showed polycystic ovaries and two had early menopause. One woman with early menopause was a carrier of the ΔF508 mutation. Our study demonstrates that it is possible that the frequency of CF mutations among patients with altered fertility may be higher than expected. Previous data showed that fibrocystic women can show reduced fertility, maternal mortality associated with pregnancy and increased incidence of spontaneous abortion. We therefore recommend that women with reduced fertility undertake genetic tests for a better evaluation of pregnancy risks and clinical monitoring.
Matallana-Rhoades, Audrey Mary; Corredor-Castro, Juan David; Bonilla-Escobar, Francisco Javier; Mecias-Cruz, Bony Valentina; Mejia de Beldjena, Liliana
2016-09-30
It is presented the phenotype of a new compound heterozygous mutation of the genes R384X and Q356X encoding the enzyme of 11-beta-hydroxylase. Severe virilization, peripheral hypertension, and early puberty. Managed with hormone replacement therapy (corticosteroid) and antihypertensive therapy (beta-blocker), resulting in the control of physical changes and levels of arterial tension. According to the phenotypic characteristics of the patient, it is inferred that the R384X mutation carries an additional burden on the Q356X mutation, with the latter previously described as a cause of 11-beta-hydroxylase deficiency. The description of a new genotype, as in this case, expands the understanding of the hereditary burden and deciphers the various factors that lead to this pathology as well as the other forms of congenital adrenal hyperplasia (CAH), presenting with a broad spectrum of clinical presentations. This study highlights the importance of a complete description of the patient's CAH genetic profile as well as their parents' genetic profile.
Fernandez, Bridget A; Green, Jane S; Bursey, Ford; Barrett, Brendan; MacMillan, Andrée; McColl, Sarah; Fernandez, Sara; Rahman, Proton; Mahoney, Krista; Pereira, Sergio L; Scherer, Stephen W; Boycott, Kym M; Woods, Michael O
2012-11-21
Severe congenital neutropenia type 4 (SCN4) is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3). Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4) is caused by autosomal recessive mutations in SLC45A2. We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. The siblings' phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with "partial OCA" in childhood. This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.
Brautbar, Ariel; Wang, Jing; Abdenur, Jose E; Chang, Richard C; Thomas, Janet A; Grebe, Theresa A; Lim, Cynthia; Weng, Shao-Wen; Graham, Brett H; Wong, Lee-Jun
2008-08-01
The mitochondrial 13513G>A (D393N) mutation in the ND5 subunit of the respiratory chain complex I was initially described in association with MELAS syndrome. Recent observations have linked this mutation to Leigh disease. We screened for the 13513G>A mutation in a cohort of 265 patients with Leigh and Leigh-like disease. The mutation was found in a total of 5 patients. An additional patient who had clinical presentation consistent with a Leigh-like phenotype but with a normal brain MRI was added to the cohort. None of an additional 88 patients meeting MELAS disease criteria, nor 56 patients with respiratory chain deficiency screened for the 13513G>A were found positive for the mutation. The most frequent clinical manifestations in our patients were hypotonia, ocular and cerebellar involvement. Low mutation heteroplasmy in the range of 20-40% was observed in all 6 patients. This observation is consistent with the previously reported low heteroplasmy of this mutation in some patients with the 13513G>A mutation and complex I deficiency. However, normal complex I activity was observed in two patients in our cohort. As most patients with Leigh-like disease and the 13513G>A mutation have been described with complex I deficiency, this report adds to the previously reported subset of patients with normal respiratory complex function. We conclude that in any patient with Leigh or Leigh-like disease, testing for the 13513G>A mutation is clinically relevant and low mutant loads in blood or muscle may be considered pathogenic, in the presence of normal respiratory chain enzyme activities.
Progranulin mutation causes frontotemporal dementia in the Swedish Karolinska family.
Chiang, Huei-Hsin; Rosvall, Lina; Brohede, Jesper; Axelman, Karin; Björk, Behnosh F; Nennesmo, Inger; Robins, Tiina; Graff, Caroline
2008-11-01
Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by cognitive impairment, language dysfunction, and/or changes in personality. Recently it has been shown that progranulin (GRN) mutations can cause FTD as well as other neurodegenerative phenotypes. DNA from 30 family members, of whom seven were diagnosed with FTD, in the Karolinska family was available for GRN sequencing. Fibroblast cell mRNA from one affected family member and six control individuals was available for relative quantitative real-time polymerase chain reaction to investigate the effect of the mutation. Furthermore, the cDNA of an affected individual was sequenced. Clinical and neuropathologic findings of a previously undescribed family branch are presented. A frameshift mutation in GRN (g.102delC) was detected in all affected family members and absent in four unaffected family members older than 70 years. Real-time polymerase chain reaction data showed an approximately 50% reduction of GRN fibroblast mRNA in an affected individual. The mutated mRNA transcripts were undetectable by cDNA sequencing. Segregation and RNA analyses showed that the g.102delC mutation, previously reported, causes FTD in the Karolinska family. Our findings add further support to the significance of GRN in FTD etiology and the presence of modifying genes, which emphasize the need for further studies into the mechanisms of clinical heterogeneity. However, the results already call for attention to the complexity of predictive genetic testing of GRN mutations.
JAK2 and genomic instability in the myeloproliferative neoplasms: a case of the chicken or the egg?
Scott, Linda M.; Rebel, Vivienne I.
2012-01-01
The myeloproliferative neoplasms (MPNs) are a particularly useful model for studying mutation accumulation in neoplastic and the mechanisms of the molecular cells, understanding underlying defects our current This review summarizes acquisition. present their in patients with an MPN, and the effects of mutations targeting Janus kinase 2 (JAK2)-mediated intracellular signaling on DNA damage, and on the elimination of mutation-bearing cells by programmed cell death. Moreover, we discuss findings that suggest that the acquisition of disease-initiating mutations in hematopoietic stem cells of some MPN patients may be the consequence of an inherent genomic instability that was not previously appreciated. PMID:22641564
Interactome INSIDER: a structural interactome browser for genomic studies.
Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan
2018-01-01
We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.
Al-sbou, Mohammed
2012-06-01
This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.
Allali, Slimane; Le Goff, Carine; Pressac-Diebold, Isabelle; Pfennig, Gwendoline; Mahaut, Clémentine; Dagoneau, Nathalie; Alanay, Yasemin; Brady, Angela F; Crow, Yanick J; Devriendt, Koen; Drouin-Garraud, Valérie; Flori, Elisabeth; Geneviève, David; Hennekam, Raoul C; Hurst, Jane; Krakow, Deborah; Le Merrer, Martine; Lichtenbelt, Klaske D; Lynch, Sally A; Lyonnet, Stanislas; MacDermot, Kay; Mansour, Sahar; Megarbané, André; Santos, Heloisa G; Splitt, Miranda; Superti-Furga, Andrea; Unger, Sheila; Williams, Denise; Munnich, Arnold; Cormier-Daire, Valérie
2011-06-01
Geleophysic dysplasia (GD, OMIM 231050) is an autosomal recessive disorder characterised by short stature, small hands and feet, stiff joints, and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2 gene (ADAMTSL2). Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n=20, also including the 6 patients from our previous study), and group 2, patients without ADAMTSL2 mutations (n=19). The main discriminating features were facial dysmorphism and tip-toe walking, which were almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness, and radiographic features. It is concluded that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene.
Nemoto-Hasebe, I; Akiyama, M; Nomura, T; Sandilands, A; McLean, W H I; Shimizu, H
2009-12-01
Mutations in the gene encoding filaggrin (FLG) have been shown to predispose to atopic eczema (AE). Further to establish population genetics of FLG mutations in the Japanese population and to elucidate effects of FLG mutations to filaggrin biosynthesis in skin of patients with AE. We searched for FLG mutations in 19 newly recruited Japanese patients with AE. We then screened 137 Japanese patients with AE and 134 Japanese control individuals for a novel mutation identified in the present study. In addition, we evaluated FLG mRNA expression by real-time reverse transcription-polymerase chain reaction and profilaggrin/filaggrin protein expression by immunohistochemical staining in the epidermis of the patients carrying the novel mutation. We identified a novel FLG nonsense mutation c.12069A>T (p.Lys4021X) in one patient with AE. Upon further screening, p.Lys4021X was identified in four patients with AE (2.9% of all the patients with AE). In total, there are at least eight FLG variants in the Japanese population. Here we show that about 27% of patients in our Japanese AE case series carry one or more of these eight FLG mutations and these variants are also carried by 3.7% of Japanese general control individuals. There is a significant statistical association between the eight FLG mutations and AE (chi(2) P = 6.50 x 10(-8)). Interestingly, the present nonsense mutation is in the C-terminal incomplete filaggrin repeat and is the mutation nearest the C-terminal among previously reported FLG mutations. Immunohistochemical staining for filaggrin revealed that this nonsense mutation leads to remarkable reduction of filaggrin protein expression in the patients' epidermis. We clearly demonstrated that FLG mutations are significantly associated with AE in the Japanese population. The present results further support the hypothesis that the C-terminal region is essential for proper processing of profilaggrin to filaggrin.
Kodama, Hitomi; Iihara, Masatoshi; Nissato, Sumiko; Isobe, Kazumasa; Kawakami, Yasushi; Okamoto, Takahiro; Takekoshi, Kazuhiro
2010-01-01
Recently, mutations in nuclear genes encoding two mitochondrial complex II subunit proteins, Succinate dehydrogenase D (SDHD) and SDHB, have been found to be associated with the development of familial pheochromocytomas and paragangliomas (hereditary pheochromocytoma/paraganglioma syndrome: HPPS). Growing evidence suggests that the mutation of SDHB is highly associated with abdominal paraganglioma and the following distant metastasis (malignant paraganglioma). In the present study, we used multiplex ligation dependent probe amplification (MLPA) analysis to identify a large heterozygous SDHB gene deletion encompassing sequences corresponding to the promoter region, in addition to exon 1 and exon 2 malignant paraganglioma patient in whom previously characterized SDHB mutations were undetectable. This is the first Japanese case report of malignant paraganglioma, with a large SDHB deletions. Our present findings strongly support the notion that large deletions in the SDHB gene should be considered in patients lacking characterized SDHB mutations.
Homozygous factor V Leiden mutation in type IV Ehlers-Danlos patient
Refaat, Marwan; Hotait, Mostafa; Winston, Brion
2014-01-01
Ehlers-Danlos syndrome (EDS) is a group of inherited connective tissue disorders caused by collagen synthesis defects. Several hemostatic abnormalities have been described in EDS patients that increase the bleeding tendencies of these patients. This case report illustrates a patient with an unusual presentation of a patient with type IV EDS, platelet δ-storage pool disease and factor V Leiden mutation. Young woman having previous bilateral deep vein thrombosis and pulmonary emboli coexisting with ruptured splenic aneurysm and multiple other aneurysms now presented with myocardial infarction. Presence of factor V Leiden mutation raises the possibility that the infarct was due to acute coronary thrombosis, although coronary artery aneurysm and dissection with myocardial infarction is known to occur in vascular type EDS. This is the first report in the medical literature of factor V Leiden mutation in an EDS patient which made the management of our patient challenging with propensity to both bleeding and clotting. PMID:24653990
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy.
Lohr, Jens G; Stojanov, Petar; Carter, Scott L; Cruz-Gordillo, Peter; Lawrence, Michael S; Auclair, Daniel; Sougnez, Carrie; Knoechel, Birgit; Gould, Joshua; Saksena, Gordon; Cibulskis, Kristian; McKenna, Aaron; Chapman, Michael A; Straussman, Ravid; Levy, Joan; Perkins, Louise M; Keats, Jonathan J; Schumacher, Steven E; Rosenberg, Mara; Getz, Gad; Golub, Todd R
2014-01-13
We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations and discovered putative tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions. Copyright © 2014 Elsevier Inc. All rights reserved.
The rate and character of spontaneous mutation in an RNA virus.
Malpica, José M; Fraile, Aurora; Moreno, Ignacio; Obies, Clara I; Drake, John W; García-Arenal, Fernando
2002-01-01
Estimates of spontaneous mutation rates for RNA viruses are few and uncertain, most notably due to their dependence on tiny mutation reporter sequences that may not well represent the whole genome. We report here an estimate of the spontaneous mutation rate of tobacco mosaic virus using an 804-base cognate mutational target, the viral MP gene that encodes the movement protein (MP). Selection against newly arising mutants was countered by providing MP function from a transgene. The estimated genomic mutation rate was on the lower side of the range previously estimated for lytic animal riboviruses. We also present the first unbiased riboviral mutational spectrum. The proportion of base substitutions is the same as that in a retrovirus but is lower than that in most DNA-based organisms. Although the MP mutant frequency was 0.02-0.05, 35% of the sequenced mutants contained two or more mutations. Therefore, the mutation process in populations of TMV and perhaps of riboviruses generally differs profoundly from that in populations of DNA-based microbes and may be strongly influenced by a subpopulation of mutator polymerases. PMID:12524327
Guegan, K; Stals, K; Day, M; Turnpenny, P; Ellard, S
2012-07-01
Alagille syndrome is a multisystem disorder characterized by highly variable expressivity, most frequently caused by heterozygous JAG1 gene mutations. Classic diagnostic criteria combine the presence of bile duct paucity on liver biopsy with three of five systems affected; liver, heart, skeleton, eye and dysmorphic facies. The aim of this study was to determine the prevalence and distribution of JAG1 mutations in patients referred for routine clinical diagnostic testing. Clinical data were available for 241 patients from 135 families. The index cases were grouped according to the number of systems affected (heart, liver, skeletal, eye and facies) and the mutation frequency calculated for each group. JAG1 mutations were identified in 59/135 (44%) probands. The highest mutation detection rates were observed in patients with the most frequent presenting features of Alagille syndrome; ranging from 20% (one system) to 86% (five systems). The overall mutation pick-up rate in a clinical diagnostic setting was lower than in previous research studies. Identification of a JAG1 gene mutation is particularly useful for those patients with atypical or mild Alagille syndrome who do not meet classic diagnostic criteria as it provides a definite molecular diagnosis and allows accurate genetic counselling for the family. © 2011 John Wiley & Sons A/S.
Nakano, Aoi; Lestringant, Gilles G; Paperna, Tamar; Bergman, Reuven; Gershoni, Ruth; Frossard, Philippe; Kanaan, Moien; Meneguzzi, Guerrino; Richard, Gabriele; Pfendner, Ellen; Uitto, Jouni; Pulkkinen, Leena; Sprecher, Eli
2002-04-01
Junctional epidermolysis bullosa (JEB) is a group of inherited blistering diseases characterized by epidermal-dermal separation resulting from mutations that affect the function of critical components of the basement membrane zone. This group of autosomal recessive diseases is especially prevalent in regions where consanguinity is common, such as the Middle East. However, the clinical and genetic epidemiology of JEB in this region remains largely unexplored. The aim of the present study was to assess a series of consanguineous JEB families originating from the Middle East. We identified 7 families referred to us between 1998 and 1999 and originating from the United Arab Emirates, Saudi Arabia, Sudan, Yemen, and Israel. Histologic, immunofluorescence, and electron microscopy studies were performed to direct the subsequent molecular analysis. DNA obtained from all family members was amplified by means of polymerase chain reaction and analyzed by conformation-sensitive gel electrophoresis with subsequent direct sequencing. In 6 families presenting with the clinical and histologic features distinctive for JEB, mutations in genes encoding 1 of the 3 subunit polypeptides of laminin-5 were identified. Two families each had mutations in LAMB3, 2 in LAMA3, and 2 in LAMC2. Out of 7 distinct mutations, 5 were novel and 2 were recurrent. No relationship was found between the presence of nonsense/frameshift mutations in laminin-5 genes and perinatal mortality, contradicting a major genotype-phenotype correlation previously reported in the European and US literature. Similarly, none of the recurrent LAMB3 hot spot mutations previously described in other populations was found in our series. Finally, in a family with the clinical diagnosis of generalized atrophic benign epidermolysis bullosa, a homozygous non-sense mutation in Col17A1 gene (encoding the BPAG2 antigen) was identified. The present report suggests (1) the existence of a unique spectrum of mutations in the Middle East populations and (2) the need for the implementation of a diagnostic strategy tailored to the genetic features of JEB in this region.
Kono, Michihiro; Takama, Hiromichi; Hamajima, Nobuyuki; Akiyama, Masashi
2014-01-01
Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH), and the 2 missense mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn) are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016), and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024). In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH. PMID:24586639
Lozier, Jay N; Kloos, Mark T; Merricks, Elizabeth P; Lemoine, Nathaly; Whitford, Margaret H; Raymer, Robin A; Bellinger, Dwight A; Nichols, Timothy C
2016-01-01
Animals with hemophilia are models for gene therapy, factor replacement, and inhibitor development in humans. We have actively sought dogs with severe hemophilia A that have novel factor VIII mutations unlike the previously described factor VIII intron 22 inversion. A male Old English Sheepdog with recurrent soft-tissue hemorrhage and hemarthrosis was diagnosed with severe hemophilia A (factor VIII activity less than 1% of normal). We purified genomic DNA from this dog and ruled out the common intron 22 inversion; we then sequenced all 26 exons. Comparing the results with the normal canine factor VIII sequence revealed a C→T transition in exon 12 of the factor VIII gene that created a premature stop codon at amino acid 577 in the A2 domain of the protein. In addition, 2 previously described polymorphisms that do not cause hemophilia were present at amino acids 909 and 1184. The hemophilia mutation creates a new TaqI site that facilitates rapid genotyping of affected offspring by PCR and restriction endonuclease analyses. This mutation is analogous to the previously described human factor VIII mutation at Arg583, which likewise is a CpG dinucleotide transition causing a premature stop codon in exon 12. Thus far, despite extensive treatment with factor VIII, this dog has not developed neutralizing antibodies (‘inhibitors’) to the protein. This novel mutation in a dog gives rise to severe hemophilia A analogous to a mutation seen in humans. This model will be useful for studies of the treatment of hemophilia. PMID:27780008
Montanari, Arianna; De Luca, Cristina; Di Micco, Patrizio; Morea, Veronica; Frontali, Laura; Francisci, Silvia
2011-01-01
Previous work has demonstrated the usefulness of the yeast model to investigate the molecular mechanisms underlying defects due to base substitutions in mitochondrial tRNA genes, and to identify suppressing molecules endowed with potential clinical relevance. The present paper extends these investigations to two human equivalent yeast mutations located at positions 32 and 33 in the anticodon loop of tRNAIle. Notwithstanding the proximity of the two T>C base substitutions, the effects of these mutations have been found to be quite different in yeast, as they are in human. The T32C substitution has a very severe effect in yeast, consisting in a complete inhibition of growth on nonfermentable substrates. Conversely, respiratory defects caused by the T33C mutation could only be observed in a defined genetic context. Analyses of available sequences and selected tRNA three-dimensional structures were performed to provide explanations for the different behavior of these adjacent mutations. Examination of the effects of previously identified suppressors demonstrated that overexpression of the TUF1 gene did not rescue the defective phenotypes determined by either mutation, possibly as a consequence of the lack of interactions between EF-Tu and the tRNA anticodon arm in known structures. On the contrary, both the cognate IleRS and the noncognate LeuRS and ValRS are endowed with suppressing activities toward both mutations. This allows us to extend to the tRNAIle mutants the cross-suppression activity of aminoacyl-tRNA synthetases previously demonstrated for tRNALeu and tRNAVal mutants. PMID:21914842
Chapa, Joaquin; An, Gary; Kulkarni, Swati A
2016-01-01
Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes associated with epithelial-mesenchymal transition. The DEABM generates diverse tumors that express tumor markers consistent with epidemiologic data. The DEABM also generates non-invasive, hyperplastic populations, analogous to atypia or ductal carcinoma in situ (DCIS), via mutations to genes known to be present in hyperplastic lesions and as early mutations in breast cancers. The results demonstrate that agent-based models are well-suited to studying tumor evolution through stages of carcinogenesis and have the potential to be used to develop prevention and treatment strategies.
Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa.
García-García, Gema; Aller, Elena; Jaijo, Teresa; Aparisi, Maria J; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M
2014-01-01
The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.
[HIV-1 resistance to antiretroviral drugs in pregnant women from Buenos Aires metropolitan area].
Zapiola, Inés; Cecchini, Diego; Fernández Giuliano, Silvina; Martínez, Marina; Rodríguez, Claudia; Bouzas, María Belén
The study aimed to determine the prevalence of antiretroviral resistance associated mutations in HIV-1 infected pregnant woman treated in Buenos Aires metropolitan area (period 2008-2014). A total of 136 women with viral load = 500 copies/ml were included: 77 (56.6%) were treatment-naïve and 59 (43.4%) were antiretroviral-experienced patients either with current (n: 24) or previous (n = 35) antiretroviral therapy. Genotypic baseline resistance was investigated in plasma of antiretroviral-naïve patients and antiretroviral-experienced patients. The resistance mutations were identified according to the lists of the World Health Organization and the International Antiviral Society, respectively. Frequencies of resistance associated mutations detected in 2008-2011 and 2012-2014 were compared. A total of 37 (27.2%) women presented at least one resistance associated mutation: 25/94 (26.5%) in 2008-2011 and 12/42 (28.5%) in 2012-2014 (p > 0.05). Among naïves, 15 (19.5%) had at least one mutation: 10/49 (20.4%) in the period 2008-2011 and 5/28 (17.8%) in 2012-2014 (p > 0.05). The resistance mutations detected in naïves were associated with non nucleoside reverse transcriptase inhibitors, being K103N the most common mutation in both periods. In antiretroviral experienced patients, 22/59 (37.3%) had at least one resistance mutation. This study demonstrates a high frequency of resistance associated mutations which remained stable in the period analyzed. These levels suggest an increased circulation of HIV-1 antiretroviral resistant strains in our setting compared to previous reports from Argentina.
Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng
2015-01-01
Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258
Novel Phenotypic and Genotypic Findings in X-Linked Retinoschisis
Tsang, Stephen H.; Vaclavik, Veronika; Bird, Alan C.; Robson, Anthony G.; Holder, Graham E.
2009-01-01
Objective To describe atypical phenotypes associated with the retinoschisis (X-linked, juvenile) 1 mutation (RS1). Methods Seven patients with multiple fine white dots at the macula and reduced visual acuity were evaluated. Six patients underwent pattern and full-field electroretinography (ERG). On-off ERG, optical coherence tomography, and fundus autofluorescence imaging were performed in some patients. Mutational screening of RS1 was prompted by the ERG findings. Results Fine white dots resembling drusenlike deposits and sometimes associated with retinal pigment epithelial abnormalities were present in the maculae. An electronegative bright-flash ERG configuration was present in all patients tested, and abnormal pattern ERG findings confirmed macular dysfunction. A parafoveal ring of high-density autofluorescence was present in 3 eyes; 1 patient showed high-density foci concordant with the white dots. Optical coherence tomography did not show foveal schisis in 3 of 4 eyes. All patients carried mutations in RS1, including 1 with a novel 206T→C mutation in exon 4. Conclusions Multiple fine white dots at the macula may be the initial fundus feature in RS1 mutation. Electrophysiologic findings suggest dysfunction after phototransduction and enable focused mutational screening. Autofluorescence imaging results suggest early retinal pigment epithelium involvement; a parafoveal ring of high-density autofluorescence has not previously been described in this disorder. PMID:17296904
New Insights into the In Silico Prediction of HIV Protease Resistance to Nelfinavir
Antunes, Dinler A.; Rigo, Maurício M.; Sinigaglia, Marialva; de Medeiros, Rúbia M.; Junqueira, Dennis M.; Almeida, Sabrina E. M.; Vieira, Gustavo F.
2014-01-01
The Human Immunodeficiency Virus type 1 protease enzyme (HIV-1 PR) is one of the most important targets of antiretroviral therapy used in the treatment of AIDS patients. The success of protease-inhibitors (PIs), however, is often limited by the emergence of protease mutations that can confer resistance to a specific drug, or even to multiple PIs. In the present study, we used bioinformatics tools to evaluate the impact of the unusual mutations D30V and V32E over the dynamics of the PR-Nelfinavir complex, considering that codons involved in these mutations were previously related to major drug resistance to Nelfinavir. Both studied mutations presented structural features that indicate resistance to Nelfinavir, each one with a different impact over the interaction with the drug. The D30V mutation triggered a subtle change in the PR structure, which was also observed for the well-known Nelfinavir resistance mutation D30N, while the V32E exchange presented a much more dramatic impact over the PR flap dynamics. Moreover, our in silico approach was also able to describe different binding modes of the drug when bound to different proteases, identifying specific features of HIV-1 subtype B and subtype C proteases. PMID:24498124
CADASIL with a novel NOTCH3 mutation (Cys478Tyr).
Ozaki, Kokoro; Irioka, Takashi; Ishikawa, Kinya; Mizusawa, Hidehiro
2015-03-01
Recently, an increasing number of NOTCH3 mutations have been described to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Here, we report 2 CADASIL patients from a Japanese family, who were found to possess a novel NOTCH3 mutation. The proband only had chronic headache, and her mother had previously suffered a minor stroke. Although the patients' clinical symptoms were mild, their distinctive magnetic resonance imaging (MRI) features suggested CADASIL. Genetic analysis revealed that both patients had a novel heterozygous NOTCH3 mutation (p.Cys478Tyr) leading to stereotypical cysteine loss. The present finding suggests that genetic testing for NOTCH3 mutations in patients with distinctive MRI features, even if the symptoms are as mild as chronic headache, should help to broaden the mutational and clinical spectrum of CADASIL. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Kaneko, Masahiko; Maruta, Masaki; Shikata, Hisaharu; Hanayama, Masakazu; Ikebe, Tadayoshi
2015-11-01
Streptococcus pyogenes (group A streptococcus) is an aerobic gram-positive coccus that causes infections ranging from non-invasive pharyngitis to severely invasive necrotizing fasciitis. Mutations in csrS/csrR and rgg, negative regulator genes of group A streptococcus, are crucial factors in the pathogenesis of streptococcal toxic shock syndrome, which is a severe, invasive infection characterized by sudden onset of shock and multiorgan failure, resulting in a high mortality rate. Here we present a case of group A streptococcal bacteremia in a 28-year-old Japanese woman with no relevant previous medical history. The patient developed progressive abdominal symptoms that may have been due to spontaneous bacterial peritonitis, followed by a state of shock, which did not fulfill the proposed criteria for streptococcal toxic shock. The isolate was found to harbor a mutation in the negative regulator csrS gene, whereas the csrR and rgg genes were intact. It was noteworthy that this strain carrying a csrS mutation had caused group A streptococcal bacteremia characterized by acute abdomen as the presenting symptom in a young individual who had been previously healthy. This case indicates that group A streptococcus with csrS mutations has potential virulence factors that are associated with the onset of group A streptococcal bacteremia that does not meet the diagnostic criteria for streptococcal toxic shock syndrome. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Faivre, L; Collod-Beroud, G; Callewaert, B; Child, A; Binquet, C; Gautier, E; Loeys, B L; Arbustini, E; Mayer, K; Arslan-Kirchner, M; Stheneur, C; Kiotsekoglou, A; Comeglio, P; Marziliano, N; Wolf, J E; Bouchot, O; Khau-Van-Kien, P; Beroud, C; Claustres, M; Bonithon-Kopp, C; Robinson, P N; Adès, L; De Backer, J; Coucke, P; Francke, U; De Paepe, A; Jondeau, G; Boileau, C
2009-01-01
Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24–32. We previously showed that a mutation in exons 24–32 is predictive of a severe cardiovascular phenotype even in non-neonatal cases, and that mutations leading to premature truncation codons are under-represented in this region. To describe patients carrying a mutation in this so-called ‘neonatal' region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24–32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon (PTC) within exons 24–32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a PTC within exons 24–32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exons 24–32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant. PMID:19002209
Roberts, Stephanie A; Moon, Jennifer E; Dauber, Andrew; Smith, Jessica R
2017-03-01
Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Genomic DNA from the patient's and parents' peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient's peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. The p.Leu512Met mutation (c.1534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism.
Roberts, Stephanie A.; Moon, Jennifer E.; Dauber, Andrew; Smith, Jessica R.
2018-01-01
Background Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Methods Genomic DNA from the patient’s and parents’ peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Results Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient’s peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. Conclusions The p.Leu512Met mutation (c.l534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism. PMID:28195550
Ben Rhouma, Bochra; Kallabi, Fakhri; Mahfoudh, Nadia; Ben Mahmoud, Afif; Engeli, Roger T; Kamoun, Hassen; Keskes, Leila; Odermatt, Alex; Belguith, Neila
2017-01-01
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed almost exclusively in the testis and converts Δ4-androstene-3,17-dione to testosterone. Mutations in the HSD17B3 gene causing 17β-HSD3 deficiency are responsible for a rare recessive form of 46, XY Disorders of Sex Development (46, XY DSD). We report novel cases of Tunisian patients with 17β-HSD3 deficiency due to previously reported mutations, i.e. p.C206X and p.G133R, as well as a case with the novel compound heterozygous mutations p.C206X and p.Q176P. Moreover, the previously reported polymorphism p.G289S was identified in a heterozygous state in combination with a novel non-coding variant c.54G>T, also in a heterozygous state, in a male patient presenting with micropenis and low testosterone levels. The identification of four different mutations in a cohort of eight patients confirms the generally observed genetic heterogeneity of 17β-HSD3 deficiency. Nevertheless, analysis of DNA from 272 randomly selected healthy controls from the same geographic area (region of Sfax) revealed a high carrier frequency for the p.C206X mutation of approximately 1 in 40. Genotype reconstruction of the affected pedigree members revealed that all p.C206X mutation carriers harbored the same haplotype, indicating inheritance of the mutation from a common ancestor. Thus, the identification of a founder effect and the elevated carrier frequency of the p.C206X mutation emphasize the importance to consider this mutation in the diagnosis and genetic counseling of affected 17β-HSD3 deficiency pedigrees in Tunisia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Naghibalhossaini, Fakhraddin; Hosseini, Hamideh Mahmoodzadeh; Mokarram, Pooneh; Zamani, Mozhdeh
2011-12-01
Gene silencing due to DNA hypermethylation is a major mechanism for loss of tumor suppressor genes function in colorectal cancer. Activating V600E mutation in BRAF gene has been linked with widespread methylation of CpG islands in sporadic colorectal cancers. The aim of the present study was to evaluate the methylation status of three cancer-related genes, APC2, p14ARF, and ECAD in colorectal carcinogenesis and their association with the mutational status of BRAF and KRAS among Iranian colorectal cancer patients. DNA from 110 unselected series of sporadic colorectal cancer patients was examined for BRAF V600E mutation by PCR-RFLP. Promoter methylation of genes in tumors was determined by methylation specific PCR. The frequency of APC2, E-CAD, and p14 methylation was 92.6%, 40.4% and 16.7%, respectively. But, no V600E mutation was identified in the BRAF gene in any sample. No association was found in cases showing epigenetic APC, ECAD, and p14 abnormality with the clinicopathological parameters under study. The association between KRAS mutations and the so called methylator phenotype was previously reported. Therefore, we also analyzed the association between the hot spot KRAS gene mutations in codons of 12 and 13 with genes' promoter hypermethylation in a subset of this group of patients. Out of 86 tumors, KRAS was mutated in 24 (28%) of tumors, the majority occurring in codon 12. KRAS mutations were not associated with genes' methylation in this tumor series. These findings suggest a distinct molecular pathway for methylation of APC2, p14, and ECAD genes from those previously described for colorectal cancers with BRAF or KRAS mutations.
Grosso, Salvatore; Carluccio, Maria Alessandra; Cardaioli, Elena; Cerase, Alfonso; Malandrini, Alessandro; Romano, Chiara; Federico, Antonio; Dotti, Maria Teresa
2017-03-01
Complex I deficiency is the most common energy generation disorder which may clinically present at any age with a wide spectrum of symptoms and signs. The T10158C mutation ND3 gene is rare and occurs in patients showing an early rapid neurological deterioration invariably leading to death after a few months. We report a 9year-old boy with a mtDNA T10158C mutation showing a mild MELAS-like phenotype and brain MRI features congruent with both MELAS and Leigh syndrome. Epilepsia partialis continua also occurred in the clinical course and related to a mild cortical atrophy of the left perisylvian area. The present case confirms that the clinical spectrum of Complex I deficiency related to T10158C mutation ND3 gene is wider than previously described. Our observation further suggests that testing mutation in the MT-ND3 gene should be included in the diagnostic work-up of patients presenting with epilepsia partialis continua accompanied by suspicion of mitochondrial disorder. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Episodic weakness due to mitochondrial DNA MT-ATP6/8 mutations.
Auré, Karine; Dubourg, Odile; Jardel, Claude; Clarysse, Lucie; Sternberg, Damien; Fournier, Emmanuel; Laforêt, Pascal; Streichenberger, Nathalie; Petiot, Philippe; Gervais-Bernard, Hélène; Vial, Christophe; Bedat-Millet, Anne-Laure; Drouin-Garraud, Valérie; Bouillaud, Frédéric; Vandier, Christophe; Fontaine, Bertrand; Lombès, Anne
2013-11-19
To report that homoplasmic deleterious mutations in the mitochondrial DNA MT-ATP6/8 genes may be responsible for acute episodes of limb weakness mimicking periodic paralysis due to channelopathies and dramatically responding to acetazolamide. Mitochondrial DNA sequencing and restriction PCR, oxidative phosphorylation functional assays, reactive oxygen species metabolism, and patch-clamp technique in cultured skin fibroblasts. Occurrence of a typical MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) syndrome in a single member of a large pedigree with episodic weakness associated with a later-onset distal motor neuropathy led to the disclosure of 2 deleterious mitochondrial DNA mutations. The MT-ATP6 m.9185T>C p.Leu220Pro mutation, previously associated with Leigh syndrome, was present in all family members, while the MT-TL1 m.3271T>C mutation, a known cause of MELAS syndrome, was observed in the sole patient with MELAS presentation. Significant defect of complexes V and I as well as oxidative stress were observed in both primary fibroblasts and cybrid cells with 100% m.9185T>C mutation. Permanent plasma membrane depolarization and altered permeability to K(+) in fibroblasts provided a link with the paralysis episodes. Screening of 9 patients, based on their clinical phenotype, identified 4 patients with similar deleterious MT-ATP6 mutations (twice m.9185T>C and once m.9176T>C or m.8893T>C). A fifth patient presented with an original potentially deleterious MT-ATP8 mutation (m.8403T>C). All mutations were associated with almost-normal complex V activity but significant oxidative stress and permanent plasma membrane depolarization. Homoplasmic mutations in the MT-ATP6/8 genes may cause episodic weakness responding to acetazolamide treatment.
Analysis of human MutS homolog 2 missense mutations in patients with colorectal cancer.
Zhang, Xiaomei; Chen, Senqing; Yu, Jun; Zhang, Yuanying; Lv, Min; Zhu, Ming
2018-05-01
Germline mutations of DNA mismatch repair gene human MutS homolog 2 ( hMSH2 ) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although their function has not been evaluated. In the present study, the role of ten hMSH2 missense mutations in the pathogenesis of colorectal cancer was examined. The hMSH2/hMSH6 protein interaction system was established using yeast two-hybrid screening. Next, the missense mutations were analyzed for their ability to affect the protein interaction of hMSH2 with its partner hMSH6. Additionally, the Sorting Intolerant from Tolerant tool was applied to predict the effects of different amino acid substitutions. The results demonstrated that certain hMSH2 mutations (L173R and C199R) caused a significant functional change in the human hMutSα complex and were identified to be pathological mutations. The Y408C, D603Y, P696L and S703Y mutations partially affected interaction and partly affected the function of hMSH2. The remaining four variants, T8M, I169V, A370T and Q419K, may be non-functional polymorphisms or could affect protein function through other molecular mechanisms. The present study evaluated the functional consequences of previously unknown missense mutations in hMSH2 , and may contribute to improved clinical diagnosis and mutation screening of HNPCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Novel mutation of Endothelin-B receptor gene in Waardenburg-Hirschsprung disease.
Sangkhathat, Surasak; Chiengkriwate, Piyawan; Kusafuka, Takeshi; Patrapinyokul, Sakda; Fukuzawa, Masahiro
2005-12-01
Homozygous mutations of EDNRB in human have been reported to result in Waardenburg-Hirschsprung disease (WS4), while mutated heterozygotes manifested isolated Hirschsprung disease in lower penetrance. We investigated a case of WS4 together with all members of her nuclear family for the alteration of the EDNRB gene by using PCR-SSCP and direct sequencing technique. The index patient, who was born to a family with no history of Hirschsprung disease, presented total colonic aganglionosis with small bowel extension, sensorineural hearing loss and generalized cutaneous pigmentary defects. Interestingly, both irides were normally black. The study detected a homozygous missense mutation at codon 196 in exon 2 (Ser196Asn), which has not been reported. Both parents and four in six siblings harbored heterozygous mutation without any clinical manifestation. Our findings were consistent with previous observations that full spectrum of WS4 occurred to the mutate homozygotes. Moreover, the non-penetrance of heterozygotes in our pedigree, which differs from other reports, demonstrates the high pleiotropic effect of EDNRB mutations in human.
Identification of 5 novel mutations in the AGXT gene.
Basmaison, O; Rolland, M O; Cochat, P; Bozon, D
2000-06-01
In order to identify additional genotypes in primary hyperoxaluria type 1, we sequenced the AGXT genes of 9 patients. We report 5 new mutations. Three are splice-site mutations situated at the end of intron 4 and 8 (647-1G>A, 969-1G>C, 969-3C>G), one is a missense mutation in exon 5 (D183N), and one is a short duplication in exon 2 (349ins7). Their consequence is always a lack of enzymatic activity of the Alanine-Glyoxylate Aminotransferase (AGT); for 4 of them, we were able to deduce that they were associated to the absence of AGT protein. These mutations are rare, as they have been found on one allele in our study (except 969-3C>G present in 2 unrelated families), and have not been previously reported.
Steichen-Gersdorf, Elisabeth; Lorenz-Depiereux, Bettina; Strom, Tim Matthias; Shaw, Nicholas J
2015-07-01
Autosomal recessive hypophosphatemic rickets 2 (ARHR2) is a rare form of renal tubular phosphate wasting disorder. Loss of function mutations of the ecto-nucleotide pyrophosphatase/pyrophosphodiesterase 1 gene (ENPP1) causes a wide spectrum of phenotypes, ranging from lethal generalized arterial calcification of infancy to hypophosphatemic rickets with hypertension. Hearing loss was not previously thought to be one of the features of the disease entities and was merely regarded as a complication rather than a part of the disease. We report two children who presented in mid to late childhood with progressive varus deformity of their legs due to hypophosphatemic rickets caused by mutations in the ENPP1 gene. Both children had evidence of progressive hearing loss requiring the use of hearing aids. This report of two unrelated infants with compound heterozygous mutations in ENPP1 and previously published cases confirms that mild to moderate hearing loss is frequently associated with ARHR2. Early onset conductive hearing loss may further distinguish the autosomal recessive ENPP1 related type from other types of hypophosphatemia.
Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease.
Walker, Melissa A; Mohler, Kyle P; Hopkins, Kyle W; Oakley, Derek H; Sweetser, David A; Ibba, Michael; Frosch, Matthew P; Thibert, Ronald L
2016-08-01
Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins. © The Author(s) 2016.
Jennings, Juliet E; Georgitsi, Marianthi; Holdaway, Ian; Daly, Adrian F; Tichomirowa, Maria; Beckers, Albert; Aaltonen, Lauri A; Karhu, Auli; Cameron, Fergus J
2009-11-01
Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) were recently shown to confer a pituitary adenoma predisposition in patients with familial isolated pituitary adenomas (FIPA). We report a large Samoan FIPA kindred from Australia/New Zealand with an R271W mutation that was associated with aggressive pituitary tumors. Case series with germline screening of AIP and haplotype analyses among R271W families. This previously unreported kindred consisted of three affected individuals that either presented with or had first symptoms of a pituitary macroadenoma in late childhood or adolescence. The index case, a 15-year-old male with incipient gigantism and his maternal aunt, had somatotropinomas, and the maternal uncle of the index case had a prolactinoma. All tumors were large (15, 40, and 60 mm maximum diameter) and two required transcranial surgery and radiotherapy. All three affected subjects and ten other unaffected relatives were found to be positive for a germline R271W AIP mutation. Comparison of the single nucleotide polymorphism patterns among this family and two previously reported European FIPA families with the same R271W mutation demonstrated no common ancestry. This kindred exemplifies the aggressive features of pituitary adenomas associated with AIP mutations, while genetic analyses among three R271W FIPA families indicate that R271W represents a mutational hotspot that should be studied further in functional studies.
Guo, Yi; Liming, Liu; Jiang, Li
2015-12-01
Intermittent maple syrup urine disease (MSUD) is a potentially life-threatening metabolic disorder caused by a deficiency of branched chain α-ketoacid dehydrogenase (BCKD) complex. In contrast to classic MSUD, children with the intermittent form usually have an atypical clinical manifestation. Here, we describe the presenting symptoms and clinical course of a Chinese boy with intermittent MSUD. Mutation analysis identified two previously unreported mutations in exon 7 of the BCKDHB gene: c.767A > G (p.Y256C) and c.768C > G (p.Y256X); the parents were each heterozygous for one of these mutations. In silico analysis predicted Y256C probably affects protein structure; Y256X leads to a premature stop codon. This case demonstrates intermittent MSUD should be suspected in cases with symptoms of recurrent encephalopathy, especially ataxia or marked drowsiness, which usually present after the neonatal period and in conjunction with infection. symmetrical basal ganglia damage but normal myelination in the posterior limb will assist differential diagnosis; alloisoleucine is a useful diagnostic marker and mutation analysis may be of prognostic value. These novel mutations Y256C and Y256X result in the clinical manifestation of a variant form of MSUD, expanding the mutation spectrum of this disease.
PIK3CA Mutations in Mucinous Cystic Neoplasms of the Pancreas
Garcia-Carracedo, Dario; Chen, Zong-Ming; Qiu, Wanglong; Huang, Alicia S.; Tang, Sophia M.; Hruban, Ralph H.; Su, Gloria H.
2014-01-01
Objectives Mucinous cystic neoplasms (MCNs) are rare, potentially curable, mucin-producing neoplasms of the pancreas. We have previously reported PIK3CA (phosphoinositide-3-kinase catalytic subunit, p110α) mutations in intraductal papillary mucinous neoplasms, another mucin-producing neoplasm of the pancreas. In this study, we analyzed the presence of PIK3CA and AKT1/PKB (V-akt murine thymoma viral oncogene homolog 1) hot-spot mutations in MCN specimens. Methods Using the genomic DNA sequencing of tumor tissues isolated by laser capture microdissection, we evaluated 15 well-characterized MCNs for the E542K, E545K(exon 9), and H1047R (exon 20) hot-spotmutations in the PIK3CA gene and the E17K mutation in the AKT1 gene. Results A hot-spotmutation (E545K) of the PIK3CA gene was detected in 1 of the 15 MCNs and further confirmed by a mutant-enriched method. Interestingly, this mutation was found to be present only in the high-grade but not in low-grade dysplastic epithelium obtained from this neoplasm and coexisted with a KRASG12D mutation. No mutations were identified in the AKT1 gene. Conclusions Our data, when combined with previous reports on intraductal papillary mucinous neoplasms, indicate that oncogenic activation of the PI3K pathway involving PIK3CA gene mutations can contribute to the progression of mucin-producing neoplasms but not pancreatic intraepithelial neoplasia. PIK3CA status could be useful for understanding their progression to malignancy. PMID:24518503
Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C
2010-05-01
To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.
ICUS/CCUS/CHIP: basics & beyond.
Jain, Mili; Tripathi, Anil
2017-10-01
Patients presenting with idiopathic cytopenia with non-diagnostic marrow morphology and a normal karyotype pose a diagnostic and therapeutic challenge. Additional diagnostic information from mutation analysis could provide important clinical insights. However, one has to be cautious during such diagnostic interpretations in view of the recent documentation of clonal somatic mutations in healthy elder individuals. Whether to regard clonality synonymous with malignant proliferation or a manifestation of ageing process is to be judged carefully. Areas covered: The review covers defining criteria and diagnostic work up for Idiopathic cytopenia of undetermined significance (ICUS), Clonal cytopenia of undetermined significance (CCUS), Clonal hematopoiesis of indeterminate potential (CHIP). It also presents the results from previous reports on this subject. In addition the evolution and potential impact of these entities is discussed. Expert commentary: Current evidence does not support the use of somatic mutations as presumptive evidence of myelodysplastic syndrome (MDS). Including CCUS under the category of MDS requires further insight on natural disease course. Longitudinal follow up study on ICUS, CCUS, CHIP may eventually identify the pathological significance of the clonal mutations. An absence of mutation however may still be useful as good predictor of not having MDS.
Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency
Stephen, Joshi; Vilboux, Thierry; Mian, Luhe; Kuptanon, Chulaluck; Sinclair, Courtney M.; Yildirimli, Deniz; Maynard, Dawn M.; Bryant, Joy; Fischer, Roxanne; Vemulapalli, Meghana; Mullikin, James C.; Huizing, Marjan; Gahl, William A.
2017-01-01
Joubert syndrome and related disorders (JSRD) are a heterogeneous group of ciliopathies defined based on the mid-hindbrain abnormalities that result in the characteristic “molar tooth sign” on brain imaging. The core clinical findings of JSRD are hypotonia, developmental delay, abnormal eye movements and breathing abnormalities. To date, more than 30 JSRD genes that encode proteins important for structure and/or function of cilia have been identified. Here, we present 2 siblings with Joubert syndrome associated with growth hormone deficiency. Whole exome sequencing of the family identified compound heterozygous mutations in KIAA0753, i.e., a missense mutation (p.Arg257Gly) and an intronic mutation (c.2359-1G>C). The intronic mutation alters normal splicing by activating a cryptic acceptor splice site in exon 16. The novel acceptor site skips nine nucleotides, deleting three amino acids from the protein coding frame. KIAA0753 (OFIP) is a centrosome and pericentriolar satellite protein, previously not known to cause Joubert syndrome. We present comprehensive clinical descriptions of the Joubert syndrome patients as well as the cellular phenotype of defective ciliogenesis in the patients’ fibroblasts. PMID:28220259
Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency.
Stephen, Joshi; Vilboux, Thierry; Mian, Luhe; Kuptanon, Chulaluck; Sinclair, Courtney M; Yildirimli, Deniz; Maynard, Dawn M; Bryant, Joy; Fischer, Roxanne; Vemulapalli, Meghana; Mullikin, James C; Huizing, Marjan; Gahl, William A; Malicdan, May Christine V; Gunay-Aygun, Meral
2017-04-01
Joubert syndrome and related disorders (JSRD) are a heterogeneous group of ciliopathies defined based on the mid-hindbrain abnormalities that result in the characteristic "molar tooth sign" on brain imaging. The core clinical findings of JSRD are hypotonia, developmental delay, abnormal eye movements and breathing abnormalities. To date, more than 30 JSRD genes that encode proteins important for structure and/or function of cilia have been identified. Here, we present 2 siblings with Joubert syndrome associated with growth hormone deficiency. Whole exome sequencing of the family identified compound heterozygous mutations in KIAA0753, i.e., a missense mutation (p.Arg257Gly) and an intronic mutation (c.2359-1G>C). The intronic mutation alters normal splicing by activating a cryptic acceptor splice site in exon 16. The novel acceptor site skips nine nucleotides, deleting three amino acids from the protein coding frame. KIAA0753 (OFIP) is a centrosome and pericentriolar satellite protein, previously not known to cause Joubert syndrome. We present comprehensive clinical descriptions of the Joubert syndrome patients as well as the cellular phenotype of defective ciliogenesis in the patients' fibroblasts.
Creus, Montserrat; Deulofeu, Ramon; Peñarrubia, Joana; Carmona, Francisco; Balasch, Juan
2013-03-01
Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain. Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects. No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied. In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.
Allali, Slimane; Le Goff, Carine; PressaceDiebold, Isabelle; Pfennig, Gwendoline; Mahaut, Clémentine; Dagoneau, Nathalie; Alanay, Yasemin; Brady, Angela F; Crow, Yanick J; Devriendt, Koen; Drouin-Garraud, Valérie; Flori, Elisabeth; Geneviève, David; Hennekam, Raoul C; Hurst, Jane; Krakow, Deborah; Le Merrer, Martine; Lichtenbelt, Klaske D; Lynch, Sally A; Lyonnet, Stanislas; MacDermot, Kay; Mansour, Sahar; Megarbané, André; Santos, Heloisa G; Splitt, Miranda; Superti-Furga, Andrea; Unger, Sheila; Williams, Denise; Munnich, Arnold; Cormier-Daire, Valérie
2012-01-01
Background Geleophysic dysplasia (GD, OMIM 231050) is an autosomal recessive disorder characterized by short stature, small hands and feet, stiff joints, and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2gene (ADAMTSL2). Methods Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n¼20, also including the 6 patients from our previous study), and group 2, patients without ADAMTSL2 mutations (n¼19). Results The main discriminating features were facial dysmorphism and tip-toe walking, which were almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness, and radiographic features. Conclusions It is concluded that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene. PMID:21415077
Cerebro-costo-mandibular syndrome: Clinical, radiological, and genetic findings.
Tooley, Madeleine; Lynch, Danielle; Bernier, Francois; Parboosingh, Jillian; Bhoj, Elizabeth; Zackai, Elaine; Calder, Alistair; Itasaki, Nobue; Wakeling, Emma; Scott, Richard; Lees, Melissa; Clayton-Smith, Jill; Blyth, Moira; Morton, Jenny; Shears, Debbie; Kini, Usha; Homfray, Tessa; Clarke, Angus; Barnicoat, Angela; Wallis, Colin; Hewitson, Rebecca; Offiah, Amaka; Saunders, Michael; Langton-Hewer, Simon; Hilliard, Tom; Davis, Peter; Smithson, Sarah
2016-05-01
Cerebro-Costo-Mandibular syndrome (CCMS) is a rare autosomal dominant condition comprising branchial arch-derivative malformations with striking rib-gaps. Affected patients often have respiratory difficulties, associated with upper airway obstruction, reduced thoracic capacity, and scoliosis. We describe a series of 12 sporadic and 4 familial patients including 13 infants/children and 3 adults. Severe micrognathia and reduced numbers of ribs with gaps are consistent findings. Cleft palate, feeding difficulties, respiratory distress, tracheostomy requirement, and scoliosis are common. Additional malformations such as horseshoe kidney, hypospadias, and septal heart defect may occur. Microcephaly and significant developmental delay are present in a small minority of patients. Key radiological findings are of a narrow thorax, multiple posterior rib gaps and abnormal costo-transverse articulation. A novel finding in 2 patients is bilateral accessory ossicles arising from the hyoid bone. Recently, specific mutations in SNRPB, which encodes components of the major spliceosome, have been found to cause CCMS. These mutations cluster in an alternatively spliced regulatory exon and result in altered SNRPB expression. DNA was available from 14 patients and SNRPB mutations were identified in 12 (4 previously reported). Eleven had recurrent mutations previously described in patients with CCMS and one had a novel mutation in the alternative exon. These results confirm the specificity of SNRPB mutations in CCMS and provide further evidence for the role of spliceosomal proteins in craniofacial and thoracic development. © 2016 Wiley Periodicals, Inc.
Phenotype, penetrance, and treatment of 133 CTLA-4-insufficient individuals.
Schwab, Charlotte; Gabrysch, Annemarie; Olbrich, Peter; Patiño, Virginia; Warnatz, Klaus; Wolff, Daniel; Hoshino, Akihiro; Kobayashi, Masao; Imai, Kohsuke; Takagi, Masatoshi; Dybedal, Ingunn; Haddock, Jamanda A; Sansom, David; Lucena, Jose M; Seidl, Maximilian; Schmitt-Gräff, Annette; Reiser, Veronika; Emmerich, Florian; Frede, Natalie; Bulashevska, Alla; Salzer, Ulrich; Schubert, Desirée; Hayakawa, Seiichi; Okada, Satoshi; Kanariou, Maria; Kucuk, Zeynep Yesim; Chapdelaine, Hugo; Petruzelkova, Lenka; Sumnik, Zdenek; Sediva, Anna; Slatter, Mary; Arkwright, Peter D; Cant, Andrew; Lorenz, Hanns-Martin; Giese, Thomas; Lougaris, Vassilios; Plebani, Alessandro; Price, Christina; Sullivan, Kathleen E; Moutschen, Michel; Litzman, Jiri; Freiberger, Tomas; van de Veerdonk, Frank L; Recher, Mike; Albert, Michael H; Hauck, Fabian; Seneviratne, Suranjith; Schmid, Jana Pachlopnik; Kolios, Antonios; Unglik, Gary; Klemann, Christian; Speckmann, Carsten; Ehl, Stephan; Leichtner, Alan; Blumberg, Richard; Franke, Andre; Snapper, Scott; Zeissig, Sebastian; Cunningham-Rundles, Charlotte; Giulino-Roth, Lisa; Elemento, Olivier; Dückers, Gregor; Niehues, Tim; Fronkova, Eva; Kanderová, Veronika; Platt, Craig D; Chou, Janet; Chatila, Talal; Geha, Raif; McDermott, Elizabeth; Bunn, Su; Kurzai, Monika; Schulz, Ansgar; Alsina, Laia; Casals, Ferran; Deyà-Martinez, Angela; Hambleton, Sophie; Kanegane, Hirokazu; Taskén, Kjetil; Neth, Olaf; Grimbacher, Bodo
2018-05-04
Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) is a negative immune regulator. Heterozygous CTLA4 germline mutations can cause a complex immune dysregulation syndrome in humans. To characterize the penetrance, the clinical features and the best treatment options in 133 CTLA4 mutation carriers. Genetics, clinical features, laboratory values, and outcome of treatment options were assessed in a worldwide cohort of CTLA4 mutation carriers. We identified 133 individuals from 54 unrelated families carrying 45 different heterozygous CTLA4 mutations, including 28 previously undescribed mutations. Ninety mutation carriers were considered affected, suggesting the clinical penetrance of at least 67%; median age of onset was 11 years, and mortality rate within affected mutation carriers was 16% (n=15). Main clinical manifestations included hypogammaglobulinemia (84%), lymphoproliferation (73%), autoimmune cytopenia (62%), respiratory- (68%), gastrointestinal- (59%), or neurological features (29%). Eight affected mutation carriers developed lymphoma, three gastric cancer. An EBV association was found in six malignancies. CTLA4 mutations were associated with lymphopenia and decreased T-, B-, and NK-cell counts. Successful targeted therapies included the application of CTLA-4-fusion-proteins, mTOR-inhibitors, and hematopoietic stem cell transplantation. EBV reactivation occurred in two affected mutation carriers under immunosuppression. Affected mutation carriers with CTLA-4 insufficiency may present in any medical specialty. Family members should be counseled, as disease manifestation may occur as late as age 50. EBV- and CMV-associated complications must be closely monitored. Treatment interventions should be coordinated in clinical trials. This large cohort of affected CTLA4 mutation carriers gives first insights into different possible treatment options and presents available clinical information on treatment response and survival. With this knowledge, affected mutation carriers will benefit from an individualized management. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. All rights reserved.
Kang, Peter Choon Eng; Phuah, Sze Yee; Sivanandan, Kavitta; Kang, In Nee; Thirthagiri, Eswary; Liu, Jian Jun; Hassan, Norhashimah; Yoon, Sook-Yee; Thong, Meow Keong; Hui, Miao; Hartman, Mikael; Yip, Cheng Har; Mohd Taib, Nur Aishah; Teo, Soo Hwang
2014-04-01
Although the breast cancer predisposition genes BRCA1 and BRCA2 were discovered more than 20 years ago, there remains a gap in the availability of genetic counselling and genetic testing in Asian countries because of cost, access and inaccurate reporting of family history of cancer. In order to improve access to testing, we developed a rapid test for recurrent mutations in our Asian populations. In this study, we designed a genotyping assay with 55 BRCA1 and 44 BRCA2 mutations previously identified in Asian studies, and validated this assay in 267 individuals who had previously been tested by full sequencing. We tested the prevalence of these mutations in additional breast cancer cases. Using this genotyping approach, we analysed recurrent mutations in 533 Malaysian breast cancer cases with <10 % a priori risk, and found 1 BRCA1 (0.2 %) and 5 BRCA2 (0.9 %) carriers. Testing in a hospital-based unselected cohort of 532 Singaporean breast cancer cases revealed 6 BRCA1 (1.1 %) and 3 BRCA2 (0.6 %) carriers. Overall, 2 recurrent BRCA1 and 1 BRCA2 mutations in Malays, 3 BRCA1 and 2 BRCA2 mutations in Chinese and 1 BRCA1 mutation in Indians account for 60, 24 and 20 % of carrier families, respectively. By contrast, haplotype analyses suggest that a recurrent BRCA2 mutation (c.262_263delCT) found in 5 unrelated Malay families has at least 3 distinct haplotypes. Taken together, our data suggests that panel testing may help to identify carriers, particularly Asian BRCA2 carriers, who do not present with a priori strong family history characteristics.
Prevalence of Novel MAGED2 Mutations in Antenatal Bartter Syndrome.
