Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
1994-01-01
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
Abstract for presentation on Characterizing the Leaching Behavior of Coal Combustion Residues using the Leaching Environmental Assessment Framework (LEAF) to Inform Future Management Decisions. The abstract is attached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
NASA Astrophysics Data System (ADS)
Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su
2018-07-01
We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.
National Transonic Facility Characterization Status
NASA Technical Reports Server (NTRS)
Bobbitt, C., Jr.; Everhart, J.; Foster, J.; Hill, J.; McHatton, R.; Tomek, W.
2000-01-01
This paper describes the current status of the characterization of the National Transonic Facility. The background and strategy for the tunnel characterization, as well as the current status of the four main areas of the characterization (tunnel calibration, flow quality characterization, data quality assurance, and support of the implementation of wall interference corrections) are presented. The target accuracy requirements for tunnel characterization measurements are given, followed by a comparison of the measured tunnel flow quality to these requirements based on current available information. The paper concludes with a summary of which requirements are being met, what areas need improvement, and what additional information is required in follow-on characterization studies.
ERIC Educational Resources Information Center
Liu, Wei
2011-01-01
Correlation is often present among observations in a distributed system. This thesis deals with various design issues when correlated data are observed at distributed terminals, including: communicating correlated sources over interference channels, characterizing the common information among dependent random variables, and testing the presence of…
The New World Information Order.
ERIC Educational Resources Information Center
Masmoudi, Mustapha
1979-01-01
Argues for a reordering of the present conception of world information transmission dominated by the developed nations and characterized by imbalances in the political, legal, and technico-financial spheres. (JMF)
2012-09-01
Daniel Fulcoly AFRL Space Vehicles Directorate Stephen A. Gregory Boeing Corp. Non- resolved optical observations of satellites have been known...to supply researchers with valuable information about satellite status. Until recently most non- resolved analysis techniques have required an expert...rapidly characterizing satellites from non- resolved optical data of 3-axis stabilized geostationary satellites . We will present background information on
Identification of informative subgraphs in brain networks
NASA Astrophysics Data System (ADS)
Marinazzo, D.; Wu, G.; Pellicoro, M.; Stramaglia, S.
2013-01-01
Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. Here we present a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be inferred from the sign of the contribution.
ERIC Educational Resources Information Center
Ham, Seung-Hwan; Cha, Yun-Kyung
2009-01-01
One of the most distinctive qualities that characterize present-day society is the social fact that people are shifting to the information age. In recent years, they have witnessed remarkable developments in information and communication technology (ICT), in which microelectronics, computers, and telecommunications have converged. Transnational…
Platinum and lead markers as indicators of transportation impact.
DOT National Transportation Integrated Search
2009-08-20
The intent of this study was to provide information necessary to characterize the present concentrations of an emerging transportation related contaminant, the platinum group metals (PGM), and to provide background information necessary to explore th...
Preliminary Characterization of Erythrocytes Deformability on the Entropy-Complexity Plane
Korol, Ana M; D’Arrigo, Mabel; Foresto, Patricia; Pérez, Susana; Martín, Maria T; Rosso, Osualdo A
2010-01-01
We present an application of wavelet-based Information Theory quantifiers (Normalized Total Shannon Entropy, MPR-Statistical Complexity and Entropy-Complexity plane) on red blood cells membrane viscoelasticity characterization. These quantifiers exhibit important localization advantages provided by the Wavelet Theory. The present approach produces a clear characterization of this dynamical system, finding out an evident manifestation of a random process on the red cell samples of healthy individuals, and its sharp reduction of randomness on analyzing a human haematological disease, such as β-thalassaemia minor. PMID:21611139
LANDSAT-D Investigations Workshop
NASA Technical Reports Server (NTRS)
1982-01-01
Viewgraphs are presented which highlight LANDSAT-D project status and ground segment; early access TM processing; LANDSAT-D data acquisition and availability; LANDSAT-D performance characterization; MSS pre-NOAA characterization; MSS radiometric sensor performance (spectral information, absolute calibration, and ground processing); MSS geometric sensor performance; and MSS geometric processing and calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, H. Lawrence; Reece, Charles E.; Valente-Feliciano, Anne-Marie
2014-02-01
Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB{sub 2}, NbTiN, Nb{sub 3}Sn films, etc. We present some of the recent results that illustrate present capabilities and limitationsmore » of the system.« less
Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.
Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor
2017-01-01
The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.
Thermodynamic description of non-Markovian information flux of nonequilibrium open quantum systems
NASA Astrophysics Data System (ADS)
Chen, Hong-Bin; Chen, Guang-Yin; Chen, Yueh-Nan
2017-12-01
One of the fundamental issues in the field of open quantum systems is the classification and quantification of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize the information flux for a given system state and show its connection to non-Markovianity. Here, by using the concepts from thermodynamics and information theory, we discuss a potential definition of information flux of an open quantum system, valid for static environments. We present a simple protocol to show how a system attempts to share information with its environment and how it builds up system-environment correlations. We also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy of indivisibility of the system dynamics.
Toward improved calibration of watershed models: multisite many objective measures of information
USDA-ARS?s Scientific Manuscript database
This paper presents a computational framework for incorporation of disparate information from observed hydrologic responses at multiple locations into the calibration of watershed models. The framework consists of four components: (i) an a-priori characterization of system behavior; (ii) a formal an...
The State of NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation transfers the concept of the power grid to information sharing in the NASA community. An information grid of this sort would be characterized as comprising tools, middleware, and services for the facilitation of interoperability, distribution of new technologies, human collaboration, and data management. While a grid would increase the ability of information sharing, it would not necessitate it. The onus of utilizing the grid would rest with the users.
Tank characterization report for double-shell tank 241-AW-105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, L.M.
1997-06-05
One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses one of the requirements specified in the safety screening DQO. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-AW-105 and its respective waste types is contained in Appendix E. A majority of the documents listed in Appendix E may be found in the Tank Characterization and Safety Resource Center.« less
This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include ...
A Parallel Stochastic Framework for Reservoir Characterization and History Matching
Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...
2011-01-01
The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.
Development and characterization of mouse monoclonal antibodies reactive with chicken CD80
USDA-ARS?s Scientific Manuscript database
CD80 is one of the ligands for CD28 and is an important co-stimulator molecule on antigen presenting cells necessary for T-cell activation. Although CD80 is well characterized in human, swine, ovine, feline, and canine species, there is no information on its chicken counterpart. This study was car...
Hyperspectral imaging spectro radiometer improves radiometric accuracy
NASA Astrophysics Data System (ADS)
Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc
2013-06-01
Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.
The Preliminary Evaluation of Liquid Lubricants for Space Applications by Vacuum Tribometry
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Pepper, S. V.; Herrera-Fierro, P.; Feuchter, D.; Toddy, T. J.; Jayne, D. T.; Wheeler, D. R.; Abel, P. B.; Kingsbury, E.; Morales, W.
1994-01-01
Four different vacuum tribometers for the evaluation of liquid lubricants for space applications are described. These range from simple ball-on-flat sliders with maximum in-situ control and surface characterization to an instrument bearing apparatus having no in-situ characterization. Thus, the former provides an abundance of surface chemical information but is not particularly simulative of most triboelements. On the other hand, the instrument bearing apparatus is completely simulative, but only allows post-mortem surface chemical information. Two other devices, a four-ball apparatus and a ball-on-plate tribometer, provide varying degrees of surface chemical information and tribo-simulation. Examples of data from each device are presented.
Mapping of ligand-binding cavities in proteins.
Andersson, C David; Chen, Brian Y; Linusson, Anna
2010-05-01
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.
Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T
2008-01-01
We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.
Decentralized stochastic control
NASA Technical Reports Server (NTRS)
Speyer, J. L.
1980-01-01
Decentralized stochastic control is characterized by being decentralized in that the information to one controller is not the same as information to another controller. The system including the information has a stochastic or uncertain component. This complicates the development of decision rules which one determines under the assumption that the system is deterministic. The system is dynamic which means the present decisions affect future system responses and the information in the system. This circumstance presents a complex problem where tools like dynamic programming are no longer applicable. These difficulties are discussed from an intuitive viewpoint. Particular assumptions are introduced which allow a limited theory which produces mechanizable affine decision rules.
Newspaper Headings as a Means of Presenting Priority and Secondary Information
ERIC Educational Resources Information Center
Serdali, Bekzhigit K.; Ashirbekova, Gulmira Sh.; Isaeva, Zhazira; Adieva, Pakizat M.
2016-01-01
This study considers the possibility of using headings in periodicals as a functional mechanism for influencing the readers, which has corresponding goals and tasks. The study offers a detailed characterization of headings not as a unit of publishing and printing design, but as a conceptual and informational element in journalistic texts.…
Analysis of atomic force microscopy data for surface characterization using fuzzy logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mousa, Amjed, E-mail: aalmousa@vt.edu; Niemann, Darrell L.; Niemann, Devin J.
2011-07-15
In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional searchmore » technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: {yields} A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. {yields} The technique is applicable to different surfaces regardless of their densities. {yields} Fuzzy logic technique does not require manual adjustment of the algorithm parameters. {yields} The technique can quantitatively capture differences between surfaces. {yields} This technique yields more realistic structure boundaries compared to other methods.« less
Audiovisual Asynchrony Detection in Human Speech
ERIC Educational Resources Information Center
Maier, Joost X.; Di Luca, Massimiliano; Noppeney, Uta
2011-01-01
Combining information from the visual and auditory senses can greatly enhance intelligibility of natural speech. Integration of audiovisual speech signals is robust even when temporal offsets are present between the component signals. In the present study, we characterized the temporal integration window for speech and nonspeech stimuli with…
A reflection and evaluation model of comparative thinking.
Markman, Keith D; McMullen, Matthew N
2003-01-01
This article reviews research on counterfactual, social, and temporal comparisons and proposes a Reflection and Evaluation Model (REM) as an organizing framework. At the heart of the model is the assertion that 2 psychologically distinct modes of mental simulation operate during comparative thinking: reflection, an experiential ("as if") mode of thinking characterized by vividly simulating that information about the comparison standard is true of, or part of, the self; and evaluation, an evaluative mode of thinking characterized by the use of information about the standard as a reference point against which to evaluate one's present standing. Reflection occurs when information about the standard is included in one's self-construal, and evaluation occurs when such information is excluded. The result of reflection is that standard-consistent cognitions about the self become highly accessible, thereby yielding affective assimilation; whereas the result of evaluation is that comparison information is used as a standard against which one's present standing is evaluated, thereby yielding affective contrast. The resulting affect leads to either an increase or decrease in behavioral persistence as a function of the type of task with which one is engaged, and a combination of comparison-derived causal inferences and regulatory focus strategies direct one toward adopting specific future action plans.
Manual for Highway Noise Prediction
DOT National Transportation Integrated Search
1997-01-01
This National ITS Communication Document contains the information necessary to describe and characterize all aspects of communications within the National ITS Architecture. It presents a thorough, coherent definition of the communication layer ...
Measuring information transfer in a soft robotic arm.
Nakajima, K; Schmidt, N; Pfeifer, R
2015-05-13
Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.
Tank characterization report for single-shell tank 241-C-109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, B.C.
1997-05-23
One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halligan, Matthew
Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less
Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T
2016-07-01
The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Edmondson, Philip D.; Miller, Michael K.; Powers, K. A.; ...
2017-03-24
In our recent paper entitled “Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel”, we make reference to a table within the article as providing the average compositions of the precipitates, when in fact the bulk compositions were given. In this correction, we present the average precipitate compositions for the data presented in Ref. [1]. These correct compositions are provided for information and do not alter the conclusions of the original manuscript.
Issues in Integrating Information Technology in Learning and Teaching EFL: The Saudi Experience
ERIC Educational Resources Information Center
Al-Maini, Yousef Hamad
2013-01-01
The Saudi education system is facing a climate of change characterized by an interest in integrating new technology and educational approaches to improve teaching and learning. In this climate, the present paper explores the issues in integrating information technology in learning and teaching English as a foreign language (EFL) in government…
ERIC Educational Resources Information Center
Hert, Carol A.; Nilan, Michael S.
1991-01-01
Presents preliminary data that characterizes the relationship between what users say they are trying to accomplish when using an online public access catalog (OPAC) and their perceptions of what input to give the system. Human-machine interaction is discussed, and appropriate methods for evaluating information retrieval systems are considered. (18…
Quintero, Gilbert; Bundy, Henry
2011-01-01
This study examined the utilization of the Internet by young adults as a source of information for the non-medical use of prescription drugs. Collected during 2008 and 2009, the data presented here comes from semi-structured interviews (N=62) conducted in a northwestern city of the United States through support from the National Institute on Drug Abuse. Previous studies have characterized young adults as particularly vulnerable to online prescription drug information which analysts portray as having a significant, invariably detrimental, impact on youth drug use behaviors. The results presented here suggest that young adults are more skeptical and information-savvy than many substance abuse analysts acknowledge. PMID:21599506
Topographic Corona Gravity Survey Results
NASA Technical Reports Server (NTRS)
Comstock, R. L.; Smrekar, S. E.; Anderson, F. S.
2001-01-01
We present estimates for elastic and crustal thickness obtained from a gravity survey of Venusian topographic coronae, and characterize advantages and disadvantages for generating spectral admittance. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Lavrentiev, N. A.; Rodimova, O. B.; Fazliev, A. Z.; Vigasin, A. A.
2017-11-01
An approach is suggested to the formation of applied ontologies in subject domains where results are represented in graphical form. An approach to systematization of research graphics is also given which contains information on weakly bound carbon dioxide complexes. The results of systematization of research plots and images that characterize the spectral properties of the CO2 complexes are presented.
Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushing, C.E.
1992-12-01
This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populationsmore » via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.« less
Hanford Site National Environmental Policy Act (NEPA) Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushing, C.E.
1992-12-01
This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populationsmore » via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.« less
Task-Analytic Design of Graphic Presentations
1990-05-18
important premise of Larkin and Simon’s work is that, when comparing alternative presentations, it is fruitful to characterize graphic-based problem solving...using the same information-processing models used to help understand problem solving using other representations [Newell and Simon, 19721...luring execution of graphic presentation- 4 based problem -solving procedures. Chapter 2 reviews other work related to the problem of designing graphic
Alcaire, Florencia; Antúnez, Lucía; Vidal, Leticia; Zorn, Shari; Giménez, Ana; Castura, John C; Ares, Gastón
2017-07-01
The aim of the present work was to compare static and dynamic sensory product characterizations based on check-all-that-apply (CATA) questions with consumers. Three studies involving a total of 310 consumers were carried out. In each study, a between-subjects experimental design was used to compare static sensory characterizations obtained using CATA questions with dynamic characterizations over a relatively short time period using temporal CATA (TCATA). Three different product categories were evaluated (orange juice, strawberry yogurt, and vanilla milk desserts) using 6-11 sensory terms. TCATA data were analysed as CATA considering fixed time periods throughout the evaluation. CATA and TCATA were compared in terms of frequency of use of the terms, sample discrimination, and sample and term configurations. Asking consumers to continuously select the attributes that applied to describe a product and to deselect those that no longer applied during the evaluation period did not substantially modify the average citation proportion of terms or the maximum citation proportion for individual terms for liquid and semi-solid products with a relatively fast oral preparatory phase. Although both methodologies provided similar information, additional insights on how similarities and differences among samples evolved during consumption were obtained with TCATA in the case of products that experience large temporal changes or attributes with strong time-dependency. CATA provided similar information as TCATA for sensory attributes that did not change substantially during the evaluation period. Results from the present work suggest that static and dynamic product sensory characterizations using CATA questions with consumers provide complementary information about consumer experiences with food products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Micro-tattoo guided OCT imaging of site specific inflammation
NASA Astrophysics Data System (ADS)
Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.
2010-02-01
Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.
Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo
2017-12-21
In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.
Principles of Pharmacology and Toxicology Also Govern Effects of Chemicals on the Endocrine System.
Autrup, Herman; Barile, Frank A; Blaauboer, Bas J; Degen, Gisela H; Dekant, Wolfgang; Dietrich, Daniel; Domingo, Jose L; Gori, Gio Batta; Greim, Helmuth; Hengstler, Jan G; Kacew, Sam; Marquardt, Hans; Pelkonen, Olavi; Savolainen, Kai; Vermeulen, Nico P
2015-07-01
The present debate on chemicals with Hormonal activity, often termed 'endocrine disruptors', is highly controversial and includes challenges of the present paradigms used in toxicology and in hazard identification and risk characterization. In our opinion, chemicals with hormonal activity can be subjected to the well-evaluated health risk characterization approach used for many years including adverse outcome pathways. Many of the points arguing for a specific approach for risk characterization of chemicals with hormonal activity are based on highly speculative conclusions. These conclusions are not well supported when evaluating the available information. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The University in the Networked Economy and Society: Challenges and Opportunities
ERIC Educational Resources Information Center
Benkler, Yochai
2008-01-01
The networked information economy and society present a new social, technical, and economic environment within which the university functions. To understand the new challenges and opportunities this environment presents, a usable characterization of the core new characteristics of both the environment and the university as a system and how those…
Radar Observations of Binary Asteroid 2000 DP107
NASA Technical Reports Server (NTRS)
Margot, J. L.; Nolan, M. C.; Benner, L. A. M.; Ostro, S. J.; Jurgens, R. F.; Giorgini, J. D.; Slade, M. A.; Campbell, D. B.
2001-01-01
We present the discovery and characterization of DP107 with the Goldstone and Arecibo radars, including a detailed sequence of images showing the system's orbital motion. Additional information is contained in the original extended abstract.
Analyses Relating to Pavement Material Characterizations and Their Effects......
DOT National Transportation Integrated Search
1998-01-01
This report presents the analysis conducted on relating pavement performance or response measures and design considerations to specific pavement layers utilizing data contained in the Long Term Pavement Performance Program National Information Manage...
Methods and systems for detecting abnormal digital traffic
Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA
2011-03-22
Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.
Information Transfer in the Brain: Insights from a Unified Approach
NASA Astrophysics Data System (ADS)
Marinazzo, Daniele; Wu, Guorong; Pellicoro, Mario; Stramaglia, Sebastiano
Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. In this chapter we propose some approaches rooted in this framework for the analysis of neuroimaging data. First we will explore how the transfer of information depends on the network structure, showing how for hierarchical networks the information flow pattern is characterized by exponential distribution of the incoming information and a fat-tailed distribution of the outgoing information, as a signature of the law of diminishing marginal returns. This was reported to be true also for effective connectivity networks from human EEG data. Then we address the problem of partial conditioning to a limited subset of variables, chosen as the most informative ones for the driver node.We will then propose a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be associated to the sign of the contribution. Applications are reported for EEG and fMRI data.
Glaser, Robert; Venus, Joachim
2017-04-01
The data presented in this article are related to the research article entitled "Model-based characterization of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium (R. Glaser and J. Venus, 2016) [1]". This data survey provides the information on characterization of three Bacillus coagulans strains. Information on cofermentation of lignocellulose-related sugars in lignin-containing media is given. Basic characterization data are supported by optical-density high-throughput screening and parameter adjustment to logistic growth models. Lab scale fermentation procedures are examined by model adjustment of a Monod kinetics-based growth model. Lignin consumption is analyzed using the data on decolorization of a lignin-supplemented minimal medium.
Tank characterization report for single-shell tank 241-S-111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, J.M.
1997-04-28
One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less
Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak
2017-07-15
Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.
Basic Information about EPA ExpoBox
EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases,
Analysis relating to pavement material characterizations and their effects on pavement performance.
DOT National Transportation Integrated Search
1998-01-01
This report presents the analysis conducted on relating pavement performance or response measures and design considerations to specific pavement layers utilizing data contained in the Long-Term Pavement Performance Program National Information Manage...
Models, Measurements, and Local Decisions: Assessing and ...
This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include either exposure or emissions reduction, and a host of stakeholders, including residents, academics, NGOs, local and federal agencies. This presentation includes results from the C-PORT modeling system, and from a citizen science project from the local area. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Analysis of acoustic emission signals and monitoring of machining processes
Govekar; Gradisek; Grabec
2000-03-01
Monitoring of a machining process on the basis of sensor signals requires a selection of informative inputs in order to reliably characterize and model the process. In this article, a system for selection of informative characteristics from signals of multiple sensors is presented. For signal analysis, methods of spectral analysis and methods of nonlinear time series analysis are used. With the aim of modeling relationships between signal characteristics and the corresponding process state, an adaptive empirical modeler is applied. The application of the system is demonstrated by characterization of different parameters defining the states of a turning machining process, such as: chip form, tool wear, and onset of chatter vibration. The results show that, in spite of the complexity of the turning process, the state of the process can be well characterized by just a few proper characteristics extracted from a representative sensor signal. The process characterization can be further improved by joining characteristics from multiple sensors and by application of chaotic characteristics.
Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy; Elder, Alison; Baisch, Brittany L.; Karakoti, Ajay; Kuchibhatla, Satyanarayana V. N. T.; Moon, DaeWon
2013-01-01
This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented. PMID:24482557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.
2013-09-15
This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of thesemore » often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented.« less
Bartlett, Jeremy A; Brewster, Marcus; Brown, Paul; Cabral-Lilly, Donna; Cruz, Celia N; David, Raymond; Eickhoff, W Mark; Haubenreisser, Sabine; Jacobs, Abigail; Malinoski, Frank; Morefield, Elaine; Nalubola, Ritu; Prud'homme, Robert K; Sadrieh, Nakissa; Sayes, Christie M; Shahbazian, Hripsime; Subbarao, Nanda; Tamarkin, Lawrence; Tyner, Katherine; Uppoor, Rajendra; Whittaker-Caulk, Margaret; Zamboni, William
2015-01-01
At the Product Quality Research Institute (PQRI) Workshop held last January 14-15, 2014, participants from academia, industry, and governmental agencies involved in the development and regulation of nanomedicines discussed the current state of characterization, formulation development, manufacturing, and nonclinical safety evaluation of nanomaterial-containing drug products for human use. The workshop discussions identified areas where additional understanding of material attributes, absorption, biodistribution, cellular and tissue uptake, and disposition of nanosized particles would continue to inform their safe use in drug products. Analytical techniques and methods used for in vitro characterization and stability testing of formulations containing nanomaterials were discussed, along with their advantages and limitations. Areas where additional regulatory guidance and material characterization standards would help in the development and approval of nanomedicines were explored. Representatives from the US Food and Drug Administration (USFDA), Health Canada, and European Medicines Agency (EMA) presented information about the diversity of nanomaterials in approved and newly developed drug products. USFDA, Health Canada, and EMA regulators discussed the applicability of current regulatory policies in presentations and open discussion. Information contained in several of the recent EMA reflection papers was discussed in detail, along with their scope and intent to enhance scientific understanding about disposition, efficacy, and safety of nanomaterials introduced in vivo and regulatory requirements for testing and market authorization. Opportunities for interaction with regulatory agencies during the lifecycle of nanomedicines were also addressed at the meeting. This is a summary of the workshop presentations and discussions, including considerations for future regulatory guidance on drug products containing nanomaterials.
An Evaluation of Alternative Designs for a Grid Information Service
NASA Technical Reports Server (NTRS)
Smith, Warren; Waheed, Abdul; Meyers, David; Yan, Jerry; Kwak, Dochan (Technical Monitor)
2001-01-01
The Globus information service wasn't working well. There were many updates of data from Globus daemons which saturated the single server and users couldn't retrieve information. We created a second server for NASA and Alliance. Things were great on that server, but a bit slow on the other server. We needed to know exactly how the information service was being used. What were the best servers and configurations? This viewgraph presentation gives an overview of the evaluation of alternative designs for a Grid Information Service. Details are given on the workload characterization, methodology used, and the performance evaluation.
Analogy between gambling and measurement-based work extraction
NASA Astrophysics Data System (ADS)
Vinkler, Dror A.; Permuter, Haim H.; Merhav, Neri
2016-04-01
In information theory, one area of interest is gambling, where mutual information characterizes the maximal gain in wealth growth rate due to knowledge of side information; the betting strategy that achieves this maximum is named the Kelly strategy. In the field of physics, it was recently shown that mutual information can characterize the maximal amount of work that can be extracted from a single heat bath using measurement-based control protocols, i.e. using ‘information engines’. However, to the best of our knowledge, no relation between gambling and information engines has been presented before. In this paper, we briefly review the two concepts and then demonstrate an analogy between gambling, where bits are converted into wealth, and information engines, where bits representing measurements are converted into energy. From this analogy follows an extension of gambling to the continuous-valued case, which is shown to be useful for investments in currency exchange rates or in the stock market using options. Moreover, the analogy enables us to use well-known methods and results from one field to solve problems in the other. We present three such cases: maximum work extraction when the probability distributions governing the system and measurements are unknown, work extraction when some energy is lost in each cycle, e.g. due to friction, and an analysis of systems with memory. In all three cases, the analogy enables us to use known results in order to obtain new ones.
A comparison of simple shear characterization methods for composite laminates
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Brinson, H. F.
1978-01-01
Various methods for the shear stress/strain characterization of composite laminates are examined and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the (+/- 45 deg)s tensile test method and the (0/90 deg)s symmetric rail shear test method. It is shown that the first technique indicates the shear properties of the graphite/epoxy laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that these laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress/strain curves utilizing the various different shear behaviour methods as input information are presented and discussed.
A comparison of simple shear characterization methods for composite laminates
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Brinson, H. F.
1977-01-01
Various methods for the shear stress-strain characterization of composite laminates are examined, and their advantages and limitations are briefly discussed. Experimental results and the necessary accompanying analysis are then presented and compared for three simple shear characterization procedures. These are the off-axis tensile test method, the + or - 45 degs tensile test method and the 0 deg/90 degs symmetric rail shear test method. It is shown that the first technique indicates that the shear properties of the G/E laminates investigated are fundamentally brittle in nature while the latter two methods tend to indicate that the G/E laminates are fundamentally ductile in nature. Finally, predictions of incrementally determined tensile stress-strain curves utilizing the various different shear behavior methods as input information are presented and discussed.
Survey of driver aid devices for improved fuel economy.
DOT National Transportation Integrated Search
1976-11-30
This report presents a brief summarization of available information pertaining to devices offered to aid the driver in improving his driving habits in order to reduce fuel consumption. Principal emphasis is placed on characterizing the available devi...
Investigation of hot mix asphalt mixtures at Mn/ROAD : final report
DOT National Transportation Integrated Search
1997-02-01
This report presents the material characterization for the Minnesota Road Research Project (Mn/ROAD) bituminous materials. This effort will provide the historical base line information on properties needed for the validation of future pavement evalua...
Characterizing hydrologic permanence in headwater streams
The presentation will be an overview of research to inform jurisdictional determinations for the Clean Water Act, in particular research that hydrographic comparisons of the extent and hydrologic permanence of headwater streams, indicator development, and an evaluation of a rapid...
Wood tie track resistance characterization and correlations study
DOT National Transportation Integrated Search
1995-01-01
The work presented here is part of a major program to evaluate lateral buckling of continuous welded rail (CWR) tracks. The program to develop the technical information to support safety guidelines and specifications for track buckling prevention is ...
EPA ExpoBox: Submit Tool Information
EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases, mode
Lignocellulosic feedstock resource assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooney, T.
This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.
2008-01-01
Additional information on AIP Conf. Proc. Journal Homepage: http://proceedings.aip.org/ Journal Information: http://proceedings.aip.org/about...coolers would make comparing temperature and load data virtually meaningless. One solution as presented by Razani [4] is to compare exergy vs...P Q ,=η (2) Where exercoolingQ , is the total exergy delivered to all refrigerated reservoirs and
NASA Technical Reports Server (NTRS)
Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David
2002-01-01
Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.
Cafaro, Carlo; Alsing, Paul M
2018-04-01
The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.
NASA Astrophysics Data System (ADS)
Cafaro, Carlo; Alsing, Paul M.
2018-04-01
The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.
Referential focus moderates depression-linked attentional avoidance of positive information.
Ji, Julie Lin; Grafton, Ben; MacLeod, Colin
2017-06-01
While there is consensus that depression is associated with a memory bias characterized by reduced retrieval of positive information that is restricted to information that had been self-referentially processed, there is less agreement concerning whether depression is characterized by an attention bias involving reduced attention to positive information. However, unlike memory research, previous attention research has not systematically examined the potential role of referential processing focus. The present study tested the hypothesis that evidence of depression-linked attentional avoidance of positive information would be more readily obtained following the self-referential processing of such information. We assessed attentional responding to positive information (and also to negative information) using a dot-probe procedure, after this information had been processed either in a self-referential or other-referential manner. The findings lend support to the hypothesis under scrutiny. Participants scoring high in depression score exhibited reduced attention to positive information compared to those scoring low in depression score, but only when this information had been processed in a self-referential manner. These findings may shed light on the mechanisms that underpin attentional selectivity in depression, while potentially also helping to account for inconsistencies in previous literature. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Harnessing glycomics technologies: integrating structure with function for glycan characterization
Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram
2013-01-01
Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536
Propagation issues for emerging mobile and portable communications: A systems perspective
NASA Technical Reports Server (NTRS)
Golshan, Nasser
1993-01-01
The viewpoint of a system engineer regarding the format of propagation information and models suitable for the design of mobile and portable satellite communications systems for the following services: audio broadcast, two way voice, and packet data is presented. Topics covered include: propagation impairments for portable indoor reception in satellite communications systems; propagation impairments and mitigation techniques for mobile satellite communications systems; characterization of mobile satellite communications channels in the presence of roadside blockage when interleaving and FEC coding are implemented; characterization of short-term mobile satellite signal variations; and characterization of long-term signal variations.
INDOOR AIR VAPOR INTRUSION SEMINAR INTRODUCTION
This seminar is sponsored by the ORD in collaboration with the Office of Solid Waste and Emergency Response. The goal of this seminar is to present information and guidance to evaluate, assess and characterize chemical vapor pathways migrating into structures resulting from conta...
Liu, Guoqiang; Dong, Jing; Wang, Hong; Hashi, Yuki; Chen, Shizhong
2011-04-05
Sophora flavescens Ait., a well-known Chinese herbal medicine, is widely used in clinical practice for the treatment of viral hepatitis, cancer, gastrointestinal hemorrhage, and skin diseases. This paper is the first report on a method based on the combined use of high-performance liquid chromatography, photodiode array detection, and electrospray ionization tandem mass spectrometry for the comprehensive and systematic separation and characterization of bioactive alkaloids in Sophora flavescens Ait. A total of 22 constituents were identified on the basis of the extracted ion chromatograms for different [M+H](+) ions of the alkaloids present in S. flavescens Ait. Among these, 5 constituents were unambiguously identified by comparing the experimental data on their retention times and MS(n) spectra with those of the authentic compounds, and 17 other constituents were tentatively identified on the basis of their MS(n) fragmentation behaviors and/or molecular weight information from literatures. Furthermore, some characteristic fragmentation pathways of the alkaloids in S. flavescens Ait. were detected and examined. This information may be useful for characterizing the bioactive alkaloids present in S. flavescens Ait. and for possible applications in formulations. Copyright © 2010 Elsevier B.V. All rights reserved.
On the magnetic polarizability tensor of US coinage
NASA Astrophysics Data System (ADS)
Davidson, John L.; Abdel-Rehim, Omar A.; Hu, Peipei; Marsh, Liam A.; O'Toole, Michael D.; Peyton, Anthony J.
2018-03-01
The magnetic dipole polarizability tensor of a metallic object gives unique information about the size, shape and electromagnetic properties of the object. In this paper, we present a novel method of coin characterization based on the spectroscopic response of the absolute tensor. The experimental measurements are validated using a combination of tests with a small set of bespoke coin surrogates and simulated data. The method is applied to an uncirculated set of US coins. Measured and simulated spectroscopic tensor responses of the coins show significant differences between different coin denominations. The presented results are encouraging as they strongly demonstrate the ability to characterize coins using an absolute tensor approach.
Topograph for inspection of engine cylinder walls.
Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J
1999-12-20
The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.
Satisficing in split-second decision making is characterized by strategic cue discounting.
Oh, Hanna; Beck, Jeffrey M; Zhu, Pingping; Sommer, Marc A; Ferrari, Silvia; Egner, Tobias
2016-12-01
Much of our real-life decision making is bounded by uncertain information, limitations in cognitive resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these limitations through satisficing, fast but "good-enough" heuristic decision making that prioritizes some sources of information (cues) while ignoring others. However, the decision-making strategies we adopt under uncertainty and time pressure, for example during emergencies that demand split-second choices, are presently unknown. To characterize these decision strategies quantitatively, the present study examined how people solve a novel multicue probabilistic classification task under varying time pressure, by tracking shifts in decision strategies using variational Bayesian inference. We found that under low time pressure, participants correctly weighted and integrated all available cues to arrive at near-optimal decisions. With increasingly demanding, subsecond time pressures, however, participants systematically discounted a subset of the cue information by dropping the least informative cue(s) from their decision making process. Thus, the human cognitive apparatus copes with uncertainty and severe time pressure by adopting a "drop-the-worst" cue decision making strategy that minimizes cognitive time and effort investment while preserving the consideration of the most diagnostic cue information, thus maintaining "good-enough" accuracy. This advance in our understanding of satisficing strategies could form the basis of predicting human choices in high time pressure scenarios. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Matthäus, Christian; Dochow, Sebastian; Egodage, Kokila D.; Schie, Iwan; Romeike, Bernd F.; Brehm, Bernhard R.; Popp, Jürgen
2017-02-01
Visualization and characterization of inner arterial plaque depositions is of vital diagnostic interest. Established intravascular imaging techniques provide valuable morphological information, but cannot deliver information about the chemical composition of individual plaques. Probe based Raman spectroscopy offers the possibility for a biochemical characterization of atherosclerotic plaque formations during an intravascular intervention. From post mortem studies it is well known that the severity of a plaque and its stability are strongly correlated with its biochemical composition. Especially the identification of vulnerable plaques remains one of the most important and challenging aspects in cardiology. Thus, specific information about the composition of a plaque would greatly improve the risk assessment and management. Furthermore, knowledge about the composition can offer new therapeutic and medication strategies. Plaque calcifications as well as major lipid components such as cholesterol, cholesterol esters and triglycerides can be spectroscopically easily differentiated. Intravascular optical coherence tomography (OCT) is currently a prominent catheter based imaging technique for the localization and visualization of atherosclerotic plaque depositions. The high resolution of OCT with 10 to 15 µm allows for very detailed characterization of morphological features such as different plaque formations, thin fibrous caps and accurate measurements of lesion lengths. In combination with OCT imaging the obtained spectral information can provide substantial information supporting on on-site diagnosis of various plaque types and therefor an improved risk assessment. The potential and feasibility of combining OCT with Raman spectroscopy is demonstrated on excised plaque samples, as well as under in vivo conditions. Acknowledgements: Financial support from the Carl Zeiss Foundation is greatly acknowledged.
Evolving discriminators for querying video sequences
NASA Astrophysics Data System (ADS)
Iyengar, Giridharan; Lippman, Andrew B.
1997-01-01
In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.
DETERMINATION OF HENRY'S LAW CONSTANTS OF SELECTED PRIORITY POLLUTANTS
The Henry's law constants (H) for 41 selected priority pollutants were determined to characterize these pollutants and provide information on their fate as they pass through wastewater treatment systems. All experimental values presented for H are averages of two or more replicat...
Functional characterization of two concrete biofilms using pyrosequencing data
Phylogenetic studies of concrete biofilms using 16SrRNA-based approaches have demonstrated that concrete surfaces harbor a diverse microbial community. These approaches can provide information on the general taxonomical groups present in a sample but cannot shed light on the func...
Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...
2016-02-02
Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less
Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Bencic, Timothy J.; Tsao, Jen-Ching; Fuleki, Dan; Knezevici, Daniel C.
2013-01-01
This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.
FROM2D to 3d Supervised Segmentation and Classification for Cultural Heritage Applications
NASA Astrophysics Data System (ADS)
Grilli, E.; Dininno, D.; Petrucci, G.; Remondino, F.
2018-05-01
The digital management of architectural heritage information is still a complex problem, as a heritage object requires an integrated representation of various types of information in order to develop appropriate restoration or conservation strategies. Currently, there is extensive research focused on automatic procedures of segmentation and classification of 3D point clouds or meshes, which can accelerate the study of a monument and integrate it with heterogeneous information and attributes, useful to characterize and describe the surveyed object. The aim of this study is to propose an optimal, repeatable and reliable procedure to manage various types of 3D surveying data and associate them with heterogeneous information and attributes to characterize and describe the surveyed object. In particular, this paper presents an approach for classifying 3D heritage models, starting from the segmentation of their textures based on supervised machine learning methods. Experimental results run on three different case studies demonstrate that the proposed approach is effective and with many further potentials.
Cross delay line sensor characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, Israel J; Remelius, Dennis K; Tiee, Joe J
There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less
Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles
NASA Astrophysics Data System (ADS)
Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.
2013-02-01
A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.
Characterizing the Fundamental Intellectual Steps Required in the Solution of Conceptual Problems
NASA Astrophysics Data System (ADS)
Stewart, John
2010-02-01
At some level, the performance of a science class must depend on what is taught, the information content of the materials and assignments of the course. The introductory calculus-based electricity and magnetism class at the University of Arkansas is examined using a catalog of the basic reasoning steps involved in the solution of problems assigned in the class. This catalog was developed by sampling popular physics textbooks for conceptual problems. The solution to each conceptual problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content within the course. Using this characterization technique, an exceptionally detailed picture of the information flow and structure of the class can be produced. The intellectual structure of published conceptual inventories is compared with the information presented in the class and the dependence of conceptual performance on the details of coverage extracted. )
Towards a detailed anthropometric body characterization using the Microsoft Kinect.
Domingues, Ana; Barbosa, Filipa; Pereira, Eduardo M; Santos, Márcio Borgonovo; Seixas, Adérito; Vilas-Boas, João; Gabriel, Joaquim; Vardasca, Ricardo
2016-01-01
Anthropometry has been widely used in different fields, providing relevant information for medicine, ergonomics and biometric applications. However, the existent solutions present marked disadvantages, reducing the employment of this type of evaluation. Studies have been conducted in order to easily determine anthropometric measures considering data provided by low-cost sensors, such as the Microsoft Kinect. In this work, a methodology is proposed and implemented for estimating anthropometric measures considering the information acquired with this sensor. The measures obtained with this method were compared with the ones from a validation system, Qualisys. Comparing the relative errors determined with state-of-art references, for some of the estimated measures, lower errors were verified and a more complete characterization of the whole body structure was achieved.
Large-band seismic characterization of the INFN Gran Sasso National Laboratory
NASA Astrophysics Data System (ADS)
Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.
2013-04-01
In this paper we present the scientific data recorded by tunable mechanical monolithic horizontal seismometers located in the Gran Sasso National Laboratory of the INFN, within thermally insulating enclosures onto concrete slabs connected to the bedrock. The main goals of this long-term large-band measurements are for the seismic characterization of the site in the frequency band 10-6÷10Hz and the acquisition of all the relevant information for the optimization of the sensors.
An Educator's Guide to Tourette Syndrome.
ERIC Educational Resources Information Center
Bronheim, Suzanne
Intended for educators, the booklet presents information on Tourette's Syndrome (TS), an inherited neurological disorder characterized by involuntary multiple motor and vocal tics. The first section describes Tourette Syndrome--its causes, symptons, and treatments. In the second section, suggestions are provided to help teachers and school…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, John E. M.; Brennan, James S.; Brubaker, Erik
A wide range of NSC (Neutron Scatter Camera) activities were conducted under this lifecycle plan. This document outlines the highlights of those activities, broadly characterized as system improvements, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.
Characterization of urban air quality using GIS as a management system.
Puliafito, E; Guevara, M; Puliafito, C
2003-01-01
Keeping the air quality acceptable has become an important task for decision makers as well as for non-governmental organizations. Particulate and gaseous emissions of pollutant from industries and auto-exhausts are responsible for rising discomfort, increasing airway diseases, decreasing productivity and the deterioration of artistic and cultural patrimony in urban centers. A model to determine the air quality in urban areas using a geographical information system will be presented here. This system permits the integration, handling, analysis and simulation of spatial and temporal data of the ambient concentration of the main pollutant. It allows the users to characterize and recognize areas with a potential increase or improvement in its air pollution situation. It is also possible to compute past or present conditions by changing basic input information as traffic flow, or stack emission rates. Additionally the model may be used to test the compliance of local standard air quality, to study the environmental impact of new industries or to determine the changes in the conditions when the vehicle circulation is increased.
Characterize Eruptive Processes at Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Krier
2004-10-04
The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004more » [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.« less
Terrorism Information Management Within the New York City Fire Department: Past, Present and Future
2007-03-01
is the discovery of a massive hydroponic marijuana growing facility in an apartment in Brooklyn, discovered as a result of an otherwise typical...was characterized by an absence of information that led to significant confusion on the part of firefighting forces: • The building was “missing...form of several initiatives: • The planned adaptation of Problem Oriented Policing (POP), Community Oriented Policing (COP) and Intelligence Led
Developments at the Advanced Design Technologies Testbed
NASA Technical Reports Server (NTRS)
VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.
2003-01-01
A report presents background and historical information, as of August 1998, on the Advanced Design Technologies Testbed (ADTT) at Ames Research Center. The ADTT is characterized as an activity initiated to facilitate improvements in aerospace design processes; provide a proving ground for product-development methods and computational software and hardware; develop bridging methods, software, and hardware that can facilitate integrated solutions to design problems; and disseminate lessons learned to the aerospace and information technology communities.
NIMH Prototype Management Information System for Community Mental Health Centers
Wurster, Cecil R.; Goodman, John D.
1980-01-01
Various approaches to centralized support of computer applications in health care are described. The NIMH project to develop a prototype Management Information System (MIS) for community mental health centers is presented and discussed as a centralized development of an automated data processing system for multiple user organizations. The NIMH program is summarized, the prototype MIS is characterized, and steps taken to provide for the differing needs of the mental health centers are highlighted.
Copolymers of polyaniline and poly-o-toluidine: Electrochemical synthesis and characterization
NASA Astrophysics Data System (ADS)
Yadav, Pooja C.; Deshmukh, Megha A.; Patil, Harshada K.; Bodkhe, Gajanan A.; Sayyad, Pasha W.; Ingle, Nikesh N.; Shirsat, Mahendra D.
2018-05-01
In the present study we have reported Electrochemical polymerization of poly(Aniline) (PANI), Poly(O-Toluidine) (POT) and poly(Aniline-co-O-Toluidine) (PAOT) copolymers. Electrochemical Synthesis of PANI, POT and Poly(Aniline-co-O-Toluidine) was done by using Cyclic Voltammetry technique. The morphological study done by Atomic Force Microscopy (AFM) which shows that formation of uniform granular structure and topographic changes in each respective thin film. Spectroscopic characterization was done by FTIR spectroscopy. The FT-IR study revealed the formation of PANI/POT/Poly(Aniline co O-Toluidine) with a absorption band are reported. For structural information done by X-ray diffraction(XRD) Characterization.
SPF Full-scale emissions test method development status ...
This is a non-technical presentation that is intended to inform ASTM task group members about our intended approach to full-scale emissions testing that includes the application of spray foam in an environmental chamber. The presentation describes the approach to emissions characterization, types of measurement systems employed, and expected outcomes from the planned tests. Purpose of this presentation is to update the ASTM D22.05 work group regarding status of our full-scale emissions test method development.
Rejection or selection: influence of framing in investment decisions.
Cheng, Pi-Yueh; Chiou, Wen-Bin
2010-02-01
According to prospect theory, reflection effects result in preferences for risk-averse choices in gain situations and risk-seeking choices in loss situations. However, relevant literature in regard to decision making has suggested that positive information receives more weight in a selection task, whereas negative information receives more weight in a rejection task. The present study examined whether the nature of a decision task (selection vs rejection) would moderate the reflection effects. Undergraduates (47 men, 49 women; M age = 20.5 yr., SD = 1.1), selected according to specific screening criteria, participated in an experimental study. Typical reflection effects were observed in both selection and rejection task conditions. More importantly, negative information (i.e., the information about probable loss in risky choice of gain situations and the information about certain loss in cautious choice of loss situations) provided in the context of a rejection task received more weight and resulted in more frequent endorsements of the cautious choice in gain situations and of the risky choice in loss situations. Hence, the findings suggest that a decision context characterized by rejection may expand the reflection effects and thereby provide important information about situations in which investment decisions occur in a context characterized by rejection.
Hayes, Gavin; Briggs, Richard; Barnhart, William D.; Yeck, William; McNamara, Daniel E.; Wald, David J.; Nealy, Jennifer; Benz, Harley M.; Gold, Ryan D.; Jaiswal, Kishor S.; Marano, Kristin; Earle, Paul S.; Hearne, Mike; Smoczyk, Gregory M.; Wald, Lisa A.; Samsonov, Sergey
2015-01-01
Earthquake response and related information products are important for placing recent seismic events into context and particularly for understanding the impact earthquakes can have on the regional community and its infrastructure. These tools are even more useful if they are available quickly, ahead of detailed information from the areas affected by such earthquakes. Here we provide an overview of the response activities and related information products generated and provided by the U.S. Geological Survey National Earthquake Information Center in association with the 2015 M 7.8 Gorkha, Nepal, earthquake. This group monitors global earthquakes 24 hrs/day and 7 days/week to provide rapid information on the location and size of recent events and to characterize the source properties, tectonic setting, and potential fatalities and economic losses associated with significant earthquakes. We present the timeline over which these products became available, discuss what they tell us about the seismotectonics of the Gorkha earthquake and its aftershocks, and examine how their information is used today, and might be used in the future, to help mitigate the impact of such natural disasters.
Swanson, H L
1987-01-01
Three theoretical models (additive, independence, maximum rule) that characterize and predict the influence of independent hemispheric resources on learning-disabled and skilled readers' simultaneous processing were tested. Predictions related to word recall performance during simultaneous encoding conditions (dichotic listening task) were made from unilateral (dichotic listening task) presentations. The maximum rule model best characterized both ability groups in that simultaneous encoding produced no better recall than unilateral presentations. While the results support the hypothesis that both ability groups use similar processes in the combining of hemispheric resources (i.e., weak/dominant processing), ability group differences do occur in the coordination of such resources.
NASA Technical Reports Server (NTRS)
Miller, James G.
1995-01-01
In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoirmore » characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.« less
Characterization of Nanopipettes.
Perry, David; Momotenko, Dmitry; Lazenby, Robert A; Kang, Minkyung; Unwin, Patrick R
2016-05-17
Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.
Understanding Asthma in Young Children.
ERIC Educational Resources Information Center
Mohay, Heather; Holzheimer, Leisa
1997-01-01
Asthma is an incurable respiratory disease characterized by increased responsiveness of the tracheobronchial tree to a variety of stimuli. Associated symptoms include shortness of breath, chest tightness, and a cough or wheeze. This resource booklet for child caregivers presents comprehensive information on the nature of asthma and caring for a…
Characterizing Mechanical and Flow Properties using Injection Falloff Tests, March 28, 2011
This presentation asserts that Injection Fall-off Testing is an efficient way to derive in-situ information on most rock types, after-closure analysis can derive rock transmissibility and pore fluid pressure, and this is used to assist in the HF process.
Szulczyński, Bartosz; Wasilewski, Tomasz; Wojnowski, Wojciech; Majchrzak, Tomasz; Dymerski, Tomasz; Namieśnik, Jacek; Gębicki, Jacek
2017-01-01
This review paper presents different ways to apply a measurement instrument of e-nose type to evaluate ambient air with respect to detection of the odorants characterized by unpleasant odour in a vicinity of municipal processing plants. An emphasis was put on the following applications of the electronic nose instruments: monitoring networks, remote controlled robots and drones as well as portable devices. Moreover, this paper presents commercially available sensors utilized in the electronic noses and characterized by the limit of quantification below 1 ppm v/v, which is close to the odour threshold of some odorants. Additionally, information about bioelectronic noses being a possible alternative to electronic noses and their principle of operation and application potential in the field of air evaluation with respect to detection of the odorants characterized by unpleasant odour was provided. PMID:29156597
Szulczyński, Bartosz; Wasilewski, Tomasz; Wojnowski, Wojciech; Majchrzak, Tomasz; Dymerski, Tomasz; Namieśnik, Jacek; Gębicki, Jacek
2017-11-19
This review paper presents different ways to apply a measurement instrument of e-nose type to evaluate ambient air with respect to detection of the odorants characterized by unpleasant odour in a vicinity of municipal processing plants. An emphasis was put on the following applications of the electronic nose instruments: monitoring networks, remote controlled robots and drones as well as portable devices. Moreover, this paper presents commercially available sensors utilized in the electronic noses and characterized by the limit of quantification below 1 ppm v / v , which is close to the odour threshold of some odorants. Additionally, information about bioelectronic noses being a possible alternative to electronic noses and their principle of operation and application potential in the field of air evaluation with respect to detection of the odorants characterized by unpleasant odour was provided.
Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg
2015-04-23
Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation ofmore » electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.« less
NASA Astrophysics Data System (ADS)
Ropartz, David; Li, Pengfei; Fanuel, Mathieu; Giuliani, Alexandre; Rogniaux, Hélène; Jackson, Glen P.
2016-10-01
The structural characterization of oligosaccharides still challenges the field of analytical chemistry. Tandem mass spectrometry offers many advantages toward this aim, although the generic fragmentation method (low-energy collision-induced dissociation) shows clear limitations and is often insufficient to retrieve some essential structural information on these molecules. In this work, we present the first application of helium charge transfer dissociation (He-CTD) to characterize the structure of complex oligosaccharides. We compare this method with low-energy collision-induced dissociation and extreme-ultraviolet dissociative photoionization (XUV-DPI), which was shown previously to ensure the successful characterization of complex glycans. Similarly to what could be obtained by XUV-DPI, He-CTD provides a complete description of the investigated structures by producing many informative cross-ring fragments and no ambiguous fragmentation. Unlike XUV-DPI, which is performed at a synchrotron source, He-CTD has the undeniable advantage of being implementable in a conventional benchtop ion trap in a conventional laboratory setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-10-01
This report is published as a product of the National Waste Terminal Storage (NWTS) Program. The objective of this program is the development of terminal waste storage facilities in deep, stable geologic formations for high-level nuclear waste, including spent fuel elements from commercial power reactors and transuranic nuclear waste for which the federal government is responsible. The report is part of the area study phase and contains environmental information for the Texas Study Area of the Gulf Interior Region acquired from federal, state, and regional agencies. The data in this report meet the requirements of predetermined survey plans and willmore » be used in determining locations of approximately 80 square kilometers (30 square miles) that will be further characterized. Information on surface water, atmosphere, background radiation, natural ecosystems, agricultural systems, demography, socioeconomics, land use, and transportation is presented. The environmental characterization will ensure that data on environmental values required by the National Environmental Policy Act (NEPA) of 1969 are available.« less
Nonprescription Steroids on the Internet
McDonald, Christen L.; Marlowe, Douglas B.; Patapis, Nicholas S.; Festinger, David S.; Forman, Robert F.
2008-01-01
This study evaluated the degree to which anabolic-androgenic steroids are proffered for sale over the Internet and how they are characterized on popular websites. Searches for specific steroid product labels (e.g., Dianabol) between March and June, 2006 revealed that approximately half of the websites advocated their “safe” use, and roughly one-third offered to sell them without prescriptions. The websites frequently presented misinformation about steroids and minimized their dangers. Less than 5% of the websites presented accurate health risk information about steroids or provided information to abusers seeking to discontinue their steroid use. Implications for education, prevention, treatment and policy are discussed. PMID:22080724
Nonprescription steroids on the Internet.
Clement, Christen L; Marlowe, Douglas B; Patapis, Nicholas S; Festinger, David S; Forman, Robert F
2012-02-01
This study evaluated the degree to which anabolic-androgenic steroids are proffered for sale over the Internet and how they are characterized on popular Web sites. Searches for specific steroid product labels (e.g., Dianabol) between March 2006 and June 2006 revealed that approximately half of the Web sites advocated their "safe" use, and roughly one third offered to sell them without prescriptions. The Web sites frequently presented misinformation about steroids and minimized their dangers. Less than 5% of the Web sites presented accurate health risk information about steroids or provided information to abusers seeking to discontinue their steroid use. Implications for education, prevention, treatment, and policy are discussed.
EPA SPF Insulation Research Update | Science Inventory | US ...
This is a non-technical (no data) presentation that is intended to inform ACC/CPI about our intended approach to full-scale emissions testing that includes the application of spray foam in an environmental chamber. The presentation describes the approach to emissions characterization, types of measurement systems to be employed, and expected outcomes from the planned tests. Purpose of this presentation is to update industry stakeholders (American Chemistry Council, Center for Polyurethanes) on status of the spray polyurethane foam insulation emissions methods development task.
Polymer Day: Outreach Experiments for High School Students
ERIC Educational Resources Information Center
Ting, Jeffrey M.; Ricarte, Ralm G.; Schneiderman, Deborah K.; Saba, Stacey A.; Jiang, Yaming; Hillmyer, Marc A.; Bates, Frank S.; Reineke, Theresa M.; Macosko, Christopher W.; Lodge, Timothy P.
2017-01-01
We present a collection of hands-on experiments that collectively teach precollege students fundamental concepts of polymer synthesis and characterization. These interactive experiments are performed annually as part of an all-day outreach event for high school students that can inform the development of ongoing polymer education efforts in a…
Characterizing land use change in multidisciplinary landscape-level analyses.
Jeffrey D. Kline
2003-01-01
Economists increasingly face opportunities to collaborate with ecologists on landscape-level analyses of socioeconomic and ecological processes. This often calls for developing empirical models to project land use change as input into ecological models. Providing ecologists with the land use information they desire can present many challenges regarding data, modeling,...
A Study of Soil and Duricrust Models for Mars
NASA Technical Reports Server (NTRS)
Bishop, J. L.
2001-01-01
An analysis of soil and duricrust formation mechanisms on Mars is presented. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic). Additional information is contained in the original extended abstract.
USDA-ARS?s Scientific Manuscript database
This work aimed to characterize the sensory attributes of hot air-dried persimmon (Diospyros kaki) chips, correlate these attributes with consumer hedonic information, and, by doing so, present recommendations for cultivars that are most suitable for hot-air drying. A trained sensory panel evaluated...
Random Forests for Evaluating Pedagogy and Informing Personalized Learning
ERIC Educational Resources Information Center
Spoon, Kelly; Beemer, Joshua; Whitmer, John C.; Fan, Juanjuan; Frazee, James P.; Stronach, Jeanne; Bohonak, Andrew J.; Levine, Richard A.
2016-01-01
Random forests are presented as an analytics foundation for educational data mining tasks. The focus is on course- and program-level analytics including evaluating pedagogical approaches and interventions and identifying and characterizing at-risk students. As part of this development, the concept of individualized treatment effects (ITE) is…
A Thermal Precipitator for Fire Characterization Research
NASA Technical Reports Server (NTRS)
Meyer, Marit; Bryg, Vicky
2008-01-01
Characterization of the smoke from pyrolysis of common spacecraft materials provides insight for the design of future smoke detectors and post-fire clean-up equipment on the International Space Station. A thermal precipitator was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Initial modeling for the thermal precipitator design was performed with the finite element software COMSOL Multiphysics, and includes the flow field and heat transfer in the device. The COMSOL Particle Tracing Module was used to determine particle deposition on SEM stubs which include TEM grids. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. Microscopy results from fire characterization research using the thermal precipitator are presented.
NASA Astrophysics Data System (ADS)
Borque, P.; Finlon, J.; Nesbitt, S. W.; McFarquhar, G. M.
2017-12-01
Observations from the Olympic Mountain Experiment (OLYMPEX) present a unique opportunity to analyze a vast catalogue of in-situ microphysical information over a variety of mid-latitude precipitation types. Data collected by the Citation Research Aircraft was processed using the University of Illinois/Oklahoma Optical Array Probe Processing Software to give not only bulk cloud properties (e.g., total number concentration, ice water content (IWC), and parameters describing gamma fits to observed size distributions) but also particle-by-particle properties (e.g., aspect ratio, perimeter, and projected area). In this work, we analyzed these properties in association with the different processes (e.g., aggregation, riming and accretion) occurring under the three main weather sectors (warm, prefrontal, and postfrontal) present over the OLYMPEX region. Bulk and particle properties present statistically different characteristics over the different sectors of the weather system analyzed. For example, the IWC over the warm sector presents a bimodal distribution with the primary maximum present at 0.055 g m-3 and a secondary maximum at 0.235 g m-3; whereas over the postfrontal sector the IWC has a unique maximum at 0.005 g m-3. The higher frequency of occurrence of mass-weighted mean crystal diameter (Dm) occurs at 1.57mm for the warm sector and 0.125mm for the postfrontal sector. In summary, the warm sector is characterized by large IWC, large Dm, shape parameter of the gamma distribution (μ) close to zero, and lighter particles (following a simple mass-diameter relation), all consistent with aggregation being the dominant process. In contrast, observations from the postfrontal sector show smaller IWCs, smaller Dm, negative μ, and heavier particles, all consistent with rimed particles dominating the region. Evidence for this was also seen with particle images from the in-situ probes showing large aggregates present in the warm sector and rimed particles in the postfrontal sector. The characterization of this extensive catalog of observations leads to a better understanding of the dominating microphysical process present in each region, which will improve GPM algorithms as bulk and particle information are of fundamental importance to relate ice cloud particle shape properties to mass-related information
Pattern Activity Clustering and Evaluation (PACE)
NASA Astrophysics Data System (ADS)
Blasch, Erik; Banas, Christopher; Paul, Michael; Bussjager, Becky; Seetharaman, Guna
2012-06-01
With the vast amount of network information available on activities of people (i.e. motions, transportation routes, and site visits) there is a need to explore the salient properties of data that detect and discriminate the behavior of individuals. Recent machine learning approaches include methods of data mining, statistical analysis, clustering, and estimation that support activity-based intelligence. We seek to explore contemporary methods in activity analysis using machine learning techniques that discover and characterize behaviors that enable grouping, anomaly detection, and adversarial intent prediction. To evaluate these methods, we describe the mathematics and potential information theory metrics to characterize behavior. A scenario is presented to demonstrate the concept and metrics that could be useful for layered sensing behavior pattern learning and analysis. We leverage work on group tracking, learning and clustering approaches; as well as utilize information theoretical metrics for classification, behavioral and event pattern recognition, and activity and entity analysis. The performance evaluation of activity analysis supports high-level information fusion of user alerts, data queries and sensor management for data extraction, relations discovery, and situation analysis of existing data.
Food-safety hazards in the pork chain in Nagaland, North East India: implications for human health.
Fahrion, Anna Sophie; Jamir, Lanu; Richa, Kenivole; Begum, Sonuwara; Rutsa, Vilatuo; Ao, Simon; Padmakumar, Varijaksha P; Deka, Ram Pratim; Grace, Delia
2013-12-24
Pork occupies an important place in the diet of the population of Nagaland, one of the North East Indian states. We carried out a pilot study along the pork meat production chain, from live animal to end consumer. The goal was to obtain information about the presence of selected food borne hazards in pork in order to assess the risk deriving from these hazards to the health of the local consumers and make recommendations for improving food safety. A secondary objective was to evaluate the utility of risk-based approaches to food safety in an informal food system. We investigated samples from pigs and pork sourced at slaughter in urban and rural environments, and at retail, to assess a selection of food-borne hazards. In addition, consumer exposure was characterized using information about hygiene and practices related to handling and preparing pork. A qualitative hazard characterization, exposure assessment and hazard characterization for three representative hazards or hazard proxies, namely Enterobacteriaceae, T. solium cysticercosis and antibiotic residues, is presented. Several important potential food-borne pathogens are reported for the first time including Listeria spp. and Brucella suis. This descriptive pilot study is the first risk-based assessment of food safety in Nagaland. We also characterise possible interventions to be addressed by policy makers, and supply data to inform future risk assessments.
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Roush, T. L.
1993-01-01
The research presented here represents the initial phase of a broader project that is intended to provide data in the mid- and far-IR spectral region for both well-characterized iron oxides/oxyhydroxides and poorly crystalline or amorphous materials (e.g., palagonites). Such information can be used in the interpretation of data to be returned by the Mars Observer Thermal Emission Spectrometer (TES). Additionally, this same information will prove useful for assessing the information content of existing Kuiper Airborne Observatory, Mariner 7, and Mariner 9 spectra. which also cover the thermal IR wavelength region.
NASA Technical Reports Server (NTRS)
Parra, A.; Schultz, D.; Boger, J.; Condon, S.; Webby, R.; Morisio, M.; Yakimovich, D.; Carver, J.; Stark, M.; Basili, V.;
1999-01-01
This paper describes a study performed at the Information System Center (ISC) in NASA Goddard Space Flight Center. The ISC was set up in 1998 as a core competence center in information technology. The study aims at characterizing people, processes and products of the new center, to provide a basis for proposing improvement actions and comparing the center before and after these actions have been performed. The paper presents the ISC, goals and methods of the study, results and suggestions for improvement, through the branch-level portion of this baselining effort.
Dynamic modal characterization of musical instruments using digital holography
NASA Astrophysics Data System (ADS)
Demoli, Nazif; Demoli, Ivan
2005-06-01
This study shows that a dynamic modal characterization of musical instruments with membrane can be carried out using a low-cost device and that the obtained very informative results can be presented as a movie. The proposed device is based on a digital holography technique using the quasi-Fourier configuration and time-average principle. Its practical realization with a commercial digital camera and large plane mirrors allows relatively simple analyzing of big vibration surfaces. The experimental measurements given for a percussion instrument are supported by the mathematical formulation of the problem.
Different Strokes for Different Folks: Visual Presentation Design between Disciplines
Gomez, Steven R.; Jianu, Radu; Ziemkiewicz, Caroline; Guo, Hua; Laidlaw, David H.
2015-01-01
We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard “chalk talks”. We found design differences in slideshows using two methods – coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant’s own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information. PMID:26357149
Different Strokes for Different Folks: Visual Presentation Design between Disciplines.
Gomez, S R; Jianu, R; Ziemkiewicz, C; Guo, Hua; Laidlaw, D H
2012-12-01
We present an ethnographic study of design differences in visual presentations between academic disciplines. Characterizing design conventions between users and data domains is an important step in developing hypotheses, tools, and design guidelines for information visualization. In this paper, disciplines are compared at a coarse scale between four groups of fields: social, natural, and formal sciences; and the humanities. Two commonplace presentation types were analyzed: electronic slideshows and whiteboard "chalk talks". We found design differences in slideshows using two methods - coding and comparing manually-selected features, like charts and diagrams, and an image-based analysis using PCA called eigenslides. In whiteboard talks with controlled topics, we observed design behaviors, including using representations and formalisms from a participant's own discipline, that suggest authors might benefit from novel assistive tools for designing presentations. Based on these findings, we discuss opportunities for visualization ethnography and human-centered authoring tools for visual information.
An interactive Bayesian geostatistical inverse protocol for hydraulic tomography
Fienen, Michael N.; Clemo, Tom; Kitanidis, Peter K.
2008-01-01
Hydraulic tomography is a powerful technique for characterizing heterogeneous hydrogeologic parameters. An explicit trade-off between characterization based on measurement misfit and subjective characterization using prior information is presented. We apply a Bayesian geostatistical inverse approach that is well suited to accommodate a flexible model with the level of complexity driven by the data and explicitly considering uncertainty. Prior information is incorporated through the selection of a parameter covariance model characterizing continuity and providing stability. Often, discontinuities in the parameter field, typically caused by geologic contacts between contrasting lithologic units, necessitate subdivision into zones across which there is no correlation among hydraulic parameters. We propose an interactive protocol in which zonation candidates are implied from the data and are evaluated using cross validation and expert knowledge. Uncertainty introduced by limited knowledge of dynamic regional conditions is mitigated by using drawdown rather than native head values. An adjoint state formulation of MODFLOW-2000 is used to calculate sensitivities which are used both for the solution to the inverse problem and to guide protocol decisions. The protocol is tested using synthetic two-dimensional steady state examples in which the wells are located at the edge of the region of interest.
NASA Astrophysics Data System (ADS)
Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen
2017-10-01
In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.
Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging
Gannavarpu, Rajshekhar; Bhaduri, Basanta; Tangella, Krishnarao; Popescu, Gabriel
2014-01-01
Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents. PMID:25386701
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin J.; Gamble, John King; Nielsen, Erik
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. Wemore » describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.« less
Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni
2014-07-01
Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Laura; Harvey, Stephen P.; Teeter, Glenn
We demonstrate the potential of X-ray photoelectron spectroscopy (XPS) to characterize new carrier-selective contacts (CSC) for solar cell application. We show that XPS not only provides information about the surface chemical properties of the CSC material, but that operando XPS, i.e. under light bias condition, can also directly measure the photovoltage that develops at the CSC/absorber interface, revealing device relevant information without the need of assembling a full solar cell. We present the application of the technique to molybdenum oxide hole-selective contact films on a crystalline silicon absorber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-09-01
This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.
Added Value of Assessing Adnexal Masses with Advanced MRI Techniques
Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.
2015-01-01
This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542
NASA Technical Reports Server (NTRS)
Hutto, Clayton; Briscoe, Erica; Trewhitt, Ethan
2012-01-01
Societal level macro models of social behavior do not sufficiently capture nuances needed to adequately represent the dynamics of person-to-person interactions. Likewise, individual agent level micro models have limited scalability - even minute parameter changes can drastically affect a model's response characteristics. This work presents an approach that uses agent-based modeling to represent detailed intra- and inter-personal interactions, as well as a system dynamics model to integrate societal-level influences via reciprocating functions. A Cognitive Network Model (CNM) is proposed as a method of quantitatively characterizing cognitive mechanisms at the intra-individual level. To capture the rich dynamics of interpersonal communication for the propagation of beliefs and attitudes, a Socio-Cognitive Network Model (SCNM) is presented. The SCNM uses socio-cognitive tie strength to regulate how agents influence--and are influenced by--one another's beliefs during social interactions. We then present experimental results which support the use of this network analytical approach, and we discuss its applicability towards characterizing and understanding human information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Philip D.; Miller, Michael K.; Powers, K. A.
In our recent paper entitled “Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel”, we make reference to a table within the article as providing the average compositions of the precipitates, when in fact the bulk compositions were given. In this correction, we present the average precipitate compositions for the data presented in Ref. [1]. These correct compositions are provided for information and do not alter the conclusions of the original manuscript.
Zhang, Kejiang; Achari, Gopal; Pei, Yuansheng
2010-10-01
Different types of uncertain information-linguistic, probabilistic, and possibilistic-exist in site characterization. Their representation and propagation significantly influence the management of contaminated sites. In the absence of a framework with which to properly represent and integrate these quantitative and qualitative inputs together, decision makers cannot fully take advantage of the available and necessary information to identify all the plausible alternatives. A systematic methodology was developed in the present work to incorporate linguistic, probabilistic, and possibilistic information into the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), a subgroup of Multi-Criteria Decision Analysis (MCDA) methods for ranking contaminated sites. The identification of criteria based on the paradigm of comparative risk assessment provides a rationale for risk-based prioritization. Uncertain linguistic, probabilistic, and possibilistic information identified in characterizing contaminated sites can be properly represented as numerical values, intervals, probability distributions, and fuzzy sets or possibility distributions, and linguistic variables according to their nature. These different kinds of representation are first transformed into a 2-tuple linguistic representation domain. The propagation of hybrid uncertainties is then carried out in the same domain. This methodology can use the original site information directly as much as possible. The case study shows that this systematic methodology provides more reasonable results. © 2010 SETAC.
Neurofibromatosis: chronological history and current issues.