Legrand, Anne; Treard, Cyrielle; Roncelin, Isabelle; Dreux, Sophie; Bertholet-Thomas, Aurélia; Broux, Françoise; Bruno, Daniele; Decramer, Stéphane; Deschenes, Georges; Djeddi, Djamal; Guigonis, Vincent; Jay, Nadine; Khalifeh, Tackwa; Llanas, Brigitte; Morin, Denis; Morin, Gilles; Nobili, François; Pietrement, Christine; Ryckewaert, Amélie; Salomon, Rémi; Vrillon, Isabelle; Blanchard, Anne; Vargas-Poussou, Rosa
2018-02-07
Mutations in the MAGED2 gene, located on the X chromosome, have been recently detected in males with a transient form of antenatal Bartter syndrome or with idiopathic polyhydramnios. The aim of this study is to analyze the proportion of the population with mutations in this gene in a French cohort of patients with antenatal Bartter syndrome. The French cohort of patients with antenatal Bartter syndrome encompasses 171 families. Mutations in genes responsible for types 1-4 have been detected in 75% of cases. In patients without identified genetic cause ( n =42), transient antenatal Bartter syndrome was reported in 12 cases. We analyzed the MAGED2 gene in the entire cohort of negative cases by Sanger sequencing and retrospectively collected clinical data regarding pregnancy as well as the postnatal outcome for positive cases. We detected mutations in MAGED2 in 17 patients, including the 12 with transient antenatal Bartter syndrome, from 16 families. Fifteen different mutations were detected (one whole deletion, three frameshift, three splicing, three nonsense, two inframe deletions, and three missense); 13 of these mutations had not been previously described. Interestingly, two patients are females; in one of these patients our data are consistent with selective inactivation of chromosome X explaining the severity. The phenotypic presentation in our patients was variable and less severe than that of the originally described cases. MAGED2 mutations explained 9% of cases of antenatal Bartter syndrome in a French cohort, and accounted for 38% of patients without other characterized mutations and for 44% of male probands of negative cases. Our study confirmed previously published data and showed that females can be affected. As a result, this gene must be included in the screening of the most severe clinical form of Bartter syndrome. Copyright © 2018 by the American Society of Nephrology.
García, María J; Fernández, Victoria; Osorio, Ana; Barroso, Alicia; Llort, Gemma; Lázaro, Conxi; Blanco, Ignacio; Caldés, Trinidad; de la Hoya, Miguel; Ramón Y Cajal, Teresa; Alonso, Carmen; Tejada, María-Isabel; San Román, Carlos; Robles-Díaz, Luis; Urioste, Miguel; Benítez, Javier
2009-02-01
Recent reports have shown that mutations in the FANCJ/BRIP1 and FANCN/PALB2 Fanconi Anemia (FA) genes confer a moderate breast cancer risk. Discussion has been raised on the phenotypic characteristics of the PALB2-associated families and tumors. The role of FANCB in breast cancer susceptibility has not been tested to date. Likewise PALB2 mutation frequency has not been studied in Spanish population. We analyzed the complete coding sequence and splicing sites of FANCB and PALB2 in 95 index cases of BRCA1/2-negative Spanish breast cancer families. We also performed an exhaustive screening of three previously described rare but recurrent PALB2 mutations in 725 additional probands. Pathogenic changes were not detected in FANCB. We found a novel PALB2 truncating mutation c.1056_1057delGA (p.K353IfsX7) in one of the 95 screened patients, accounting for a mutation frequency of 1% in our series. Further comprehensive screening of the novel mutation and of previously reported rare but recurrent PALB2 mutations did not reveal any carrier patient. We report the first example of LOH occurring in a PALB2-associated tumor. Our results rule out a major contribution of FANCB to hereditary breast cancer. Our data are consistent with the notion of individually rare PALB2 mutations, lack of mutational hot-spots in the gene and existence of between-population disease-allele heterogeneity. We show evidence that PALB2 loss of function might also conform to the inactivation model of a classic tumor-suppressor gene and present data that adds to the clinically relevant discussion about the existence of a PALB2-breast cancer phenotype.
De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed.
Stanik, Juraj; Dusatkova, Petra; Cinek, Ondrej; Valentinova, Lucia; Huckova, Miroslava; Skopkova, Martina; Dusatkova, Lenka; Stanikova, Daniela; Pura, Mikulas; Klimes, Iwar; Lebl, Jan; Gasperikova, Daniela; Pruhova, Stepanka
2014-03-01
MODY is mainly characterised by an early onset of diabetes and a positive family history of diabetes with an autosomal dominant mode of inheritance. However, de novo mutations have been reported anecdotally. The aim of this study was to systematically revisit a large collection of MODY patients to determine the minimum prevalence of de novo mutations in the most prevalent MODY genes (i.e. GCK, HNF1A, HNF4A). Analysis of 922 patients from two national MODY centres (Slovakia and the Czech Republic) identified 150 probands (16%) who came from pedigrees that did not fulfil the criterion of two generations with diabetes but did fulfil the remaining criteria. The GCK, HNF1A and HNF4A genes were analysed by direct sequencing. Mutations in GCK, HNF1A or HNF4A genes were detected in 58 of 150 individuals. Parents of 28 probands were unavailable for further analysis, and in 19 probands the mutation was inherited from an asymptomatic parent. In 11 probands the mutations arose de novo. In our cohort of MODY patients from two national centres the de novo mutations in GCK, HNF1A and HNF4A were present in 7.3% of the 150 families without a history of diabetes and 1.2% of all of the referrals for MODY testing. This is the largest collection of de novo MODY mutations to date, and our findings indicate a much higher frequency of de novo mutations than previously assumed. Therefore, genetic testing of MODY could be considered for carefully selected individuals without a family history of diabetes.
Xu, Yan; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong
2015-01-01
Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704-5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuppens, H.; Marynen, P.; Cassiman, J.J.
1993-12-01
The authors have previously shown that about 85% of the mutations in 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay. In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region andmore » their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in the population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available. 24 refs., 1 fig., 2 tabs.« less
Cryopyrin-associated Periodic Syndrome Caused by a Myeloid-Restricted Somatic NLRP3 Mutation
Zhou, Qing; Aksentijevich, Ivona; Wood, Geryl M.; Walts, Avram D.; Hoffmann, Patrycja; Remmers, Elaine F.; Kastner, Daniel L.; Ombrello, Amanda K.
2015-01-01
Objective To identify the cause of disease in an adult patient presenting with recent onset fevers, chills, urticaria, fatigue, and profound myalgia, who was negative for cryopyrin-associated periodic syndrome (CAPS) NLRP3 mutations by conventional Sanger DNA sequencing. Methods We performed whole-exome sequencing and targeted deep sequencing using DNA from the patient’s whole blood to identify a possible NLRP3 somatic mutation. We then screened for this mutation in subcloned NLRP3 amplicons from fibroblasts, buccal cells, granulocytes, negatively-selected monocytes, and T and B lymphocytes and further confirmed the somatic mutation by targeted sequencing of exon 3. Results We identified a previously reported CAPS-associated mutation, p.Tyr570Cys, with a mutant allele frequency of 15% based on exome data. Targeted sequencing and subcloning of NLRP3 amplicons confirmed the presence of the somatic mutation in whole blood at a ratio similar to the exome data. The mutant allele frequency was in the range of 13.3%–16.8% in monocytes and 15.2%–18% in granulocytes; Notably, this mutation was either absent or present at a very low frequency in B and T lymphocytes, buccal cells, and in the patient’s cultured fibroblasts. Conclusion These data document the possibility of myeloid-restricted somatic mosaicism in the pathogenesis of CAPS, underscoring the emerging role of massively-parallel sequencing in clinical diagnosis. PMID:25988971
Hao, Lin; Sen, Sandeep; Sugumar, Dhivya
2015-02-01
The current study presents the case of a 63-year-old patient exhibiting refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), who was positive for the MPL W515L mutation, but negative for the JAK2 V617F mutation. Following diagnosis, the patient remained asymptomatic for over three years, however, in August 2012, the patient relapsed and was administered with supportive treatment in the form of subcutaneous darbepoetin α at a dose of 300 μg/week, which resulted in an increased hemoglobin concentration, allowing the patient to remain transfusion-independent. The MPL W515L mutation has been reported in two previous cases of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) with ringed sideroblasts, however, to the best of our knowledge, the current report is the first to present a case of RARS-T with an MPL W515L mutation. A clinical trial designed to evaluate the efficacy of a targeted agent against the JAK2 V617F mutation is currently ongoing, with the aim of providing a novel therapeutic strategy for treating MDS/MPN patients. As MPL is located upstream of the JAK-STAT signaling pathway, it is a possible therapeutic target in MDS/MPN patients positive for an MPL W515L mutation, but negative for a JAK2 V617F mutation.
Kabuki syndrome: a Chinese case series and systematic review of the spectrum of mutations.
Liu, Shuang; Hong, Xiafei; Shen, Cheng; Shi, Quan; Wang, Jian; Xiong, Feng; Qiu, Zhengqing
2015-04-21
Kabuki syndrome is a rare hereditary disease affecting multiple organs. The causative genes identified to date are KMT2D and KDMA6. The aim of this study is to evaluate the clinical manifestations and the spectrum of mutations of KMT2D. We retrospectively retrieved a series of eight patients from two hospitals in China and conducted Sanger sequencing for all of the patients and their parents if available. We also reviewed the literature and plotted the mutation spectrum of KMT2D. The patients generally presented with typical clinical manifestations as previously reported in other countries. Uncommon symptoms included spinal bifida and Dandy-Walker malformation. With respect to the mutations, five mutations were found in five patients, including two frameshift indels, one nonsense mutation and two missense mutations. This is the first case series on Kabuki syndrome in Mainland China. Unusual symptoms, such as spinal bifida and Dandy-Walker syndrome, suggested that neurological developmental defects may accompany Kabuki syndrome. This case series helps broaden the mutation spectrum of Kabuki syndrome and adds information regarding the manifestations of Kabuki syndrome.
Almarzooqi, Saeeda; Reed, Suzanne; Fung, Bonita; Boué, Daniel R; Prasad, Vinay; Pietryga, Daniel
2011-01-01
Osteopetrosis (OP) is a clinically and genetically heterogeneous disorder characterized by increased bone density. Associations between OP and other clinical entities are rare but include muscular degeneration, Dandy-Walker syndrome, craniosynostosis, and poikiloderma. Infantile OP has also been diagnosed in a group of infants with neuronal storage disease. An association between OP and juvenile xanthogranuloma (JXG) has never been previously reported. Herein we present a case of an intermediate form of OP in a newborn who presented with hepatosplenomegaly and pancytopenia. Histologic evaluation of a bone marrow biopsy demonstrated abnormally thickened bony trabeculae. A liver biopsy demonstrated prominent expansion of portal areas by a histiocytic infiltrate expressing CD45, CD14, CD68, CD163, factor XIIIa, and fascin, while the biopsy was negative for S100 and CD1a. These findings were those associated with JXG. Genetic testing demonstrated a mutation involving the Pleckstrin homology domain-containing family M member 1 ( PLEKHM1 ) gene. A different mutation in this gene has been previously reported in one other patient with OP. Our case is the 2nd reported case with PLEKHM1 mutation in a patient with a mild form of OP. It also demonstrates the 1st reported occurrence of OP concomitantly with JXG.
Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome.
Cameron, Jessie M; MacKay, Nevena; Feigenbaum, Annette; Tarnopolsky, Mark; Blaser, Susan; Robinson, Brian H; Schulze, Andreas
2015-09-01
Two siblings with hypertrophic cardiomyopathy and brain atrophy were diagnosed with Complex I deficiency based on low enzyme activity in muscle and high lactate/pyruvate ratio in fibroblasts. Whole exome sequencing results of fibroblast gDNA from one sibling was narrowed down to 190 SNPs or In/Dels in 185 candidate genes by selecting non-synonymous coding sequence base pair changes that were not present in the SNP database. Two compound heterozygous mutations were identified in both siblings in NDUFV2, encoding the 24 kDa subunit of Complex I. The intronic mutation (c.IVS2 + 1delGTAA) is disease causing and has been reported before. The other mutation is novel (c.669_670insG, p.Ser224Valfs*3) and predicted to cause a pathogenic frameshift in the protein. Subsequent investigation of 10 probands with complex I deficiency from different families revealed homozygosity for the intronic c.IVS2 + 1delGTAA mutation in a second, consanguineous family. In this family three of five siblings were affected. Interestingly, they presented with Leigh syndrome but no cardiac involvement. The same genotype had been reported previously in a two families but presenting with hypertrophic cardiomyopathy, trunk hypotonia and encephalopathy. We have identified NDUFV2 mutations in two families with Complex I deficiency, including a novel mutation. The diagnosis of Leigh syndrome expands the clinical phenotypes associated with the c.IVS2 + 1delGTAA mutation in this gene. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Gort, Laura; de Olano, Natalia; Macías-Vidal, Judit; Coll, M A Josep
2012-09-10
The GM2 gangliosidoses are autosomal recessive lysosomal storage diseases caused by a deficiency of the β-hexosaminidase A enzyme. This enzyme is composed of two polypeptide chains designated the α- and β- subunits and it interacts with the GM2 activator protein. The HEXA and HEXB genes encode the α-subunit and the β-subunit, respectively. Mutations in these genes are causative of Tay-Sachs disease (HEXA) and Sandhoff disease (HEXB). We analyzed the complete HEXA gene in 34 Spanish patients with Tay-Sachs disease and the HEXB gene in 14 Spanish patients with Sandhoff disease. We identified 27 different mutations, 14 of which were novel, in the HEXA gene and 14 different mutations, 8 of which unreported until now, in the HEXB gene, and we attempted to correlate these mutations with the clinical presentation of the patients. We found a high frequency of c.459+5G>A (IVS4+5G>A) mutation in HEXA affected patients, 22 of 68 alleles, which represent the 32.4%. This is the highest percentage found of this mutation in a population. All patients homozygous for mutation c.459+5G>A presented with the infantile form of the disease and, as previously reported, patients carrying mutation p.R178H in at least one of the alleles presented with a milder form. In HEXB affected patients, the novel deletion c.171delG accounts for 21.4% of the mutant alleles (6/28). All patients with this deletion showed the infantile form of the disease. The Spanish GM2 gangliosidoses affected patients show a great mutational heterogeneity as seen in other inherited lisosomal diseases in this country. Copyright © 2012. Published by Elsevier B.V.
Hofstra, R M; Osinga, J; Tan-Sindhunata, G; Wu, Y; Kamsteeg, E J; Stulp, R P; van Ravenswaaij-Arts, C; Majoor-Krakauer, D; Angrist, M; Chakravarti, A; Meijers, C; Buys, C H
1996-04-01
Hirschsprung disease (HSCR) or colonic aganglionosis is a congenital disorder characterized by an absence of intramural ganglia along variable lengths of the colon resulting in intestinal obstruction. The incidence of HSCR is 1 in 5,000 live births. Mutations in the RET gene, which codes for a receptor tyrosine kinase, and in EDNRB which codes for the endothelin-B receptor, have been shown to be associated with HSCR in humans. The lethal-spotted mouse which has pigment abnormalities, but also colonic aganglionosis, carries a mutation in the gene coding for endothelin 3 (Edn3), the ligand for the receptor protein encoded by EDNRB. Here, we describe a mutation of the human gene for endothelin 3 (EDN3), homozygously present in a patient with a combined Waardenburg syndrome type 2 (WS2) and HSCR phenotype (Shah-Waardenburg syndrome). The mutation, Cys159Phe, in exon 3 in the ET-3 like domain of EDN3, presumably affects the proteolytic processing of the preproendothelin to the mature peptide EDN3. The patient's parents were first cousins. A previous child in this family had been diagnosed with a similar combination of HSCR, depigmentation and deafness. Depigmentation and deafness were present in other relatives. Moreover, we present a further indication for the involvement of EDNRB in HSCR by reporting a novel mutation detected in one of 40 unselected HSCR patients.
Wang, Dan; Liang, Shengyun; Zhang, Zhao; Zhao, Guoru; Hu, Yuan; Liang, Shengran; Zhang, Xipeng; Banerjee, Santasree
2017-03-28
Familial adenomatous polyposis (FAP) is an autosomal dominant precancerous condition, clinically characterized by the presence of multiple colorectal adenomas or polyps. Patients with FAP has a high risk of developing colorectal cancer (CRC) from these colorectal adenomatous polyps by the mean age of diagnosis at 40 years. Germline mutations of the APC gene cause familial adenomatous polyposis (FAP). Colectomy has recommended for the FAP patients with significant polyposis. Here, we present a clinical molecular study of a four generation Chinese family with FAP. Clinical diagnosis of FAP has been done according to the phenotype, family history and medical records. Patient's blood samples were collected and genomic DNA was extracted. In order to identify the pathogenic mutation underlying the disease phenotype targeted next-generation sequencing and confirmatory sanger sequencing has undertaken. Targeted next generation sequencing identified a novel heterozygous splice-acceptor site mutation [c.1744-1G>A] in intron 14 of APC gene, which is co-segregated with the FAP phenotypes in the proband and amongst all the affected family members. This mutation is not present in unaffected family members and in normal healthy controls of same ethnic origin. According to the LOVD database for Chinese colorectal cancer patients, in Chinese population, 60% of the previously reported APC gene mutations causes FAP, are missense mutations. This novel splice-acceptor site mutation causing FAP in this Chinese family expands the germline mutation spectrum of the APC gene in the Chinese population.
The Spectrum of WRN Mutations in Werner Syndrome Patients
Huang, Shurong; Lee, Lin; Hanson, Nancy B.; Lenaerts, Catherine; Hoehn, Holger; Poot, Martin; Rubin, Craig D.; Chen, Da-Fu; Yang, Chih-Chao; Juch, Heike; Dorn, Thomas; Spiegel, Roland; Oral, Elif Arioglu; Abid, Mohammed; Battisti, Carla; Lucci-Cordisco, Emanuela; Neri, Giovanni; Steed, Erin H.; Kidd, Alexa; Isley, William; Showalter, David; Vittone, Janet L.; Konstantinow, Alexander; Ring, Johannes; Meyer, Peter; Wenger, Sharon L.; von Herbay, Axel; Wollina, Uwe; Schuelke, Markus; Huizenga, Carin R.; Leistritz, Dru F.; Martin, George M.; Mian, I. Saira; Oshima, Junko
2007-01-01
The International Registry of Werner syndrome (www.wernersyndrome.org) has been providing molecular diagnosis of the Werner syndrome (WS) for the past decade. The present communication summarizes, from among 99 WS subjects, the spectrum of 50 distinct mutations discovered by our group and by others since the WRN gene (also called RECQL2 or REQ3) was first cloned in 1996; 25 of these have not previously been published. All WRN mutations reported thus far have resulted in the elimination of the nuclear localization signal at the C-terminus of the protein, precluding functional interactions in the nucleus; thus, all could be classified as null mutations. We now report two new mutations in the N-terminus that result in instability of the WRN protein. Clinical data confirm that the most penetrant phenotype is bilateral ocular cataracts. Other cardinal signs were seen in more than 95% of the cases. The median age of death, previously reported to be in the range of 46–48 years, is 54 years. Lymphoblastoid cell lines (LCLs) have been cryopreserved from the majority of our index cases, including material from nuclear pedigrees. These, as well as inducible and complemented hTERT (catalytic subunit of human telomerase) immortalized skin fibroblast cell lines are available to qualified investigators. Published 2006 Wiley-Liss, Inc.† PMID:16673358
Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa
García-García, Gema; Jaijo, Teresa; Aparisi, Maria J.; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M.
2014-01-01
Purpose The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. Methods The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. Results We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Conclusions Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures. PMID:25352746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastio, G.; Sperandeo, M.P.; Panico, M.
1994-09-01
Cystathionine beta-synthase (CBS) deficiency, an autosomal recessive disorder of sulfur amino acid metabolism (MIM 236200), causes homocystinuria and a clinical presentation involving eye, skeleton, central nervous and vascular systems. Less that 20 mutations of CBS gene have been characterized so far, G919A and T833C being the most commonly reported (36 and 9 out of 62 identified alleles, respectively). We have investigated 12 patients (10 Italians, 1 Jewish-French, 1 Italian-Spanish) and one allele of each patient has been characterized at least. T833C has been found in 7 independent alleles (6 in heterozygosity and 1 in homozygosity); G9191A, the most common mutationmore » in Irish and North-European patients, has never been detected in the present survey. C341T (previously reported in 1 Irish-German patient only) has been found in 3 patients in heterozygosity. Besides the two new mutations previously described, i.e. G374A and C770T, we have identified two additional new missense mutations: C869T, a transition in exon 8, causing a P290L amino acid substitution, and C262T, a transition in exon 2, causing a P88S amino acid change. In 4 additional Italian patients, none of the known mutations have been detected; in one of them, a 50 bp deletion has been found in intron 11. The deletion involves the entire sequence of the second element of a tandem repeat. Conclusions: T833C is the most common panethnic mutation; C341T is relatively widespread, while G919A appears to be restricted to North-European patients. Exons 3 and 8 of the CBS gene are the hot-spots of mutational events leading to CBS deficiency.« less
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Migliore, Michele; Migliore, Rosanna; Taglialatela, Maurizio
2015-03-04
Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) genes, encoding for voltage-gated K(+) channel subunits underlying the neuronal M-current, have been associated with a wide spectrum of early-onset epileptic disorders ranging from benign familial neonatal seizures to severe epileptic encephalopathies. The aim of the present work has been to investigate the molecular mechanisms of channel dysfunction caused by voltage-sensing domain mutations in Kv7.2 (R144Q, R201C, and R201H) or Kv7.3 (R230C) recently found in patients with epileptic encephalopathies and/or intellectual disability. Electrophysiological studies in mammalian cells transfected with human Kv7.2 and/or Kv7.3 cDNAs revealed that each of these four mutations stabilized the activated state of the channel, thereby producing gain-of-function effects, which are opposite to the loss-of-function effects produced by previously found mutations. Multistate structural modeling revealed that the R201 residue in Kv7.2, corresponding to R230 in Kv7.3, stabilized the resting and nearby voltage-sensing domain states by forming an intricate network of electrostatic interactions with neighboring negatively charged residues, a result also confirmed by disulfide trapping experiments. Using a realistic model of a feedforward inhibitory microcircuit in the hippocampal CA1 region, an increased excitability of pyramidal neurons was found upon incorporation of the experimentally defined parameters for mutant M-current, suggesting that changes in network interactions rather than in intrinsic cell properties may be responsible for the neuronal hyperexcitability by these gain-of-function mutations. Together, the present results suggest that gain-of-function mutations in Kv7.2/3 currents may cause human epilepsy with a severe clinical course, thus revealing a previously unexplored level of complexity in disease pathogenetic mechanisms. Copyright © 2015 the authors 0270-6474/15/353782-12$15.00/0.
K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa.
Kamau, Edwin; Campino, Susana; Amenga-Etego, Lucas; Drury, Eleanor; Ishengoma, Deus; Johnson, Kimberly; Mumba, Dieudonne; Kekre, Mihir; Yavo, William; Mead, Daniel; Bouyou-Akotet, Marielle; Apinjoh, Tobias; Golassa, Lemu; Randrianarivelojosia, Milijaona; Andagalu, Ben; Maiga-Ascofare, Oumou; Amambua-Ngwa, Alfred; Tindana, Paulina; Ghansah, Anita; MacInnis, Bronwyn; Kwiatkowski, Dominic; Djimde, Abdoulaye A
2015-04-15
Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pierson, Tyler Mark; Simeonov, Dimitre R; Sincan, Murat; Adams, David A; Markello, Thomas; Golas, Gretchen; Fuentes-Fajardo, Karin; Hansen, Nancy F; Cherukuri, Praveen F; Cruz, Pedro; Blackstone, Craig; Tifft, Cynthia; Boerkoel, Cornelius F; Gahl, William A
2012-01-01
Fatty acid hydroxylase-associated neurodegeneration due to fatty acid 2-hydroxylase deficiency presents with a wide range of phenotypes including spastic paraplegia, leukodystrophy, and/or brain iron deposition. All previously described families with this disorder were consanguineous, with homozygous mutations in the probands. We describe a 10-year-old male, from a non-consanguineous family, with progressive spastic paraplegia, dystonia, ataxia, and cognitive decline associated with a sural axonal neuropathy. The use of high-throughput sequencing techniques combined with SNP array analyses revealed a novel paternally derived missense mutation and an overlapping novel maternally derived ∼28-kb genomic deletion in FA2H. This patient provides further insight into the consistent features of this disorder and expands our understanding of its phenotypic presentation. The presence of a sural nerve axonal neuropathy had not been previously associated with this disorder and so may extend the phenotype. PMID:22146942
Ataxia telangiectasia presenting as dopa-responsive cervical dystonia
Mohire, Mahavir D.; Schneider, Susanne A.; Stamelou, Maria; Wood, Nicholas W.; Bhatia, Kailash P.
2013-01-01
Objective: To identify the cause of cervical dopa-responsive dystonia (DRD) in a Muslim Indian family inherited in an apparently autosomal recessive fashion, as previously described in this journal. Methods: Previous testing for mutations in the genes known to cause DRD (GCH1, TH, and SPR) had been negative. Whole exome sequencing was performed on all 3 affected individuals for whom DNA was available to identify potentially pathogenic shared variants. Genotyping data obtained for all 3 affected individuals using the OmniExpress single nucleotide polymorphism chip (Illumina, San Diego, CA) were used to perform linkage analysis, autozygosity mapping, and copy number variation analysis. Sanger sequencing was used to confirm all variants. Results: After filtering of the variants, exome sequencing revealed 2 genes harboring potentially pathogenic compound heterozygous variants (ATM and LRRC16A). Of these, the variants in ATM segregated perfectly with the cervical DRD. Both mutations detected in ATM have been shown to be pathogenic, and α-fetoprotein, a marker of ataxia telangiectasia, was increased in all affected individuals. Conclusion: Biallelic mutations in ATM can cause DRD, and mutations in this gene should be considered in the differential diagnosis of unexplained DRD, particularly if the dystonia is cervical and if there is a recessive family history. ATM has previously been reported to cause isolated cervical dystonia, but never, to our knowledge, DRD. Individuals with dystonia related to ataxia telangiectasia may benefit from a trial of levodopa. PMID:23946315
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations
Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel
2018-01-01
Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102
Uusimaa, Johanna; Gowda, Vasantha; McShane, Anthony; Smith, Conrad; Evans, Julie; Shrier, Annie; Narasimhan, Manisha; O'Rourke, Anthony; Rajabally, Yusuf; Hedderly, Tammy; Cowan, Frances; Fratter, Carl; Poulton, Joanna
2013-06-01
To assess the frequency and clinical features of childhood-onset intractable epilepsy caused by the most common mutations in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma. Children presenting with nonsyndromic intractable epilepsy of unknown etiology but without documented liver dysfunction at presentation were eligible for this prospective, population-based study. Blood samples were analyzed for the three most common POLG mutations. If any of the three tested mutations were found, all the exons and the exon-intron boundaries of the POLG gene were sequenced. In addition, we retrospectively reviewed the notes of patients presenting with intractable epilepsy in which we had found POLG mutations. All available clinical data were collected by questionnaire and by reviewing the medical records. We analyzed 213 blood DNA samples from patients fulfilling the inclusion criteria of the prospective study. Among these, five patients (2.3%) were found with one of the three common POLG mutations as homozygous or compound heterozygous states. In addition, three patients were retrospectively identified. Seven of the eight patients had either raised cerebrospinal fluid (CSF) lactate (n = 3) or brain magnetic resonance imaging (MRI) changes (n = 4) at presentation with intractable epilepsy. Three patients later developed liver dysfunction, progressing to fatal liver failure in two without previous treatment with sodium valproate (VPA). Furthermore, it is worth mentioning that one patient presented first with an autism spectrum disorder before seizures emerged. Mutations in POLG are an important cause of early and juvenile onset nonsyndromic intractable epilepsy with highly variable associated manifestations including autistic features. This study emphasizes that genetic testing for POLG mutations in patients with nonsyndromic intractable epilepsies is very important for clinical diagnostics, genetic counseling, and treatment decisions because of the increased risk for VPA-induced liver failure in patients with POLG mutations. We recommend POLG gene testing for patients with intractable seizures and at least one elevated CSF lactate or suggestive brain MRI changes (predominantly abnormal T2 -weighted thalamic signal) with or without status epilepticus, epilepsia partialis continua, or liver manifestations typical for Alpers disease, especially when the disease course is progressive. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Uusimaa, Johanna; Gowda, Vasantha; McShane, Anthony; Smith, Conrad; Evans, Julie; Shrier, Annie; Narasimhan, Manisha; O'Rourke, Anthony; Rajabally, Yusuf; Hedderly, Tammy; Cowan, Frances; Fratter, Carl; Poulton, Joanna
2013-01-01
Purpose To assess the frequency and clinical features of childhood-onset intractable epilepsy caused by the most common mutations in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma. Methods Children presenting with nonsyndromic intractable epilepsy of unknown etiology but without documented liver dysfunction at presentation were eligible for this prospective, population-based study. Blood samples were analyzed for the three most common POLG mutations. If any of the three tested mutations were found, all the exons and the exon–intron boundaries of the POLG gene were sequenced. In addition, we retrospectively reviewed the notes of patients presenting with intractable epilepsy in which we had found POLG mutations. All available clinical data were collected by questionnaire and by reviewing the medical records. Key Findings We analyzed 213 blood DNA samples from patients fulfilling the inclusion criteria of the prospective study. Among these, five patients (2.3%) were found with one of the three common POLG mutations as homozygous or compound heterozygous states. In addition, three patients were retrospectively identified. Seven of the eight patients had either raised cerebrospinal fluid (CSF) lactate (n = 3) or brain magnetic resonance imaging (MRI) changes (n = 4) at presentation with intractable epilepsy. Three patients later developed liver dysfunction, progressing to fatal liver failure in two without previous treatment with sodium valproate (VPA). Furthermore, it is worth mentioning that one patient presented first with an autism spectrum disorder before seizures emerged. Significance Mutations in POLG are an important cause of early and juvenile onset nonsyndromic intractable epilepsy with highly variable associated manifestations including autistic features. This study emphasizes that genetic testing for POLG mutations in patients with nonsyndromic intractable epilepsies is very important for clinical diagnostics, genetic counseling, and treatment decisions because of the increased risk for VPA-induced liver failure in patients with POLG mutations. We recommend POLG gene testing for patients with intractable seizures and at least one elevated CSF lactate or suggestive brain MRI changes (predominantly abnormal T2-weighted thalamic signal) with or without status epilepticus, epilepsia partialis continua, or liver manifestations typical for Alpers disease, especially when the disease course is progressive. PMID:23448099
Korman, Benjamin; Wei, Jun; Laumann, Anne; Ferguson, Polly; Varga, John
2016-01-01
Introduction. Buschke-Ollendorf syndrome (BOS) is an uncommon syndrome characterized by osteopoikilosis and other bone abnormalities, accompanied by skin lesions, most frequently connective tissue nevi. BOS is caused by mutations in the LEMD3 gene, which encodes the inner nuclear membrane protein Man1. We describe a unique case of osteopoikilosis associated with late-onset localized scleroderma and familial LEMD3 mutations. Case Report. A 72-year-old woman presented with adult-onset diffuse morphea and bullous skin lesions. Evaluation revealed multiple hyperostotic lesions (osteopoikilosis) suggestive of BOS. DNA sequencing identified a previously undescribed nonsense mutation (Trp621X) in the LEMD3 gene encoding Man1. Two additional family members were found to have osteopoikilosis and carry the same LEMD3 mutation. Conclusions and Relevance. We report a unique familial LEMD3 mutation in an individual with osteopoikilosis and late-onset morphea. We propose that this constellation represents a novel syndromic variant of BOS. PMID:27382493
A novel splicing mutation in GALT gene causing Galactosemia in Ecuadorian family.
De Lucca, M; Barba, C; Casique, L
2017-07-01
Classic Galactosemia (OMIM 230400) is an autosomal recessive disorder of galactose metabolism caused by mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. This disease caused by the inability to metabolize galactose is potentially life-threatening but its pathophysiology has not been clearly defined. GALT gene presents high allelic heterogeneity and around 336 variations have been identified. Here, we report the case of a patient with Classic Galactosemia who was detected during a neonatal screening in Ecuador. Molecular study revealed a mutation in GALT gene intron 1, c.82+3A>G in homozygous condition, this mutation has not been previously reported. This gene variation was not found in any of the 119 healthy Ecuadorian individuals used as control. Furthermore, the mutation was the only alteration detected in the propositus's GALT after sequencing all exons and introns of this gene. In silico modeling predicted that the mutation was pathogenic. Copyright © 2017. Published by Elsevier B.V.
Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...
2014-09-01
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less
Spencer, Careni; Lombaard, Hendrik; Wise, Amy; Krause, Amanda; Robertson, Stephen P
2018-04-01
Melnick-Needles syndrome (MNS; MIM 309350) is an X-linked skeletal dysplasia caused by mutations in FLNA. Females with the condition present with characteristic facial features, short stature, skeletal anomalies, including poorly modeled and sclerotic bones, and structural abnormalities such as cardiac and urological defects. Previously males were thought to present with either a mild phenotype compatible with life or a severe lethal presentation depending on the maternal phenotype. The discovery of a limited number of mutations in FLNA as the cause of the condition has clarified the molecular basis of the disorder, but only a very small number of severely affected males have been reported with MNS. Furthermore, no mildly affected males have been described with a molecular confirmation of the condition. In this report, we describe the clinical and molecular findings of a mildly affected mother with MNS and her severely affected son. They shared a well-documented disease-causing variant in FLNA, p.(Ala1188Thr), one of two highly recurrent mutations leading to the disorder. This is only the fourth report of a male with perinatal lethal MNS and a molecular confirmation; it is the first description of this specific mutation in a male. © 2018 Wiley Periodicals, Inc.
Extreme Growth Failure is a Common Presentation of Ligase IV Deficiency
Murray, Jennie E; Bicknell, Louise S; Yigit, Gökhan; Duker, Angela L; van Kogelenberg, Margriet; Haghayegh, Sara; Wieczorek, Dagmar; Kayserili, Hülya; Albert, Michael H; Wise, Carol A; Brandon, January; Kleefstra, Tjitske; Warris, Adilia; van der Flier, Michiel; Bamforth, J Steven; Doonanco, Kurston; Adès, Lesley; Ma, Alan; Field, Michael; Johnson, Diana; Shackley, Fiona; Firth, Helen; Woods, C Geoffrey; Nürnberg, Peter; Gatti, Richard A; Hurles, Matthew; Bober, Michael B; Wollnik, Bernd; Jackson, Andrew P
2014-01-01
Ligase IV syndrome is a rare differential diagnosis for Nijmegen breakage syndrome owing to a shared predisposition to lympho-reticular malignancies, significant microcephaly, and radiation hypersensitivity. Only 16 cases with mutations in LIG4 have been described to date with phenotypes varying from malignancy in developmentally normal individuals, to severe combined immunodeficiency and early mortality. Here, we report the identification of biallelic truncating LIG4 mutations in 11 patients with microcephalic primordial dwarfism presenting with restricted prenatal growth and extreme postnatal global growth failure (average OFC −10.1 s.d., height −5.1 s.d.). Subsequently, most patients developed thrombocytopenia and leucopenia later in childhood and many were found to have previously unrecognized immunodeficiency following molecular diagnosis. None have yet developed malignancy, though all patients tested had cellular radiosensitivity. A genotype–phenotype correlation was also noted with position of truncating mutations corresponding to disease severity. This work extends the phenotypic spectrum associated with LIG4 mutations, establishing that extreme growth retardation with microcephaly is a common presentation of bilallelic truncating mutations. Such growth failure is therefore sufficient to consider a diagnosis of LIG4 deficiency and early recognition of such cases is important as bone marrow failure, immunodeficiency, and sometimes malignancy are long term sequelae of this disorder. PMID:24123394
Caridi, Gianluca; Lugani, Francesca; Dagnino, Monica; Gigante, Maddalena; Iolascon, Achille; Falco, Mariateresa; Graziano, Claudio; Benetti, Elisa; Dugo, Mauro; Del Prete, Dorella; Granata, Antonio; Borracelli, Donella; Moggia, Elisabetta; Quaglia, Marco; Rinaldi, Rita; Gesualdo, Loreto; Ghiggeri, Gian Marco
2014-09-01
Mutations of INF2 represent the major cause of familial autosomal dominant (AD) focal segmental glomerulosclerosis (FSGS). A few patients present neurological symptoms of Charcot-Marie-Tooth (CMT) disease but the prevalence of the association has not been assessed yet. We screened 28 families with AD FSGS and identified 8 INF2 mutations in 9 families (32 patients overall), 3 of which were new. Mutations were in all cases localized in the diaphanous-inhibitory domain (DID) of the protein. Clinical features associated with INF2 mutations in our patient cohort included mild proteinuria (1.55 g/L; range 1-2.5) and haematuria as a unique symptom that was recognized at a median age of 21.75 years (range 8-30). Eighteen patients developed end-stage renal disease during their third decade of life; 12 patients presented a creatinine range between 1.2 and 1.5 mg/dL and 2 were healthy at 45 and 54 years of age. CMT was diagnosed in four cases (12.5%); one of these patients presented an already known mutation on exon 2 of INF2, whereas the other patients presented the same mutation on exon 4, a region that was not previously associated with CMT. We confirmed the high incidence of INF2 mutations in families with AD FSGS. The clinical phenotype was mild at the onset of the disease, but evolution to ESRD was frequent. The incidence of CMT has, for the first time, been calculated here to be 12.5% of mutation carriers. Our findings support INF2 gene analysis in families in which renal failure and/or neuro-sensorial defects are inherited following an AD model. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vervoort, R.; Liebaers, I.; Lissens, W.
1996-03-01
Although not all mucopolysaccharidosis type VII (MPS VII) neonates present with hydrops fetalis or with related symptoms, hydrops fetalis is a common form of presentation of this mucopolysaccharidosis. We used reverse-transcription-PCR-SSCP and direct sequencing to screen for mutations in the human {beta}-glucuronidase cDNA of 17 MPS VII patients with severe presentation of the disease. Mutations resulting in an unstable mRNA were detected in genomic DNA with direct sequencing of the PCR-amplified {beta}-glucuronidase exons. We found extensive genetic heterogeneity in MPS VII alleles: in addition to 6 of 12 previously reported mutations (L176F, R216W, R357X, R382C, W507X, and W627C), we detectedmore » 14 undescribed mutations in the {beta}-glucuronidase coding region that produce MPS VII alleles (G136R, E150K, S312X, Y320S, Y320C, H351Y, R382H, R374C, R435P, R477W, G572D, Y508C, K606N, and 1900{Delta}GA). The mutations in hydropic fetuses were widely scattered in the {beta}-glucuronidase gene. Analysis of three polymorphic sites of the mutant alleles (1766T/C, 1972C/T, and a new 1091+27C/G polymorphism) allowed exclusion of identity by descent for some recurrent mutations. Three of four mutations introducing a premature translation stop codon were found to affect mRNA abundance and/or structure. Expression studies provided evidence for the causal relationship between each of the mutations found in MPS VII alleles and the enzyme deficiency, in that all mutations identified exhibited markedly reduced enzyme activity expressed in COS7 cells following transfection with the mutant cDNA. 52 refs., 4 figs., 5 tabs.« less
Vervoort, R.; Islam, M. R.; Sly, W. S.; Zabot, M. T.; Kleijer, W. J.; Chabas, A.; Fensom, A.; Young, E. P.; Liebaers, I.; Lissens, W.
1996-01-01
Although not all mucopolysaccharidosis type VII (MPS VII) neonates present with hydrops fetalis or with related symptoms, hydrops fetalis is a common form of presentation of this mucopolysaccharidosis. We used reverse-transcription-PCR-SSCP and direct sequencing to screen for mutations in the human beta-glucuronidase cDNA of 17 MPS VII patients with severe presentation of the disease. Mutations resulting in an unstable mRNA were detected in genomic DNA with direct sequencing of the PCR-amplified beta-glucuronidase exons. We found extensive genetic heterogeneity in MPS VII alleles: in addition to 6 or 12 previously reported mutations (L176F, R216W, R357X, R382C, W507X, and W627C), we detected 14 undescribed mutations in the beta-glucuronidase coding region that produce MPS VII alleles (G136R, E150K, S312X, Y320S, Y320C, H351Y, R382H, R374C, R435P, R477W, G572D, Y508C, K606N and 1900 delta GA). The mutations in hydropic fetuses were widely scattered in the beta-glucuronidase gene. Analysis of three polymorphic sites of the mutant alleles (1766T/C, 1972C/T and a new 1091+27C/G polymorphism) allowed exclusion of identity by descent for some recurrent mutations. Three of four mutations introducing a premature translation stop codon were found to affect mRNA abundance and/or structure. Expression studies provided evidence for the causal relationship between each of the mutations found in MPS VII alleles and the enzyme deficiency, in that all mutations identified exhibited markedly reduced enzyme activity expressed in COS7 cells following transfection with the mutant cDNA. Images Figure 2 Figure 3A Figure 3BC Figure 4 PMID:8644704
Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.
Cygan, Kamil Jan; Sanford, Clayton Hendrick; Fairbrother, William Guy
2017-09-15
Most pre-mRNA transcripts in eukaryotic cells must undergo splicing to remove introns and join exons, and splicing elements present a large mutational target for disease-causing mutations. Splicing elements are strongly position dependent with respect to the transcript annotations. In 2012, we presented Spliceman, an online tool that used positional dependence to predict how likely distant mutations around annotated splice sites were to disrupt splicing. Here, we present an improved version of the previous tool that will be more useful for predicting the likelihood of splicing mutations. We have added industry-standard input options (i.e. Spliceman now accepts variant call format files), which allow much larger inputs than previously available. The tool also can visualize the locations-within exons and introns-of sequence variants to be analyzed and the predicted effects on splicing of the pre-mRNA transcript. In addition, Spliceman2 integrates with RNAcompete motif libraries to provide a prediction of which trans -acting factors binding sites are disrupted/created and links out to the UCSC genome browser. In summary, the new features in Spliceman2 will allow scientists and physicians to better understand the effects of single nucleotide variations on splicing. Freely available on the web at http://fairbrother.biomed.brown.edu/spliceman2 . Website implemented in PHP framework-Laravel 5, PostgreSQL, Apache, and Perl, with all major browsers supported. william_fairbrother@brown.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd
2013-01-01
Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH. PMID:22781098
Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd
2013-02-01
Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH.
Two novel disease-causing mutations in the CLRN1 gene in patients with Usher syndrome type 3
García-García, Gema; Aparisi, María J.; Rodrigo, Regina; Sequedo, María D.; Espinós, Carmen; Rosell, Jordi; Olea, José L.; Mendívil, M. Paz; Ramos-Arroyo, María A; Ayuso, Carmen; Jaijo, Teresa; Aller, Elena
2012-01-01
Purpose To identify the genetic defect in Spanish families with Usher syndrome (USH) and probable involvement of the CLRN1 gene. Methods DNA samples of the affected members of our cohort of USH families were tested using an USH genotyping array, and/or genotyped with polymorphic markers specific for the USH3A locus. Based on these previous analyses and clinical findings, CLRN1 was directly sequenced in 17 patients susceptible to carrying mutations in this gene. Results Microarray analysis revealed the previously reported mutation p.Y63X in two unrelated patients, one of them homozygous for the mutation. After CLRN1 sequencing, we found two novel mutations, p.R207X and p.I168N. Both novel mutations segregated with the phenotype. Conclusions To date, 18 mutations in CLRN1 have been reported. In this work, we report two novel mutations and a third one previously identified in the Spanish USH sample. The prevalence of CLRN1 among our patients with USH is low. PMID:23304067
Lee, M H; Hazard, S; Carpten, J D; Yi, S; Cohen, J; Gerhardt, G T; Salen, G; Patel, S B
2001-02-01
Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive disorder of bile acid biosynthesis. Clinically, CTX patients present with tendon xanthomas, juvenile cataracts, and progressive neurological dysfunction and can be diagnosed by the detection of elevated plasma cholestanol levels. CTX is caused by mutations affecting the sterol 27-hydroxylase gene (CYP27 ). CTX has been identified in a number of populations, but seems to have a higher prevalence in the Japanese, Sephardic Jewish, and Italian populations. We have assembled 12 previously unreported pedigrees from the United States. The CYP27 locus had been previously mapped to chromosome 2q33-qter. We performed linkage analyses and found no evidence of genetic heterogeneity. All CTX patients showed segregation with the CYP27 locus, and haplotype analysis and recombinant events allowed us to precisely map CYP27 to chromosome 2q35, between markers D2S1371 and D2S424. Twenty-three mutations were identified from 13 probands analyzed thus far; 11 were compound heterozygotes and 2 had homozygous mutations. Of these, five are novel mutations [Trp100Stop, Pro408Ser, Gln428Stop, a 10-base pair (bp) deletion in exon 1, and a 2-bp deletion in exon 6 of the CYP27 gene]. Three-dimensional structural modeling of sterol 27-hydroxylase showed that, while the majority of the missense mutations disrupt the heme-binding and adrenodoxin-binding domains critical for enzyme activity, two missense mutations (Arg94Trp/Gln and Lys226Arg) are clearly located outside these sites and may identify a potential substrate-binding or other protein contact site.
Noonan syndrome: Severe phenotype and PTPN11 mutations.
Carrasco Salas, Pilar; Gómez-Molina, Gertrudis; Carreto-Alba, Páxedes; Granell-Escobar, Reyes; Vázquez-Rico, Ignacio; León-Justel, Antonio
2018-04-24
Noonan syndrome (NS) is a genetic disorder characterized by a wide range of distinctive features and health problems. It caused in 50% of cases by missense mutations in PTPN11 gene. It has been postulated that it is possible to predict the disease course based into the impact of mutations on the protein. We report two cases of severe NS phenotype including hydrops fetalis. PTPN11 gene was studied in germinal cells of both patients by sequencing. Two different mutations (p.Gly503Arg and p.Met504Val) was detected in PTPN11 gene. These mutations have been reported previously, and when they were germinal variants, patients presented classic NS, NS with other malignancies and recently, p.Gly503Arg has been also observed in a patient with severe NS and hydrops fetalis, as our cases. Therefore, these observations shade light on that it is not always possibly to determine the genotype-phenotype relation based into the impact of mutations on the protein in NS patients with PTPN11 mutations. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families.
Tuppen, Helen A L; Hogan, Vanessa E; He, Langping; Blakely, Emma L; Worgan, Lisa; Al-Dosary, Mazhor; Saretzki, Gabriele; Alston, Charlotte L; Morris, Andrew A; Clarke, Michael; Jones, Simon; Devlin, Anita M; Mansour, Sahar; Chrzanowska-Lightowlers, Zofia M A; Thorburn, David R; McFarland, Robert; Taylor, Robert W
2010-10-01
Isolated complex I deficiency is the most frequently observed oxidative phosphorylation defect in children with mitochondrial disease, leading to a diverse range of clinical presentations, including Leigh syndrome. For most patients the genetic cause of the biochemical defect remains unknown due to incomplete understanding of the complex I assembly process. Nonetheless, a plethora of pathogenic mutations have been described to date in the seven mitochondrial-encoded subunits of complex I as well as in 12 of the nuclear-encoded subunits and in six assembly factors. Whilst several mitochondrial DNA mutations are recurrent, the majority of these mutations are reported in single families. We have sequenced core structural and functional nuclear-encoded subunits of complex I in a cohort of 34 paediatric patients with isolated complex I deficiency, identifying pathogenic mutations in 6 patients. These included a novel homozygous NDUFS1 mutation in an Asian child with Leigh syndrome, a previously identified NDUFS8 mutation (c.236C>T, p.P79L) in a second Asian child with Leigh-like syndrome and six novel, compound heterozygous NDUFS2 mutations in four white Caucasian patients with Leigh or Leigh-like syndrome. Three of these children harboured an identical NDUFS2 mutation (c.875T>C, p.M292T), which was also identified in conjunction with a novel NDUFS2 splice site mutation (c.866+4A>G) in a fourth Caucasian child who presented to a different diagnostic centre, with microsatellite and single nucleotide polymorphism analyses indicating that this was due to an ancient common founder event. Our results confirm that NDUFS2 is a mutational hotspot in Caucasian children with isolated complex I deficiency and recommend the routine diagnostic investigation of this gene in patients with Leigh or Leigh-like phenotypes.
Wang, Baojun; Li, Xintao; Zhang, Xu; Ma, Xin; Chen, Luyao; Zhang, Yu; Lyu, Xiangjun; Tang, Yuzhe; Huang, Qingbo; Gao, Yu; Fan, Yang; Ouyang, Jinzhi
2015-01-01
Abstract Recently somatic mutations of KCNJ5, ATP1A1, ATP2B3, and CACNA1D have been identified in patients with aldosterone-producing adenoma (APA). The present study sequenced the DNA in the tissues and blood samples from Chinese patients with APA for KCNJ5, ATP1A1, ATP2B3, and CACNA1D gene mutations. Among the 114 patients, 86 (75.4%) were identified with KCNJ5 somatic mutations, including 3 previously reported (G151R, L168R, T158A) and 2 other unreported mutations. One patient presented with both a point mutation (E147) and an insertion mutation, whereas another had a 36-base duplication, G153_G164dup. No mutation of ATP1A1 and ATP2B3 in the known hotspots was identified and only 1 male patient was detected with a novel CACNA1D mutation, V748I. Unlike other studies, male and female patients had similar KCNJ5 mutation rates (76.9% vs 74.2%). Mutation carriers were younger and had lower preoperative potassium level, whereas male (but not female) mutation carriers had higher preoperative plasma aldosterone concentration and preoperative blood pressures. Mutation carriers also had higher LV mass index (LVMI) than nonmutation carriers. After surgery, LVMI improved significantly in the KCNJ5 mutation group but not in the nonmutation group. The mRNA expression of KCNJ5, CYP11B2, and ATP2B3 was higher in the KCNJ5-mutated APA tissues. Functional characterization of the 2 novel KCNJ5 mutations showed that they were associated with decreased proliferation, membrane depolarization, elevated secretion of aldosterone, and increased expression of CYP11B1 and CYP11B2. In conclusion, Chinese APA patients appear to have a high frequency of somatic KCNJ5 mutation. Mutation prevalence rates are similar among men and women and 2 novel mutations are identified. KCNJ5-mutated patients benefit more from surgical resection of APA than nonmutated patients. PMID:25906099
Rapid and cost-effective method for the detection of the c.533G>A mutation in the HEXA gene.
Ribeiro, Diogo; Duarte, Ana Joana; Amaral, Olga
2011-03-01
Tay-Sachs disease is a rare autosomal recessive neurodegenerative disorder that results from mutations in the HEXA gene, leading to β-hexosaminidase A (HexA) α subunit deficiency. An unusual variant of Tay-Sachs disease is known as the B1 variant. Previous studies indicated that, in northern Portugal, this is not only the most common variant but also one of the most prevalent lysosomal storage diseases. Additionally, this variant might also show a higher prevalence in populations of Portuguese and Spanish ancestry. A single mutation is invariably present in at least one of the alleles of B1 variant patients, HEXA mutation c.533G >A. To implement a method for c.533G >A testing in individuals and populations, we have optimized two distinct mutation analysis techniques, one based on restriction fragment length polymorphism analysis and the other based on allelic discrimination. We present the comparison of both methods and their advantages. Mutation screening by allelic discrimination proved to be particularly useful for the studying of large samples of individuals. It is time saving and highly reproducible, and under the conditions used, its cost is lower than the cost of polymerase chain reaction-based restriction fragment length polymorphism analysis.
Mogre, Aalap; Veetil, Reshma T.; Seshasayee, Aswin Sai Narain
2017-01-01
Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA. Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants. PMID:29046437
Toledo, Rodrigo A; Wagner, Simona M; Coutinho, Flavia L; Lourenço, Delmar M; Azevedo, Juliana A; Longuini, Viviane C; Reis, Mariana T A; Siqueira, Sheila A C; Lucon, Antonio M; Tavares, Marcos R; Fragoso, Maria C B V; Pereira, Adelaide A; Dahia, Patricia L M; Mulligan, Lois M; Toledo, Sergio P A
2010-03-01
Previous studies have shown that double RET mutations may be associated with unusual multiple endocrine neoplasia type 2 (MEN 2) phenotypes. Our objective was to report the clinical features of patients harboring a previously unreported double mutation of the RET gene and to characterize this mutation in vitro. Sixteen patients from four unrelated families and harboring the C634Y/Y791F double RET germline mutation were included in the study. Large pheochromocytomas measuring 6.0-14 cm and weighing up to 640 g were identified in the four index cases. Three of the four tumors were bilateral. High penetrance of pheochromocytoma was also seen in the C634Y/Y791F-mutation-positive relatives (seven of nine, 77.7%). Of these, two cases had bilateral tumors, one presented with multifocal tumors, two cases had large tumors (>5 cm), and one case, which was diagnosed with a large (5.5 x 4.5 x 4.0 cm) pheochromocytoma, reported early onset of symptoms of the disease (14 yr old). The overall penetrance of pheochromocytoma was 84.6% (11 of 13). Development of medullary thyroid carcinoma in our patients seemed similar to that observed in patients with codon 634 mutations. Haplotype analysis demonstrated that the mutation did not arise from a common ancestor. In vitro studies showed the double C634Y/Y791F RET receptor was significantly more phosphorylated than either activated wild-type receptor or single C634Y and Y791F RET mutants. Our data suggest that the natural history of the novel C634Y/Y791F double mutation carries a codon 634-like pattern of medullary thyroid carcinoma development, is associated with increased susceptibility to unusually large bilateral pheochromocytomas, and is likely more biologically active than each individual mutation.
A new mutation identified in SPATA16 in two globozoospermic patients.
ElInati, Elias; Fossard, Camille; Okutman, Ozlem; Ghédir, Houda; Ibala-Romdhane, Samira; Ray, Pierre F; Saad, Ali; Hennebicq, Sylvianne; Viville, Stéphane
2016-06-01
The aim of this study is to identify potential genes involved in human globozoopsermia. Nineteen globozoospermic patients (previously screened for DPY19L2 mutations with no causative mutation) were recruited in this study and screened for mutations in genes implicated in human globozoospermia SPATA16 and PICK1. Using the candidate gene approach and the determination of Spata16 partners by Glutathione S-transferase (GST) pull-down four genes were also selected and screened for mutations. We identified a novel mutation of SPATA16: deletion of 22.6 Kb encompassing the first coding exon in two unrelated Tunisian patients who presented the same deletion breakpoints. The two patients shared the same haplotype, suggesting a possible ancestral founder effect for this new deletion. Four genes were selected using the candidate gene approach and the GST pull-down (GOPC, PICK1, AGFG1 and IRGC) and were screened for mutation, but no variation was identified. The present study confirms the pathogenicity of the SPATA16 mutations. The fact that no variation was detected in the coding sequence of AFGF1, GOPC, PICK1 and IRGC does not mean that they are not involved in human globozoospermia. A larger globozoospermic cohort must be studied in order to accelerate the process of identifying new genes involved in such phenotypes. Until sufficient numbers of patients have been screened, AFGF1, GOPC, PICK1 and IRGC should still be considered as candidate genes.
Zhou, Qing; Aksentijevich, Ivona; Wood, Geryl M; Walts, Avram D; Hoffmann, Patrycja; Remmers, Elaine F; Kastner, Daniel L; Ombrello, Amanda K
2015-09-01
To identify the cause of disease in an adult patient presenting with recent-onset fevers, chills, urticaria, fatigue, and profound myalgia, who was found to be negative for cryopyrin-associated periodic syndrome (CAPS) NLRP3 mutations by conventional Sanger DNA sequencing. We performed whole-exome sequencing and targeted deep sequencing using DNA from the patient's whole blood to identify a possible NLRP3 somatic mutation. We then screened for this mutation in subcloned NLRP3 amplicons from fibroblasts, buccal cells, granulocytes, negatively selected monocytes, and T and B lymphocytes and further confirmed the somatic mutation by targeted sequencing of exon 3. We identified a previously reported CAPS-associated mutation, p.Tyr570Cys, with a mutant allele frequency of 15% based on exome data. Targeted sequencing and subcloning of NLRP3 amplicons confirmed the presence of the somatic mutation in whole blood at a ratio similar to the exome data. The mutant allele frequency was in the range of 13.3-16.8% in monocytes and 15.2-18% in granulocytes. Notably, this mutation was either absent or present at a very low frequency in B and T lymphocytes, in buccal cells, and in the patient's cultured fibroblasts. Our findings indicate the possibility of myeloid-restricted somatic mosaicism in the pathogenesis of CAPS, underscoring the emerging role of massively parallel sequencing in clinical diagnosis. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Al-Amri, Ahmed; Saegh, Abeer Al; Al-Mamari, Watfa; El-Asrag, Mohammed E; Ivorra, Jose L; Cardno, Alastair G; Inglehearn, Chris F; Clapcote, Steven J; Ali, Manir
2016-07-01
Intellectual disability (ID) is the term used to describe a diverse group of neurological conditions with congenital or juvenile onset, characterized by an IQ score of less than 70 and difficulties associated with limitations in cognitive function and adaptive behavior. The condition can be inherited or caused by environmental factors. The genetic forms are heterogeneous, with mutations in over 500 known genes shown to cause the disorder. We report a consanguineous Omani family in which multiple individuals have ID and developmental delay together with some variably present features including short stature, microcephaly, moderate facial dysmorphism, and congenital malformations of the toes or hands. Homozygosity mapping combined with whole exome next generation sequencing identified a novel homozygous single base pair deletion in TUSC3, c.222delA, p.R74 fs. The mutation segregates with the disease phenotype in a recessive manner and is absent in 60,706 unrelated individuals from various disease-specific and population genetic studies. TUSC3 mutations have been previously identified as causing either syndromic or non-syndromic ID in patients from France, Italy, Iran and Pakistan. This paper supports the previous clinical descriptions of the condition caused by TUSC3 mutations and describes the seventh family with mutations in this gene, thus contributing to the genetic spectrum of mutations. This is the first report of a family from the Arabian peninsula with this form of ID. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kim, Bernard Y.; Huber, Christian D.; Lohmueller, Kirk E.