Antônio, João Roberto; Goloni-Bertollo, Eny Maria; Trídico, Lívia Arroyo
2013-01-01
Neurofibromatosis, which was first described in 1882 by Von Recklinghausen, is a genetic disease characterized by a neuroectodermal abnormality and by clinical manifestations of systemic and progressive involvement which mainly affect the skin, nervous system, bones, eyes and possibly other organs. The disease may manifest in several ways and it can vary from individual to individual. Given the wealth of information about neurofibromatosis, we attempted to present this information in different ways. In the first part of this work, we present a chronological history, which describes the evolution of the disease since the early publications about the disorder until the conclusion of this work, focusing on relevant aspects which can be used by those wishing to investigate this disease. In the second part, we present an update on the various aspects that constitute this disease.
Neurofibromatosis: chronological history and current issues*
Antônio, João Roberto; Goloni-Bertollo, Eny Maria; Trídico, Lívia Arroyo
2013-01-01
Neurofibromatosis, which was first described in 1882 by Von Recklinghausen, is a genetic disease characterized by a neuroectodermal abnormality and by clinical manifestations of systemic and progressive involvement which mainly affect the skin, nervous system, bones, eyes and possibly other organs. The disease may manifest in several ways and it can vary from individual to individual. Given the wealth of information about neurofibromatosis, we attempted to present this information in different ways. In the first part of this work, we present a chronological history, which describes the evolution of the disease since the early publications about the disorder until the conclusion of this work, focusing on relevant aspects which can be used by those wishing to investigate this disease. In the second part, we present an update on the various aspects that constitute this disease. PMID:23793209
ERIC Educational Resources Information Center
Disinger, John F.; Blosser, Patricia E., Ed.
Three major themes of ecology, ethics, and economics characterize the current conservation/environmental movement and present a challenge for the environmental educator in teaching about environmental quality. This bulletin provides assistance for the practitioner by identifying current instructional materials that address concerns in this area.…
USDA-ARS?s Scientific Manuscript database
Comprehensive region-specific data that accurately characterize cattle production practices are being collected to support a national life cycle assessment (LCA) of U.S. beef. The present study reports production information obtained via voluntary surveys and visits in two of seven demarcated region...
How to Start a High School Underground Newspaper. Fifth Edition.
ERIC Educational Resources Information Center
Greenberg, Cory
Stressing the diversity which characterizes the high school underground press movement, the pamphlet presents case histories of several papers, an overview of the first ten years of the high school underground press, and technical information necessary for starting a paper. The first wave of high school underground newspapers appeared in major…
The Pedometer as a Tool to Enrich Science Learning in a Public Health Context
ERIC Educational Resources Information Center
Rye, James A.; Zizzi, Samuel J.; Vitullo, Elizabeth A.; Tompkins, Nancy O'Hara
2005-01-01
The United States is experiencing an obesity epidemic: A science-technology-society public health issue tied to our built environment, which is characterized by heavy dependence on automobiles and reduced opportunities to walk and bicycle for transportation. This presents an informal science education opportunity within "science in personal…
NASA Astrophysics Data System (ADS)
Campos, Diógenes
2011-05-01
A thermodynamic-like characterization of Colombia’s presidential election is presented. We assume that the electoral system consists of citizens embedded in a political environment, and that this environment can be considered as an information bath characterized by the entropic parameter q ( q∈[0,∞]). First, for q=1, the electoral outcomes of 2010 are translated into a set of probabilities (relative frequencies of the events) P={P1,P2,…,PN}, with N possible independent results. Then, for 0≤q<∞, the electoral system is characterized by using the thermodynamic-like method for probabilistic systems proposed in a previous article. Some general considerations of the macro-description of a probabilistic system and a comparison of presidential elections in five countries are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAGmore » 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.« less
NASA Astrophysics Data System (ADS)
Mfuh, Adelphe Mbufung
This thesis focuses mainly on the synthesis, characterization, and self-assembly of a novel series of asparagine-derived amphiphiles and their use in the preparation and stabilization of nano and microcapsules for the encapsulation of proteins, and hydrophilic and hydrophobic drug models. Chapter 1 gives a brief literature overview of lipid molecular assembly, which covers some aspects of morphological analyses, encapsulation of chemical entity and some reported characterization techniques of supramolecular assemblies. It introduces the scope of this dissertation and contains some information on stimulus responsive liposomal systems for controlled release of drug models. Chapter 2 introduces a novel asparagine-derived lipid bearing two fatty chains (C11 and C17) and a tetrahydropyrimidinone head group. It presents information on the synthesis and characterization of this lipid and describes the self-assembly and effects of this lipid in distearoyl phosphatidyl choline bilayer. Chapter 3 presents the synthesis and characterization of a series of ALAn,m (where n and m represent the length of the hydrocarbon chains on the asparagine-derived, heterocyclic head group). It contains data on the effect of chain length, solvent media and head group ionization on the conformational equilibrium about a tertiary amide bond in ALAn,m. The chapter also examines the influence of chain length on ALAn,m on the colloidal stability of DSPC liposomes. Chapter 4 presents the first example of an N,N-acetal linkage in a novel pH responsive nanocarrier system obtained from the cyclocondensation of dodecanal with sodium asparaginate. Data is presented on the spontaneous self-assembly, encapsulation studies and morphological characterization of the nano-systems with the inclusion of cholesterol as additive. Chapter 5 presents the development of a photoresponsive nanocarrier via the self- assembly of an asparagine-derived lipid containing a coumarin unit in the hydrophobic domain. The supramolecular assemblies of this lipid were examined for the ability to encapsulate and release chemical entity in response to UV-assisted [2+2]-photodimerization. Chapter 6 presents the fabrication of an organic core/inorganic shell microcapsules from the catanionic self-assemblies of a series of symmetrical asparagine-derived bolaamphiphiles and polyallyl amine, followed by surfacing coating with silica nanoparticles. Unlike layer-by-layer or polymer salt aggregates (PSA) capsules reported in the chemical literature, these particles show encapsulation for wider range of chemical entities with different solubility properties. Studies suggest that these particles efficiently encapsulated protoporphyrin IX. dimethylester, doxorubicin and a fluorescently labeled bovine serum albumin (FITC-BSA).
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.; Ezzedine, Souheil; Rubin, Yoram
2012-02-01
The significance of conditioning predictions of environmental performance metrics (EPMs) on hydrogeological data in heterogeneous porous media is addressed. Conditioning EPMs on available data reduces uncertainty and increases the reliability of model predictions. We present a rational and concise approach to investigate the impact of conditioning EPMs on data as a function of the location of the environmentally sensitive target receptor, data types and spacing between measurements. We illustrate how the concept of comparative information yield curves introduced in de Barros et al. [de Barros FPJ, Rubin Y, Maxwell R. The concept of comparative information yield curves and its application to risk-based site characterization. Water Resour Res 2009;45:W06401. doi:10.1029/2008WR007324] could be used to assess site characterization needs as a function of flow and transport dimensionality and EPMs. For a given EPM, we show how alternative uncertainty reduction metrics yield distinct gains of information from a variety of sampling schemes. Our results show that uncertainty reduction is EPM dependent (e.g., travel times) and does not necessarily indicate uncertainty reduction in an alternative EPM (e.g., human health risk). The results show how the position of the environmental target, flow dimensionality and the choice of the uncertainty reduction metric can be used to assist in field sampling campaigns.
Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat
Thiyagarajan, Karthikeyan; Vitali, Fabio; Tolaini, Valentina; Galeffi, Patrizia; Cantale, Cristina; Vikram, Prashant; Singh, Sukhwinder; De Rossi, Patrizia; Nobili, Chiara; Procacci, Silvia; Del Fiore, Antonella; Antonini, Alessandro; Presenti, Ombretta; Brunori, Andrea
2016-01-01
Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn’t result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value. PMID:26990297
NASA Astrophysics Data System (ADS)
Lu, Fa-Ke F.; Calligaris, David; Suo, Yuanzhen; Santagata, Sandro; Golby, Alexandra J.; Xie, X. Sunney; Mallory, Melissa A.; Golshan, Mehra; Dillon, Deborah A.; Agar, Nathalie Y. R.
2017-02-01
Stimulated Raman scattering (SRS) microscopy has been used for rapid label-free imaging of various biomolecules and drugs in living cells and tissues (Science, doi:10.1126/science.aaa8870). Our recent work has demonstrated that lipid and protein mapping of cancer tissue renders pathology-like images, providing essential histopathological information with subcellular resolution of the entire specimen (Cancer Research, doi: 10.1158/0008-5472.CAN-16-027). We have also established the first SRS imaging Atlas of human brain tumors (Harvard Dataverse, doi: (doi:10.7910/DVN/EZW4EK). SRS imaging of tissue could provide invaluable information for cancer diagnosis and surgical guidance in two aspects: rapid surgical pathology and quantitative biomolecular characterization. In this work, we present the use of SRS microscopy for characterization of a few essential biomolecules in breast cancer. Human breast cancer tissue specimens at the tumor core, tumor margin and normal area (5 cm away from the tumor) from surgical cases will be imaged with SRS at multiple Raman shifts, including the peaks for lipid, protein, blood (absorption), collagen, microcalcification (calcium phosphates and calcium oxalate) and carotenoids. Most of these Raman shifts have relatively strong Raman cross sections, which ensures high-quality and fast imaging. This proof-of-principle study is sought to demonstrate the feasibility and potential of SRS imaging for ambient diagnosis and surgical guidance of breast cancer.
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.; Rubin, Yoram; Maxwell, Reed M.
2009-06-01
Defining rational and effective hydrogeological data acquisition strategies is of crucial importance as such efforts are always resource limited. Usually, strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on uncertainty. This paper presents an approach for determining site characterization needs on the basis of human health risk. The main challenge is in striking a balance between reduction in uncertainty in hydrogeological, behavioral, and physiological parameters. Striking this balance can provide clear guidance on setting priorities for data acquisition and for better estimating adverse health effects in humans. This paper addresses this challenge through theoretical developments and numerical simulation. A wide range of factors that affect site characterization needs are investigated, including the dimensions of the contaminant plume and additional length scales that characterize the transport problem, as well as the model of human health risk. The concept of comparative information yield curves is used for investigating the relative impact of hydrogeological and physiological parameters in risk. Results show that characterization needs are dependent on the ratios between flow and transport scales within a risk-driven approach. Additionally, the results indicate that human health risk becomes less sensitive to hydrogeological measurements for large plumes. This indicates that under near-ergodic conditions, uncertainty reduction in human health risk may benefit from better understanding of the physiological component as opposed to a more detailed hydrogeological characterization.
Separated-flow unsteady pressures and forces on elastically responding structures
NASA Technical Reports Server (NTRS)
Coke, C. F.; Riddle, D. W.; Hwang, C.
1977-01-01
Broadband rms, spectral density, and spatial correlation information that characterizes the fluctuating pressures and forces that cause aircraft buffet is presented. The main theme is to show the effects of elasticity. In order to do so, data are presented that were obtained in regions of separated flow on wings of wind-tunnel models of varying stiffness and on the wing of a full-scale aircraft. Reynolds number effects on the pressure fluctuations are also discussed.
Rodes, Charles E.; Pellizzari, Edo D.; Dellarco, Michael J.; Erickson, Mitchell D.; Vallero, Daniel A.; Reissman, Dori B.; Lioy, Paul J.; Lippmann, Morton; Burke, Thomas A.; Goldstein, Bernard D.
2014-01-01
An expert panel was convened in October 2007 at the International Society for Exposure Analysis Annual Meeting in Durham, NC, entitled “The Path Forward in Disaster Preparedness Since WTC—Exposure Characterization and Mitigation: Substantial Unfinished Business!” The panel prospectively discussed the critical exposure issues being overlooked during disaster responses and highlighted the needs for an optimal blending of exposure characterizations and hazard controls within disaster settings. The cases were made that effective and timely exposure characterizations must be applied during responses to any disaster, whether terrorist, manmade, or natural in origin. The consistent application of exposure sciences across acute and chronic disaster timelines will assure that the most effective strategies are applied to collect the needed information to guide risk characterization and management approaches. Exposure sciences must be effectively applied across all phases of a disaster (defined as rescue, reentry, recovery, and rehabitation—the four Rs) to appropriately characterize risks and guide risk-mitigation approaches. Failure to adequately characterize and control hazardous exposures increases the likelihood of excess morbidity and mortality. Advancing the infrastructure and the technologies to collect the right exposure information before, during, and immediately after disasters would advance our ability to define risks and protect responders and the public better. The panel provided conclusions, recommendations, and next steps toward effective and timely integration of better exposure science into disaster preparedness, including the need for a subsequent workshop to facilitate this integration. All panel presentations and a summary were uploaded to the ISES1 website (http://www.iseaweb.org/Disaster_Preparedness/index.php). PMID:18685563
Rodes, Charles E; Pellizzari, Edo D; Dellarco, Michael J; Erickson, Mitchell D; Vallero, Daniel A; Reissman, Dori B; Lioy, Paul J; Lippmann, Morton; Burke, Thomas A; Goldstein, Bernard D
2008-11-01
An expert panel was convened in October 2007 at the International Society for Exposure Analysis Annual Meeting in Durham, NC, entitled "The Path Forward in Disaster Preparedness Since WTC-Exposure Characterization and Mitigation: Substantial Unfinished Business!" The panel prospectively discussed the critical exposure issues being overlooked during disaster responses and highlighted the needs for an optimal blending of exposure characterizations and hazard controls within disaster settings. The cases were made that effective and timely exposure characterizations must be applied during responses to any disaster, whether terrorist, manmade, or natural in origin. The consistent application of exposure sciences across acute and chronic disaster timelines will assure that the most effective strategies are applied to collect the needed information to guide risk characterization and management approaches. Exposure sciences must be effectively applied across all phases of a disaster (defined as rescue, reentry, recovery, and rehabitation-the four Rs) to appropriately characterize risks and guide risk-mitigation approaches. Failure to adequately characterize and control hazardous exposures increases the likelihood of excess morbidity and mortality. Advancing the infrastructure and the technologies to collect the right exposure information before, during, and immediately after disasters would advance our ability to define risks and protect responders and the public better. The panel provided conclusions, recommendations, and next steps toward effective and timely integration of better exposure science into disaster preparedness, including the need for a subsequent workshop to facilitate this integration. All panel presentations and a summary were uploaded to the ISES(1) website (http://www.iseaweb.org/Disaster_Preparedness/index.php).
A Technical Analysis Information Fusion Approach for Stock Price Analysis and Modeling
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
In this paper, we address the problem of technical analysis information fusion in improving stock market index-level prediction. We present an approach for analyzing stock market price behavior based on different categories of technical analysis metrics and a multiple predictive system. Each category of technical analysis measures is used to characterize stock market price movements. The presented predictive system is based on an ensemble of neural networks (NN) coupled with particle swarm intelligence for parameter optimization where each single neural network is trained with a specific category of technical analysis measures. The experimental evaluation on three international stock market indices and three individual stocks show that the presented ensemble-based technical indicators fusion system significantly improves forecasting accuracy in comparison with single NN. Also, it outperforms the classical neural network trained with index-level lagged values and NN trained with stationary wavelet transform details and approximation coefficients. As a result, technical information fusion in NN ensemble architecture helps improving prediction accuracy.
Koster, Ernst H W; De Raedt, Rudi; Leyman, Lemke; De Lissnyder, Evi
2010-03-01
Recent studies indicate that depression is characterized by mood-congruent attention bias at later stages of information-processing. Moreover, depression has been associated with enhanced recall of negative information. The present study tested the coherence between attention and memory bias in dysphoria. Stable dysphoric (n = 41) and non-dysphoric (n = 41) undergraduates first performed a spatial cueing task that included negative, positive, and neutral words. Words were presented for 250 ms under conditions that allowed or prevented elaborate processing. Memory for the words presented in the cueing task was tested using incidental free recall. Dysphoric individuals exhibited an attention bias for negative words in the condition that allowed elaborate processing, with the attention bias for negative words predicting free recall of negative words. Results demonstrate the coherence of attention and memory bias in dysphoric individuals and provide suggestions on the influence of attention bias on further processing of negative material. 2009 Elsevier Ltd. All rights reserved.
Principle, system, and applications of tip-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, MingQian; Wang, Rui; Wu, XiaoBin; Wang, Jia
2012-08-01
Raman spectroscopy is a powerful technique in chemical information characterization. However, this spectral method is subject to two obstacles in nano-material detection. One is diffraction limited spatial resolution, and the other is its inherent small Raman cross section and weak signaling. To resolve these problems, a new approach has been developed, denoted as tip-enhanced Raman spectroscopy (TERS). TERS is capable of high-resolution and high-sensitivity detection and demonstrated to be a promising spectroscopic and micro-topographic method to characterize nano-materials and nanostructures. In this paper, the principle and experimental system of TERS are discussed. The latest application of TERS in molecule detection, biological specimen identification, nanao-material characterization, and semi-conductor material determination with some specific experimental examples are presented.
Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-10-01
The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, propertymore » ownership, and surface geology, and a geologic cross section were presented for each dome.« less
Characterization of intermittency in renewal processes: Application to earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Takuma; Hasumi, Tomohiro; Aizawa, Yoji
2010-03-15
We construct a one-dimensional piecewise linear intermittent map from the interevent time distribution for a given renewal process. Then, we characterize intermittency by the asymptotic behavior near the indifferent fixed point in the piecewise linear intermittent map. Thus, we provide a framework to understand a unified characterization of intermittency and also present the Lyapunov exponent for renewal processes. This method is applied to the occurrence of earthquakes using the Japan Meteorological Agency and the National Earthquake Information Center catalog. By analyzing the return map of interevent times, we find that interevent times are not independent and identically distributed random variablesmore » but that the conditional probability distribution functions in the tail obey the Weibull distribution.« less
Health Care Information in African-American Churches
Harmon, Brook E.; Kim, Sei-Hill; Blake, Christine E.; Hébert, James R.
2014-01-01
Churches are a trusted resource in African American communities; however, little is known about their presentation of health care information. This study characterized health care information disseminated by 11 African American churches. Content analysis conducted on print media systematically collected over one year used a coding scheme with .77 intercoder reliability. Health care information was identified in 243 items and represented three topics (screening, medical services, health insurance). Screening was the most common topic (n=156), flyers/handouts most often used (n=90), and the church the most common source (n=71). Using chi-square tests, information was assessed over time with health insurance information showing a statistically significant increase (χ2=6.08, p <.05). Study churches provided health care information at varying levels of detail with most coming from church and community publications. Future research should examine additional characteristics of health care information, its presence in other churches and community settings, and how exposure influences behaviors. PMID:24509024
Carrión, Alicia; Miralles, Ramón; Lara, Guillermo
2014-09-01
In this paper, we present a novel and completely different approach to the problem of scattering material characterization: measuring the degree of predictability of the time series. Measuring predictability can provide information of the signal strength of the deterministic component of the time series in relation to the whole time series acquired. This relationship can provide information about coherent reflections in material grains with respect to the rest of incoherent noises that typically appear in non-destructive testing using ultrasonics. This is a non-parametric technique commonly used in chaos theory that does not require making any kind of assumptions about attenuation profiles. In highly scattering media (low SNR), it has been shown theoretically that the degree of predictability allows material characterization. The experimental results obtained in this work with 32 cement probes of 4 different porosities demonstrate the ability of this technique to do classification. It has also been shown that, in this particular application, the measurement of predictability can be used as an indicator of the percentages of porosity of the test samples with great accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-15
This report presents test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) UP-1 wells: 299-W19-48 (C4300/Well K), 699-30-66 (C4298/Well R), and 699-36-70B (C4299/Well P). These wells are located within, adjacent to, and to the southeast of the Hanford Site 200-West Area. The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » UP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-21
The following report presents test descriptions and analysis results for multiple, stress level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) ZP-1 wells: 299-W11-43 (C4694/Well H), 299-W15-50 (C4302/Well E), and 299-W18-16 (C4303/Well D). These wells are located within south-central region of the Hanford Site 200-West Area (Figure 1.1). The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » ZP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
Characterization of autoregressive processes using entropic quantifiers
NASA Astrophysics Data System (ADS)
Traversaro, Francisco; Redelico, Francisco O.
2018-01-01
The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.
Inverse approaches with lithologic information for a regional groundwater system in southwest Kansas
Tsou, Ming‐shu; Perkins, S.P.; Zhan, X.; Whittemore, Donald O.; Zheng, Lingyun
2006-01-01
Two practical approaches incorporating lithologic information for groundwater modeling calibration are presented to estimate distributed, cell-based hydraulic conductivity. The first approach is to estimate optimal hydraulic conductivities for geological materials by incorporating thickness distribution of materials into inverse modeling. In the second approach, residuals for the groundwater model solution are minimized according to a globalized Newton method with the aid of a Geographic Information System (GIS) to calculate a cell-wise distribution of hydraulic conductivity. Both approaches honor geologic data and were effective in characterizing the heterogeneity of a regional groundwater modeling system in southwest Kansas. ?? 2005 Elsevier Ltd All rights reserved.
TECHNICAL APPROACHES TO CHARACTERIZING AND ...
The document provides brownfields planners with an overview of the technical methods that can be used to achieve successful site assessment and cleanup which are two key components of the brownfields redevelopment process. No two brownfields sites are identical and planners will need to base assessment and cleanup activities on the conditions of the particular sites with which they are dealing. A site assessment strategy should address: the type and extent of contamination, if any, that is present, the types of data needed to adequately assess the site; appropriate sampling and analytical methods to characterize the contamination; acceptable level of uncertainty and cleanup technologies that contain or treat the types of wastes present.This document includes references to state agency roles including the Voluntary Cleanup Program, public involvement and other guidances that may be used. Information
On the Design of Attitude-Heading Reference Systems Using the Allan Variance.
Hidalgo-Carrió, Javier; Arnold, Sascha; Poulakis, Pantelis
2016-04-01
The Allan variance is a method to characterize stochastic random processes. The technique was originally developed to characterize the stability of atomic clocks and has also been successfully applied to the characterization of inertial sensors. Inertial navigation systems (INS) can provide accurate results in a short time, which tend to rapidly degrade in longer time intervals. During the last decade, the performance of inertial sensors has significantly improved, particularly in terms of signal stability, mechanical robustness, and power consumption. The mass and volume of inertial sensors have also been significantly reduced, offering system-level design and accommodation advantages. This paper presents a complete methodology for the characterization and modeling of inertial sensors using the Allan variance, with direct application to navigation systems. Although the concept of sensor fusion is relatively straightforward, accurate characterization and sensor-information filtering is not a trivial task, yet they are essential for good performance. A complete and reproducible methodology utilizing the Allan variance, including all the intermediate steps, is described. An end-to-end (E2E) process for sensor-error characterization and modeling up to the final integration in the sensor-fusion scheme is explained in detail. The strength of this approach is demonstrated with representative tests on novel, high-grade inertial sensors. Experimental navigation results are presented from two distinct robotic applications: a planetary exploration rover prototype and an autonomous underwater vehicle (AUV).
X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications.
Tijani, Mansour Mohammedramadan; Aqsha, Aqsha; Mahinpey, Nader
2018-04-01
Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al 2 O 3 , CeO 2 , TiO 2 , ZrO 2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.
Ronchi test for characterization of X-ray nanofocusing optics and beamlines.
Uhlén, Fredrik; Rahomäki, Jussi; Nilsson, Daniel; Seiboth, Frank; Sanz, Claude; Wagner, Ulrich; Rau, Christoph; Schroer, Christian G; Vogt, Ulrich
2014-09-01
A Ronchi interferometer for hard X-rays is reported in order to characterize the performance of the nanofocusing optics as well as the beamline stability. Characteristic interference fringes yield qualitative data on present aberrations in the optics. Moreover, the visibility of the fringes on the detector gives information on the degree of spatial coherence in the beamline. This enables the possibility to detect sources of instabilities in the beamline like vibrations of components or temperature drift. Examples are shown for two different nanofocusing hard X-ray optics: a compound refractive lens and a zone plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattrick-Simpers, Jason R.; Gregoire, John M.; Kusne, A. Gilad
With their ability to rapidly elucidate composition-structure-property relationships, high-throughput experimental studies have revolutionized how materials are discovered, optimized, and commercialized. It is now possible to synthesize and characterize high-throughput libraries that systematically address thousands of individual cuts of fabrication parameter space. An unresolved issue remains transforming structural characterization data into phase mappings. This difficulty is related to the complex information present in diffraction and spectroscopic data and its variation with composition and processing. Here, we review the field of automated phase diagram attribution and discuss the impact that emerging computational approaches will have in the generation of phase diagrams andmore » beyond.« less
USDA-ARS?s Scientific Manuscript database
Heat shock 70kDa protein 9 (HSPA9)/mortalin is a multipotent chaperone regulating cellular processes ranging from stress response to energy homeostasis. HSPA9 has been extensively studied in mammals however there is a paucity of information in avian species. The present study aimed to characterize H...
ERIC Educational Resources Information Center
Parmenter, Tish; Bailey, Robert
Developed to integrate fundamental oceanographic concepts with basic research, this book presents information about the Pacific Ocean off the coast of Oregon. Characterizations and descriptions of the marine environment from the coastline to approximately 200 miles offshore are provided for the interested public. Chapter topics include: (1) marine…
Ideologies of English in a Chinese High School EFL Textbook: A Critical Discourse Analysis
ERIC Educational Resources Information Center
Xiong, Tao; Qian, Yamin
2012-01-01
In this article we examine ideologies of English in present-day China with a special focus on textbook discourse. The research framework is informed by critical theories on language and education. Critical discourse analysis is applied as a methodological approach characterized by a socially committed attitude in the explanation and interpretation…
Design of Tasks for Online Assessment That Supports Understanding of Students' Conceptions
ERIC Educational Resources Information Center
Yerushalmy, Michal; Nagari-Haddif, Galit; Olsher, Shai
2017-01-01
In the present study, we ask whether and how online assessment can inform teaching about students' understanding of advanced concepts. Our main goal is to illustrate how we study design of tasks that support reliable online formative assessment by automatically analyzing the objects and relations that characterize the students' submissions. We aim…
ERIC Educational Resources Information Center
Amatea, Ellen S.; Smith-Adcock, Sondra; Villares, Elizabeth
2006-01-01
This article presents an overview of a research-informed family resilience framework, developed as a conceptual map to guide school counselors' preventive and interventive efforts with students and their families. Key processes that characterize children's and families' resilience are outlined along with recommendations for how school counselors…
CIBO special project study: Fluidized bed combustion by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soyka, P.A.
1996-12-31
Information is outlined on a Council of Industrial Boiler Owners (CIBO) Special Project Study on fluidized bed combustion by-products. Data are presented on a fossil fuel combustion by-products (FFCB) Survey; study population and response pattern; survey respondent characteristics; FFCB characterization; productive use and impacts; on-site FFCB disposal; and environmental characteristics of FFCB disposal units.
ERIC Educational Resources Information Center
Galman, Sally Campbell
2013-01-01
This article presents the experiences of three women who have chosen to move from secular, assimilated lives to lives characterized by the distinctive dress and practice associated with observant Islam, Orthodox Judaism, and Orthodox Christianity, respectively. All three relied upon informal, peer, and distance learning strategies for their…
NASA Technical Reports Server (NTRS)
Graff, T. G.; Morris, R.; Christensen, P.
2001-01-01
Thermal emission measurements on dust-coated rocks and minerals show that a 300 5m thick layer is required to mask emission from the substrate and that non-linear effects are present. Additional information is contained in the original extended abstract.
Variables in Human Consequation/Feedback.
1979-07-31
that make consequators effective , in each case listed according to the aspects that characterize them and their relationships with consequators ; another...category consists of the purposes and effects of consequated actions. The compilation draws variables from both cognitive research in information...This report presents salient variables in consequation or feedback processes that affect human behavior. As comprehensive a compilation has not been
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.
2006-12-01
The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.
Deutsch, Eric W; Ball, Catherine A; Berman, Jules J; Bova, G Steven; Brazma, Alvis; Bumgarner, Roger E; Campbell, David; Causton, Helen C; Christiansen, Jeffrey H; Daian, Fabrice; Dauga, Delphine; Davidson, Duncan R; Gimenez, Gregory; Goo, Young Ah; Grimmond, Sean; Henrich, Thorsten; Herrmann, Bernhard G; Johnson, Michael H; Korb, Martin; Mills, Jason C; Oudes, Asa J; Parkinson, Helen E; Pascal, Laura E; Pollet, Nicolas; Quackenbush, John; Ramialison, Mirana; Ringwald, Martin; Salgado, David; Sansone, Susanna-Assunta; Sherlock, Gavin; Stoeckert, Christian J; Swedlow, Jason; Taylor, Ronald C; Walashek, Laura; Warford, Anthony; Wilkinson, David G; Zhou, Yi; Zon, Leonard I; Liu, Alvin Y; True, Lawrence D
2008-03-01
One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.
A Change Impact Analysis to Characterize Evolving Program Behaviors
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam; Person, Suzette; Branchaud, Joshua
2012-01-01
Change impact analysis techniques estimate the potential effects of changes made to software. Directed Incremental Symbolic Execution (DiSE) is an intraprocedural technique for characterizing the impact of software changes on program behaviors. DiSE first estimates the impact of the changes on the source code using program slicing techniques, and then uses the impact sets to guide symbolic execution to generate path conditions that characterize impacted program behaviors. DiSE, however, cannot reason about the flow of impact between methods and will fail to generate path conditions for certain impacted program behaviors. In this work, we present iDiSE, an extension to DiSE that performs an interprocedural analysis. iDiSE combines static and dynamic calling context information to efficiently generate impacted program behaviors across calling contexts. Information about impacted program behaviors is useful for testing, verification, and debugging of evolving programs. We present a case-study of our implementation of the iDiSE algorithm to demonstrate its efficiency at computing impacted program behaviors. Traditional notions of coverage are insufficient for characterizing the testing efforts used to validate evolving program behaviors because they do not take into account the impact of changes to the code. In this work we present novel definitions of impacted coverage metrics that are useful for evaluating the testing effort required to test evolving programs. We then describe how the notions of impacted coverage can be used to configure techniques such as DiSE and iDiSE in order to support regression testing related tasks. We also discuss how DiSE and iDiSE can be configured for debugging finding the root cause of errors introduced by changes made to the code. In our empirical evaluation we demonstrate that the configurations of DiSE and iDiSE can be used to support various software maintenance tasks
Invariance algorithms for processing NDE signals
NASA Astrophysics Data System (ADS)
Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William
1996-11-01
Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.
Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E
2018-03-05
The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.
Multi-scale statistical analysis of coronal solar activity
Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.
2016-07-08
Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-09-01
This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)
Apparatus and methodology for fire gas characterization by means of animal exposure
NASA Technical Reports Server (NTRS)
Marcussen, W. H.; Hilado, C. J.; Furst, A.; Leon, H. A.; Kourtides, D. A.; Parker, J. A.; Butte, J. C.; Cummins, J. M.
1976-01-01
While there is a great deal of information available from small-scale laboratory experiments and for relatively simple mixtures of gases, considerable uncertainty exists regarding appropriate bioassay techniques for the complex mixture of gases generated in full-scale fires. Apparatus and methodology have been developed based on current state of the art for determining the effects of fire gases in the critical first 10 minutes of a full-scale fire on laboratory animals. This information is presented for its potential value and use while further improvements are being made.
A photoacoustic tomography and ultrasound combined system for proximal interphalangeal joint imaging
NASA Astrophysics Data System (ADS)
Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Wang, Xueding
2013-03-01
A photoacoustic (PA) and ultrasound (US) dual modality system for imaging human peripheral joints is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system on normal volunteers revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.
Molecular cloning and characterization of markers and cytokines for equid myeloid cells.
Steinbach, Falko; Stark, Robert; Ibrahim, Sherif; Gawad, Eman Abd-El; Ludwig, Hanns; Walter, Jakob; Commandeur, Ulrich; Mauel, Susanne
2005-10-18
The myeloid cell system comprises of monocytes, macrophages (MPhi), dendritic cells (DC), Kupffer cells, osteoclasts or microglia and is also known as the mononuclear phagocytic system (MPS). Essential cytokines to differentiate or activate these cells include GM-CSF or IL-4. Important markers for characterization include CD1, CD14, CD68, CD163 and CD206. All these markers, however, were not cloned or further characterized in equids by use of monoclonal antibodies earlier. To overcome this problem with the present study, two approaches were used. First, we cloned equine cytokines and markers, and second we analyzed cross-reactivity of human homologues or anti-human monoclonal antibodies. For cloning of equine cytokines and markers, we used degenerate primers delineated from other species, or equine-specific primers based on previous information in Genbank. Flow cytometry was used to determine the expression of markers on myeloid cells. Cross-reactivity could be shown for anti-human CD14, CD163 and mannose receptor (CD206) mAbs. Surface markers such as CD1 and CD68 that distinguish MPhi and DC were cloned and sequenced. According to blast homology, equine CD1a and CD1b could be identified and distinguished. With the resulting information, dendritic cells and macrophages of horses may be characterized.
Drugp-Induced Rhabdomyolysis Atlas (DIRA) for idiosyncratic adverse drug reaction management.
Wen, Zhining; Liang, Yu; Hao, Yingyi; Delavan, Brian; Huang, Ruili; Mikailov, Mike; Tong, Weida; Li, Menglong; Liu, Zhichao
2018-06-11
Drug-induced rhabdomyolysis (DIR) is an idiosyncratic and fatal adverse drug reaction (ADR) characterized in severe muscle injuries accompanied by multiple-organ failure. Limited knowledge regarding the pathophysiology of rhabdomyolysis is the main obstacle to developing early biomarkers and prevention strategies. Given the lack of a centralized data resource to curate, organize, and standardize widespread DIR information, here we present a Drug-Induced Rhabdomyolysis Atlas (DIRA) that provides DIR-related information, including: a classification scheme for DIR based on drug labeling information; postmarketing surveillance data of DIR; and DIR drug property information. To elucidate the utility of DIRA, we used precision dosing, concomitant use of DIR drugs, and predictive modeling development to exemplify strategies for idiosyncratic ADR (IADR) management. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include:more » Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarapata, A.; Chabior, M.; Zanette, I.