2017-01-01
The distribution of fitness effects (DFE) has considerable importance in population genetics. To date, estimates of the DFE come from studies using a small number of individuals. Thus, estimates of the proportion of moderately to strongly deleterious new mutations may be unreliable because such variants are unlikely to be segregating in the data. Additionally, the true functional form of the DFE is unknown, and estimates of the DFE differ significantly between studies. Here we present a flexible and computationally tractable method, called Fit∂a∂i, to estimate the DFE of new mutations using the site frequency spectrum from a large number of individuals. We apply our approach to the frequency spectrum of 1300 Europeans from the Exome Sequencing Project ESP6400 data set, 1298 Danes from the LuCamp data set, and 432 Europeans from the 1000 Genomes Project to estimate the DFE of deleterious nonsynonymous mutations. We infer significantly fewer (0.38–0.84 fold) strongly deleterious mutations with selection coefficient |s| > 0.01 and more (1.24–1.43 fold) weakly deleterious mutations with selection coefficient |s| < 0.001 compared to previous estimates. Furthermore, a DFE that is a mixture distribution of a point mass at neutrality plus a gamma distribution fits better than a gamma distribution in two of the three data sets. Our results suggest that nearly neutral forces play a larger role in human evolution than previously thought. PMID:28249985
Batissoco, Ana Carla; Abreu-Silva, Ronaldo Serafim; Braga, Maria Cristina Célia; Lezirovitz, Karina; Della-Rosa, Valter; Alfredo, Tabith; Otto, Paulo Alberto; Mingroni-Netto, Regina Célia
2009-02-01
Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness. Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6-D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected c.167delT, p.Trp24X, p.Val37Ile, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro. Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27Ile, p.Met34Thr, p.Ala40Ala, and p.Gly160Ser. Two previously reported mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. The present study demonstrates that mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.
Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro
2014-09-01
Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.
Rice, Gillian I; Bond, Jacquelyn; Asipu, Aruna; Brunette, Rebecca L; Manfield, Iain W; Carr, Ian M; Fuller, Jonathan C; Jackson, Richard M; Lamb, Teresa; Briggs, Tracy A; Ali, Manir; Gornall, Hannah; Couthard, Lydia R; Aeby, Alec; Attard-Montalto, Simon P; Bertini, Enrico; Bodemer, Christine; Brockmann, Knut; Brueton, Louise A; Corry, Peter C; Desguerre, Isabelle; Fazzi, Elisa; Cazorla, Angels Garcia; Gener, Blanca; Hamel, Ben C J; Heiberg, Arvid; Hunter, Matthew; van der Knaap, Marjo S; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre G; Lourenco, Charles M; Marom, Daphna; McDermott, Michael F; van der Merwe, William; Orcesi, Simona; Prendiville, Julie S; Rasmussen, Magnhild; Shalev, Stavit A; Soler, Doriette M; Shinawi, Marwan; Spiegel, Ronen; Tan, Tiong Y; Vanderver, Adeline; Wakeling, Emma L; Wassmer, Evangeline; Whittaker, Elizabeth; Lebon, Pierre; Stetson, Daniel B; Bonthron, David T; Crow, Yanick J
2009-07-01
Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.
Unlocking hidden genomic sequence
Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.
2004-01-01
Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330
A case of antenatal Bartter syndrome with sensorineural deafness.
Lee, Hyun Seung; Cheong, Hae Il; Ki, Chang-Seok
2010-10-01
Bartter syndrome type IV, also known as Bartter syndrome with sensorineural deafness (BSND), is caused by loss-of-function mutations in the BSND gene, which encodes barttin, an accessory subunit of chloride channels located in the kidney and inner ear. Patients with BS IV have a highly variable clinical phenotype. This report concerns a Korean male patient with antenatal Bartter syndrome due to a homozygous BSND p.G47R mutation, who presented with severe perinatal symptoms followed by a relatively benign course with preserved renal function after early infancy. In addition, the clinical features and the laboratory data of the patient were compared with those of previously reported patients with the same mutation.
Rice, Gillian I; Bond, Jacquelyn; Asipu, Aruna; Brunette, Rebecca L; Manfield, Iain W; Carr, Ian M; Fuller, Jonathan C; Jackson, Richard M; Lamb, Teresa; Briggs, Tracy A; Ali, Manir; Gornall, Hannah; Couthard, Lydia R; Aeby, Alec; Attard-Montalto, Simon P; Bertini, Enrico; Bodemer, Christine; Brockmann, Knut; Brueton, Louise A; Corry, Peter C; Desguerre, Isabelle; Fazzi, Elisa; Cazorla, Angels Garcia; Gener, Blanca; Hamel, Ben C J; Heiberg, Arvid; Hunter, Matthew; van der Knaap, Marjo S; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre G; Lourenco, Charles M; Marom, Daphna; McDermott, Michael F; van der Merwe, William; Orcesi, Simona; Prendiville, Julie S; Rasmussen, Magnhild; Shalev, Stavit A; Soler, Doriette M; Shinawi, Marwan; Spiegel, Ronen; Tan, Tiong Y; Vanderver, Adeline; Wakeling, Emma L; Wassmer, Evangeline; Whittaker, Elizabeth; Lebon, Pierre; Stetson, Daniel B; Bonthron, David T; Crow, Yanick J
2014-01-01
Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response. PMID:19525956
Yang, Huiqin; Li, Shiqiang; Xiao, Xueshan; Guo, Xiangming; Zhang, Qingjiong
2012-08-01
To screen mutations in the norrin (NDP) gene in 44 unrelated Chinese patients with familial exudative vitreoretinopathy (FEVR, 38 cases) or Norrie disease (6 cases) and to describe the associated phenotypes. Of the 44 patients, mutation in FZD4, LRP5, and TSPAN12 was excluded in 38 patients with FEVR in previous study. Sanger sequencing was used to analyze the 2 coding exons and their adjacent regions of NDP in the 44 patients. Clinical data were presented for patients with mutation. NDP variants in 5 of the 6 patients with Norrie disease were identified, including a novel missense mutation (c.164G>A, p.Cys55Phe) in one patient, two known missense mutations (c.122G>A, p.Arg41Lys; c.220C>T, p.Arg74Cys) in two patients, and a gross deletion encompassing the two coding exons in two patients. Of the 5 patients, 3 had a family history and 2 were singleton cases. No mutation in NDP was detected in the 38 patients with FEVR. NDP mutations are common cause of Norrie disease but might be rare cause for FEVR in Chinese.
Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe
2016-10-04
To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.
Yoo, Da Hye; Choi, Young-Chul; Nam, Da Eun; Choi, Sun Seong; Kim, Ji Won; Choi, Byung-Ok; Chung, Ki Wha
2017-07-01
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation. Copyright © 2017. Published by Elsevier B.V.
BRAF V600E mutational status in bile duct adenomas and hamartomas.
Pujals, Anaïs; Bioulac-Sage, Paulette; Castain, Claire; Charpy, Cécile; Zafrani, Elie Serge; Calderaro, Julien
2015-10-01
Bile duct adenomas (BDA) and bile duct hamartomas (BDH) are benign bile duct lesions considered neoplastic or secondary to ductal plate malformation, respectively. We have reported previously a high prevalence of BRAF V600E mutations detected by allele-specific polymerase chain reaction assay in BDA, and suggested that BDA may be precursors to a subset of intrahepatic cholangiocarcinomas harbouring V600E mutations. The aim of the present study was to assess the existence of BRAF V600E mutations, using immunohistochemical methods, in additional BDA as well as in BDH. Fifteen BDA and 35 BDH were retrieved from the archives of the pathology departments of two French university hospitals. All cases were reviewed by two pathologists specialized in liver diseases. BRAF V600E mutational status was investigated by immunohistochemistry. Mutated BRAF mutant protein was detected in 53% of the BDA and in none of the cases of BDH. Our findings suggest that BDA and BDH are different processes, and that BDA represent true benign neoplasms. They also support the hypothesis that mutated BDA might precede the development of the subset of intrahepatic cholangiocarcinomas harbouring BRAF V600E mutations. © 2015 John Wiley & Sons Ltd.
Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing
2007-11-01
Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.
Clinical expression of C282Y homozygous HFE haemochromatosis at 14 years of age.
Rossi, Enrico; Wallace, Daniel F; Subramaniam, V Nathan; St Pierre, Timothy G; Mews, Catherine; Jeffrey, Gary P
2006-05-01
A 14-year-old boy who presented with debilitating lethargy was shown to have an elevated serum ferritin of 572 microg/L and a C282Y homozygous HFE genotype. Liver iron concentration was measured non-invasively by magnetic resonance imaging, which revealed a liver iron concentration of 59 micromol/g dry weight (children's reference range < 14). The early phenotypic expression was further investigated by screening genomic DNA for the presence of co-inherited mutations in genes responsible for non-HFE haemochromatosis. Coding regions and splice sites in genes encoding hepcidin and haemojuvelin were sequenced and previously described mutations in ferroportin 1 and transferrin receptor 2 genes were screened. Although no mutations were found, the most likely cause for the early expression is the presence of novel mutations or gene(s).
Hou, Y.; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P.; Kaplan, F.; Mahuran, D. J.
1996-01-01
Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8659543
Hou, Y; Vavougios, G; Hinek, A; Wu, K K; Hechtman, P; Kaplan, F; Mahuran, D J
1996-07-01
Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.
Funata, Nobuaki; Nobusawa, Sumihito; Nakata, Satoshi; Yamazaki, Tatsuya; Takabagake, Kazuhiko; Koike, Tsukasa; Maegawa, Tatsuya; Yamada, Ryoji; Shinoura, Nobusada; Mine, Yutaka
2018-01-01
Diffuse midline glioma, H3 K27M mutant, is newly recognized as a distinct category, which usually arises in the brain stem, thalamus or spinal cord of children, and young adults. The oncogenic H3 K27M mutation involves H3.3 (encoded by H3F3A) or H3.1 (encoded by HIST1H3B/HIST1H3C), and the incidence of each mutation differs among the primary sites. Recently, several papers have reported that cerebellar high-grade gliomas in both children and adults also harbor H3 K27 mutation. With the exception of one pediatric case, all of the cases carried the mutation in H3.3. We herein present the case of an adult cerebellar high-grade astrocytic tumor with H3.1 K27M mutation in a 45-year-old man, which also involvedTP53 mutation and was immunonegative for ATRX. Some groups have reported that H3.3 and H3.1 K27M mutations define subgroups of diffuse intrinsic pontine gliomas (DIPGs) with different phenotypes as well as genetic alterations. On comparing the findings of the present case, particularly TP53 mutation status and ATRX expression, to the findings of the previous studies on DIPGs, our case seems unusual among the H3.1 K27M mutant subgroup. Further studies are needed to clarify the exact frequency, clinicopathological characteristics, and genomic alterations of cerebellar gliomas harboring H3 K27M mutation.
Prevalence of the CHEK2 R95* germline mutation.
Knappskog, Stian; Leirvaag, Beryl; Gansmo, Liv B; Romundstad, Pål; Hveem, Kristian; Vatten, Lars; Lønning, Per E
2016-01-01
While germline CHEK2 mutations have been linked to a moderately elevated cancer risk, to date, a limited number of such mutations have been identified. Recently, we reported a germline nonsense mutation (C283T; R95*), introducing an early stop-codon, in two Norwegian patients diagnosed with locally advanced breast cancer. Both patients were resistant to anthracycline therapy, resembling what has been observed for TP53 mutations. In the present study, we screened a large population based sample, including 3748 non-cancer individuals and 7081 incident cancer cases (breast cancer, n = 1717; prostate cancer n = 2501, lung cancer n = 1331 and colorectal cancer n = 1532), for the distribution of CHEK2 R95*. We found that 12 individuals (0.11 %) carried the R95* variant: 4 non-cancer individuals (0.11 %), 4 breast cancer cases (0.23 %), and 4 prostate cancer cases (0.16 %). Although the low number of observations precluded formal statistical assessment, our data may indicate an elevated risk for breast (OR: 2.19, 95 % CI: 0.55-8.75) and prostate cancer (OR: 1.5, 95 % CI: 0.36-6.00) associated with CHEK2 R95*. By mining international databanks, we found no individuals carrying the R95* mutation, indicating it to be restricted to the Norwegian population. We provide proof-of-concept that previously unknown CHEK2 germline mutations may be present in certain populations. Notably, germline mutations in tumours are in general missed by contemporary massive parallel sequencing strategies, since tumour mutations are usually filtered against the germline. The fact that the CHEK2 R95* mutation may be associated with resistance to anthracyclines in cancer patients emphasizes its possible clinical importance.
Hao, Shengyu; Long, Fei; Sun, Fenglan; Liu, Teng; Li, Daowei; Jiang, Shujuan
2017-02-21
The Birt-Hogg-Dubé (BHD) syndrome is a very rare autosomal dominant form of genodermatosis caused by germline mutations in the folliculin (FLCN) gene, which is mapped to the p11.2 region in chromosome 17. BHD commonly presents cutaneous fibrofolliculomas, pulmonary cysts, renal cell carcinoma, and recurrent pneumothoraxes. The disease is easily ignored or misdiagnosed as pneumothorax, pulmonary lymphangiomyomatosis (LAM), or emphysema. Follow-up and guidelines for managing recurrent pneumothoraxes in these patients are lacking. We reported the case of a 56-year-old Chinese woman who presented skin lesions, multiple lung bubblae, recurrent pneumothoraxes, thyroid nodules, and pulmonary inflammatory pseudotumors (PITs). The patient had a family history of pneumothoraxes and renal tumor. The BHD diagnosis was confirmed by genetic testing, which revealed a novel FLCN mutation in exon 14. Furthermore, the patient underwent a bullectomy because of recurrent pneumothorax 6 years ago. To our knowledge, the novel mutation in exon 14 and the manifestation of PIT in the present case have never been reported for BHD. The patient underwent a bullectomy previously with no relapse at the last follow-up before the preparation of this report, thereby suggesting that thoracotomy with bullectomy may be a possible therapeutic approach for some BHD patients with recurrent pneumothorax.
Creemers, John W.M.; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E.; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David
2012-01-01
Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes. PMID:22210313
Creemers, John W M; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David
2012-02-01
Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes.
Chen, Zhao; Moran, Kimberly; Richards-Yutz, Jennifer; Toorens, Erik; Gerhart, Daniel; Ganguly, Tapan; Shields, Carol L; Ganguly, Arupa
2014-03-01
Sporadic retinoblastoma (RB) is caused by de novo mutations in the RB1 gene. Often, these mutations are present as mosaic mutations that cannot be detected by Sanger sequencing. Next-generation deep sequencing allows unambiguous detection of the mosaic mutations in lymphocyte DNA. Deep sequencing of the RB1 gene on lymphocyte DNA from 20 bilateral and 70 unilateral RB cases was performed, where Sanger sequencing excluded the presence of mutations. The individual exons of the RB1 gene from each sample were amplified, pooled, ligated to barcoded adapters, and sequenced using semiconductor sequencing on an Ion Torrent Personal Genome Machine. Six low-level mosaic mutations were identified in bilateral RB and four in unilateral RB cases. The incidence of low-level mosaic mutation was estimated to be 30% and 6%, respectively, in sporadic bilateral and unilateral RB cases, previously classified as mutation negative. The frequency of point mutations detectable in lymphocyte DNA increased from 96% to 97% for bilateral RB and from 13% to 18% for unilateral RB. The use of deep sequencing technology increased the sensitivity of the detection of low-level germline mosaic mutations in the RB1 gene. This finding has significant implications for improved clinical diagnosis, genetic counseling, surveillance, and management of RB. © 2013 WILEY PERIODICALS, INC.
Mutation rates at the glycophorin A and HPRT loci in uranium miners exposed to radon progeny.
Shanahan, E M; Peterson, D; Roxby, D; Quintana, J; Morely, A A; Woodward, A
1996-01-01
OBJECTIVES--To find whether a relation exists between estimated levels of exposure to radon and its progeny and mutations in hypoxanthine phosphoribosyl transferase (HPRT) and glycophorin A in a cohort of former uranium miners. METHODS--A cohort study involving a sample of miners from the Radium Hill uranium mine in South Australia, which operated from 1952 to 1961. Radiation exposures underground at Radium Hill were estimated from historical radon gas measures with a job exposure matrix. Workers from the mine who worked exclusively above ground according to mine records were selected as controls. In 1991-2 miners were interviewed and blood taken for measurement of somatic mutations. Mutation rates for HPRT and glycophorin A were estimated with standard assay techniques. RESULTS--Homozygous mutations of glycophorin A were increased in underground miners (P = 0.0027) and the mutation rate tended to rise with increasing exposure with the exception of the highest exposure (> 10 working level months). However, there was no association between place of work and either the hemizygous mutations of glycophorin A or the HPRT mutation. CONCLUSIONS--There may be an association between glycophorin A mutations and previous occupational exposure to ionising radiation. However, not enough is known at present to use these assays as biomarkers for historical exposure in underground mining cohorts. PMID:8704866
Detection of a novel silent deletion, a missense mutation and a nonsense mutation in TCOF1.
Fujioka, Hirotaka; Ariga, Tadashi; Horiuchi, Katsumi; Ishikiriyama, Satoshi; Oyama, Kimie; Otsu, Makoto; Kawashima, Kunihiro; Yamamoto, Yuhei; Sugihara, Tsuneki; Sakiyama, Yukio
2008-12-01
Treacher Collins syndrome (TCS) is a disorder of craniofacial development, that is caused by mutations in the TCOF1 gene. TCS is inherited as an autosomal dominant trait, and haploinsufficiency of the TCOF1 gene product treacle is proposed to be etiologically involved. Mutational analysis of the TCOF1 gene was done in 10 patients diagnosed with TCS using single-strand conformation polymorphism and direct sequencing. Among these 10 patients, a novel 9 bp deletion was found, together with a previously reported 2 bp deletion, a novel missense mutation and a novel nonsense mutation in three different families. Familial studies allowed judgment of whether these abnormal findings were responsible for the TCS phenotype, or not. The 9 bp deletion of three amino acids Lys-Glu-Lys (1378-1380), which was located in the nuclear localization domain of treacle, seemed not essential for the treacle function. In contrast, the novel mutation of Ala26Val is considered to affect the LisH domain, an important domain of treacle. All of the mutations thus far detected in exon 5 have resulted in frameshift, but a nonsense mutation was detected (Lys159Stop). The information obtained in the present study provides additional insights into the functional domains of treacle.
Bullich, Gemma; Trujillano, Daniel; Santín, Sheila; Ossowski, Stephan; Mendizábal, Santiago; Fraga, Gloria; Madrid, Álvaro; Ariceta, Gema; Ballarín, José; Torra, Roser; Estivill, Xavier; Ars, Elisabet
2015-09-01
Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity.
Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J
2010-10-15
Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.
Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A
Gupta, Swati; Fahiminiya, Somayyeh; Wang, Tracy; Dempsey Nunez, Laura; Rosenblatt, David S.; Gibson, William T.; Gilfix, Brian; Bergeron, John J. M.; Jerome-Majewska, Loydie A.
2016-01-01
Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carriers for both mutations and an unaffected sibling with tall stature carried the heterozygous mutation in SEC23A only. Mutations in SEC23A are responsible for craniolenticosultura dysplasia (CLSD). CLSD patients are short, have late-closing fontanels, and have reduced procollagen (pro-COL1A1) secretion because of abnormal pro-COL1A1 retention in the endoplasmic reticulum (ER). The mutation we identified in MAN1B1 was previously associated with reduced MAN1B1 protein and congenital disorders of glycosylation (CDG). CDG patients are also short, are obese, and have abnormal glycan remodeling. Molecular analysis of fibroblasts from the family revealed normal levels of SEC23A in all cells and reduced levels of MAN1B1 in cells with heterozygous or homozygous mutations in SEC23A and MAN1B1. Secretion of pro-COL1A1 was increased in fibroblasts from the siblings and patients, and pro-COL1A1 was retained in Golgi of heterozygous and homozygous mutant cells, although intracellular pro-COL1A1 was increased in patient fibroblasts only. We postulate that increased pro-COL1A1 secretion is responsible for tall stature in these patients and an unaffected sibling, and not previously discovered in patients with mutations in either SEC23A or MAN1B1. The patients in this study share biochemical and cellular characteristics consistent with mutations in MAN1B1 and SEC23A, indicating a digenic disease. PMID:27148587
Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela
2013-03-18
Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.
Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela
2013-01-01
Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype–phenotype analyses. Setting All analyses were performed in a large German laboratory specialised in genetic diagnostics. Results 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. Conclusions On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype–phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position. PMID:23512835
Esmer, Carmen; Blanco Hernández, Gabriela; Saavedra Alanís, Víctor; Reyes Vaca, Jorge Guillermo; Bravo Oro, Antonio
Vanishing white matter disease is one of the most frequent leukodystrophies in childhood with an autosomal recessive inheritance. A mutation in one of the genes encoding the five subunits of the eukaryotic initiation factor 2 (EIF2B5) is present in 90% of the cases. The diagnosis can be accomplished by the clinical and neuroradiological findings and molecular tests. We describe a thirteen-month-old male with previous normal neurodevelopment, who was hospitalized for vomiting, hyperthermia and irritability. On examination, cephalic perimeter and cranial pairs were normal. Hypotonia, increased muscle stretching reflexes, generalized white matter hypodensity on cranial tomography were found. Fifteen days after discharge, he suffered minor head trauma presenting drowsiness and focal seizures. Magnetic resonance showed generalized hypointensity of white matter. Vanishing white matter disease was suspected, and confirmed by sequencing of the EIF2B5 gene, revealing a homozygous c.318A> T mutation in exon 2. Subsequently, visual acuity was lost and cognitive and motor deterioration was evident. The patient died at six years of age due to severe pneumonia. This case contributes to the knowledge of the mutational spectrum present in Mexican patients and allows to extend the phenotype associated to this mutation. Copyright © 2017. Publicado por Masson Doyma México S.A.
Grünert, Sarah Catharina; Schmitt, Robert Niklas; Schlatter, Sonja Marina; Gemperle-Britschgi, Corinne; Balcı, Mehmet Cihan; Berg, Volker; Çoker, Mahmut; Das, Anibh M; Demirkol, Mübeccel; Derks, Terry G J; Gökçay, Gülden; Uçar, Sema Kalkan; Konstantopoulou, Vassiliki; Christoph Korenke, G; Lotz-Havla, Amelie Sophia; Schlune, Andrea; Staufner, Christian; Tran, Christel; Visser, Gepke; Schwab, Karl Otfried; Fukao, Toshiyuki; Sass, Jörn Oliver
2017-09-01
2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency, also known as beta-ketothiolase deficiency, is an inborn error of ketone body utilization and isoleucine catabolism. It is caused by mutations in the ACAT1 gene and may present with metabolic ketoacidosis. In order to obtain a more comprehensive view on this disease, we have collected clinical and biochemical data as well as information on ACAT1 mutations of 32 patients from 12 metabolic centers in five countries. Patients were between 23months and 27years old, more than half of them were offspring of a consanguineous union. 63% of the study participants presented with a metabolic decompensation while most others were identified via newborn screening or family studies. In symptomatic patients, age at manifestation ranged between 5months and 6.8years. Only 7% developed a major mental disability while the vast majority was cognitively normal. More than one third of the identified mutations in ACAT1 are intronic mutations which are expected to disturb splicing. We identified several novel mutations but, in agreement with previous reports, no clear genotype-phenotype correlation could be found. Our study underlines that the prognosis in MAT deficiency is good and MAT deficient individuals may remain asymptomatic, if diagnosed early and preventive measures are applied. Copyright © 2017 Elsevier Inc. All rights reserved.
Pachyonychia Congenita (K16) with Unusual Features and Good Response to Acitretin
Almutawa, Fahad; Thusaringam, Thusanth; Watters, Kevin; Gayden, Tenzin; Jabado, Nada; Sasseville, Denis
2015-01-01
Background Pachyonychia congenita (PC) is a rare autosomal dominant disease whose main clinical features include hypertrophic onychodystrophy and palmoplantar keratoderma. The new classification is based on genetic variants with mutations in keratin KRT6A, KRT6B, KRT6C, KRT16, KRT17, and an unknown mutation. Here, we present a case of PC with unusual clinical and histological features and a favorable response to oral acitretin. Case A 49-year-old male presented with diffuse and striate palmoplantar keratoderma, thickened nails, knuckle pads, and pseudoainhum. Histology showed compact hyperkeratosis, prominent irregular acanthosis, and extensive epidermolytic hyperkeratosis, suggestive of Vörner's palmoplantar keratoderma. However, keratin 9 and 1 were not mutated, and full exome sequencing showed heterozygous missense mutation in type I keratin K16. Conclusion To our knowledge, epidermolytic hyperkeratosis has not been previously described with PC. Our patient had an excellent response, maintained over the last 5 years, to a low dose of acitretin. We wish to emphasize the crucial role of whole exome sequencing in establishing the correct diagnosis. PMID:26464567
Early-onset severe hereditary sensory and autonomic neuropathy type 1 with S331F SPTLC1 mutation.
Suh, Bum Chun; Hong, Young Bin; Nakhro, Khriezhanuo; Nam, Soo Hyun; Chung, Ki Wha; Choi, Byung-Ok
2014-02-01
Hereditary sensory and autonomic neuropathy type I (HSAN I) is an autosomal dominant disease characterized by prominent sensory impairment, resulting in foot ulcers or amputations and has a juvenile to adult onset. The major underlying causes of HSAN I are mutations in SPTLC1, which encodes the first subunit of serine palmitoyltransferase (SPT). To date, there have been no reports with regard to an HSAN patient of Korean origin. In this report we discussed an HSAN I patient with a missense mutation in SPTLC1 (c.992C>T: p.S331F). The patient had noticed frequent falls, lower leg weakness and hand tremors at age five. The patient also presented with foot ulcers, muscle hypotrophy, cataracts, hoarseness, vocal cord palsy and respiratory difficulties and succumbed to the condition at the age of 28 years. In accordance with previous reports, a mutation in Ser331 in the present patient was associated with early-onset and a severe phenotype. Therefore, Ser331 in SPTLC1 is a crucial amino acid, which characterizes the HSAN I phenotype.
Eker, Hatice Koçak; Derinkuyu, Betül Emine; Ünal, Sevim; Masliah-Planchon, Julien; Drunat, Séverine; Verloes, Alain
2014-01-01
Baraitser-Winter syndrome (BRWS) is a rare condition affecting the development of the brain and the face. The most common characteristics are unusual facial appearance including hypertelorism and ptosis, ocular colobomas, hearing loss, impaired neuronal migration and intellectual disability. BRWS is caused by mutations in the ACTB and ACTG1 genes. Cerebro-fronto-facial syndrome (CFFS) is a clinically heterogeneous condition with distinct facial dysmorphism, and brain abnormalities. Three subtypes are identified. We report a female infant with striking facial features and brain anomalies (included polymicrogyria) that fit into the spectrum of the CFFS type 3 (CFFS3). She also had minor anomalies on her hands and feet, heart and kidney malformations, and recurrent infections. DNA investigations revealed c.586C>T mutation (p.Arg196Cys) in ACTB. This mutation places this patient in the spectrum of BRWS. The same mutation has been detected in a polymicrogyric patient reported previously in literature. We expand the malformation spectrum of BRWS/CFFS3, and present preliminary findings for phenotype-genotype correlation in this spectrum. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Giroux, Michael J.; Morris, Craig F.
1998-01-01
“Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953
Musa, Sara; Eyaid, Wafaa; Kamer, Kimberli; Ali, Rehab; Al-Mureikhi, Mariam; Shahbeck, Noora; Al Mesaifri, Fatma; Makhseed, Nawal; Mohamed, Zakkiriah; AlShehhi, Wafaa Ali; Mootha, Vamsi K; Juusola, Jane; Ben-Omran, Tawfeg
2018-05-03
MICU1 encodes a Ca 2+ sensing, regulatory subunit of the mitochondrial uniporter, a selective calcium channel within the organelle's inner membrane. Ca 2+ entry into mitochondria helps to buffer cytosolic Ca 2+ transients and also activates ATP production within the organelle. Mutations in MICU1 have previously been reported in 17 children from nine families with muscle weakness, fatigue, normal lactate, and persistently elevated creatine kinase, as well as variable features that include progressive extrapyramidal signs, learning disabilities, nystagmus, and cataracts. In this study, we report the clinical features of an additional 13 patients from consanguineous Middle Eastern families with recessive mutations in MICU1. Of these patients, 12/13 are homozygous for a novel founder mutation c.553C>T (p.Q185*) that is predicted to lead to a complete loss of function of MICU1, while one patient is compound heterozygous for this mutation and an intragenic duplication of exons 9 and 10. The founder mutation occurs with a minor allele frequency of 1:60,000 in the ExAC database, but in ~1:500 individual in the Middle East. All 13 of these patients presented with developmental delay, learning disability, muscle weakness and easy fatigability, and failure to thrive, as well as additional variable features we tabulate. Consistent with previous cases, all of these patients had persistently elevated serum creatine kinase with normal lactate levels, but they also exhibited elevated transaminase enzymes. Our work helps to better define the clinical sequelae of MICU1 deficiency. Furthermore, our work suggests that targeted analysis of the MICU1 founder mutation in Middle Eastern patients may be warranted.
Yamodo, Innocent H; Blystone, Scott D
2004-01-01
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.
Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A.; Hartmann, Michaela F.; Gomes, Larissa G.; Loewental, Neta; Miller, Walter L.
2008-01-01
Context: Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17α-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Objective: Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Patients: Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Methods: Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Results: Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17α-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. Conclusion: POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency. PMID:18559916
Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A; Hartmann, Michaela F; Gomes, Larissa G; Loewental, Neta; Miller, Walter L
2008-09-01
Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17alpha-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17alpha-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency.
Ramírez-Alejo, Noé; Alcántara-Montiel, Julio C; Yamazaki-Nakashimada, Marco; Duran-McKinster, Carola; Valenzuela-León, Paola; Rivas-Larrauri, Francisco; Cedillo-Barrón, Leticia; Hernández-Rivas, Rosaura; Santos-Argumedo, Leopoldo
2015-10-01
NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females. Copyright © 2015 Elsevier Inc. All rights reserved.
A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria.
Grasko, Jonathan M; Hooper, Amanda J; Brown, Jeffrey W; McKnight, C James; Burnett, John R
2009-05-01
Alkaptonuria is a rare recessive disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) caused by mutations in the HGD gene. We report the case of a 38 year-old male with known alkaptonuria who was referred to an adult metabolic clinic after initially presenting to an emergency department with renal colic and subsequently passing black ureteric calculi. He complained of severe debilitating lower back pain, worsening over the last few years. A CT scan revealed marked degenerative changes and severe narrowing of the disc spaces along the entire lumbar spine. Sequencing of the HGD gene revealed that he was a compound heterozygote for a previously described missense mutation in exon 13 (G360R) and a novel missense mutation in exon 3 (K57N). Lys(57) is conserved among species and mutation of this residue is predicted to affect HGD protein function by interfering with substrate traffic at the active site. In summary, we describe an alkaptonuric patient and report a novel missense HGD mutation, K57N.
Liu, Shiming; Su, Zhaobing; Tan, Sainan; Ni, Bin; Pan, Hong; Liu, Beihong; Wang, Jing; Xiao, Jianmin; Chen, Qiuhong
2017-08-01
CITED2 gene is an important cardiac transcription factor that plays a fundamental role in the formation and development of embryonic cardiovascular. Previous studies have showed that knock-out of CITED2 in mice might result in various cardiac malformations. However, the mechanisms of CITED2 mutation on congenital heart disease (CHD) in Chinese Tibetan population are still poorly understood. In the present study, 187 unrelated Tibetan patients with CHD and 200 unrelated Tibetan healthy controls were screened for variants in the CITED2 gene; we subsequently identified one potential disease-causing mutation p.G143A in a 6-year-old girl with PDA and functional analyses of the mutation were carried out. Our study showed that the novel mutation of CITED2 significantly enhanced the expression activity of vascular endothelial growth factor (VEGF) under the role of co-receptor hypoxia inducible factor 1-aipha (HIF-1A), which is closely related with embryonic cardiac development. As a result, CITED2 gene mutation may play a significant role in the development of pediatric congenital heart disease.
Ahmad, N N; McDonald-McGinn, D M; Zackai, E H; Knowlton, R G; LaRossa, D; DiMascio, J; Prockop, D J
1993-01-01
Genetic linkage analyses suggest that mutations in type II collagen may be responsible for Stickler syndrome, or arthro-ophthalmopathy (AO), in many families. In the present study oligonucleotide primers were developed to amplify and directly sequence eight of the first nine exons of the gene for type II procollagen (COL2A1). Analysis of the eight exons in 10 unrelated probands with AO revealed that one had a single-base mutation in one allele that changed the codon of -CGA- for arginine at amino acid position alpha 1-9 in exon 7 to a premature termination signal for translation. The second mutation found to cause AO was, therefore, similar to the first in that both created premature termination signals in the COL2A1 gene. Since mutations producing premature termination signals have not previously been detected in genes for fibrillar collagens, the results raise the possibility that such mutations in the COL2A1 gene are a common cause of AO. Images Figure 2 Figure 3 PMID:8434604
New mutation in the PTEN gene in a Brazilian patient with Cowden's syndrome.
Lima, Erika U de; Soares, Iberê C; Danilovic, Debora L S; Marui, Suemi
2012-11-01
Cowden syndrome is characterized by hamartomatous polyps, trichilemmomas, increased risk of developing neoplasms, and is associated with germline mutations in the PTEN gene. We searched for germline mutations in PTEN in a 49-year-old female patient who presented trichilemmoma with previous history of breast carcinoma, and thyroidectomy for a thyroid nodule. We also searched for somatic mutations in breast and thyroid tumoral tissues. DNA was extracted from peripheral leukocytes, paraffin samples of breast carcinoma, and cytological smears of thyroid nodule fine-needle aspiration biopsy, whose final histopathological diagnosis was adenomatous goiter. PTEN was amplified and sequenced. We identified a novel mutation, due to a T>A inversion at position 159 and A>T inversion at position 160, leading to valine-to-aspartic acid substitution at position 53. The p.Val53Asp was also found in homozygous state in samples obtained from adenocarcinoma breast and thyroid biopsy, denoting loss of heterozygosity. Here, we demonstrated a novel germline mutation in PTEN, as well as somatic loss of the wild-type PTEN allele in breast and thyroid tumors in a patient with Cowden syndrome.
Fukuoka, Masahiro; Wu, Yi-Long; Thongprasert, Sumitra; Sunpaweravong, Patrapim; Leong, Swan-Swan; Sriuranpong, Virote; Chao, Tsu-Yi; Nakagawa, Kazuhiko; Chu, Da-Tong; Saijo, Nagahiro; Duffield, Emma L; Rukazenkov, Yuri; Speake, Georgina; Jiang, Haiyi; Armour, Alison A; To, Ka-Fai; Yang, James Chih-Hsin; Mok, Tony S K
2011-07-20
The results of the Iressa Pan-Asia Study (IPASS), which compared gefitinib and carboplatin/paclitaxel in previously untreated never-smokers and light ex-smokers with advanced pulmonary adenocarcinoma were published previously. This report presents overall survival (OS) and efficacy according to epidermal growth factor receptor (EGFR) biomarker status. In all, 1,217 patients were randomly assigned. Biomarkers analyzed were EGFR mutation (amplification mutation refractory system; 437 patients evaluable), EGFR gene copy number (fluorescent in situ hybridization; 406 patients evaluable), and EGFR protein expression (immunohistochemistry; 365 patients evaluable). OS analysis was performed at 78% maturity. A Cox proportional hazards model was used to assess biomarker status by randomly assigned treatment interactions for progression-free survival (PFS) and OS. OS (954 deaths) was similar for gefitinib and carboplatin/paclitaxel with no significant difference between treatments overall (hazard ratio [HR], 0.90; 95% CI, 0.79 to 1.02; P = .109) or in EGFR mutation-positive (HR, 1.00; 95% CI, 0.76 to 1.33; P = .990) or EGFR mutation-negative (HR, 1.18; 95% CI, 0.86 to 1.63; P = .309; treatment by EGFR mutation interaction P = .480) subgroups. A high proportion (64.3%) of EGFR mutation-positive patients randomly assigned to carboplatin/paclitaxel received subsequent EGFR tyrosine kinase inhibitors. PFS was significantly longer with gefitinib for patients whose tumors had both high EGFR gene copy number and EGFR mutation (HR, 0.48; 95% CI, 0.34 to 0.67) but significantly shorter when high EGFR gene copy number was not accompanied by EGFR mutation (HR, 3.85; 95% CI, 2.09 to 7.09). EGFR mutations are the strongest predictive biomarker for PFS and tumor response to first-line gefitinib versus carboplatin/paclitaxel. The predictive value of EGFR gene copy number was driven by coexisting EGFR mutation (post hoc analysis). Treatment-related differences observed for PFS in the EGFR mutation-positive subgroup were not apparent for OS. OS results were likely confounded by the high proportion of patients crossing over to the alternative treatment.
TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.
Batlle, Javier; Pérez-Rodríguez, Almudena; Corrales, Irene; López-Fernández, Maria Fernanda; Rodríguez-Trillo, Ángela; Lourés, Esther; Cid, Ana Rosa; Bonanad, Santiago; Cabrera, Noelia; Moret, Andrés; Parra, Rafael; Mingot-Castellano, María Eva; Balda, Ignacia; Altisent, Carmen; Pérez-Montes, Rocío; Fisac, Rosa María; Iruín, Gemma; Herrero, Sonia; Soto, Inmaculada; de Rueda, Beatriz; Jiménez-Yuste, Victor; Alonso, Nieves; Vilariño, Dolores; Arija, Olga; Campos, Rosa; Paloma, María José; Bermejo, Nuria; Toll, Teresa; Mateo, José; Arribalzaga, Karmele; Marco, Pascual; Palomo, Ángeles; Sarmiento, Lizheidy; Iñigo, Belén; Nieto, María del Mar; Vidal, Rosa; Martínez, María Paz; Aguinaco, Reyes; César, Jesús María; Ferreiro, María; García-Frade, Javier; Rodríguez-Huerta, Ana María; Cuesta, Jorge; Rodríguez-González, Ramón; García-Candel, Faustino; Cornudella, Rosa; Aguilar, Carlos; Borràs, Nina; Vidal, Francisco
2016-01-01
The diagnosis of von Willebrand disease (VWD) remains difficult in a significant proportion of patients. A Spanish multicentre study investigated a cohort of 556 patients from 330 families who were analysed centrally. VWD was confirmed in 480. Next generation sequencing (NGS) of the whole coding VWF was carried out in all recruited patients, compared with the phenotype, and a final diagnosis established. A total of 238 different VWF mutations were found, 154 were not included in the Leiden Open Variation Database (LOVD). Of the patients, 463 were found to have VWF mutation/s. A good phenotypic/genotypic association was estimated in 96.5% of the patients. One hundred seventy-four patients had two or more mutations. Occasionally a predominant phenotype masked the presence of a second abnormality. One hundred sixteen patients presented with mutations that had previously been associated with increased von Willebrand factor (VWF) clearance. RIPA unavailability, central phenotypic results disagreement and difficult distinction between severe type 1 and type 3 VWD prevented a clear diagnosis in 70 patients. The NGS study facilitated an appropriate classification in 63 of them. The remaining seven patients presented with a VWF novel mutation pending further investigation. In five patients with a type 3 and two with a type 2A or 2B phenotype with no mutation, an acquired von Willebrand syndrome (AVWS) was suspected/confirmed. These data seem to support NGS as a first line efficient and faster paradigm in VWD diagnosis.
Lu, Jun; Jiang, Shan; Ye, Song; Deng, Yun; Ma, Shuai; Li, Chao-Pin
2014-04-01
The aim of the present study was to investigate the mutational characteristics of the drug‑resistant Mycobacterium tuberculosis L‑form of the rpoB gene isolated from patients with pneumoconiosis complicated by tuberculosis, in order to reduce the occurrence of the drug resistance of patients and gain a more complete information on the resistance of the Mycobacterium tuberculosis L‑form. A total of 42 clinically isolated strains of Mycobacterium tuberculosis L‑form were collected, including 31 drug‑resistant strains. The genomic DNA was extracted, then the target genes were amplified by polymerase chain reaction and the hot mutational regions of the rpoB gene were analyzed by direct sequencing. The results revealed that no rpoB gene mutation was present in 11 rifampicin (RFP)‑sensitive strains, while conformational changes were identified in 31 RFP‑resistant strains. The mutation rate was 93.55% (29/31) in the resistant strains, and was frequently concentrated in codons 531 (51.61%; 16/31) and 526 (32.26%; 10/31), mainly occurring by case substitutions, including 27 unit point mutations and two two‑point mutations. The novel mutation identified in codon 516 had not been previously reported. The substitution of highly‑conserved amino acids encoded by the rpoB gene resulted in the molecular mechanism responsible for RFP resistance in the Mycobacterium tuberculosis L‑form. This also demonstrated that the rpoB gene is diversiform.
Somatic mutations in early onset luminal breast cancer
de Lyra, Eduardo Carneiro; Hirata Katayama, Maria Lucia; Maistro, Simone; de Vasconcellos Valle, Pedro Wilson Mompean; de Lima Pereira, Gláucia Fernanda; Rodrigues, Lívia Munhoz; de Menezes Pacheco Serio, Pedro Adolpho; de Gouvêa, Ana Carolina Ribeiro Chaves; Geyer, Felipe Correa; Basso, Ricardo Alves; Pasini, Fátima Solange; del Pilar Esteves Diz, Maria; Brentani, Maria Mitzi; Guedes Sampaio Góes, João Carlos; Chammas, Roger; Boutros, Paul C.; Koike Folgueira, Maria Aparecida Azevedo
2018-01-01
Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation. PMID:29854292
Sonam, Kothari; Khan, Nahid Akthar; Bindu, Parayil Sankaran; Taly, Arun B; Gayathri, N; Bharath, M M Srinivas; Govindaraju, C; Arvinda, H R; Nagappa, Madhu; Sinha, Sanjib; Thangaraj, K
2014-10-01
Mutation in the SURF1 is one of the most common nuclear mutations associated with Leigh syndrome and cytochrome c oxidase deficiency. This study aims to describe the phenotypic and imaging features in four patients with Leigh syndrome and novel SURF1 mutation. The study included four patients with Leigh syndrome and SURF1 mutations identified from a cohort of 25 children with Leigh syndrome seen over a period of six years (2006-2012). All the patients underwent a detailed neurological assessment, muscle biopsy, and sequencing of the complete mitochondrial genome and SURF1. Three patients had classical presentation of Leigh syndrome. The fourth patient had a later age of onset with ataxia as the presenting manifestation and a stable course. Hypertrichosis, facial dysmorphism and hypopigmentation were the additional phenotypic features noted. On magnetic resonance imaging all patients had brainstem and cerebellar involvement and two had basal ganglia involvement in addition. The bilateral symmetrical hypertrophic olivary degeneration in these patients was striking. The SURF1 analysis identified previously unreported mutations in all the patients. On follow-up three patients expired and one had a stable course. Patients with Leigh syndrome and SURF1 mutation often have skin and hair abnormalities. Bilateral symmetrical hypertrophic olivary degeneration was a consistent finding on magnetic resonance imaging in these patients. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Lüdecke, H.-J.; Pettersson, M.; Albrecht, B.; Bernier, R. A.; Cremer, K.; Eichler, E. E.; Falkenstein, D.; Gerdts, J.; Jansen, S.; Kuechler, A.; Kvarnung, M.; Lindstrand, A.; Nilsson, D.; Nordgren, A.; Pfundt, R.; Spruijt, L.; Surowy, H. M.; de Vries, B. B. A.; Wieland, T.; Engels, H.; Strom, T. M.; Kleefstra, T.; Wieczorek, D.
2018-01-01
The ubiquitin pathway is an enzymatic cascade including activating E1, conjugating E2, and ligating E3 enzymes, which governs protein degradation and sorting. It is crucial for many physiological processes. Compromised function of members of the ubiquitin pathway leads to a wide range of human diseases, such as cancer, neurodegenerative diseases, and neurodevelopmental disorders. Mutations in the thyroid hormone receptor interactor 12 (TRIP12) gene (OMIM 604506), which encodes an E3 ligase in the ubiquitin pathway, have been associated with autism spectrum disorder (ASD). In addition to autistic features, TRIP12 mutation carriers showed intellectual disability (ID). More recently, TRIP12 was postulated as a novel candidate gene for intellectual disability in a meta-analysis of published ID cohorts. However, detailed clinical information characterizing the phenotype of these individuals was not provided. In this study, we present seven novel individuals with private TRIP12 mutations including two splice site mutations, one nonsense mutation, three missense mutations, and one translocation case with a breakpoint in intron 1 of the TRIP12 gene and clinically review four previously published cases. The TRIP12 mutation-positive individuals presented with mild to moderate ID (10/11) or learning disability [intelligence quotient (IQ) 76 in one individual], ASD (8/11) and some of them with unspecific craniofacial dysmorphism and other anomalies. In this study, we provide detailed clinical information of 11 TRIP12 mutation-positive individuals and thereby expand the clinical spectrum of the TRIP12 gene in non-syndromic intellectual disability with or without ASD. PMID:27848077
Bramswig, Nuria C; Lüdecke, H-J; Pettersson, M; Albrecht, B; Bernier, R A; Cremer, K; Eichler, E E; Falkenstein, D; Gerdts, J; Jansen, S; Kuechler, A; Kvarnung, M; Lindstrand, A; Nilsson, D; Nordgren, A; Pfundt, R; Spruijt, L; Surowy, H M; de Vries, B B A; Wieland, T; Engels, H; Strom, T M; Kleefstra, T; Wieczorek, D
2017-02-01
The ubiquitin pathway is an enzymatic cascade including activating E1, conjugating E2, and ligating E3 enzymes, which governs protein degradation and sorting. It is crucial for many physiological processes. Compromised function of members of the ubiquitin pathway leads to a wide range of human diseases, such as cancer, neurodegenerative diseases, and neurodevelopmental disorders. Mutations in the thyroid hormone receptor interactor 12 (TRIP12) gene (OMIM 604506), which encodes an E3 ligase in the ubiquitin pathway, have been associated with autism spectrum disorder (ASD). In addition to autistic features, TRIP12 mutation carriers showed intellectual disability (ID). More recently, TRIP12 was postulated as a novel candidate gene for intellectual disability in a meta-analysis of published ID cohorts. However, detailed clinical information characterizing the phenotype of these individuals was not provided. In this study, we present seven novel individuals with private TRIP12 mutations including two splice site mutations, one nonsense mutation, three missense mutations, and one translocation case with a breakpoint in intron 1 of the TRIP12 gene and clinically review four previously published cases. The TRIP12 mutation-positive individuals presented with mild to moderate ID (10/11) or learning disability [intelligence quotient (IQ) 76 in one individual], ASD (8/11) and some of them with unspecific craniofacial dysmorphism and other anomalies. In this study, we provide detailed clinical information of 11 TRIP12 mutation-positive individuals and thereby expand the clinical spectrum of the TRIP12 gene in non-syndromic intellectual disability with or without ASD.
Jesus, Adriana A; Silva, Clovis A; Segundo, Gesmar R; Aksentijevich, Ivona; Fujihira, Erika; Watanabe, Mônica; Carneiro-Sampaio, Magda; Duarte, Alberto J S; Oliveira, João B
2008-03-01
We describe in this paper the phenotype-genotype analysis of a Brazilian cohort of patients with cryopyrin-associated periodic syndromes (CAPS). Patient 1 presented with an urticarial rash and recurrent fever exacerbated by cold weather, arthritis, and anterior uveitis, thus, receiving a clinical diagnosis of familial cold autoinflammatory syndrome. CIAS1 sequencing identified the T436I mutation, previously associated to a clinical phenotype of chronic infantile neurological cutaneous and articular/neonatal onset multisystem inflammatory disease. Patient 2 developed a papular exanthema with daily fever shortly after birth, frontal bossing, patellae enlargement, and cognitive and motor impairments. Sequencing identified the exceedingly rare G755R CIAS1 mutation in exon 4. Patient 3 developed skin rash and articular symptoms 6 h after birth, followed by aseptic meningitis. He was found to have the novel C148Y missense mutation in CIAS1. This report expands the spectrum of CIAS1 mutations associated to clinical disease, suggests that the same mutation can be associated with different clinical syndromes, and supports the evidence that CAPS patients should always be screened for mutations outside exon 3.
A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome
Caputo, Viviana; Cianetti, Luciano; Niceta, Marcello; Carta, Claudio; Ciolfi, Andrea; Bocchinfuso, Gianfranco; Carrani, Eugenio; Dentici, Maria Lisa; Biamino, Elisa; Belligni, Elga; Garavelli, Livia; Boccone, Loredana; Melis, Daniela; Andria, Generoso; Gelb, Bruce D.; Stella, Lorenzo; Silengo, Margherita; Dallapiccola, Bruno; Tartaglia, Marco
2012-01-01
Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor β and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth. PMID:22243968
Hypomorphic NOTCH3 mutation in an Italian family with CADASIL features.
Moccia, Marcello; Mosca, Lorena; Erro, Roberto; Cervasio, Mariarosaria; Allocca, Roberto; Vitale, Carmine; Leonardi, Antonio; Caranci, Ferdinando; Del Basso-De Caro, Maria Laura; Barone, Paolo; Penco, Silvana
2015-01-01
The cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is because of NOTCH3 mutations affecting the number of cysteine residues. In this view, the role of atypical NOTCH3 mutations is still debated. Therefore, we investigated a family carrying a NOTCH3 nonsense mutation, with dominantly inherited recurrent cerebrovascular disorders. Among 7 family members, 4 received a clinical diagnosis of CADASIL. A heterozygous truncating mutation in exon 3 (c.307C>T, p.Arg103X) was found in the 4 clinically affected subjects and in one 27-year old lady, only complaining of migraine with aura. Magnetic resonance imaging scans found typical signs of small-vessel disease in the 4 affected subjects, supporting the clinical diagnosis. Skin biopsies did not show the typical granular osmiophilic material, but only nonspecific signs of vascular damage, resembling those previously described in Notch3 knockout mice. Interestingly, messenger RNA (mRNA) analysis supports the hypothesis of an atypical NOTCH3 mutation, suggesting a nonsense-mediated mRNA decay. In conclusion, the present study broadens the spectrum of CADASIL mutations, and, therefore, opens new insights about Notch3 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
Mutational spectrum in breast cancer associated BRCA1 and BRCA2 genes in Colombia
Gómez-Gutiérrez, Alberto; Díaz-Dussán, Natalia Andrea; Noguera-Santamaría, María Claudia; Díaz-Rincón, Diego; Casas-Gómez, María Consuelo
2017-01-01
Abstract Introduction: The risk of developing breast and ovarian cancer is higher in families that carry mutations in BRCA1 or BRCA2 genes, and timely mutation detection is critical. Objective: To identify the presence of mutations in the Colombian population and evaluate two testing strategies. Methods: From a total universe of 853 individual blood samples referred for BRCA1 and BRCA2 typing, 256 cases were analyzed by complete direct sequencing of both genes in Myriad Genetics, and the remaining 597 cases were studied by partial sequencing based on founder mutations in a PCR test designed by ourselves ("Profile Colombia"). Results: We found 107 patients carrying deleterious mutations in this group of patients, 69 (64.5%) located in BRCA1, and 38 (35.5%) in BRCA2. Overall, we detected 39 previously unreported mutations in Colombia (22 in BRCA1 and 17 in BRCA2) and only 4 out of the 6 previously reported founder mutations. Sixty four out of 597 patients (10.7%) studied by "Profile Colombia" showed mutations in BRCA1 or BRCA2, and 41/256 patients (16%) showed mutations by complete BRCA1-BRCA2 sequencing. Conclusions: The spectrum of 44 different mutations in Colombia as detected in our study is broader than the one previously reported for this country. "Profile Colombia" is a useful screening test to establish both founder and new mutations (detection rate of 10.7%) in cases with family history of breast cancer. Complete sequencing shows a detection rate of 16.0%, and should complement the study of the genetic basis of this disease. PMID:29021639
Oshima, Koichi; Khiabanian, Hossein; da Silva-Almeida, Ana C.; Tzoneva, Gannie; Abate, Francesco; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Carpenter, Zachary; Penson, Alex; Perez-Garcia, Arianne; Eckert, Cornelia; Nicolas, Concepción; Balbin, Milagros; Sulis, Maria Luisa; Kato, Motohiro; Koh, Katsuyoshi; Paganin, Maddalena; Basso, Giuseppe; Gastier-Foster, Julie M.; Devidas, Meenakshi; Loh, Mignon L.; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A.
2016-01-01
Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemorefractory disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein complexes. In this context, RAS-MAPK pathway-activating mutations in the neuroblastoma RAS viral oncogene homolog (NRAS), kirsten rat sarcoma viral oncogene homolog (KRAS), and protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) genes were present in 24 of 55 (44%) cases in our series. Interestingly, some leukemias showed retention or emergence of RAS mutant clones at relapse, whereas in others RAS mutant clones present at diagnosis were replaced by RAS wild-type populations, supporting a role for both positive and negative selection evolutionary pressures in clonal evolution of RAS-mutant leukemia. Consistently, functional dissection of mouse and human wild-type and mutant RAS isogenic leukemia cells demonstrated induction of methotrexate resistance but also improved the response to vincristine in mutant RAS-expressing lymphoblasts. These results highlight the central role of chemotherapy-driven selection as a central mechanism of leukemia clonal evolution in relapsed ALL, and demonstrate a previously unrecognized dual role of RAS mutations as drivers of both sensitivity and resistance to chemotherapy. PMID:27655895
Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome)
Tristani-Firouzi, Martin; Jensen, Judy L.; Donaldson, Matthew R.; Sansone, Valeria; Meola, Giovanni; Hahn, Angelika; Bendahhou, Said; Kwiecinski, Hubert; Fidzianska, Anna; Plaster, Nikki; Fu, Ying-Hui; Ptacek, Louis J.; Tawil, Rabi
2002-01-01
Andersen syndrome (AS) is a rare, inherited disorder characterized by periodic paralysis, long QT (LQT) with ventricular arrhythmias, and skeletal developmental abnormalities. We recently established that AS is caused by mutations in KCNJ2, which encodes the inward rectifier K+ channel Kir2.1. In this report, we characterized the functional consequences of three novel and seven previously described KCNJ2 mutations using a two-microelectrode voltage-clamp technique and correlated the findings with the clinical phenotype. All mutations resulted in loss of function and dominant-negative suppression of Kir2.1 channel function. In mutation carriers, the frequency of periodic paralysis was 64% and dysmorphic features 78%. LQT was the primary cardiac manifestation, present in 71% of KCNJ2 mutation carriers, with ventricular arrhythmias present in 64%. While arrhythmias were common, none of our subjects suffered sudden cardiac death. To gain insight into the mechanism of arrhythmia susceptibility, we simulated the effect of reduced Kir2.1 using a ventricular myocyte model. A reduction in Kir2.1 prolonged the terminal phase of the cardiac action potential, and in the setting of reduced extracellular K+, induced Na+/Ca2+ exchanger–dependent delayed afterdepolarizations and spontaneous arrhythmias. These findings suggest that the substrate for arrhythmia susceptibility in AS is distinct from the other forms of inherited LQT syndrome. PMID:12163457
Identification of MPL R102P Mutation in Hereditary Thrombocytosis.
Bellanné-Chantelot, Christine; Mosca, Matthieu; Marty, Caroline; Favier, Rémi; Vainchenker, William; Plo, Isabelle
2017-01-01
The molecular basis of hereditary thrombocytosis is germline mutations affecting the thrombopoietin (TPO)/TPO receptor (MPL)/JAK2 signaling axis. Here, we report one family presenting two cases with a mild thrombocytosis. By sequencing JAK2 and MPL coding exons, we identified a germline MPL R102P heterozygous mutation in the proband and his daughter. Concomitantly, we detected high TPO levels in the serum of these two patients. The mutation was not found in three other unaffected cases from the family except in another proband's daughter who did not present thrombocytosis but had a high TPO level. The MPL R102P mutation was first described in congenital amegakaryocytic thrombocytopenia in a homozygous state with a loss-of-function activity. It was previously shown that MPL R102P was blocked in the endoplasmic reticulum without being able to translocate to the plasma membrane. Thus, this case report identifies for the first time that MPL R102P mutation can differently impact megakaryopoiesis: thrombocytosis or thrombocytopenia depending on the presence of the heterozygous or homozygous state, respectively. The paradoxical effect associated with heterozygous MPL R102P may be due to subnormal cell-surface expression of wild-type MPL in platelets inducing a defective TPO clearance. As a consequence, increased TPO levels may activate megakaryocyte progenitors that express a lower, but still sufficient level of MPL for the induction of proliferation.
Snijders Blok, Lot; Madsen, Erik; Juusola, Jane; Gilissen, Christian; Baralle, Diana; Reijnders, Margot R F; Venselaar, Hanka; Helsmoortel, Céline; Cho, Megan T; Hoischen, Alexander; Vissers, Lisenka E L M; Koemans, Tom S; Wissink-Lindhout, Willemijn; Eichler, Evan E; Romano, Corrado; Van Esch, Hilde; Stumpel, Connie; Vreeburg, Maaike; Smeets, Eric; Oberndorff, Karin; van Bon, Bregje W M; Shaw, Marie; Gecz, Jozef; Haan, Eric; Bienek, Melanie; Jensen, Corinna; Loeys, Bart L; Van Dijck, Anke; Innes, A Micheil; Racher, Hilary; Vermeer, Sascha; Di Donato, Nataliya; Rump, Andreas; Tatton-Brown, Katrina; Parker, Michael J; Henderson, Alex; Lynch, Sally A; Fryer, Alan; Ross, Alison; Vasudevan, Pradeep; Kini, Usha; Newbury-Ecob, Ruth; Chandler, Kate; Male, Alison; Dijkstra, Sybe; Schieving, Jolanda; Giltay, Jacques; van Gassen, Koen L I; Schuurs-Hoeijmakers, Janneke; Tan, Perciliz L; Pediaditakis, Igor; Haas, Stefan A; Retterer, Kyle; Reed, Patrick; Monaghan, Kristin G; Haverfield, Eden; Natowicz, Marvin; Myers, Angela; Kruer, Michael C; Stein, Quinn; Strauss, Kevin A; Brigatti, Karlla W; Keating, Katherine; Burton, Barbara K; Kim, Katherine H; Charrow, Joel; Norman, Jennifer; Foster-Barber, Audrey; Kline, Antonie D; Kimball, Amy; Zackai, Elaine; Harr, Margaret; Fox, Joyce; McLaughlin, Julie; Lindstrom, Kristin; Haude, Katrina M; van Roozendaal, Kees; Brunner, Han; Chung, Wendy K; Kooy, R Frank; Pfundt, Rolph; Kalscheuer, Vera; Mehta, Sarju G; Katsanis, Nicholas; Kleefstra, Tjitske
2015-08-06
Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
A genetic study of Wilson’s disease in the United Kingdom
Coffey, Alison J.; Durkie, Miranda; Hague, Stephen; McLay, Kirsten; Emmerson, Jennifer; Lo, Christine; Klaffke, Stefanie; Joyce, Christopher J.; Dhawan, Anil; Hadzic, Nedim; Mieli-Vergani, Giorgina; Kirk, Richard; Elizabeth Allen, K.; Nicholl, David; Wong, Siew; Griffiths, William; Smithson, Sarah; Giffin, Nicola; Taha, Ali; Connolly, Sally; Gillett, Godfrey T.; Tanner, Stuart; Bonham, Jim; Sharrack, Basil; Palotie, Aarno; Rattray, Magnus; Dalton, Ann
2013-01-01
Previous studies have failed to identify mutations in the Wilson’s disease gene ATP7B in a significant number of clinically diagnosed cases. This has led to concerns about genetic heterogeneity for this condition but also suggested the presence of unusual mutational mechanisms. We now present our findings in 181 patients from the United Kingdom with clinically and biochemically confirmed Wilson’s disease. A total of 116 different ATP7B mutations were detected, 32 of which are novel. The overall mutation detection frequency was 98%. The likelihood of mutations in genes other than ATP7B causing a Wilson’s disease phenotype is therefore very low. We report the first cases with Wilson’s disease due to segmental uniparental isodisomy as well as three patients with three ATP7B mutations and three families with Wilson’s disease in two consecutive generations. We determined the genetic prevalence of Wilson’s disease in the United Kingdom by sequencing the entire coding region and adjacent splice sites of ATP7B in 1000 control subjects. The frequency of all single nucleotide variants with in silico evidence of pathogenicity (Class 1 variant) was 0.056 or 0.040 if only those single nucleotide variants that had previously been reported as mutations in patients with Wilson’s disease were included in the analysis (Class 2 variant). The frequency of heterozygote, putative or definite disease-associated ATP7B mutations was therefore considerably higher than the previously reported occurrence of 1:90 (or 0.011) for heterozygote ATP7B mutation carriers in the general population (P < 2.2 × 10-16 for Class 1 variants or P < 5 × 10-11 for Class 2 variants only). Subsequent exclusion of four Class 2 variants without additional in silico evidence of pathogenicity led to a further reduction of the mutation frequency to 0.024. Using this most conservative approach, the calculated frequency of individuals predicted to carry two mutant pathogenic ATP7B alleles is 1:7026 and thus still considerably higher than the typically reported prevalence of Wilson’s disease of 1:30 000 (P = 0.00093). Our study provides strong evidence for monogenic inheritance of Wilson’s disease. It also has major implications for ATP7B analysis in clinical practice, namely the need to consider unusual genetic mechanisms such as uniparental disomy or the possible presence of three ATP7B mutations. The marked discrepancy between the genetic prevalence and the number of clinically diagnosed cases of Wilson’s disease may be due to both reduced penetrance of ATP7B mutations and failure to diagnose patients with this eminently treatable disorder. PMID:23518715
Autosomal-dominant non-autoimmune hyperthyroidism presenting with neuromuscular symptoms.
Elgadi, Aziz; Arvidsson, C-G; Janson, Annika; Marcus, Claude; Costagliola, Sabine; Norgren, Svante
2005-08-01
Neuromuscular presentations are common in thyroid disease, although the mechanism is unclear. In the present study, we investigated the pathogenesis in a boy with autosomal-dominant hyperthyroidism presenting with neuromuscular symptoms. The TSHr gene was investigated by direct sequencing. Functional properties of the mutant TSHr were investigated during transient expression in COS-7 cells. Family members were investigated by clinical and biochemical examinations. Sequence analysis revealed a previously reported heterozygous missense mutation Glycine 431 for Serine in the first transmembrane segment, leading to an increased specific constitutive activity. Three additional affected family members carried the same mutation. There was no indication of autoimmune disorder. All symptoms disappeared upon treatment with thacapzol and L-thyroxine and subsequent subtotal thyroidectomy. The data imply that neuromuscular symptoms can be caused by excessive thyroid hormone levels rather than by autoimmunity.
Brizola, Evelise; McCarthy, Edward; Shapiro, Jay Robert
2015-01-01
Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI.
Phosphate assimilation in Rhizobium (Sinorhizobium) meliloti: identification of a pit-like gene.
Bardin, S D; Voegele, R T; Finan, T M
1998-08-01
Rhizobium meliloti mutants defective in the phoCDET-encoded phosphate transport system form root nodules on alfalfa plants that fail to fix nitrogen (Fix-). We have previously reported that two classes of second-site mutations can suppress the Fix- phenotype of phoCDET mutants to Fix+. Here we show that one of these suppressor loci (sfx1) contains two genes, orfA and pit, which appear to form an operon transcribed in the order orfA-pit. The Pit protein is homologous to various phosphate transporters, and we present evidence that three suppressor mutations arose from a single thymidine deletion in a hepta-thymidine sequence centered 54 nucleotides upstream of the orfA transcription start site. This mutation increased the level of orfA-pit transcription. These data, together with previous biochemical evidence, show that the orfA-pit genes encode a Pi transport system that is expressed in wild-type cells grown with excess Pi but repressed in cells under conditions of Pi limitation. In phoCDET mutant cells, orfA-pit expression is repressed, but this repression is alleviated by the second-site suppressor mutations. Suppression increases orfA-pit expression compensating for the deficiencies in phosphate assimilation and symbiosis of the phoCDET mutants.
Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, I.L.; Sudhalter, V.; Nolin, S.L.
Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional developmentmore » of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome. 21 refs., 3 figs.« less
A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.
Oud, Machteld M; Bonnard, Carine; Mans, Dorus A; Altunoglu, Umut; Tohari, Sumanty; Ng, Alvin Yu Jin; Eskin, Ascia; Lee, Hane; Rupar, C Anthony; de Wagenaar, Nathalie P; Wu, Ka Man; Lahiry, Piya; Pazour, Gregory J; Nelson, Stanley F; Hegele, Robert A; Roepman, Ronald; Kayserili, Hülya; Venkatesh, Byrappa; Siu, Victoria M; Reversade, Bruno; Arts, Heleen H
2016-01-01
Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.
Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A.
2016-01-01
Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732
SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome
Horga, Alejandro; Tomaselli, Pedro J.; Gonzalez, Michael A.; Laurà, Matilde; Muntoni, Francesco; Manzur, Adnan Y.; Hanna, Michael G.; Blake, Julian C.; Houlden, Henry; Züchner, Stephan
2016-01-01
Objective: To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor–1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. Methods: We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. Results: In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. Conclusions: We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies. PMID:27629094
SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome.
Horga, Alejandro; Tomaselli, Pedro J; Gonzalez, Michael A; Laurà, Matilde; Muntoni, Francesco; Manzur, Adnan Y; Hanna, Michael G; Blake, Julian C; Houlden, Henry; Züchner, Stephan; Reilly, Mary M
2016-10-11
To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor-1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies. © 2016 American Academy of Neurology.
Demirağ, Funda; Yılmaz, Aydın; Yılmaz Demirci, Nilgün; Yılmaz, Ülkü; Erdoğan, Yurdanur
2017-11-13
Background/aim: This study aimed to analyze EGFR, KRAS, and BRAF mutations in females with micropapillary predominant invasive lung adenocarcinoma and their relationships with immunohistochemical and clinicopathological patterns.Materials and methods: A total of 15 females with micropapillary lung adenocarcinoma were selected. Mutational analysis of the EGFR, KRAS, and BRAF genes was carried out. Information regarding the demographic data, tumor size, treatment, and survival time for each patient was collated, and the predominant cell type, secondary architectural growth patterns, psammoma bodies, necrosis, and visceral pleural and angiolymphatic invasions were evaluated.Results: We identified EGFR mutation in six cases, KRAS mutation in three cases, and BRAF mutation in one case. EGFR, c-kit, VEGFR, and bcl-2 positivity was observed in ten, seven, four, and six cases, respectively. All cases were positive for VEGF (strong positivity in 11 cases and weak positivity in four cases) and bcl-2 (strong positivity in nine cases and weak positivity in six cases). Seven (46.6%) cases were positive for c-kit and 10 (66.6%) cases were positive for EGFR. Conclusion: EGFR mutation occurred at a higher incidence rate in micropapillary predominant invasive adenocarcinoma than has previously been found in conventional lung adenocarcinomas. KRAS mutation was observed as having a similar frequency to what was previously observed, but the frequency of BRAF mutation was lower than previously reported.
Dudley, Beth; Karloski, Eve; Monzon, Federico A; Singhi, Aatur D; Lincoln, Stephen E; Bahary, Nathan; Brand, Randall E
2018-04-15
Approximately 10% of pancreatic adenocarcinoma (PC) cases are attributed to hereditary causes. Individuals with PC and a personal history of another cancer associated with hereditary breast and ovarian cancer (HBOC) or Lynch syndrome (LS) may be more likely to carry germline mutations. Participants with PC and a history of cancer were selected from a pancreatic disease registry. Of 1296 individuals with PC, 149 had a relevant history of cancer. If banked DNA was available, a multigene panel was performed for individuals who had not 1) previously had a mutation identified through clinical testing or 2) undergone clinical multigene panel testing with no mutations detected. Twenty-two of 124 individuals with PC and another HBOC- or LS-related cancer who underwent genetic testing had a mutation identified in a PC susceptibility gene (18%). If prostate cancer is excluded, the mutation prevalence increased to 23% (21/93). Mutation carriers were more likely to have more than 1 previous cancer diagnosis (P = .001), to have had clinical genetic testing (P = .001), and to meet National Comprehensive Cancer Network (NCCN) genetic testing criteria (P < .001). Approximately 23% of mutation carriers did not meet NCCN HBOC or LS testing guidelines based on their personal cancer history and reported cancer history in first-degree relatives. At least 18% of individuals with PC and a personal history of other HBOC- or LS-related cancers carry mutations in a PC susceptibility gene based on our data, suggesting that criteria for genetic testing in individuals with PC should include consideration of previous cancer history. Cancer 2018;124:1691-700. © 2018 American Cancer Society. © 2018 American Cancer Society.
Carriers of filaggrin gene (FLG) mutations avoid professional exposure to irritants in adulthood.
Bandier, Josefine; Ross-Hansen, Katrine; Carlsen, Berit C; Menné, Torkil; Linneberg, Allan; Stender, Steen; Szecsi, Pal B; Meldgaard, Michael; Thyssen, Jacob P; Johansen, Jeanne D
2013-12-01
Loss-of-function mutations in the filaggrin gene (FLG) are associated with xerosis, atopic dermatitis, and early onset of hand eczema. Irritant exposure is a risk factor for occupational hand eczema, and FLG mutations increase the risk of occupational irritant contact dermatitis on the hands in hospital cohorts. It is unknown whether FLG mutations affect the level of irritant exposure. To evaluate whether exposure to occupational irritants was dependent on FLG mutations, atopic dermatitis, and age at hand eczema onset. Randomly chosen Danish adults completed a questionnaire on general health and occupational exposures. Genotyping for FLG mutations (R501X, 2282del4, and R2447X) and patch testing were performed. Overall, 38.7% of subjects reported present or previous occupational exposure to irritants. Among individuals who reported hand eczema onset before entering their work life, 50.6% (45/89) of FLG non-mutation carriers became exposed to irritants, as compared with 28.6% (4/14) of heterozygous and 0% (0/6) of homozygous mutation carriers (p = 0.006). Avoidance was conspicuous among mutation carriers reporting childhood hand eczema and atopic dermatitis (odds ratio 0.08, 95% confidence interval 0.01-0.65). Carriers of FLG mutations who have had hand eczema onset in childhood avoid occupational exposure to irritants; the association is most marked with homozygous mutation status combined with atopic dermatitis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hongdan, Wang; Bing, Kang; Ning, Su; Miao, He; Bo, Zhang; Yuxin, Guo; Bofeng, Zhu; Shixiu, Liao; Zhaoshu, Zeng
2017-01-01
At present, the Han nationality is China's main ethnic group and also the most populous nation in the world. This is a great resource to study microsatellite mutations and for the study of ethnogeny. The aim of this study is to investigate the genetic polymorphisms and mutations of 22 autosomal STR loci in 2475 individuals from Henan province, China. DNA is amplified and genotyped using PowerPlex™24 system. The gene frequencies, forensic parameters, and the mutation rate of the 22 STR loci are analyzed. A total of 295 alleles are observed in this Henan Han population, and the allelic frequencies ranged from 0.0003 to 0.5036. In order to investigate the genetic relationships between the Henan Han and the other 14 different populations, our present data were compared with previously published data for the same 15 STR loci. The results indicated that the Henan Han had closer genetic relationships the groups including Minnan Han, Maonan, Yi and Guangdong Han groups while the South morocco population, the Moroccan population, the Malay group, and the Uigur stand away from Henan Han. Except of D2S441, D13S317, PentaE, D2S1338, D5S818, TPOX and D19S433, the mutation events are found in the other 15 STR loci. A total of 40 mutation events are observed in the 15 STR loci. The mutation rates are ranged from 0 to 4.85 × 10 -3 . In this study, 39 mutations are single-step mutations, and only one at FGA comprised two steps. STR mutation is commonly existed in paternity testing, while there are no STR mutation studies of the 22 STR loci in the Henan Han population. It is of great importance in forensic individual discrimination and paternal testing.
Severe infantile leigh syndrome associated with a rare mitochondrial ND6 mutation, m.14487T>C.
Tarnopolsky, Mark; Meaney, Brandon; Robinson, Brian; Sheldon, Katherine; Boles, Richard G
2013-08-01
We describe a case of severe infantile-onset complex I deficiency in association with an apparent de novo near-homoplasmic mutation (m.14487T>C) in the mitochondrial ND6 gene, which was previously associated with Leigh syndrome and other neurological disorders. The mutation was near-homoplasmic in muscle by NextGen sequencing (99.4% mutant), homoplasmic in muscle by Sanger sequencing, and it was associated with a severe complex I deficiency in both muscle and fibroblasts. This supports previous data regarding Leigh syndrome being on the severe end of a phenotypic spectrum including progressive myoclonic epilepsy, childhood-onset dystonia, bilateral striatal necrosis, and optic atrophy, depending on the proportion of mutant heteroplasmy. While the mother in all previously reported cases was heteroplasmic, the mother and brother of this case were homoplasmic for the wild-type, m.14487T. Importantly, the current data demonstrate the potential for cases of mutations that were previously reported to be homoplasmic by Sanger sequencing to be less homoplasmic by NextGen sequencing. This case underscores the importance of considering mitochondrial DNA mutations in families with a negative family history, even in offspring of those who have tested negative for a specific mtDNA mutation. Copyright © 2013 Wiley Periodicals, Inc.
Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L
2018-06-01
To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A nonsense loss-of-function mutation in PCSK1 contributes to dominantly inherited human obesity.
Philippe, J; Stijnen, P; Meyre, D; De Graeve, F; Thuillier, D; Delplanque, J; Gyapay, G; Sand, O; Creemers, J W; Froguel, P; Bonnefond, A
2015-02-01
A significant proportion of severe familial forms of obesity remain genetically elusive. Taking advantage of our unique cohort of multigenerational obese families, we aimed to assess the contribution of rare mutations in 29 common obesity-associated genes to familial obesity, and to evaluate in these families the putative presence of nine known monogenic forms of obesity. Through next-generation sequencing, we sequenced the coding regions of 34 genes involved in polygenic and/or monogenic forms of obesity in 201 participants (75 normal weight individuals, 54 overweight individuals and 72 individuals with obesity class I, II or III) from 13 French families. In vitro functional analyses were performed to investigate the mutation PCSK1-p.Arg80* which was identified in a family. A novel heterozygous nonsense variant in PCSK1 (p.Arg80*), encoding a propeptide truncated to less than two exons (out of 14), was found to co-segregate with obesity in a three-generation family. We demonstrated that this mutation inhibits PCSK1 enzyme activity and that this inhibition most likely does not involve a strong physical interaction. Furthermore, both mutations PCSK1-p.Asn180Ser and POMC-p.Phe144Leu, which had previously been reported to be associated with severe obesity, were also identified in this study, but did not co-segregate with obesity. Finally, we did not identify any rare mutations co-segregating with obesity in common obesity susceptibility genes, except for CADM2 and QPCTL, where we found two novel variants (p.Arg81His and p.Leu98Pro, respectively) in three obese individuals. We showed for the first time that a nonsense mutation in PCSK1 was likely to cause dominantly inherited human obesity, due to the inhibiting properties of the propeptide fragment encoded by the null allele. Furthermore, the present family sequencing design challenged the contribution of previously reported mutations to monogenic or at least severe obesity.
Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.
Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E
2004-01-01
AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.
NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.
Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran
2017-09-01
To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.
Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David
2006-01-01
The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753
Matos, A R; Sambuughin, N; Rumjanek, F D; Amoedo, N D; Cunha, L B P; Zapata-Sudo, G; Sudo, R T
2009-12-01
Malignant hyperthermia (MH) is a pharmacogenetic disease triggered in susceptible individuals by the administration of volatile halogenated anesthetics and/or succinylcholine, leading to the development of a hypermetabolic crisis, which is caused by abnormal release of Ca2+ from the sarcoplasmic reticulum, through the Ca2+ release channel ryanodine receptor 1 (RyR1). Mutations in the RYR1 gene are associated with MH in the majority of susceptible families. Genetic screening of a 5-generation Brazilian family with a history of MH-related deaths and a previous MH diagnosis by the caffeine halothane contracture test (CHCT) in some individuals was performed using restriction and sequencing analysis. A novel missense mutation, Gly4935Ser, was found in an important functional and conserved locus of this gene, the transmembrane region of RyR1. In this family, 2 MH-susceptible individuals previously diagnosed with CHCT carry this novel mutation and another 24 not previously diagnosed members also carry it. However, this same mutation was not found in another MH-susceptible individual whose CHCT was positive to the test with caffeine but not to the test with halothane. None of the 5 MH normal individuals of the family, previously diagnosed by CHCT, carry this mutation, nor do 100 controls from control Brazilian and USA populations. The Gly4932Ser variant is a candidate mutation for MH, based on its co-segregation with disease phenotype, absence among controls and its location within the protein.
Martínez, Luz Maira Wintaco; Castro, Gloria Puerto; Guerrero, Martha Inírida
2016-02-01
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Mullis, Primus E; Robinson, Iain C A F; Salemi, Souzan; Eblé, Andrée; Besson, Amélie; Vuissoz, Jean-Marc; Deladoey, Johnny; Simon, Dominique; Czernichow, Paul; Binder, Gerhard
2005-04-01
Four distinct familial types of isolated GH deficiency have been described so far, of which type II is the autosomal dominant inherited form. It is mainly caused by mutations within the first 6 bp of intervening sequence 3. However, other splice site and missense mutations have been reported. Based on in vitro experiments and transgenic animal data, there is strong evidence that there is a wide variability in phenotype in terms of the severity of GH deficiency. Therefore, we studied a total of 57 subjects belonging to 19 families suffering from different splice site as well as missense mutations within the GH-1 gene. The subjects presenting with a splice site mutation within the first 2 bp of intervening sequence 3 (5'IVS +1/+2 bp) leading to a skipping of exon 3 were found to be more likely to present in the follow-up with other pituitary hormone deficiencies. In addition, although the patients with missense mutations have previously been reported to be less affected, a number of patients presenting with the P89L missense GH form, showed some pituitary hormone impairment. The development of multiple hormonal deficiencies is not age dependent, and there is a clear variability in onset, severity, and progression, even within the same families. The message of clinical importance from these studies is that the pituitary endocrine status of all such patients should continue to be monitored closely over the years because further hormonal deficiencies may evolve with time.
Further delineation of the GDF6 related multiple synostoses syndrome.
Terhal, Paulien A; Verbeek, Nienke E; Knoers, Nine; Nievelstein, Rutger J A J; van den Ouweland, Ans; Sakkers, Ralph J; Speleman, Lucienne; van Haaften, Gijs
2018-01-01
A mutation in GDF6 was recently found to underlie a multiple synostoses syndrome. In this report, we describe the second family with GDF6-related multiple synostoses syndrome (SYNS4), caused by a novel c.1287C>A/p.Ser429Arg mutation in GDF6. In addition to synostoses of carpal and/or tarsal bones, at least 6 of 10 affected patients in this family have been diagnosed with mild to moderate hearing loss. In four of them otosclerosis was said to be present, one patient had hearing loss due to severe stapes fixation at the age of 6 years, providing evidence that hearing loss in the GDF6-related multiple synostoses syndrome can be present in childhood. Two others had surgery for stapes fixation at adult age. We hypothesize that, identical to the recently published GDF6-related multiple synostoses family, the p.Ser429Arg mutation also leads to a gain of function. The previously reported c.1330T>A/pTyr444Asn mutation was located in a predicted Noggin and receptor I interacting domain and the gain of function was partly due to resistance of the mutant GDF6 to the BMP-inhibitor Noggin. The results in our family show that mutations predicting to affect the type II receptor interface can lead to a similar phenotype and that otosclerosis presenting in childhood can be part of the GDF6-related multiple synostoses syndrome. © 2017 Wiley Periodicals, Inc.
Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred; Abitbol, Marc
2007-04-02
The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated. Two previously known heterozygous mutations of the PAX6 gene sequence were also detected in patients affected by aniridia: a de novo previously known nucleotide change, g.972C>T (Q179X), in exon 8, leading to a stop codon and a heterozygous g.555C>A (C40X) recurrent nonsense mutation in exon 5. No mutations were found in patients with Peters' anomaly. We identified three mutations associated with aniridia phenotypes (Q179X, C40X, and V48fsX53). The three other mutations reported here cause non-aniridia ocular phenotypes associated in some cases with neurological anomalies. The IVS2+9G>A nucleotide change was detected in a patient with a microphthalmia phenotype. The L46P mutation was detected in a family with microphthalmia, cataract, and nystagmus. This mutation is located in the DNA-binding paired-domain and the crystallographic representations of this mutation show that this mutation may affect the helix-turn-helix motif, and as a consequence the DNA-binding properties of the resulting mutated protein. Ser74 is located in the PAX6 PD linker region, essential for DNA recognition and DNA binding, and the side chain of the Ser74 contributes to DNA recognition by the linker domain through direct contacts. Crystallographic representations show that the S74G mutation results in no side chain and therefore perturbs the DNA-binding properties of PAX6. This study highlights the severity and diversity of the consequences of PAX6 mutations that appeared to result from the complexity of the PAX6 gene structure, and the numerous possibilities for DNA binding. This study emphasizes the fact that neurodevelopmental abnormalities may be caused by PAX6 mutations. The neuro-developmental abnormalities caused by PAX6 mutations are probably still overlooked in the current clinical examinations performed throughout the world in patients affected by PAX6 mutations.
Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred
2007-01-01
Purpose The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Methods Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Results Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated. Two previously known heterozygous mutations of the PAX6 gene sequence were also detected in patients affected by aniridia: a de novo previously known nucleotide change, g.972C>T (Q179X), in exon 8, leading to a stop codon and a heterozygous g.555C>A (C40X) recurrent nonsense mutation in exon 5. No mutations were found in patients with Peters' anomaly. Conclusions We identified three mutations associated with aniridia phenotypes (Q179X, C40X, and V48fsX53). The three other mutations reported here cause non-aniridia ocular phenotypes associated in some cases with neurological anomalies. The IVS2+9G>A nucleotide change was detected in a patient with a microphthalmia phenotype. The L46P mutation was detected in a family with microphthalmia, cataract, and nystagmus. This mutation is located in the DNA-binding paired-domain and the crystallographic representations of this mutation show that this mutation may affect the helix-turn-helix motif, and as a consequence the DNA-binding properties of the resulting mutated protein. Ser74 is located in the PAX6 PD linker region, essential for DNA recognition and DNA binding, and the side chain of the Ser74 contributes to DNA recognition by the linker domain through direct contacts. Crystallographic representations show that the S74G mutation results in no side chain and therefore perturbs the DNA-binding properties of PAX6. This study highlights the severity and diversity of the consequences of PAX6 mutations that appeared to result from the complexity of the PAX6 gene structure, and the numerous possibilities for DNA binding. This study emphasizes the fact that neurodevelopmental abnormalities may be caused by PAX6 mutations. The neuro-developmental abnormalities caused by PAX6 mutations are probably still overlooked in the current clinical examinations performed throughout the world in patients affected by PAX6 mutations. PMID:17417613
Camus, Vincent; Stamatoullas, Aspasia; Mareschal, Sylvain; Viailly, Pierre-Julien; Sarafan-Vasseur, Nasrin; Bohers, Elodie; Dubois, Sydney; Picquenot, Jean Michel; Ruminy, Philippe; Maingonnat, Catherine; Bertrand, Philippe; Cornic, Marie; Tallon-Simon, Valérie; Becker, Stéphanie; Veresezan, Liana; Frebourg, Thierry; Vera, Pierre; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice
2016-09-01
Classical Hodgkin lymphoma is one of the most common lymphomas and shares clinical and genetic features with primary mediastinal B-cell lymphoma. In this retrospective study, we analyzed the recurrent hotspot mutation of the exportin 1 (XPO1, p.E571K) gene, previously identified in primary mediastinal B-cell lymphoma, in biopsies and plasma circulating cell-free DNA from patients with classical Hodgkin lymphoma using a highly sensitive digital PCR technique. A total of 94 patients were included in the present study. This widely expressed XPO1 E571K mutation is present in one quarter of classical Hodgkin lymphoma patients (24.2%). Mutated and wild-type classical Hodgkin lymphomas were similar regarding the main clinical features. Patients with a detectable XPO1 mutation at the end of treatment displayed a tendency toward shorter progression-free survival, as compared to patients with undetectable mutation in plasma cell-free DNA (2-year progression-free survival: 57.1%, 95% confidence interval: 30.1-100% versus 2-year progression-free survival: 90.5%, 95% confidence interval: 78.8-100%, respectively, P=0.0601). To conclude, the detection of the XPO1 E571K mutation in biopsy and plasma cell-free DNA by digital PCR may be used as a novel biomarker in classical Hodgkin lymphoma for both diagnosis and minimal residual disease, and pinpoints a crucial role of XPO1 in classical Hodgkin lymphoma pathogenesis. The detection of somatic mutation in the plasma cell-free DNA of patients represents a major technological advance in the context of liquid biopsies and noninvasive management of classical Hodgkin lymphoma. Copyright© Ferrata Storti Foundation.
Ibarra-Ramirez, Marisol; Campos-Acevedo, Luis Daniel; Lugo-Trampe, Jose; Martínez-Garza, Laura E.; Martinez-Glez, Víctor; Valencia-Benitez, María; Lapunzina, Pablo; Ruiz-Peréz, Víctor
2017-01-01
Case series Patient: — Final Diagnosis: Ellis van Creveld syndrome Symptoms: Conical teeth • polydactyly • short stature Medication: — Clinical Procedure: — Specialty: Pediatrics and Neonatology Objective: Rare disease Background: Ellis-van Creveld syndrome is an autosomal recessive chondro-ectodermal dysplasia characterized by disproportionate short stature, limb shortening, narrow chest, postaxial polydactyly and dysplastic nails and teeth. In addition, 60% of cases present congenital heart defects. Ellis-van Creveld syndrome is predominantly caused by mutations in the EVC or EVC2 (4p16) genes, with only a few cases caused by mutations in WDR35. Case Report: Here, we report on two Mexican families with patients diagnosed with Ellis-van Creveld syndrome. Family 1 includes four patients: three females of 15, 18, and 23 years of age and a 7-year old male. Family 2 has only one affected newborn male. All patients exhibited multiple features including hypodontia, dysplastic teeth, extra frenula, mild short stature, distal limb shortening, postaxial polydactyly of hands and feet, nail dystrophy, and knee joint abnormalities. Only two patients had an atrial septal defect. In all cases, molecular analysis by Sanger sequencing identified the same homozygous mutation in exon 12 of EVC, c.1678G>T, which leads to a premature stop codon. Conclusions: The mutation c.1678G>T has been previously reported in another Mexican patient and it appears to be a recurrent mutation in Mexico which could represent a founder mutation. The large number of patients in this case allows the clinical variability and spectrum of manifestations present in individuals with Ellis-van Creveld syndrome even if they carry the same homozygous mutation in a same family. PMID:29229899
Page, Kathleen; Bergwitz, Clemens; Jaureguiberry, Graciana; Harinarayan, Chittari V; Insogna, Karl
2008-10-01
To determine if there was a genetic contribution to our patient's unusual clinical presentation of nephrolithiasis and nonhealing stress fracture. We describe a 31-year-old man who had rickets as a child and developed a femur insufficiency fracture and recurrent nephrolithiasis as an adult after moving to the United States from India. The patient's clinical course and results from radiographic and biochemical analyses are described. Analysis of the SLC34A3 gene was performed using genomic DNA samples from the patient and his family members. Before referral to the Yale Bone Center, the patient was treated with calcitriol, ergocalciferol, and phosphate. Changing therapy to phosphate alone led to clinical improvement. Genetic analysis revealed that the patient is a compound heterozygote for mutations in the SLC34A3 gene. On 1 allele, he has a previously described missense mutation in exon 7: c.575C>T (p.Ser192Leu). The other allele carries a novel nonsense mutation in exon 3: c.145C>T (p.Gln49X). One unaffected sibling is a carrier of the missense mutation and 1 sister with a history of flank pain is a carrier of the novel mutation. Hereditary hypophosphatemic rickets with hypercalciuria is a rare metabolic disorder associated with mutations in SLC34A3, the gene that encodes the renal sodium phosphate cotransporter NaPi-IIc. Although hypercalciuria is a distinguishing feature of the disease, nephrolithiasis is rarely described. The patient's atypical clinical presentation illustrates that both environmental and genetic factors potentially affect phenotypic expression of SLC34A3 mutations.
Mohamed Yusoff, Abdul Aziz; Mohd Nasir, Khairol Naaim; Haris, Khalilah; Mohd Khair, Siti Zulaikha Nashwa; Abdul Ghani, Abdul Rahman Izaini; Idris, Zamzuri; Abdullah, Jafri Malin
2017-11-01
Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.
Cheng, Fu Bo; Ozelius, Laurie J; Wan, Xin Hua; Feng, Jia Chun; Ma, Ling Yan; Yang, Ying Mai; Wang, Lin
2012-02-01
Mutations in the THAP1 gene were recently identified as the cause of DYT6 primary dystonia. More than 40 mutations in this gene have been described in different populations. However, no previous report has identified sequence variations that affect the transcript process of the THAP1 gene. In addition, the mutation frequency in Chinese early-onset primary dystonia has not been well characterized. One hundred and two unrelated patients with non-DYT1 early-onset primary dystonia (age at onset <26 years), family members of participants with mutations, and 200 neurologically normal controls were screened for THAP1 gene mutations. The effects of the identified mutations on RNA expression were analyzed using semi-quantitative real-time PCR. Seven sequence variants (c.63_66del TTTC, c.161G>T, c.224A>T, c.267G>A, c.339T>C, c.449A>C, and c.539T>C) were identified in this group of patients (6.9%). In this cohort, 15 subjects (seven unrelated patients and eight family members) were detected to have THAP1 sequence variants. Among these 15 subjects, 11 were manifested (penetrance of DYT6 was 73.3%) and seven presented with craniocervical involvement (63.6%). However, one patient manifested paroxysmal headshake, and one presented with essential hand tremor. Semi-quantitative real-time PCR indicated that a novel silent mutation (c.267G>A) decreased the expression of THAP1 in human lymphocytes. Our findings indicated that THAP1 sequence variants are not common in non-DYT1 early-onset primary dystonia in China and that the clinical manifestation may vary. One silent mutation (c.267G>A) was shown to affect THAP1 expression.
Yasuda, Hiroyuki; Hamamoto, Junko; Oashi, Ayano; Ishioka, Kota; Arai, Daisuke; Nukaga, Shigenari; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Costa, Daniel B.; Kobayashi, Susumu S.; Betsuyaku, Tomoko; Soejima, Kenzo
2015-01-01
EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the “therapeutic window” of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations. PMID:26515464
Germline Mutations of BRCA1 and BRCA2 in Korean Ovarian Cancer Patients: Finding Founder Mutations.
Choi, Min Chul; Heo, Jin-Hyung; Jang, Ja-Hyun; Jung, Sang Geun; Park, Hyun; Joo, Won Duk; Lee, Chan; Lee, Je Ho; Lee, Jun Mo; Hwang, Yoon Young; Kim, Seung Jo
2015-10-01
To investigate and analyze the BRCA mutations in Korean ovarian cancer patients with or without family history and to find founder mutations in this group. One hundred two patients who underwent a staging operation for pathologically proven epithelial cancer between January 2013 and December 2014 were enrolled. Thirty-two patients declined to analyze BRCA1/2 gene alterations after genetic counseling and pedigree analysis. Lymphocyte specimens from peripheral blood were assessed for BRCA1/2 by direct sequencing. BRCA genetic test results of 70 patients were available. Eighteen BRCA1/2 mutations and 17 unclassified variations (UVs) were found. Five of the BRCA1/2 mutations and 4 of the UVs were not reported in the Breast Cancer Information Core database. One BRCA2 UV (8665_8667delGGA) was strongly suspicious to be a deleterious mutation. BRCA1/2 mutations were identified in 11 (61.1%) of 18 patients with a family history and in 7 (13.5%) of 52 patients without a family history.Candidates for founder mutations in Korean ovarian cancer patients were assessed among 39 BRCA1/2 mutations from the present study and from literature reviews. The analysis showed that 1041_1043delAGCinsT (n = 4; 10.2%) and 3746insA (n = 4; 10.2%) were possible BRCA1 founder mutations. Only one of the BRCA2 mutations (5804_5807delTTAA) was repeated twice (n = 2; 5.1%). The prevalence of BRCA1/2 mutations in Korean ovarian cancer patients irrespective of the family history was significantly higher than previously reported. Possible founder mutations in Korean ovarian cancer patients were identified.
Marini, Francesca; Giusti, Francesca; Fossi, Caterina; Cioppi, Federica; Cianferotti, Luisella; Masi, Laura; Boaretto, Francesca; Zovato, Stefania; Cetani, Filomena; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Guizzardi, Fabiana; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa
2018-03-01
Multiple endocrine neoplasia type 1 (MEN1) is caused by germline inactivating mutations of the MEN1 gene. Currently, no direct genotype-phenotype correlation is identified. We aim to analyze MEN1 mutation site and features, and possible correlations between the mutation type and/or the affected menin functional domain and clinical presentation in patients from the Italian multicenter MEN1 database, one of the largest worldwide MEN1 mutation series published to date. The study included the analysis of MEN1 mutation profile in 410 MEN1 patients [370 familial cases from 123 different pedigrees (48 still asymptomatic at the time of this study) and 40 single cases]. We identified 99 different mutations: 41 frameshift [small intra-exon deletions (28) or insertions (13)], 13 nonsense, 26 missense and 11 splicing site mutations, 4 in-frame small deletions, and 4 intragenic large deletions spanning more than one exon. One family had two different inactivating MEN1 mutations on the same allele. Gastro-entero-pancreatic tumors resulted more frequent in patients with a nonsense mutation, and thoracic neuroendocrine tumors in individuals bearing a splicing-site mutation. Our data regarding mutation type frequency and distribution are in accordance with previously published data: MEN1 mutations are scattered through the entire coding region, and truncating mutations are the most common in MEN1 syndrome. A specific direct correlation between MEN1 genotype and clinical phenotype was not found in all our families, and wide intra-familial clinical variability and variable disease penetrance were both confirmed, suggesting a role for modifying, still undetermined, factors, explaining the variable MEN1 tumorigenesis.
Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J
2012-06-01
Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome. Copyright © 2012 Elsevier Inc. All rights reserved.
Geier, Christoph B.; Piller, Alexander; Linder, Angela; Sauerwein, Kai M. T.; Eibl, Martha M.; Wolf, Hermann M.
2015-01-01
Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency. PMID:26186701
Santos, Paulo C J L; Pereira, Alexandre C; Cançado, Rodolfo D; Schettert, Isolmar T; Sobreira, Tiago J P; Oliveira, Paulo S L; Hirata, Rosario D C; Hirata, Mario H; Figueiredo, Maria Stella; Chiattone, Carlos S; Krieger, Jose E; Guerra-Shinohara, Elvira M
2010-12-15
Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation>50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n=11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and β2-microglobulin (β2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. Copyright © 2010 Elsevier Inc. All rights reserved.
Dimishkovska, Marija; Kotori, Vjosa Mulliqi; Gucev, Zoran; Kocheva, Svetlana; Polenakovic, Momir; Plaseska-Karanfilska, Dijana
2018-01-20
Fanconi anemia is a rare autosomal recessive or X-linked disorder characterised by clinical and genetic heterogeneity. Most fanconi anemia patients harbour homozygous or double heterozygous mutations in the FANCA (60-65%), FANCC (10-15%), FANCG (~10%) or FANCD2 (3-6%) genes. We have already reported the FANCA variant c.190-256_283+1680del2040dupC as a founder mutation among Macedonian fanconi anemia patients of Gypsy-like ethnic origin. Here, we present a novel FANCA mutation in two patients from Macedonia and Kosovo. The novel FANCA mutation c.3446_3449dupCCCT was identified in two fanconi anemia patients with Romany ethnicity; a 2-year-old girl from Macedonia who is a compound heterozygote for a previously reported FANCA c.190-256_283+1680del2040dupC and the novel mutation and a 10-year-old girl from Kosovo who is a homozygote for the novel FANCA c.3446_3449dupCCCT mutation. The novel mutation is located in exon 35 in the FAAP20-binding domain which plays a crucial role in the FANCA -FAAP20 interaction and is required for integrity of the fanconi anemia pathway. The finding of the FANCA c.3446_3449dupCCCT mutation in two unrelated FA patients with Romani ethnicity from Macedonia and Kosovo suggests it is a founder mutation in the Romani population living in the Balkan region.
Mild and severe muscular dystrophy caused by a single {gamma}-sarcoglycan mutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, E.M.; Boennemann, C.G.; Lidov, H.G.W.
1996-11-01
Autosomal recessive muscular dystrophy is genetically heterogeneous. One form of this disorder, limb-girdle muscular dystrophy type 2C (LGMD 2C), is prevalent in northern Africa and has been shown to be associated with a single mutation in the gene encoding the dystrophin-associated protein {gamma}-sarcoglycan. The previous mutation analysis of {gamma}-sarcoglycan required the availability of muscle biopsies. To establish a mutation assay for genomic DNA, the intron-exon structure of the {gamma}-sarcoglycan gene was determined, and primers were designed to amplify each of the exons encoding {gamma}-sarcoglycan. We studied a group of Brazilian muscular dystrophy patients for mutations in the {gamma}-sarcoglycan gene. Thesemore » patients were selected on the basis of autosomal inheritance and/or the presence of normal dystrophin and/or deficiency of {alpha}-sarcoglycan immunostaining. Four of 19 patients surveyed had a single, homozygous mutation in the {gamma}-sarcoglycan gene. The mutation identified in these patients, all of African-Brazilian descent, is identical to that seen in the North African population, suggesting that even patients of remote African descent may carry this mutation. The phenotype in these patients varied considerably. Of four families with an identical mutation, three have a severe Duchenne-like muscular dystrophy. However, one family has much milder symptoms, suggesting that other loci may be present that modify the severity of the clinical course resulting from {gamma}-sarcoglycan gene mutations. 19 refs., 5 figs., 3 tabs.« less
Hershberger, Ray E.; Pinto, Jose Renato; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Cowan, Jason; Morales, Ana; Parvatiyar, Michelle S.; Potter, James D.
2009-01-01
Background A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation. Methods and Results We recently undertook bidirectional resequencing of TNNT2, the cardiac troponin T gene, in 313 probands with DCM. We identified six TNNT2 protein-altering variants in nine probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the nine probands had DCM without a family history, and five had familial DCM. Only one mutation (Lys210del) could be attributed as definitively causative from prior reports. Four of the five missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree and molecular genetic data these five mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca2+ sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease-causing. Conclusions We conclude that the combination of clinical, pedigree, molecular genetic and functional data strengthen the interpretation of TNNT2 mutations in DCM. PMID:20031601
Coppin, Evelyne; Silar, Philippe
2007-08-01
In the filamentous fungus Podospora anserina, many pigmentation mutations map to the median region of the complex locus '14', called segment '29'. The data presented in this paper show that segment 29 corresponds to a gene encoding a polyketide synthase, designated PaPKS1, and identifies two mutations that completely or partially abolish the activity of the PaPKS1 polypeptide. We present evidence that the P. anserina green pigment is a (DHN)-melanin. Using the powerful genetic system of PaPKS1 cloning, we demonstrate that in P. anserina trans-duplicated sequences are subject to the RIP process as previously demonstrated for the cis-duplicated regions.
Rosado, Consolación; Bueno, Elena; Fraile, Pilar; García-Cosmes, Pedro; González-Sarmiento, Rogelio
2015-01-01
Bilateral sensorineural hearing loss is a characteristic feature of Alport syndrome, which is always linked to renal manifestations so they have a parallel evolution and prognosis, and deafness helps to identify the renal disease. We report a family that suffers an autosomal dominant Alport syndrome caused by a previously undescribed mutation in the COL4A3 gene, in which several members have hearing impairment as the only clinical manifestation, suggesting that in this family deafness can occur independent of renal disease. This mutation is also present in a patient with anterior lenticonus, an observation only found in families with recessive and sex-linked Alport disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Kaya, Namik; Al-Owain, Mohammad; Abudheim, Nada; Al-Zahrani, Jawaher; Colak, Dilek; Al-Sayed, Moeen; Milanlioglu, Aysel; Ozand, Pinar T; Alkuraya, Fowzan S
2011-06-01
The GM2 gangliosidose, Tay-Sachs and Sandhoff diseases, are a class of lysosomal storage diseases in which relentless neurodegeneration results in devastating neurological disability and premature death. Primary prevention is the most effective intervention since no effective therapy is currently available. An extremely successful model for the prevention of GM2 gangliosidosis in the Ashkenazi Jewish community is largely attributable to the very limited number of founder mutations in that population. Consistent with our previous observation of allelic heterogeneity in consanguineous populations, we show here that these diseases are largely caused by private mutations which present a major obstacle in replicating the Ashkenazi success story. Alternative solutions are proposed which can also be implemented for other autosomal recessive diseases in our population. Copyright © 2011 Wiley-Liss, Inc.
Unique presentation of LHON/MELAS overlap syndrome caused by m.13046T>C in MTND5.
Kolarova, Hana; Liskova, Petra; Tesarova, Marketa; Kucerova Vidrova, Vendula; Forgac, Martin; Zamecnik, Josef; Hansikova, Hana; Honzik, Tomas
2016-12-01
Leber hereditary optic neuropathy (LHON) and mitochondrial encephalopathy, myopathy, lactic acidosis and stroke-like episodes (MELAS) syndromes are mitochondrially inherited disorders characterized by acute visual failure and variable multiorgan system presentation, respectively. A 12-year-old girl with otherwise unremarkable medical history presented with abrupt, painless loss of vision. Over the next few months, she developed moderate sensorineural hearing loss, vertigo, migraines, anhedonia and thyroiditis. Ocular examination confirmed bilateral optic nerve atrophy. Metabolic workup documented elevated cerebrospinal fluid lactate. Initial genetic analyses excluded the three most common LHON mutations. Subsequently, Sanger sequencing of the entire mitochondrial DNA (mtDNA) genome was performed. Whole mtDNA sequencing revealed a pathogenic heteroplasmic mutation m.13046T>C in MTND5 encoding the ND5 subunit of complex I. This particular variant has previously been described in a single case report of MELAS/Leigh syndrome (subacute necrotizing encephalopathy). Based on the constellation of clinical symptoms in our patient, we diagnose the condition as LHON/MELAS overlap syndrome. We describe a unique presentation of LHON/MELAS overlap syndrome resulting from a m.13046T>C mutation in a 12-year-old girl. In patients with sudden vision loss in which three of the most prevalent LHON mitochondrial mutations have been ruled out, molecular genetic examination should be extended to other mtDNA-encoded subunits of MTND5 complex I. Furthermore, atypical clinical presentations must be considered, even in well-described phenotypes.
Theart, L; Kotze, M J; Langenhoven, E; Loubser, O; Peeters, A V; Lintott, C J; Scott, R S
1995-01-01
DNA from 14 unrelated New Zealand familial hypercholesterolaemia (FH) heterozygotes, originating from the United Kingdom, was screened for mutations in exon 4 of the low density lipoprotein receptor (LDLR) gene. One patient was heterozygous for mutation D206E, which was initially identified in South Africa. The chromosomal background of this mutant allele was compatible with that described previously in Afrikaner and English patients, suggesting that this mutation originated in the United Kingdom. The 2 bp deletion in codon 206 and mutations D154N and D200G, previously reported in English FH patients, were not detected in this sample. In one of the patients, however, a new deletion of 7 bp was identified after nucleotide 581 (or 582) in exon 4 of the LDLR gene. Images PMID:7616546
Antoniou, A; Pharoah, P; Narod, S; Risch, H; Eyfjord, J; Hopper, J; Olsson, H; Johannsson, O; Borg, A; Pasini, B; Radice, P; Manoukian, S; Eccles, D; Tang, N; Olah, E; Anton-Culver, H; Warner, E; Lubinski, J; Gronwald, J; Gorski, B; Tulinius, H; Thorlacius, S; Eerola, H; Nevanlinna, H; Syrjakoski, K; Kallioniemi, O; Thompson, D; Evans, C; Peto, J; Lalloo, F; Evans, D; Easton, D
2005-01-01
A recent report estimated the breast cancer risks in carriers of the three Ashkenazi founder mutations to be higher than previously published estimates derived from population based studies. In an attempt to confirm this, the breast and ovarian cancer risks associated with the three Ashkenazi founder mutations were estimated using families included in a previous meta-analysis of populatrion based studies. The estimated breast cancer risks for each of the founder BRCA1 and BRCA2 mutations were similar to the corresponding estimates based on all BRCA1 or BRCA2 mutations in the meta-analysis. These estimates appear to be consistent with the observed prevalence of the mutations in the Ashkenazi Jewish population. PMID:15994883
Downs, Louise M; Hitti, Rebekkah; Pregnolato, Silvia; Mellersh, Cathryn S
2014-03-01
To assess the extent of progressive retinal atrophy (PRA) genetic heterogeneity within and between domestic dog breeds. DNA from 231 dogs with PRA, representing 36 breeds, was screened for 17 mutations previously associated with PRA in at least one breed of dog. Screening methods included amplified fragment size discrimination using gel electrophoresis or detection of fluorescence, (TaqMan(®) ; Life Technologies, Carlsbad, CA, USA) allelic discrimination, and Sanger sequencing. Of the 231 dogs screened, 129 were homozygous for a PRA-associated mutation, 29 dogs were carriers, and 73 were homozygous for the wild-type allele at all loci tested. In two of the 129 dogs, homozygous mutations were identified that had not previously been observed in the respective breeds: one Chinese Crested dog was homozygous for the RCD3-associated mutation usually found in the Cardigan Welsh Corgi, and one Standard Poodle was homozygous for the RCD4-associated mutation previously reported to segregate in Gordon and Irish Setters. In the majority of the breeds (15/21) in which a PRA-associated mutation is known to segregate, cases were identified that did not carry any of the known PRA-associated mutations. Progressive retinal atrophy in the dog displays significant genetic heterogeneity within as well as between breeds. There are also several instances where PRA-associated mutations segregate among breeds with no known close ancestry. © 2013 American College of Veterinary Ophthalmologists.
Pigmented well-differentiated hepatocellular neoplasm with beta-catenin mutation.
Souza, Lara Neves; de Martino, Rodrigo Bronze; Thompson, Richard; Strautnieks, Sandra; Heaton, Nigel D; Quaglia, Alberto
2015-12-01
According to the most recent WHO classification of hepatocellular adenomas, a small percentage of inflammatory hepatocellular adenomas presents with mutation in the beta-catenin gene and are at higher risk of malignant transformation. It has been recognized that adenoma-like hepatocellular neoplasms with focal atypia, or in unusual clinical context present with similar cytogenetic and immunohistochemistry characteristics to well-differentiated hepatocellular carcinomas. We report a case of a well-differentiated hepatocellular neoplasm with Dubin-Johnson-like pigment displaying histological features overlapping with a beta-catenin mutated inflammatory adenoma and a well-differentiated hepatocellular carcinoma in a non-cirrhotic liver. The patient was a 48-year-old woman, who was asymptomatic, and had a clinical history of intra-uterine exposure to diethylstilbestrol, previous cancers and past oral contraceptive use. The recently proposed term "well-differentiated hepatocellular neoplasm of uncertain malignant potential" should be applied in such cases to highlight the different pathogenesis and risk of malignancy compared to the typical adenomas, and to suggest a careful and customized clinical management.
Somatic Mutations and Neoepitope Homology in Melanomas Treated with CTLA-4 Blockade.
Nathanson, Tavi; Ahuja, Arun; Rubinsteyn, Alexander; Aksoy, Bulent Arman; Hellmann, Matthew D; Miao, Diana; Van Allen, Eliezer; Merghoub, Taha; Wolchok, Jedd D; Snyder, Alexandra; Hammerbacher, Jeff
2017-01-01
Immune checkpoint inhibitors are promising treatments for patients with a variety of malignancies. Toward understanding the determinants of response to immune checkpoint inhibitors, it was previously demonstrated that the presence of somatic mutations is associated with benefit from checkpoint inhibition. A hypothesis was posited that neoantigen homology to pathogens may in part explain the link between somatic mutations and response. To further examine this hypothesis, we reanalyzed cancer exome data obtained from our previously published study of 64 melanoma patients treated with CTLA-4 blockade and a new dataset of RNA-Seq data from 24 of these patients. We found that the ability to accurately predict patient benefit did not increase as the analysis narrowed from somatic mutation burden, to inclusion of only those mutations predicted to be MHC class I neoantigens, to only including those neoantigens that were expressed or that had homology to pathogens. The only association between somatic mutation burden and response was found when examining samples obtained prior to treatment. Neoantigen and expressed neoantigen burden were also associated with response, but neither was more predictive than somatic mutation burden. Neither the previously described tetrapeptide signature nor an updated method to evaluate neoepitope homology to pathogens was more predictive than mutation burden. Cancer Immunol Res; 5(1); 84-91. ©2016 AACR. ©2016 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choy, F.Y.M.; Wei, C.; Applegarth, D.A.
1994-06-01
Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. Thismore » missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.« less
Novel Insight into Mutational Landscape of Head and Neck Squamous Cell Carcinoma
Gaykalova, Daria A.; Mambo, Elizabeth; Choudhary, Ashish; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Darden, Will; Adai, Alex; Hadd, Andrew; Latham, Gary; Danilova, Ludmila V.; Bishop, Justin; Li, Ryan J.; Westra, William H.; Hennessey, Patrick; Koch, Wayne M.; Ochs, Michael F.; Califano, Joseph A.; Sun, Wenyue
2014-01-01
Development of head and neck squamous cell carcinoma (HNSCC) is characterized by accumulation of mutations in several oncogenes and tumor suppressor genes. We have formerly described the mutation pattern of HNSCC and described NOTCH signaling pathway alterations. Given the complexity of the HNSCC, here we extend the previous study to understand the overall HNSCC mutation context and to discover additional genetic alterations. We performed high depth targeted exon sequencing of 51 highly actionable cancer-related genes with a high frequency of mutation across many cancer types, including head and neck. DNA from primary tumor tissues and matched normal tissues was analyzed for 37 HNSCC patients. We identified 26 non-synonymous or stop-gained mutations targeting 11 of 51 selected genes. These genes were mutated in 17 out of 37 (46%) studied HNSCC patients. Smokers harbored 3.2-fold more mutations than non-smokers. Importantly, TP53 was mutated in 30%, NOTCH1 in 8% and FGFR3 in 5% of HNSCC. HPV negative patients harbored 4-fold more TP53 mutations than HPV positive patients. These data confirm prior reports of the HNSCC mutational profile. Additionally, we detected mutations in two new genes, CEBPA and FES, which have not been previously reported in HNSCC. These data extend the spectrum of HNSCC mutations and define novel mutation targets in HNSCC carcinogenesis, especially for smokers and HNSCC without HPV infection. PMID:24667986
Khani, Marzieh; Shamshiri, Hosein; Alavi, Afagh; Nafissi, Shahriar; Elahi, Elahe
2016-10-15
We aimed to identify the genetic cause of neurological disease in an Iranian pedigree whose manifestations suggested hereditary motor and sensory neuropathy with proximal predominance (HMSN-P). Identification of a p.Gly269Val mutation in TFG, the known HMSN-P causative gene, provided supportive evidence. Subjective, biochemical, electrodiagnostic, and imaging data were compared with previously reported HMSN-P patients, including patients of an earlier described Iranian pedigree. Although notable clinical variability was found, comparable involvement of proximal and distal muscles was observed in both Iranian pedigrees. Interestingly, the same p.Gly269Val mutation was recently reported as cause of Charcot-Marie-Tooth disease type 2 in a Taiwanese pedigree. The likelihood that the two pedigrees with the p.Gly269Val mutation are not affected with different diseases is discussed. Identification of a second Iranian HMSN-P pedigree further confirms that HMSN-P is not confined to the Far East. Furthermore, p.Pro285Leu that has been the only TFG mutation thus far reported in HMSN-P patients is not the only mutation that can cause the disease. It is emphasized HMSN-P is a neuronopathy. Copyright © 2016 Elsevier B.V. All rights reserved.
Ferreira, Ana M; Tuominen, Iina; Sousa, Sónia; Gerbens, Frans; van Dijk-Bos, Krista; Osinga, Jan; Kooi, Krista A; Sanjabi, Bahram; Esendam, Chris; Oliveira, Carla; Terpstra, Peter; Hardonk, Menno; van der Sluis, Tineke; Zazula, Monika; Stachura, Jerzy; van der Zee, Ate G; Hollema, Harry; Sijmons, Rolf H; Aaltonen, Lauri A; Seruca, Raquel; Hofstra, Robert M W; Westers, Helga
2014-12-01
Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development. © 2014 WILEY PERIODICALS, INC.
Homozygous TREM2 mutation in a family with atypical frontotemporal dementia.