2014-10-15
Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less
Ultrasound Burst Phase Thermography (UBP) for Applications in the Automotive Industry
NASA Astrophysics Data System (ADS)
Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.
2003-03-01
The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented.
Deutsch, Eric W; Ball, Catherine A; Berman, Jules J; Bova, G Steven; Brazma, Alvis; Bumgarner, Roger E; Campbell, David; Causton, Helen C; Christiansen, Jeffrey H; Daian, Fabrice; Dauga, Delphine; Davidson, Duncan R; Gimenez, Gregory; Goo, Young Ah; Grimmond, Sean; Henrich, Thorsten; Herrmann, Bernhard G; Johnson, Michael H; Korb, Martin; Mills, Jason C; Oudes, Asa J; Parkinson, Helen E; Pascal, Laura E; Pollet, Nicolas; Quackenbush, John; Ramialison, Mirana; Ringwald, Martin; Salgado, David; Sansone, Susanna-Assunta; Sherlock, Gavin; Stoeckert, Christian J; Swedlow, Jason; Taylor, Ronald C; Walashek, Laura; Warford, Anthony; Wilkinson, David G; Zhou, Yi; Zon, Leonard I; Liu, Alvin Y; True, Lawrence D
2015-01-01
One purpose of the biomedical literature is to report results in sufficient detail so that the methods of data collection and analysis can be independently replicated and verified. Here we present for consideration a minimum information specification for gene expression localization experiments, called the “Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE)”. It is modelled after the MIAME (Minimum Information About a Microarray Experiment) specification for microarray experiments. Data specifications like MIAME and MISFISHIE specify the information content without dictating a format for encoding that information. The MISFISHIE specification describes six types of information that should be provided for each experiment: Experimental Design, Biomaterials and Treatments, Reporters, Staining, Imaging Data, and Image Characterizations. This specification has benefited the consortium within which it was initially developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal. PMID:18327244
RatMap--rat genome tools and data.
Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M; Ståhl, Fredrik
2005-01-01
The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB-Genetics at Goteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided.
RatMap—rat genome tools and data
Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M.; Ståhl, Fredrik
2005-01-01
The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB–Genetics at Göteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided. PMID:15608244
Early Intervention: A Multicultural Perspective on d/Deaf and Hard of Hearing Multilingual Learners.
Sandy, K Bowen
2016-01-01
Today's pluralistic society is characterized by families from many linguistic and cultural backgrounds, including families with infants and toddlers who are deaf or hard of hearing (d/Dhh). Taking a multicultural perspective, the author examines family-centered early intervention (FCEI) and the transition to school services for children who are d/Dhh. Working with d/Dhh Multilingual Learners (DMLs) and their families presents a unique challenge to early intervention professionals: ensuring that families have adequate information and resources to make informed choices, particularly regarding communication. The author presents information and research related to (a) family and professional partnerships, (b) cultural contexts for early intervention, (c) family communication decisions and linguistic diversity, (d) emerging research on DMLs, (e) considerations for early intervention providers and interpreters who work with culturally and linguistically diverse d/Dhh infants and toddlers, and (f) cultural reflections on ensuring smooth transitions from early intervention into preschool programs.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin
2011-10-01
We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.
Information Flow Model of Human Extravehicular Activity Operations
NASA Technical Reports Server (NTRS)
Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.
2014-01-01
Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.
Energetic Passivity of the Human Ankle Joint.
Lee, Hyunglae; Hogan, Neville
2016-12-01
Understanding the passive or nonpassive behavior of the neuromuscular system is important to design and control robots that physically interact with humans, since it provides quantitative information to secure coupled stability while maximizing performance. This has become more important than ever apace with the increasing demand for robotic technologies in neurorehabilitation. This paper presents a quantitative characterization of passive and nonpassive behavior of the ankle of young healthy subjects, which provides a baseline for future studies in persons with neurological impairments and information for future developments of rehabilitation robots, such as exoskeletal devices and powered prostheses. Measurements using a wearable ankle robot actuating 2 degrees-of-freedom of the ankle combined with curl analysis and passivity analysis enabled characterization of both quasi-static and steady-state dynamic behavior of the ankle, unavailable from single DOF studies. Despite active neuromuscular control over a wide range of muscle activation, in young healthy subjects passive or dissipative ankle behavior predominated.
Practical characterization of quantum devices without tomography
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Flammia, Steven; Silva, Marcus; Liu, Yi-Kai; Poulin, David
2012-02-01
Quantum tomography is the main method used to assess the quality of quantum information processing devices, but its complexity presents a major obstacle for the characterization of even moderately large systems. Part of the reason for this complexity is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the ?delity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a signi?cant reduction in resources compared to tomography. In particular, we show how to estimate the ?delity between a predicted pure state and an arbitrary experimental state using only a constant number of Pauli expectation values selected at random according to an importance-weighting rule. In addition, we propose methods for certifying quantum circuits and learning continuous-time quantum dynamics that are described by local Hamiltonians or Lindbladians.
NASA Technical Reports Server (NTRS)
Smetana, Jerry (Editor); Mittra, Raj (Editor); Laprade, Nick; Edward, Bryan; Zaghloul, Amir
1987-01-01
The IEEE AP-S ADCOM is attempting to expand its educational, tutorial and information exchange activities as a further benefit to all members. To this end, ADCOM will be forming specialized workshops on topics of interest to its members. The first such workshop on Characterization and Packaging of MMIC Devices for Array Antennas was conceived. The workshop took place on June 13, 1986 as part of the 1986 International Symposium sponsored by IEEE AP-S and URSI in Philadelphia, PA, June 9-13, 1986. The workshop was formed to foster the interchange of ideas among MMIC device users and to provide a forum to collect and focus information among engineers experienced and interested in the topic. After brief presentations by the panelists and comments from attendees on several subtopics, the group was divided into working committees. Each committee evaluated and made recommendations on one of the subtopics.
Functional Classification of Immune Regulatory Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.
2013-05-01
Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving themore » class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.« less
Dual Roadside Seismic Sensor for Moving Road Vehicle Detection and Characterization
Wang, Hua; Quan, Wei; Wang, Yinhai; Miller, Gregory R.
2014-01-01
This paper presents a method for using a dual roadside seismic sensor to detect moving vehicles on roadway by installing them on a road shoulder. Seismic signals are split into fixed time intervals in recording. In each interval, the time delay of arrival (TDOA) is estimated using a generalized cross-correlation approach with phase transform (GCC-PHAT). Various kinds of vehicle characterization information, including vehicle speed, axle spacing, detection of both vehicle axles and moving direction, can also be extracted from the collected seismic signals as demonstrated in this paper. The error of both vehicle speed and axle spacing detected by this approach has been shown to be less than 20% through the field tests conducted on an urban street in Seattle. Compared to most existing sensors, this new design of dual seismic sensor is cost effective, easy to install, and effective in gathering information for various traffic management applications. PMID:24526304
Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface
NASA Astrophysics Data System (ADS)
Antolin, J.; Yu, Z.; Prasad, S.
2016-09-01
The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.
Optical Scattering Characterization for the Glennan Microsystems Microscale Particulate Classifier
NASA Technical Reports Server (NTRS)
Lock, James A.
2002-01-01
Small sensors that are tolerant to mechanically and thermally harsh environments present the possibility for in-situ particle characterization in propulsion, industrial, and planetary science applications. Under a continuing grant from the Glennan Microsystems Initiative to the Microgravity Fluids Physics Branch of the NASA-Glenn Research Center, a Microscale Particle Classifier (MiPAC) instrument is being developed. The MiPAC instrument will be capable of determining the size distribution of airborne particles from about 1 nm to 30 micrometers, and will provide partial information as to the concentration, charge state, shape, and structure of the particles, while being an order of magnitude smaller in size and lighter in weight than presently commercially available instruments. The portion of the instrument that will characterize the nm-range particles will employ electrical mobility techniques and is being developed under a separate grant to Prof. David Pui of the University of Minnesota. The portion of the instrument that will characterize the micrometer-size particles such as dirt, pollens, spores, molds, soot, and combustion aerosols will use light scattering techniques. The development of data analysis techniques to be employed in the light scattering portion of the instrument is covered by this grant.
Decoherence estimation in quantum theory and beyond
NASA Astrophysics Data System (ADS)
Pfister, Corsin
The quantum physics literature provides many different characterizations of decoherence. Most of them have in common that they describe decoherence as a kind of influence on a quantum system upon interacting with an another system. In the spirit of quantum information theory, we adapt a particular viewpoint on decoherence which describes it as the loss of information into a system that is possibly controlled by an adversary. We use a quantitative framework for decoherence that builds on operational characterizations of the min-entropy that have been developed in the quantum information literature. It characterizes decoherence as an influence on quantum channels that reduces their suitability for a variety of quantifiable tasks such as the distribution of secret cryptographic keys of a certain length or the distribution of a certain number of maximally entangled qubit pairs. This allows for a quantitative and operational characterization of decoherence via operational characterizations of the min-entropy. In this thesis, we present a series of results about the estimation of the minentropy, subdivided into three parts. The first part concerns the estimation of a quantum adversary's uncertainty about classical information--expressed by the smooth min-entropy--as it is done in protocols for quantum key distribution (QKD). We analyze this form of min-entropy estimation in detail and find that some of the more recently suggested QKD protocols have previously unnoticed security loopholes. We show that the specifics of the sifting subroutine of a QKD protocol are crucial for security by pointing out mistakes in the security analysis in the literature and by presenting eavesdropping attacks on those problematic protocols. We provide solutions to the identified problems and present a formalized analysis of the min-entropy estimate that incorporates the sifting stage of QKD protocols. In the second part, we extend ideas from QKD to a protocol that allows to estimate an adversary's uncertainty about quantum information, expressed by the fully quantum smooth min-entropy. Roughly speaking, we show that a protocol that resembles the parallel execution of two QKD protocols can be used to lower bound the min-entropy of some unmeasured qubits. We explain how this result may influence the ongoing search for protocols for entanglement distribution. The third part is dedicated to the development of a framework that allows the estimation of decoherence even in experiments that cannot be correctly described by quantum theory. Inspired by an equivalent formulation of the min-entropy that relates it to the fidelity with a maximally entangled state, we define a decoherence quantity for a very general class of probabilistic theories that reduces to the min-entropy in the special case of quantum theory. This entails a definition of maximal entanglement for generalized probabilistic theories. Using techniques from semidefinite and linear programming, we show how bounds on this quantity can be estimated through Bell-type experiments. This allows to test models for decoherence that cannot be described by quantum theory. As an example application, we devise an experimental test of a model for gravitational decoherence that has been suggested in the literature.
Characterization of addressability by simultaneous randomized benchmarking.
Gambetta, Jay M; Córcoles, A D; Merkel, S T; Johnson, B R; Smolin, John A; Chow, Jerry M; Ryan, Colm A; Rigetti, Chad; Poletto, S; Ohki, Thomas A; Ketchen, Mark B; Steffen, M
2012-12-14
The control and handling of errors arising from cross talk and unwanted interactions in multiqubit systems is an important issue in quantum information processing architectures. We introduce a benchmarking protocol that provides information about the amount of addressability present in the system and implement it on coupled superconducting qubits. The protocol consists of randomized benchmarking experiments run both individually and simultaneously on pairs of qubits. A relevant figure of merit for the addressability is then related to the differences in the measured average gate fidelities in the two experiments. We present results from two similar samples with differing cross talk and unwanted qubit-qubit interactions. The results agree with predictions based on simple models of the classical cross talk and Stark shifts.
NASA Astrophysics Data System (ADS)
Malik, Mehul
Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this thesis, I present new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that were secure against any intercept-resend jamming attacks. The second technology presented in this thesis is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly gaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this thesis is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. I discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. In addition, I present a study characterizing the effects of turbulence on a communication system using OAM modes for encoding. The fourth and final technology presented in this thesis is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. I use this technique to characterize the quantum state of a photon with a dimensionality of d = 27, and visualize its rotation in the natural basis of OAM.
Wavelet entropy: a new tool for analysis of short duration brain electrical signals.
Rosso, O A; Blanco, S; Yordanova, J; Kolev, V; Figliola, A; Schürmann, M; Başar, E
2001-01-30
Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials.
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Designing quantum information processing via structural physical approximation
NASA Astrophysics Data System (ADS)
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Developing Hydrogeological Site Characterization Strategies based on Human Health Risk
NASA Astrophysics Data System (ADS)
de Barros, F.; Rubin, Y.; Maxwell, R. M.
2013-12-01
In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose-response models can impact the probability of human health risk exceeding a regulatory threshold.
OGRO: The Overview of functionally characterized Genes in Rice online database.
Yamamoto, Eiji; Yonemaru, Jun-Ichi; Yamamoto, Toshio; Yano, Masahiro
2012-12-01
The high-quality sequence information and rich bioinformatics tools available for rice have contributed to remarkable advances in functional genomics. To facilitate the application of gene function information to the study of natural variation in rice, we comprehensively searched for articles related to rice functional genomics and extracted information on functionally characterized genes. As of 31 March 2012, 702 functionally characterized genes were annotated. This number represents about 1.6% of the predicted loci in the Rice Annotation Project Database. The compiled gene information is organized to facilitate direct comparisons with quantitative trait locus (QTL) information in the Q-TARO database. Comparison of genomic locations between functionally characterized genes and the QTLs revealed that QTL clusters were often co-localized with high-density gene regions, and that the genes associated with the QTLs in these clusters were different genes, suggesting that these QTL clusters are likely to be explained by tightly linked but distinct genes. Information on the functionally characterized genes compiled during this study is now available in the O verview of Functionally Characterized G enes in R ice O nline database (OGRO) on the Q-TARO website ( http://qtaro.abr.affrc.go.jp/ogro ). The database has two interfaces: a table containing gene information, and a genome viewer that allows users to compare the locations of QTLs and functionally characterized genes. OGRO on Q-TARO will facilitate a candidate-gene approach to identifying the genes responsible for QTLs. Because the QTL descriptions in Q-TARO contain information on agronomic traits, such comparisons will also facilitate the annotation of functionally characterized genes in terms of their effects on traits important for rice breeding. The increasing amount of information on rice gene function being generated from mutant panels and other types of studies will make the OGRO database even more valuable in the future.
Location contexts of user check-ins to model urban geo life-style patterns.
Hasan, Samiul; Ukkusuri, Satish V
2015-01-01
Geo-location data from social media offers us information, in new ways, to understand people's attitudes and interests through their activity choices. In this paper, we explore the idea of inferring individual life-style patterns from activity-location choices revealed in social media. We present a model to understand life-style patterns using the contextual information (e. g. location categories) of user check-ins. Probabilistic topic models are developed to infer individual geo life-style patterns from two perspectives: i) to characterize the patterns of user interests to different types of places and ii) to characterize the patterns of user visits to different neighborhoods. The method is applied to a dataset of Foursquare check-ins of the users from New York City. The co-existence of several location contexts and the corresponding probabilities in a given pattern provide useful information about user interests and choices. It is found that geo life-style patterns have similar items-either nearby neighborhoods or similar location categories. The semantic and geographic proximity of the items in a pattern reflects the hidden regularity in user preferences and location choice behavior.
Entropy of dynamical social networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Marton; Bianconi, Ginestra
2012-02-01
Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.
Retrieval of tropospheric carbon monoxide for the MOPITT experiment
NASA Astrophysics Data System (ADS)
Pan, Liwen; Gille, John C.; Edwards, David P.; Bailey, Paul L.; Rodgers, Clive D.
1998-12-01
A retrieval method for deriving the tropospheric carbon monoxide (CO) profile and column amount under clear sky conditions has been developed for the Measurements of Pollution In The Troposphere (MOPITT) instrument, scheduled for launch in 1998 onboard the EOS-AM1 satellite. This paper presents a description of the method along with analyses of retrieval information content. These analyses characterize the forward measurement sensitivity, the contribution of a priori information, and the retrieval vertical resolution. Ensembles of tropospheric CO profiles were compiled both from aircraft in situ measurements and from chemical model results and were used in retrieval experiments to characterize the method and to study the sensitivity to different parameters. Linear error analyses were carried out in parallel with the ensemble experiments. Results of these experiments and analyses indicate that MOPITT CO column measurements will have better than 10% precision, and CO profile measurement will have approximately three pieces of independent information that will resolve 3-5 tropospheric layers to approximately 10% precision. These analyses are important for understanding MOPITT data, both for application of data in tropospheric chemistry studies and for comparison with in situ measurements.
Characterization of measurements in quantum communication. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chan, V. W. S.
1975-01-01
A characterization of quantum measurements by operator valued measures is presented. The generalized measurements include simultaneous approximate measurement of noncommuting observables. This characterization is suitable for solving problems in quantum communication. Two realizations of such measurements are discussed. The first is by adjoining an apparatus to the system under observation and performing a measurement corresponding to a self-adjoint operator in the tensor-product Hilbert space of the system and apparatus spaces. The second realization is by performing, on the system alone, sequential measurements that correspond to self-adjoint operators, basing the choice of each measurement on the outcomes of previous measurements. Simultaneous generalized measurements are found to be equivalent to a single finer grain generalized measurement, and hence it is sufficient to consider the set of single measurements. An alternative characterization of generalized measurement is proposed. It is shown to be equivalent to the characterization by operator-values measures, but it is potentially more suitable for the treatment of estimation problems. Finally, a study of the interaction between the information-carrying system and a measurement apparatus provides clues for the physical realizations of abstractly characterized quantum measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Christopher Blake
A new particle decaying to a pair of vector bosons was discovered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider. In the wake of this discovery a rush of measurements was made to characterize this particle. The fourlepton final state has been instrumental in both the discovery and characterization of this new particle. With only about 20 events seen in the resonance peak at 125 GeV the CMS experiment has been able to make considerable progress in characterizing the Higgs-like boson using the wealth of information in this final state in concert with other decaymore » modes. In addition to the search for this new boson we present three recent results in the study of the Higgs-like boson properties: studies of the production mode, total width, and spin-parity quantum numbers.« less
Surfactant-assisted morphological studies of α-Al2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Shah, Janki; Ranjan, Mukesh; Gupta, Sanjeev K.; Sonvane, Yogesh
2018-05-01
The present study deals with the synthesis and characterization of aluminum oxide (Al2O3) nanopowders, it is very useful material as dielectric, ceramic and catalyst. The high-quality nanopowders were obtained by adding surfactants urea and sodium acetate. Further, all characterizations are done for with (urea and sodium acetate) and without surfactant. X-ray diffraction was used to characterize phase formation and the crystallite size of powder while, FTIR gives information about the particle composition and surface intermediates. X-ray diffraction spectra revealed the synthesized nanoparticles phase transformation were γ-Al2O3 to α-Al2O3 phase. Furthermore, the addition of urea and sodium acetate significantly reduced the crystalline size of α-Al2O3 nanoparticles from 43.94 nm to 35.12 nm respectively.
NASA Astrophysics Data System (ADS)
McBride, B.; Martins, J. V.; Fernandez Borda, R. A.; Barbosa, H. M.
2017-12-01
The Laboratory for Aerosols, Clouds, and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) present a novel, wide FOV, hyper-angular imaging polarimeter for the microphysical sampling of clouds and aerosols from aircraft and space. The instrument, the Hyper-Angular Rainbow Polarimeter (HARP), is a precursor to the multi-angle imaging polarimeter solicited by the upcoming NASA Aerosols, Clouds, and Ecosystems (ACE) mission. HARP currently operates in two forms: a spaceborne CubeSat slated for a January 2018 launch to the ISS orbit, and an identical aircraft platform that participated in the Lake Michigan Ozone Study (LMOS) and Aerosol Characterization from Polarimeter and Lidar (ACEPOL) NASA campaigns in 2017. To ensure and validate the instrument's ability to produce high quality Level 2 cloud and aerosol microphysical products, a comprehensive calibration scheme that accounts for flatfielding, radiometry, and all optical interference processes that contribute to the retrieval of Stokes parameters I, Q, and U, is applied across the entirety of HARP's 114° FOV. We present an innovative calibration algorithm that convolves incident polarization from a linear polarization state generator with intensity information observed at three distinct linear polarizations. The retrieved results are pixel-level, modified Mueller matrices that characterize the entire HARP optical assembly, without the need to characterize every individual element or perform ellipsometric studies. Here we show results from several pre- and post- LMOS campaign radiometric calibrations at NASA GSFC and polarimetric calibration using a "polarization dome" that allows for full-FOV characterization of Stokes parameters I, Q, and U. The polarization calibration is verified by passing unpolarized light through partially-polarized, tilted glass plates with well-characterized degree of linear polarization (DoLP). We apply this calibration to a stratocumulous cloud deck case observed during the LMOS campaign on June 19 2017, and assess the polarized cloudbow for cloud droplet effective radius and variance information at 0.67µm.
Age-equivalent top-down modulation during cross-modal selective attention.
Guerreiro, Maria J S; Anguera, Joaquin A; Mishra, Jyoti; Van Gerven, Pascal W M; Gazzaley, Adam
2014-12-01
Selective attention involves top-down modulation of sensory cortical areas, such that responses to relevant information are enhanced whereas responses to irrelevant information are suppressed. Suppression of irrelevant information, unlike enhancement of relevant information, has been shown to be deficient in aging. Although these attentional mechanisms have been well characterized within the visual modality, little is known about these mechanisms when attention is selectively allocated across sensory modalities. The present EEG study addressed this issue by testing younger and older participants in three different tasks: Participants attended to the visual modality and ignored the auditory modality, attended to the auditory modality and ignored the visual modality, or passively perceived information presented through either modality. We found overall modulation of visual and auditory processing during cross-modal selective attention in both age groups. Top-down modulation of visual processing was observed as a trend toward enhancement of visual information in the setting of auditory distraction, but no significant suppression of visual distraction when auditory information was relevant. Top-down modulation of auditory processing, on the other hand, was observed as suppression of auditory distraction when visual stimuli were relevant, but no significant enhancement of auditory information in the setting of visual distraction. In addition, greater visual enhancement was associated with better recognition of relevant visual information, and greater auditory distractor suppression was associated with a better ability to ignore auditory distraction. There were no age differences in these effects, suggesting that when relevant and irrelevant information are presented through different sensory modalities, selective attention remains intact in older age.
Information physics fundamentals of nanophotonics.
Naruse, Makoto; Tate, Naoya; Aono, Masashi; Ohtsu, Motoichi
2013-05-01
Nanophotonics has been extensively studied with the aim of unveiling and exploiting light-matter interactions that occur at a scale below the diffraction limit of light, and recent progress made in experimental technologies--both in nanomaterial fabrication and characterization--is driving further advancements in the field. From the viewpoint of information, on the other hand, novel architectures, design and analysis principles, and even novel computing paradigms should be considered so that we can fully benefit from the potential of nanophotonics. This paper examines the information physics aspects of nanophotonics. More specifically, we present some fundamental and emergent information properties that stem from optical excitation transfer mediated by optical near-field interactions and the hierarchical properties inherent in optical near-fields. We theoretically and experimentally investigate aspects such as unidirectional signal transfer, energy efficiency and networking effects, among others, and we present their basic theoretical formalisms and describe demonstrations of practical applications. A stochastic analysis of light-assisted material formation is also presented, where an information-based approach provides a deeper understanding of the phenomena involved, such as self-organization. Furthermore, the spatio-temporal dynamics of optical excitation transfer and its inherent stochastic attributes are utilized for solution searching, paving the way to a novel computing paradigm that exploits coherent and dissipative processes in nanophotonics.
Aaron D. Stottlemeyer; Victor B. Shelburne; Thomas A. Waldrop; Sandra Rideout-Hanzak; William C. Bridges
2009-01-01
Prescribed fire has been widely used in the south-eastern United States to meet forest management objectives, but has only recently been reintroduced to the southern Appalachian Mountains. Fuel information is not available to forest managers in this region and direct measurement is often impractical owing to steep, remote topography. The objective of the present study...
Solar applications of thermal energy storage. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.; Taylor, L.; DeVries, J.
A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)
ERIC Educational Resources Information Center
Campbell-Thrane, Lucille, Ed.
This publication presents a data collection system useful in measuring the success of vocational programs for special needs populations as well as current descriptive/demographic information on special needs populations nationwide. The first of four chapters provides a general characterization of special populations and specific definitions for…
ERIC Educational Resources Information Center
MAXIMA Corp., Silver Spring, MD.
Building on the findings of a survey of potential users and a descriptive review of five existing information networks, the present study represents an attempt to characterize several options for a voluntary confederation of participants in operating the National Environmental Data Referral Services (NEDRES) being developed by the Assessment and…
Learning and Information Approaches for Inference in Dynamic Data-Driven Geophysical Applications
NASA Astrophysics Data System (ADS)
Ravela, S.
2015-12-01
Many Geophysical inference problems are characterized by non-linear processes, high-dimensional models and complex uncertainties. A dynamic coupling between models, estimation, and sampling is typically sought to efficiently characterize and reduce uncertainty. This process is however fraught with several difficulties. Among them, the key difficulties are the ability to deal with model errors, efficacy of uncertainty quantification and data assimilation. In this presentation, we present three key ideas from learning and intelligent systems theory and apply them to two geophysical applications. The first idea is the use of Ensemble Learning to compensate for model error, the second is to develop tractable Information Theoretic Learning to deal with non-Gaussianity in inference, and the third is a Manifold Resampling technique for effective uncertainty quantification. We apply these methods, first to the development of a cooperative autonomous observing system using sUAS for studying coherent structures. We apply this to Second, we apply this to the problem of quantifying risk from hurricanes and storm surges in a changing climate. Results indicate that learning approaches can enable new effectiveness in cases where standard approaches to model reduction, uncertainty quantification and data assimilation fail.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
NASA Astrophysics Data System (ADS)
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-01
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-19
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
NASA Astrophysics Data System (ADS)
Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu
2017-11-01
The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.
Comprehensive chlorophyll composition in the main edible seaweeds.
Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María
2017-08-01
Natural chlorophylls present in seaweeds have been studied regarding their biological activities and health benefit effects. However, detailed studies regarding characterization of the complete chlorophyll profile either qualitatively and quantitatively are scarce. This work deals with the comprehensive spectrometric study of the chlorophyll derivatives present in the five main coloured edible seaweeds. The novel complete MS 2 characterization of five chlorophyll derivatives: chlorophyll c 2 , chlorophyll c 1 , purpurin-18 a, pheophytin d and phytyl-purpurin-18 a has allowed to obtain fragmentation patterns associated with their different structural features. New chlorophyll derivatives have been identified and quantified by first time in red, green and brown seaweeds, including some oxidative structures. Quantitative data of the chlorophyll content comes to achieve significant information for food composition databases in bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Blake, David F.; Chang, Sherwood (Technical Monitor)
1994-01-01
A great deal of recent laboratory work has focussed on the characterization of the nitric acid hydrates, thought to be present in type I Polar Stratospheric Clouds (PSCs). Phase relationships and vapor pressure measurements (1-3) and infrared characterizations (4-5) have been made. However, the observed properties of crystalline solids (composition, melting point, vapor pressure, surface reactivity, thermodynamic stability, extent of solid solution with other components, etc.) are controlled by their crystal structure. The only means of unequivocal structural identification for crystalline solids is diffraction (using electrons, X-rays, neutrons, etc.). Other observed properties of crystalline solids, such as their infrared spectra, their vapor pressure as a function of temperature, etc. yield only indirect information about what phases are present, their relative proportions, or whether they are crystalline or amorphous.
Synthesis and Characterization of Gd and Nd Nanoparticles
NASA Astrophysics Data System (ADS)
Romero, Dulce G.; Ho, Pei-Chun; Attar, Saeed
2009-03-01
Due to the reduced dimensionality, nano-sized materials have physical properties significantly different from the bulk material, such as, superparamagnetic behavior, enhanced magnetization, and self-organization [1-3]. Nano-sized materials have great potential for technical applications, for example, magnetic information storage, imaging, medical devices, and magnetic refrigeration. In this report, we will present the growth and filtration of rare-earth Gd and Nd nanoparticles by the inverse micelle technique [4]. The results of the characterization of these clusters by X- ray diffraction, scanning electron microscope, and energy-dispersive x-ray spectroscopy will be presented. [1] D.C. Douglass, et al. Phys. Rev. B. 47, 19 (1993). [2] J.P. Chen, et al. Phys. Rev. B. 51, 11527 (1995). [3] C. Petit, et al. Advanced Materials. 10, 259 (1998). [4] X.M. Lin, et al. Langmuir. 14, 7140 (1998).
NASA Astrophysics Data System (ADS)
Aghakouchak, Amir; Tourian, Mohammad J.
2015-04-01
Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014 California Drought will be presented. Further Reading: Hao Z., AghaKouchak A., Nakhjiri N., Farahmand A., 2014, Global Integrated Drought Monitoring and Prediction System, Scientific Data, 1:140001, 1-10, doi: 10.1038/sdata.2014.1.
NASA Technical Reports Server (NTRS)
Wing, David J.; Adams, Richard J.; Duley, Jacqueline A.; Legan, Brian M.; Barmore, Bryan E.; Moses, Donald
2001-01-01
A predominant research focus in the free flight community has been on the type of information required on the flight deck to enable pilots to "autonomously" maintain separation from other aircraft. At issue are the relative utility and requirement for information exchange between aircraft regarding the current "state" and/or the "intent" of each aircraft. This paper presents the experimental design and some initial findings of an experimental research study designed to provide insight into the issue of intent information exchange in constrained en-route operations and its effect on pilot decision making and flight performance. Two operational modes for autonomous operations were compared in a piloted simulation. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective data results are presented that generally indicate pilot consensus in favor of the strategic mode.
Nonverbal working memory of humans and monkeys: rehearsal in the sketchpad?
NASA Technical Reports Server (NTRS)
Washburn, D. A.; Astur, R. S.; Rumbaugh, D. M. (Principal Investigator)
1998-01-01
Investigations of working memory tend to focus on the retention of verbal information. The present experiments were designed to characterize the active maintenance rehearsal process used in the retention of visuospatial information. Rhesus monkeys (Macaca mulatta; N = 6) were tested as well as humans (total N = 90) because these nonhuman primates have excellent visual working memory but, unlike humans, cannot verbally recode the stimuli to employ verbal rehearsal mechanisms. A series of experiments was conducted using a distractor-task paradigm, a directed forgetting procedure, and a dual-task paradigm. No evidence was found for an active maintenance process for either species. Rather, it appears that information is maintained in the visuospatial sketchpad without active rehearsal.
Nanomaterials in consumer products: a challenging analytical problem.
Contado, Catia
2015-01-01
Many products used in everyday life are made with the assistance of nanotechnologies. Cosmetic, pharmaceuticals, sunscreen, powdered food are only few examples of end products containing nano-sized particles (NPs), generally added to improve the product quality. To evaluate correctly benefits vs. risks of engineered nanomaterials and consequently to legislate in favor of consumer's protection, it is necessary to know the hazards connected with the exposure levels. This information implies transversal studies and a number of different competences. On analytical point of view the identification, quantification and characterization of NPs in food matrices and in cosmetic or personal care products pose significant challenges, because NPs are usually present at low concentration levels and the matrices, in which they are dispersed, are complexes and often incompatible with analytical instruments that would be required for their detection and characterization. This paper focused on some analytical techniques suitable for the detection, characterization and quantification of NPs in food and cosmetics products, reports their recent application in characterizing specific metal and metal-oxide NPs in these two important industrial and market sectors. The need of a characterization of the NPs as much as possible complete, matching complementary information about different metrics, possible achieved through validate procedures, is what clearly emerges from this research. More work should be done to produce standardized materials and to set-up methodologies to determine number-based size distributions and to get quantitative date about the NPs in such a complex matrices.
Nanomaterials in consumer products: a challenging analytical problem
NASA Astrophysics Data System (ADS)
Contado, Catia
2015-08-01
Many products used in everyday life are made with the assistance of nanotechnologies. Cosmetic, pharmaceuticals, sunscreen, powdered food are only few examples of end products containing nano-sized particles (NPs), generally added to improve the product quality. To evaluate correctly benefits versus risks of engineered nanomaterials and consequently to legislate in favor of consumer’s protection, it is necessary to know the hazards connected with the exposure levels. This information implies transversal studies and a number of different competences. On analytical point of view the identification, quantification and characterization of NPs in food matrices and in cosmetic or personal care products pose significant challenges, because NPs are usually present at low concentration levels and the matrices, in which they are dispersed, are complexes and often incompatible with analytical instruments that would be required for their detection and characterization. This paper focused on some analytical techniques suitable for the detection, characterization and quantification of NPs in food and cosmetics products, reports their recent application in characterizing specific metal and metal-oxide NPs in these two important industrial and market sectors. The need of a characterization of the NPs as much as possible complete, matching complementary information about different metrics, possible achieved through validate procedures, is what clearly emerges from this research. More work should be done to produce standardized materials and to set-up methodologies to determine number-based size distributions and to get quantitative date about the NPs in such a complex matrices.
Nanomaterials in consumer products: a challenging analytical problem
Contado, Catia
2015-01-01
Many products used in everyday life are made with the assistance of nanotechnologies. Cosmetic, pharmaceuticals, sunscreen, powdered food are only few examples of end products containing nano-sized particles (NPs), generally added to improve the product quality. To evaluate correctly benefits vs. risks of engineered nanomaterials and consequently to legislate in favor of consumer's protection, it is necessary to know the hazards connected with the exposure levels. This information implies transversal studies and a number of different competences. On analytical point of view the identification, quantification and characterization of NPs in food matrices and in cosmetic or personal care products pose significant challenges, because NPs are usually present at low concentration levels and the matrices, in which they are dispersed, are complexes and often incompatible with analytical instruments that would be required for their detection and characterization. This paper focused on some analytical techniques suitable for the detection, characterization and quantification of NPs in food and cosmetics products, reports their recent application in characterizing specific metal and metal-oxide NPs in these two important industrial and market sectors. The need of a characterization of the NPs as much as possible complete, matching complementary information about different metrics, possible achieved through validate procedures, is what clearly emerges from this research. More work should be done to produce standardized materials and to set-up methodologies to determine number-based size distributions and to get quantitative date about the NPs in such a complex matrices. PMID:26301216
The timing and sources of information for the adoption and implementation of production innovations
NASA Technical Reports Server (NTRS)
Ettlie, J. E.