Le Ber, Isabelle; De Septenville, Anne; Guerreiro, Rita; Bras, José; Camuzat, Agnès; Caroppo, Paola; Lattante, Serena; Couarch, Philippe; Kabashi, Edor; Bouya-Ahmed, Kawtar; Dubois, Bruno; Brice, Alexis
2014-10-01
TREM2 mutations were first identified in Nasu-Hakola disease, a rare autosomal recessive disease characterized by recurrent fractures because of bone cysts and presenile dementia. Recently, homozygous and compound heterozygous TREM2 mutations were identified in rare families with frontotemporal lobar degeneration (FTLD) but without bone involvement. We identified a p.Thr66Met heterozygous mutation in a new consanguineous Italian family. Two sibs had early onset autosomal recessive FTLD without severe bone disorders. Atypical signs were present in this family: early parietal and hippocampus involvement, parkinsonism, epilepsy, and corpus callosum thickness on brain magnetic resonance imaging. This study further demonstrates the implication of TREM2 mutations in FTLD phenotypes. It illustrates the variability of bone phenotype and underlines the frequency of atypical signs in TREM2 carriers. This and previous studies evidence that TREM2 mutation screening should be limited to autosomal recessive FTLD with atypical phenotypes characterized by: (1) a very young age at onset (20-50 years); (2) early parietal and hippocampal deficits; (3) the presence of seizures and parkinsonism; (4) suggestive extensive white matter lesions and corpus callosum thickness on brain magnetic resonance imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Homozygous TREM2 mutation in a family with atypical frontotemporal dementia
Bras, José; Camuzat, Agnès; Caroppo, Paola; Lattante, Serena; Couarch, Philippe; Kabashi, Edor; Bouya-Ahmed, Kawtar; Dubois, Bruno; Brice, Alexis
2014-01-01
TREM2 mutations were first identified in Nasu-Hakola disease, a rare autosomal recessive disease characterized by recurrent fractures because of bone cysts and presenile dementia. Recently, homozygous and compound heterozygous TREM2 mutations were identified in rare families with frontotemporal lobar degeneration (FTLD) but without bone involvement. We identified a p.Thr66Met heterozygous mutation in a new consanguineous Italian family. Two sibs had early onset autosomal recessive FTLD without severe bone disorders. Atypical signs were present in this family: early parietal and hippocampus involvement, parkinsonism, epilepsy, and corpus callosum thickness on brain magnetic resonance imaging. This study further demonstrates the implication of TREM2 mutations in FTLD phenotypes. It illustrates the variability of bone phenotype and underlines the frequency of atypical signs in TREM2 carriers. This and previous studies evidence that TREM2 mutation screening should be limited to autosomal recessive FTLD with atypical phenotypes characterized by: (1) a very young age at onset (20–50 years); (2) early parietal and hippocampal deficits; (3) the presence of seizures and parkinsonism; (4) suggestive extensive white matter lesions and corpus callosum thickness on brain magnetic resonance imaging. PMID:24910390
Burrage, Lindsay C; Tang, Sha; Wang, Jing; Donti, Taraka R; Walkiewicz, Magdalena; Luchak, J Michael; Chen, Li-Chieh; Schmitt, Eric S; Niu, Zhiyv; Erana, Rodrigo; Hunter, Jill V; Graham, Brett H; Wong, Lee-Jun; Scaglia, Fernando
2014-11-01
Mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) is a rare mitochondrial disorder that has previously been associated with mutations in PUS1 and YARS2. In the present report, we describe a 6-year old male with an MLASA plus phenotype. This patient had features of MLASA in the setting of developmental delay, sensorineural hearing loss, epilepsy, agenesis of the corpus callosum, failure to thrive, and stroke-like episodes. Sequencing of the mitochondrial genome identified a novel de novo, heteroplasmic mutation in the mitochondrial DNA (mtDNA) encoded ATP6 gene (m.8969G>A, p.S148N). Whole exome sequencing did not identify mutations or variants in PUS1 or YARS2 or any known nuclear genes that could affect mitochondrial function and explain this phenotype. Studies of fibroblasts derived from the patient revealed a decrease in oligomycin-sensitive respiration, a finding which is consistent with a complex V defect. Thus, this mutation in MT-ATP6 may represent the first mtDNA point mutation associated with the MLASA phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.
Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaithinathan, R.; Berson, E.L.; Dryja, T.P.
Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 ofmore » 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.« less
Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations
Price, Susan; Shaw, Pamela A.; Seitz, Amy; Joshi, Gyan; Davis, Joie; Niemela, Julie E.; Perkins, Katie; Hornung, Ronald L.; Folio, Les; Rosenberg, Philip S.; Puck, Jennifer M.; Hsu, Amy P.; Lo, Bernice; Pittaluga, Stefania; Jaffe, Elaine S.; Fleisher, Thomas A.; Lenardo, Michael J.
2014-01-01
Autoimmune lymphoproliferative syndrome (ALPS) presents in childhood with nonmalignant lymphadenopathy and splenomegaly associated with a characteristic expansion of mature CD4 and CD8 negative or double negative T-cell receptor αβ+ T lymphocytes. Patients often present with chronic multilineage cytopenias due to autoimmune peripheral destruction and/or splenic sequestration of blood cells and have an increased risk of B-cell lymphoma. Deleterious heterozygous mutations in the FAS gene are the most common cause of this condition, which is termed ALPS-FAS. We report the natural history and pathophysiology of 150 ALPS-FAS patients and 63 healthy mutation-positive relatives evaluated in our institution over the last 2 decades. Our principal findings are that FAS mutations have a clinical penetrance of <60%, elevated serum vitamin B12 is a reliable and accurate biomarker of ALPS-FAS, and the major causes of morbidity and mortality in these patients are the overwhelming postsplenectomy sepsis and development of lymphoma. With longer follow-up, we observed a significantly greater relative risk of lymphoma than previously reported. Avoiding splenectomy while controlling hypersplenism by using corticosteroid-sparing treatments improves the outcome in ALPS-FAS patients. This trial was registered at www.clinicaltrials.gov as #NCT00001350. PMID:24398331
Myotonia fluctuans. A third type of muscle sodium channel disease.
Ricker, K; Moxley, R T; Heine, R; Lehmann-Horn, F
1994-11-01
To define a new type of dominant myotonic muscle disorder and to identify the gene lesion. Case series, clinical examination and electromyography, measurements of grip force and relaxation time, and DNA analysis to probe for mutation in the gene for the skeletal muscle sodium channel. Outpatient clinic and home. Three families studied; all together, 17 affected and nine unaffected individuals. The findings in these three families confirm the existence of myotonia fluctuans as we described it previously in another family. Myotonia (prolongation of relaxation time) developed 20 to 40 minutes after exercise. Potassium caused generalized myotonia. Cooling had no major effect on muscle function. Three families had a common mutation in exon 22 and one family had a mutation in exon 14 of the gene for the sodium channel alpha subunit. Myotonia fluctuans is a disorder of the muscle sodium channel. There are at present two other distinct clinical muscle disorders associated with mutations in the sodium channel: hyperkalemic periodic paralysis and paramyotonia congenita. The findings in the present report indicate that myotonia fluctuans belongs to a third type of sodium channel disorder. Further work is needed to understand the complex genotype-phenotype correlations in sodium channel disorders.
Bonatti, Francesco; Adorni, Alessia; Matichecchia, Annalisa; Mozzoni, Paola; Uliana, Vera; Pisani, Francesco; Garavelli, Livia; Graziano, Claudio; Gnoli, Maria; Bigoni, Stefania; Boschi, Elena; Martorana, Davide; Percesepe, Antonio
2017-01-01
Neurofibromatosis type I, a genetic disorder due to mutations in the NF1 gene, is characterized by a high mutation rate (about 50% of the cases are de novo) but, with the exception of whole gene deletions associated with a more severe phenotype, no specific hotspots and few solid genotype/phenotype correlations. After retrospectively re-evaluating all NF1 gene variants found in the diagnostic activity, we studied 108 patients affected by neurofibromatosis type I who harbored mutations that had not been previously reported in the international databases, with the aim of analyzing their type and distribution along the gene and of correlating them with the phenotypic features of the affected patients. Out of the 108 previously unreported variants, 14 were inherited by one of the affected parents and 94 were de novo. Twenty-nine (26.9%) mutations were of uncertain significance, whereas 79 (73.2%) were predicted as pathogenic or probably pathogenic. No differential distribution in the exons or in the protein domains was observed and no statistically significant genotype/phenotype correlation was found, confirming previous evidences. PMID:28961165
Wimmer, Katharina; Beilken, Andreas; Nustede, Rainer; Ripperger, Tim; Lamottke, Britta; Ure, Benno; Steinmann, Diana; Reineke-Plaass, Tanja; Lehmann, Ulrich; Zschocke, Johannes; Valle, Laura; Fauth, Christine; Kratz, Christian P
2017-01-01
In a 14-year-old boy with polyposis and rectosigmoid carcinoma, we identified a novel POLE germline mutation, p.(Val411Leu), previously found as recurrent somatic mutation in 'ultramutated' sporadic cancers. This is the youngest reported cancer patient with polymerase proofreading-associated polyposis indicating that POLE mutation p.(Val411Leu) may confer a more severe phenotype than previously reported POLE and POLD1 germline mutations. The patient had multiple café-au-lait macules and a pilomatricoma mimicking the clinical phenotype of constitutional mismatch repair deficiency. We hypothesize that these skin features may be common to different types of constitutional DNA repair defects associated with polyposis and early-onset cancer.
Adams, Stuart P; Wilson, Melanie; Harb, Elissar; Fairbanks, Lynette; Xu-Bayford, Jinhua; Brown, Lucie; Kearney, Laura; Madkaikar, Manisha; Bobby Gaspar, H
2015-12-01
Severe combined immunodeficiency (SCID) arises from a number of different genetic defects, one of the most common being mutations in the gene encoding adenosine deaminase (ADA). In the UK, ADA deficient SCID compromises approximately 20% of all known cases of SCID. We carried out a retrospective analysis of the ADA gene in 46 known ADA deficient SCID patients on whom DNA had been stored. Here, we report a high frequency of two previously reported mutations and provide a link between the mutations and patient ethnicity within our patient cohort. We also report on 9 novel mutations that have been previously unreported. Copyright © 2015 Elsevier Inc. All rights reserved.
Phenotypic spectrum and prevalence of INPP5E mutations in Joubert syndrome and related disorders.
Travaglini, Lorena; Brancati, Francesco; Silhavy, Jennifer; Iannicelli, Miriam; Nickerson, Elizabeth; Elkhartoufi, Nadia; Scott, Eric; Spencer, Emily; Gabriel, Stacey; Thomas, Sophie; Ben-Zeev, Bruria; Bertini, Enrico; Boltshauser, Eugen; Chaouch, Malika; Cilio, Maria Roberta; de Jong, Mirjam M; Kayserili, Hulya; Ogur, Gonul; Poretti, Andrea; Signorini, Sabrina; Uziel, Graziella; Zaki, Maha S; Johnson, Colin; Attié-Bitach, Tania; Gleeson, Joseph G; Valente, Enza Maria
2013-10-01
Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain-hindbrain malformation known as the 'molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.
Edelmann, Lisa; Wasserstein, Melissa P.; Kornreich, Ruth; Sansaricq, Claude; Snyderman, Selma E.; Diaz, George A.
2001-01-01
Maple syrup urine disease (MSUD) is a rare, autosomal recessive disorder of branched-chain amino acid metabolism. We noted that a large proportion (10 of 34) of families with MSUD that were followed in our clinic were of Ashkenazi Jewish (AJ) descent, leading us to search for a common mutation within this group. On the basis of genotyping data suggestive of a conserved haplotype at tightly linked markers on chromosome 6q14, the BCKDHB gene encoding the E1β subunit was sequenced. Three novel mutations were identified in seven unrelated AJ patients with MSUD. The locations of the affected residues in the crystal structure of the E1β subunit suggested possible mechanisms for the deleterious effects of these mutations. Large-scale population screening of AJ individuals for R183P, the mutation present in six of seven patients, revealed that the carrier frequency of the mutant allele was ∼1/113; the patient not carrying R183P had a previously described homozygous mutation in the gene encoding the E2 subunit. These findings suggested that a limited number of mutations might underlie MSUD in the AJ population, potentially facilitating prenatal diagnosis and carrier detection of MSUD in this group. PMID:11509994
Edelmann, L; Wasserstein, M P; Kornreich, R; Sansaricq, C; Snyderman, S E; Diaz, G A
2001-10-01
Maple syrup urine disease (MSUD) is a rare, autosomal recessive disorder of branched-chain amino acid metabolism. We noted that a large proportion (10 of 34) of families with MSUD that were followed in our clinic were of Ashkenazi Jewish (AJ) descent, leading us to search for a common mutation within this group. On the basis of genotyping data suggestive of a conserved haplotype at tightly linked markers on chromosome 6q14, the BCKDHB gene encoding the E1beta subunit was sequenced. Three novel mutations were identified in seven unrelated AJ patients with MSUD. The locations of the affected residues in the crystal structure of the E1beta subunit suggested possible mechanisms for the deleterious effects of these mutations. Large-scale population screening of AJ individuals for R183P, the mutation present in six of seven patients, revealed that the carrier frequency of the mutant allele was approximately 1/113; the patient not carrying R183P had a previously described homozygous mutation in the gene encoding the E2 subunit. These findings suggested that a limited number of mutations might underlie MSUD in the AJ population, potentially facilitating prenatal diagnosis and carrier detection of MSUD in this group.
Chetta, M.; Drmanac, A.; Santacroce, R.; Grandone, E.; Surrey, S.; Fortina, P.; Margaglione, M.
2008-01-01
BACKGROUND: Standard methods of mutation detection are time consuming in Hemophilia A (HA) rendering their application unavailable in some analysis such as prenatal diagnosis. OBJECTIVES: To evaluate the feasibility of combinatorial sequencing-by-hybridization (cSBH) as an alternative and reliable tool for mutation detection in FVIII gene. PATIENTS/METHODS: We have applied a new method of cSBH that uses two different colors for detection of multiple point mutations in the FVIII gene. The 26 exons encompassing the HA gene were analyzed in 7 newly diagnosed Italian patients and in 19 previously characterized individuals with FVIII deficiency. RESULTS: Data show that, when solution-phase TAMRA and QUASAR labeled 5-mer oligonucleotide sets mixed with unlabeled target PCR templates are co-hybridized in the presence of DNA ligase to universal 6-mer oligonucleotide probe-based arrays, a number of mutations can be successfully detected. The technique was reliable also in identifying a mutant FVIII allele in an obligate heterozygote. A novel missense mutation (Leu1843Thr) in exon 16 and three novel neutral polymorphisms are presented with an updated protocol for 2-color cSBH. CONCLUSIONS: cSBH is a reliable tool for mutation detection in FVIII gene and may represent a complementary method for the genetic screening of HA patients. PMID:20300295
Mitne-Neto, M; Ramos, C R R; Pimenta, D C; Luz, J S; Nishimura, A L; Gonzales, F A; Oliveira, C C; Zatz, M
2007-09-01
Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset Motor Neuron Disease (MND), characterized by motor neurons death in the cortex, brainstem and spinal cord. Ten loci linked to Familial ALS have been mapped. ALS8 is caused by a substitution of a proline by a serine in the Vesicle-Associated Membrane Protein-Associated protein-B/C (VAP-B/C). VAP-B belongs to a highly conserved family of proteins implicated in Endoplasmic Reticulum-Golgi and intra-Golgi transport and microtubules stabilization. Previous studies demonstrated that the P56S mutation disrupts the subcellular localization of VAP-B and that this position would be essential for Unfolded Protein Response (UPR) induced by VAP-B. In the present work we expressed and purified recombinant wild-type and P56S mutant VAP-B-MSP domain for the analysis of its interactions with other cellular proteins. Our findings suggest that the P56S mutation may lead to a less stable interaction of this endoplasmic reticulum protein with at least two other proteins: tubulin and GAPDH. These two proteins have been previously related to other forms of neurodegenerative diseases and are potential key points to understand ALS8 pathogenesis and other forms of MND. Understanding the role of these protein interactions may help the treatment of this devastating disease in the future.
Magiorkinis, E; Paraskevis, D; Pavlopoulou, I D; Kantzanou, M; Haida, C; Hatzakis, A; Boletis, I N
2013-08-01
The purpose of this study was to present a fatal case of fulminant hepatitis B (FHB) that developed in a renal transplant recipient, immunized against hepatitis B, 1 year post transplantation. Polymerase chain reaction amplification and full genome sequencing were performed to investigate whether specific mutations were associated with hepatitis B virus (HBV) transmission and FHB. Molecular analysis revealed multiple mutations in various open reading frames of HBV, the most important being the G145R escape mutation and a frameshift mutation-insertion (1838insA) within the pre-C/C reading frame. Our results highlight the possibility of developing FHB, despite previous immunization against HBV or administration of hyperimmune gammaglobulin, because of the selection of escape virus mutants. The current literature and guidelines regarding renal transplantation from hepatitis B surface antigen (HBsAg)-positive to HBsAg-negative patients were also reviewed. © 2013 John Wiley & Sons A/S.
Han, Xue; Mihailescu, Mihaela; Hristova, Kalina
2006-01-01
Achondroplasia, the most common form of human dwarfism, is due to a G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) in >97% of the studied cases. While the molecular mechanism of pathology induction is under debate, the structural consequences of the mutation have not been studied. Here we use neutron diffraction to determine the disposition of FGFR3 transmembrane domain in fluid lipid bilayers, and investigate whether the G380R mutation affects the topology of the protein in the bilayer. Our results demonstrate that, in a model system, the G380R mutation induces a shift in the segment that is embedded in the membrane. The center of the hydrocarbon core-embedded segment in the mutant is close to the midpoint between R380 and R397, supporting previous measurements of arginine insertion energetics into the endoplasmic reticulum. The presented results further our knowledge about basic amino-acid insertion into bilayers, and may lead to new insights into the mechanism of pathogenesis in achondroplasia. PMID:16950849
Jerath, Nivedita U; Shy, Michael E; Grider, Tiffany; Gutmann, Ludwig
2015-12-01
HINT1 mutations cause an autosomal recessive distal hereditary motor axonal neuropathy with neuromyotonia. This is a case report of a HINT1 mutation in the United States. A 30-year-old man of Slovenian heritage and no significant family history presented with scoliosis as a child and later developed neuromyotonia and distal weakness. Electrodiagnostic testing revealed an axonal motor neuropathy and neuromyotonic discharges. Previous diagnostic work-up, including testing for Cx32, MPZ, PMP-22, NF-L, EGR2, CLCN1, DM1, DM2, SMN exon 7/8, emerin, LMNA, MPK, SCNA4, acid maltase gene, paraneoplastic disorder, and a sural nerve biopsy, was negative. Genetic testing for a HINT1 mutation was performed and revealed a homozygous mutation at p.Arg37Pro. This entity should be distinguished clinically and genetically from myotonic dystrophy and channelopathies with the clinical features of neuromyotonia and an axonal neuropathy. This case illustrates the importance of identifying the correct phenotype to avoid unnecessary and costly evaluations. © 2015 Wiley Periodicals, Inc.
Mutation in GM2A Leads to a Progressive Chorea-dementia Syndrome
Salih, Mustafa A.; Seidahmed, Mohammed Z.; El Khashab, Heba Y.; Hamad, Muddathir H. A.; Bosley, Thomas M.; Burn, Sabrina; Myers, Angela; Landsverk, Megan L.; Crotwell, Patricia L.; Bilguvar, Kaya; Mane, Shrikant; Kruer, Michael C.
2015-01-01
Background The etiology of many cases of childhood-onset chorea remains undetermined, although advances in genomics are revealing both new disease-associated genes and variant phenotypes associated with known genes. Methods We report a Saudi family with a neurodegenerative course dominated by progressive chorea and dementia in whom we performed homozygosity mapping and whole exome sequencing. Results We identified a homozygous missense mutation in GM2A within a prominent block of homozygosity. This mutation is predicted to impair protein function. Discussion Although discovered more than two decades ago, to date, only five patients with this rare form of GM2 gangliosidosis have been reported. The phenotype of previously described GM2A patients has been typified by onset in infancy, profound hypotonia and impaired volitional movement, intractable seizures, hyperacusis, and a macular cherry red spot. Our findings expand the phenotypic spectrum of GM2A mutation-positive gangliosidosis to include generalized chorea without macular findings or hyperacusis and highlight how mutations in neurodegenerative disease genes may present in unexpected ways. PMID:26203402
Genotypic characterization of drug resistant Mycobacterium tuberculosis in Quebec, 2002-2012.
Spinato, Joanna; Boivin, Élyse; Bélanger-Trudelle, Émilie; Fauchon, Huguette; Tremblay, Cécile; Soualhine, Hafid
2016-07-26
The increasing emergence of drug-resistant tuberculosis presents a threat to the effective control of tuberculosis (TB). Rapid detection of drug-resistance is more important than ever to address this scourge. The purpose of this study was to genotypically characterize the first-line antitubercular drug-resistant isolates collected over 11 years in Quebec. The main mutations found in our resistant strains collection (n = 225) include: the S315T substitution in katG (50.2 %), the -15 C/T mutation in the inhA promoter (29 %); the S531L substitution in rpoB (43 %); the deletion 8 bp 446 / + R140S in pncA (72.9 %); the M306I (35.7 %) and M306V (21.4 %) substitutions in embB. Ten of the mutations in katG and 4 mutations identified in pncA were previously undescribed. Screening of mutations conferring resistance to first-line antituberculous drugs using DNA-sequencing approach seems to be feasible and would drastically shorten the time to determine the resistance profile compared to the proportion method.
Lundman, Emma; Gaup, H Junita; Bakkeheim, Egil; Olafsdottir, Edda J; Rootwelt, Terje; Storrøsten, Olav Trond; Pettersen, Rolf D
2016-05-01
Norway introduced newborn screening for cystic fibrosis (CF) March 1, 2012. We present results from the first three years of the national newborn CF screening program. Positive primary screening of immunoreactive trypsinogen (IRT) was followed by DNA testing of the Cystic fibrosis transmembrane conductance regulator (CFTR) gene. Infants with two CFTR mutations were reported for diagnostic follow-up. Of 181,859 infants tested, 1454 samples (0.80%) were assessed for CFTR mutations. Forty children (1:4546) had two CFTR mutations, of which only 21 (1:8660) were confirmed to have a CF diagnosis. The CFTR mutations differed from previously clinically diagnosed CF patients, and p.R117H outnumbered p.F508del as the most frequent mutation. One child with a negative IRT screening test was later clinically diagnosed with CF. The CF screening program identified fewer children with a conclusive CF diagnosis than expected. Our data suggest a revision of the IRT/DNA protocol. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Tiedt, Hannes O; Benjamin, Beate; Niedeggen, Michael; Lueschow, Andreas
2018-02-22
In rare cases, patients with Alzheimer disease (AD) present at an early age and with a family history suggestive of an autosomal dominant mode of inheritance. Mutations of the presenilin-1 (PSEN1) gene are the most common causes of dementia in these patients. Early-onset and particularly familial AD patients frequently present with variable non-amnestic cognitive symptoms such as visual, language or behavioural changes as well as non-cognitive, e.g. motor, symptoms. To investigate the phenotypic variability in carriers of the PSEN1 S170F mutation. We report a family with 4 patients carrying the S170F mutation of whom 2 underwent detailed clinical examinations. We discuss our current findings in the context of previously reported S170F cases. The clinical phenotype was consistent regarding initial memory impairment and early onset in the late twenties found in all S170F patients. There were frequent non-amnestic cognitive changes and, at early stages of the disease, indications of a more pronounced disturbance of visuospatial abilities as compared to face and object recognition. Non-cognitive symptoms most often included myoclonus and cerebellar ataxia. A review of the available case reports indicates some phenotypic variability associated with the S170F mutation including different constellations of symptoms such as parkinsonism and delusions. The variable clinical findings associated with the S170F mutation highlight the relevance of atypical phenotypes in the context of research and under a clinical perspective. CSF sampling and detection of Aβ species may be essential to indicate AD pathology in unclear cases presenting with cognitive and motor symptoms at a younger age. © 2018 S. Karger AG, Basel.
Comparison of lesional skin c-KIT mutations with clinical phenotype in patients with mastocytosis.
Chan, I J; Tharp, M D
2018-06-01
Activating c-KIT mutations cause abnormal mast cell growth and appear to play a role in mastocytosis. However, the correlation of c-KIT mutations with disease phenotypes is poorly characterized. To evaluate the correlation of c-KIT mutations with clinical presentations and laboratory findings. Total cellular RNA was isolated from the skin lesions of 43 adults and 7 children with mastocytosis, and PCR amplicons of cDNA were sequenced for c-KIT mutations. The most common activating mutation, KIT-D816V, was identified in 72% of adults and 57% of children. Additional activating mutations, namely, V560G and the internal tandem duplications (ITDs) 502-503dupAY, were detected in 12% of adults and 8% of children. V560G occurred more commonly in our patients than previously reported, and it appeared to be associated with more advanced disease. Otherwise, the presence or absence of activating mutations did not correlate with skin lesion morphology, disease extent or total serum tryptase levels. Four adults had expression only of wild-type KIT, while two others had expression of a truncated KIT lacking tyrosine kinase activity; yet these patients were clinically indistinguishable from those patients with activating c-KIT mutations. Activating c-KIT mutations exist in a significant portion of patients with mastocytosis, but not all patients showed expression of these mutations. Except for V560G, the presence or absence of activating c-KIT mutations did not predict the extent of disease. These observations suggest that although activating c-KIT mutations are associated with mast cell growth, other genes probably play a role in the cause of mastocytosis. © 2018 British Association of Dermatologists.
Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome.
Belge, Hendrica; Dahan, Karin; Cambier, Jean-François; Benoit, Valérie; Morelle, Johann; Bloch, Julie; Vanhille, Philippe; Pirson, Yves; Demoulin, Nathalie
2017-05-01
Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder, secondary to mutations in the GATA-3 gene. Due to its wide range of penetrance and expressivity, the disease may not always be recognized. We herein describe clinical and genetic features of patients with HDR syndrome, highlighting diagnostic clues. Medical records of eight patients from five unrelated families exhibiting GATA-3 mutations were reviewed retrospectively, in conjunction with all previously reported cases. HDR syndrome was diagnosed in eight patients between the ages of 18 and 60 years. Sensorineural deafness was consistently diagnosed, ranging from clinical hearing loss since infancy in seven patients to deafness detected only by audiometry in adulthood in one single patient. Hypoparathyroidism was present in six patients (with hypocalcaemia and inaugural seizures in two out of six). Renal abnormalities observed in six patients were diverse and of dysplastic nature. Three patients displayed nephrotic-range proteinuria and reached end-stage renal disease (ESRD) between the ages of 19 and 61 years, whilst lesions of focal and segmental glomerulosclerosis were histologically demonstrated in one of them. Interestingly, phenotype severity differed significantly between a mother and son within one family. Five new mutations of GATA-3 were identified, including three missense mutations affecting zinc finger motifs [NM_001002295.1: c.856A>G (p.N286D) and c.1017C>G (p.C339W)] or the conserved linker region [c.896G>A (p.R299G)], and two splicing mutations (c.924+4_924+19del and c.1051-2A>G). Review of 115 previously reported cases of GATA-3 mutations showed hypoparathyroidism and deafness in 95% of patients, and renal abnormalities in only 60%. Overall, 10% of patients had reached ESRD. We herein expand the clinical and mutational spectrum of HDR syndrome, illustrating considerable inter- and intrafamilial phenotypic variability. Diagnosis of HDR should be considered in any patient with hypoparathyroidism and deafness, whether associated with renal abnormalities or not. HDR diagnosis is established through identification of a mutation in the GATA-3 gene. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I.
Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Millán, José M; Kimberling, William J
2012-01-01
PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.
Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo
2017-12-01
Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I
Jaijo, Teresa; Oshima, Aki; Aller, Elena; Carney, Carol; Usami, Shin-ichi; Kimberling, William J.
2012-01-01
Purpose PCDH15 codes for protocadherin-15, a cell-cell adhesion protein essential in the morphogenesis and cohesion of stereocilia bundles and in the function or preservation of photoreceptor cells. Mutations in the PCDH15 gene are responsible for Usher syndrome type I (USH1F) and non-syndromic hearing loss (DFNB23). The purpose of this work was to perform PCDH15 mutation screening to identify the genetic cause of the disease in a cohort of Spanish patients with Usher syndrome type I and establish phenotype-genotype correlation. Methods Mutation analysis of PCDH15 included additional exons recently identified and was performed by direct sequencing. The screening was performed in 19 probands with USH already screened for mutations in the most prevalent USH1 genes, myosin VIIA (MYO7A) and cadherin-23 (CDH23), and for copy number variants in PCDH15. Results Seven different point mutations, five novel, were detected. Including the large PCDH15 rearrangements previously reported in our cohort of patients, a total of seven of 19 patients (36.8%) were carriers of at least one pathogenic allele. Thirteen out of the 38 screened alleles carried pathogenic PCDH15 variants (34.2%). Conclusions Five out of the seven point mutations reported in the present study are novel, supporting the idea that most PCDH15 mutations are private. Furthermore, no mutational hotspots have been identified. In most patients, detected mutations led to a truncated protein, reinforcing the hypothesis that severe mutations cause the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:22815625
Ekvall, Sara; Sjörs, Kerstin; Jonzon, Anders; Vihinen, Mauno; Annerén, Göran; Bondeson, Marie-Louise
2014-03-01
Neurofibromatosis-Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS-MAPK pathway. The major gene involved in NFNS is NF1, but co-occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy-associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp-deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice-site variant, c.2991-1G>A, resulting in skipping of exon 18 and an in-frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991-1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café-au-lait spots are present. © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Y.; Vavougios, G.; Hinek, A.
1996-07-01
Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and bothmore » subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.« less
Chen, Shaoxiong; Fritchie, Karen; Wei, Shi; Ali, Naser; Curless, Kendra; Shen, Tiansheng; Brini, Anna T; Latif, Farida; Sumathi, Vaiyapuri; Siegal, Gene P; Cheng, Liang
2017-07-01
Histologically, it is nearly impossible to distinguish the dedifferentiated component of dedifferentiated chondrosarcoma from undifferentiated pleomorphic sarcoma (UPS) of bone when the low-grade cartilaginous component is absent. Previous studies have revealed that isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations are present in a significant number of cartilaginous tumors including most conventional chondrosarcomas and dedifferentiated chondrosarcomas. These mutations have not been studied in UPSs of bone. We sought to investigate whether an IDH1 or IDH2 mutation signature could be used as a clinically diagnostic marker for the distinction of dedifferentiated component of chondrosarcoma from UPS of bone. Sixty-eight bone tumor cases, including 31 conventional chondrosarcomas, 23 dedifferentiated chondrosarcomas, and 14 UPSs of bone, were collected for IDH1/2 mutation analysis either using the Qiagen IDH1/2 RGQ PCR Kit or using whole-exome sequencing. IDH1/2 mutations were detected in 87% (20/23) of dedifferentiated chondrosarcomas and 30% (6/20) of conventional chondrosarcomas. No mutations were detected in the IDH1/2 codon 132 or codon 172 among 14 UPSs of bone. Identification of IDH1 or IDH2 mutations supports the diagnosis of dedifferentiated chondrosarcoma rather than UPS of bone while also providing some insight into the pathogenesis of these 2 lesions. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Y; Castori, M; Ferranti, G; Paradisi, M; Wordsworth, B P
2009-06-01
Mutations in the LEMD3 gene were recently incriminated in Buschke-Ollendorff syndrome (BOS) and osteopoikilosis, with or without melorheostosis. The relationship of this gene with isolated sporadic melorheostosis is less clear. We investigated LEMD3 in a two-generation BOS family showing an extremely variable expression of the disease, in a sporadic patient with skin features of BOS, and in an additional subject with isolated melorheostosis. We identified two different mutations, both resulting in a premature stop codon, in the two cases of BOS. The mutation (c.2564G>A) reported in the familial case is novel, while that observed in the sporadic case (c.1963C>T) has been previously reported in an American woman with osteopoikilosis and melorheostosis who had a family history of isolated osteopoikilosis. The search for mutations in DNA extracted from the peripheral blood, as well as skin and bone biopsies of the patient with melorheostosis failed to identify any pathogenic change. Our results further expand the LEMD3 mutation repertoire, corroborate the extreme interfamilial and intrafamilial clinical variability of LEMD3 mutations, and underline the lack of a clear phenotype-genotype correlation in BOS. The present study supports the general conclusion that LEMD3 mutations do not contribute to isolated sporadic melorheostosis. The genetic or epigenetic influences that are responsible for the development of melorheostosis require further investigation.
Schlump, Jan-Ulrich; Stein, Anja; Hehr, Ute; Karen, Tanja; Möller-Hartmann, Claudia; Elcioglu, Nursel H; Bogdanova, Nadja; Woike, Hartmut Fritz; Lohmann, Dietmar R; Felderhoff-Mueser, Ursula; Linz, Annette; Wieczorek, Dagmar
2012-11-01
Treacher Collins syndrome (TCS) is the most common and well-known mandibulofacial dysostosis caused by mutations in at least three genes involved in pre-rRNA transcription, the TCOF1, POLR1D and POLR1C genes. We present a severely affected male individual with TCS with a heterozygous de novo frameshift mutation within the TCOF1 gene (c.790_791delAG,p.Ser264GlnfsX7) and compare the clinical findings with three previously unpublished, milder affected individuals from two families with the same mutation. We elucidate typical clinical features of TCS and its clinical implications for the paediatrician and mandibulofacial surgeon, especially in severely affected individuals and give a short review of the literature. The clinical data of these three families illustrate that the phenotype associated with this specific mutation has a wide intra- and interfamilial variability, which confirms that variable expressivity in carriers of TCOF1 mutations is not a simple consequence of the mutation but might be modified by the combination of genetic, environmental and stochastic factors. Being such a highly complex disease treatment of individuals with TCS should be tailored to the specific needs of each individual, preferably by a multidisciplinary team consisting of paediatricians, craniofacial surgeons and geneticists.
Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.
Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun
2015-09-29
Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.
Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis).
Andolfo, Immacolata; Russo, Roberta; Manna, Francesco; Shmukler, Boris E; Gambale, Antonella; Vitiello, Giuseppina; De Rosa, Gianluca; Brugnara, Carlo; Alper, Seth L; Snyder, L Michael; Iolascon, Achille
2015-10-01
Dehydrated hereditary stomatocytosis (DHSt) is an autosomal dominant congenital hemolytic anemia with moderate splenomegaly and often compensated hemolysis. Affected red cells are characterized by a nonspecific cation leak of the red cell membrane, reflected in elevated sodium content, decreased potassium content, elevated MCHC and MCV, and decreased osmotic fragility. The majority of symptomatic DHSt cases reported to date have been associated with gain-of-function mutations in the mechanosensitive cation channel gene, PIEZO1. A recent study has identified two families with DHSt associated with a single mutation in the KCNN4 gene encoding the Gardos channel (KCa3.1), the erythroid Ca(2+) -sensitive K(+) channel of intermediate conductance, also expressed in many other cell types. We present here, in the second report of DHSt associated with KCNN4 mutations, two previously undiagnosed DHSt families. Family NA exhibited the same de novo missense mutation as that recently described, suggesting a hot spot codon for DHSt mutations. Family WO carried a novel, inherited missense mutation in the ion transport domain of the channel. The patients' mild hemolytic anemia did not improve post-splenectomy, but splenectomy led to no serious thromboembolic events. We further characterized the expression of KCNN4 in the mutated patients and during erythroid differentiation of CD34+ cells and K562 cells. We also analyzed KCNN4 expression during mouse embryonic development. © 2015 Wiley Periodicals, Inc.
Loussouarn, Delphine; Le Loupp, Anne-Gaëlle; Frenel, Jean-Sébastien; Leclair, François; Von Deimling, Andreas; Aumont, Maud; Martin, Stéphane; Campone, Mario; Denis, Marc G
2012-06-01
Previous studies have identified mutations of the isocitrate dehydrogenase 1 (IDH1) gene in more than 70% of World Health Organization (WHO) grade II and III gliomas. The most frequent mutation leads to a specific amino acid change from arginine to histidine at codon 132 (c.395G>A, p.R132H). IDH1 mutated tumors have a better prognosis than IDH1 non-mutated tumors. The aim of our study was to evaluate and compare the methods of mIDH1 R132H immunohistochemistry, allele-specific PCR and DNA sequencing for determination of IDH1 status. We performed a retrospective study of 91 patients with WHO grade II (n=43) and III (n=48) oligodendrogliomas. A fragment of exon 4 spanning the sequence encoding the catalytic domain of IDH1, including codon 132, was amplified and sequenced using standard conditions. Allele-specific amplification was performed using two forward primers with variations in their 3' nucleotides such that each was specific for the wild-type or the mutated variant, and one reverse primer. Immunohistochemistry was performed with mouse monoclonal mIDH1 R132H. DNA was extracted from FFPE sections following macrodissection. IDH1 mutations were found in 55/90 patients (61.1%) by direct sequencing. R132H mutations were found in 47/55 patients (85.4%). The results of the allele-specific PCR positively correlated with those from DNA sequencing. Other mutations (p.R132C, p.R132S and pR132G) were found by DNA sequencing in 3, 3 and 2 tumors, respectively (8/55 patients, 14.6%). mIDH1 R132H immunostaining was found in the 47 patients presenting the R132H mutation (sensitivity 47/47, 100% for this mutation). None of the tumors presenting a wild-type IDH1 gene were stained (specificity 35/35, 100%). Our results demonstrate that immunohistochemistry using the mIDH1 R132H antibody and allele-specific amplification are highly sensitive techniques to detect the most frequent mutation of the IDH1 gene.
Brizola, Evelise; McCarthy, Edward; Shapiro, Jay Robert
2015-01-01
Summary Background Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. Methods Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. Results An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. Conclusion The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI. PMID:26604951
Novel Insights into the Bovine Polled Phenotype and Horn Ontogenesis in Bovidae
Allais-Bonnet, Aurélie; Grohs, Cécile; Medugorac, Ivica; Krebs, Stefan; Djari, Anis; Graf, Alexander; Fritz, Sébastien; Seichter, Doris; Baur, Aurélia; Russ, Ingolf; Bouet, Stéphan; Rothammer, Sophie; Wahlberg, Per; Esquerré, Diane; Hoze, Chris; Boussaha, Mekki; Weiss, Bernard; Thépot, Dominique; Fouilloux, Marie-Noëlle; Rossignol, Marie-Noëlle; van Marle-Köster, Este; Hreiðarsdóttir, Gunnfríður Elín; Barbey, Sarah; Dozias, Dominique; Cobo, Emilie; Reversé, Patrick; Catros, Olivier; Marchand, Jean-Luc; Soulas, Pascal; Roy, Pierre; Marquant-Leguienne, Brigitte; Le Bourhis, Daniel; Clément, Laetitia; Salas-Cortes, Laura; Venot, Eric; Pannetier, Maëlle; Phocas, Florence; Klopp, Christophe; Rocha, Dominique; Fouchet, Michel; Journaux, Laurent; Bernard-Capel, Carine; Ponsart, Claire; Eggen, André; Blum, Helmut; Gallard, Yves; Boichard, Didier; Pailhoux, Eric; Capitan, Aurélien
2013-01-01
Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae. PMID:23717440
A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration.
Carrigan, Matthew; Duignan, Emma; Humphries, Pete; Palfi, Arpad; Kenna, Paul F; Farrar, G Jane
2016-04-01
The GNAT1 gene encodes the α subunit of the rod transducin protein, a key element in the rod phototransduction cascade. Variants in GNAT1 have been implicated in stationary night-blindness in the past, but unlike other proteins in the same pathway, it has not previously been implicated in retinitis pigmentosa. A panel of 182 retinopathy-associated genes was sequenced to locate disease-causing mutations in patients with inherited retinopathies. Sequencing revealed a novel homozygous truncating mutation in the GNAT1 gene in a patient with significant pigmentary disturbance and constriction of visual fields, a presentation consistent with retinitis pigmentosa. This is the first report of a patient homozygous for a complete loss-of-function GNAT1 mutation. The clinical data from this patient provide definitive evidence of retinitis pigmentosa with late onset in addition to the lifelong night-blindness that would be expected from a lack of transducin function. These data suggest that some truncating GNAT1 variants can indeed cause a recessive, mild, late-onset retinal degeneration in human beings rather than just stationary night-blindness as reported previously, with notable similarities to the phenotype of the Gnat1 knockout mouse. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
A potential functional association between mutant BMPR2 and primary ovarian insufficiency.
Patiño, Liliana Catherine; Silgado, Daniel; Laissue, Paul
2017-06-01
Primary ovarian insufficiency (POI) affects ~1% of women in the general population. Despite numerous attempts at identifying POI genetic aetiology, coding mutations in only a few genes have been functionally related to POI pathogenesis. It has been suggested that mutant BMPR2 might contribute towards the phenotype. Several BMP15 (a BMPR2 ligand) coding mutations in human species have been related to POI pathogenesis. The BMPR2 p.Ser987Phe mutation, previously identified in a woman with POI, might therefore lead to cellular dysfunction contributing to the phenotype. To explore such an assumption, the present study assessed potential pathogenic subcellular localization/aggregation patterns associated with the p.Ser987Phe mutant form of BMPR2 in a relevant model for studying ovarian function. A significant increase in protein-like aggregation patterns was identified at the endoplasmic reticulum (ER) which permitted us to establish, for the first time, a potential functional association between mutant BMPR2 and POI aetiology. Since BMPR2 mutant forms were previously related to idiopathic pulmonary arterial hypertension, BMPR2 mutations may be related to an as-yet-to-be described syndromic form of POI involving pulmonary dysfunction. Additional assays are necessary to confirm that BMPR2 abnormal subcellular patterns are composed by aggregates. POI: primary ovarian insufficiency; ER: endoplasmic reticulum; NGS: next generation sequencing.
HIV subtype, epidemiological and mutational correlations in patients from Paraná, Brazil.
Silva, Monica Maria Gomes da; Telles, Flavio Queiroz; da Cunha, Clovis Arns; Rhame, Frank S
2010-01-01
Analyze patients with HIV infection from Curitiba, Paraná, their epidemiological characteristics and HIV RAM. Patients regularly followed in an ID Clinic had their medical data evaluated and cases of virological failure were analyzed with genotypic report. Patients with complete medical charts were selected (n = 191). Demographic and clinical characteristics were compared. One hundred thirty two patients presented with subtype B infection (69.1%), 41 subtype C (21.5%), 10 subtype F (5.2%), 7 BF (3.7%) and 1 CF (0.5%). Patients with subtype B infection had been diagnosed earlier than patients with subtype non-B. Also, subtype B infection was more frequent in men who have sex with men, while non-B subtypes occurred more frequently in heterosexuals and women. Patients with previous history of three classes of ARVs (n = 161) intake were selected to evaluate resistance. For RT inhibitors, 41L and 210W were more frequently observed in subtype B than in non-B strains. No differences between subtypes and mutations were observed to NNTRIs. Mutations at 10, 32 and 63 position of protease were more observed in subtype B viruses than non-B, while positions 20 and 36 of showed more amino acid substitutions in subtype non-B viruses. Patients with history of NFV intake were evaluated to resistance pathway. The 90M pathway was more frequent in subtypes B and non-B. Mutations previously reported as common in non-B viruses, such as 65R and 106M, were uncommon in our study. Mutations 63P and 36I, previously reported as common in HIV-1 subtypes B and C from Brazil, respectively, were common. There is a significant frequency of HIV-1 non-B infections in Paraná state, with isolates classified as subtypes C, F, BF and BC. Patients with subtype C infection were more frequently female, heterosexual and had a longer average time of HIV diagnosis.
Autism-related neuroligin-3 mutation alters social behavior and spatial learning.
Jaramillo, Thomas C; Liu, Shunan; Pettersen, Ami; Birnbaum, Shari G; Powell, Craig M
2014-04-01
Multiple candidate genes have been identified for autism spectrum disorders. While some of these genes reach genome-wide significance, others, such as the R451C point mutation in the synaptic cell adhesion molecule neuroligin-3, appear to be rare. Interestingly, two brothers with the same R451C point mutation in neuroligin-3 present clinically on seemingly disparate sides of the autism spectrum. These clinical findings suggest genetic background may play a role in modifying the penetrance of a particular autism-associated mutation. Animal models may contribute additional support for such mutations as functionally relevant and can provide mechanistic insights. Previously, in collaboration with the Südhof laboratory, we reported that mice with an R451C substitution in neuroligin-3 displayed social deficits and enhanced spatial learning. While some of these behavioral abnormalities have since been replicated independently in the Südhof laboratory, observations from the Crawley laboratory failed to replicate these findings in a similar neuroligin-3 mutant mouse model and suggested that genetic background may contribute to variation in observations across laboratories. Therefore, we sought to replicate our findings in the neuroligin-3 R451C point mutant knock-in mouse model (NL3R451C) in a different genetic background. We backcrossed our NL3R451C mouse line onto a 129S2/SvPasCrl genetic background and repeated a subset of our previous behavioral testing. NL3R451C mice on a 129S2/SvPasCrl displayed social deficits, enhanced spatial learning, and increased locomotor activity. These data extend our previous findings that NL3R451C mice exhibit autism-relevant behavioral abnormalities and further suggest that different genetic backgrounds can modify this behavioral phenotype through epistatic genetic interactions. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
Gültas, Mehmet; Düzgün, Güncel; Herzog, Sebastian; Jäger, Sven Joachim; Meckbach, Cornelia; Wingender, Edgar; Waack, Stephan
2014-04-03
The identification of functionally or structurally important non-conserved residue sites in protein MSAs is an important challenge for understanding the structural basis and molecular mechanism of protein functions. Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of those important residues, previous methods often rely on classical information-theoretic measures. However, these measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites. The result of this study is twofold. First, using the essential sites of two human proteins, namely epidermal growth factor receptor (EGFR) and glucokinase (GCK), we tested the QCMF-method. The QCMF includes two metrics based on quantum Jensen-Shannon divergence to measure both sequence conservation and compensatory mutations. We found that the QCMF reaches an improved performance in identifying essential sites from MSAs of both proteins with a significantly higher Matthews correlation coefficient (MCC) value in comparison to previous methods. Second, using a data set of 153 proteins, we made a pairwise comparison between QCMF and three conventional methods. This comparison study strongly suggests that QCMF complements the conventional methods for the identification of correlated mutations in MSAs. QCMF utilizes the notion of entanglement, which is a major resource of quantum information, to model significant dissimilar and similar amino acid pair signals in the detection of functionally or structurally important sites. Our results suggest that on the one hand QCMF significantly outperforms the previous method, which mainly focuses on dissimilar amino acid signals, to detect essential sites in proteins. On the other hand, it is complementary to the existing methods for the identification of correlated mutations. The method of QCMF is computationally intensive. To ensure a feasible computation time of the QCMF's algorithm, we leveraged Compute Unified Device Architecture (CUDA).The QCMF server is freely accessible at http://qcmf.informatik.uni-goettingen.de/.
Whole-genome landscape of pancreatic neuroendocrine tumours.
Scarpa, Aldo; Chang, David K; Nones, Katia; Corbo, Vincenzo; Patch, Ann-Marie; Bailey, Peter; Lawlor, Rita T; Johns, Amber L; Miller, David K; Mafficini, Andrea; Rusev, Borislav; Scardoni, Maria; Antonello, Davide; Barbi, Stefano; Sikora, Katarzyna O; Cingarlini, Sara; Vicentini, Caterina; McKay, Skye; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; McLean, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wilson, Peter J; Anderson, Matthew J; Fink, J Lynn; Newell, Felicity; Waddell, Nick; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Wood, Scott; Xu, Qinying; Nagaraj, Shivashankar Hiriyur; Amato, Eliana; Dalai, Irene; Bersani, Samantha; Cataldo, Ivana; Dei Tos, Angelo P; Capelli, Paola; Davì, Maria Vittoria; Landoni, Luca; Malpaga, Anna; Miotto, Marco; Whitehall, Vicki L J; Leggett, Barbara A; Harris, Janelle L; Harris, Jonathan; Jones, Marc D; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Nagrial, Adnan M; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia; Rooman, Ilse; Toon, Christopher; Wu, Jianmin; Pinese, Mark; Cowley, Mark; Barbour, Andrew; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Lovell, Jessica A; Jamieson, Nigel B; Duthie, Fraser; Gingras, Marie-Claude; Fisher, William E; Dagg, Rebecca A; Lau, Loretta M S; Lee, Michael; Pickett, Hilda A; Reddel, Roger R; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Epari, Krishna; Nguyen, Nam Q; Zeps, Nikolajs; Falconi, Massimo; Simbolo, Michele; Butturini, Giovanni; Van Buren, George; Partelli, Stefano; Fassan, Matteo; Khanna, Kum Kum; Gill, Anthony J; Wheeler, David A; Gibbs, Richard A; Musgrove, Elizabeth A; Bassi, Claudio; Tortora, Giampaolo; Pederzoli, Paolo; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M
2017-03-02
The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.
De novo FGF12 mutation in 2 patients with neonatal-onset epilepsy
Guella, Ilaria; Huh, Linda; McKenzie, Marna B.; Toyota, Eric B.; Bebin, E. Martina; Thompson, Michelle L.; Cooper, Gregory M.; Evans, Daniel M.; Buerki, Sarah E.; Adam, Shelin; Van Allen, Margot I.; Nelson, Tanya N.; Connolly, Mary B.; Farrer, Matthew J.
2016-01-01
Objective: We describe 2 additional patients with early-onset epilepsy with a de novo FGF12 mutation. Methods: Whole-exome sequencing was performed in 2 unrelated patients with early-onset epilepsy and their unaffected parents. Genetic variants were assessed by comparative trio analysis. Clinical evolution, EEG, and neuroimaging are described. The phenotype and response to treatment was reviewed and compared to affected siblings in the original report. Results: We identified the same FGF12 de novo mutation reported previously (c.G155A, p.R52H) in 2 additional patients with early-onset epilepsy. Similar to the original brothers described, both presented with tonic seizures in the first month of life. In the first patient, seizures responded to sodium channel blockers and her development was normal at 11 months. Patient 2 is a 15-year-old girl with treatment-resistant focal epilepsy, moderate intellectual disability, and autism. Carbamazepine (sodium channel blocker) was tried later in her course but not continued due to an allergic reaction. Conclusions: The identification of a recurrent de novo mutation in 2 additional unrelated probands with early-onset epilepsy supports the role of FGF12 p.R52H in disease pathogenesis. Affected carriers presented with similar early clinical phenotypes; however, this report expands the phenotype associated with this mutation which contrasts with the progressive course and early mortality of the siblings in the original report. PMID:27872899
Braithwaite, Vickie; Pettifor, John M; Prentice, Ann
2013-03-01
Three siblings, aged 12, 4 and 2 years, presented at a Gambian clinic with bone deformities. Radiographs of knees and wrists confirmed the presence of florid rickets. The family (including 2 unaffected siblings and the mother) were investigated for hereditary rickets. The three affected siblings had biochemical features of hereditary hypophosphataemic rickets with hypercalciuria (HHRH) with normal plasma calcium and 25-hydroxyvitamin D concentrations, elevated 1,25-dihydroxyvitamin D, hypophosphataemia, hyperphosphaturia and hypercalciuria. At presentation, two of the three affected siblings had an elevated fibroblast growth factor-23 (FGF23) concentration. The mother and clinically unaffected siblings had largely normal biochemistry. Genetic analysis of the SLC34A3 gene, encoding the type IIc sodium-phosphate cotransporter, in DNA samples from the siblings and their mother was conducted. Three single nucleotide polymorphisms (SNPs) S168F, E513V and L599L were identified. E513V and L599L had been previously identified as benign polymorphisms. S168F however, is a previously unreported variant. In silico mutation evaluation predicted that the S168F mutation causes changes in the protein product which are damaging to its function. In addition, the three clinically affected siblings were homozygous in the S168F variant whereas the unaffected family members were carriers. This study describes a biochemical profile and complementary gene data consistent with a rare genetic hypophosphataemic rickets disease in a family from rural Gambia. To our knowledge, this study reports the first cases of HHRH in Africa and describes a novel causal mutation within the SLC34A3 gene. Copyright © 2012 Elsevier Inc. All rights reserved.
Genetic heterogeneity in patients with Bartter syndrome type 1
Sun, Mingran; Ning, Jing; Xu, Weihong; Zhang, Han; Zhao, Kaishu; Li, Wenfu; Li, Guiying; Li, Shibo
2017-01-01
Bartter syndrome (BS) type 1 is an autosomal recessive kidney disorder caused by loss-of-function mutations in the solute carrier family 12 member 1 (SLC12A1) gene. To date, 72 BS type 1 patients harboring SLC12A1 mutations have been documented. Of these 144 alleles studied, 68 different disease-causing mutations have been detected in 129 alleles, and no mutation was detected in the remaining 15 alleles. The mutation types included missense/nonsense mutations, splicing mutations and small insertions and deletions ranging from 1 to 4 nucleotides. A large deletion encompassing a whole exon in the SLC12A1 gene has not yet been reported. The current study initially identified an undocumented homozygous frameshift mutation (c.1833delT) by Sanger sequencing analysis of a single infant with BS type 1. However, in a subsequent analysis, the mutation was detected only in the father's DNA. Upon further investigation using a next-generation sequencing approach, a deletion in exons 14 and 15 in both the patient and patient's mother was detected. The deletion was subsequently confirmed by use of a long-range polymerase chain reaction and was determined to be 3.16 kb in size based on sequencing of the junction fragment. The results of the present study demonstrated that pathogenic variants of SLC12A1 are heterogeneous. Large deletions appear to serve an etiological role in BS type 1, and may be more prevalent than previously thought. PMID:28000888
Genetic heterogeneity in patients with Bartter syndrome type 1.
Sun, Mingran; Ning, Jing; Xu, Weihong; Zhang, Han; Zhao, Kaishu; Li, Wenfu; Li, Guiying; Li, Shibo
2017-02-01
Bartter syndrome (BS) type 1 is an autosomal recessive kidney disorder caused by loss‑of‑function mutations in the solute carrier family 12 member 1 (SLC12A1) gene. To date, 72 BS type 1 patients harboring SLC12A1 mutations have been documented. Of these 144 alleles studied, 68 different disease‑causing mutations have been detected in 129 alleles, and no mutation was detected in the remaining 15 alleles. The mutation types included missense/nonsense mutations, splicing mutations and small insertions and deletions ranging from 1 to 4 nucleotides. A large deletion encompassing a whole exon in the SLC12A1 gene has not yet been reported. The current study initially identified an undocumented homozygous frameshift mutation (c.1833delT) by Sanger sequencing analysis of a single infant with BS type 1. However, in a subsequent analysis, the mutation was detected only in the father's DNA. Upon further investigation using a next‑generation sequencing approach, a deletion in exons 14 and 15 in both the patient and patient's mother was detected. The deletion was subsequently confirmed by use of a long‑range polymerase chain reaction and was determined to be 3.16 kb in size based on sequencing of the junction fragment. The results of the present study demonstrated that pathogenic variants of SLC12A1 are heterogeneous. Large deletions appear to serve an etiological role in BS type 1, and may be more prevalent than previously thought.
MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients.
Pardanani, Animesh D; Levine, Ross L; Lasho, Terra; Pikman, Yana; Mesa, Ruben A; Wadleigh, Martha; Steensma, David P; Elliott, Michelle A; Wolanskyj, Alexandra P; Hogan, William J; McClure, Rebecca F; Litzow, Mark R; Gilliland, D Gary; Tefferi, Ayalew
2006-11-15
Recently, a gain-of-function MPL mutation, MPLW515L, was described in patients with JAK2V617F-negative myelofibrosis with myeloid metaplasia (MMM). To gain more information on mutational frequency, disease specificity, and clinical correlates, genomic DNA from 1182 patients with myeloproliferative and other myeloid disorders and 64 healthy controls was screened for MPL515 mutations, regardless of JAK2V617F mutational status: 290 with MMM, 242 with polycythemia vera, 318 with essential thrombocythemia (ET), 88 with myelodysplastic syndrome, 118 with chronic myelomonocytic leukemia, and 126 with acute myeloid leukemia (AML). MPL515 mutations, either MPLW515L (n = 17) or a previously undescribed MPLW515K (n = 5), were detected in 20 patients. The diagnosis of patients with mutant MPL alleles at the time of molecular testing was de novo MMM in 12 patients, ET in 4, post-ET MMM in 1, and MMM in blast crisis in 3. Six patients carried the MPLW515L and JAK2V617F alleles concurrently. We conclude that MPLW515L or MPLW515K mutations are present in patients with MMM or ET at a frequency of approximately 5% and 1%, respectively, but are not observed in patients with polycythemia vera (PV) or other myeloid disorders. Furthermore, MPL mutations may occur concurrently with the JAK2V617F mutation, suggesting that these alleles may have functional complementation in myeloproliferative disease.
Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna
2018-05-01
A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Prospective investigation of FOXP1 syndrome.
Siper, Paige M; De Rubeis, Silvia; Trelles, Maria Del Pilar; Durkin, Allison; Di Marino, Daniele; Muratet, François; Frank, Yitzchak; Lozano, Reymundo; Eichler, Evan E; Kelly, Morgan; Beighley, Jennifer; Gerdts, Jennifer; Wallace, Arianne S; Mefford, Heather C; Bernier, Raphael A; Kolevzon, Alexander; Buxbaum, Joseph D
2017-01-01
Haploinsufficiency of the forkhead-box protein P1 ( FOXP1 ) gene leads to a neurodevelopmental disorder termed FOXP1 syndrome. Previous studies in individuals carrying FOXP1 mutations and deletions have described the presence of autism spectrum disorder (ASD) traits, intellectual disability, language impairment, and psychiatric features. The goal of the present study was to comprehensively characterize the genetic and clinical spectrum of FOXP1 syndrome. This is the first study to prospectively examine the genotype-phenotype relationship in multiple individuals with FOXP1 syndrome, using a battery of standardized clinical assessments. Genetic and clinical data was obtained and analyzed from nine children and adolescents between the ages of 5-17 with mutations in FOXP1 . Phenotypic characterization included gold standard ASD testing and norm-referenced measures of cognition, adaptive behavior, language, motor, and visual-motor integration skills. In addition, psychiatric, medical, neurological, and dysmorphology examinations were completed by a multidisciplinary team of clinicians. A comprehensive review of reported cases was also performed. All missense and in-frame mutations were mapped onto the three-dimensional structure of DNA-bound FOXP1. We have identified nine de novo mutations, including three frameshift, one nonsense, one mutation in an essential splice site resulting in frameshift and insertion of a premature stop codon, three missense, and one in-frame deletion. Reviewing prior literature, we found seven instances of recurrent mutations and another 34 private mutations. The majority of pathogenic missense and in-frame mutations, including all four missense mutations in our cohort, lie in the DNA-binding domain. Through structural analyses, we show that the mutations perturb amino acids necessary for binding to the DNA or interfere with the domain swapping that mediates FOXP1 dimerization. Individuals with FOXP1 syndrome presented with delays in early motor and language milestones, language impairment (expressive language > receptive language), ASD symptoms, visual-motor integration deficits, and complex psychiatric presentations characterized by anxiety, obsessive-compulsive traits, attention deficits, and externalizing symptoms. Medical features included non-specific structural brain abnormalities and dysmorphic features, endocrine and gastrointestinal problems, sleep disturbances, and sinopulmonary infections. This study identifies novel FOXP1 mutations associated with FOXP1 syndrome, identifies recurrent mutations, and demonstrates significant clustering of missense mutations in the DNA-binding domain. Clinical findings confirm the role FOXP1 plays in development across multiple domains of functioning. The genetic findings can be incorporated into clinical genetics practice to improve accurate genetic diagnosis of FOXP1 syndrome and the clinical findings can inform monitoring and treatment of individuals with FOXP1 syndrome.
Andley, Usha P; Tycksen, Eric; McGlasson-Naumann, Brittney N; Hamilton, Paul D
2018-01-01
The mammalian eye lens expresses a high concentration of crystallins (α, β and γ-crystallins) to maintain the refractive index essential for lens transparency. Crystallins are long-lived proteins that do not turnover throughout life. The structural destabilization of crystallins by UV exposure, glycation, oxidative stress and mutations in crystallin genes leads to protein aggregation and development of cataracts. Several destabilizing mutations in crystallin genes are linked with human autosomal dominant hereditary cataracts. To investigate the mechanism by which the α-crystallin mutations Cryaa-R49C and Cryab-R120G lead to cataract formation, we determined whether these mutations cause an altered expression of specific transcripts in the lens at an early postnatal age by RNA-seq analysis. Using knock-in mouse models previously generated in our laboratory, in the present work, we identified genes that exhibited altered abundance in the mutant lenses, including decreased transcripts for Clic5, an intracellular water channel in Cryaa-R49C heterozygous mutant lenses, and increased transcripts for Eno1b in Cryab-R120G heterozygous mutant lenses. In addition, RNA-seq analysis revealed increased histones H2B, H2A, and H4 gene expression in Cryaa-R49C mutant lenses, suggesting that the αA-crystallin mutation regulates histone expression via a transcriptional mechanism. Additionally, these studies confirmed the increased expression of histones H2B, H2A, and H4 by proteomic analysis of Cryaa-R49C knock-in and Cryaa;Cryab gene knockout lenses reported previously. Taken together, these findings offer additional insight into the early transcriptional changes caused by Cryaa and Cryab mutations associated with autosomal dominant human cataracts, and indicate that the transcript levels of certain genes are affected by the expression of mutant α-crystallin in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Mausumi; Brinton, Margo A., E-mail: mbrinton@gsu.ed
2011-03-30
Mosquito-borne flavivirus genomes contain conserved 5' and 3' cyclization sequences (CYC) that facilitate long distance RNA-RNA interactions. In previous studies, flavivirus replicon RNA replication was completely inhibited by single or multiple mismatching CYC nt substitutions. In the present study, full-length WNV genomes with one, two or three mismatching CYC substitutions showed reduced replication efficiencies but were viable and generated revertants with increased replication efficiency. Several different three adjacent mismatching CYC substitution mutant RNAs were rescued by a second site mutation that created an additional basepair (nts 147-10913) on the internal genomic side of the 5'-3' CYC. The finding that full-lengthmore » genomes with up to three mismatching CYC mutations are viable and can be rescued by a single nt spontaneous mutation indicates that more than three adjacent CYC basepair substitutions would be required to increase the safety of vaccine genomes by creating mismatches in inter-genomic recombinants.« less
A novel CDKL5 mutation in a 47,XXY boy with the early-onset seizure variant of Rett syndrome.
Sartori, Stefano; Di Rosa, Gabriella; Polli, Roberta; Bettella, Elisa; Tricomi, Giovanni; Tortorella, Gaetano; Murgia, Alessandra
2009-02-01
Mutations of the cyclin-dependent kinase-like 5 gene (CDKL5), reported almost exclusively in female subjects, have been recently found to be the cause of a phenotype overlapping Rett syndrome with early-onset epileptic encephalopathy. We describe the first CDKL5 mutation detected in a male individual with 47,XXY karyotype. This previously unreported, de novo, mutation truncates the large CDKL5 COOH-terminal region, thought to be crucial for the proper sub-cellular localization of the CDKL5 protein. The resulting phenotype is characterized by a severe early-onset epileptic encephalopathy, global developmental delay, and profound intellectual and motor impairment with features reminiscent of Rett syndrome. In light of the data presented we discuss the possible phenotypic modulatory effects of the supernumerary wild type X allele and pattern of X chromosome inactivation and stress the importance of considering the causal involvement of CDKL5 in developmentally delayed males with early-onset seizures. (c) 2009 Wiley-Liss, Inc.
Dissecting enzyme function with microfluidic-based deep mutational scanning.
Romero, Philip A; Tran, Tuan M; Abate, Adam R
2015-06-09
Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.
A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia
Smedemark-Margulies, Niklas; Brownstein, Catherine A.; Vargas, Sigella; Tembulkar, Sahil K.; Towne, Meghan C.; Shi, Jiahai; Gonzalez-Cuevas, Elisa; Liu, Kevin X.; Bilguvar, Kaya; Kleiman, Robin J.; Han, Min-Joon; Torres, Alcy; Berry, Gerard T.; Yu, Timothy W.; Beggs, Alan H.; Agrawal, Pankaj B.; Gonzalez-Heydrich, Joseph
2016-01-01
We describe a child with onset of command auditory hallucinations and behavioral regression at 6 yr of age in the context of longer standing selective mutism, aggression, and mild motor delays. His genetic evaluation included chromosomal microarray analysis and whole-exome sequencing. Sequencing revealed a previously unreported heterozygous de novo mutation c.385G>A in ATP1A3, predicted to result in a p.V129M amino acid change. This gene codes for a neuron-specific isoform of the catalytic α-subunit of the ATP-dependent transmembrane sodium–potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism. We discuss the literature on phenotypes associated with known variants in ATP1A3, examine past functional studies of the role of ATP1A3 in neuronal function, and describe a novel clinical presentation associated with mutation of this gene. PMID:27626066
Phulwani, Priya; Bergwitz, Clemens; Jaureguiberry, Graciana; Rasoulpour, Majjid; Estrada, Elizabeth
2011-03-01
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is characterized by rickets, hyperphosphaturia, hypophosphatemia, elevated 1,25-dihydroxyvitamin-D, increased gastrointestinal calcium absorption and hypercalciuria. Serum calcium, 25-hydroxyvitamin-D and PTH levels are normal. Here we describe a boy with HHRH, nephrolithiasis, and compound heterozygosity for one previously described mutation (g.4225_50del) and a novel splice mutation (g.1226G>A) in SLC34A3, the gene encoding the renal sodium-phosphate co-transporter NaPi-IIc. The patient's mother and grandmother are carriers of g.4225_50del, and both have a history of nephrolithiasis associated with hypercalciuria and elevated 1,25-dihydroxyvitamin-D. His three siblings (2-6 years old), who are also carriers of g.4225_50del, have hypercalciuria but so far their renal ultrasounds are normal. Thus, SLC34A3/NaPi-IIc mutations appear to be associated with variable phenotypic changes at presentation, which can include recurrent nephrolithiasis. Copyright © 2011 Wiley-Liss, Inc.
Phulwani, Priya; Bergwitz, Clemens; Jaureguiberry, Graciana; Rasoulpour, Majjid; Estrada, Elizabeth
2015-01-01
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is characterized by rickets, hyperphosphaturia, hypophosphatemia, elevated 1,25-dihydroxyvitamin-D, increased gastrointestinal calcium absorption and hypercalciuria. Serum calcium, 25-hydroxyvitamin-D and PTH levels are normal. Here we describe a boy with HHRH, nephrolithiasis, and compound heterozygosity for one previously described mutation (g.4225_50del) and a novel splice mutation (g.1226G>A) in SLC34A3, the gene encoding the renal sodium-phosphate co-transporter NaPi-IIc. The patient’s mother and grandmother are carriers of g.4225_50del, and both have a history of nephrolithiasis associated with hypercalciuria and elevated 1,25-dihydroxyvitamin-D. His three siblings (2–6 years old), who are also carriers of g.4225_50del, have hypercalciuria but so far their renal ultrasounds are normal. Thus, SLC34A3/NaPi-IIc mutations appear to be associated with variable phenotypic changes at presentation, which can include recurrent nephrolithiasis. PMID:21344632
Novel mutations in the STK11 gene in Thai patients with Peutz-Jeghers syndrome
Ausavarat, Surasawadee; Leoyklang, Petcharat; Vejchapipat, Paisarn; Chongsrisawat, Voranush; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk
2009-01-01
Peutz-Jeghers syndrome (PJS), a rare autosomal dominant inherited disorder, is characterized by hamartomatous gastrointestinal polyps and mucocutaneous pigmentation. Patients with this syndrome have a predisposition to a variety of cancers in multiple organs. Mutations in the serine/threonine kinase 11 (STK11) gene have been identified as a major cause of PJS. Here we present the clinical and molecular findings of two unrelated Thai individuals with PJS. Mutation analysis by Polymerase Chain Reaction-sequencing of the entire coding region of STK11 revealed two potentially pathogenic mutations. One harbored a single nucleotide deletion (c.182delG) in exon 1 resulting in a frameshift leading to premature termination at codon 63 (p.Gly61AlafsX63). The other carried an in-frame 9-base-pair (bp) deletion in exon 7, c.907_915del9 (p.Ile303_Gln305del). Both deletions were de novo and have never been previously described. This study has expanded the genotypic spectrum of the STK11 gene. PMID:19908348
Rowczenio, Dorota M; Gomes, Sónia Melo; Aróstegui, Juan I; Mensa-Vilaro, Anna; Omoyinmi, Ebun; Trojer, Hadija; Baginska, Anna; Baroja-Mazo, Alberto; Pelegrin, Pablo; Savic, Sinisa; Lane, Thirusha; Williams, Rene; Brogan, Paul; Lachmann, Helen J; Hawkins, Philip N
2017-01-01
Cryopyrin-associated periodic syndrome (CAPS) is caused by gain-of-function NLRP3 mutations. Recently, somatic NLRP3 mosaicism has been reported in some CAPS patients who were previously classified as "mutation-negative." We describe here the clinical and laboratory findings in eight British adult patients who presented with symptoms typical of CAPS other than an onset in mid-late adulthood. All patients underwent comprehensive clinical and laboratory investigations, including analysis of the NLRP3 gene using Sanger and amplicon-based deep sequencing (ADS) along with measurements of extracellular apoptosis-associated speck-like protein with CARD domain (ASC) aggregates. The clinical phenotype in all subjects was consistent with mid-spectrum CAPS, except a median age at disease onset of 50 years. Sanger sequencing of NLRP3 was non-diagnostic but ADS detected a somatic NLRP3 mutation in each case. In one patient, DNA isolated from blood demonstrated an increase in the mutant allele from 5 to 45% over 12 years. ASC aggregates in patients' serum measured during active disease were significantly higher than healthy controls. This series represents 8% of CAPS patients diagnosed in a single center, suggesting that acquired NLRP3 mutations may not be an uncommon cause of the syndrome and should be sought in all patients with late-onset symptoms otherwise compatible with CAPS. Steadily worsening CAPS symptoms in one patient were associated with clonal expansion of the mutant allele predominantly affecting myeloid cells. Two patients developed AA amyloidosis, which previously has only been reported in CAPS in association with life-long germline NLRP3 mutations.
Eight previously unidentified mutations found in the OA1 ocular albinism gene
Mayeur, Hélène; Roche, Olivier; Vêtu, Christelle; Jaliffa, Carolina; Marchant, Dominique; Dollfus, Hélène; Bonneau, Dominique; Munier, Francis L; Schorderet, Daniel F; Levin, Alex V; Héon, Elise; Sutherland, Joanne; Lacombe, Didier; Said, Edith; Mezer, Eedy; Kaplan, Josseline; Dufier, Jean-Louis; Marsac, Cécile; Menasche, Maurice; Abitbol, Marc
2006-01-01
Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand. PMID:16646960
Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl
2018-02-01
The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.
A FBN1 mutation association with different phenotypes of Marfan syndrome in a Chinese family.
Li, Yapeng; Xu, Jianhua; Chen, Mingjie; Du, Binbin; Li, Qiaoli; Xing, Qinghe; Zhang, Yanzhou
2016-09-01
Previous studies demonstrated that patients with different FBN1 mutations often present more considerable phenotypic variation compared to different members of the related family carrying a same mutation. The purpose of our study was to identify pathogenic mutation and provide more information about genotype-phenotypic correlations in a large Chinese family with Marfan syndrome. 15 related family members from a Chinese 4-generation pedigree with Marfan syndrome underwent physical, ophthalmologic, radiological and cardiovascular examinations. The propositus has De Bakey III aortic dissection and didn't fulfill the revised Ghent criteria for Marfan syndrome. Nine family members have ectopia lentis and their echocardiogram was normal. Five other family members have no evidence of Marfan syndrome. Genomic DNA was isolated from blood leukocytes. The exome sequencing was employed on the propositus, then the Sanger sequencing was conducted for mutation verification in other 14 participants of this family. The causative mutation in FBN1 discovered in the propositus was a known heterozygous missense mutation, c.1633T>G (p.R545C), in exon 14 (NM 000138). This same mutation was also identified in all 9 ectopia lentis patients and one unaffected 8-year-old girl. However, the same mutation was not discovered in other 4 unaffected family members. Our data enhance the information of genotype-phenotype correlation owing to FBN1 mutations. To our current knowledge, we firstly reported that the same FBN1 mutation, c. 1633C>T (Arg545Cys), was detected simultaneously in three different cardinal phenotypes (ectopia lentis, aortic dissection and unaffected) within one family. The unaffected girl with FBN1 mutation may presumably represent a rare case of nonpenetrance. Copyright © 2016 Elsevier B.V. All rights reserved.
Glucokinase gene mutations (MODY 2) in Asian Indians.
Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan
2014-03-01
Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is <1:1,517. This is the first study of MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.
Correlational study on mitochondrial DNA mutations as potential risk factors in breast cancer.
Li, Linhai; Chen, Lidan; Li, Jun; Zhang, Weiyun; Liao, Yang; Chen, Jianyun; Sun, Zhaohui
2016-05-24
The presented study performed an mtDNA genome-wide association analysis to screen the peripheral blood of breast cancer patients for high-risk germline mutations. Unlike previous studies, which have used breast tissue in analyzing somatic mutations, we looked for germline mutations in our study, since they are better predictors of breast cancer in high-risk groups, facilitate early, non-invasive diagnoses of breast cancer and may provide a broader spectrum of therapeutic options. The data comprised 22 samples of healthy group and 83 samples from breast cancer patients. The sequencing data showed 170 mtDNA mutations in the healthy group and 393 mtDNA mutations in the disease group. Of these, 283 mtDNA mutations (88 in the healthy group and 232 in the disease group) had never been reported in the literature. Moreover, correlation analysis indicated there was a significant difference in 32 mtDNA mutations. According to our relative risk analysis of these 32 mtDNA mutations, 27 of the total had odds ratio values (ORs) of less than 1, meaning that these mutations have a potentially protective role to play in breast cancer. The remaining 5 mtDNA mutations, RNR2-2463 indelA, COX1-6296 C>A, COX1-6298 indelT, ATP6-8860 A>G, and ND5-13327 indelA, whose ORs were 8.050, 4.464, 4.464, 5.254 and 4.853, respectively, were regarded as risk factors of increased breast cancer. The five mutations identified here may serve as novel indicators of breast cancer and may have future therapeutic applications. In addition, the use of peripheral blood samples was procedurally simple and could be applied as a non-invasive diagnostic technique.
Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China.
Wu, Weiwei; Ren, Wenyan; Hao, Honglei; Nan, Hailun; He, Xin; Liu, Qiuling; Lu, Dejian
2018-01-31
Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father-son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036-0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10 -2 . DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10 -3 to 1 × 10 -2 . Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.
Au, P Y B; Huang, L; Broley, S; Gallagher, L; Creede, E; Lahey, D; Ordorica, S; Mina, K; Boycott, K M; Baynam, G; Dyment, D A
2017-07-01
The genetic causes of intellectual disability (ID) are heterogeneous and include both chromosomal and monogenic etiologies. The X-chromosome is known to contain many ID-related genes and males show a marked predominance for intellectual disability. Here we report two females with syndromic intellectual disability. The first individual was relatively mild in her presentation with mild-moderate intellectual disability, hydronephrosis and altered pigmentation along the lines of Blaschko without additional congenital anomalies. A second female presented shortly after birth with dysmorphic facial features, post-axial polydactyly and, on follow-up assessment, demonstrated moderate intellectual disability. Chromosomal studies for Individual 1 identified an X-chromosome deletion due to a de novo pericentric inversion; the inversion breakpoint was associated with deletion of the 5'UTR of the USP9X, a gene which has been implicated in a syndromic intellectual disability affecting females. The second individual had a de novo frameshift mutation detected by whole-exome sequencing that was predicted to be deleterious, NM_001039590.2 (USP9X): c.4104_4105del (p.(Arg1368Serfs*2)). Haploinsufficiency of USP9X in females has been associated with ID and congenital malformations that include heart defects, scoliosis, dental abnormalities, anal atresia, polydactyly, Dandy Walker malformation and hypoplastic corpus callosum. The extent of the congenital malformations observed in Individual 1 was less striking than Individual 2 and other individuals previously reported in the literature, and suggests that USP9X mutations in females can have a wider spectrum of presentation than previously appreciated. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Clinical and Prognostic Profiles of Cardiomyopathies Caused by Mutations in the Troponin T Gene.
Ripoll-Vera, Tomás; Gámez, José María; Govea, Nancy; Gómez, Yolanda; Núñez, Juana; Socías, Lorenzo; Escandell, Ángela; Rosell, Jorge
2016-02-01
Mutations in the troponin T gene (TTNT2) have been associated in small studies with the development of hypertrophic cardiomyopathy characterized by a high risk of sudden death and mild hypertrophy. We describe the clinical course of patients carrying mutations in this gene. We analyzed the clinical characteristics and prognosis of patients with mutations in the TNNT2 gene who were seen in an inherited cardiac disease unit. Of 180 families with genetically studied cardiomyopathies, 21 families (11.7%) were identified as having mutations in TNNT2: 10 families had Arg92Gln, 5 had Arg286His, 3 had Arg278Cys, 1 had Arg92Trp, 1 had Arg94His, and 1 had Ile221Thr. Thirty-three additional genetic carriers were identified through family assessment. The study included 54 genetic carriers: 56% were male, and the mean average age was 41 ± 17 years. There were 33 cases of hypertrophic cardiomyopathy, 9 of dilated cardiomyopathy, and 1 of noncompaction cardiomyopathy, and maximal myocardial thickness was 18.5 ± 6mm. Ventricular dysfunction was present in 30% of individuals and a history of sudden death in 62%. During follow-up, 4 patients died and 14 (33%) received a defibrillator (8 probands, 6 relatives). Mean survival was 54 years. Carriers of Arg92Gln had early disease development, high penetrance, a high risk of sudden death, a high rate of defibrillator implantation, and a high frequency of mixed phenotype. Mutations in the TNNT2 gene were more common in this series than in previous studies. The clinical and prognostic profiles depended on the mutation present. Carriers of the Arg92Gln mutation developed hypertrophic or dilated cardiomyopathy and had a significantly worse prognosis than those with other mutations in TNNT2 or other sarcomeric genes. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Ichikawa, S; Wushur, S
2001-06-01
In order to confirm the results obtained in the previous 1-year-term (December 12, 1998, through December 10, 1999) scorings and analyses of spontaneous pink mutant events (PMEs) in the stamen hairs of Tradescantia clone BNL 4430 cultivated in a nutrient solution circulating (NSC) growth chamber, similar scorings and analyses were continued for another 52-week period from December 11, 1999, through December 8, 2000. The environmental conditions were not changed, except for a minor modification in the method of supplying the nutrient solution used. During the scoring period, 732,128 stamen hairs with an average cell number of 24.90 cells were observed, and 2,368 PMEs were detected. The overall spontaneous somatic mutation frequency was 1.35 +/- 0.03 PMEs per 10(4) hair-cell divisions, which was significantly lower than the value of 1.56 +/- 0.03 determined in the previous 52-week period, and the frequencies were lower during April through September than in other months, the period showing lower frequencies lasting 1-month longer than in the previous year. The present results reconfirmed the occurrence of a clear seasonal variation in the spontaneous mutation frequency in the NSC growth chamber, and the lower overall frequency, probably related to the minor modification in supplying the nutrient solution, is helpful for conducting mutagenicity tests at low levels, offering a lower background level. The analyses of the sectoring patterns of all these PMEs showed that the most of the 203 cases of multiple (two to five) pink sectors observed in the same stamen hairs (scored as 253 PMEs for calculating mutation frequency) were the results of events involving somatic recombinations occurred in single cells or cell lineages, rather than those of two or more independent somatic mutations occurred in different cells, agreeing with our previous study, and the significance of somatic recombinations in causing single PMEs was also reconfirmed.
Radhakrishna, Suhas M; Grimm, Amy; Broderick, Lori
2017-04-20
Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS) is the second most common heritable autoinflammatory disease, typically presenting in pre-school aged children with fever episodes lasting 1-3 weeks. Systemic symptoms can include rash, myalgia, ocular inflammation, and serositis. Here we report an unusual presentation of TRAPS in a 7 month old girl who presented with only persistent fever. She was initially diagnosed with incomplete Kawasaki Disease and received IVIG and infliximab; however, her fevers quickly recurred. Subsequent testing revealed a urinary tract infection, but she did not improve despite appropriate therapy. As fever continued, she developed significant abdominal distension with imaging concerning for appendicitis, followed by hyperthermia and hemodynamic instability. Given her protracted clinical course and maternal history of a poorly defined inflammatory condition, an autoinflammatory disease was considered. Therapy with anakinra was initiated, resulting in rapid resolution of fever and normalization of inflammatory markers. She was found to have a previously unreported mutation, Thr90Pro, in the TNFRSF1A gene associated with TRAPS. This novel mutation was also confirmed in the patient's mother and maternal uncle. This report reviews a severe case of TRAPS in infancy associated with a novel mutation, Thr90Pro, in the TNFRSF1A gene, and emphasizes that autoinflammatory disease should be considered in the differential of infants with fever of unknown origin.
SPG3A-linked hereditary spastic paraplegia associated with cerebral glucose hypometabolism.
Terada, Tatsuhiro; Kono, Satoshi; Ouchi, Yasuomi; Yoshida, Kenichi; Hamaya, Yasushi; Kanaoka, Shigeru; Miyajima, Hiroaki
2013-04-01
SPG3A-linked hereditary spastic paraplegia (HSP) is a rare autosomal dominant motor disorder caused by a mutation in the SPG3A gene, and is characterized by progressive motor weakness and spasticity in the lower limbs, without any other neurological abnormalities. SPG3A-linked HSP caused by a R239C mutation has been reported to present a pure phenotype confined to impairment of the corticospinal tract. However, there is still a debate about the etiology of this motor deficit with regard to whether it is peripheral or central. We herein report two patients who were heterozygous for a R239C mutation in the SPG3A gene. Two middle-aged Japanese sisters had been suffering from a pure phenotype of HSP since their childhood. Both patients had a significant decrease in glucose metabolism in the frontal cortex medially and dorsolaterally in a [(18)F]-fluorodeoxyglucose (FDG) positron emission photography (PET) study and low scores on the Frontal Assessment Battery. A real-time PCR analysis in normal subjects showed the frontal cortex to be the major location where SPG3A mRNA is expressed. The present finding that the frontal glucose hypometabolism was associated with frontal cognitive impairment indicates that widespread neuropathology associated with mutations in the SPG3A gene may be present more centrally than previously assumed.
Ross, Jeffrey A; Leavitt, Sharon A; Schmid, Judith E; Nelson, Garret B
2012-09-01
The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.
Martikainen, Mika H; Kytövuori, Laura; Majamaa, Kari
2013-03-01
Leigh syndrome is a mitochondrial disease with considerable clinical and genetic variation. We present a 16-year-old boy with Leigh-like syndrome and broad developmental retardation, parkinsonism and hypogonadism. Sequencing of the entire mitochondrial DNA from blood revealed the m.4296G>A mutation in the MT-TI gene. The mutation was heteroplasmic with a 95% proportion of the mutant genome, while the proportion was 58% in the blood of the patient's clinically healthy mother. Our results suggest that m.4296G>A is pathogenic in humans, and that the phenotype related to this change includes Leigh-like syndrome in adolescence with parkinsonism and hypogonadism, in addition to the previously reported early infantile Leigh syndrome. Copyright © 2013 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Tekin, M; Bodurtha, J N; Nance, W E; Pandya, A
2001-10-01
Klein-Waardenburg syndrome or Waardenburg syndrome type 3 (WS-III; MIM 148820) is characterized by the presence of musculoskeletal abnormalities in association with clinical features of Waardenburg syndrome type 1 (WS-I). Since the description of the first patient in 1947 (D. Klein, Arch Klaus Stift Vererb Forsch 1947: 22: 336-342), a few cases have been reported. Only occasional families have demonstrated autosomal-dominant inheritance of WS-III. In a previous report, a missense mutation in the paired domain of the PAX3 gene has been described in a family with dominant segregation of WS-III. In this report, we present a second family (mother and son) with typical clinical findings of WS-III segregating with a heterozygous 13-bp deletion in the paired domain of the PAX3 gene. Although homozygosity or compound heterozygosity has also been documented in patients with severe limb involvement, a consistent genotype-phenotype correlation for limb abnormalities associated with heterozygous PAX3 mutations has not previously been apparent. Heterozygous mutations could either reflect a unique dominant-negative effect or possibly the contribution of other unlinked genetic modifiers in determining the phenotype.
Volaki, Konstantina; Pampanos, Andreas; Kitsiou-Tzeli, Sophia; Vrettou, Christina; Oikonomakis, Vasilis; Sofocleous, Christalena; Kanavakis, Emmanuel
2013-10-01
Molecular and neurobiological evidence for the involvement of neuroligins (particularly NLGN3 and NLGN4X genes) in autistic disorder is accumulating. However, previous mutation screening studies on these two genes have yielded controversial results. The present study explores, for the first time, the contribution of NLGN3 and NLGN4X genetic variants in Greek patients with autistic disorder. We analyzed the full exonic sequence of NLGN3 and NLGN4X genes in 40 patients strictly fulfilling the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. criteria for autistic disorder. We identified nine nucleotide changes in NLGN4X--one probable causative mutation (p.K378R) previously reported by our research group, one novel variant (c.-206G>C), one nonvalidated single nucleotide polymorphism (SNP, rs111953947), and six known human SNPs reported in the SNP database--and one known human SNP in NLGN3 also reported in the SNP database. The variants identified are expected to be benign. However, they should be investigated in the context of variants in interacting cellular pathways to assess their contribution to the etiology of autism.
Molecular and Clinical Characterization of Albinism in a Large Cohort of Italian Patients
Gargiulo, Annagiusi; Testa, Francesco; Rossi, Settimio; Di Iorio, Valentina; Fecarotta, Simona; de Berardinis, Teresa; Iovine, Antonello; Magli, Adriano; Signorini, Sabrina; Fazzi, Elisa; Galantuomo, Maria Silvana; Fossarello, Maurizio; Montefusco, Sandro; Ciccodicola, Alfredo; Neri, Alberto; Macaluso, Claudio; Simonelli, Francesca; Surace, Enrico Maria
2011-01-01
Purpose. The purpose of this study was to identify the molecular basis of albinism in a large cohort of Italian patients showing typical ocular landmarks of the disease and to provide a full characterization of the clinical ophthalmic manifestations. Methods. DNA samples from 45 patients with ocular manifestations of albinism were analyzed by direct sequencing analysis of five genes responsible for albinism: TYR, P, TYRP1, SLC45A2 (MATP), and OA1. All patients studied showed a variable degree of skin and hair hypopigmentation. Eighteen patients with distinct mutations in each gene associated with OCA were evaluated by detailed ophthalmic analysis, optical coherence tomography (OCT), and fundus autofluorescence. Results. Disease-causing mutations were identified in more than 95% of analyzed patients with OCA (28/45 [62.2%] cases with two or more mutations; 15/45 [33.3%] cases with one mutation). Thirty-five different mutant alleles were identified of which 15 were novel. Mutations in TYR were the most frequent (73.3%), whereas mutations in P occurred more rarely (13.3%) than previously reported. Novel mutations were also identified in rare loci such as TYRP1 and MATP. Mutations in the OA1 gene were not detected. Clinical assessment revealed that patients with iris and macular pigmentation had significantly higher visual acuity than did severe hypopigmented phenotypes. Conclusions. TYR gene mutations represent a relevant cause of oculocutaneous albinism in Italy, whereas mutations in P present a lower frequency than that found in other populations. Clinical analysis revealed that the severity of the ocular manifestations depends on the degree of retinal pigmentation. PMID:20861488
Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter
2016-01-01
We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568
Zamani, Farhad; Bagheri, Zohreh; Bayat, Maryam; Fereshtehnejad, Seyed-Mohammad; Basi, Ali; Najmabadi, Hossein; Ajdarkosh, Hossein
2012-10-01
Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder in white people, characterized by highly abnormal uptake of iron from the gastrointestinal tracts. Recently, mutation studies have focused to detect the genes responsible for HH. In this cross-sectional study, 12 HH patients were recruited, who were referred to Firoozgar Hospital, Tehran, Iran. In addition to the clinical assessments, a complete laboratory evaluation, imaging modalities, histopathologic assessment, atomic absorption spectrophotometry and gene mutation study were performed. The genetic study for HFE gene mutation was examined for all of the patients since 2006, while non-HFE mutation was conducted since December 2010 (only for 1 of them). Twelve patients were evaluated consisting of 11 men and 1 woman, with the mean age of 39.58±12.68 yr. The average of atomic iron loads was 13.25±4.83-fold higher than normal standards. Four patients had heterozygotic mutation of H63D (33.3%). There was no significant difference in either the iron load of liver (P=0.927) and heart (P=0.164) or serum concentration of ferritin (P=0.907) and TIBC (P=0.937) between the HFE-mutant and without HFE mutation HH cases. In contrast to other studies, C282Y mutation was not detected in any of our Iranian HH patients. Heterozygotic mutations of H63D (HFE) and TFR2 (non-HFE) genes were found to be more common in these patients. Similar to previous reports, these mutations were not found to be significantly associated with severity of presentation in HH patients.
van den Bergen, J C; Schade van Westrum, S M; Dekker, L; van der Kooi, A J; de Visser, M; Wokke, B H A; Straathof, C S; Hulsker, M A; Aartsma-Rus, A; Verschuuren, J J; Ginjaar, H B
2014-01-01
Duchenne and Becker muscular dystrophy (DMD/BMD) are both caused by mutations in the DMD gene. Out-of-frame mutations in DMD lead to absence of the dystrophin protein, while in-frame BMD mutations cause production of internally deleted dystrophin. Clinically, patients with DMD loose ambulance around the age of 12, need ventilatory support at their late teens and die in their third or fourth decade due to pulmonary or cardiac failure. BMD has a more variable disease course. The disease course of patients with BMD with specific mutations could be very informative to predict the outcome of the exon-skipping therapy, aiming to restore the reading-frame in patients with DMD. Patients with BMD with a mutation equalling a DMD mutation after successful exon skipping were selected from the Dutch Dystrophinopathy Database. Information about disease course was gathered through a standardised questionnaire. Cardiac data were collected from medical correspondence and a previous study on cardiac function in BMD. Forty-eight patients were included, representing 11 different mutations. Median age of patients was 43 years (range 6-67). Nine patients were wheelchair users (26-56 years). Dilated cardiomyopathy was present in 7/36 patients. Only one patient used ventilatory support. Three patients had died at the age of 45, 50 and 76 years, respectively. This study provides mutation specific data on the course of disease in patients with BMD. It shows that the disease course of patients with BMD, with a mutation equalling a 'skipped' DMD mutation is relatively mild. This finding strongly supports the potential benefit of exon skipping in patients with DMD.
Turan, Serap; Aydin, Cumhur; Bereket, Abdullah; Akcay, Teoman; Güran, Tülay; Yaralioglu, Betul Akmen; Bastepe, Murat; Jüppner, Harald
2010-02-01
An autosomal recessive form of hypophosphatemia (ARHP) was recently shown to be caused by homozygous mutations in DMP1, the gene encoding dentin matrix protein-1 (DMP-1), a non-collagenous bone matrix protein with an important role in the development and mineralization of bone and teeth. Here, we describe a previously not reported consanguineous ARHP kindred in which the three affected individuals carry a novel homozygous DMP-1 mutation. The index case presented at the age of 3 years with bowing of his legs and showed hypophosphatemia due to insufficient renal phosphate retention. Serum alkaline phosphatase activity was elevated, with initially normal PTH. FGF23 was inappropriately normal at an older age while being treated with oral phosphate and 1,25(OH)(2)D. Similar clinical and biochemical findings, except for elevated FGF23 levels, were present in his 16-month-old brother and his 12.5-year-old female cousin; the parents of the three affected children are first-degree cousins. Nucleotide sequence analysis was performed on PCR-amplified exons encoding DMP-1 and flanking intronic regions. A novel homozygous frame-shift mutation (c.485Tdel; p.Glu163ArgfsX53) in exon 6 resulting in a premature stop codon was identified in all effected individuals. The parents and available unaffected siblings were heterozygous for c.485Tdel. Tooth growth and shape were normal for the index case, his affected brother and cousin, but their permanent and deciduous teeth displayed enlarged pulp chambers. The identified genetic mutation underscores the importance of DMP-1 mutations in the pathogenesis of ARHP. Furthermore, DMP-1 mutations appear to contribute, through yet unknown mechanisms, to tooth development. (c) 2009 Elsevier Inc. All rights reserved.
Turan, Serap; Aydin, Cumhur; Bereket, Abdullah; Akcay, Teoman; Güran, Tülay; Yaralioglu, Betul Akmen; Bastepe, Murat; Jüppner, Harald
2009-01-01
An autosomal recessive form of hypophosphatemia (ARHP) was recently shown to be caused by homozygous mutations in DMP1, the gene encoding dentin matrix protein-1 (DMP-1), a non-collagenous bone matrix protein with an important role in the development and mineralization of bone and teeth. Here, we report a previously not reported consanguineous ARHP kindred in which the three affected individuals carry a novel homozygous DMP-1 mutation. The index case presented at the age of 3 years with bowing of his legs, and showed hypophosphatemia due to insufficient renal phosphate retention. Serum alkaline phosphatase activity was elevated, with initially normal PTH. FGF23 was inappropriately normal at an older age while being treated with oral phosphate and 1,25(OH)2D. Similar clinical and biochemical findings, except for elevated FGF23 levels, were present in his 16 month-old brother and his 12.5 year-old female cousin; the parents of the three affected children are first-degree cousins. Nucleotide sequence analysis was performed on PCR-amplified exons encoding DMP-1 and flanking intronic regions. A novel homozygous frame-shift mutation (c.485Tdel; p.Glu163ArgfsX53) in exon 6 resulting in a premature stop codon was identified in all effected individuals. The parents and available unaffected siblings were heterozygous for c.485Tdel. Tooth growth and shape were normal for the index case, his affected brother and cousin, but their permanent and deciduous teeth displayed enlarged pulp chambers. The identified genetic mutation underscores the importance of DMP-1 mutations in the pathogenesis of ARHP. Furthermore, DMP-1 mutations appear to contribute, through yet unknown mechanisms, to tooth development. PMID:19796717
Budde, Birgit S; Binner, Priska; Waldmüller, Stephan; Höhne, Wolfgang; Blankenfeldt, Wulf; Hassfeld, Sabine; Brömsen, Jürgen; Dermintzoglou, Anastassia; Wieczorek, Marcus; May, Erik; Kirst, Elisabeth; Selignow, Carmen; Rackebrandt, Kirsten; Müller, Melanie; Goody, Roger S; Vosberg, Hans-Peter; Nürnberg, Peter; Scheffold, Thomas
2007-12-26
Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the alpha- and beta-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.
Ambrus, Attila; Mizsei, Reka; Adam-Vizi, Vera
2015-07-01
Human dihydrolipoamide dehydrogenase (hLADH) is a flavoenzyme component (E3) of the human alpha-ketoglutarate dehydrogenase complex (α-KGDHc) and few other dehydrogenase complexes. Pathogenic mutations of hLADH cause severe metabolic diseases (atypical forms of E3 deficiency) that often escalate to cardiological or neurological presentations and even premature death; the pathologies are generally accompanied by lactic acidosis. hLADH presents a distinct conformation under acidosis (pH 5.5-6.8) with lower physiological activity and the capacity of generating reactive oxygen species (ROS). It has been shown by our laboratory that selected pathogenic mutations, besides lowering the physiological activity of hLADH, significantly stimulate ROS generation by hLADH, especially at lower pH, which might play a role in the pathogenesis of E3-deficiency in respective cases. Previously, we generated by molecular dynamics (MD) simulation the low-pH hLADH structure and analyzed the structural changes induced in this structure by eight of the pathogenic mutations of hLADH. In the absence of high resolution mutant structures these pieces of information are crucial for the mechanistic investigation of the molecular pathogeneses of the hLADH protein. In the present work we analyzed by molecular dynamics simulation the structural changes induced in the low-pH conformation of hLADH by five pathogenic mutations of hLADH; the structures of these disease-causing mutants of hLADH have never been examined before.
Splice Site Mutations in the ATP7A Gene
Møller, Lisbeth Birk
2011-01-01
Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us and others, that the presence of some wild-type transcript is correlated to a milder phenotype. PMID:21494555
Expanding the Genotypic Spectrum of Bathing Suit Ichthyosis
Marukian, Nareh V.; Hu, Rong-Hua; Craiglow, Brittany G.; Milstone, Leonard M.; Zhou, Jing; Theos, Amy; Kaymakcalan, Hande; Akkaya, Deniz A.; Uitto, Jouni J.; Vahidnezhad, Hassan; Youssefian, Leila; Bayliss, Susan J.; Paller, Amy S.; Boyden, Lynn M.
2017-01-01
Importance Bathing suit ichthyosis (BSI) is a rare congenital disorder of keratinization characterized by restriction of scale to sites of relatively higher temperature such as the trunk, with cooler areas remaining unaffected. Fewer than 40 cases have been reported in the literature. Bathing suit ichthyosis is caused by recessive, temperature-sensitive mutations in the transglutaminase-1 gene (TGM1). Clear genotype-phenotype correlations have been difficult to establish because several of the same TGM1 mutations have been reported in BSI and other forms of congenital ichthyosis. We identify novel and recurrent mutations in 16 participants with BSI. Objective To expand the genotypic spectrum of BSI, identifying novel TGM1 mutations in patients with BSI, and to use BSI genotypes to draw inferences about the temperature sensitivity of TGM1 mutations. Design, Setting, and Participants A total of 16 participants with BSI from 13 kindreds were identified from 6 academic medical centers. A detailed clinical history was obtained from each participant, including phenotypic presentation at birth and disease course. Each participant underwent targeted sequencing of TGM1. Main Outcomes and Measures Phenotypic and genotypic characteristics in these patients from birth onward. Results Of the 16 participants, 7 were male, and 9 were female (mean age, 12.6 years; range, 1-39 years). We found 1 novel TGM1 indel mutation (Ile469_Cys471delinsMetLeu) and 8 TGM1 missense mutations that to our knowledge have not been previously reported in BSI: 5 have been previously described in non–temperature-sensitive forms of congenital ichthyosis (Arg143Cys, Gly218Ser, Gly278Arg, Arg286Gln, and Ser358Arg), and 3 (Tyr374Cys, Phe495Leu, and Ser772Arg) are novel mutations. Three probands were homozygous for Arg264Trp, Arg286Gln, or Arg315Leu, indicating that these mutations are temperature sensitive. Seven of 10 probands with a compound heterozygous TGM1 genotype had a mutation at either arginine 307 or 315, providing evidence that mutations at these sites are temperature sensitive and highlighting the importance of these residues in the pathogenesis of BSI. Conclusions and Relevance Our findings expand the genotypic spectrum of BSI and the understanding of temperature sensitivity of TGM1 mutations. Increased awareness of temperature-sensitive TGM1 genotypes should aid in genetic counseling and provide insights into the pathophysiology of TGM1 ichthyoses, transglutaminase-1 enzymatic activity, and potential therapeutic approaches. PMID:28403434
Mutation analysis of SLC26A4 (Pendrin) gene in a Brazilian sample of hearing-impaired subjects.
Nonose, Renata Watanabe; Lezirovitz, Karina; de Mello Auricchio, Maria Teresa Balester; Batissoco, Ana Carla; Yamamoto, Guilherme Lopes; Mingroni-Netto, Regina Célia
2018-05-08
Mutations in the SLC26A4 gene are associated with Pendred syndrome and autosomal recessive non-syndromic deafness (DFNB4). Both disorders have similar audiologic characteristics: bilateral hearing loss, often severe or profound, which may be associated with abnormalities of the inner ear, such as dilatation of the vestibular aqueduct or Mondini dysplasia. But, in Pendred syndrome (OMIM #274600), with autosomal recessive inheritance, besides congenital sensorineural deafness, goiter or thyroid dysfunctions are frequently present. The aim of this study was to determine whether mutations in SLC26A4 are a frequent cause of hereditary deafness in Brazilian patients. Microsatellite haplotypes linked to SLC26A4 were investigated in 68 families presenting autosomal recessive non-syndromic deafness. In the probands of the 16 families presenting segregation consistent with linkage to SLC26A4, Sanger sequencing of the 20 coding exons was performed. In an additional sample of 15 individuals with suspected Pendred syndrome, because of the presence of hypothyroidism or cochleovestibular malformations, the SLC26A4 gene coding region was also sequenced. In two of the 16 families with indication of linkage to SLC26A4, the probands were found to be compound heterozygotes for probably pathogenic different mutations: three novel (c.1003 T > G (p. F335 V), c.1553G > A (p.W518X), c.2235 + 2 T > C (IVS19 + 2 T > C), and one already described, c.84C > A (p.S28R). Two of the 15 individuals with suspected Pendred syndrome because of hypothyreoidism or cochleovestibular malformations were monoallelic for likely pathogenic mutations: a splice mutation (IVS7 + 2 T > C) and the previously described c.1246A > C (p.T416P). Pathogenic copy number variations were excluded in the monoallelic cases and in those with normal results after Sanger sequencing. Additional mutations in the SLC26A4 gene or other definite molecular cause for deafness were not identified in the monoallelic patients, after exome sequencing. Biallelic pathogenic mutations in SLC26A4 explained ~ 3% of cases selected because of autosomal recessive deafness. Monoallelic mutations were present in ~ 13% of isolated cases of deafness with cochleovestibular malformations or suspected Pendred syndrome. These data reinforce the importance of mutation screening of SLC26A4 in Brazilian subjects and highlight the elevated frequency of monoallelic patients.
Mutation of FAS, XIAP, and UNC13D genes in a patient with a complex lymphoproliferative phenotype.
Boggio, Elena; Aricò, Maurizio; Melensi, Matteo; Dianzani, Irma; Ramenghi, Ugo; Dianzani, Umberto; Chiocchetti, Annalisa
2013-10-01
This article presents a case report for a child presenting with mixed clinical features of autoimmune lymphoproliferative syndrome (ALPS), familial hemophagocytic lymphohistiocytosis (FHL), and X-linked lymphoproliferative (XLP) disease. From 6 months, he exhibited splenomegaly and lymphoadenopathy and from 4 years, he showed recurrent severe autoimmune hemocytopenia and sepsislike bouts of fever, from which he eventually died at the age of 12. Intriguingly, the patient carried mutations in FAS, XIAP, and UNC13D genes, which are involved in ALPS, XLP disease, and FHL, respectively. These mutations were inherited from the mother, who had rheumatoid arthritis but no signs of ALPS. A role for other modifying genes was suggested by the finding that the healthy father exhibited defective Fas function, without mutation of the FAS gene, and had transmitted to the patient an osteopontin (OPN) gene variant previously associated with ALPS. Therefore, several genes might influence the disease outcome in this family. In vitro analyses revealed that the FAS and the XIAP mutations decreased expression of the corresponding proteins, and the UNC13D mutation decreased granule secretion and Munc interaction with Rab-27a. These findings suggest that overlap may exist between ALPS, FHL, and XLP disease, in accordance with the notion that FHL and XLP disease are due to defective natural killer (NK)/NK T-cell function, which involves Fas. Therefore, we propose that NK cell defects should be evaluated in patients with ALPS-like characteristics, and hematopoietic stem cell transplantation should be considered in individuals with severe refractory cytopenia and FHL-like manifestations.
Unusual phenotype of congenital adrenal hyperplasia (CAH) with a novel mutation of the CYP21A2 gene.
Raisingani, Manish; Contreras, Maria F; Prasad, Kris; Pappas, John G; Kluge, Michelle L; Shah, Bina; David, Raphael
2016-07-01
Gonadotropin independent sexual precocity (SP) may be due to congenital adrenal hyperplasia (CAH), and its timing usually depends on the type of mutation in the CYP21A2 gene. Compound heterozygotes are common and express phenotypes of varying severity. The objective of this case report was to investigate the hormonal pattern and unusual genetic profile in a 7-year-old boy who presented with pubic hair, acne, an enlarged phallus, slightly increased testicular volume and advanced bone age. Clinical, hormonal and genetic studies were undertaken in the patient as well as his parents. We found elevated serum 17-hydroxyprogesterone (17-OHP) and androstenedione that were suppressed with dexamethasone, and elevated testosterone that actually rose after giving dexamethasone, indicating activity of the hypothalamic-pituitary-gonadal (HPG) axis. An initial search for common mutations was negative, but a more detailed genetic analysis of the CYP21A2 gene revealed two mutations including R341W, a non-classical mutation inherited from his mother, and g.823G>A, a novel not previously reported consensus donor splice site mutation inherited from his father, which is predicted to be salt wasting. However, the child had a normal plasma renin activity. He was effectively treated with low-dose dexamethasone and a GnRH agonist. His father was an unaffected carrier, but his mother had evidence of mild non-classical CAH. In a male child presenting with gonadotropin independent SP it is important to investigate adrenal function with respect to the androgen profile, and to carry out appropriate genetic studies.
CREBBP mutations in relapsed acute lymphoblastic leukaemia
Mullighan, Charles G.; Zhang, Jinghui; Kasper, Lawryn H.; Lerach, Stephanie; Payne-Turner, Debbie; Phillips, Letha A.; Heatley, Sue L.; Holmfeldt, Linda; Collins-Underwood, J. Racquel; Ma, Jing; Buetow, Kenneth H.; Pui, Ching-Hon; Baker, Sharyn D.; Brindle, Paul K.; Downing, James R.
2010-01-01
Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biologic determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways1,2, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse3. However, detailed analysis of sequence mutations in ALL has not been performed. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase (HAT) CREB-binding protein (CBP)4. The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the HAT domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL. PMID:21390130
HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.
Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent
2017-07-01
HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.
Cabral, Wayne A.; Barnes, Aileen M.; Adeyemo, Adebowale; Cushing, Kelly; Chitayat, David; Porter, Forbes D.; Panny, Susan R.; Gulamali-Majid, Fizza; Tishkoff, Sarah A.; Rebbeck, Timothy R.; Gueye, Serigne M.; Bailey-Wilson, Joan E.; Brody, Lawrence C.; Rotimi, Charles N.; Marini, Joan C.
2012-01-01
Purpose Deficiency of prolyl 3-hydroxylase 1, encoded by LEPRE1, causes recessive osteogenesis imperfecta. We previously identified a LEPRE1 mutation, exclusively in African Americans and contemporary West Africans. We hypothesized that this allele originated in West Africa and was introduced to the Americas with the Atlantic slave trade. We aimed to determine the frequency of carriers for this mutation among African Americans and West Africans, and the mutation origin and age. Methods Genomic DNA was screened for the mutation using PCR and restriction digestion, and a custom TaqMan genomic SNP assay. The mutation age was estimated using microsatellites and short tandem repeats spanning 4.2 Mb surrounding LEPRE1 in probands and carriers. Results Approximately 0.4% of Mid-Atlantic African Americans carry this mutation, estimating recessive OI in 1/260,000 births in this population. In Nigeria and Ghana, 1.48% of unrelated individuals are heterozygous carriers, predicting 1/18,260 births will be affected with recessive OI, equal to the incidence of de novo dominant OI. The mutation was not detected in Africans from surrounding countries. All carriers shared a haplotype of 63-770 Kb, consistent with a single founder for this mutation. Using linkage disequilibrium analysis, the mutation was estimated to have originated between 650 and 900 years before present (1100-1350 C.E.). Conclusions We identified a West African founder mutation for recessive OI in LEPRE1. Nearly 1.5% of Ghanians and Nigerians are carriers. The age of this allele is consistent with introduction to North America via the Atlantic slave trade (1501 – 1867 C.E). PMID:22281939
Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.
Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A
2017-08-01
Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society
M'dimegh, Saoussen; Omezzine, Asma; Hamida-Rebai, Mériam Ben; Aquaviva-Bourdain, Cécile; M'barek, Ibtihel; Sahtout, Wissal; Zellama, Dorsaf; Souche, Geneviéve; Achour, Abdellatif; Abroug, Saoussen; Bouslama, Ali
2016-11-01
Primary hyperoxaluria is a genetic disorder in glyoxylate metabolism that leads to systemic overproduction of oxalate. Functional deficiency of alanine-glyoxylate aminotransferase in this disease leads to recurrent nephrolithiasis, nephrocalcinosis, systemic oxalosis, and kidney failure. The aim of this study was to determine the molecular etiology of kidney transplant loss in a young Tunisian individual. We present a young man with end-stage renal disease who received a kidney allograft and experienced early graft failure. There were no improvement in kidney function; he required hemodialysis and graft biopsy revealed calcium oxalate crystals, which raised suspicion of primary hyperoxaluria. Genetic study in the AGXT gene by PCR direct sequencing identified three missense changes in heterozygote state: the p. Gly190Arg mutation next to two other novels not previously described. The classification of the deleterious effect of the missense changes was developed using the summered results of four different mutation assessment algorithms, SIFT, PolyPhen, Mutation Taster, and Align-GVGD. This system classified the changes as polymorphism in one and as mutation in other. The patient was compound heterozygous mutations. Structural analysis showed that the novel mutation, p.Pro28Ser mutation, affects near the dimerization interface of AGT and positioned on binding site instead of the inhibitor, amino-oxyacetic acid (AOA). With the novel AGXT mutation, the mutational spectrum of this gene continues to broaden in our population. The diagnosis of PH1 was not recognized until after renal transplant with fatal consequences, which led us to confirm the importance of screening before planning for kidney transplantation in population with a relatively high frequency of AGXT mutation carriers. Copyright © 2016 Elsevier B.V. All rights reserved.
Heterozygous ABCC8 mutations are a cause of MODY.
Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S
2012-01-01
The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m², no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes. ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.
The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.
Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena
2015-11-01
Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.
Acute quadriplegia in a young man secondary to prothrombin G20210A mutation.
Sawaya, R; Diken, Z; Mahfouz, R
2011-08-01
We present the case of an 18-year-old man, previously healthy, who presented with acute quadriplegia and respiratory failure. Physical examination was compatible with a high cervical anterior spinal cord lesion. We plan to evaluate the cause of such a neurological presentation in a healthy young man. American University Medical Center, Beirut, Lebanon. The patient underwent routine blood hematological and chemistry work-up, hypercoagulable profile studies, genetic profile for thrombophelias, radiographic studies of the brain and cervical cord, cerebrospinal analysis and extensive electrophyisological studies. Magnetic resonance imaging and magnetic resonance angiogram of the brain, carotid and intracranial vessels were normal. Cerebral angiography was normal. Magnetic resonance imaging of the cervical cord revealed lesion of the anterior segment of the cervical cord between C2 and C5 levels. Hypercoagulable profile studies were normal. Electrophysiological studies confirmed an isolated lesion of the descending cortico-spinal tracts. DNA analysis revealed the presence of a G20210A mutation-causing hyperprothrombinemia. We conclude that a G20210A mutation causing-hyperprothrombinemia can cause anterior spinal artery thrombosis and anterior spinal cord infarction with the resultant neurological deficits in otherwise healthy patients.
An, Changlong; Beard, William A; Chen, Desheng; Wilson, Samuel H; Makridakis, Nick M
2013-10-01
Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37˚C. At room temperature the triple mutant's low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.
Bass, Chris; Schroeder, Iris; Turberg, Andreas; Field, Linda M; Williamson, Martin S
2004-12-01
In many insect species, resistance to cyclodiene insecticides is caused by amino acid substitutions at a single residue (A302) within the M2 transmembrane region of the gamma-aminobutyric acid (GABA) receptor sub-unit termed Rdl (resistance to dieldrin). These mutations (A302S and A302G) have also been shown to confer varying levels of cross-resistance to fipronil, a phenylpyrazole insecticide with a similar mode of action to cyclodienes. To investigate the possible occurrence of these mutations in the cat flea, Ctenocephalides felis (Bouché), a 176-bp fragment of the cat flea Rdl gene, encompassing the mutation site, was PCR amplified and sequenced from nine laboratory flea strains. The A302S mutation was found in eight of the nine strains analysed, although the relative frequency of the mutant allele varied between strains. Only one strain (R6) was found to be homozygous for the S302 allele in all the individuals tested, and this correlated with previous reports of low-level fipronil resistance in this strain. A PCR-based diagnostic assay, capable of screening individual fleas for this mutation, was developed and used to survey a range of fleas collected at random from veterinary clinics in the UK and USA. The A302S mutation was present at a high frequency in these domestic pet populations. 2004 Society of Chemical Industry.
Masetti, Riccardo; Castelli, Ilaria; Astolfi, Annalisa; Bertuccio, Salvatore Nicola; Indio, Valentina; Togni, Marco; Belotti, Tamara; Serravalle, Salvatore; Tarantino, Giuseppe; Zecca, Marco; Pigazzi, Martina; Basso, Giuseppe; Pession, Andrea; Locatelli, Franco
2016-08-30
Despite significant improvement in treatment of childhood acute myeloid leukemia (AML), 30% of patients experience disease recurrence, which is still the major cause of treatment failure and death in these patients. To investigate molecular mechanisms underlying relapse, we performed whole-exome sequencing of diagnosis-relapse pairs and matched remission samples from 4 pediatric AML patients without recurrent cytogenetic alterations. Candidate driver mutations were selected for targeted deep sequencing at high coverage, suitable to detect small subclones (0.12%). BiCEBPα mutation was found to be stable and highly penetrant, representing a separate biological and clinical entity, unlike WT1 mutations, which were extremely unstable. Among the mutational patterns underlying relapse, we detected the acquisition of proliferative advantage by signaling activation (PTPN11 and FLT3-TKD mutations) and the increased resistance to apoptosis (hyperactivation of TYK2). We also found a previously undescribed feature of AML, consisting of a hypermutator phenotype caused by SETD2 inactivation. The consequent accumulation of new mutations promotes the adaptability of the leukemia, contributing to clonal selection. We report a novel ASXL3 mutation characterizing a very small subclone (<1%) present at diagnosis and undergoing expansion (60%) at relapse. Taken together, these findings provide molecular clues for designing optimal therapeutic strategies, in terms of target selection, adequate schedule design and reliable response-monitoring techniques.
Mutations in the KIAA0196 Gene at the SPG8 Locus Cause Hereditary Spastic Paraplegia
Valdmanis, Paul N.; Meijer, Inge A.; Reynolds, Annie; Lei, Adrienne; MacLeod, Patrick; Schlesinger, David; Zatz, Mayana; Reid, Evan; Dion, Patrick A.; Drapeau, Pierre; Rouleau, Guy A.