1976-01-01
Two dimensions (personal-impersonal and internal-external) are used to characterize information sources as they become important during the interorganizational transfer of production innovations. The results of three studies are reviewed for the purpose of deriving a model of the timing and importance of different information sources and the utilization of new technology. Based on the findings of two retrospective studies, it was concluded that the pattern of information seeking behavior in user organizations during the awareness stage of adoption is not a reliable predictor of the eventual utilization rate. Using the additional findings of a real-time study, an empirical model of the relative importance of information sources for successful user organizations is presented. These results are extended and integrated into a theoretical model consisting of a time-profile of successful implementations and the relative importance of four types of information sources during seven stages of the adoption-implementation process.
Sonography of cat scratch disease.
Melville, David M; Jacobson, Jon A; Downie, Brian; Biermann, J Sybil; Kim, Sung Moon; Yablon, Corrie M
2015-03-01
To characterize the sonographic features of cat scratch disease and to identify features that allow differentiation from other causes of medial epitrochlear masses. After Institutional Review Board approval was obtained, patients who underwent sonography for a medial epitrochlear mass or lymph node were identified via the radiology information system. Patients were divided into 2 groups: cat scratch disease and non-cat scratch disease, based on pathologic results and clinical information. Sonograms were retrospectively reviewed and characterized with respect to dimension, shape (round, oval, or lobular), symmetry, location (subcutaneous or intramuscular), multiplicity, echogenicity (anechoic, hypoechoic, isoechoic, hyperechoic, or mixed), hyperechoic hilum (present or absent), adjacent anechoic or hypoechoic area, hyperemia (present or absent), pattern of hyperemia if present (central, peripheral, or mixed), increased posterior through-transmission (present or absent), and shadowing (present or absent). Sonographic findings were compared between the patients with and without cat scratch disease. The final patient group consisted of 5 cases of cat scratch disease and 16 cases of other causes of medial epitrochlear masses. The 2 sonographic findings that were significantly different between the cat scratch disease and non-cat scratch disease cases included mass asymmetry (P = .0062) and the presence of a hyperechoic hilum (P = .0075). The other sonographic findings showed no significant differences between the groups. The sonographic finding of an epitrochlear mass due to cat scratch disease most commonly is that of a hypoechoic lobular or oval mass with central hyperemia and a possible adjacent fluid collection; however, the presence of asymmetry and a hyperechoic hilum differentiate cat scratch disease from other etiologies. © 2015 by the American Institute of Ultrasound in Medicine.
Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.
2000-01-01
Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.
TOPSAN: a dynamic web database for structural genomics.
Ellrott, Kyle; Zmasek, Christian M; Weekes, Dana; Sri Krishna, S; Bakolitsa, Constantina; Godzik, Adam; Wooley, John
2011-01-01
The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.
Persistence characterization and data calibration scheme for the RSS-NIR H2RG detector on SALT
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Eggen, Nathan; Wolf, Marsha; Jaehnig, Kurt; Kotulla, Ralf
2016-07-01
The University of Wisconsin Madison is building a NIR spectrograph (RSS-NIR) for the Southern African Large Telescope. The detector system uses a H2RG HdCdTe 1.7 μm cutoff array. We performed tests to measure and characterize the persistence of the detector to inform strategies to mitigate this effect. These tests use up-the- ramp group samples to get finer time resolution of the release of persistence. We share these test results. We also present preliminary results of the dependence of persistence on detector temperature. We conclude with an outline and assessment of a persistence calibration scheme.
A Petri Net-Based Software Process Model for Developing Process-Oriented Information Systems
NASA Astrophysics Data System (ADS)
Li, Yu; Oberweis, Andreas
Aiming at increasing flexibility, efficiency, effectiveness, and transparency of information processing and resource deployment in organizations to ensure customer satisfaction and high quality of products and services, process-oriented information systems (POIS) represent a promising realization form of computerized business information systems. Due to the complexity of POIS, explicit and specialized software process models are required to guide POIS development. In this chapter we characterize POIS with an architecture framework and present a Petri net-based software process model tailored for POIS development with consideration of organizational roles. As integrated parts of the software process model, we also introduce XML nets, a variant of high-level Petri nets as basic methodology for business processes modeling, and an XML net-based software toolset providing comprehensive functionalities for POIS development.
NASA Technical Reports Server (NTRS)
Bachmann, Klaus J.
1995-01-01
A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.
A computational framework to characterize and compare the geometry of coronary networks.
Bulant, C A; Blanco, P J; Lima, T P; Assunção, A N; Liberato, G; Parga, J R; Ávila, L F R; Pereira, A C; Feijóo, R A; Lemos, P A
2017-03-01
This work presents a computational framework to perform a systematic and comprehensive assessment of the morphometry of coronary arteries from in vivo medical images. The methodology embraces image segmentation, arterial vessel representation, characterization and comparison, data storage, and finally analysis. Validation is performed using a sample of 48 patients. Data mining of morphometric information of several coronary arteries is presented. Results agree to medical reports in terms of basic geometric and anatomical variables. Concerning geometric descriptors, inter-artery and intra-artery correlations are studied. Data reported here can be useful for the construction and setup of blood flow models of the coronary circulation. Finally, as an application example, similarity criterion to assess vasculature likelihood based on geometric features is presented and used to test geometric similarity among sibling patients. Results indicate that likelihood, measured through geometric descriptors, is stronger between siblings compared with non-relative patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Advanced applications of scatterometry based optical metrology
NASA Astrophysics Data System (ADS)
Dixit, Dhairya; Keller, Nick; Kagalwala, Taher; Recchia, Fiona; Lifshitz, Yevgeny; Elia, Alexander; Todi, Vinit; Fronheiser, Jody; Vaid, Alok
2017-03-01
The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, and lower cost per transistor. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require continuous development of metrology tools used for characterization of these complex 3D device architectures. Optical scatterometry or optical critical dimension (OCD) is one of the most prevalent inline metrology techniques in semiconductor manufacturing because it is a quick, precise and non-destructive metrology technique. However, at present OCD is predominantly used to measure the feature dimensions such as line-width, height, side-wall angle, etc. of the patterned nano structures. Use of optical scatterometry for characterizing defects such as pitch-walking, overlay, line edge roughness, etc. is fairly limited. Inspection of process induced abnormalities is a fundamental part of process yield improvement. It provides process engineers with important information about process errors, and consequently helps optimize materials and process parameters. Scatterometry is an averaging technique and extending it to measure the position of local process induced defectivity and feature-to-feature variation is extremely challenging. This report is an overview of applications and benefits of using optical scatterometry for characterizing defects such as pitch-walking, overlay and fin bending for advanced technology nodes beyond 7nm. Currently, the optical scatterometry is based on conventional spectroscopic ellipsometry and spectroscopic reflectometry measurements, but generalized ellipsometry or Mueller matrix spectroscopic ellipsometry data provides important, additional information about complex structures that exhibit anisotropy and depolarization effects. In addition the symmetry-antisymmetry properties associated with Mueller matrix (MM) elements provide an excellent means of measuring asymmetry present in the structure. The useful additional information as well as symmetry-antisymmetry properties of MM elements is used to characterize fin bending, overlay defects and design improvements in the OCD test structures are used to boost OCDs' sensitivity to pitch-walking. In addition, the validity of the OCD based results is established by comparing the results to the top down critical dimensionscanning electron microscope (CD-SEM) and cross-sectional transmission electron microscope (TEM) images.
Teaching color measurement in graphic arts
NASA Astrophysics Data System (ADS)
Ingram, Samuel T.; Simon, Frederick T.
1997-04-01
The production of color images has grown in recent years due to the impact of digital technology. Access and equipment affordability are now bringing a new generation of color producers into the marketplace. Many traditional questions concerning color attributes are repeatedly asked by individuals: color fidelity, quality, measurements and device characterization pose daily dilemmas. Curriculum components should be offered in an educational environment that enhance the color foundations required of knowledgeable managers, researchers and technicians. The printing industry is adding many of the new digital color technologies to their vocabulary pertinent to color production. This paper presents current efforts being made to integrate color knowledge in a four year program of undergraduate study. Specific topics include: color reproduction, device characterization, material characterization and the role of measurements as a linking attribute. This paper also provides information detailing efforts to integrate color specification/measurement and analysis procedures used by students and subsequent application in color image production are provided. A discussion of measurement devices used in the learning environment is also presented. The investigation involves descriptive data on colorants typically used in printing inks and color.
Firth, David; Bell, Leonard; Squires, Martin; Estdale, Sian; McKee, Colin
2015-09-15
We present the demonstration of a rapid "middle-up" liquid chromatography mass spectrometry (LC-MS)-based workflow for use in the characterization of thiol-conjugated maleimidocaproyl-monomethyl auristatin F (mcMMAF) and valine-citrulline-monomethyl auristatin E (vcMMAE) antibody-drug conjugates. Deconvoluted spectra were generated following a combination of deglycosylation, IdeS (immunoglobulin-degrading enzyme from Streptococcus pyogenes) digestion, and reduction steps that provide a visual representation of the product for rapid lot-to-lot comparison-a means to quickly assess the integrity of the antibody structure and the applied conjugation chemistry by mass. The relative abundance of the detected ions also offer information regarding differences in drug conjugation levels between samples, and the average drug-antibody ratio can be calculated. The approach requires little material (<100 μg) and, thus, is amenable to small-scale process development testing or as an early component of a complete characterization project facilitating informed decision making regarding which aspects of a molecule might need to be examined in more detail by orthogonal methodologies. Copyright © 2015 Elsevier Inc. All rights reserved.
Lunar Dust Characterization Activity at GRC
NASA Technical Reports Server (NTRS)
Street, Kenneth W.
2008-01-01
The fidelity of lunar simulants as compared to actual regolith is evaluated using Figures of Merit (FOM) which are based on four criteria: Particle Size, Particle Shape, Composition, and Density of the bulk material. In practice, equipment testing will require other information about both the physical properties (mainly of the dust fraction) and composition as a function of particle size. At Glenn Research Center (GRC) we are involved in evaluating a number of simulant properties of consequence to testing of lunar equipment in a relevant environment, in order to meet Technology Readiness Level (TRL) 6 criteria. Bulk regolith has been characterized for many decades, but surprisingly little work has been done on the dust fraction (particles less than 20 micrometers in diameter). GRC is currently addressing the information shortfall by characterizing the following physical properties: Particle Size Distribution, Adhesion, Abrasivity, Surface Energy, Magnetic Susceptibility, Tribocharging and Surface Chemistry/Reactivity. Since some of these properties are also dependent on the size of the particles we have undertaken the construction of a six stage axial cyclone particle separator to fractionate dust into discrete particle size distributions for subsequent evaluation of these properties. An introduction to this work and progress to date will be presented.
Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral deficits.
Mathew, Jobin; Paul, Jes; Nandhu, M S; Paulose, C S
2010-07-01
Bacopa monnieri is an outstanding nervine tonic used for raising the mental performance. It helps in concentration, comprehension, recall and alertness, Brahmi is particularly beneficial as it aids in categorizing information in brain and its subsequent expression. Bacopa is also called as a natural antioxidant which may give details its neuroprotective role seen in the memory centers of the brain. Epilepsy is neuronal disorder characterized by learning, cognitive and memory impairments. The present review summarizes information concerning botany, chemistry and beneficial effect of Bacopa monnieri on epilepsy associated behavioral deficits. Copyright 2009 Elsevier B.V. All rights reserved.
Utility of positron emission tomography in schwannomatosis.
Lieber, Bryan; Han, ByoungJun; Allen, Jeffrey; Fatterpekar, Girish; Agarwal, Nitin; Kazemi, Noojan; Zagzag, David
2016-08-01
Schwannomatosis is characterized by multiple non-intradermal schwannomas with patients often presenting with a painful mass in their extremities. In this syndrome malignant transformation of schwannomas is rare in spite of their large size at presentation. Non-invasive measures of assessing the biological behavior of plexiform neurofibromas in neurofibromatosis type 1 such as positron emission tomography (PET), CT scanning and MRI are well characterized but little information has been published on the use of PET imaging in schwannomatosis. We report a unique clinical presentation portraying the use of PET imaging in schwannomatosis. A 27-year-old woman presented with multiple, rapidly growing, large and painful schwannomas confirmed to be related to a constitutional mutation in the SMARCB1 complex. Whole body PET/MRI revealed numerous PET-avid tumors suggestive of malignant peripheral nerve sheath tumors. Surgery was performed on multiple tumors and none of them had histologic evidence of malignant transformation. Overall, PET imaging may not be a reliable predictor of malignant transformation in schwannomatosis, tempering enthusiasm for surgical interventions for tumors not producing significant clinical signs or symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.
A comparison of serial order short-term memory effects across verbal and musical domains.
Gorin, Simon; Mengal, Pierre; Majerus, Steve
2018-04-01
Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.
Optical characterization and polarization calibration for rigid endoscopes
NASA Astrophysics Data System (ADS)
Garcia, Missael; Gruev, Viktor
2017-02-01
Polarization measurements give orthogonal information to spectral images making them a great tool in the characterization of environmental parameters in nature. Thus, polarization imagery has proven to be remarkably useful in a vast range of biomedical applications. One such application is the early diagnosis of flat cancerous lesions in murine colorectal tumor models, where polarization data complements NIR fluorescence analysis. Advances in nanotechnology have led to compact and precise bio-inspired imaging sensors capable of accurately co-registering multidimensional spectral and polarization information. As more applications emerge for these imagers, the optics used in these instruments get very complex and can potentially compromise the original polarization state of the incident light. Here we present a complete optical and polarization characterization of three rigid endoscopes of size 1.9mm x 10cm (Karl Storz, Germany), 5mm x 30cm, and 10mm x 33cm (Olympus, Germany), used in colonoscopy for the prevention of colitis-associated cancer. Characterization results show that the telescope optics act as retarders and effectively depolarize the linear component. These incorrect readings can cause false-positives or false-negatives leading to an improper diagnosis. In this paper, we offer a polarization calibration scheme for these endoscopes based on Mueller calculus. By modeling the optical properties from training data as real-valued Mueller matrices, we are able to successfully reconstruct the initial polarization state acquired by the imaging system.
ERIC Educational Resources Information Center
Pavlovna, Kucher Tatyana; Stanislavovna, Kolyeva Natalya
2015-01-01
The paper deals with the problem of historiography, presented in three stages: the first stage (50-90s of the ?? century) is characterized by the introduction of a scientific apparatus expertise creating the preconditions of differences between concepts, the release of an independent direction of history of social and cultural activities. In the…
WFIRST: Exoplanet Data Challenge. Atmospheric retrieval results
NASA Astrophysics Data System (ADS)
Hildebrandt, Sergi; Turnbull, Margaret; Exoplanet Data Challenge Team
2018-01-01
We present the results of the Exoplanet Data Challenge for its first 2016/17 cycle and the current cycle 2. Some input spectra for extra-solar systems are processed through the WFIRST IFS instrument model, producing simulated data representative of the flight data. Atmospheric properties are then recovered using complex atmospheric models and multidimensional optimization. The results inform about WFIRST CGI ability to characterize exo-planetray atmospheres.
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth; Kim, Hak
2014-01-01
An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.
The Impact of HIV/AIDS and ARV Treatment on Worker Absenteeism: Implications for African Firms
ERIC Educational Resources Information Center
Habyarimana, James; Mbakile, Bekezela; Pop-Eleches, Cristian
2010-01-01
We characterize medium and long-run labor market impacts of HIV/AIDS and ARV treatment using unique panel data of worker absenteeism and information from an AIDS treatment program at a large mining firm in Botswana. We present robust evidence of an inverse-V shaped pattern in worker absenteeism around the time of ARV treatment inception.…
[HEALTH-IMPROVING REMEDIES ON THE BASIS OF SMECTITE®].
Shirobokov, V; Yankovskii, D; Dyment, G
2015-01-01
The review is devoted to the issues of using smectites in medicine. Modern information concerning smectite composition, structure, physico-chemical properties and reasonability of using them with health-improving purposes is presented. Special attention is given to smectite sorbtional and ionic properties and their unique mineral composition. Characterization is given to modern preparation based on smectites, including developed in Ukraine dietary additives of the series Smectovit®.
Inverting seismic data for rock physical properties; Mathematical background and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfour, Mohammed; Yoon, Wang Jung; Kim, Jinmo
2016-06-08
The basic concept behind seismic inversion is that mathematical assumptions can be established to relate seismic to geological formation properties that caused their seismic responses. In this presentation we address some widely used seismic inversion method in hydrocarbon reservoirs identification and characterization. A successful use of the inversion in real example from gas sand reservoir in Boonsville field, Noth Central Texas is presented. Seismic data was not unambiguous indicator of reservoir facies distribution. The use of the inversion led to remove the ambiguity and reveal clear information about the target.
Integrated Results from Analysis of the Rocknest Aeolian Deposit by the Curiosity Rover
NASA Technical Reports Server (NTRS)
Leshin, L. A.; Grotzinger, J. P.; Blake, D. F.; Edgett, K. S.; Gellert, R.; Mahaffy, P. R.; Malin, M. C.; Wiens, R. C.; Treiman, A. H.; Ming, D. W.;
2013-01-01
The Mars Science Laboratory Curiosity rover spent 45 sols (from sol 56-101) at an area called Rocknest (Fig. 1), characterizing local geology and ingesting its aeolian fines into the analytical instruments CheMin and SAM for mineralogical and chemical analysis. Many abstracts at this meeting present the contextual information and detailed data on these first solid samples analyzed in detail by Curiosity at Rocknest. Here, we present an integrated view of the results from Rocknest - the general agreement from discussions among the entire MSL Science Team.
DISCOS- Current Status and Future Developments
NASA Astrophysics Data System (ADS)
Flohrer, T.; Lemmens, S.; Bastida Virgili, B.; Krag, H.; Klinkrad, H.; Parrilla, E.; Sanchez, N.; Oliveira, J.; Pina, F.
2013-08-01
We present ESA's Database and Information System Characterizing Objects in Space (DISCOS). DISCOS not only plays an essential role in the collision avoidance and re-entry prediction services provided by ESA's Space Debris Office, it is also providing input to numerous and very differently scoped engineering activities, within ESA and throughout industry. We introduce the central functionalities of DISCOS, present the available reporting capabilities, and describe selected data modelling features. Finally, we revisit the developments of the recent years and take a sneak preview of the on-going replacement of DISCOS web front-end.
Photometric Exoplanet Characterization and Multimedia Astronomy Communication
NASA Astrophysics Data System (ADS)
Cartier, Kimberly M. S.
The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for transiting planets presented in this work quantifies the information contained in a sequence of transit depths using a normalized information content metric. The normalized information content metric can distinguish between naturally occurring, regular transits of real exoplanets detected via Kepler (low information content) and simulated artificial beacons whose depth and timing vary in a prime number sequence (high information content). Highly variable transit sequences with natural explanations--as seen with KIC 12557548, for example--can only be distinguished from artificial beacons when observed at a high signal-to-noise ratio (moderate information content) and may otherwise be confused with a more information-rich sequence. This dissertation also presents a review of effective methods for communicating science to various audiences, with specific applications to astronomy. That chapter highlights the necessity of integrating formal communications training into the early stages of a career in astronomy, explains why and how to apply story telling techniques to astronomy communication, and details specific strategies to apply when using common communication media. Examples are given for effectively communicating astronomy through academic research papers, slides for an oral presentation, and academic research posters, as well as examples of popular science blogs, feature articles, and news stories.
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
NASA Technical Reports Server (NTRS)
Kim, B. F.; Moorjani, K.; Phillips, T. E.; Adrian, F. J.; Bohandy, J.; Dolecek, Q. E.
1993-01-01
A method for characterization of granular superconducting thin films has been developed which encompasses both the morphological state of the sample and its fabrication process parameters. The broad scope of this technique is due to the synergism between experimental measurements and their interpretation using numerical simulation. Two novel technologies form the substance of this system: the magnetically modulated resistance method for characterizing superconductors; and a powerful new computer peripheral, the Parallel Information Processor card, which provides enhanced computing capability for PC computers. This enhancement allows PC computers to operate at speeds approaching that of supercomputers. This makes atomic scale simulations possible on low cost machines. The present development of this system involves the integration of these two technologies using mesoscale simulations of thin film growth. A future stage of development will incorporate atomic scale modeling.
Epidemic outbreaks in complex heterogeneous networks
NASA Astrophysics Data System (ADS)
Moreno, Y.; Pastor-Satorras, R.; Vespignani, A.
2002-04-01
We present a detailed analytical and numerical study for the spreading of infections with acquired immunity in complex population networks. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations in the limit of a very large number of nodes, exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This particular weakness, observed also in models without immunity, defines a new epidemiological framework characterized by a highly heterogeneous response of the system to the introduction of infected individuals with different connectivity. The understanding of epidemics in complex networks might deliver new insights in the spread of information and diseases in biological and technological networks that often appear to be characterized by complex heterogeneous architectures.
Electron tomography and 3D molecular simulations of platinum nanocrystals
NASA Astrophysics Data System (ADS)
Florea, Ileana; Demortière, Arnaud; Petit, Christophe; Bulou, Hervé; Hirlimann, Charles; Ersen, Ovidiu
2012-07-01
This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface.This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30990d
NASA Technical Reports Server (NTRS)
Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald
2001-01-01
This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
NASA Technical Reports Server (NTRS)
Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald
2002-01-01
This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-03-01
This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.
Innovative scheme for high-repetition-rate imaging of CN radical.
Satija, Aman; Ruesch, Morgan D; Powell, Michael S; Son, Steven F; Lucht, Robert P
2018-02-01
We have employed, to the best of our knowledge, a novel excitation scheme to perform the first high-repetition-rate planar laser-induced fluorescence (PLIF) measurements of a CN radical in combustion. The third harmonic of a Nd:YVO 4 laser at 355 nm due to its relatively large linewidth overlaps with several R branch transitions in a CN ground electronic state. Therefore, the 355 nm beam was employed to directly excite the CN transitions with good efficiency. The CN measurements were performed in premixed CH 4 -N 2 O flames with varying equivalence ratios. A detailed characterization of the high-speed CN PLIF imaging system is presented via its ability to capture statistical and dynamical information in these premixed flames. Single-shot CN PLIF images obtained over a HMX pellet undergoing self-supported deflagration are presented as an example of the imaging system being applied towards characterizing the flame structure of energetic materials.
Smith, Michelle K; Jones, Francis H M; Gilbert, Sarah L; Wieman, Carl E
2013-01-01
Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To help facilitate this process, we present a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or COPUS. This protocol allows STEM faculty, after a short 1.5-hour training period, to reliably characterize how faculty and students are spending their time in the classroom. We present the protocol, discuss how it differs from existing classroom observation protocols, and describe the process by which it was developed and validated. We also discuss how the observation data can be used to guide individual and institutional change.
Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; ...
2016-07-04
We present that an improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here, we present relevant background on this emerging suite of techniques. Finally, we focus on how the combinationmore » of theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials.« less
Ruffato, Gianluca; Massari, Michele; Romanato, Filippo
2016-04-20
During the last decade, the orbital angular momentum (OAM) of light has attracted growing interest as a new degree of freedom for signal channel multiplexing in order to increase the information transmission capacity in today's optical networks. Here we present the design, fabrication and characterization of phase-only diffractive optical elements (DOE) performing mode-division (de)multiplexing (MDM) and spatial-division (de)multiplexing (SDM) at the same time. Samples have been fabricated with high-resolution electron-beam lithography patterning a polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Different DOE designs are presented for the sorting of optical vortices differing in either OAM content or beam size in the optical regime, with different steering geometries in far-field. These novel DOE designs appear promising for telecom applications both in free-space and in multi-core fibers propagation.
Smith, Michelle K.; Jones, Francis H. M.; Gilbert, Sarah L.; Wieman, Carl E.
2013-01-01
Instructors and the teaching practices they employ play a critical role in improving student learning in college science, technology, engineering, and mathematics (STEM) courses. Consequently, there is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales. To help facilitate this process, we present a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or COPUS. This protocol allows STEM faculty, after a short 1.5-hour training period, to reliably characterize how faculty and students are spending their time in the classroom. We present the protocol, discuss how it differs from existing classroom observation protocols, and describe the process by which it was developed and validated. We also discuss how the observation data can be used to guide individual and institutional change. PMID:24297289
Ultrasonic non invasive techniques for microbiological instrumentation
NASA Astrophysics Data System (ADS)
Elvira, L.; Sierra, C.; Galán, B.; Resa, P.
2010-01-01
Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.
Information sharing and sorting in a community
NASA Astrophysics Data System (ADS)
Bhattacherjee, Biplab; Manna, S. S.; Mukherjee, Animesh
2013-06-01
We present the results of a detailed numerical study of a model for the sharing and sorting of information in a community consisting of a large number of agents. The information gathering takes place in a sequence of mutual bipartite interactions where randomly selected pairs of agents communicate with each other to enhance their knowledge and sort out the common information. Although our model is less restricted compared to the well-established naming game, the numerical results strongly indicate that the whole set of exponents characterizing this model are different from those of the naming game and they assume nontrivial values. Finally, it appears that in analogy to the emergence of clusters in the phenomenon of percolation, one can define clusters of agents here having the same information. We have studied in detail the growth of the largest cluster in this article and performed its finite-size scaling analysis.
Fostering Engagement Activities To Advance Adaptation And Resiliency
NASA Astrophysics Data System (ADS)
Dissen, J.; Owen, T.; Brewer, M.; Hollingshead, A.; Mecray, E. L.; Werner, K.
2015-12-01
As the understanding of climate risks grows for public and private companies, the dissemination of meaningful climate and environmental information becomes important for improved risk management practices and innovation. In a broader effort to build capacity for adaptation and demonstrate the value of investment in resiliency, NCEI and its partners have made several shifts to showcase an improved understanding of uses and applications of climate and environmental data and information. The NOAA NCEI engagement initiative includes actively exploring ways to: 1) identify opportunities in data use and applications and 2) characterize needs and requirements from customers to help inform investment in the relevant science. This presentation will highlight: 1) NCEI's engagement initiative strategy, 2) our regional and national partnerships as agents of engagement in the region, 3) a few examples of uses of climate information with select stakeholders and 4) justification of customer engagement and requirements as a critical component in informing the science agenda.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.; Basu, N.; Chen, X.
2007-05-01
Interwell application of coupled nonreactive and reactive tracers through aquifer contaminant source zones enables quantitative characterization of aquifer heterogeneity and contaminant architecture. Parameters obtained from tracer tests are presented here in a Lagrangian framework that can be used to predict the dissolution of nonaqueous phase liquid (NAPL) contaminants. Nonreactive tracers are commonly used to provide information about travel time distributions in hydrologic systems. Reactive tracers have more recently been introduced as a tool to quantify the amount of NAPL contaminant present within the tracer swept volume. Our group has extended reactive tracer techniques to also characterize NAPL spatial distribution heterogeneity. By conceptualizing the flow field through an aquifer as a collection of streamtubes, the aquifer hydrodynamic heterogeneities may be characterized by a nonreactive tracer travel time distribution, and NAPL spatial distribution heterogeneity may be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to derive a simple analytical solution for contaminant dissolution. This analytical solution, and the tracer techniques used for its parameterization, were validated both numerically and experimentally. Illustrative applications are presented from numerical simulations using the multiphase flow and transport simulator UTCHEM, and laboratory experiments of surfactant-enhanced NAPL remediation in two-dimensional flow chambers.
Nucleus Characterization of Main-Belt Comet P/Garradd
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Kaluna, Heather; Meech, Karen J.
2012-02-01
We seek SOAR time to physically characterize the nucleus of main- belt comet (MBC) P/2008 R1 (Garradd). Our primary objectives include determination of P/Garradd's rotation period, shape, and colors. MBCs are mysterious objects that exhibit cometary activity yet are dynamically indistinguishable from main-belt asteroids. Studying these apparently icy objects so close to the Sun is important for understanding the distribution of volatile material in our solar system as well as the origin of Earth's water. Five MBCs are currently known: only two have well-characterized nuclei, while the others have only been partially characterized. With so little known about this population, it is crucial to obtain the best possible physical characterizations for as many of the few currently known MBCs as possible. This information will aid us in developing a global understanding of the population's characteristics, such as the level of diversity as well as any commonalities. This will then help answer larger scientific questions such as how abundant MBCs may be and what they can tell us about the past and present distribution of ice in the inner solar system.
Real-time X-ray Diffraction: Applications to Materials Characterization
NASA Technical Reports Server (NTRS)
Rosemeier, R. G.
1984-01-01
With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.
Lichtenstein-Vidne, L; Okon-Singer, H; Cohen, N; Todder, D; Aue, T; Nemets, B; Henik, A
2017-01-01
Both anxiety and major depression disorder (MDD) were reported to involve a maladaptive selective attention mechanism, associated with bias toward negative stimuli. Previous studies investigated attentional bias using distractors that required processing as part of task settings, and therefore, in our view, these distractors should be regarded as task-relevant. Here, we applied a unique task that used peripheral distractors that presented emotional and spatial information simultaneously. Notably, the emotional information was not associated in any way to the task, and thus was task-irrelevant. The spatial information, however, was task-relevant as it corresponded with task instructions. Corroborating previous findings, anxious patients showed attentional bias toward negative information. MDD patients showed no indication of this bias. Spatial information influenced all groups similarly. These results indicate that anxiety, but not MDD, is associated with an inherent negative information bias, further illustrating that the two closely related disorders are characterized by different processing patterns. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
Information theoretic measures can be used to identify nonlinear interactions between source and target variables through reductions in uncertainty. In information partitioning, multivariate mutual information is decomposed into synergistic, unique, and redundant components. Synergy is information shared only when sources influence a target together, uniqueness is information only provided by one source, and redundancy is overlapping shared information from multiple sources. While this partitioning has been applied to provide insights into complex dependencies, several proposed partitioning methods overestimate redundant information and omit a component of unique information because they do not account for source dependencies. Additionally, information partitioning has only been applied to time-series data in a limited context, using basic pdf estimation techniques or a Gaussian assumption. We develop a Rescaled Redundancy measure (Rs) to solve the source dependency issue, and present Gaussian, autoregressive, and chaotic test cases to demonstrate its advantages over existing techniques in the presence of noise, various source correlations, and different types of interactions. This study constitutes the first rigorous application of information partitioning to environmental time-series data, and addresses how noise, pdf estimation technique, or source dependencies can influence detected measures. We illustrate how our techniques can unravel the complex nature of forcing and feedback within an ecohydrologic system with an application to 1 min environmental signals of air temperature, relative humidity, and windspeed. The methods presented here are applicable to the study of a broad range of complex systems composed of interacting variables.
Lidar Measurements for Desert Dust Characterization: An Overview
NASA Technical Reports Server (NTRS)
Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.
2012-01-01
We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brechtel, C.E.; Lin, Ming; Martin, E.
1995-05-01
This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to themore » Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.« less
Models, Entropy and Information of Temporal Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Márton; Bianconi, Ginestra
Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.
Case retrieval in medical databases by fusing heterogeneous information.
Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice
2011-01-01
A novel content-based heterogeneous information retrieval framework, particularly well suited to browse medical databases and support new generation computer aided diagnosis (CADx) systems, is presented in this paper. It was designed to retrieve possibly incomplete documents, consisting of several images and semantic information, from a database; more complex data types such as videos can also be included in the framework. The proposed retrieval method relies on image processing, in order to characterize each individual image in a document by their digital content, and information fusion. Once the available images in a query document are characterized, a degree of match, between the query document and each reference document stored in the database, is defined for each attribute (an image feature or a metadata). A Bayesian network is used to recover missing information if need be. Finally, two novel information fusion methods are proposed to combine these degrees of match, in order to rank the reference documents by decreasing relevance for the query. In the first method, the degrees of match are fused by the Bayesian network itself. In the second method, they are fused by the Dezert-Smarandache theory: the second approach lets us model our confidence in each source of information (i.e., each attribute) and take it into account in the fusion process for a better retrieval performance. The proposed methods were applied to two heterogeneous medical databases, a diabetic retinopathy database and a mammography screening database, for computer aided diagnosis. Precisions at five of 0.809 ± 0.158 and 0.821 ± 0.177, respectively, were obtained for these two databases, which is very promising.
Using Multispectral False Color Imaging to Characterize Tropical Cyclone Structure and Environment
NASA Astrophysics Data System (ADS)
Cossuth, J.; Bankert, R.; Richardson, K.; Surratt, M. L.
2016-12-01
The Naval Research Laboratory's (NRL) tropical cyclone (TC) web page (http://www.nrlmry.navy.mil/TC.html) has provided nearly two decades of near real-time access to TC-centric images and products by TC forecasters and enthusiasts around the world. Particularly, microwave imager and sounder information that is featured on this site provides crucial internal storm structure information by allowing users to perceive hydrometeor structure, providing key details beyond cloud top information provided by visible and infrared channels. Towards improving TC analysis techniques and helping advance the utility of the NRL TC webpage resource, new research efforts are presented. This work demonstrates results as well as the methodology used to develop new automated, objective satellite-based TC structure and intensity guidance and enhanced data fusion imagery products that aim to bolster and streamline TC forecast operations. This presentation focuses on the creation and interpretation of false color RGB composite imagery that leverages the different emissive and scattering properties of atmospheric ice, liquid, and vapor water as well as ocean surface roughness as seen by microwave radiometers. Specifically, a combination of near-realtime data and a standardized digital database of global TCs in microwave imagery from 1987-2012 is employed as a climatology of TC structures. The broad range of TC structures, from pinhole eyes through multiple eyewall configurations, is characterized as resolved by passive microwave sensors. The extraction of these characteristic features from historical data also lends itself to statistical analysis. For example, histograms of brightness temperature distributions allows a rigorous examination of how structural features are conveyed in image products, allowing a better representation of colors and breakpoints as they relate to physical features. Such climatological work also suggests steps to better inform the near-real time application of upcoming satellite datasets to TC analyses.