2007-01-01
Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. The eighth HSP locus, SPG8, is on chromosome 8p24.13. The three families previously linked to the SPG8 locus present with relatively severe, pure spastic paraplegia. We have identified three mutations in the KIAA0196 gene in six families that map to the SPG8 locus. One mutation, V626F, segregated in three large North American families with European ancestry and in one British family. An L619F mutation was found in a Brazilian family. The third mutation, N471D, was identified in a smaller family of European origin and lies in a spectrin domain. None of these mutations were identified in 500 control individuals. Both the L619 and V626 residues are strictly conserved across species and likely have a notable effect on the structure of the protein product strumpellin. Rescue studies with human mRNA injected in zebrafish treated with morpholino oligonucleotides to knock down the endogenous protein showed that mutations at these two residues impaired the normal function of the KIAA0196 gene. However, the function of the 1,159-aa strumpellin protein is relatively unknown. The identification and characterization of the KIAA0196 gene will enable further insight into the pathogenesis of HSP. PMID:17160902
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntosh, I.; Abbott, M.H.; Francomano, C.A.
1994-09-01
Schmid metaphyseal chondrodysplasia (SMCD, MIM 156500) is an autosomal dominant disorder of the osseous skeleton resulting in short stature, coxa vara and a waddling gait. Type X collagen is an extracellular matrix protein expressed exclusively by hypertrophic chondrocytes. We have previously identified four mutations in the type X collagen gene (COL10A1) in patients with SMCD. Each of these mutations, as well as another three reported by other investigators, are in the carboxy-terminal non-collagenous domain (NC1). Here, we present data for another three mutations each predicted to cause premature termination of translation within the NC1 domain. Two are nonsense mutations, Y628Xmore » and W651X, while the third is a frameshift resulting from the deletion of two nucleotides, 1856delCC. Each of these mutations occurred de novo, resulting in sporadic cases of SMCD. Four frameshift mutations have now been reported to initiate within 10bp of each other in the NC1 domain, namely 1865delC, 1856delCC, 1856del13 and 1866del10. These findings further support the hypothesis that SMCD is the result of the mutant type X collagen molecule being unable to participate in trimerization, although a dominant-negative model of disease pathogenesis has not been formally excluded.« less
An exon 4 mutation identified in the majority of South African familial hypercholesterolaemics.
Kotze, M J; Warnich, L; Langenhoven, E; du Plessis, L; Retief, A E
1990-01-01
The prevalence of familial hypercholesterolaemia (FH) is significantly higher in the Afrikaans speaking population (Afrikaners) of South Africa than reported in most other populations. A founder gene effect has been proposed to explain the high FH frequency, implying that the same low density lipoprotein (LDL) receptor gene defect is present in the majority of affected Afrikaners. By using DNA amplification and sequence determination, we have detected a point mutation in DNA from two Afrikaner FH homozygotes. A cytosine to guanine base substitution at nucleotide position 681 of the LDL receptor cDNA results in an amino acid change from aspartic acid to glutamic acid at residue 206 in the cysteine rich ligand binding domain of the LDL receptor. Since three previously mapped transport deficient alleles of the LDL receptor were also traced to cysteine rich repeats of the protein, these results suggest that the mutation is responsible for the receptor defective mutation predominantly found in Afrikaner FH homozygotes. The mutation gives rise to an additional DdeI restriction site in DNA of affected subjects and segregation of the mutation with the disease was confirmed in five large Afrikaner FH families. We predict that 65% of affected South African Afrikaners carry this particular base substitution. Amplification of genomic DNA, using the polymerase chain reaction method, and restriction enzyme analysis now permit accurate diagnosis of the mutation in subjects with FH. Images PMID:2352257
Adams, David R; Yuan, Hongjie; Holyoak, Todd; Arajs, Katrina H; Hakimi, Parvin; Markello, Thomas C; Wolfe, Lynne A; Vilboux, Thierry; Burton, Barbara K; Fajardo, Karin Fuentes; Grahame, George; Holloman, Conisha; Sincan, Murat; Smith, Ann C M; Wells, Gordon A; Huang, Yan; Vega, Hugo; Snyder, James P; Golas, Gretchen A; Tifft, Cynthia J; Boerkoel, Cornelius F; Hanson, Richard W; Traynelis, Stephen F; Kerr, Douglas S; Gahl, William A
2014-11-01
The National Institutes of Health Undiagnosed Diseases Program evaluates patients for whom no diagnosis has been discovered despite a comprehensive diagnostic workup. Failure to diagnose a condition may arise from the mutation of genes previously unassociated with disease. However, we hypothesized that this could also co-occur with multiple genetic disorders. Demonstrating a complex syndrome caused by multiple disorders, we report two siblings manifesting both similar and disparate signs and symptoms. They shared a history of episodes of hypoglycemia and lactic acidosis, but had differing exam findings and developmental courses. Clinical acumen and exome sequencing combined with biochemical and functional studies identified three genetic conditions. One sibling had Smith-Magenis Syndrome and a nonsense mutation in the RAI1 gene. The second sibling had a de novo mutation in GRIN2B, which resulted in markedly reduced glutamate potency of the encoded receptor. Both siblings had a protein-destabilizing homozygous mutation in PCK1, which encodes the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). In summary, we present the first clinically-characterized mutation of PCK1 and demonstrate that complex medical disorders can represent the co-occurrence of multiple diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Ouattara, Amed; Kone, Aminatou; Adams, Matthew; Fofana, Bakary; Maiga, Amelia Walling; Hampton, Shay; Coulibaly, Drissa; Thera, Mahamadou A; Diallo, Nouhoum; Dara, Antoine; Sagara, Issaka; Gil, Jose Pedro; Bjorkman, Anders; Takala-Harrison, Shannon; Doumbo, Ogobara K; Plowe, Christopher V; Djimde, Abdoulaye A
2015-06-01
Artemisinin-resistant Plasmodium falciparum malaria has been documented in southeast Asia and may already be spreading in that region. Molecular markers are important tools for monitoring the spread of antimalarial drug resistance. Recently, single-nucleotide polymorphisms (SNPs) in the PF3D7_1343700 kelch propeller (K13-propeller) domain were shown to be associated with artemisinin resistance in vivo and in vitro. The prevalence and role of K13-propeller mutations are poorly known in sub-Saharan Africa. K13-propeller mutations were genotyped by direct sequencing of nested polymerase chain reaction (PCR) amplicons from dried blood spots of pre-treatment falciparum malaria infections collected before and after the use of artemisinin-based combination therapy (ACT) as first-line therapy in Mali. Although K13-propeller mutations previously associated with delayed parasite clearance in Cambodia were not identified, 26 K13-propeller mutations were identified in both recent samples and pre-ACT infections. Parasite clearance time was comparable between infections with non-synonymous K13-propeller mutations and infections with the reference allele. These findings suggest that K13-propeller mutations are present in artemisinin-sensitive parasites and that they preceded the wide use of ACTs in Mali. © The American Society of Tropical Medicine and Hygiene.
Levitas, Aviva; Muhammad, Emad; Harel, Gali; Saada, Ann; Caspi, Vered Chalifa; Manor, Esther; Beck, John C; Sheffield, Val; Parvari, Ruti
2010-01-01
Cardiomyopathies are common disorders resulting in heart failure; the most frequent form is dilated cardiomyopathy (DCM), which is characterized by dilatation of the left or both ventricles and impaired systolic function. DCM causes considerable morbidity and mortality, and is one of the major causes of sudden cardiac death. Although about one-third of patients are reported to have a genetic form of DCM, reported mutations explain only a minority of familial DCM. Moreover, the recessive neonatal isolated form of DCM has rarely been associated with a mutation. In this study, we present the association of a mutation in the SDHA gene with recessive neonatal isolated DCM in 15 patients of two large consanguineous Bedouin families. The cardiomyopathy is presumably caused by the significant tissue-specific reduction in SDH enzymatic activity in the heart muscle, whereas substantial activity is retained in the skeletal muscle and lymphoblastoid cells. Notably, the same mutation was previously reported to cause a multisystemic failure leading to neonatal death and Leigh's syndrome. This study contributes to the molecular characterization of a severe form of neonatal cardiomyopathy and highlights extreme phenotypic variability resulting from a specific missense mutation in a nuclear gene encoding a protein of the mitochondrial respiratory chain. PMID:20551992
Levitas, Aviva; Muhammad, Emad; Harel, Gali; Saada, Ann; Caspi, Vered Chalifa; Manor, Esther; Beck, John C; Sheffield, Val; Parvari, Ruti
2010-10-01
Cardiomyopathies are common disorders resulting in heart failure; the most frequent form is dilated cardiomyopathy (DCM), which is characterized by dilatation of the left or both ventricles and impaired systolic function. DCM causes considerable morbidity and mortality, and is one of the major causes of sudden cardiac death. Although about one-third of patients are reported to have a genetic form of DCM, reported mutations explain only a minority of familial DCM. Moreover, the recessive neonatal isolated form of DCM has rarely been associated with a mutation. In this study, we present the association of a mutation in the SDHA gene with recessive neonatal isolated DCM in 15 patients of two large consanguineous Bedouin families. The cardiomyopathy is presumably caused by the significant tissue-specific reduction in SDH enzymatic activity in the heart muscle, whereas substantial activity is retained in the skeletal muscle and lymphoblastoid cells. Notably, the same mutation was previously reported to cause a multisystemic failure leading to neonatal death and Leigh's syndrome. This study contributes to the molecular characterization of a severe form of neonatal cardiomyopathy and highlights extreme phenotypic variability resulting from a specific missense mutation in a nuclear gene encoding a protein of the mitochondrial respiratory chain.
Thistlethwaite, William A; Moses, Linda M; Hoffbuhr, Kristen C; Devaney, Joseph M; Hoffman, Eric P
2003-05-01
Rett syndrome is a neurodevelopmental disorder that affects females almost exclusively, and in which eight common point mutations on the X-linked MeCP2 gene are knows to cause over 70% of mutation-positive cases. We explored the use of a novel platform to detect the eight common mutations in Rett syndrome patients to expedite and simplify the process of identification of known genotypes. The Nanogen workstation consists of a two-color assay based on electric hybridization and thermal discrimination, all performed on an electronically active NanoChip. This genotyping platform was tested on 362 samples of a pre-determined genotype, which had been previously identified by a combination of DHPLC (denaturing high performance liquid chromatography) and direct sequencing. This genotyping technique proved to be rapid, facile, and displayed a specificity of 100% with 3% ambiguity. In addition, we present consecutive testing of seven mutations on a single pad of the NanoChip. This was accomplished by tagging down two amplimers together and serially hybridizing for seven different loci, allowing us to genotype samples for seven of the eight common Rett mutations on a single pad. This novel method displayed the same level of specificity and accuracy as the single amplimer reactions, and proved to be faster and more economical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.
In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and inmore » vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.« less
Rugpolmuang, Rottanat; Deeb, Asma; Hassan, Yousef; Deekajorndech, Tawatchai; Shotelersuk, Vorasuk; Sahakitrungruang, Taninee
2014-01-01
Congenital nephrogenic diabetes insipidus (NDI) is a rare inherited disorder, mostly caused by AVPR2 mutations. Less than 10% of cases are due to mutations in the aquaporin-2 (AQP2) gene. Diagnosis and management of this condition remain challenging especially during infancy. Here, we report two unrelated patients, a 6-month-old Thai boy and a 5-year-old Emirati girl, with a history of failure to thrive, chronic fever, polydipsia, and polyuria presented in early infancy. The results of water deprivation test were compatible with a diagnosis of NDI. The entire coding regions of the AVPR2 and AQP2 gene were amplified by polymerase chain reaction and sequenced. Patient 1 was homozygous for a novel missense AQP2 mutation p.G96E, inherited from both parents. Patient 2 harbored a previously described homozygous p.T126M mutation in the AQP2 gene. Both patients were treated with a combination of thiazide diuretics and amiloride. Patient 1 developed paradoxical hyponatremia and severe dehydration 2 weeks after medical treatment began. In conclusion, we report a novel mutation of the AQP2 gene and highlight an important role of genetic testing for definite diagnosis. Vigilant monitoring of the fluid status and electrolytes after beginning the therapy is mandatory in infants with NDI.
López, Eva; Casasnovas, Carlos; Giménez, Javier; Santamaría, Raúl; Terrazas, Jesús M; Volpini, Víctor
2015-11-15
Spastic paraplegia type 10 (SPG10) is a rare form of autosomal dominant hereditary spastic paraplegia (AD-HSP) due to mutations in KIF5A, a gene encoding the neuronal kinesin heavy-chain involved in axonal transport. KIF5A mutations have been associated with a wide clinical spectrum, ranging from pure HSP to isolated peripheral nerve involvement or complicated HSP phenotypes. Most KIF5A mutations are clustered in the motor domain of the protein that is necessary for microtubule interaction. Here we describe two Spanish families with an adult onset complicated AD-HSP in which neurological studies revealed a mild sensory neuropathy. Intention tremor was also present in both families. Molecular genetic analysis identified two novel mutations c.773 C>T and c.833 C>T in the KIF5A gene resulting in the P258L and P278L substitutions respectively. Both were located in the highly conserved kinesin motor domain of the protein which has previously been identified as a hot spot for KIF5A mutations. This study adds to the evidence associating the known occurrence of mild peripheral neuropathy in the adult onset SPG10 type of AD-HSP. Copyright © 2015 Elsevier B.V. All rights reserved.
Expanding the mutation and clinical spectrum of Roberts syndrome.
Afifi, Hanan H; Abdel-Salam, Ghada M H; Eid, Maha M; Tosson, Angie M S; Shousha, Wafaa Gh; Abdel Azeem, Amira A; Farag, Mona K; Mehrez, Mennat I; Gaber, Khaled R
2016-07-01
Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome. © 2015 Japanese Teratology Society.
Fritsche, Andreas; Machicao, Fausto; Nawroth, Peter P.; Häring, Hans-Ulrich; Isermann, Berend
2014-01-01
The factor V Leiden (FVL) mutation is the most frequent genetic cause of venous thrombosis in Caucasians. However, protective effects have been suggested to balance the disadvantages. We have recently observed protective effects of FVL mutation on experimental diabetic nephropathy in mice as well as an association with reduced albuminuria in two human cohorts of diabetic patients. In the present study we aimed to reevaluate these findings in an independent, larger cohort of 1905 Caucasians at risk of developing type 2 diabetes and extend possible associations to earlier disease stages of nephropathy. Carriers of FVL mutation had a significantly lower urine albumin excretion (P = 0.03) and tended to have lower plasma creatinine concentrations (P = 0.07). The difference in plasma creatinine concentrations was significant after adjustment for the influencing factors: age, gender, and lean body mass (P = 0.048). These observations at a very early “disease” stage are an important extension of previous findings and suggest that modification of glomerular dysfunction by FVL mutation is relevant during very early stages of diabetic nephropathy. This makes the underlying mechanism an interesting therapeutic target and raises the question whether FVL mutation may also exert protective effects in other glomerulopathies. PMID:24729885
Chol, M; Lebon, S; Bénit, P; Chretien, D; de Lonlay, P; Goldenberg, A; Odent, S; Hertz-Pannier, L; Vincent-Delorme, C; Cormier-Daire, V; Rustin, P; Rötig, A; Munnich, A
2003-03-01
Leigh syndrome is a subacute necrotising encephalomyopathy frequently ascribed to mitochondrial respiratory chain deficiency. This condition is genetically heterogeneous, as mutations in both mitochondrial (mt) and nuclear genes have been reported. Here, we report the G13513A transition in the ND5 mtDNA gene in three unrelated children with complex I deficiency and a peculiar MRI aspect distinct from typical Leigh syndrome. Brain MRI consistently showed a specific involvement of the substantia nigra and medulla oblongata sparing the basal ganglia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The asymptomatic mothers presented low levels of mutant mtDNA in blood leucocytes. This mutation, which affects an evolutionary conserved amino acid (D393N), has been previously reported in adult patients with MELAS or LHON/MELAS syndromes, emphasising the clinical heterogeneity of mitochondrial DNA mutations. Since the G13513A mutation was found in 21% of our patients with Leigh syndrome and complex I deficiency (3/14), it appears that this mutation represents a frequent cause of Leigh-like syndrome, which should be systematically tested for molecular diagnosis in affected children and for genetic counselling in their maternal relatives.
Vernon, Robert M; Chong, P Andrew; Lin, Hong; Yang, Zhengrong; Zhou, Qingxian; Aleksandrov, Andrei A; Dawson, Jennifer E; Riordan, John R; Brouillette, Christie G; Thibodeau, Patrick H; Forman-Kay, Julie D
2017-08-25
Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-09-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina.
Exome Sequencing of 18 Chinese Families with Congenital Cataracts: A New Sight of the NHS Gene
Sun, Wenmin; Xiao, Xueshan; Li, Shiqiang; Guo, Xiangming; Zhang, Qingjiong
2014-01-01
Purpose The aim of this study was to investigate the mutation spectrum and frequency of 34 known genes in 18 Chinese families with congenital cataracts. Methods Genomic DNA and clinical data was collected from 18 families with congenital cataracts. Variations in 34 cataract-associated genes were screened by whole exome sequencing and then validated by Sanger sequencing. Results Eleven candidate variants in seven of the 34 genes were detected by exome sequencing and then confirmed by Sanger sequencing, including two variants predicted to be benign and the other pathogenic mutations. The nine mutations were present in 9 of the 18 (50%) families with congenital cataracts. Of the four families with mutations in the X-linked NHS gene, no other abnormalities were recorded except for cataract, in which a pseudo-dominant inheritance form was suggested, as female carriers also had different forms of cataracts. Conclusion This study expands the mutation spectrum and frequency of genes responsible for congenital cataract. Mutation in NHS is a common cause of nonsyndromic congenital cataract with pseudo-autosomal dominant inheritance. Combined with our previous studies, a genetic basis could be identified in 67.6% of families with congenital cataracts in our case series, in which mutations in genes encoding crystallins, genes encoding connexins, and NHS are responsible for 29.4%, 14.7%, and 11.8% of families, respectively. Our results suggest that mutations in NHS are the common cause of congenital cataract, both syndromic and nonsyndromic. PMID:24968223
Banka, Siddharth; Veeramachaneni, Ratna; Reardon, William; Howard, Emma; Bunstone, Sancha; Ragge, Nicola; Parker, Michael J; Crow, Yanick J; Kerr, Bronwyn; Kingston, Helen; Metcalfe, Kay; Chandler, Kate; Magee, Alex; Stewart, Fiona; McConnell, Vivienne P M; Donnelly, Deirdre E; Berland, Siren; Houge, Gunnar; Morton, Jenny E; Oley, Christine; Revencu, Nicole; Park, Soo-Mi; Davies, Sally J; Fry, Andrew E; Lynch, Sally Ann; Gill, Harinder; Schweiger, Susann; Lam, Wayne W K; Tolmie, John; Mohammed, Shehla N; Hobson, Emma; Smith, Audrey; Blyth, Moira; Bennett, Christopher; Vasudevan, Pradeep C; García-Miñaúr, Sixto; Henderson, Alex; Goodship, Judith; Wright, Michael J; Fisher, Richard; Gibbons, Richard; Price, Susan M; C de Silva, Deepthi; Temple, I Karen; Collins, Amanda L; Lachlan, Katherine; Elmslie, Frances; McEntagart, Meriel; Castle, Bruce; Clayton-Smith, Jill; Black, Graeme C; Donnai, Dian
2012-04-01
MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-01-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. In conclusion: a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina. PMID:28947987
Petersen, Michael B; Grigoriadou, Maria; Koutroumpe, Maria; Kokotas, Haris
2012-07-01
Non-syndromic hearing loss is one of the most common hereditary determined diseases in human, and the disease is a genetically heterogeneous disorder. Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of non-syndromic recessive hearing impairment in many countries and are largely dependent on ethnic groups. Due to the high frequency of the c.35delG GJB2 mutation in the Greek population, we have previously suggested that Greek patients with sensorineural, non-syndromic deafness should be tested for the c.35delG mutation and the coding region of the GJB2 gene should be sequenced in c.35delG heterozygotes. Here we present on the clinical and molecular genetic evaluation of a family suffering from prelingual, sensorineural, non-syndromic deafness. A novel c.247_249delTTC (p.F83del) GJB2 mutation was detected in compound heterozygosity with the c.35delG GJB2 mutation in the proband and was later confirmed in the father, while the mother was homozygous for the c.35delG GJB2 mutation. We conclude that compound heterozygosity of the novel c.247_249delTTC (p.F83del) and the c.35delG mutations in the GJB2 gene was the cause of deafness in the proband and his father. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
CHEK2 contribution to hereditary breast cancer in non-BRCA families.
Desrichard, Alexis; Bidet, Yannick; Uhrhammer, Nancy; Bignon, Yves-Jean
2011-01-01
Mutations in the BRCA1 and BRCA2 genes are responsible for only a part of hereditary breast cancer (HBC). The origins of "non-BRCA" HBC in families may be attributed in part to rare mutations in genes conferring moderate risk, such as CHEK2, which encodes for an upstream regulator of BRCA1. Previous studies have demonstrated an association between CHEK2 founder mutations and non-BRCA HBC. However, very few data on the entire coding sequence of this gene are available. We investigated the contribution of CHEK2 mutations to non-BRCA HBC by direct sequencing of its whole coding sequence in 507 non-BRCA HBC cases and 513 controls. We observed 16 mutations in cases and 4 in controls, including 9 missense variants of uncertain consequence. Using both in silico tools and an in vitro kinase activity test, the majority of the variants were found likely to be deleterious for protein function. One variant present in both cases and controls was proposed to be neutral. Removing this variant from the pool of potentially deleterious variants gave a mutation frequency of 1.48% for cases and 0.29% for controls (P = 0.0040). The odds ratio of breast cancer in the presence of a deleterious CHEK2 mutation was 5.18. Our work indicates that a variety of deleterious CHEK2 alleles make an appreciable contribution to breast cancer susceptibility, and their identification could help in the clinical management of patients carrying a CHEK2 mutation.
Villarroel, Camilo E.; Villanueva-Mendoza, Cristina; Orozco, Lorena; Alcántara-Ortigoza, Miguel Angel; Jiménez, Diana F.; Ordaz, Juan C.
2008-01-01
Purpose Paired box gene 6 (PAX6) heterozygous mutations are well known to cause congenital non-syndromic aniridia. These mutations produce primarily protein truncations and have been identified in approximately 40%–80% of all aniridia cases worldwide. In Mexico, there is only one previous report describing three intragenic deletions in five cases. In this study, we further analyze PAX6 variants in a group of Mexican aniridia patients and describe associated ocular findings. Methods We evaluated 30 nonrelated probands from two referral hospitals. Mutations were detected by single-strand conformation polymorphism (SSCP) and direct sequencing, and novel missense mutations and intronic changes were analyzed by in silico analysis. One intronic variation (IVS2+9G>A), which in silico analysis suggested had no pathological effects, was searched in 103 unaffected controls. Results Almost all cases exhibited phenotypes that were at the severe end of the aniridia spectrum with associated ocular alterations such as nystagmus, macular hypoplasia, and congenital cataracts. The mutation detection rate was 30%. Eight different mutations were identified: four (c.184_188dupGAGAC, c.361T>C, c.879dupC, and c.277G>A) were novel, and four (c.969C>T, IVS6+1G>C, c.853delC, and IVS7–2A>G) have been previously reported. The substitution at position 969 was observed in two patients. None of the intragenic deletions previously reported in Mexican patients were found. Most of the mutations detected predict either truncation of the PAX6 protein or conservative amino acid changes in the paired domain. We also detected two intronic non-pathogenic variations, IVS9–12C>T and IVS2+9G>A, that had been previously reported. Because the latter variation was considered potentially pathogenic, it was analyzed in 103 healthy Mexican newborns where we found an allelic frequency of 0.1116 for the A allele. Conclusions This study adds four novel mutations to the worldwide PAX6 mutational spectrum, and reaffirms the finding that c.969C>T is one of the three more frequent causal mutations in aniridia cases. It also provides evidence that IVS2+9G>A is an intronic change without pathogenic effect. PMID:18776953
2014-01-01
Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study. PMID:24721225
GNE Myopathy in Turkish Sisters with a Novel Homozygous Mutation
Diniz, Gulden; Secil, Yaprak; Ceylaner, Serdar; Tokucoglu, Figen; Türe, Sabiha; Celebisoy, Mehmet; İncesu, Tülay Kurt; Akhan, Galip
2016-01-01
Background. Hereditary inclusion body myopathy is caused by biallelic defects in the GNE gene located on chromosome 9p13. It generally affects adults older than 20 years of age. Methods and Results. In this study, we present two Turkish sisters with progressive myopathy and describe a novel mutation in the GNE gene. Both sisters had slightly higher levels of creatine kinase (CK) and muscle weakness. The older sister presented at 38 years of age with an inability to climb steps, weakness, and a steppage gait. Her younger sister was 36 years old and had similar symptoms. The first symptoms of the disorder were seen when the sisters were 30 and 34 years old, respectively. The muscle biopsy showed primary myopathic features and presence of rimmed vacuoles. DNA analysis demonstrated the presence of previously unknown homozygous mutations [c.2152 G>A (p.A718T)] in the GNE genes. Conclusion. Based on our literature survey, we believe that ours is the first confirmed case of primary GNE myopathy with a novel missense mutation in Turkey. These patients illustrate that the muscle biopsy is still an important method for the differential diagnosis of vacuolar myopathies in that the detection of inclusions is required for the definitive diagnosis. PMID:27298745
Harvey Cushing Treated the First Known Patient With Carney Complex.
Tsay, Cynthia J; Stratakis, Constantine A; Faucz, Fabio Rueda; London, Edra; Stathopoulou, Chaido; Allgauer, Michael; Quezado, Martha; Dagradi, Terry; Spencer, Dennis D; Lodish, Maya
2017-10-01
Carney complex (CNC) is a syndrome characterized by hyperplasia of endocrine organs and may present with clinical features of Cushing syndrome and acromegaly due to functional adrenal and pituitary gland tumors. CNC has been linked to mutations in the regulatory subunit of protein kinase A type I-alpha ( PRKAR1A ) gene. Tissue samples were taken from the hypothalamus or thalamus or tumors of patients with pituitary adenomas seen and operated on by neurosurgeon Harvey Cushing between 1913 and 1932. Following DNA extraction, sequencing for genes of interest was attempted, including PRKAR1A , AIP , USP8 , GNAS1 , and GPR101 , to explore the possibility that these mutations associated with acromegaly, CNC, and Cushing syndrome have been conserved over time. We report a patient described by Dr. Cushing in 1914 with a clinical presentation and postmortem findings suggestive of CNC. Genetic sequencing of the hypothalamus and pituitary adenoma revealed a germline heterozygous p.Arg74His mutation in the PRKAR1A gene, a codon previously described as mutated in CNC, but with a novel amino acid change. This patient is, to our knowledge, the first molecularly confirmed individual with CNC. This case demonstrates the power of modern genetics in studying archived tissues and the importance of recording detailed clinical notes in the diagnosis of disease.
Snozek, Christine LH; Lagerstedt, Susan A; Khoo, Teck K; Rubenfire, Melvyn; Isley, William L; Train, Laura J; Baudhuin, Linnea M
2009-01-01
Familial hypercholesterolemia (FH) is the most common form of autosomal-dominant hypercholesterolemia, and is caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Heterozygous FH is characterized by elevated low-density lipoprotein (LDL) cholesterol and early-onset cardiovascular disease, whereas homozygous FH results in more severe LDL cholesterol elevation with death by 20 years of age. We present here the case of an African-American female FH patient presenting with a myocardial infarction at the age of 48, recurrent angina pectoris and numerous coronary artery stents. Her pretreated LDL cholesterol levels were more typical of a homozygous FH pattern and she was resistant to conventional lipid-lowering treatment, yet her other clinical parameters were not necessarily consistent with homozygous FH. Genetic testing revealed two LDLR variants on the same chromosome: one a novel missense mutation in exon 14 (Cys681Gly) and the other a promoter variant (IVS1-217C>T) previously shown to result in increased LDLR transcription. Disease-associated PCSK9 or APOB mutations were not identified in this individual. Overall, her genetic and clinical profile suggests that enhanced expression of the mutant LDLR allele resulted in a severe phenotype with characteristics of both heterozygous and homozygous FH. PMID:18648394
Muhammad, Emad; Leventhal, Neta; Parvari, Galit; Hanukoglu, Aaron; Hanukoglu, Israel; Chalifa-Caspi, Vered; Feinstein, Yael; Weinbrand, Jenny; Jacoby, Harel; Manor, Esther; Nagar, Tal; Beck, John C; Sheffield, Val C; Hershkovitz, Eli; Parvari, Ruti
2011-04-01
Genetic disorders of excessive salt loss from sweat glands have been observed in pseudohypoaldosteronism type I (PHA) and cystic fibrosis that result from mutations in genes encoding epithelial Na+ channel (ENaC) subunits and the transmembrane conductance regulator (CFTR), respectively. We identified a novel autosomal recessive form of isolated salt wasting in sweat, which leads to severe infantile hyponatremic dehydration. Three affected individuals from a small Bedouin clan presented with failure to thrive, hyponatremic dehydration and hyperkalemia with isolated sweat salt wasting. Using positional cloning, we identified the association of a Glu143Lys mutation in carbonic anhydrase 12 (CA12) with the disease. Carbonic anhydrase is a zinc metalloenzyme that catalyzes the reversible hydration of carbon dioxide to form a bicarbonate anion and a proton. Glu143 in CA12 is essential for zinc coordination in this metalloenzyme and lowering of the protein-metal affinity reduces its catalytic activity. This is the first presentation of an isolated loss of salt from sweat gland mimicking PHA, associated with a mutation in the CA12 gene not previously implicated in human disorders. Our data demonstrate the importance of bicarbonate anion and proton production on salt concentration in sweat and its significance for sodium homeostasis.
Early-Onset Central Diabetes Insipidus due to Compound Heterozygosity for AVP Mutations.
Bourdet, Karine; Vallette, Sophie; Deladoëy, Johnny; Van Vliet, Guy
2016-01-01
Genetic cases of isolated central diabetes insipidus are rare, are mostly due to dominant AVP mutations and have a delayed onset of symptoms. Only 3 consanguineous pedigrees with a recessive form have been published. A boy with a negative family history presented polyuria and failure to thrive in the first months of life and was diagnosed with central diabetes insipidus. Magnetic resonance imaging showed a normal posterior pituitary signal. A molecular genetic analysis of the AVP gene showed that he had inherited a previously reported mutation from his Lebanese father and a novel A>G transition in the splice acceptor site of intron 1 (IVS1-2A>G) from his French-Canadian mother. Replacement therapy resulted in the immediate disappearance of symptoms and in weight gain. The early polyuria in recessive central diabetes insipidus contrasts with the delayed presentation in patients with monoallelic AVP mutations. This diagnosis needs to be considered in infants with very early onset of polyuria-polydipsia and no brain malformation, even if there is no consanguinity and regardless of whether the posterior pituitary is visible or not on imaging. In addition to informing family counseling, making a molecular diagnosis eliminates the need for repeated imaging studies. © 2015 S. Karger AG, Basel.
Mutations in FLVCR2 associated with Fowler syndrome and survival beyond infancy.
Kvarnung, M; Taylan, F; Nilsson, D; Albåge, M; Nordenskjöld, M; Anderlid, B M; Nordgren, A; Syk Lundberg, E
2016-01-01
Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH, OMIM 225790), also known as Fowler syndrome, is a rare autosomal recessive disorder, caused by mutations in FLVCR2. Hallmarks of the syndrome are glomerular vasculopathy in the central nervous system, severe hydrocephaly, hypokinesia and arthrogryphosis. The disorder is considered prenatally lethal. We report the first patients, a brother and a sister, with Fowler syndrome and survival beyond infancy. The patients present a phenotype of severe intellectual and neurologic disability with seizures, absence of functional movements, and no means of communication. Imaging of the brain showed calcifications, profound ventriculomegaly with only a thin edging of the cerebral cortex and hypoplastic cerebellum. Investigation with whole-exome sequencing (WES) revealed, in both patients, a homozygous pathogenic mutation in FLVCR2, c.1289C>T, compatible with a diagnosis of Fowler syndrome. The results highlight the power of combining WES with a thorough clinical examination in order to identify disease-causing mutations in patients whose clinical presentation differs from previously described cases. Specifically, the findings demonstrate that Fowler syndrome is a diagnosis to consider, not only prenatally but also in severely affected children with gross ventriculomegaly on brain imaging. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Giunta, Cecilia; Baumann, Matthias; Fauth, Christine; Lindert, Uschi; Abdalla, Ebtesam M; Brady, Angela F; Collins, James; Dastgir, Jahannaz; Donkervoort, Sandra; Ghali, Neeti; Johnson, Diana S; Kariminejad, Ariana; Koch, Johannes; Kraenzlin, Marius; Lahiri, Nayana; Lozic, Bernarda; Manzur, Adnan Y; Morton, Jenny E V; Pilch, Jacek; Pollitt, Rebecca C; Schreiber, Gudrun; Shannon, Nora L; Sobey, Glenda; Vandersteen, Anthony; van Dijk, Fleur S; Witsch-Baumgartner, Martina; Zschocke, Johannes; Pope, F Michael; Bönnemann, Carsten G; Rohrbach, Marianne
2018-01-01
Purpose In 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers–Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis–trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date. Methods We report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data. Results Based on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals. Conclusion Our data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS. PMID:28617417
Acar, Sezer; BinEssa, Huda A; Demir, Korcan; Al-Rijjal, Roua A; Zou, Minjing; Çatli, Gönül; Anık, Ahmet; Al-Enezi, Anwar F; Özışık, Seçil; Al-Faham, Manar S A; Abacı, Ayhan; Dündar, Bumin; Kattan, Walaa E; Alsagob, Maysoon; Kavukçu, Salih; Tamimi, Hamdi E; Meyer, Brian F; Böber, Ece; Shi, Yufei
2018-01-01
Hereditary hypophosphatemia is a group of rare renal phosphate wasting disorders. The diagnosis is based on clinical, radiological, and biochemical features, and may require genetic testing to be confirmed. Clinical features and mutation spectrum were investigated in patients with hereditary hypophosphatemia. Genomic DNA of 23 patients from 15 unrelated families were screened sequentially by PCR-sequencing analysis for mutations in the following genes: PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC34A3 and SLC34A1. CytoScan HD Array was used to identify large deletions. Genetic evaluation resulted in the identification of an additional asymptomatic but intermittent hypophosphatemic subject. Mutations were detected in 21 patients and an asymptomatic sibling from 13 families (86.6%, 13/15). PHEX mutations were identified in 20 patients from 12 families. Six of them were novel mutations present in 9 patients: c.983_987dupCTACC, c.1586+2T>G, c.1206delA, c.436+1G>T, c.1217G>T, and g.22,215,887-22,395,767del (179880 bp deletion including exon 16-22 and ZNF645). Six previously reported mutations were found in 11 patients. Among 12 different PHEX mutations, 6 were de novo mutations. Patients with de novo PHEX mutations often had delayed diagnosis and significantly shorter in height than those who had inherited PHEX mutations. Novel compound heterozygous mutations in SLC34A3 were found in one patient and his asymptomatic sister: c.1335+2T>A and c.1639_1652del14. No mutation was detected in two families. This is the largest familial study on Turkish patients with hereditary hypophosphatemia. PHEX mutations, including various novel and de novo variants, are the most common genetic defect. More attention should be paid to hypophosphatemia by clinicians since some cases remain undiagnosed both during childhood and adulthood.
Demir, Korcan; Al-Rijjal, Roua A.; Zou, Minjing; Çatli, Gönül; Anık, Ahmet; Al-Enezi, Anwar F.; Özışık, Seçil; Al-Faham, Manar S. A.; Abacı, Ayhan; Dündar, Bumin; Kattan, Walaa E.; Alsagob, Maysoon; Kavukçu, Salih; Tamimi, Hamdi E.; Meyer, Brian F.; Böber, Ece
2018-01-01
Background Hereditary hypophosphatemia is a group of rare renal phosphate wasting disorders. The diagnosis is based on clinical, radiological, and biochemical features, and may require genetic testing to be confirmed. Methodology Clinical features and mutation spectrum were investigated in patients with hereditary hypophosphatemia. Genomic DNA of 23 patients from 15 unrelated families were screened sequentially by PCR-sequencing analysis for mutations in the following genes: PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC34A3 and SLC34A1. CytoScan HD Array was used to identify large deletions. Results Genetic evaluation resulted in the identification of an additional asymptomatic but intermittent hypophosphatemic subject. Mutations were detected in 21 patients and an asymptomatic sibling from 13 families (86.6%, 13/15). PHEX mutations were identified in 20 patients from 12 families. Six of them were novel mutations present in 9 patients: c.983_987dupCTACC, c.1586+2T>G, c.1206delA, c.436+1G>T, c.1217G>T, and g.22,215,887–22,395,767del (179880 bp deletion including exon 16–22 and ZNF645). Six previously reported mutations were found in 11 patients. Among 12 different PHEX mutations, 6 were de novo mutations. Patients with de novo PHEX mutations often had delayed diagnosis and significantly shorter in height than those who had inherited PHEX mutations. Novel compound heterozygous mutations in SLC34A3 were found in one patient and his asymptomatic sister: c.1335+2T>A and c.1639_1652del14. No mutation was detected in two families. Conclusions This is the largest familial study on Turkish patients with hereditary hypophosphatemia. PHEX mutations, including various novel and de novo variants, are the most common genetic defect. More attention should be paid to hypophosphatemia by clinicians since some cases remain undiagnosed both during childhood and adulthood. PMID:29505567
Qian, Yaping; Johnson, Judith A; Connor, Jessica A; Valencia, C Alexander; Barasa, Nathaniel; Schubert, Jeffery; Husami, Ammar; Kissell, Diane; Zhang, Ge; Weirauch, Matthew T; Filipovich, Alexandra H; Zhang, Kejian
2014-06-01
The mutations in UNC13D are responsible for familial hemophagocytic lymphohistiocytosis (FHL) type 3. A 253-kb inversion and two deep intronic mutations, c.118-308C > T and c.118-307G > A, in UNC13D were recently reported in European and Asian FHL3 patients. We sought to determine the prevalence of these three non-coding mutations in North American FHL patients and evaluate the significance of examining these new mutations in genetic testing. We performed DNA sequencing of UNC13D and targeted analysis of these three mutations in 1,709 North American patients with a suspected clinical diagnosis of hemophagocytic lymphohistiocytosis (HLH). The 253-kb inversion, intronic mutations c.118-308C > T and c.118-307G > A were found in 11, 15, and 4 patients, respectively, in which the genetic basis (bi-allelic mutations) explained 25 additional patients. Taken together with previously diagnosed FHL3 patients in our HLH patient registry, these three non-coding mutations were found in 31.6% (25/79) of the FHL3 patients. The 253-kb inversion, c.118-308C > T and c.118-307G > A accounted for 7.0%, 8.9%, and 1.3% of mutant alleles, respectively. Significantly, eight novel mutations in UNC13D are being reported in this study. To further evaluate the expression level of the newly reported intronic mutation c.118-307G > A, reverse transcription PCR and Western blot analysis revealed a significant reduction of both RNA and protein levels suggesting that the c.118-307G > A mutation affects transcription. These specified non-coding mutations were found in a significant number of North American patients and inclusion of them in mutation analysis will improve the molecular diagnosis of FHL3. © 2014 Wiley Periodicals, Inc.
Niemela, Julie; Kuehn, Hye Sun; Kelly, Corin; Zhang, Mingchang; Davies, Joie; Melendez, Jose; Dreiling, Jennifer; Kleiner, David; Calvo, Katherine; Oliveira, João B; Rosenzweig, Sergio D
2015-05-01
Caspase-8 deficiency (CED) was originally described in 2002 in two pediatric patients presenting with clinical manifestations resembling autoimmune lymphoproliferative syndrome (ALPS) accompanied by infections, and T, B and NK cell defects. Since then, no new CED patients were published. Here we report two adult siblings (Pt1 and Pt2) presenting in their late thirties with pulmonary hypertension leading to lung transplant (Pt1), and a complex neurological disease leading to multiple cranial nerves palsies (Pt2) as their main manifestations. A thorough clinical and immunological evaluation was performed at the Primary Immunodeficiency Clinic at NIH, followed by whole exome sequencing. The patients had multiorgan lymphocytic infiltration and granulomas, as well as clinical signs of immune deficiency/ immune dysregulation. Both siblings carried homozygous mutations in CASP8, c.1096C > T, p.248R > W. This was the same mutation described on the previously published CED patients, to whom these new patients were likely distantly related. We report two new CED patients presenting during adulthood with life-threatening end-organ lymphocyte infiltrates affecting the lungs, liver, spleen, bone marrow and central nervous system. This phenotype broadens the clinical spectrum of manifestations associated with this disease and warrants the search of CASP8 mutations in other cohorts of patients.
Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fon, E.A.; Sarrazin, J.; Rouleau, G.A.
Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119more » patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.« less
Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul
2011-01-01
In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498
Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.
2014-01-01
We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853
New mutations affecting induced mutagenesis in yeast.
Lawrence, C W; Krauss, B R; Christensen, R B
1985-01-01
Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.
Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.
Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M
2001-10-01
Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.
Kindler syndrome: a new mutation and new diagnostic possibilities.
Burch, Joanna M; Fassihi, Hiva; Jones, Catherine A; Mengshol, Sarah C; Fitzpatrick, James E; McGrath, John A
2006-05-01
Kindler syndrome (KS) is a rare genetic disorder that is characterized by blistering in infancy, followed by the onset of poikiloderma and photosensitivity in childhood. The recently elucidated molecular pathogenesis involves mutations in KIND1, a gene encoding the protein kindlin-1, which is involved in the attachment of the actin cytoskeleton to the extracellular matrix in basal keratinocytes. We describe a child with the neonatal diagnosis of epidermolysis bullosa simplex who developed poikiloderma and skin fragility at 6 years of age. His skin showed diminished staining with anti-kindlin-1 antibody, and genetic analysis revealed that he was a compound heterozygote with a previously unreported mutation in KIND1. Ultrastructural clues to the diagnosis of KS were present in a biopsy specimen that was obtained when the patient was 10 months old, before he developed poikiloderma and photosensitivity. In this case, a combination of a known mutation (R271X) and a newly described mutation (1755delT) in the KIND1 gene produced loss of function in kindlin-1, leading to the clinical features of KS. Ultrastructural findings characteristic of KS were evident years before the onset of poikiloderma and sun sensitivity. In infancy, electron microscopy can enable early, accurate diagnosis of KS.
Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes.
Torraco, Alessandra; Ardissone, Anna; Invernizzi, Federica; Rizza, Teresa; Fiermonte, Giuseppe; Niceta, Marcello; Zanetti, Nadia; Martinelli, Diego; Vozza, Angelo; Verrigni, Daniela; Di Nottia, Michela; Lamantea, Eleonora; Diodato, Daria; Tartaglia, Marco; Dionisi-Vici, Carlo; Moroni, Isabella; Farina, Laura; Bertini, Enrico; Ghezzi, Daniele; Carrozzo, Rosalba
2017-01-01
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
von Spiczak, Sarah; Helbig, Katherine L.; Shinde, Deepali N.; Huether, Robert; Pendziwiat, Manuela; Lourenço, Charles; Nunes, Mark E.; Sarco, Dean P.; Kaplan, Richard A.; Dlugos, Dennis J.; Kirsch, Heidi; Slavotinek, Anne; Cilio, Maria R.; Cervenka, Mackenzie C.; Cohen, Julie S.; McClellan, Rebecca; Fatemi, Ali; Yuen, Amy; Sagawa, Yoshimi; Littlejohn, Rebecca; McLean, Scott D.; Hernandez-Hernandez, Laura; Maher, Bridget; Møller, Rikke S.; Palmer, Elizabeth; Lawson, John A.; Campbell, Colleen A.; Joshi, Charuta N.; Kolbe, Diana L.; Hollingsworth, Georgie; Neubauer, Bernd A.; Muhle, Hiltrud; Stephani, Ulrich; Scheffer, Ingrid E.; Pena, Sérgio D.J.; Sisodiya, Sanjay M.
2017-01-01
Objective: To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. Methods: We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. Results: We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. Conclusions: The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention. PMID:28667181
Ngu, Lock Hock; Nijtmans, Leo G; Distelmaier, Felix; Venselaar, Hanka; van Emst-de Vries, Sjenet E; van den Brand, Mariël A M; Stoltenborg, Berendien J M; Wintjes, Liesbeth T; Willems, Peter H; van den Heuvel, Lambertus P; Smeitink, Jan A; Rodenburg, Richard J T
2012-02-01
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I. Copyright © 2011 Elsevier B.V. All rights reserved.
Xu, Yan; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Xin, Wei; Wang, Panfeng; Sun, Wenmin; Huang, Li; Guo, Xiangming; Zhang, Qingjiong
2016-08-01
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR.
Decraene, Charles; Silveira, Amanda B; Bidard, François-Clément; Vallée, Audrey; Michel, Marc; Melaabi, Samia; Vincent-Salomon, Anne; Saliou, Adrien; Houy, Alexandre; Milder, Maud; Lantz, Olivier; Ychou, Marc; Denis, Marc G; Pierga, Jean-Yves; Stern, Marc-Henri; Proudhon, Charlotte
2018-02-01
Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan ® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy. © 2017 American Association for Clinical Chemistry.
Shibata, Mayu; Shizu, Masato; Watanabe, Kazuko; Takeda, Akihiro
2018-02-01
A 63-year-old woman presented with abnormal vaginal bleeding. Her disease history was significant, and included advanced lung adenocarcinoma with a deletion mutation in exon 19 of the epidermal growth factor receptor (EGFR) gene, which was managed by concurrent chemoradiotherapy, followed by molecular targeted therapy with tyrosine kinase inhibitors (TKIs) for a two-year period. Contrast-enhanced computed tomography showed the enlargement of a previously suspicious myoma node, with peripheral enhancement. Hemorrhagic necrosis was also observed on magnetic resonance imaging. Transabdominal hysterectomy and bilateral salpingo-oophorectomy showed solitary intramyometrial metastatic lung adenocarcinoma with a second-site T790M gatekeeper mutation in exon 20 of the EGFR gene. In conclusion, uterine metastasis from lung adenocarcinoma can present a diagnostic challenge. The possibility of lung cancer metastasis should be considered when a uterine mass increases in size during treatment. Molecular analysis of the EGFR gene to detect mutations could provide useful information for planning the treatment strategy. © 2017 Japan Society of Obstetrics and Gynecology.
Frey, T; Newlin, L L; Atherly, A G
1975-01-01
A mutant of Escherichia coli has been isolated that has a temperature-sensitive mutation that results in specific loss of ribosomal ribonucleic acid (RNA) synthesis and some reduction in messenger RNA synthesis. When the strain was grown in glucose medium at a restrictive temperature, RNA accumulation ceased, but both messenger RNA and protein synthesis continued for an extended time. Because carbon metabolism was slowed drastically when strain AA-157 was placed at the restrictive temperature, this phenotype can be compared with carbon depletion conditions present during diauxic lag. However, the phenotype of mutant AA-157 differs from shift-down conditions in that guanosine-3',5'-tetraphosphate levels are unaffected; therefore, a different site is affected. This mutant strain (AA-157) thus shows many characteristics similar to an aldolase mutant previously reported (Böck and Neidhardt, 1966). However, the mutation occurred in a different position on the E. coli genetic map, and furthermore, aldolase was not temperature sensitive in strain AA-157. In this paper we present a study of macromolecular biosynthesis in this mutant. PMID:1090609
Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, E.A.; Cho, M.; Milewicz, D.M.
Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-basedmore » exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.« less
Vanniya S, Paridhy; Chandru, Jayasankaran; Pavithra, Amritkumar; Jeffrey, Justin Margret; Kalaimathi, Murugesan; Ramakrishnan, Rajagopalan; Karthikeyen, Natarajan P; C R Srikumari, Srisailapathy
2018-03-01
Mutations in CDH23 are known to cause autosomal-recessive nonsyndromic hearing loss (DFNB12). Until now, there was only one study describing its frequency in Indian population. We screened for CDH23 mutations to identify prevalent and recurring mutations among South Indian assortative mating hearing-impaired individuals who were identified as non-DFNB1 (GJB2 and GJB6). Whole-exome sequencing was performed in individuals found to be heterozygous for CDH23 to determine whether there was a second pathogenic allele. In our study, 19 variants including 6 pathogenic missense mutations were identified. The allelic frequency of pathogenic mutations accounts to 4.7% in our cohort, which is higher than that reported previously; three mutations (c.429+4G>A, c.2968G>A, and c.5660C>T) reported in the previous Indian study were found to recur. DFNB12 was found to be the etiology in 3.4% of our cohort, with missense mutation c.2968G>A (p.Asp990Asn) being the most prevalent (2.6%). These results suggest a need to investigate the possibility for higher proportion of CDH23 mutations in the South Indian hearing-impaired population. © 2017 John Wiley & Sons Ltd/University College London.
van Dommelen, Laura; Verbon, Annelies; van Doorn, H Rogier; Goossens, Valère J
2010-03-01
We present a case of a clinical manifest hepatitis B virus infection and a potentially misleading HBV serological profile in an HIV-1 positive patient despite previous HBV vaccination. The patient presented with an acute hepatitis B and there was no indication of chronic HBV infection or the presence of a mutation in the 'a' determinant. Remarkably, simultaneously with high HBV surface antigen and HBV viral load, high anti-HBs antibodies were present. If, due to previous HBV vaccination only anti-HBs was tested in this patient, the result of the high anti-HBs antibodies could be very misleading and offering a false sense of security. Our findings contribute to the ongoing discussion on how to assess HBV specific immunological memory and determining the role of HBV booster vaccinations in immunocompromised individuals.
Fusco, Carlo; Spagnoli, Carlotta; Salerno, Grazia Gabriella; Pavlidis, Elena; Frattini, Daniele; Pisani, Francesco
2017-10-27
Hereditary neuropathy with liability to pressure palsy (HNPP) is an autosomal dominant disorder most commonly presenting with acute-onset, non-painful focal sensory and motor mononeuropathy. Approximately 80% of patients carry a 1.5 Mb deletion of chromosome 17p11.2 involving the peripheral myelin protein 22 gene (PMP22), the same duplicated in Charcot-Marie-Tooth 1A patients. In a small proportion of patients the disease is caused by PMP22 point mutations. We report on a familial case harbouring a new point mutation in the PMP22 gene. The proband is a 4-years-old girl with acute onset of focal numbness and weakness in her right hand. Electroneurography demonstrated transient sensory and motor radial nerves involvement. In her father, reporting chronic symptoms (cramps and exercise-induced myalgia), we uncovered mild atrophy and areflexia on clinical examination and a mixed (predominantly demyelinating) polyneuropathy with sensory-motor involvement on electrophysiological study. Both carried a nucleotidic substitution c.178 + 2 T > C on intron 3 of the PMP22 gene, involving the splicing donor site, not reported on databases but predicted to be likely pathogenic. We described a previously unreported point mutation in PMP22 gene, which led to the development of a HNPP phenotype in a child and her father. In children evaluated for a sensory and motor transient episode, HNPP disorder due to PMP22 mutations should be suspected. Clinical and electrophysiological studies should be extended to all family members even in the absence of previous episodes suggestive for HNPP.
Rowczenio, Dorota M.; Gomes, Sónia Melo; Aróstegui, Juan I.; Mensa-Vilaro, Anna; Omoyinmi, Ebun; Trojer, Hadija; Baginska, Anna; Baroja-Mazo, Alberto; Pelegrin, Pablo; Savic, Sinisa; Lane, Thirusha; Williams, Rene; Brogan, Paul; Lachmann, Helen J.; Hawkins, Philip N.
2017-01-01
Cryopyrin-associated periodic syndrome (CAPS) is caused by gain-of-function NLRP3 mutations. Recently, somatic NLRP3 mosaicism has been reported in some CAPS patients who were previously classified as “mutation-negative.” We describe here the clinical and laboratory findings in eight British adult patients who presented with symptoms typical of CAPS other than an onset in mid-late adulthood. All patients underwent comprehensive clinical and laboratory investigations, including analysis of the NLRP3 gene using Sanger and amplicon-based deep sequencing (ADS) along with measurements of extracellular apoptosis-associated speck-like protein with CARD domain (ASC) aggregates. The clinical phenotype in all subjects was consistent with mid-spectrum CAPS, except a median age at disease onset of 50 years. Sanger sequencing of NLRP3 was non-diagnostic but ADS detected a somatic NLRP3 mutation in each case. In one patient, DNA isolated from blood demonstrated an increase in the mutant allele from 5 to 45% over 12 years. ASC aggregates in patients’ serum measured during active disease were significantly higher than healthy controls. This series represents 8% of CAPS patients diagnosed in a single center, suggesting that acquired NLRP3 mutations may not be an uncommon cause of the syndrome and should be sought in all patients with late-onset symptoms otherwise compatible with CAPS. Steadily worsening CAPS symptoms in one patient were associated with clonal expansion of the mutant allele predominantly affecting myeloid cells. Two patients developed AA amyloidosis, which previously has only been reported in CAPS in association with life-long germline NLRP3 mutations. PMID:29163488
Yao, Jianzhuang; Chu, Yuzhuo; An, Ran; Guo, Hong
2012-02-27
The results of hybrid quantum mechanical/molecular mechanical (QM/MM) free energy (potential of mean force) simulations for methyl-transfer processes in SET7/9 and its Y245A mutant are compared to address the question concerning the change of the product specificity as well as catalytic efficiency due to the mutation. One of the key questions is whether or not the free energy profiles of methyl transfers may be used to predict the change of the product specificity as a result of the mutations for the residues that are not located at the Tyr/Phe switch position. The simulations show that while the wild-type SET7/9 is a monomethylase, the Y245→A mutation increases the ability of the enzyme to add more methyl groups on the target lysine (i.e., acting as a trimethylase). However, the first methyl-transfer process seems to become less efficient in the mutant compared to that in wild-type. All these results are consistent with experimental observations concerning the effects of the mutation on the product specificity and catalytic efficiency. Thus, the previous suggestion that the energetics of the methyl-transfer reactions may determine the product specificity, at least in some cases, is confirmed by the present work. Moreover, the dynamic information of the reactant complexes obtained from the QM/MM molecular dynamics simulations shows that the ability of the reactant complexes to form the reactive transition-state-like configurations may be used as an important indicator for the prediction of the product specificity of PKMTs, consistent with previous computational studies.
Homozygous SALL1 Mutation Causes a Novel Multiple Congenital Anomaly—Mental Retardation Syndrome
Vodopiutz, Julia; Zoller, Heinz; Fenwick, Aimée L.; Arnhold, Richard; Schmid, Max; Prayer, Daniela; Müller, Thomas; Repa, Andreas; Pollak, Arnold; Aufricht, Christoph; Wilkie, Andrew O.M.; Janecke, Andreas R.
2013-01-01
Objective To delineate a novel autosomal recessive multiple congenital anomaly-mental retardation (MCA-MR) syndrome in 2 female siblings of a consanguineous pedigree and to identify the disease-causing mutation. Study design Both siblings were clinically characterized and homozygosity mapping and sequencing of candidate genes were applied. The contribution of nonsense-mediated messenger RNA (mRNA) decay to the expression of mutant mRNA in fibroblasts of a healthy carrier and a control was studied by pyrosequencing. Results We identified the first homozygous SALL1 mutation, c.3160C > T (p.R1054*), in 2 female siblings presenting with multiple congenital anomalies, central nervous system defects, cortical blindness, and absence of psychomotor development (ie, a novel recognizable, autosomal recessive MCA-MR). The mutant SALL1 transcript partially undergoes nonsense-mediated mRNA decay and is present at 43% of the normal transcript level in the fibroblasts of a healthy carrier. Conclusion Previously heterozygous SALL1 mutations and deletions have been associated with dominantly inherited anal-renal-radial-ear developmental anomalies. We identified an allelic recessive SALL1-related MCA-MR. Our findings imply that quantity and quality of SALL1 transcript are important for SALL1 function and determine phenotype, and mode of inheritance, of allelic SALL1-related disorders. This novel MCA-MR emphasizes SALL1 function as critical for normal central nervous system development and warrants a detailed neurologic investigation in all individuals with SALL1 mutations. PMID:23069192
Mi, Xiao-Xiao; Li, Xiao-Guang; Wang, Zi-Rong; Lin, Ling; Xu, Chun-Hai; Shi, Jun-Ping
2017-08-16
Abernethy malformation is a rare congenital anomaly characterised by the partial or complete absence of the portal vein and the subsequent development of an extrahepatic portosystemic shunt. Caroli's disease is a rare congenital condition characterised by non-obstructive saccular intrahepatic bile duct dilation. Caroli's disease combined with congenital hepatic fibrosis and/or renal cystic disease is referred to - Caroli's syndrome. The combination of Abernethy malformation and Caroli's syndrome has not been reported previously. We present the case of a 23-year-old female who was found to have both type II Abernethy malformation and Caroli's syndrome. Radiological imaging was performed, including computed tomography with three-dimensional reconstruction and magnetic resonance imaging with (magnetic resonance cholangiopancreatography (MRCP), which revealed a side-to-side portocaval shunt, intrahepatic bile duct dilation, congenital hepatic fibrosis, and renal cysts. In addition, PKHD1 (polycystic kidney and hepatic disease 1) gene mutational analysis revealed a paternally inherited heterozygous missense mutation (c.1877A > G, p.Lys626Arg). A liver biopsy confirmed the pathological features of Caroli's syndrome. To our knowledge, this is the first reported case of a patient with both type II Abernethy malformation and Caroli's syndrome diagnosed using a comprehensive approach that included imaging, mutational analysis, and liver biopsy. Additionally, this is the second reported case to date of an Asian patient presenting with liver and renal disorders with the same paternally inherited PKHD1 missense mutation.
Sprovieri, T; Conforti, F L; Fiumara, A; Mazzei, R; Ungaro, C; Citrigno, L; Muglia, M; Arena, A; Quattrone, A
2009-02-15
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have recently been reported in patients with severe neurodevelopmental disorder characterized by early-onset seizures, infantile spasms, severe psychomotor impairment and very recently, in patients with Rett syndrome (RTT)-like phenotype. Although the involvement of CDKL5 in specific biological pathways and its neurodevelopmental role have not been completely elucidated, the CDKL5 appears to be physiologically related to the MECP2 gene. Here we report on the clinical and CDKL5 molecular investigation in a very unusual RTT case, with severe, early-neurological involvement in which we have shown in a previous report, a novel P388S MECP2 mutation [Conforti et al. (2003); Am J Med Genet A 117A: 184-187]. The patient has had severe psychomotor delay since the first month of life and infantile spasms since age 5 months. Moreover, at age 5 years the patient suddenly presented with renal failure. The severe pattern of symptoms in our patient, similar to a CDKL5 phenotype, prompted us to perform an analysis of the CDKL5, which revealed a novel missense mutation never previously described. The X-inactivation assay was non-informative. In conclusion, this report reinforces the observation that the CDKL5 phenotype overlaps with RTT and that CDKL5 analysis is recommended in patients with a seizure disorder commencing during the first months of life.
Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins.
Song, Albert S; Poor, Taylor A; Abriata, Luciano A; Jardetzky, Theodore S; Dal Peraro, Matteo; Lamb, Robert A
2016-07-05
Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin-neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design.
Olsen, Rikke K J; Olpin, Simon E; Andresen, Brage S; Miedzybrodzka, Zofia H; Pourfarzam, Morteza; Merinero, Begoña; Frerman, Frank E; Beresford, Michael W; Dean, John C S; Cornelius, Nanna; Andersen, Oluf; Oldfors, Anders; Holme, Elisabeth; Gregersen, Niels; Turnbull, Douglass M; Morris, Andrew A M
2007-08-01
Multiple acyl-CoA dehydrogenation deficiency (MADD) is a disorder of fatty acid, amino acid and choline metabolism that can result from defects in two flavoproteins, electron transfer flavoprotein (ETF) or ETF: ubiquinone oxidoreductase (ETF:QO). Some patients respond to pharmacological doses of riboflavin. It is unknown whether these patients have defects in the flavoproteins themselves or defects in the formation of the cofactor, FAD, from riboflavin. We report 15 patients from 11 pedigrees. All the index cases presented with encephalopathy or muscle weakness or a combination of these symptoms; several had previously suffered cyclical vomiting. Urine organic acid and plasma acyl-carnitine profiles indicated MADD. Clinical and biochemical parameters were either totally or partly corrected after riboflavin treatment. All patients had mutations in the gene for ETF:QO. In one patient, we show that the ETF:QO mutations are associated with a riboflavin-sensitive impairment of ETF:QO activity. This patient also had partial deficiencies of flavin-dependent acyl-CoA dehydrogenases and respiratory chain complexes, most of which were restored to control levels after riboflavin treatment. Low activities of mitochondrial flavoproteins or respiratory chain complexes have been reported previously in two of our patients with ETF:QO mutations. We postulate that riboflavin-responsive MADD may result from defects of ETF:QO combined with general mitochondrial dysfunction. This is the largest collection of riboflavin-responsive MADD patients ever reported, and the first demonstration of the molecular genetic basis for the disorder.
Robledo, Raymond F.; Lambert, Amy J.; Birkenmeier, Connie S.; Cirlan, Marius V.; Cirlan, Andreea Flavia M.; Campagna, Dean R.; Lux, Samuel E.
2010-01-01
Five spontaneous, allelic mutations in the α-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph1J, sph2J, sph2BC, sphDem). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph3J, a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sphIhj, a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent β-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph4J, a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, β-adducin. The severity of anemia in sph4J indicates that the highly conserved cysteine residue at the C-terminus of α-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3. PMID:20056793
Robledo, Raymond F; Lambert, Amy J; Birkenmeier, Connie S; Cirlan, Marius V; Cirlan, Andreea Flavia M; Campagna, Dean R; Lux, Samuel E; Peters, Luanne L
2010-03-04
Five spontaneous, allelic mutations in the alpha-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph(1J), sph(2J), sph(2BC), sph(Dem)). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph(3J), a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sph(Ihj), a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent beta-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph(4J), a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, beta-adducin. The severity of anemia in sph(4J) indicates that the highly conserved cysteine residue at the C-terminus of alpha-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3.
Whole-genome sequencing of Atacama skeleton shows novel mutations linked with dysplasia
Bhattacharya, Sanchita; Li, Jian; Sockell, Alexandra; Kan, Matthew J.; Bava, Felice A.; Chen, Shann-Ching; Ávila-Arcos, María C.; Ji, Xuhuai; Smith, Emery; Asadi, Narges B.; Lachman, Ralph S.; Lam, Hugo Y.K.; Bustamante, Carlos D.; Butte, Atul J.; Nolan, Garry P.
2018-01-01
Over a decade ago, the Atacama humanoid skeleton (Ata) was discovered in the Atacama region of Chile. The Ata specimen carried a strange phenotype—6-in stature, fewer than expected ribs, elongated cranium, and accelerated bone age—leading to speculation that this was a preserved nonhuman primate, human fetus harboring genetic mutations, or even an extraterrestrial. We previously reported that it was human by DNA analysis with an estimated bone age of about 6–8 yr at the time of demise. To determine the possible genetic drivers of the observed morphology, DNA from the specimen was subjected to whole-genome sequencing using the Illumina HiSeq platform with an average 11.5× coverage of 101-bp, paired-end reads. In total, 3,356,569 single nucleotide variations (SNVs) were found as compared to the human reference genome, 518,365 insertions and deletions (indels), and 1047 structural variations (SVs) were detected. Here, we present the detailed whole-genome analysis showing that Ata is a female of human origin, likely of Chilean descent, and its genome harbors mutations in genes (COL1A1, COL2A1, KMT2D, FLNB, ATR, TRIP11, PCNT) previously linked with diseases of small stature, rib anomalies, cranial malformations, premature joint fusion, and osteochondrodysplasia (also known as skeletal dysplasia). Together, these findings provide a molecular characterization of Ata's peculiar phenotype, which likely results from multiple known and novel putative gene mutations affecting bone development and ossification. PMID:29567674
Kallmann syndrome and paranoid schizophrenia: a rare combination.
Verhoeven, Willem M A; Egger, Jos I M; Hovens, Johannes E; Hoefsloot, Lies
2013-01-17
Kallmann syndrome (KS) is a genetically heterogeneous and rare disorder characterised by the combination of hypothalamic hypogonadism and anosmia/hyposmia, a variable degree of intellectual disability and several somatic anomalies. In about one-third of the patients, mutations have been identified in at least seven different genes. Virtually no data are available about possible neuropsychiatric symptoms in KS. Here, a young adult male is described with a previous clinical diagnosis of KS and recent paranoid schizophrenia of which positive, but not negative symptoms, fully remitted upon treatment with antipsychotics. Neither genome-wide array analysis nor mutation analyses disclosed imbalances or mutations in any of presently known KS disease genes. This is the first report on a patient with KS and paranoid schizophrenia in whom extensive genetic analyses were performed. It is concluded that further studies are warranted in order to elucidate a possible increased risk for psychiatric symptoms in patients with KS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodes, M.E.; DeMyer, W.E.; Pratt, V.M.
1995-02-13
We studied a female infant with clinical signs of Pelizaeus-Merzbacher disease (PMD), who has a familial mutation (C{sup 41}{r_arrow}T) in exon 2 of the proteolipid protein gene (PLP), and selected relatives. While the carrier mother and grandmother of the proposita currently are neurologically normal and show normal T2 magnetic resonance imaging (MRI) of the brain, the infant has a neurological picture, MRIs, and brain auditory evoked response (BAER) consistent with that diagnosis. The data here presented show that PMD can occur in females carrying a mutation in the PLP gene. Our experience with the MRIs of this patient, her mothermore » and grandmother, and those of a previously reported family show that molecular genetic analysis and not MRI is the appropriate means for carrier detection. 22 refs., 5 figs.« less
Chuang, Jen-Zen; Vega, Carrie; Jun, Wenjin; Sung, Ching-Hwa
2004-01-01
Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous degenerative eye disease. Mutations at Arg135 of rhodopsin are associated with a severe form of autosomal dominant RP. This report presents evidence that Arg135 mutant rhodopsins (e.g., R135L, R135G, and R135W) are hyperphosphorylated and bind with high affinity to visual arrestin. Mutant rhodopsin recruits the cytosolic arrestin to the plasma membrane, and the rhodopsin-arrestin complex is internalized into the endocytic pathway. Furthermore, the rhodopsin-arrestin complexes alter the morphology of endosomal compartments and severely damage receptor-mediated endocytic functions. The biochemical and cellular defects of Arg135 mutant rhodopsins are distinct from those previously described for class I and class II RP mutations, and, hence, we propose that they be named class III. Impaired endocytic activity may underlie the pathogenesis of RP caused by class III rhodopsin mutations. PMID:15232620
Hereditary cardiac amyloidosis associated with the transthyretin Ile122 mutation in a white man.
Gillmore, J D; Booth, D R; Pepys, M B; Hawkins, P N
1999-09-01
An 83 year old white man with atrial fibrillation was admitted to hospital after a cerebral infarct. Echocardiography was characteristic of cardiac amyloid deposition and subsequent tests confirmed amyloidosis of transthyretin (TTR) type, in association with the Ile122 mutation of the TTR gene; this has only been reported previously in African Americans in whom it occurs with an allele frequency of 2%. Haplotype analysis did not suggest a different founder than for the African Ile122 mutation. Cardiac amyloidosis should be considered among elderly patients presenting with cardiac failure and/or arrhythmia, particularly if they are resistant to conventional treatment; if confirmed, it should be followed by precise characterisation of amyloid fibril type. The prevalence of autosomal dominant cardiac TTR amyloidosis in elderly white people is unknown but early diagnosis and supportive treatment may prevent complications among affected family members.
Molecular insights into primary hyperoxaluria type 1 pathogenesis.
Cellini, Barbara; Oppici, Elisa; Paiardini, Alessandro; Montioli, Riccardo
2012-01-01
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of glyoxylate metabolism caused by the deficiency of liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme. The PH1 pathogenesis is mostly due to single point mutations (more than 150 so far identified) on the AGXT gene, and is characterized by a marked heterogeneity in terms of genotype, enzymatic and clinical phenotypes. This article presents an up to date review of selected aspects of the biochemical properties of the two allelic forms of AGT and of some PH1-causing variants. These recent discoveries highlight the effects at the protein level of the pathogenic mutations, and, together with previous cell biology and clinical data, (i) improve the understanding of the molecular basis of PH1 pathogenesis, and (ii) help to delineate perspectives for predicting the response to pyridoxine treatment or for suggesting new strategies for PH1 patients bearing the analyzed mutations.
Recurrent occurrences of CDKL5 mutations in patients with epileptic encephalopathy.
Yamamoto, Toshiyuki; Shimojima, Keiko; Kimura, Nobusuke; Mogami, Yukiko; Usui, Daisuke; Takayama, Rumiko; Ikeda, Hiroko; Imai, Katsumi
2015-01-01
The cyclin-dependent kinase-like 5 gene (CDKL5) is recognized as one of the genes responsible for epileptic encephalopathy. We identified CDKL5 mutations in five Japanese patients (one male and four female) with epileptic encephalopathy. Although all mutations were of de novo origin, they were located in the same positions as previously reported pathogenic mutations. These recurrent occurrences of de novo mutations in the same loci may indicate hot spots of nucleotide alteration.
Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation
Yan, Hui-ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-bing; Liu, Jing; Jia, Zheng-jun; Wang, Hua
2017-01-01
Abstract Rationale: Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Patient concerns: Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. Diagnoses: The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Interventions: Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. Outcomes: The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. Lessons: We report the first 2 cases of CACTD identified from the mainland China. Apart from a founder mutation c.199-10T>G, we identified a novel c.1A>G mutation. Patients with CACTD with a genotype of c.199-10T>G mutation usually presents with a severe clinical phenotype. Early recognition and appropriate treatment is crucial in this highly lethal disorder. This case series highlights the importance of screening for metabolic diseases including CACTD in cases of sudden infant death and unexplained abrupt clinical deterioration in the early neonatal period. PMID:29137068
Yan, Hui-Ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-Bing; Liu, Jing; Jia, Zheng-Jun; Wang, Hua
2017-11-01
Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. We report the first 2 cases of CACTD identified from the mainland China. Apart from a founder mutation c.199-10T>G, we identified a novel c.1A>G mutation. Patients with CACTD with a genotype of c.199-10T>G mutation usually presents with a severe clinical phenotype. Early recognition and appropriate treatment is crucial in this highly lethal disorder. This case series highlights the importance of screening for metabolic diseases including CACTD in cases of sudden infant death and unexplained abrupt clinical deterioration in the early neonatal period.
Homozygous variegate porphyria presenting with developmental and language delay in childhood.
Pinder, V A E; Holden, S T; Deshpande, C; Siddiqui, A; Mellerio, J E; Wraige, E; Powell, A M
2013-10-01
Variegate porphyria is an autosomal dominant disorder that usually presents with photosensitivity and acute neurological crises in adulthood. It is caused by heterozygous mutations in the protoporphyrinogen oxidase gene (PPOX). A rarer variant, homozygous variegate porphyria (HVP), presents in childhood with recurrent skin blisters and scarring. More variable features of HVP are short stature, brachydactyly, nystagmus, epilepsy, developmental delay and mental retardation. We describe a child who presented with nystagmus, developmental delay and ataxia, combined with a photosensitive eruption. Analysis of porphyrins in plasma, urine and stool supported a clinical diagnosis of HVP. DNA from the patient showed that he is compound heterozygous for two novel missense mutations in the PPOX coding region: c.169G>C (p.Gly57Arg) and c.1259C>G (Pro420Arg). Interestingly, cranial magnetic resonance imaging showed an absence of myelin, a feature not previously reported in HVP, which expands the differential diagnosis of childhood hypomyelinating leucoencephalopathies. © 2013 British Association of Dermatologists.
Analysis of GPR101 and AIP genes mutations in acromegaly: a multicentric study.
Ferraù, Francesco; Romeo, P D; Puglisi, S; Ragonese, M; Torre, M L; Scaroni, C; Occhi, G; De Menis, E; Arnaldi, G; Trimarchi, F; Cannavò, S
2016-12-01
This multicentric study aimed to investigate the prevalence of the G protein-coupled receptor 101 (GPR101) p.E308D variant and aryl hydrocarbon receptor interacting protein (AIP) gene mutations in a representative cohort of Italian patients with acromegaly. 215 patients with GH-secreting pituitary adenomas, referred to 4 Italian referral centres for pituitary diseases, have been included. Three cases of gigantism were present. Five cases were classified as FIPA. All the patients have been screened for germline AIP gene mutations and GPR101 gene p.E308D variant. Heterozygous AIP gene variants have been found in 7 patients (3.2 %). Five patients carried an AIP mutation (2.3 %; 4 females): 3 patients harboured the p.R3O4Q mutation, one had the p.R304* mutation and the last one the IVS3+1G>A mutation. The prevalence of AIP mutations was 3.3 % and 2.8 % when considering only the patients diagnosed when they were <30 or <40-year old, respectively. Furthermore, 2.0 % of the patients with a pituitary macroadenoma and 4.2 % of patients resistant to somatostatin analogues treatment were found to harbour an AIP gene mutation. None of the patients was found to carry the GPR101 p.E308D variant. The prevalence of AIP gene mutations among our sporadic and familial acromegaly cases was similar to that one reported in previous studies, but lower when considering only the cases diagnosed before 40 years of age. The GPR101 p.E308D change is unlikely to have a role in somatotroph adenomas tumorigenesis, since none of our sporadic or familial patients tested positive for this variant.
Bacterial rep- mutations that block development of small DNA bacteriophages late in infection.
Tessman, E S; Peterson, P K
1976-01-01
Several related mutants of Escherichia coli C have been isolated that block the growth of the small icosahedral DNA phages phiX174 and S13 late in infection. Phage G6 is also blocked, at a stage not yet known. Growth of the filamentous phage M13, though not blocked, is affected in these strains. These host mutations co-transduce with ilv at high frequency, as do rep- mutations. However, the new mutants, designated groL-, differ from previously studied rep- mutants in that they permit synthesis of progeny replicative-form DNA. The groL- mutants are blocked in synthesis of stable single-stranded DNA of phiX174 and related phages. They are gro+ for P2. Evidence that groL- mutations and rep- mutations are in the same gene is presented. Spontaneous mutants (ogr) of phiX174, S13, and the G phages can grow on groL- strains. The ogr mutations are located in the phage's major capsid gene, F, as determined by complementation tests. There are numerous sites for mutation to ogr. Some mutations in genes A and F interfere with the ogr property when combined with an ogr mutation on the same genome. The ogr mutations are cis acting in a groL- cell; i.e., an ogr mutant gives very poor rescue of a non-ogr mutant. The wild-type form of each G phage appears to be naturally in the ogr mutant state for one or more groL- strains. It is suggested that a complex between F and rep proteins is involved in phage maturation. The A protein appears to interact with this complex. PMID:789914
Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B. P.
2016-01-01
Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients. PMID:26771602
Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P
2016-01-12
Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.
Staudacher, Jonas J; Yazici, Cemal; Bul, Vadim; Zeidan, Joseph; Khalid, Ahmer; Xia, Yinglin; Krett, Nancy; Jung, Barbara
2017-10-19
The basis for over-representation of colorectal cancer (CRC) in African-American (AA) populations compared with Caucasians are multifactorial and complex. Understanding the mechanisms for this racial disparity is critical for delivery of better care. Several studies have investigated sporadic CRC for differences in somatic mutations between AAs and Caucasians, but owing to small study sizes and conflicting results to date, no definitive conclusions have been reached. Here, we present the first systematic literature review and meta-analysis investigating the mutational differences in sporadic CRC between AAs and Caucasians focused on frequent driver mutations (APC,TP53, KRAS,PI3CA, FBXW7,SMAD4, and BRAF). Publication inclusion criteria comprised sporadic CRC, human subjects, English language, information on ethnicity (AA, Caucasian, or both), total subject number >20, and information on mutation frequencies. We identified 6,234 publications. Meta-analysis for APC, TP54, FBXW7, or SMAD4 was not possible owing to paucity of data. KRAS mutations were statistically less frequent in non-Hispanic Whites when compared with AAs (odds ratio, 0.640; 95% confidence interval (CI): 0.5342-0.7666; P=0.0001), while the mutational differences observed in BRAF and PI3CA did not reach statistical significance. Here, we report the mutational patterns for KRAS, BRAF, and PI3CA in sporadic CRC of AAs and Caucasians in a systematic meta-analysis of previously published data. We identified an increase in KRAS mutations in sporadic CRC in AAs, which may contribute to worse prognosis and increased mortality of CRC in AAs. Future studies investigating health-care disparities in CRC in AAs should control for KRAS mutational frequency.
Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem
2014-06-01
Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.
Diagnosis of becker muscular dystrophy: Results of Re-analysis of DNA samples.
Straathof, Chiara S M; Van Heusden, Dave; Ippel, Pieternella F; Post, Jan G; Voermans, Nicol C; De Visser, Marianne; Brusse, Esther; Van Den Bergen, Janneke C; Van Der Kooi, Anneke J; Verschuuren, Jan J G M; Ginjaar, Hendrika B
2016-01-01
The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients. © 2015 Wiley Periodicals, Inc.
Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A
1992-11-01
Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.
Guo, Haisheng; Wan, Yunyan; Tian, Guangyan; Liu, Qinghua; Kang, Yanmeng; Li, Yuye; Yao, Zhouhong; Lin, Dianjie
2012-03-01
The aim of the present study was to evaluate the therapeutic effects and adverse reactions of Tarceva treatment for malignant pleural effusion (MPE) caused by metastatic lung adenocarcinomas. One hundred and twenty-eight patients who failed first-line chemotherapy drug treatment were divided into a mutation and a non-mutation group according to the presence or absence of epidermal growth factor receptor (EGFR) mutations. Each patient received closed drainage combined with simple negative pressure suction after thoracoscopic talc poudrage pleurodesis and oral Tarceva treatment. Short-term and long-term clinical therapeutic effects of Tarceva were evaluated. The EGFR mutation rate in pleural metastatic tissues of lung adenocarcinoma acquired through video-assisted thoracoscopic surgery was higher compared to that in surgical resection specimens, plasma specimens and pleural effusion specimens compared to previously reported results. There were significant statistical differences in the average extubation time (p<0.01), drainage volume of pleural effusion (p<0.05), Karnofsky score and formation of encapsulated pleural effusion 4 weeks after surgery (p<0.05) between these two groups. The number of patients with mild pleural hypertrophy in the mutation group was significantly higher compared to the non-mutation group (p<0.01), while the number of patients with severe pleural hypertrophy was significantly reduced (p<0.05). There was significant statistical discrepancy between these two groups in terms of improvement of peripheral blood carcinoembryonic antigen and tissue polypeptide antigen after 4 weeks of therapy. The complete remission rate and the efficacy rate were higher in the mutation group compared to that in the non-mutation group (p<0.05). There was a longer overall survival time after Tarceva treatment in patients with EGFR mutations than those without EGFR mutation. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy. Detection of EGFR mutations may determine the responsiveness of malignant pleural effusion to Tarceva treatment.
PRSS1 and SPINK1 mutations in idiopathic chronic and recurrent acute pancreatitis.
Pelaez-Luna, Mario; Robles-Diaz, Guillermo; Canizales-Quinteros, Samuel; Tusié-Luna, Maria T
2014-09-07
To identify gene mutations in PRSS1 and SPINK1 in individuals with early onset idiopathic chronic or recurrent acute pancreatitis. The cationic trypsinogen gene (PRSS1; exons 2 and 3) and the serine protease inhibitor Kazal 1 gene (SPINK1; exon 3) were selectively amplified and sequenced from blood samples of 19 patients admitted to the Pancreas Clinic at our institution with chronic pancreatitis and/or idiopathic recurrent acute pancreatitis that were diagnosed or with onset before age 35. Fifty healthy volunteers served as controls. Whole blood samples were collected and gene specific sequences were amplified by polymerase chain reaction (PCR). All PCR products were subsequently sequenced in order to identify the presence of any mutations. Nineteen patients with pancreatitis (14 males; median age 24 years, range 15-48 years) were included in this study, of which five showed the presence of gene mutations. Direct sequencing results indicated the presence of two previously unidentified mutations in exon 2 of PRSS1 (V39E and N42S) in two patients with recurrent acute pancreatitis. Two cases had the N34S SPINK1 mutation. Analysis of the relatives of one patient homozygous for this mutation showed that five of the six family members carried the N34S SPINK1 mutation. Of these members, three were healthy heterozygous carriers and two were homozygotes (one sibling had diabetes, the other was healthy). Another patient was heterozygous for a novel SPINK1 mutation located on exon 3 (V46D). All members from this patient's family had normal genotypes, indicating that it was a de novo mutation. No mutations in either gene were present in the control subjects. Two novel PRSS1 mutations and one novel SPINK1 mutation were identified in Mexican patients with early onset idiopathic recurrent acute pancreatitis.
Hemolytic uremic syndrome (HUS) secondary to cobalamin C (cblC) disorder.
Sharma, Ajay P; Greenberg, Cheryl R; Prasad, Asuri N; Prasad, Chitra
2007-12-01
Diarrhea-positive hemolytic uremic syndrome (HUS) is a common cause of acute renal failure in children. Diarrhea-negative (D-), or atypical HUS, is etiologically distinct. A Medline search identified seven previously reported D- cases of HUS secondary to cobalamin C (cblC) disease presenting in infancy. An infantile presentation is reported to be associated with a high mortality rate (6/7 cases). We describe the results of a 5-year longitudinal follow-up in a child diagnosed with D- HUS secondary to cblC disease in infancy. Mutation analysis in this patient identified homozygosity for the 271 dupA mutation (c.271 dupA) in the cblC MMACHC gene. We briefly review the published experience in cblC-associated HUS to highlight the clinical characteristics of this uncommon, but potentially treatable, condition.
Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria
2013-08-08
Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of 23 (35%) of 'missing' mutations in Usher type 2 probands with only a single heterozygous USH2A mutation detected with Sanger sequencing could be attributed to deletions, duplications or a pathogenic deep intronic variant. Future mutation detection strategies and genetic counselling will need to take into account the prevalence of these types of mutations in order to provide a more comprehensive diagnostic service.
Templeton, A. R.; Sing, C. F.
1993-01-01
We previously developed an analytical strategy based on cladistic theory to identify subsets of haplotypes that are associated with significant phenotypic deviations. Our initial approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site data to estimate the evolutionary steps that interrelate the observed haplotypes to one another. The cladogram is then used to define a nested statistical design for identifying mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that a mutation responsible for a particular phenotypic effect is embedded within the evolutionary history that is represented by the cladogram. The power of this approach depends on the accuracy of the cladogram in portraying the evolutionary history of the DNA region. This accuracy can be diminished both by recombination and by uncertainty in the estimated cladogram topology. In a previous paper, we presented an algorithm for estimating the set of likely cladograms and recombination events. In this paper we present an algorithm for defining a nested statistical design under cladogram uncertainty and recombination. Given the nested design, phenotypic associations can be examined using either a nested analysis of variance (for haploids or homozygous strains) or permutation testing (for outcrossed, diploid gene regions). In this paper we also extend this analytical strategy to include categorical phenotypes in addition to quantitative phenotypes. Some worked examples are presented using Drosophila data sets. These examples illustrate that having some recombination may actually enhance the biological inferences that may derived from a cladistic analysis. In particular, recombination can be used to assign a physical localization to a given subregion for mutations responsible for significant phenotypic effects. PMID:8100789
Mariani, Sara; Bertero, Luca; Osella-Abate, Simona; Di Bello, Cristiana; Francia di Celle, Paola; Coppola, Vittoria; Sapino, Anna; Cassoni, Paola; Marchiò, Caterina
2017-07-25
Gene mutations in the RAS family rule out metastatic colorectal carcinomas (mCRCs) from anti-EGFR therapies. We report a retrospective analysis by Sequenom Massarray and fast COLD-PCR followed by Sanger sequencing on 240 mCRCs. By Sequenom, KRAS and NRAS exons 2-3-4 were mutated in 52.9% (127/240) of tumours, while BRAF codon 600 mutations reached 5% (12/240). Fast COLD-PCR found extra mutations at KRAS exon 2 in 15/166 (9%) of samples, previously diagnosed by Sequenom as wild-type or mutated at RAS (exons 3-4) or BRAF genes. After UDG digestion results were reproduced in 2/12 analysable subclonally mutated samples leading to a frequency of true subclonal KRAS mutations of 1.2% (2.1% of the previous Sequenom wild-type subgroup). In 10 out of 12 samples, the subclonal KRAS mutations disappeared (9 out of 12) or turned to a different sequence variant (1 out of 12). mCRC can harbour coexisting multiple gene mutations. High sensitivity assays allow the detection of a small subset of patients harbouring true subclonal KRAS mutations. However, DNA changes with mutant allele frequencies <3% detected in formalin-fixed paraffin-embedded samples may be artifactual in a non-negligible fraction of cases. UDG pre-treatment of DNA is mandatory to identify true DNA changes in archival samples and avoid misinterpretation due to artifacts.
Mariani, Sara; Bertero, Luca; Osella-Abate, Simona; Di Bello, Cristiana; Francia di Celle, Paola; Coppola, Vittoria; Sapino, Anna; Cassoni, Paola; Marchiò, Caterina
2017-01-01
Background: Gene mutations in the RAS family rule out metastatic colorectal carcinomas (mCRCs) from anti-EGFR therapies. Methods: We report a retrospective analysis by Sequenom Massarray and fast COLD-PCR followed by Sanger sequencing on 240 mCRCs. Results: By Sequenom, KRAS and NRAS exons 2-3-4 were mutated in 52.9% (127/240) of tumours, while BRAF codon 600 mutations reached 5% (12/240). Fast COLD-PCR found extra mutations at KRAS exon 2 in 15/166 (9%) of samples, previously diagnosed by Sequenom as wild-type or mutated at RAS (exons 3-4) or BRAF genes. After UDG digestion results were reproduced in 2/12 analysable subclonally mutated samples leading to a frequency of true subclonal KRAS mutations of 1.2% (2.1% of the previous Sequenom wild-type subgroup). In 10 out of 12 samples, the subclonal KRAS mutations disappeared (9 out of 12) or turned to a different sequence variant (1 out of 12). Conclusions: mCRC can harbour coexisting multiple gene mutations. High sensitivity assays allow the detection of a small subset of patients harbouring true subclonal KRAS mutations. However, DNA changes with mutant allele frequencies <3% detected in formalin-fixed paraffin-embedded samples may be artifactual in a non-negligible fraction of cases. UDG pre-treatment of DNA is mandatory to identify true DNA changes in archival samples and avoid misinterpretation due to artifacts. PMID:28618430
Fernández-Cancio, Mónica; García-García, Emilio; González-Cejudo, Carmen; Martínez-Maestre, María-Angeles; Mangas-Cruz, Miguel-Angel; Guerra-Junior, Gil; Pandi de Mello, Maricilda; Arnhold, Ivo J P; Nishi, Mirian Y; Bilharinho Mendonça, Berenice; García-Arumí, Elena; Audí, Laura; Tizzano, Eduardo; Carrascosa, Antonio
2017-01-01
17α-hydroxylase/17,20-lyase deficiency is a rare form of congenital adrenal hyperplasia caused by mutations in CYP17A1. Two phenotypic female sisters, aged 17 and 15 years and with 46,XY and 46,XX karyotypes, respectively, presented with primary amenorrhea and absent secondary sexual characteristics. The elder sib also presented with high blood pressure. Both patients had elevated levels of ACTH, gonadotropins, progesterone, corticosterone, and deoxycorticosterone, and reduced levels of estradiol, testosterone, androstenedione, 17-OH-P, DHEA-S, cortisol, aldosterone, and renin activity. The CYP17A1 gene was sequenced, and polymorphic haplotypes were further analyzed in the Spanish family and in Brazilian patients. The 2 sisters were compound heterozygous for p.Arg362Cys and p.Trp406Arg mutations, previously described as the most prevalent mutations in Brazilian families of Spanish (p.Trp406Arg) or Portuguese (p.Arg362Cys) origin. Analysis of polymorphisms in CYP17A1 suggested that the paternal allele with p.Arg362Cys may share a common origin with the Brazilian carriers, while the maternal allele with p.Trp406Arg did not. Hydrocortisone and sex hormone replacement therapy was initiated in both patients. In conclusion, one CYP17A1 mutation (p.Arg362Cys) may share a common ancestry in Brazilian and our present Spanish patients, while p.Trp406Arg may have arisen separately. The elder patient (46,XY) developed a more severe phenotype and a poorer response to estradiol replacement therapy. © 2017 S. Karger AG, Basel.
Renal function can be impaired in children with primary hyperoxaluria type 3.
Allard, Lise; Cochat, Pierre; Leclerc, Anne-Laure; Cachat, François; Fichtner, Christine; De Souza, Vandréa Carla; Garcia, Clotilde Druck; Camoin-Schweitzer, Marie-Christine; Macher, Marie-Alice; Acquaviva-Bourdain, Cécile; Bacchetta, Justine
2015-10-01
Primary hyperoxaluria type 3 (PH3) is characterized by mutations in the 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 patients are believed to present with a less severe phenotype than those with PH1 and PH2, but the clinical characteristics of PH3 patients have yet to be defined in sufficient detail. The aim of this study was to report our experience with PH3. Genetic analysis of HOGA1 was performed in patients with a high clinical suspicion of PH after the presence of mutations in the alanine-glyoxylate aminotransferase gene had been ruled out. Clinical, biochemical and genetic data of the seven patients identified with HOGA1 mutations were subsequently retrospectively reviewed. Among the seven patients identified with HOGA1 mutations the median onset of clinical symptoms was 1.8 (range 0.4-9.8) years. Five patients initially presented with urolithiasis, and two other patients presented with urinary tract infection. All patients experienced persistent hyperoxaluria. Seven mutations were found in HOGA1, including two previously unreported ones, c.834 + 1G > T and c.3G > A. At last follow-up, two patients had impaired renal function based on estimated glomerular filtration rates (GFRs) of 77 and 83 mL/min per 1.73 m(2), respectively. We found that the GFR was significantly impaired in two of our seven patients with PH3 diagnosed during childhood. This finding is in contrast to the early-impaired renal function in PH1 and PH2 and appears to refute to preliminary reassuring data on renal function in PH3.
Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros
2016-08-01
Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Bertalan, Rita; Sallai, Agnes; Sólyom, János; Lotz, Gábor; Szabó, István; Kovács, Balázs; Szabó, Eva; Patócs, Attila; Rácz, Károly
2010-03-01
Germline activating mutations of the thyrotropin receptor (TSHR) gene have been considered as the only known cause of sporadic nonautoimmune hyperthyroidism in the pediatric population. Here we describe the long-term follow-up and evaluation of a patient with sporadic nonautoimmune primary hyperthyroidism who was found to have a de novo germline activating mutation of the TSHR gene. The patient was an infant who presented at the age of 10 months in an unconscious state with exsiccation, wet skin, fever, and tachycardia. Nonautoimmune primary hyperthyroidism was diagnosed, and brain magnetic resonance imaging and computed tomography showed also Arnold-Chiari malformation type I. Continuous propylthiouracil treatment resulted in a prolonged clinical cure lasting for 10 years. At the age of 11 years and 5 months the patient underwent subtotal thyroidectomy because of symptoms of trachea compression caused by a progressive multinodular goiter. However, 2 months after surgery, hormonal evaluation indicated recurrent hyperthyroidism and the patient was treated with propylthiouracil during the next 4 years. At the age of 15 years the patient again developed symptoms of trachea compression. Radioiodine treatment resulted in a regression of the recurrent goiter and a permanent cure of hyperthyroidism without relapse during the last 3 years of his follow-up. Sequencing of exon 10 of the TSHR gene showed a de novo heterozygous germline I630L mutation, which has been previously described as activating mutation at somatic level in toxic thyroid nodules. The I630L mutation of the TSHR gene occurs not only at somatic level in toxic thyroid nodules, but also its presence in germline is associated with nonautoimmune primary hyperthyroidism. Our case report demonstrates that in this disorder a continuous growth of the thyroid occurs without any evidence of elevated TSH due to antithyroid drug overdosing. This may justify previous recommendations for early treatment of affected patients with removal of as much thyroid tissue as possible.
Avascular Retinal Findings in a Child With Achondroplasia.
Hua, Hong-Uyen T; Tran, Kimberly D; Medina, Carlos A; Fallas, Brenda; Negron, Cathy; Berrocal, Audina M
2017-03-01
The authors present clinical and angiographic findings in a 12-year-old girl with achondroplasia who presented with bilateral retinal peripheral nonperfusion and unilateral rhegmatogenous retinal detachment, which has not been previously described in achondroplasia. This report contributes incremental knowledge regarding aberrant retinal vascular phenomena observed in pediatric disease states and implicates the possible role of mutations in the FGFR3 gene in peripheral vascular abnormalities. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:272-274.]. Copyright 2017, SLACK Incorporated.
Jaramillo, Thomas C; Escamilla, Christine Ochoa; Liu, Shunan; Peca, Lauren; Birnbaum, Shari G; Powell, Craig M
2018-02-01
Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein that interacts with presynaptic ligands including neurexin-1 (NRXN1) [Ichtchenko et al., Journal of Biological Chemistry, 271, 2676-2682, 1996]. Mice harboring a mutation in the NLGN3 gene (NL3R451C) mimicking a mutation found in two brothers with autism spectrum disorder (ASD) were previously generated and behaviorally phenotyped for autism-related behaviors. In these NL3R451C mice generated and tested on a hybrid C57BL6J/129S2/SvPasCrl background, we observed enhanced spatial memory and reduced social interaction [Tabuchi et al., Science, 318, 71-76, 2007]. Curiously, an independently generated second line of mice harboring the same mutation on a C57BL6J background exhibited minimal aberrant behavior, thereby providing apparently discrepant results. To investigate the origin of the discrepancy, we previously replicated the original findings of Tabuchi et al. by studying the same NL3R451C mutation on a pure 129S2/SvPasCrl genetic background. Here we complete the behavioral characterization of the NL3R451C mutation on a pure C57BL6J genetic background to determine if background genetics play a role in the discrepant behavioral outcomes involving NL3R451C mice. NL3R451C mutant mice on a pure C57BL6J background did not display spatial memory enhancements or social interaction deficits. We only observed a decreased startle response and mildly increased locomotor activity in these mice suggesting that background genetics influences behavioral outcomes involving the NL3R451C mutation. Autism Res 2018, 11: 234-244. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Behavioral symptoms of autism can be highly variable, even in cases that involve identical genetic mutations. Previous studies in mice with a mutation of the Neuroligin-3 gene showed enhanced learning and social deficits. We replicated these findings on the same and different genetic backgrounds. In this study, however, the same mutation in mice on a different genetic background did not reproduce our previous findings. Our results suggest that genetic background influences behavioral symptoms of this autism-associated mutation. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Recurrent occurrences of CDKL5 mutations in patients with epileptic encephalopathy
Yamamoto, Toshiyuki; Shimojima, Keiko; Kimura, Nobusuke; Mogami, Yukiko; Usui, Daisuke; Takayama, Rumiko; Ikeda, Hiroko; Imai, Katsumi
2015-01-01
The cyclin-dependent kinase-like 5 gene (CDKL5) is recognized as one of the genes responsible for epileptic encephalopathy. We identified CDKL5 mutations in five Japanese patients (one male and four female) with epileptic encephalopathy. Although all mutations were of de novo origin, they were located in the same positions as previously reported pathogenic mutations. These recurrent occurrences of de novo mutations in the same loci may indicate hot spots of nucleotide alteration. PMID:27081548
Evolution of resistance and progression to disease during clonal expansion of cancer.
Durrett, Richard; Moseley, Stephen
2010-02-01
Inspired by previous work of Iwasa et al. (2006) and Haeno et al. (2007), we consider an exponentially growing population of cancerous cells that will evolve resistance to treatment after one mutation or display a disease phenotype after two or more mutations. We prove results about the distribution of the first time when k mutations have accumulated in some cell, and about the growth of the number of type-k cells. We show that our results can be used to derive the previous results about a tumor grown to a fixed size. Copyright 2009 Elsevier Inc. All rights reserved.
Sudden Cardiac Death Due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2.
Kennedy, Hannah; Haack, Tobias B; Hartill, Verity; Mataković, Lavinija; Baumgartner, E Regula; Potter, Howard; Mackay, Richard; Alston, Charlotte L; O'Sullivan, Siobhan; McFarland, Robert; Connolly, Grainne; Gannon, Caroline; King, Richard; Mead, Scott; Crozier, Ian; Chan, Wandy; Florkowski, Chris M; Sage, Martin; Höfken, Thomas; Alhaddad, Bader; Kremer, Laura S; Kopajtich, Robert; Feichtinger, René G; Sperl, Wolfgang; Rodenburg, Richard J; Minet, Jean Claude; Dobbie, Angus; Strom, Tim M; Meitinger, Thomas; George, Peter M; Johnson, Colin A; Taylor, Robert W; Prokisch, Holger; Doudney, Kit; Mayr, Johannes A
2016-09-01
We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Five novel ALMS1 gene mutations in six patients with Alström syndrome.
Kılınç, Suna; Yücel-Yılmaz, Didem; Ardagil, Aylin; Apaydın, Süheyla; Valverde, Diana; Özgül, Rıza Köksal; Güven, Ayla
2018-05-01
Alström syndrome is a rare autosomal recessive inherited disorder caused by mutations in the ALMS1 gene. We describe the clinical and five novel mutational screening findings in six patients with Alström syndrome from five families in a single center with distinct clinical presentations of this condition. Five novel mutations in ALMS1 in exon 8 and intron 17 were identified, one of them was a compound heterozygous: c.2259_2260insT, p.Glu754*; c.2035C>T p.Arg679*; c.2259_2260insT, p.Glu754*; c.5969C>G, p.Ser1990*; c.6541C>T, p. Gln2181*/c.11666-2A>G, splicing. One patient had gallstones, this association, to our knowledge, has not been reported in Alström syndrome previously. Early diagnosis of Alström syndrome is often difficult in children and adolescents, because many of the clinical features develop over time. Early diagnosis can initiate an effective managemen of this condition, and it will help to reduce future damage.
Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2.
Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege
2012-01-01
Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.
Serrano-Hervás, Eila; Casadevall, Guillem; Garcia-Borràs, Marc; Feixas, Ferran; Osuna, Sílvia
2018-04-06
The conformational landscape of Bacillus megaterium epoxide hydrolase (BmEH) and how it is altered by mutations that confer the enzyme the ability to accept bulky epoxide substrates has been investigated. Extensive molecular dynamics (MD) simulations coupled to active site volume calculations have unveiled relevant features of the enzyme conformational dynamics and function. Our long-timescale MD simulations identify key conformational states not previously observed by means of X-ray crystallography and short MD simulations that present the loop containing one of the catalytic residues, Asp239, in a wide-open conformation, which is likely involved in the binding of the epoxide substrate. Introduction of mutations M145S and F128A dramatically alters the conformational landscape of the enzyme. These singly mutated variants can accept bulky epoxide substrates due to the disorder induced by mutation in the α-helix containing the catalytic Tyr144 and some parts of the lid domain. These changes impact the enzyme active site, which is substantially wider and more complementary to the bulky pharmacologically relevant epoxide substrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hama, Takanori; Yuza, Yuki; Suda, Toshihito; Saito, Yoshimichi; Norizoe, Chihiro; Kato, Takakuni; Moriyama, Hiroshi; Urashima, Mitsuyoshi
2012-01-01
Tumors with certain mutations in the epidermal growth factor receptor (EGFR) family genes dramatically respond to EGFR inhibitors. Therefore, these mutations are important factors that influence disease progression and patient survival. We previously studied the mutation status of EGFR in patients with head and neck squamous cell carcinoma (HNSCC). However, the mutation status of lymph node metastases and the frequency of mutations in EGFR family genes have not been extensively studied. In this study, we sequenced the catalytic domains of the three other members of the EGFR family, HER2, HER3, and HER4 in 92 clinical samples of HNSCC. We identified a HER2 mutation (K716E) in one sample but no mutations were found in HER3 or HER4. Next to investigate the relationship between EGFR mutations and tumor metastasis, we compared the DNA sequences of the EGFR gene between the primary tumor and the lymph node metastasis in 31 clinical samples. Only one of the patients with an EGFR mutation in the primary HNSCC carried the same mutation (L858R) in the lymph node metastasis. Finally, we explored the tumorigenic potential of the EGFR mutations that we had previously identified and their sensitivity to two different EGFR tyrosine kinase inhibitors (CL-387785, OSI-420). Ba/F3 cells transformed with mutant EGFR genes were sensitive to treatment with lower concentrations of CL-387785 than of OSI-420. These results contribute to our understanding of the genetic basis of drug sensitivity and will help design drugs that specifically target different subtypes of HNSCC.
Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients
PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE
2015-01-01
It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of EGFR mutations. Furthermore, KRAS mutation analysis in patients with a known smoking history revealed no difference in mutation frequency according to smoking status; however, a different mutation spectrum was observed. PMID:26622815
Lee, H; Li, D; Prior, T; Casto, B C; Weghorst, C M; Shuler, C F; Milo, G E
1997-10-01
Human tumor cells have properties in vitro or in surrogate hosts that are distinct from those of normal cells, such as immortality, anchorage independence, and tumor formation in nude mice. However, different cells from individual tumors may exhibit some, but not all of these features. In previous years, human tumor cell lines derived from different tumor and tissue types have been studied to determine those molecular changes that are associated with the in vitro properties listed above and with tumorigenicity in nude mice. In the present study, seven cell lines derived from human tumors were characterized for p53 and ras mutations that may occur in SCC tumor phenotypes and for tumor formation in nude mice. This investigation was designed to examine whether co-occurrence of mutated ras and p53 lead to a malignant stage in the progression process. None of the seven cell lines contained mutations in the recognized "hot spots" of the p53 tumor suppressor gene, but four had a nonsense/splice mutation in codon 126 and a mutation in codon 12 of the H-ras gene. The remaining three cell lines had p53 mutations in intron 5, in codon 193, and a missense mutation in codon 126, respectively. Four of seven cell lines were nontumorigenic; two of these cell lines contained a nonsense p53-126 mutation and mutated ras; one had a missense mutation at codon 126 but no mutated ras; the the fourth had only a p53 mutation at codon 193. Two of the nontumorigenic cell lines were converted to tumorigenicity after treatment with methyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine with no apparent additional mutations in either gene. Our analysis revealed that there was a high frequency of genetic diversity and mutations in both p53 and H-ras. There was also a lack of a causal relationship in the presence of mutations in p53 and the cells' ability to exhibit a malignant potential in nude mice.
Islam, Yasmin Florence Khodeja; Williams, Charles A; Schoch, Jennifer Jane; Andrews, Israel David
2017-01-01
We present the case of a newborn with co-occurrence of Marfan syndrome and aplasia cutis congenita (ACC) and a family history significant for Marfan syndrome and ACC in the father. This case details a previously unreported mutation in Marfan syndrome and describes a novel coinheritance of Marfan syndrome and ACC.
Genotype and phenotype in hypochondroplasia.
Ramaswami, U; Rumsby, G; Hindmarsh, P C; Brook, C G
1998-07-01
Mutations in the tyrosine kinase domain of fibroblast growth factor receptor gene (FGFR3) have been described in some cases of hypochondroplasia (Hch). We screened 65 children with Hch diagnosed by clinical and radiologic criteria for 2 previously described mutations, C1620A and C1620C in FGFR3; 28 (43%) of 65 patients were heterozygous for the C1620A transversion resulting in lysine to asparagine substitution at codon 540 in the tyrosine kinase domain of FGFR3. The height, sitting height, and subischial leg length of these children and of 18 children with achondroplasia were analyzed at presentation, and SD scores were calculated. For comparison of growth data the patients were divided into three groups: group 1, achondroplasia defined by radiology and the presence of the G1138A mutation in the transmembrane domain of FGFR3; group 2, Hch with C1620A mutation; and group 3, Hch with no mutation identified so far. Height, sitting height, and subischial leg length SD scores were analyzed as group mean data by analysis of variance with the Student Neuman-Keuls test after testing for multiple contrasts were performed. All three groups were significantly compromised in height, although the children with achondroplasia were much shorter with significant reduction in subischial leg length. The same pattern was evident in group 2, with additional shortening of the back, the third group was proportionately short. Children with the common C1620A mutation met all of the criteria for the diagnosis of Hch with a severe phenotype that resembled achondroplasia and disproportionate short stature in early childhood. However, a substantial number of patients with proportionate short stature presented at an older age with the same radiologic characteristics and failure of the puberty growth spurt. The genetic basis of this milder phenotype not yet known.
Oztuzcu, Serdar; Ergun, Sercan; Ulaşlı, Mustafa; Nacarkahya, Gülper; Iğci, Yusuf Ziya; Iğci, Mehri; Bayraktar, Recep; Tamer, Ali; Çakmak, Ecir Ali; Arslan, Ahmet
2014-06-01
Cardiovascular disease (CVD) risk factors, such as arterial hypertension, obesity, dyslipidemia or diabetes mellitus, as well as CVDs, including myocardial infarction, coronary artery disease or stroke, are the most prevalent diseases and account for the major causes of death worldwide. In the present study, 4,709 unrelated patients subjected to CVD panel in south-east part of Turkey between the years 2010 and 2013 were enrolled and DNA was isolated from the blood samples of these patients. Mutation analyses were conducted using the real-time polymerase chain reaction method to screen six common mutations (Factor V G1691A, PT G20210A, Factor XIII V34L, MTHFR A1298C and C677T and PAI-1 -675 4G/5G) found in CVD panel. The prevalence of these mutations were 0.57, 0.25, 2.61, 13.78, 9.34 and 24.27 % in homozygous form, respectively. Similarly, the mutation percent of them in heterozygous form were 7.43, 3.44, 24.91, 44.94, 41.09 and 45.66%, respectively. No mutation was detected in 92 (1.95%) patients in total. Because of the fact that this is the first study to screen six common mutations in CVD panel in south-east region of Turkey, it has a considerable value on the diagnosis and treatment of these diseases. Upon the results of the present and previous studied a careful examination for these genetic variants should be carried out in thrombophilia screening programs, particularly in Turkish population.
The Intergradation, Genetic Interchangeability and Interpretation of Gene Conversion Spectrum Types
Lamb, Bernard C.; Ghikas, Aglaia
1979-01-01
In the Pasadena strains of Ascobolus immersus, the gene conversion propperties of 29 induced (nine UV, nine NG, and 11 ICR-170) and nine spontaneous white-ascospore mutations have been studied. Each mutant was crossed to three types of derived wild-type strains; single mutants often gave very different conversion results in the three types of crosses, with any or all of the following changes in: percentage with post-meiotic segregation among aberrant-ratio asci; percentage with conversion to wild type among aberrant-ratio asci; and in total conversion frequency. — These results are compared with those of Leblon (1972 a, b) from Ascobolus immersus and Yu-Sun, Wickramaratne and Whitehouse (1977) from Sordaria brevicollis. It is shown that conversion spectrum types are not necessarily distinct, but can completely intergrade, on the criteria of both post-meiotic segregation frequency and direction of correction. Genetic differences between strains in the present work resulted in much interchangeability of spectrum types for the same mutation in different crosses; e.g., from type C in one cross to type B/D type in another cross, although the mutation is presumably of the same molecular type (addition or deletion frame shift, or base substitution) in each cross. These changes of conversion properties for a given mutation in different crosses mean that previous interpretations of spectrum types in terms of specific conversion properties for various molecular types of mutation are inapplicable, or inadequate on their own, to explain the present data. Other factors, such as heterozygous cryptic mutations or conversion control genes, are probably involved. Because of asymmetric hybrid DNA formation, correction properties may differ from observed conversion properties. PMID:17248926
Inoue, Hirofumi; Terachi, Shin-Ichi; Uchiumi, Takeshi; Sato, Tetsuji; Urata, Michiyo; Ishimura, Masataka; Koga, Yui; Hotta, Taeko; Hara, Toshiro; Kang, Dongchon; Ohga, Shouichi
2017-07-01
Severe protein C (PC) deficiency is a rare heritable thrombophilia leading to thromboembolic events during the neonatal period. It remains unclear how individuals with complete PC gene (PROC) defects develop or escape neonatal stroke or purpura fulminans (PF). We studied the onset of disease and the genotype of 22 PC-deficient patients with double mutations in PROC based on our cohort (n = 12) and the previous reports (n = 10) in Japan. Twenty-two patients in 20 unrelated families had 4 homozygous and 18 compound heterozygous mutations. Sixteen newborns presented with PF (n = 11, 69%), intracranial thromboembolism and hemorrhage (n = 13, 81%), or both (n = 8, 50%), with most showing a plasma PC activity of <10%. Six others first developed overt thromboembolism when they were over 15 years of age, showing a median PC activity of 31% (range: 19-52%). Fifteen of the 22 patients (68%) had the five major mutations (G423VfsX82, V339M, R211W, M406I, and F181V) or two others (E68K and K193del) that have been reported in Japan. Three of the six late-onset cases, but none of the 16 neonatal cases, had the K193del mutation, which has been reported to be the most common variant of Chinese thrombophilia. A novel mutation of A309V was determined in a family of two patients with late onset. The genotype of double-PROC mutants might show less diversity than heterozygous mutants in terms of the timing of the onset of thrombophilia (newborn onset or late onset). © 2017 Wiley Periodicals, Inc.
2013-01-01
Background Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. Results LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of α-ketoglutarate (α-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. α-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain α-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. Conclusions The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations. PMID:24252742
Navis, Anna C; Niclou, Simone P; Fack, Fred; Stieber, Daniel; van Lith, Sanne; Verrijp, Kiek; Wright, Alan; Stauber, Jonathan; Tops, Bastiaan; Otte-Holler, Irene; Wevers, Ron A; van Rooij, Arno; Pusch, Stefan; von Deimling, Andreas; Tigchelaar, Wikky; van Noorden, Cornelis J F; Wesseling, Pieter; Leenders, William P J
2013-05-29
Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of α-ketoglutarate (α-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. α-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain α-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations.
Rohdin, Cecilia; Gilliam, Douglas; O'Leary, Caroline A; O'Brien, Dennis P; Coates, Joan R; Johnson, Gary S; Jäderlund, Karin Hultin
2015-05-23
Hereditary ataxias with similar phenotypes were reported in the Smooth-Haired Fox Terrier, the Jack Russell Terrier and the Parson Russell Terrier. However, segregation analyses showed differing inheritance modes in these breeds. Recently, molecular genetic studies on the Russell group of terriers found independent mutations in KCNJ10 and CAPN1, each associated with a specific clinical subtype of inherited ataxia. The aim of this study was to clarify whether or not Smooth-Haired Fox Terriers with hereditary ataxia and dogs of other related breeds harbor either of the same mutations. A sub goal was to update the results of KCNJ10 genotyping in Russell group terriers. Three Smooth-Haired Fox Terriers with hereditary ataxia and two Toy Fox Terriers with a similar phenotype were all homozygous for the KCNJ10 mutation. The same mutation was also found in a heterozygous state in clinically unaffected Tenterfield Terriers (n = 5) and, in agreement with previous studies, in Jack Russell Terriers, Parson Russell Terriers, and Russell Terriers. A KCNJ10 mutation, previously associated with an autosomal recessive spinocerebellar ataxia in Jack Russell Terriers, Parson Russell Terriers, and Russell Terriers segregates in at least three more breeds descended from British hunting terriers. Ataxic members of two of these breeds, the Smooth-Haired Fox Terrier and the Toy Fox Terrier, were homozygous for the mutation, strengthening the likelihood that this genetic defect is indeed the causative mutation for the disease known as "hereditary ataxia" in Fox Terriers and "spinocerebellar ataxia with myokymia, seizures or both" in the Russell group of terriers.
Chin, Ephrem L H; da Silva, Cristina; Hegde, Madhuri
2013-02-19
Detecting mutations in disease genes by full gene sequence analysis is common in clinical diagnostic laboratories. Sanger dideoxy terminator sequencing allows for rapid development and implementation of sequencing assays in the clinical laboratory, but it has limited throughput, and due to cost constraints, only allows analysis of one or at most a few genes in a patient. Next-generation sequencing (NGS), on the other hand, has evolved rapidly, although to date it has mainly been used for large-scale genome sequencing projects and is beginning to be used in the clinical diagnostic testing. One advantage of NGS is that many genes can be analyzed easily at the same time, allowing for mutation detection when there are many possible causative genes for a specific phenotype. In addition, regions of a gene typically not tested for mutations, like deep intronic and promoter mutations, can also be detected. Here we use 20 previously characterized Sanger-sequenced positive controls in disease-causing genes to demonstrate the utility of NGS in a clinical setting using standard PCR based amplification to assess the analytical sensitivity and specificity of the technology for detecting all previously characterized changes (mutations and benign SNPs). The positive controls chosen for validation range from simple substitution mutations to complex deletion and insertion mutations occurring in autosomal dominant and recessive disorders. The NGS data was 100% concordant with the Sanger sequencing data identifying all 119 previously identified changes in the 20 samples. We have demonstrated that NGS technology is ready to be deployed in clinical laboratories. However, NGS and associated technologies are evolving, and clinical laboratories will need to invest significantly in staff and infrastructure to build the necessary foundation for success.
Booij, J C; Florijn, R J; ten Brink, J B; Loves, W; Meire, F; van Schooneveld, M J; de Jong, P T V M; Bergen, A A B
2005-11-01
To identify mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. Mutation analysis was carried out in a group of 35 unrelated patients with juvenile autosomal recessive retinitis pigmentosa (ARRP), Leber's congenital amaurosis (LCA), or juvenile isolated retinitis pigmentosa (IRP), by denaturing high performance liquid chromatography followed by direct sequencing. All three groups of patients showed typical combinations of eye signs associated with retinitis pigmentosa: pale optic discs, narrow arterioles, pigmentary changes, and nystagmus. Mutations were found in 34% of in CRB1 (11%), GUCY2D (11%), RPE65 (6%), and RPGRIP1 (6%). Nine mutations are reported, including a new combination of two mutations in CRB1, and new mutations in GUCY2D and RPGRIP1. The new GUCY2D mutation (c.3283delC, p.Pro1069ArgfsX37) is the first pathological sequence change reported in the intracellular C-terminal domain of GUCY2D, and did not lead to the commonly associated LCA, but to a juvenile retinitis pigmentosa phenotype. The polymorphic nature of three previously described (pathological) sequence changes in AIPL1, CRB1, and RPGRIP1 was established. Seven new polymorphic changes, useful for further association studies, were found. New and previously described sequence changes were detected in retinitis pigmentosa in CRB1, GUCY2D, and RPGRIP1; and in LCA patients in CRB1, GUCY2D, and RPE65. These data, combined with previous reports, suggest that LCA and juvenile ARRP are closely related and belong to a continuous spectrum of juvenile retinitis pigmentosa.