NASA Technical Reports Server (NTRS)
Babiak-Vazquez, Adriana; Ruffaner, Lanie M.; Wear, Mary L.; Crucian, Brian; Sams, Clarence; Lee, Lesley R.; Van Baalen, Mary
2016-01-01
In 2010, NASA implemented Lifetime Surveillance of Astronaut Health, a formal occupational surveillance program for the U.S. astronaut corps. Because of the nature of the space environment, space medicine presents unique challenges and opportunities for epidemiologists. One such example is the use of telemedicine while crewmembers are in flight, where the primary source of information about crew health is verbal communication between physicians and their crewmembers. Due to restricted medical capabilities, the available health information is primarily crewmember report of signs and symptoms, rather than diagnoses. As epidemiologists at NASA, Johnson Space Center, we have shifted our paradigm from tracking diagnoses based on traditional terrestrial clinical practice to one in which we also incorporate reported symptomology as potential antecedents of disease. In this presentation we describe how characterization of reported signs and symptoms can be used to establish incidence rates for inflight immunologic events. We describe interdisciplinary data sources of information that are used in combination with medical information to analyze the data. We also delineate criteria for symptom classification inclusion. Finally, we present incidence tables and graphs to illustrate the final outcomes. Using signs and symptoms reported via telemedicine, the epidemiologists provide summary evidence regarding incidence of potential inflight medical conditions. These results inform our NASA physicians and scientists, and support evaluation of the occupational health risks associated with spaceflight.
Dotson, G Scott; Hudson, Naomi L; Maier, Andrew
2015-01-01
Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management.
Visualization and characterization of users in a citizen science project
NASA Astrophysics Data System (ADS)
Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.
2013-05-01
Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.
Dotson, G. Scott; Hudson, Naomi L.; Maier, Andrew
2016-01-01
Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management. PMID:26312660
NASA Astrophysics Data System (ADS)
Eschweiler, Joseph D.; Frank, Aaron T.; Ruotolo, Brandon T.
2017-10-01
Multiprotein complexes are central to our understanding of cellular biology, as they play critical roles in nearly every biological process. Despite many impressive advances associated with structural characterization techniques, large and highly-dynamic protein complexes are too often refractory to analysis by conventional, high-resolution approaches. To fill this gap, ion mobility-mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing the structures of challenging assemblies due in large part to the ability of these methods to characterize the composition, connectivity, and topology of large, labile complexes. In this Critical Insight, we present a series of bioinformatics studies aimed at assessing the information content of IM-MS datasets for building models of multiprotein structure. Our computational data highlights the limits of current coarse-graining approaches, and compelled us to develop an improved workflow for multiprotein topology modeling, which we benchmark against a subset of the multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both the minimal experimental restraint sets required for generation of high-confidence multiprotein topologies, and quantify the ambiguity in models where insufficient IM-MS information is available. We conclude by projecting the future of IM-MS in the context of protein quaternary structure assignment, where we predict that a more complete knowledge of the ultimate information content and ambiguity within such models will undoubtedly lead to applications for a broader array of challenging biomolecular assemblies. [Figure not available: see fulltext.
In response to a Congressional directive contained in HR 106-379 regarding EPA's appropriations for FY2000, EPA has undertaken an evaluation of the characterization of data variability and uncertainty in its Integrated Risk Information System (IRIS) health effects information dat...
Assigning uncertainties in the inversion of NMR relaxation data.
Parker, Robert L; Song, Yi-Qaio
2005-06-01
Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace transform based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solutions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory. Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T(2) log-mean, and bound fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density models. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and elsewhere.
Optical diagnostics on the Magnetized Shock Experiment (MSX)
NASA Astrophysics Data System (ADS)
Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.
2013-10-01
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.
Characterizing the kinetics of suspended cylindrical particles by polarization measurements
NASA Astrophysics Data System (ADS)
Liao, Ran; Ou, Xueheng; Ma, Hui
2015-09-01
Polarization has promising potential to retrieve the information of the steady samples, such as tissues. However, for the fast changing sample such as the suspended algae in the water, the kinetics of the particles also influence the scattered polarization. The present paper will show our recent results to extract the information about the kinetics of the suspended cylindrical particles by polarization measurements. The sample is the aqueous suspension of the glass fibers stirred by a magnetic stirrer. We measure the scattered polarization of the fibers by use of a simultaneous polarization measurement system and obtain the time series of two orthogonal polarization components. By use of correlation analysis, we obtain the time parameters from the auto-correlation functions of the polarization components, and observe the changes with the stirring speeds. Results show that these time parameters indicate the immigration of the fibers. After discussion, we find that they may further characterize the kinetics, including the translation and rotation, of the glass fibers in the fluid field.
Oliva, Jesús; Serrano, J Ignacio; del Castillo, M Dolores; Iglesias, Angel
2014-06-01
The diagnosis of mental disorders is in most cases very difficult because of the high heterogeneity and overlap between associated cognitive impairments. Furthermore, early and individualized diagnosis is crucial. In this paper, we propose a methodology to support the individualized characterization and diagnosis of cognitive impairments. The methodology can also be used as a test platform for existing theories on the causes of the impairments. We use computational cognitive modeling to gather information on the cognitive mechanisms underlying normal and impaired behavior. We then use this information to feed machine-learning algorithms to individually characterize the impairment and to differentiate between normal and impaired behavior. We apply the methodology to the particular case of specific language impairment (SLI) in Spanish-speaking children. The proposed methodology begins by defining a task in which normal and individuals with impairment present behavioral differences. Next we build a computational cognitive model of that task and individualize it: we build a cognitive model for each participant and optimize its parameter values to fit the behavior of each participant. Finally, we use the optimized parameter values to feed different machine learning algorithms. The methodology was applied to an existing database of 48 Spanish-speaking children (24 normal and 24 SLI children) using clustering techniques for the characterization, and different classifier techniques for the diagnosis. The characterization results show three well-differentiated groups that can be associated with the three main theories on SLI. Using a leave-one-subject-out testing methodology, all the classifiers except the DT produced sensitivity, specificity and area under curve values above 90%, reaching 100% in some cases. The results show that our methodology is able to find relevant information on the underlying cognitive mechanisms and to use it appropriately to provide better diagnosis than existing techniques. It is also worth noting that the individualized characterization obtained using our methodology could be extremely helpful in designing individualized therapies. Moreover, the proposed methodology could be easily extended to other languages and even to other cognitive impairments not necessarily related to language. Copyright © 2014 Elsevier B.V. All rights reserved.
Location Contexts of User Check-Ins to Model Urban Geo Life-Style Patterns
Hasan, Samiul; Ukkusuri, Satish V.
2015-01-01
Geo-location data from social media offers us information, in new ways, to understand people's attitudes and interests through their activity choices. In this paper, we explore the idea of inferring individual life-style patterns from activity-location choices revealed in social media. We present a model to understand life-style patterns using the contextual information (e. g. location categories) of user check-ins. Probabilistic topic models are developed to infer individual geo life-style patterns from two perspectives: i) to characterize the patterns of user interests to different types of places and ii) to characterize the patterns of user visits to different neighborhoods. The method is applied to a dataset of Foursquare check-ins of the users from New York City. The co-existence of several location contexts and the corresponding probabilities in a given pattern provide useful information about user interests and choices. It is found that geo life-style patterns have similar items—either nearby neighborhoods or similar location categories. The semantic and geographic proximity of the items in a pattern reflects the hidden regularity in user preferences and location choice behavior. PMID:25970430
Chen, Guijie; Yuan, Qingxia; Saeeduddin, Muhammad; Ou, Shiyi; Zeng, Xiaoxiong; Ye, Hong
2016-11-20
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asif, Noushin; Biswas, Anjan; Jovanoski, Z.; Konar, S.
2015-01-01
This paper presents the dynamics of two spatially separated optical solitons in two-photon photorefractive materials. The variational formalism has been employed to derive evolution equations of different parameters which characterize the dynamics of two interacting solitons. This approach yields a system of coupled ordinary differential equations for evolution of different parameters characterizing solitons such as amplitude, spatial width, chirp, center of gravity, etc., which have been subsequently solved adopting numerical method to extract information on their dynamics. Depending on their initial separation and power, solitons are shown to either disperse or compresses individually and attract each other. Dragging and trapping of a probe soliton by another pump have been discussed.
Characterization of Microgravity Environment on Mir
NASA Technical Reports Server (NTRS)
Kim, Hyoung; Kaouk, Mohamed
2000-01-01
This paper presents the microgravity analysis results using dynamic response data collected during the first phase of the Mir Structural Dynamics Experiment (MiSDE). Although MiSDE was designed and performed to verify structural dynamic models, it also provided information for determining microgravity characteristics of the structure. This study analyzed ambient responses acquired during orbital day-to-night and night-to-day transitions, crew treadmill and ergometer exercises, and intentional crew activities. Acceleration levels for one-third octave bands were calculated to characterize the microgravity environment of the station. Spectrograms were also used to analyze the time transient nature of the responses. Detailed theoretical background and analysis results will also be included in the final draft.
Hattrick-Simpers, Jason R.; Gregoire, John M.; Kusne, A. Gilad
2016-05-26
With their ability to rapidly elucidate composition-structure-property relationships, high-throughput experimental studies have revolutionized how materials are discovered, optimized, and commercialized. It is now possible to synthesize and characterize high-throughput libraries that systematically address thousands of individual cuts of fabrication parameter space. An unresolved issue remains transforming structural characterization data into phase mappings. This difficulty is related to the complex information present in diffraction and spectroscopic data and its variation with composition and processing. Here, we review the field of automated phase diagram attribution and discuss the impact that emerging computational approaches will have in the generation of phase diagrams andmore » beyond.« less
NASA Astrophysics Data System (ADS)
Sjöberg, Daniel; Larsson, Christer
2015-06-01
We present a method aimed at reducing uncertainties and instabilities when characterizing materials in waveguide setups. The method is based on measuring the S parameters for three different orientations of a rectangular sample block in a rectangular waveguide. The corresponding geometries are modeled in a commercial full-wave simulation program, taking any material parameters as input. The material parameters of the sample are found by minimizing the squared distance between measured and calculated S parameters. The information added by the different sample orientations is quantified using the Cramér-Rao lower bound. The flexibility of the method allows the determination of material parameters of an arbitrarily shaped sample that fits in the waveguide.
Costa, Eliane Veiga da; Campos, Renata de Mendonça; Tavares, Fernando Neto; Grégio, Cátia Regina Valério; Burlandy, Fernanda Marcicano; Silva, Edson Elias da
2012-08-01
Outbreaks caused by vaccine-derived polioviruses are challenging the final eradication of paralytic poliomyelitis. Therefore, the surveillance of the acute flaccid paralysis cases based on poliovirus isolation and characterization remains an essential activity. Due to the use of trivalent oral poliovirus vaccine (OPV), mixtures containing more than one serotype of Sabin-related polioviruses are frequently isolated from clinical samples. Because each poliovirus isolate needs to be individually analyzed, we designed polymerase chain reaction primers that can selectively distinguish and amplify a genomic segment of the three Sabin-related poliovirus serotypes present in mixtures, thus, optimizing the diagnosis and providing prompt information to support epidemiologic actions.
Information sharing systems and teamwork between sub-teams: a mathematical modeling perspective
NASA Astrophysics Data System (ADS)
Tohidi, Hamid; Namdari, Alireza; Keyser, Thomas K.; Drzymalski, Julie
2017-12-01
Teamwork contributes to a considerable improvement in quality and quantity of the ultimate outcome. Collaboration and alliance between team members bring a substantial progress for any business. However, it is imperative to acquire an appropriate team since many factors must be considered in this regard. Team size may represent the effectiveness of a team and it is of paramount importance to determine what the ideal team size exactly should be. In addition, information technology increasingly plays a differentiating role in productivity and adopting appropriate information sharing systems may contribute to improvement in efficiency especially in competitive markets when there are numerous producers that compete with each other. The significance of transmitting information to individuals is inevitable to assure an improvement in team performance. In this paper, a model of teamwork and its organizational structure are presented. Furthermore, a mathematical model is proposed in order to characterize a group of sub-teams according to two criteria: team size and information technology. The effect of information technology on performance of team and sub-teams as well as optimum size of those team and sub-teams from a productivity perspective are studied. Moreover, a quantitative sensitivity analysis is presented in order to analyze the interaction between these two factors through a sharing system.
Evaluation of risk communication in a mammography patient decision aid.
Klein, Krystal A; Watson, Lindsey; Ash, Joan S; Eden, Karen B
2016-07-01
We characterized patients' comprehension, memory, and impressions of risk communication messages in a patient decision aid (PtDA), Mammopad, and clarified perceived importance of numeric risk information in medical decision making. Participants were 75 women in their forties with average risk factors for breast cancer. We used mixed methods, comprising a risk estimation problem administered within a pretest-posttest design, and semi-structured qualitative interviews with a subsample of 21 women. Participants' positive predictive value estimates of screening mammography improved after using Mammopad. Although risk information was only briefly memorable, through content analysis, we identified themes describing why participants value quantitative risk information, and obstacles to understanding. We describe ways the most complicated graphic was incompletely comprehended. Comprehension of risk information following Mammopad use could be improved. Patients valued receiving numeric statistical information, particularly in pictograph format. Obstacles to understanding risk information, including potential for confusion between statistics, should be identified and mitigated in PtDA design. Using simple pictographs accompanied by text, PtDAs may enhance a shared decision-making discussion. PtDA designers and providers should be aware of benefits and limitations of graphical risk presentations. Incorporating comprehension checks could help identify and correct misapprehensions of graphically presented statistics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Evaluation of risk communication in a mammography patient decision aid
Klein, Krystal A.; Watson, Lindsey; Ash, Joan S.; Eden, Karen B.
2016-01-01
Objectives We characterized patients’ comprehension, memory, and impressions of risk communication messages in a patient decision aid (PtDA), Mammopad, and clarified perceived importance of numeric risk information in medical decision making. Methods Participants were 75 women in their forties with average risk factors for breast cancer. We used mixed methods, comprising a risk estimation problem administered within a pretest–posttest design, and semi-structured qualitative interviews with a subsample of 21 women. Results Participants’ positive predictive value estimates of screening mammography improved after using Mammopad. Although risk information was only briefly memorable, through content analysis, we identified themes describing why participants value quantitative risk information, and obstacles to understanding. We describe ways the most complicated graphic was incompletely comprehended. Conclusions Comprehension of risk information following Mammopad use could be improved. Patients valued receiving numeric statistical information, particularly in pictograph format. Obstacles to understanding risk information, including potential for confusion between statistics, should be identified and mitigated in PtDA design. Practice implications Using simple pictographs accompanied by text, PtDAs may enhance a shared decision-making discussion. PtDA designers and providers should be aware of benefits and limitations of graphical risk presentations. Incorporating comprehension checks could help identify and correct misapprehensions of graphically presented statistics PMID:26965020
Shemesh, Noam; Ozarslan, Evren; Basser, Peter J; Cohen, Yoram
2010-01-21
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry
Choudhury, Niloy; Chen, Fangyi; Wang, Ruikang K.; Jacques, Steven L.; Nuttall, Alfred L.
2013-01-01
Abstract. We present an optical vibrometer based on delay-encoded, dual-beamlet phase-sensitive Fourier domain interferometric system to provide depth-resolved subnanometer scale vibration information from scattering biological specimens. System characterization, calibration, and preliminary vibrometry with biological specimens were performed. The proposed system has the potential to provide both amplitude and direction of vibration of tissue microstructures on a single two-dimensional plane. PMID:23455961
Electrostatic camera system functional design study
NASA Technical Reports Server (NTRS)
Botticelli, R. A.; Cook, F. J.; Moore, R. F.
1972-01-01
A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.
Characterization of the General Electric CID-17 as a Detector for Plasma Emission Spectrometry.
1985-11-25
multiwavelength disreteetectors. All tnToes oF detectors ’or plasma emission snectroscopv must mntil there o eapresetutisemhas. been, byes ereounu ai!- numer...photomultiplier tubes. With almost 100,000 channels, true multiwavelength detection is obtained making a new wealth of information available to the analytical...of complex mixtures by optical emission spectrometry requires sensitive simultaneous multiwavelength detection. Until the present, this has been
Isolation and characterization of DNA from archaeological bone.
Hagelberg, E; Clegg, J B
1991-04-22
DNA was extracted from human and animal bones recovered from archaeological sites and mitochondrial DNA sequences were amplified from the extracts using the polymerase chain reaction. Evidence is presented that the amplified sequences are authentic and do not represent contamination by extraneous DNA. The results show that significant amounts of genetic information can survive for long periods in bone, and have important implications for evolutionary genetics, anthropology and forensic science.
The shift to early palliative care: a typology of illness journeys and the role of nursing.
Wittenberg-Lyles, Elaine; Goldsmith, Joy; Ragan, Sandra
2011-06-01
For the current study, clinical observations of communication between patients, families, and clinicians during chronic, serious, or terminal illness in a cancer care trajectory were examined for patterns and trends. Five communication characteristics were concluded, which informed a typology of illness journeys experienced by patients with cancer and their families. The isolated journey characterizes an illness path in which communication about terminal prognosis and end-of-life care options are not present; communication is restricted by a curative-only approach to diagnosis as well as the structure of medical care. The rescued journey signifies a transition between curative care (hospital narrative) to noncurative care (hospice narrative), challenging patients and their families with an awareness of dying. The rescued journey allows communication about prognosis and care options, establishes productive experiences through open awareness, and affords patients and families opportunities to experience end-of-life care preferences. Finally, palliative care prior to hospice provides patients and families with an illness journey more readily characterized by open awareness and community, which facilitates a comforted journey. Nurses play a pivotal role in communicating about disease progression and plans of care. The typology presented can inform a structured communication curriculum for nurses and assist in the implementation of early palliative care.
Mayer, Michael; Keller, Adrian; Szewzyk, Ulrich; Warnecke, Hans-Joachim
2015-05-10
Pure drinking water is the basis for a healthy society. In Germany the drinking water regulations demand for analysis of water via detection of certain microbiological parameters by cultivation only. However, not all prokaryotes can be detected by these standard methods. How to gain more and better information about the bacteria present in drinking water and its distribution systems? The biofilms in drinking water distribution systems are built by bacteria and therefore represent a valuable source of information about the species present. Unfortunately, these biofilms are badly accessible. We thus exploited the circumstance that a lot of metazoans graze the biofilms, so that the content of their guts partly reflects the respective biofilm biocenosis. Therefore, we collected omnivorous isopods, prepared their guts and examined and characterized their contents based on 16S und 18S rDNA analysis. These molecularbiological investigations provide a profound basis for the characterization of the biocenosis and thereby biologically assess the drinking water ecosystems. Combined with a thorough identification of the species and the knowledge of their habitats, this approach can provide useful indications for the assessment of drinking-water quality and the early detection of problems in the distribution system. Copyright © 2015 Elsevier B.V. All rights reserved.
Combined Multidimensional Microscopy as a Histopathology Imaging Tool.
Shami, Gerald J; Cheng, Delfine; Braet, Filip
2017-02-01
Herein, we present a highly versatile bioimaging workflow for the multidimensional imaging of biological structures across vastly different length scales. Such an approach allows for the optimised preparation of samples in one go for consecutive X-ray micro-computed tomography, bright-field light microscopy and backscattered scanning electron microscopy, thus, facilitating the disclosure of combined structural information ranging from the gross tissue or cellular level, down to the nanometre scale. In this current study, we characterize various aspects of the hepatic vasculature, ranging from such large vessels as branches of the hepatic portal vein and hepatic artery, down to the smallest sinusoidal capillaries. By employing high-resolution backscattered scanning electron microscopy, we were able to further characterize the subcellular features of a range of hepatic sinusoidal cells including, liver sinusoidal endothelial cells, pit cells and Kupffer cells. Above all, we demonstrate the capabilities of a specimen manipulation workflow that can be applied and adapted to a plethora of functional and structural investigations and experimental models. Such an approach harnesses the fundamental advantages inherent to the various imaging modalities presented herein, and when combined, offers information not currently available by any single imaging platform. J. Cell. Physiol. 232: 249-256, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Characterization of spacecraft humidity condensate
NASA Technical Reports Server (NTRS)
Muckle, Susan; Schultz, John R.; Sauer, Richard L.
1994-01-01
When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.
Depth estimation of multi-layered impact damage in PMC using lateral thermography
NASA Astrophysics Data System (ADS)
Whitlow, Travis; Kramb, Victoria; Reibel, Rick; Dierken, Josiah
2018-04-01
Characterization of impact damage in polymer matrix composites (PMCs) continues to be a challenge due to the complex internal structure of the material. Nondestructive characterization approaches such as normal incident immersion ultrasound and flash thermography are sensitive to delamination damage, but do not provide information regarding damage obscured by the delaminations. Characterization of material state below a delamination requires a technique which is sensitive to in-plane damage modes such as matrix cracking and fiber breakage. Previous studies of the lateral heat flow through a composite laminate showed that the diffusion time was sensitive to the depth of the simulated damage zone. The current study will further evaluate the lateral diffusion model to provide sensitivity limits for the modeled flaw dimensions. Comparisons between the model simulations and experimental data obtained using a concentrated heat source and machined targets will also be presented.
Scanning Angle Raman spectroscopy in polymer thin film characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Vy H.T.
The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directionsmore » for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.« less
Zakhia, Frédéric; de Lajudie, Philippe
2006-03-01
Taxonomy is the science that studies the relationships between organisms. It comprises classification, nomenclature, and identification. Modern bacterial taxonomy is polyphasic. This means that it is based on several molecular techniques, each one retrieving the information at different cellular levels (proteins, fatty acids, DNA...). The obtained results are combined and analysed to reach a "consensus taxonomy" of a microorganism. Until 1970, a small number of classification techniques were available for microbiologists (mainly phenotypic characterization was performed: a legume species nodulation ability for a Rhizobium, for example). With the development of techniques based on polymerase chain reaction for characterization, the bacterial taxonomy has undergone great changes. In particular, the classification of the legume nodulating bacteria has been repeatedly modified over the last 20 years. We present here a review of the currently used molecular techniques in bacterial characterization, with examples of application of these techniques for the study of the legume nodulating bacteria.
Site characterization of the national seismic network of Italy
NASA Astrophysics Data System (ADS)
Bordoni, Paola; Pacor, Francesca; Cultrera, Giovanna; Casale, Paolo; Cara, Fabrizio; Di Giulio, Giuseppe; Famiani, Daniela; Ladina, Chiara; PIschiutta, Marta; Quintiliani, Matteo
2017-04-01
The national seismic network of Italy (Rete Sismica Nazionale, RSN) run by Istituto Nazionale di Geofisica e Vulcanologia (INGV) consists of more than 400 seismic stations connected in real time to the institute data center in order to locate earthquakes for civil defense purposes. A critical issue in the performance of a network is the characterization of site condition at the recording stations. Recently INGV has started addressing this subject through the revision of all available geological and geophysical data, the acquisition of new information by means of ad-hoc field measurements and the analysis of seismic waveforms. The main effort is towards building a database, integrated with the other INGV infrastructures, designed to archive homogeneous parameters through the seismic network useful for a complete site characterization, including housing, geological, seismological and geotechnical features as well as the site class according to the European and Italian building codes. Here we present the ongoing INGV activities.
Bisio, Antonella; Urso, Elena; Guerrini, Marco; de Wit, Pauline; Torri, Giangiacomo; Naggi, Annamaria
2017-06-24
A number of low molecular weight heparin (LMWH) products are available for clinical use and although all share a similar mechanism of action, they are classified as distinct drugs because of the different depolymerisation processes of the native heparin resulting in substantial pharmacokinetic and pharmacodynamics differences. While enoxaparin has been extensively investigated, little information is available regarding the LMWH dalteparin. The present study is focused on the detailed structural characterization of Fragmin ® by LC-MS and NMR applied both to the whole drug and to its enzymatic products. For a more in-depth approach, size homogeneous octasaccharide and decasaccharide components together with their fractions endowed with high or no affinity toward antithrombin were also isolated and their structural profiles characterized. The combination of different analytical strategies here described represents a useful tool for the assessment of batch-to-batch structural variability and for comparative evaluation of structural features of biosimilar products.
Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S
2008-10-27
A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.
Photoacoustic and ultrasound dual-modality imaging of human peripheral joints
NASA Astrophysics Data System (ADS)
Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Kaplan, Mariana J.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding
2013-01-01
A photoacoustic (PA) and ultrasound (US) dual modality system, for imaging human peripheral joints, is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system, on normal volunteers, revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Confirmed by the control US images, the system, on the PA mode, can differentiate tendon from surrounding soft tissue based on the endogenous optical contrast. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.
NASA Astrophysics Data System (ADS)
Laforest, Martin
Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for single and multi qubit systems. Even though liquid state NMR is argued to be unsuitable for scalable quantum information processing, it remains the best test-bed system to experimentally implement, verify and develop protocols aimed at increasing the control over general quantum information processors. For this reason, all the protocols described in this thesis have been implemented in liquid state NMR, which then led to further development of control and analysis techniques.
A study of current world telecommunications and a projection of the future
NASA Astrophysics Data System (ADS)
Karageorgis, Costas
1992-09-01
Telecommunications today are important factors in economic and social progress. The last decades of the 20th century and the early years of the 21st have been characterized as the Information Age. Telecommunications, the movement of information through distances, is absolutely critical to the economic and military survival of nations. This thesis is an attempt to predict the future of telecommunications, by studying and analyzing the past and present. First it examines the meaning of telecommunications today and some basics of information transmission. The current status of telecommunications is then presented, by examining the regional profiles as they are divided by the International Telecommunications Union. A number of statistical studies are given, which present a thorough picture of current world telecommunications. In an effort to predict future industry trends, the competition among the three largest telecommunications markets, U.S.A., Japan and the European Community, is also considered by looking at their present telecommunications industry, the efforts they make to improve their technology, and their plans for future investment. Finally, some major technological trends including BISDN, the use of fiber technology in the communications loop, and the use of solitons are examined. The new Metropolitan Area Network Protocol, FDDI-2 is also reviewed.
Borzello, Mia; Freiwald, Winrich A.; Tsao, Doris
2015-01-01
Faces are a behaviorally important class of visual stimuli for primates. Recent work in macaque monkeys has identified six discrete face areas where most neurons have higher firing rates to images of faces compared with other objects (Tsao et al., 2006). While neurons in these areas appear to have different tuning (Freiwald and Tsao, 2010; Issa and DiCarlo, 2012), exactly what types of information and, consequently, which visual behaviors neural populations within each face area can support, is unknown. Here we use population decoding to better characterize three of these face patches (ML/MF, AL, and AM). We show that neural activity in all patches contains information that discriminates between the broad categories of face and nonface objects, individual faces, and nonface stimuli. Information is present in both high and lower firing rate regimes. However, there were significant differences between the patches, with the most anterior patch showing relatively weaker representation of nonface stimuli. Additionally, we find that pose-invariant face identity information increases as one moves to more anterior patches, while information about the orientation of the head decreases. Finally, we show that all the information we can extract from the population is present in patterns of activity across neurons, and there is relatively little information in the total activity of the population. These findings give new insight into the representations constructed by the face patch system and how they are successively transformed. PMID:25948258
Using Fuzzy Clustering for Real-time Space Flight Safety
NASA Technical Reports Server (NTRS)
Lee, Charles; Haskell, Richard E.; Hanna, Darrin; Alena, Richard L.
2004-01-01
To ensure space flight safety, it is necessary to monitor myriad sensor readings on the ground and in flight. Since a space shuttle has many sensors, monitoring data and drawing conclusions from information contained within the data in real time is challenging. The nature of the information can be critical to the success of the mission and safety of the crew and therefore, must be processed with minimal data-processing time. Data analysis algorithms could be used to synthesize sensor readings and compare data associated with normal operation with the data obtained that contain fault patterns to draw conclusions. Detecting abnormal operation during early stages in the transition from safe to unsafe operation requires a large amount of historical data that can be categorized into different classes (non-risk, risk). Even though the 40 years of shuttle flight program has accumulated volumes of historical data, these data don t comprehensively represent all possible fault patterns since fault patterns are usually unknown before the fault occurs. This paper presents a method that uses a similarity measure between fuzzy clusters to detect possible faults in real time. A clustering technique based on a fuzzy equivalence relation is used to characterize temporal data. Data collected during an initial time period are separated into clusters. These clusters are characterized by their centroids. Clusters formed during subsequent time periods are either merged with an existing cluster or added to the cluster list. The resulting list of cluster centroids, called a cluster group, characterizes the behavior of a particular set of temporal data. The degree to which new clusters formed in a subsequent time period are similar to the cluster group is characterized by a similarity measure, q. This method is applied to downlink data from Columbia flights. The results show that this technique can detect an unexpected fault that has not been present in the training data set.
Spatial-spectral characterization of focused spatially chirped broadband laser beams.
Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-11-20
Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.
Axenfeld-Rieger syndrome (ARS): A review and case report.
Waldron, Jennie M; McNamara, Clare; Hewson, Antonia R; McNamara, C M
2010-01-01
Axenfeld-Rieger syndrome (ARS) is a rare, autosomal dominant condition characterized by ocular, craniofacial, dental, and periumbilical abnormalities. Relatively little information exists on this syndrome within the dental literature despite the fact that midface hypoplasia and maxillary hypodontia are classical presenting features of this syndrome. This is a case report of a 7-year-old Caucasian female with ARS who presented with significant ocular and dental anomalies. She was also found to have osteopenia. Her dental condition is described, her immediate treatment is shown, and her long-term treatment needs are discussed. ©2010 Special Care Dentistry Association and Wiley Periodicals, Inc.
Opening Public Administration: Exploring Open Innovation Archetypes and Business Model Impacts
NASA Astrophysics Data System (ADS)
Feller, Joseph; Finnegan, Patrick; Nilsson, Olof
This work-in-progress paper presents an exploration of a network of Swedish municipal authorities. Within this network, we have observed a move from isolated innovation to leveraging inflows and outflows of knowledge in a manner characteristic of the open innovation paradigm. This paper presents a characterization of these knowledge exchanges using an existing framework of open innovation archetypes, as well as an initial description of the business model impacts of this innovation approach on the participant municipalities, and the enabling role of information technology. The paper concludes by drawing preliminary conclusions and outlining ongoing research.
Dust: a metric for use in residential and building exposure assessment and source characterization.
Lioy, Paul J; Freeman, Natalie C G; Millette, James R
2002-01-01
In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment. PMID:12361921
Dust: a metric for use in residential and building exposure assessment and source characterization.
Lioy, Paul J; Freeman, Natalie C G; Millette, James R
2002-10-01
In this review, we examine house dust and residential soil and their use for identifying sources and the quantifying levels of toxicants for the estimation of exposure. We answer critical questions that focus on the selection of samples or sampling strategies for collection and discuss areas of uncertainty and gaps in knowledge. We discuss the evolution of dust sampling with a special emphasis on work conducted after the publication of the 1992 review by McArthur [Appl Occup Environ Hyg 7(9):599-606 (1992)]. The approaches to sampling dust examined include surface wipe sampling, vacuum sampling, and other sampling approaches, including attic sampling. The metrics of presentation of results for toxicants in dust surface loading (micrograms per square centimeter) or surface concentration (micrograms per gram) are discussed. We evaluate these metrics in terms of how the information can be used in source characterization and in exposure characterization. We discuss the types of companion information on source use and household or personal activity patterns required to assess the significance of the dust exposure. The status and needs for wipe samplers, surface samplers, and vacuum samplers are summarized with some discussion on the strengths and weaknesses of each type of sampler. We also discuss needs for research and development and the current status of standardization. Case studies are provided to illustrate the use of house dust and residential soil in source characterization, forensic analyses, or human exposure assessment.
Costain, Willard J; Tauskela, Joseph S; Rasquinha, Ingrid; Comas, Tanya; Hewitt, Melissa; Marleau, Vincent; Soo, Evelyn C
2016-09-05
There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, R. Andrew
2012-04-01
Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.
A Distributed Artificial Intelligence Approach To Object Identification And Classification
NASA Astrophysics Data System (ADS)
Sikka, Digvijay I.; Varshney, Pramod K.; Vannicola, Vincent C.
1989-09-01
This paper presents an application of Distributed Artificial Intelligence (DAI) tools to the data fusion and classification problem. Our approach is to use a blackboard for information management and hypothe-ses formulation. The blackboard is used by the knowledge sources (KSs) for sharing information and posting their hypotheses on, just as experts sitting around a round table would do. The present simulation performs classification of an Aircraft(AC), after identifying it by its features, into disjoint sets (object classes) comprising of the five commercial ACs; Boeing 747, Boeing 707, DC10, Concord and Boeing 727. A situation data base is characterized by experimental data available from the three levels of expert reasoning. Ohio State University ElectroScience Laboratory provided this experimental data. To validate the architecture presented, we employ two KSs for modeling the sensors, aspect angle polarization feature and the ellipticity data. The system has been implemented on Symbolics 3645, under Genera 7.1, in Common LISP.
A framework for characterizing eHealth literacy demands and barriers.
Chan, Connie V; Kaufman, David R
2011-11-17
Consumer eHealth interventions are of a growing importance in the individual management of health and health behaviors. However, a range of access, resources, and skills barriers prevent health care consumers from fully engaging in and benefiting from the spectrum of eHealth interventions. Consumers may engage in a range of eHealth tasks, such as participating in health discussion forums and entering information into a personal health record. eHealth literacy names a set of skills and knowledge that are essential for productive interactions with technology-based health tools, such as proficiency in information retrieval strategies, and communicating health concepts effectively. We propose a theoretical and methodological framework for characterizing complexity of eHealth tasks, which can be used to diagnose and describe literacy barriers and inform the development of solution strategies. We adapted and integrated two existing theoretical models relevant to the analysis of eHealth literacy into a single framework to systematically categorize and describe task demands and user performance on tasks needed by health care consumers in the information age. The method derived from the framework is applied to (1) code task demands using a cognitive task analysis, and (2) code user performance on tasks. The framework and method are applied to the analysis of a Web-based consumer eHealth task with information-seeking and decision-making demands. We present the results from the in-depth analysis of the task performance of a single user as well as of 20 users on the same task to illustrate both the detailed analysis and the aggregate measures obtained and potential analyses that can be performed using this method. The analysis shows that the framework can be used to classify task demands as well as the barriers encountered in user performance of the tasks. Our approach can be used to (1) characterize the challenges confronted by participants in performing the tasks, (2) determine the extent to which application of the framework to the cognitive task analysis can predict and explain the problems encountered by participants, and (3) inform revisions to the framework to increase accuracy of predictions. The results of this illustrative application suggest that the framework is useful for characterizing task complexity and for diagnosing and explaining barriers encountered in task completion. The framework and analytic approach can be a potentially powerful generative research platform to inform development of rigorous eHealth examination and design instruments, such as to assess eHealth competence, to design and evaluate consumer eHealth tools, and to develop an eHealth curriculum.
A Framework for Characterizing eHealth Literacy Demands and Barriers
Chan, Connie V
2011-01-01
Background Consumer eHealth interventions are of a growing importance in the individual management of health and health behaviors. However, a range of access, resources, and skills barriers prevent health care consumers from fully engaging in and benefiting from the spectrum of eHealth interventions. Consumers may engage in a range of eHealth tasks, such as participating in health discussion forums and entering information into a personal health record. eHealth literacy names a set of skills and knowledge that are essential for productive interactions with technology-based health tools, such as proficiency in information retrieval strategies, and communicating health concepts effectively. Objective We propose a theoretical and methodological framework for characterizing complexity of eHealth tasks, which can be used to diagnose and describe literacy barriers and inform the development of solution strategies. Methods We adapted and integrated two existing theoretical models relevant to the analysis of eHealth literacy into a single framework to systematically categorize and describe task demands and user performance on tasks needed by health care consumers in the information age. The method derived from the framework is applied to (1) code task demands using a cognitive task analysis, and (2) code user performance on tasks. The framework and method are applied to the analysis of a Web-based consumer eHealth task with information-seeking and decision-making demands. We present the results from the in-depth analysis of the task performance of a single user as well as of 20 users on the same task to illustrate both the detailed analysis and the aggregate measures obtained and potential analyses that can be performed using this method. Results The analysis shows that the framework can be used to classify task demands as well as the barriers encountered in user performance of the tasks. Our approach can be used to (1) characterize the challenges confronted by participants in performing the tasks, (2) determine the extent to which application of the framework to the cognitive task analysis can predict and explain the problems encountered by participants, and (3) inform revisions to the framework to increase accuracy of predictions. Conclusions The results of this illustrative application suggest that the framework is useful for characterizing task complexity and for diagnosing and explaining barriers encountered in task completion. The framework and analytic approach can be a potentially powerful generative research platform to inform development of rigorous eHealth examination and design instruments, such as to assess eHealth competence, to design and evaluate consumer eHealth tools, and to develop an eHealth curriculum. PMID:22094891
NASA Technical Reports Server (NTRS)
Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.;
2018-01-01
The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management
NASA Astrophysics Data System (ADS)
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María
2017-10-01
The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir. Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review
Bera, Tushar Kanti
2014-01-01
Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932
NASA Astrophysics Data System (ADS)
Zemcov, M.; Arai, T.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Tsumura, K.; Wada, T.
2013-08-01
The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.
Suihko, M-L; Priha, O; Alakomi, H-L; Thompson, P; Mälarstig, B; Stott, R; Richardson, M
2009-06-01
In this study the dominant filamentous actinobacteria occurring in water-damaged building materials were detected by culture and characterized by automated ribotyping and 16S rRNA gene sequencing. Fifty-two samples were taken from 20 water-damaged houses in four different countries. A total of 122 bacterial isolates were analyzed. Actinobacteria or thermoactinomycetes were present in 48% of the samples. The dominant genus was Streptomyces (58% of isolates), followed by Thermoactinomyces (23%), Laceyella (14%), Nocardiopsis (3%), Pseudonocardia (1%) and Saccharomonospora (1%). The most frequently detected species was the thermophilic Thermoactinomyces vulgaris (14 samples/4 countries). The most common streptomycetes were closely related to the heterogeneous species Streptomyces microflavus (7/2) or Streptomyces griseus (6/2). Automated ribotyping was a rapid tool for reliable characterization of these isolates. The spores of thermoactinomycetes and toxic substances of Nocardiopsis species and S. griseus may constitute a risk for human health. Harmful microbes in indoor environments are a cause of public concern. To develop rapid and simple-to-use molecular biological methods to detect the presence of harmful actinobacterial species in water-damaged buildings more information about their occurrence in those materials is needed, which this study provides.
Wildfire Decision Making Under Uncertainty
NASA Astrophysics Data System (ADS)
Thompson, M.
2013-12-01
Decisions relating to wildfire management are subject to multiple sources of uncertainty, and are made by a broad range of individuals, across a multitude of environmental and socioeconomic contexts. In this presentation I will review progress towards identification and characterization of uncertainties and how this information can support wildfire decision-making. First, I will review a typology of uncertainties common to wildfire management, highlighting some of the more salient sources of uncertainty and how they present challenges to assessing wildfire risk. This discussion will cover the expanding role of burn probability modeling, approaches for characterizing fire effects, and the role of multi-criteria decision analysis, and will provide illustrative examples of integrated wildfire risk assessment across a variety of planning scales. Second, I will describe a related uncertainty typology that focuses on the human dimensions of wildfire management, specifically addressing how social, psychological, and institutional factors may impair cost-effective risk mitigation. This discussion will encompass decision processes before, during, and after fire events, with a specific focus on active management of complex wildfire incidents. An improved ability to characterize uncertainties faced in wildfire management could lead to improved delivery of decision support, targeted communication strategies, and ultimately to improved wildfire management outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemcov, M.; Bock, J.; Hristov, V.
2013-08-15
The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, andmore » electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.« less
Madison, Joseph D.; Berg, Elizabeth A.; Abarca, Juan G.; Whitfield, Steven M.; Gorbatenko, Oxana; Pinto, Adrian; Kerby, Jacob L.
2017-01-01
Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response. PMID:28293222
NASA Technical Reports Server (NTRS)
Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John
2006-01-01
CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.
Risk Informed Margins Management as part of Risk Informed Safety Margin Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith
2014-06-01
The ability to better characterize and quantify safety margin is important to improved decision making about Light Water Reactor (LWR) design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plantmore » safety and performance will become known. To support decision making related to economics, readability, and safety, the Risk Informed Safety Margin Characterization (RISMC) Pathway provides methods and tools that enable mitigation options known as risk informed margins management (RIMM) strategies.« less
Pinto, Rute D; Pereira, Pedro J B; dos Santos, Nuno M S
2011-11-01
The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Human Exposure Model (HEM): A Tool to Support Rapid ...
The US EPA is developing an open and publically available software program called the Human Exposure Model (HEM) to provide near-field exposure information for Life Cycle Impact Assessments (LCIAs). Historically, LCIAs have often omitted impacts from near-field sources of exposure. The use of consumer products often results in near-field exposures (exposures that occur directly from the use of a product) that are larger than environmentally mediated exposures (i.e. far-field sources)1,2. Failure to consider near-field exposures could result in biases in LCIA-based determinations of the relative sustainability of consumer products. HEM is designed to provide this information.Characterizing near-field sources of chemical exposures present a challenge to LCIA practitioners. Unlike far-field sources, where multimedia mass balance models have been used to determine human exposure, near-field sources require product-specific models of human exposure and considerable information on product use and product composition. Such information is difficult and time-consuming to gather and curate. The HEM software will characterize the distribution of doses and product intake fractions2 across populations of product users and bystanders, allowing for differentiation by various demographic characteristics. The tool incorporates a newly developed database of the composition of more than 17,000 products, data on physical and chemical properties for more than 2,000 chemicals, and mo
NASA Astrophysics Data System (ADS)
Hardesty, R.; Brewer, A.; Banta, R. M.; Senff, C. J.; Sandberg, S. P.; Alvarez, R. J.; Weickmann, A. M.; Sweeney, C.; Karion, A.; Petron, G.; Frost, G. J.; Trainer, M.
2012-12-01
Aircraft-based mass balance approaches are often used to estimate greenhouse gas emissions from distributed sources such as urban areas and oil and gas fields. A scanning Doppler lidar, which measures range-resolved wind and aerosol backscatter information, can provide important information on mixing and transport processes in the planetary boundary layer for these studies. As part of the Uintah Basin Winter Ozone Study, we deployed a high resolution Doppler lidar to characterize winds and turbulence, atmospheric mixing, and mixing layer depth in the oil and gas fields near Vernal, Utah. The lidar observations showed evolution of the horizontal wind field, vertical mixing and aerosol structure for each day during the 5-week deployment. This information was used in conjunction with airborne in situ observations of methane and carbon dioxide to compute methane fluxes and estimate basin-wide methane emissions. A similar experiment incorporating a lidar along with a radar wind profiler and instrumented aircraft was subsequently carried out in the vicinity of the Denver-Julesburg Basin in Colorado. Using examples from these two studies we discuss the use of Doppler lidar in conjunction with other sources of wind information and boundary layer structure for mass-balance type studies. Plans for a one-year deployment of a Doppler lidar as part of the Indianapolis Flux experiment to estimate urban-scale greenhouse gas emissions near are also presented.
NASA Astrophysics Data System (ADS)
Birdwell, Justin E.; Valsaraj, Kalliat T.
Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores.
Birdwell, J.E.; Valsaraj, K.T.
2010-01-01
Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaertner, John P.; Teagarden, Grant A.
2006-07-01
In response to increased interest in risk-informed decision making regarding terrorism, EPRI and ERIN Engineering were selected by U.S. DHS and ASME to develop and demonstrate the RAMCAP method for nuclear power plant (NPP) risk assessment. The objective is to characterize plant-specific NPP risk for risk management opportunities and to provide consistent information for DHS decision making. This paper is an update of this project presented at the American Nuclear Society (ANS) International Topical Meeting on Probabilistic Safety Analysis (PSA05) in September, 2005. The method uses a characterization of risk as a function of Consequence, Vulnerability, and Threat. For eachmore » site, worst case scenarios are developed for each of sixteen benchmark threats. Nuclear RAMCAP hypothesizes that the intent of the perpetrator is to cause offsite radiological consequences. Specific targets are the reactor core, the spent fuel pool, and nuclear spent fuel in a dry storage facility (ISFSI). Results for each scenario are presented as conditional risk for financial loss, early fatalities and early injuries. Expected consequences for each scenario are quantified, while vulnerability is estimated on a relative likelihood scale. Insights for other societal risks are provided. Although threat frequencies are not provided, target attractiveness and threat deterrence are estimated. To assure efficiency, completeness, and consistency; results are documented using standard RAMCAP Evaluator software. Trial applications were successfully performed at four plant sites. Implementation at all other U.S. commercial sites is underway, supported by the Nuclear Sector Coordinating Council (NSCC). Insights from RAMCAP results at 23 U.S. plants completed to date have been compiled and presented to the NSCC. Results are site-specific. Physical security barriers, an armed security force, preparedness for design-basis threats, rugged design against natural hazards, multiple barriers between fuel and environment, accident mitigation capability, severe accident management procedures, and offsite emergency plans are risk-beneficial against all threat types. (authors)« less
Confocal Imaging of porous media
NASA Astrophysics Data System (ADS)
Shah, S.; Crawshaw, D.; Boek, D.
2012-12-01
Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.
Probing coal architecture by magnetic resonance microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botto, R. E.; Clifford, D. J.; Gregory, D. M.
1999-02-24
Time-resolved MRM investigations of a well-characterized suite of cross-linked polymers have yielded information on the nature of the solvent transport dynamics and mechanical relaxation of the networks. Network response parameters were then used to assess the macroscopic properties and cross-link densities of polymers with the degree of curing. This new approach is presently being developed to elucidate the complex macromolecular nature of coals and the variation with coal rank.
A Chip and Pixel Qualification Methodology on Imaging Sensors
NASA Technical Reports Server (NTRS)
Chen, Yuan; Guertin, Steven M.; Petkov, Mihail; Nguyen, Duc N.; Novak, Frank
2004-01-01
This paper presents a qualification methodology on imaging sensors. In addition to overall chip reliability characterization based on sensor s overall figure of merit, such as Dark Rate, Linearity, Dark Current Non-Uniformity, Fixed Pattern Noise and Photon Response Non-Uniformity, a simulation technique is proposed and used to project pixel reliability. The projected pixel reliability is directly related to imaging quality and provides additional sensor reliability information and performance control.
2012-08-02
with loading rate (as characterized by the faceplate velocity). The slope of the log-log plot is used to determine the stress corrosion susceptibility...a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...with volume Bragg grating spectral control ,” presented at Photonics West LASE, San Francisco, CA, January 2010 32. R.A. Sims, T. Dax, Z. Roth, T.S
Surface relief model for photopolymers without cover plating.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Marini, S; Beléndez, A; Pascual, I
2011-05-23
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information to characterize and understand the material behaviour. In this paper we present a 3-dimensional model based on direct measurements of parameters to predict the relief structures generated on the material. This model is successfully applied to different photopolymers with different values of monomer diffusion. The importance of monomer diffusion in depth is also discussed.
Qualia: The Geometry of Integrated Information
Balduzzi, David; Tononi, Giulio
2009-01-01
According to the integrated information theory, the quantity of consciousness is the amount of integrated information generated by a complex of elements, and the quality of experience is specified by the informational relationships it generates. This paper outlines a framework for characterizing the informational relationships generated by such systems. Qualia space (Q) is a space having an axis for each possible state (activity pattern) of a complex. Within Q, each submechanism specifies a point corresponding to a repertoire of system states. Arrows between repertoires in Q define informational relationships. Together, these arrows specify a quale—a shape that completely and univocally characterizes the quality of a conscious experience. Φ— the height of this shape—is the quantity of consciousness associated with the experience. Entanglement measures how irreducible informational relationships are to their component relationships, specifying concepts and modes. Several corollaries follow from these premises. The quale is determined by both the mechanism and state of the system. Thus, two different systems having identical activity patterns may generate different qualia. Conversely, the same quale may be generated by two systems that differ in both activity and connectivity. Both active and inactive elements specify a quale, but elements that are inactivated do not. Also, the activation of an element affects experience by changing the shape of the quale. The subdivision of experience into modalities and submodalities corresponds to subshapes in Q. In principle, different aspects of experience may be classified as different shapes in Q, and the similarity between experiences reduces to similarities between shapes. Finally, specific qualities, such as the “redness” of red, while generated by a local mechanism, cannot be reduced to it, but require considering the entire quale. Ultimately, the present framework may offer a principled way for translating qualitative properties of experience into mathematics. PMID:19680424
NASA Astrophysics Data System (ADS)
Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young
2018-02-01
Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.
A participatory sensing approach to characterize ride quality
NASA Astrophysics Data System (ADS)
Bridgelall, Raj
2014-03-01
Rough roads increase vehicle operation and road maintenance costs. Consequently, transportation agencies spend a significant portion of their budgets on ride-quality characterization to forecast maintenance needs. The ubiquity of smartphones and social media, and the emergence of a connected vehicle environment present lucrative opportunities for cost-reduction and continuous, network-wide, ride-quality characterization. However, there is a lack of models to transform inertial and position information from voluminous data flows into indices that transportation agencies currently use. This work expands on theories of the Road Impact Factor introduced in previous research. The index characterizes road roughness by aggregating connected vehicle data and reporting roughness in direct proportion to the International Roughness Index. Their theoretical relationships are developed, and a case study is presented to compare the relative data quality from an inertial profiler and a regular passenger vehicle. Results demonstrate that the approach is a viable alternative to existing models that require substantially more resources and provide less network coverage. One significant benefit of the participatory sensing approach is that transportation agencies can monitor all network facilities continuously to locate distress symptoms, such as frost heaves, that appear and disappear between ride assessment cycles. Another benefit of the approach is continuous monitoring of all high-risk intersections such as rail grade crossings to better understand the relationship between ride-quality and traffic safety.
NASA Astrophysics Data System (ADS)
Wang, Baijie; Wang, Xin; Chen, Zhangxin
2013-08-01
Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.
Accumulation of evidence during sequential decision making: the importance of top-down factors.
de Lange, Floris P; Jensen, Ole; Dehaene, Stanislas
2010-01-13
In the last decade, great progress has been made in characterizing the accumulation of neural information during simple unitary perceptual decisions. However, much less is known about how sequentially presented evidence is integrated over time for successful decision making. The aim of this study was to study the mechanisms of sequential decision making in humans. In a magnetoencephalography (MEG) study, we presented healthy volunteers with sequences of centrally presented arrows. Sequence length varied between one and five arrows, and the accumulated directions of the arrows informed the subject about which hand to use for a button press at the end of the sequence (e.g., LRLRR should result in a right-hand press). Mathematical modeling suggested that nonlinear accumulation was the rational strategy for performing this task in the presence of no or little noise, whereas quasilinear accumulation was optimal in the presence of substantial noise. MEG recordings showed a correlate of evidence integration over parietal and central cortex that was inversely related to the amount of accumulated evidence (i.e., when more evidence was accumulated, neural activity for new stimuli was attenuated). This modulation of activity likely reflects a top-down influence on sensory processing, effectively constraining the influence of sensory information on the decision variable over time. The results indicate that, when making decisions on the basis of sequential information, the human nervous system integrates evidence in a nonlinear manner, using the amount of previously accumulated information to constrain the accumulation of additional evidence.
An Analysis of Rocket Propulsion Testing Costs
NASA Technical Reports Server (NTRS)
Ramirez, Carmen; Rahman, Shamim
2010-01-01
The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.
A rapid method to characterize seabed habitats and associated macro-organisms
Anderson, T.J.; Cochrane, G.R.; Roberts, D.A.; Chezar, H.; Hatcher, G.; ,
2007-01-01
This study presents a method for rapidly collecting, processing, and interrogating real-time abiotic and biotic seabed data to determine seabed habitat classifications. This is done from data collected over a large area of an acoustically derived seabed map, along multidirectional transects, using a towed small camera-sled. The seabed, within the newly designated Point Harris Marine Reserve on the northern coast of San Miguel Island, California, was acoustically imaged using sidescan sonar then ground-truthed using a towed small camera-sled. Seabed characterizations were made from video observations, and were logged to a laptop computer (PC) in real time. To ground-truth the acoustic mosaic, and to characterize abiotic and biotic aspects of the seabed, a three-tiered characterization scheme was employed that described the substratum type, physical structure (i.e., bedform or vertical relief), and the occurrence of benthic macrofauna and flora. A crucial advantage of the method described here, is that preliminary seabed characterizations can be interrogated and mapped over the sidescan mosaic and other seabed information within hours of data collection. This ability to rapidly process seabed data is invaluable to scientists and managers, particularly in modifying concurrent or planning subsequent surveys.
Gangemi, Amelia; Mancini, Francesco; Dar, Reuven
2015-09-01
The inferential confusion hypothesis postulates that obsessive doubt is perpetuated by a subjective form of reasoning characterized primarily by a distrust of reality and an overreliance on imagined possibilities. However, experimental evidence for this hypothesis may be compromised by a potential confound between type of information (reality vs. possibility) and its valence (danger vs. safety). In the present study we aimed to untangle this potential confound. Forty OCD and 40 non-clinical participants underwent two versions of the Inferential Processes Task (Aardema, F., et al. (2009). The quantification of doubt in obsessive-compulsive disorder. International Journal of Cognitive Therapy, 2, 188-205). In the original version, the reality-based information is congruent with the safety hypothesis, whereas the possibility-based information is congruent with the danger hypothesis. In the modified version incorporated in the present study, the reality-based information is congruent with the danger hypothesis, whereas the possibility-based information is congruent with the safety hypothesis. Our findings did not support the inferential confusion hypothesis: both OCD and control participants changed their estimations of the probability of unwanted events based on the type of information they received (whether it conveyed danger or safety) regardless of whether it was framed as reality or possibility. The design of the present study does not lend itself to examining alternative explanations for the persistence of doubt in OCD. The hypothesized inferential confusion in OCD requires further validation. It is particularly important to demonstrate that findings do not reflect a prudential reasoning strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pan, Huiqin; Yang, Wenzhi; Zhang, Yibei; Yang, Min; Feng, Ruihong; Wu, Wanying; Guo, Dean
2015-08-01
The exploration of new chemical entities from herbal medicines may provide candidates for the in silico screening of drug leads. However, this significant work is hindered by the presence of multiple classes of plant metabolites and many re-discovered structures. This study presents an integrated strategy that uses ultrahigh-performance liquid chromatography/linear ion-trap quadrupole/Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap-MS) coupled with in-house library data for the systematic characterization and discovery of new potentially bioactive molecules. Exploration of the indole alkaloids from Uncaria rhynchophylla (UR) is presented as a model study. Initially, the primary characterization of alkaloids was achieved using mass defect filtering and neutral loss filtering. Subsequently, phytochemical isolation obtained 14 alkaloid compounds as reference standards, including a new one identified as 16,17-dihydro-O-demethylhirsuteine by NMR analyses. The direct-infusion fragmentation behaviors of these isolated alkaloids were studied to provide diagnostic structural information facilitating the rapid differentiation and characterization of four different alkaloid subtypes. Ultimately, after combining the experimental results with a survey of an in-house library containing 129 alkaloids isolated from the Uncaria genus, a total of 92 alkaloids (60 free alkaloids and 32 alkaloid O-glycosides) were identified or tentatively characterized, 56 of which are potential new alkaloids for the Uncaria genus. Hydroxylation on ring A, broad variations in the C-15 side chain, new N-oxides, and numerous O-glycosides, represent the novel features of the newly discovered indole alkaloid structures. These results greatly expand our knowledge of UR chemistry and are useful for the computational screening of potentially bioactive molecules from indole alkaloids. Graphical Abstract A four-step integrated strategy for the systematic characterization and efficient discovery of new indole alkaloids from Uncaria rhynchophylla.
Testing the Ge Detectors for the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.
High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.
Testing the Ge detectors for the MAJORANA DEMONSTRATOR
Xu, W.; Abgrall, N.; Aguayo, E.; ...
2015-03-24
High purity germanium (HPGe) crystals will be used for the Majorana Demonstrator, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performances of the HPGe crystals. A variety of crystal properties are being investigated, including both basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distribution. In this talk, we will present our measurements that characterize the HPGe crystals. In addition, we will discussmore » the experiment’s simulation package for the detector characterization setup, where additional information is learned from data simulation comparisons.« less
An improved method for LCD displays colorimetric characterization
NASA Astrophysics Data System (ADS)
Li, Tong; Xie, Kai; Wang, Qiaojie; He, Nannan; Ye, Yushan
2018-03-01
The colorimetric characterization of the display can achieve the purpose of precisely controlling the color of the monitor. This paper describes an improved method for estimating the gamma value of liquid-crystal displays (LCDs) without using a measurement device was described by Xiao et al. It relies on observer's luminance matching by presenting eight half-tone patterns with luminance from 1/9 to 8/9 of the maximum value of each color channel. Since the previous method lacked partial low frequency information, we partially replaced the half-tone patterns. A large number of experiments show that the color difference is reduced from 3.726 to 2.835, and our half-tone pattern can better estimate the visual gamma value of LCDs.
Steady-State Characterization of Bacteriorhodopsin-D85N Photocycle
NASA Technical Reports Server (NTRS)
Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)
1999-01-01
An operational characterization of the photocycle of the genetic mutant D85N of bacteriorhodopsin, BR-D85N, is presented. Steady-state bleach spectra and pump-probe absorbance data are obtained with thick hydrated films containing BR-D85N embedded in a gelatin host. Simple two- and three-state models are used to analyze the photocycle dynamics and extract relevant information such as pure-state absorption spectra, photochemical-transition quantum efficiencies, and thermal lifetimes of dominant states appearing in the photocycle, the knowledge of which should aid in the analysis of optical recording and retrieval of data in films incorporating this photochromic material. The remarkable characteristics of this material and their implications from the viewpoint of optical data storage and processing are discussed.
Statistical Characterization and Classification of Edge-Localized Plasma Instabilities
NASA Astrophysics Data System (ADS)
Webster, A. J.; Dendy, R. O.
2013-04-01
The statistics of edge-localized plasma instabilities (ELMs) in toroidal magnetically confined fusion plasmas are considered. From first principles, standard experimentally motivated assumptions are shown to determine a specific probability distribution for the waiting times between ELMs: the Weibull distribution. This is confirmed empirically by a statistically rigorous comparison with a large data set from the Joint European Torus. The successful characterization of ELM waiting times enables future work to progress in various ways. Here we present a quantitative classification of ELM types, complementary to phenomenological approaches. It also informs us about the nature of ELM processes, such as whether they are random or deterministic. The methods are extremely general and can be applied to numerous other quasiperiodic intermittent phenomena.
Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J
2016-04-23
Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.
Pereira, Jose Henrique; Heins, Richard A; Gall, Daniel L; McAndrew, Ryan P; Deng, Kai; Holland, Keefe C; Donohue, Timothy J; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Adams, Paul D
2016-05-06
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less
Polarity-specific high-level information propagation in neural networks.
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.
Polarity-specific high-level information propagation in neural networks
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals. PMID:24672472
Opportunities to integrate new approaches in genetic toxicology: an ILSI-HESI workshop report.
Zeiger, Errol; Gollapudi, Bhaskar; Aardema, Marilyn J; Auerbach, Scott; Boverhof, Darrell; Custer, Laura; Dedon, Peter; Honma, Masamitsu; Ishida, Seiichi; Kasinski, Andrea L; Kim, James H; Manjanatha, Mugimane G; Marlowe, Jennifer; Pfuhler, Stefan; Pogribny, Igor; Slikker, William; Stankowski, Leon F; Tanir, Jennifer Y; Tice, Raymond; van Benthem, Jan; White, Paul; Witt, Kristine L; Thybaud, Véronique
2015-04-01
Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided. © 2014 Wiley Periodicals, Inc.
Detection and characterizacion of Colombian wetlands using Alos Palsar and MODIS imagery
NASA Astrophysics Data System (ADS)
Estupinan-Suarez, L. M.; Florez-Ayala, C.; Quinones, M. J.; Pacheco, A. M.; Santos, A. C.
2015-04-01
Wetlands regulate the flow of water and play a key role in risk management of extreme flooding and drought. In Colombia, wetland conservation has been a priority for the government. However, there is an information gap neither an inventory nor a national baseline map exists. In this paper, we present a method that combines a wetlands thematic map with remote sensing derived data, and hydrometeorological stations data in order to characterize the Colombian wetlands. Following the adopted definition of wetlands, available spatial data on land forms, soils and vegetation was integrated in order to characterize spatially the occurrence of wetlands. This data was then complemented with remote sensing derived data from active and passive sensors. A flood frequency map derived from dense time series analysis of the ALOS PALSAR FBD /FBS data (2007-2010) at 50m resolution was used to analyse the recurrence of flooding. In this map, flooding under the canopy and open water classes could be mapped due to the capabilities of the L-band radar. In addition, MODIS NDVI profiles (2007-2012) were used to characterize temporally water mirrors and vegetation, founding different patterns at basin levels. Moreover, the Colombian main basins were analysed and typified based on hydroperiods, highlighting different hydrological regimes within each basin. The combination of thematic maps, SAR data, optical imagery and hydrological data provided information on the spatial and temporal dynamics of wetlands at regional scales. Our results provide the first validated baseline wetland map for Colombia, this way providing valuable information for ecosystem management.
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; ...
2016-03-03
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; McAndrew, Ryan P.; Deng, Kai; Holland, Keefe C.; Donohue, Timothy J.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Adams, Paul D.
2016-01-01
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. PMID:26940872
NASA Astrophysics Data System (ADS)
Anderson, O. Roger
The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.
This fact sheet provides an overview of the 10 on-line characterization and remediation databases available on the Hazardous Waste Clean-Up Information (CLU-IN) website sponsored by the U.S. Environmental Protection Agency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, Joanna; Environmental and Occupational Health Sciences Institute, Piscataway, NJ; Gochfeld, Michael
2012-07-01
As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider themore » protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a broad involvement of a range of governmental personnel, natural and social scientists, Native Americans, environmental justice communities, and other stakeholders. Such informational teams (and Oversight Committee) would report to a DOE-designated authority or Citizen's Advisory Board. Although designed for nuclear facilities and energy parks on DOE lands, the templates and information teams can be adapted for other hazardous facilities, such as a mercury storage facility at Oak Ridge. (authors)« less
CMOS gate array characterization procedures
NASA Astrophysics Data System (ADS)
Spratt, James P.
1993-09-01
Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.
Improving Planetary Rover Attitude Estimation via MEMS Sensor Characterization
Hidalgo, Javier; Poulakis, Pantelis; Köhler, Johan; Del-Cerro, Jaime; Barrientos, Antonio
2012-01-01
Micro Electro-Mechanical Systems (MEMS) are currently being considered in the space sector due to its suitable level of performance for spacecrafts in terms of mechanical robustness with low power consumption, small mass and size, and significant advantage in system design and accommodation. However, there is still a lack of understanding regarding the performance and testing of these new sensors, especially in planetary robotics. This paper presents what is missing in the field: a complete methodology regarding the characterization and modeling of MEMS sensors with direct application. A reproducible and complete approach including all the intermediate steps, tools and laboratory equipment is described. The process of sensor error characterization and modeling through to the final integration in the sensor fusion scheme is explained with detail. Although the concept of fusion is relatively easy to comprehend, carefully characterizing and filtering sensor information is not an easy task and is essential for good performance. The strength of the approach has been verified with representative tests of novel high-grade MEMS inertia sensors and exemplary planetary rover platforms with promising results. PMID:22438761
Choi, Seungmok; Myung, C. L.; Park, S.
2014-03-05
This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less
A framework for characterizing drug information sources.
Sharp, Mark; Bodenreider, Olivier; Wacholder, Nina
2008-11-06
Drug information is complex, voluminous, heterogeneous, and dynamic. Multiple sources are available, each providing some elements of information about drugs (usually for a given purpose), but there exists no integrated view or directory that could be used to locate sources appropriate to a given purpose. We examined 23 sources that provide drug information in the pharmacy, chemistry, biology, and clinical medicine domains. Their drug information content could be categorized with 39 dimensions. We propose this list of dimensions as a framework for characterizing drug information sources. As an evaluation, we show that this framework is useful for comparing drug information sources and selecting sources most relevant to a given use case.
Two processes support visual recognition memory in rhesus monkeys.
Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer
2011-11-29
A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans.
Two processes support visual recognition memory in rhesus monkeys
Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer
2011-01-01
A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans. PMID:22084079
[Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].
Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao
2014-05-01
Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu
2015-11-28
A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less
A Search for Transits of Proxima b in MOST Photometry
NASA Astrophysics Data System (ADS)
Kipping, David M.
2017-01-01
The recent discovery of a potentially rocky planet in the habitable-zone of our nearest star presents exciting prospects for future detailed characterization of another world. If Proxima b transits its star, the road to characterization would be considerably eased. In 2014 and 2015, we monitored Proxima Centauri with the Canadian space telescope MOST for a total of 43 days. As expected, the star presents considerable photometric variability due to flares, which greatly complicate our analysis. Using Gaussian process regression and Bayesian model selection with informative priors for the time of transit of Proxima b, we do find evidence for a transit of the expected depth. However, relaxing the prior on the transit time to an uninformative one returns a distinct solution highlighting the high false-positive rate induced by flaring. Using ground-based photometry from HATSouth, we show that our candidate transit is unlikely to be genuine although a conclusive answer will likely require infrared photometry, such as that from Spitzer, where flaring should be suppressed.
Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís
2010-01-01
This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.
Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) calreticulin.
Pinto, Rute D; Moreira, Ana R; Pereira, Pedro J B; dos Santos, Nuno M S
2013-06-01
Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toussi, Amir; Bryk, Jodie; Alam, Abdulkader
2014-01-01
Transient left ventricular apical ballooning syndrome (TLVABS), also known as takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction, electrocardiographic changes, and release of myocardial enzymes that mimic acute myocardial infarction in patients without angiographic evidence of coronary artery disease. Most patients are post-menopausal women and an emotional or physiologic stressor frequently precedes the presentation. Psychogenic or dissociative amnesia is a memory disorder characterized by sudden retrograde memory loss with inability to recall personal information said to occur for a period of time ranging from hours to years after a stressful event. Interestingly, the mechanism of both disorders has been linked to plasma elevation in catecholamines. Here we present the case of a 66-year-old female diagnosed with both TLVABS and dissociative amnesia following the sudden unexpected death of her sister. To our knowledge, this is surprisingly the first report of the co-occurrence of TLVABS and dissociative amnesia, two processes with a potential shared underlying etiology. © 2013.
NASA Astrophysics Data System (ADS)
Marco Figuera, R.; Pham Huu, B.; Rossi, A. P.; Minin, M.; Flahaut, J.; Halder, A.
2018-01-01
The lack of open-source tools for hyperspectral data visualization and analysis creates a demand for new tools. In this paper we present the new PlanetServer, a set of tools comprising a web Geographic Information System (GIS) and a recently developed Python Application Programming Interface (API) capable of visualizing and analyzing a wide variety of hyperspectral data from different planetary bodies. Current WebGIS open-source tools are evaluated in order to give an overview and contextualize how PlanetServer can help in this matters. The web client is thoroughly described as well as the datasets available in PlanetServer. Also, the Python API is described and exposed the reason of its development. Two different examples of mineral characterization of different hydrosilicates such as chlorites, prehnites and kaolinites in the Nili Fossae area on Mars are presented. As the obtained results show positive outcome in hyperspectral analysis and visualization compared to previous literature, we suggest using the PlanetServer approach for such investigations.
Properties of barium strontium titanate at millimeter wave frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Nurul; Free, Charles
2015-04-24
The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangentmore » for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.« less
NASA Astrophysics Data System (ADS)
Majumdar, Arun K.; Land, Phillip; Siegenthaler, John
2014-10-01
New results for characterizing laser intensity fluctuation statistics of a laser beam transmitted through a random air-water interface relevant to underwater communications are presented. A laboratory watertank experiment is described to investigate the beam wandering effects of the transmitted beam. Preliminary results from the experiment provide information about histograms of the probability density functions of intensity fluctuations for different wind speeds measured by a CMOS camera for the transmitted beam. Angular displacements of the centroids of the fluctuating laser beam generates the beam wander effects. This research develops a probabilistic model for optical propagation at the random air-water interface for a transmission case under different wind speed conditions. Preliminary results for bit-error-rate (BER) estimates as a function of fade margin for an on-off keying (OOK) optical communication through the air-water interface are presented for a communication system where a random air-water interface is a part of the communication channel.
Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne
2015-11-24
A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D 2-tagged GlyGlyH +·(H 2O) 1–4 are presented. As a result, they display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less
Macy, Jamie P.
2012-01-01
The Hopi Tribe depends on groundwater as their primary drinking-water source in the area of the Villages of Moenkopi, in northeastern Arizona. Growing concerns of the potential for uranium contamination at the Moenkopi water supply wells from the Tuba City Landfill prompted the need for an improved understanding of subsurface geology and groundwater near Moenkopi. Information in this report provides the Hopi Tribe with new hydrogeologic information that provides a better understanding of groundwater resources near the Villages of Moenkopi. The U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation and the Hopi Tribe used the controlled source audio-frequency magnetotelluric (CSAMT) geophysical technique to characterize the subsurface near Moenkopi from December 2009 to September 2010. A total of six CSAMT profiles were surveyed to identify possible fracturing and faulting in the subsurface that provides information about the occurrence and movement of groundwater. Inversion results from the six CSAMT lines indicated that north to south trending fractures are more prevalent than east to west. CSAMT Lines A and C showed multiple areas in the Navajo Sandstone where fractures are present. Lines B, D, E, and F did not show the same fracturing as Lines A and C.
Ecological Processes of Isolated Wetlands: Ecosystem Services and the Significant Nexus (Invited)
NASA Astrophysics Data System (ADS)
Lane, C.; Autrey, B.; D'Amico, E.
2013-12-01
Geographically isolated wetlands occur throughout the US and are characterized by a wetland system completely surrounded by uplands. Examples include prairie potholes, woodland seasonal (i.e., vernal) pools, cypress domes, playas, and other such systems. Decisions by the US Supreme Court in 2001 and 2006 have affected the jurisdictional status of geographically isolated wetlands such that those failing to have a demonstrable 'significant nexus' to navigable waters may have no federal protection under the Clean Water Act. These systems are typically small and, as such, may be under-counted in assessments of area and abundance. Areal extent is a portion of the information required to characterize the functions associated with geographically isolated wetlands and understanding both site-specific and larger-scale processes are also required to better quantify those functions. In addition, quantifying anthropogenic effects on system processing informs our understanding of the contributions and the connectivity of geographically isolated wetlands to other waters. This presentation focuses on both efforts to quantify the contribution of geographically isolated wetlands to system-scale processes, focusing on nutrient assimilation and hydrologic storage, as well as concurrent research to identify their locations at multiple scales. Findings from this research may help elucidate the link between geographically isolated wetlands and other systems, and may inform discussions on ecosystem services provided by geographically isolated wetlands.
The Advancement of Public Awareness, Concerning TRU Waste Characterization, Using a Virtual Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, T. B.; Burns, T. P.; Estill, W. G.
2002-02-28
Building public trust and confidence through openness is a goal of the DOE Carlsbad Field Office for the Waste Isolation Pilot Plant (WIPP). The objective of the virtual document described in this paper is to give the public an overview of the waste characterization steps, an understanding of how waste characterization instrumentation works, and the type and amount of data generated from a batch of drums. The document is intended to be published on a web page and/or distributed at public meetings on CDs. Users may gain as much information as they desire regarding the transuranic (TRU) waste characterization program,more » starting at the highest level requirements (drivers) and progressing to more and more detail regarding how the requirements are met. Included are links to: drivers (which include laws, permits and DOE Orders); various characterization steps required for transportation and disposal under WIPP's Hazardous Waste Facility Permit; physical/chemical basis for each characterization method; types of data produced; and quality assurance process that accompanies each measurement. Examples of each type of characterization method in use across the DOE complex are included. The original skeleton of the document was constructed in a PowerPoint presentation and included descriptions of each section of the waste characterization program. This original document had a brief overview of Acceptable Knowledge, Non-Destructive Examination, Non-Destructive Assay, Small Quantity sites, and the National Certification Team. A student intern was assigned the project of converting the document to a virtual format and to discuss each subject in depth. The resulting product is a fully functional virtual document that works in a web browser and functions like a web page. All documents that were referenced, linked to, or associated, are included on the virtual document's CD. WIPP has been engaged in a variety of Hazardous Waste Facility Permit modification activities. During the public meetings, discussion centered on proposed changes to the characterization program. The philosophy behind the virtual document is to show the characterization process as a whole, rather than as isolated parts. In addition to public meetings, other uses for the information might be as a training tool for new employees at the WIPP facility to show them where their activities fit into the overall scheme, as well as an employee review to help prepare for waste certification audits.« less
SITE CHARACTERIZATION LIBRARY VERSION 3.0
The Site Characterization Library is a CD that provides a centralized, field-portable source for site characterization information. Version 3 of the Site Characterization Library contains additional (from earlier versions) electronic documents and computer programs related to th...
An information capacity limitation of visual short-term memory.
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2014-12-01
Research suggests that visual short-term memory (VSTM) has both an item capacity, of around 4 items, and an information capacity. We characterize the information capacity limits of VSTM using a task in which observers discriminated the orientation of a single probed item in displays consisting of 1, 2, 3, or 4 orthogonally oriented Gabor patch stimuli that were presented in noise for 50 ms, 100 ms, 150 ms, or 200 ms. The observed capacity limitations are well described by a sample-size model, which predicts invariance of ∑(i)(d'(i))² for displays of different sizes and linearity of (d'(i))² for displays of different durations. Performance was the same for simultaneous and sequentially presented displays, which implicates VSTM as the locus of the observed invariance and rules out explanations that ascribe it to divided attention or stimulus encoding. The invariance of ∑(i)(d'(i))² is predicted by the competitive interaction theory of Smith and Sewell (2013), which attributes it to the normalization of VSTM traces strengths arising from competition among stimuli entering VSTM. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Hennessey, Eden; Kurup, Anitha; Meza-Montes, Lilia; Shastri, Prajval; Ghose, Shohini
2015-12-01
Participants in the Gender Studies workshop of the 5th IUPAP International Conference on Women in Physics discussed the gender question in science practice from a policy perspective, informed by investigations from the social science disciplines. The workshop's three sessions—"Equity and Education: Examining Gender Stigma in Science," "A Comparative Study of Women Scientists and Engineers: Experiences in India and the US," and "Toward Gender Equity Through Policy: Characterizing the Social Impact of Interventions—are summarized, and the resulting recommendations presented.
Nondestructive study of corrosion by the analysis of diffused light
NASA Astrophysics Data System (ADS)
Hogert, Elsa N.; Landau, Monica R.; Marengo, Jose A.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.; Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya
1999-07-01
This work describes the application of mean intensity diffusion analysis to detect and analyze metallic corrosion phenomena. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. Valuable information is provided about surface microrelief changes, which is also useful for numerous engineering applications. The quality of our results supports the idea that this technique can contribute to a better analysis of corrosion processes, in particular in real time.
Automated wind load characterization of wind turbine structures by embedded model updating
NASA Astrophysics Data System (ADS)
Swartz, R. Andrew; Zimmerman, Andrew T.; Lynch, Jerome P.
2010-04-01
The continued development of renewable energy resources is for the nation to limit its carbon footprint and to enjoy independence in energy production. Key to that effort are reliable generators of renewable energy sources that are economically competitive with legacy sources. In the area of wind energy, a major contributor to the cost of implementation is large uncertainty regarding the condition of wind turbines in the field due to lack of information about loading, dynamic response, and fatigue life of the structure expended. Under favorable circumstances, this uncertainty leads to overly conservative designs and maintenance schedules. Under unfavorable circumstances, it leads to inadequate maintenance schedules, damage to electrical systems, or even structural failure. Low-cost wireless sensors can provide more certainty for stakeholders by measuring the dynamic response of the structure to loading, estimating the fatigue state of the structure, and extracting loading information from the structural response without the need of an upwind instrumentation tower. This study presents a method for using wireless sensor networks to estimate the spectral properties of a wind turbine tower loading based on its measured response and some rudimentary knowledge of its structure. Structural parameters are estimated via model-updating in the frequency domain to produce an identification of the system. The updated structural model and the measured output spectra are then used to estimate the input spectra. Laboratory results are presented indicating accurate load characterization.
Reviewing and visualizing the interactions of natural hazards
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2014-12-01
This paper presents a broad overview, characterization, and visualization of the interaction relationships between 21 natural hazards, drawn from six hazard groups (geophysical, hydrological, shallow Earth, atmospheric, biophysical, and space hazards). A synthesis is presented of the identified interaction relationships between these hazards, using an accessible visual format particularly suited to end users. Interactions considered are primarily those where a primary hazard triggers or increases the probability of secondary hazards occurring. In this paper we do the following: (i) identify, through a wide-ranging review of grey- and peer-review literature, 90 interactions; (ii) subdivide the interactions into three levels, based on how well we can characterize secondary hazards, given information about the primary hazard; (iii) determine the spatial overlap and temporal likelihood of the triggering relationships occurring; and (iv) examine the relationship between primary and secondary hazard intensities for each identified hazard interaction and group these into five possible categories. In this study we have synthesized, using accessible visualization techniques, large amounts of information drawn from many scientific disciplines. We outline the importance of constraining hazard interactions and reinforce the importance of a holistic (or multihazard) approach to natural hazard assessment. This approach allows those undertaking research into single hazards to place their work within the context of other hazards. It also communicates important aspects of hazard interactions, facilitating an effective analysis by those working on reducing and managing disaster risk within both the policy and practitioner communities.
Using radial NMR profiles to characterize pore size distributions
NASA Astrophysics Data System (ADS)
Deriche, Rachid; Treilhard, John
2012-02-01
Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, B.; Hedrick, A.; Andrew, S.
1992-02-01
The defect causing Huntington disease (HD) has been mapped to 4p16.3, distal to the DNA marker D4S10. Subsequently, additional polymorphic markers closer to the HD gene have been isolated, which has led to the establishment of predictive testing programs for individuals at risk for HD. Approximately 17% of persons presenting to the Canadian collaborative study for predictive testing for HD have not received any modification of risk, in part because of limited informativeness of currently available DNA markers. Therefore, more highly polymorphic DNA markers are needed, which well further increase the accuracy and availability of predictive testing, specifically for familiesmore » with complex or incomplete pedigree structures. In addition, new markers are urgently needed in order to refine the breakpoints in the few known recombinant HD chromosomes, which could allow a more accurate localization of the HD gene within 4p16.3 and, therefore, accelerate the cloning of the disease gene. In this study, the authors present the identification and characterization of nine new polymorphic DNA markers, including three markers which detect highly informative multiallelic VNTR-like polymorphisms with PIC values of up to .84. These markers have been isolated from a cloned region of DNA which has been previously mapped approximately 1,000 kb from the 4p telomere.« less
Solar Demon: near real-time Flare, Dimming and EUV wave monitoring
NASA Astrophysics Data System (ADS)
Kraaikamp, Emil; Verbeeck, Cis
Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.
Miotto, Olivo; Heiny, AT; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir
2008-01-01
Background The identification of mutations that confer unique properties to a pathogen, such as host range, is of fundamental importance in the fight against disease. This paper describes a novel method for identifying amino acid sites that distinguish specific sets of protein sequences, by comparative analysis of matched alignments. The use of mutual information to identify distinctive residues responsible for functional variants makes this approach highly suitable for analyzing large sets of sequences. To support mutual information analysis, we developed the AVANA software, which utilizes sequence annotations to select sets for comparison, according to user-specified criteria. The method presented was applied to an analysis of influenza A PB2 protein sequences, with the objective of identifying the components of adaptation to human-to-human transmission, and reconstructing the mutation history of these components. Results We compared over 3,000 PB2 protein sequences of human-transmissible and avian isolates, to produce a catalogue of sites involved in adaptation to human-to-human transmission. This analysis identified 17 characteristic sites, five of which have been present in human-transmissible strains since the 1918 Spanish flu pandemic. Sixteen of these sites are located in functional domains, suggesting they may play functional roles in host-range specificity. The catalogue of characteristic sites was used to derive sequence signatures from historical isolates. These signatures, arranged in chronological order, reveal an evolutionary timeline for the adaptation of the PB2 protein to human hosts. Conclusion By providing the most complete elucidation to date of the functional components participating in PB2 protein adaptation to humans, this study demonstrates that mutual information is a powerful tool for comparative characterization of sequence sets. In addition to confirming previously reported findings, several novel characteristic sites within PB2 are reported. Sequence signatures generated using the characteristic sites catalogue characterize concisely the adaptation characteristics of individual isolates. Evolutionary timelines derived from signatures of early human influenza isolates suggest that characteristic variants emerged rapidly, and remained remarkably stable through subsequent pandemics. In addition, the signatures of human-infecting H5N1 isolates suggest that this avian subtype has low pandemic potential at present, although it presents more human adaptation components than most avian subtypes. PMID:18315849
Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin
2015-08-28
WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.
Melchardt, Thomas; Hufnagl, Clemens; Weinstock, David M; Kopp, Nadja; Neureiter, Daniel; Tränkenschuh, Wolfgang; Hackl, Hubert; Weiss, Lukas; Rinnerthaler, Gabriel; Hartmann, Tanja N; Greil, Richard; Weigert, Oliver; Egle, Alexander
2016-08-09
Little information is available about the role of certain mutations for clonal evolution and the clinical outcome during relapse in diffuse large B-cell lymphoma (DLBCL). Therefore, we analyzed formalin-fixed-paraffin-embedded tumor samples from first diagnosis, relapsed or refractory disease from 28 patients using next-generation sequencing of the exons of 104 coding genes. Non-synonymous mutations were present in 74 of the 104 genes tested. Primary tumor samples showed a median of 8 non-synonymous mutations (range: 0-24) with the used gene set. Lower numbers of non-synonymous mutations in the primary tumor were associated with a better median OS compared with higher numbers (28 versus 15 months, p=0.031). We observed three patterns of clonal evolution during relapse of disease: large global change, subclonal selection and no or minimal change possibly suggesting preprogrammed resistance. We conclude that targeted re-sequencing is a feasible and informative approach to characterize the molecular pattern of relapse and it creates novel insights into the role of dynamics of individual genes.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include (1) diagnostic/detection methodology, (2) prognosis/lifing methodology, (3) diagnostic/prognosis linkage, (4) experimental validation, and (5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multimechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
NASA Astrophysics Data System (ADS)
Böhi, P.; Prevedel, R.; Jennewein, T.; Stefanov, A.; Tiefenbacher, F.; Zeilinger, A.
2007-12-01
In general, quantum computer architectures which are based on the dynamical evolution of quantum states, also require the processing of classical information, obtained by measurements of the actual qubits that make up the computer. This classical processing involves fast, active adaptation of subsequent measurements and real-time error correction (feed-forward), so that quantum gates and algorithms can be executed in a deterministic and hence error-free fashion. This is also true in the linear optical regime, where the quantum information is stored in the polarization state of photons. The adaptation of the photon’s polarization can be achieved in a very fast manner by employing electro-optical modulators, which change the polarization of a trespassing photon upon appliance of a high voltage. In this paper we discuss techniques for implementing fast, active feed-forward at the single photon level and we present their application in the context of photonic quantum computing. This includes the working principles and the characterization of the EOMs as well as a description of the switching logics, both of which allow quantum computation at an unprecedented speed.
p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements.
Kamimura, Jumpei; Bogdanoff, Peter; Ramsteiner, Manfred; Corfdir, Pierre; Feix, Felix; Geelhaar, Lutz; Riechert, Henning
2017-03-08
GaN nanowires (NWs) doped with Mg as a p-type impurity were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. In a systematic series of experiments, the amount of Mg supplied during NW growth was varied. The incorporation of Mg into the NWs was confirmed by the observation of donor-acceptor pairs and acceptor-bound excitons in low-temperature photoluminescence spectroscopy. Quantitative information about the Mg concentrations was deduced from Raman scattering by local vibrational modes related to Mg. In order to study the type and density of charge carriers present in the NWs, we employed two photoelectrochemical techniques, open-circuit potential and Mott-Schottky measurements. Both methods showed the expected transition from n-type to p-type conductivity with increasing Mg doping level, and the latter characterization technique allowed us to quantify the charge carrier concentration. Beyond the quantitative information obtained for Mg doping of GaN NWs, our systematic and comprehensive investigation demonstrates the benefit of photoelectrochemical methods for the analysis of doping in semiconductor NWs in general.
Relevant Scatterers Characterization in SAR Images
NASA Astrophysics Data System (ADS)
Chaabouni, Houda; Datcu, Mihai
2006-11-01
Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.
Dynamics in Complex Coacervates
NASA Astrophysics Data System (ADS)
Perry, Sarah
Understanding the dynamics of a material provides detailed information about the self-assembly, structure, and intermolecular interactions present in a material. While rheological methods have long been used for the characterization of complex coacervate-based materials, it remains a challenge to predict the dynamics for a new system of materials. Furthermore, most work reports only qualitative trends exist as to how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics, and there is little information on the effects of polymer architecture or the organization of charges within a polymer. We seek to link thermodynamic studies of coacervation phase behavior with material dynamics through a carefully-controlled, systematic study of coacervate linear viscoelasticity for different polymer chemistries. We couple various methods of characterizing the dynamics of polymer-based complex coacervates, including the time-salt superposition methods developed first by Spruijt and coworkers to establish a more mechanistic strategy for comparing the material dynamics and linear viscoelasticity of different systems. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.
Noise and disturbance of qubit measurements: An information-theoretic characterization
NASA Astrophysics Data System (ADS)
Abbott, Alastair A.; Branciard, Cyril
2016-12-01
Information-theoretic definitions for the noise associated with a quantum measurement and the corresponding disturbance to the state of the system have recently been introduced [F. Buscemi et al., Phys. Rev. Lett. 112, 050401 (2014), 10.1103/PhysRevLett.112.050401]. These definitions are invariant under relabeling of measurement outcomes, and lend themselves readily to the formulation of state-independent uncertainty relations both for the joint estimate of observables (noise-noise relations) and the noise-disturbance tradeoff. Here we derive such relations for incompatible qubit observables, which we prove to be tight in the case of joint estimates, and present progress towards fully characterizing the noise-disturbance tradeoff. In doing so, we show that the set of obtainable noise-noise values for such observables is convex, whereas the conjectured form for the set of obtainable noise-disturbance values is not. Furthermore, projective measurements are not optimal with respect to the joint-measurement noise or noise-disturbance tradeoffs. Interestingly, it seems that four-outcome measurements are needed in the former case, whereas three-outcome measurements are optimal in the latter.
Raman imaging at biological interfaces: applications in breast cancer diagnosis.
Surmacki, Jakub; Musial, Jacek; Kordek, Radzislaw; Abramczyk, Halina
2013-05-24
One of the most important areas of Raman medical diagnostics is identification and characterization of cancerous and noncancerous tissues. The methods based on Raman scattering has shown significant potential for probing human breast tissue to provide valuable information for early diagnosis of breast cancer. A vibrational fingerprint from the biological tissue provides information which can be used to identify, characterize and discriminate structures in breast tissue, both in the normal and cancerous environment. The paper reviews recent progress in understanding structure and interactions at biological interfaces of the human tissue by using confocal Raman imaging and IR spectroscopy. The important differences between the noncancerous and cancerous human breast tissues were found in regions characteristic for vibrations of carotenoids, fatty acids, proteins, and interfacial water. Particular attention was paid to the role played by unsaturated fatty acids and their derivatives as well as carotenoids and interfacial water. We demonstrate that Raman imaging has reached a clinically relevant level in regard to breast cancer diagnosis applications. The results presented in the paper may have serious implications on understanding mechanisms of interactions in living cells under realistically crowded conditions of biological tissue.
NASA Astrophysics Data System (ADS)
Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.
2007-12-01
Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.
Jegstrup, I; Thon, R; Hansen, A K; Hoitinga, M Ritskes
2003-01-01
A thorough welfare evaluation performed as part of a general phenotype characterization for both transgenic and traditional mouse strains could not only contribute to the improvement of the welfare of laboratory animals, but could also be of benefit to scientists, laboratory veterinarians and the inspecting authorities. A literature review has been performed to identify and critically evaluate already existing protocols for phenotype and welfare characterization. There are several relevant schemes available, among others the SHIRPA method, the modified score sheet of Morton and Griffiths, the FRIMORFO phenotype characterization scheme and the behavioural phenotype schemes as described by Crawley. These protocols have been evaluated according to four goals: Their ability (1) to reveal any special needs or problems with a transgenic strain, (2) to cover the informational needs of the purchaser/user of the strain, (3) to refine the welfare of the transgenic animal model by identifying relevant humane endpoints, (4) to prevent the duplication of animal models that have already been developed. The protocols described are useful for characterizing the phenotype and judging welfare disturbances, however the total amount of information and the degree of detail varies considerably from one scheme to another. We present a proposal regarding the practical application of the various schemes that will secure proper treatment and the identification of humane endpoints. It is advocated that with every purchase of a particular strain, an instruction document should accompany the strain. This document needs to give detailed descriptions of the typical characteristics of the strain, as well as necessary actions concerning relevant treatment and humane endpoints. At the moment no such documents are required. The introduction of these types of documents will contribute to improvements in animal welfare as well as experimental results in laboratory animal experimentation.
Lei, Shufei; Iles, Alastair; Kelly, Maggi
2015-07-01
Some of the factors that can contribute to the success of collaborative adaptive management--such as social learning, open communication, and trust--are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study--the Sierra Nevada Adaptive Management Project--using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks.
NASA Astrophysics Data System (ADS)
Lei, Shufei; Iles, Alastair; Kelly, Maggi
2015-07-01
Some of the factors that can contribute to the success of collaborative adaptive management—such as social learning, open communication, and trust—are built upon a foundation of the open exchange of information about science and management between participants and the public. Despite the importance of information transparency, the use and flow of information in collaborative adaptive management has not been characterized in detail in the literature, and currently there exist opportunities to develop strategies for increasing the exchange of information, as well as to track information flow in such contexts. As digital information channels and networks have been increased over the last decade, powerful new information monitoring tools have also been evolved allowing for the complete characterization of information products through their production, transport, use, and monitoring. This study uses these tools to investigate the use of various science and management information products in a case study—the Sierra Nevada Adaptive Management Project—using a mixed method (citation analysis, web analytics, and content analysis) research approach borrowed from the information processing and management field. The results from our case study show that information technologies greatly facilitate the flow and use of digital information, leading to multiparty collaborations such as knowledge transfer and public participation in science research. We conclude with recommendations for expanding information exchange in collaborative adaptive management by taking advantage of available information technologies and networks.
NASA Technical Reports Server (NTRS)
Bernstein, R. B.; Levine, R. D.
1972-01-01
Optimal means of characterizing the distribution of product energy states resulting from reactive collisions of molecules with restricted distributions of initial states are considered, along with those for characterizing the particular reactant state distribution which yields a given set of product states at a specified total energy. It is suggested to represent the energy-dependence of global-type results in the form of square-faced bar plots, and of data for specific-type experiments as triangular-faced prismatic plots. The essential parameters defining the internal state distribution are isolated, and the information content of such a distribution is put on a quantitative basis. The relationship between the information content, the surprisal, and the entropy of the continuous distribution is established. The concept of an entropy deficiency, which characterizes the specificity of product state formation, is suggested as a useful measure of the deviance from statistical behavior. The degradation of information by experimental averaging is considered, leading to bounds on the entropy deficiency.
Huttin, Christine C; Liebman, Michael N
2013-01-01
This paper aims to discuss the economics of biobanking. Among the critical issues in evaluating potential ROI for creation of a bio-bank are: scale (e.g. local, national, international), centralized versus virtual/distributed, degree of sample annotation/QC procedures, targeted end-users and uses, types of samples, potential characterization, both of samples and annotations. The paper presents a review on cost models for an economic analysis of biobanking for different steps: data collection (e.g. biospecimens in different types of sites, storage, transport and distribution, information management for the different types of information (e.g. biological information such as cell, gene, and protein)). It also provides additional concepts to process biospecimens from laboratory to clinical practice and will help to identify how changing paradigms in translational medicine affect the economic modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Michael
The Generator Knowledge Report for the Plutonium Isentropic Compression Experiment Containment Systems (GK Report) provides information for the Plutonium Isentropic Compression Experiment (Pu- ICE) program to support waste management and characterization efforts. Attachment 3-18 presents generator knowledge (GK) information specific to the eighteenth Pu-ICE conducted in August 2015, also known as ‘Shot 18 (Aug 2015) and Pu-ICE Z-2841 (1).’ Shot 18 (Aug 2015) was generated on August 28, 2015 (1). Calculations based on the isotopic content of Shot 18 (Aug 2015) and the measured mass of the containment system demonstrate the post-shot containment system is low-level waste (LLW). Therefore, thismore » containment system will be managed at Sandia National Laboratory/New Mexico (SNL/NM) as LLW. Attachment 3-18 provides documentation of the TRU concentration and documents the concentration of any hazardous constituents.« less
Lai, K M
2006-03-01
An extensive growth of Stachybotrys in water-damaged buildings is of great public health concern. It is inconclusive whether Stachybotrys is responsible for the reported health effects on the occupants in these contaminated environments. However, based on the veterinary, occupational and laboratory toxicity studies, it is reasonable to project that Stachybotrys can cause adverse health responses once the toxic level of the corresponding agents reached the target systems. In order to assess the risk to occupants in contaminated buildings, it is essential to outline and collect information for risk assessment. This review paper presents the current information in the format of hazard identification, dose-response and environmental characteristics and aims to discuss existing information with researchers and risk assessors and help to conduct risk characterization under different indoor conditions.
Modeling financial markets by self-organized criticality
NASA Astrophysics Data System (ADS)
Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea
2015-10-01
We present a financial market model, characterized by self-organized criticality, that is able to generate endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives contagion and causes market fragility. In this model imitation is not intended as a change in the agent's group of origin, but is referred only to the price formation process. We introduce in the community also a variable number of random traders in order to study their possible beneficial role in stabilizing the market, as found in other studies. Finally, we also suggest some counterintuitive policy strategies able to dampen fluctuations by means of a partial reduction of information.
New directions in biomedical text annotation: definitions, guidelines and corpus construction
Wilbur, W John; Rzhetsky, Andrey; Shatkay, Hagit
2006-01-01
Background While biomedical text mining is emerging as an important research area, practical results have proven difficult to achieve. We believe that an important first step towards more accurate text-mining lies in the ability to identify and characterize text that satisfies various types of information needs. We report here the results of our inquiry into properties of scientific text that have sufficient generality to transcend the confines of a narrow subject area, while supporting practical mining of text for factual information. Our ultimate goal is to annotate a significant corpus of biomedical text and train machine learning methods to automatically categorize such text along certain dimensions that we have defined. Results We have identified five qualitative dimensions that we believe characterize a broad range of scientific sentences, and are therefore useful for supporting a general approach to text-mining: focus, polarity, certainty, evidence, and directionality. We define these dimensions and describe the guidelines we have developed for annotating text with regard to them. To examine the effectiveness of the guidelines, twelve annotators independently annotated the same set of 101 sentences that were randomly selected from current biomedical periodicals. Analysis of these annotations shows 70–80% inter-annotator agreement, suggesting that our guidelines indeed present a well-defined, executable and reproducible task. Conclusion We present our guidelines defining a text annotation task, along with annotation results from multiple independently produced annotations, demonstrating the feasibility of the task. The annotation of a very large corpus of documents along these guidelines is currently ongoing. These annotations form the basis for the categorization of text along multiple dimensions, to support viable text mining for experimental results, methodology statements, and other forms of information. We are currently developing machine learning methods, to be trained and tested on the annotated corpus, that would allow for the automatic categorization of biomedical text along the general dimensions that we have presented. The guidelines in full detail, along with annotated examples, are publicly available. PMID:16867190
Towards a characterization of information automation systems on the flight deck
NASA Astrophysics Data System (ADS)
Dudley, Rachel Feddersen
This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.
Oral lichen planus preceding concomitant lichen planopilaris.
Stoopler, Eric T; Alfaris, Sausan; Alomar, Dalal; Alawi, Faizan
2016-09-01
Lichen planus (LP) is an immune-mediated mucocutaneous disorder with a wide array of clinical presentations. Oral lichen planus (OLP) is characterized clinically by striae, desquamation, and/or ulceration. Lichen planopilaris (LPP), a variant of LP, affects the scalp, resulting in perifollicular erythema and scarring of cutaneous surfaces accompanied by hair loss. The association between OLP and LPP has been reported previously with scant information on concomitant or sequential disease presentation. We describe a patient with concomitant OLP and LPP, and to the best of our knowledge, this is the first report on OLP preceding the onset of LPP. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bank, J.; Mather, B.
This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability inmore » system load and the variability of distributed PV generation are made.« less
Study of inelastic e-Cd and e-Zn collisions
NASA Astrophysics Data System (ADS)
Piwinski, Mariusz; Klosowski, Lukasz; Dziczek, Darek; Chwirot, Stanislaw
2016-09-01
Electron-photon coincidence experiments are well known for providing more detailed information about electron-atom collision than any other technique. The Electron Impact Coherence Parameters (EICP) values obtained in such studies deliver the most complete characterization of the inelastic collision and allow for a verification of proposed theoretical models. We present the results of Stokes and EICP parameters characterising electronic excitation of the lowest singlet P-state of cadmium and zinc atoms for various collision energies. The experiments were performed using electron-photon coincidence technique in the coherence analysis version. The obtained data are presented and compared with existing CCC and RDWA theoretical predictions.
Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory
2011-01-01
Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.
NASA Astrophysics Data System (ADS)
McClanahan, James Patrick
Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.
Information on where and how individuals spend their time is important for characterizing exposures to chemicals in consumer products and in indoor environments. Traditionally, exposure assessors have relied on time-use surveys in order to obtain information on exposure-related b...
On information, negentropy and H-theorem
NASA Astrophysics Data System (ADS)
Chakrabarti, C. G.; Sarker, N. G.
1983-09-01
The paper deals with the imprtance of the Kullback descrimination information in the statistical characterization of negentropy of non-equilibrium state and the irreversibility of a classical dynamical system. The theory based on the Kullback discrimination information as the H-function gives new insight into the interrelation between the concepts of coarse-graining and the principle of sufficiency leading to important statistical characterization of thermal equilibrium of a closed system.
Management of Hypoparathyroidism: Summary Statement and Guidelines.
Brandi, Maria Luisa; Bilezikian, John P; Shoback, Dolores; Bouillon, Roger; Clarke, Bart L; Thakker, Rajesh V; Khan, Aliya A; Potts, John T
2016-06-01
Hypoparathyroidism is a rare disorder characterized by hypocalcemia and absent or deficient PTH. This report presents a summary of current information about epidemiology, presentation, diagnosis, clinical features, and management and proposes guidelines to help clinicians diagnose, evaluate, and manage this disorder. Participants in the First International Conference on the Management of Hypoparathyroidism represented a worldwide constituency with acknowledged interest and expertise in key basic, translational, and clinical aspects of hypoparathyroidism. Three Workshop Panels were constituted to address questions for presentation and discussion at the Conference held in Florence, Italy, May 7-9, 2015. At that time, a series of presentations were made, followed by in-depth discussions in an open forum. Each Workshop Panel also met in closed sessions to formulate the three evidence-based reports that accompany this summary statement. An Expert Panel then considered this information, developed summaries, guidelines, and a research agenda that constitutes this summary statement. Preceding the conference, each Workshop Panel conducted an extensive literature search as noted in the individual manuscripts accompanying this report. All presentations were based upon the best peer-reviewed information taking into account the historical and current literature. This report represents the Expert Panel's synthesis of the conference material placed in a context designed to be relevant to clinicians and those engaged in cutting-edge studies of hypoparathyroidism. This document not only provides a summary of our current knowledge but also places recent advances in its management into a context that should enhance future advances in our understanding of hypoparathyroidism.
Framework for characterization. (Revised final report March 1992). Technical pub
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsay, M.; Boynton, W.; Clark, P.
1992-03-01
The Tampa Bay National Estuary Program (TBNEP) was established in 1990 to develop a comprehensive conservation and management plan, a program to restore and protect Tampa Bay and its resources. The process of identifying the problems of the bay and linking problems to causes is prerequisite to developing the CCMP and is known as characterization. Characterization workshops were held in June and July 1991 to (1) guide the characterization process toward areas of greatest information needs; (2) contribute to the development of a preliminary bay characterization report; and (3) develop a depiction of bay ecosystem components and interrelationships. The workshopsmore » focused on two categories of priority problems: living resources and water quality deterioration. Priority information needs include estuarine seagrasses, low-salinity habitats, and benthic habitats. Refinement of a nitrogen input budget and establishment of cause-effect relationships among nutrient loading dissolved oxygen concentrations and the distribution of seagrass and benthic communities were also identified as priority information needs.« less
Characterization of municipal solid waste from the main landfills of Havana city
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa Llorens, Ma. del C; Lopez Torres, Matilde; Alvarez, Haydee
The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of themore » waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.« less
Characterization of municipal solid waste from the main landfills of Havana city.
Espinosa Lloréns, Ma Del C; Torres, Matilde López; Alvarez, Haydee; Arrechea, Alexis Pellón; García, Jorge Alejandro; Aguirre, Susana Díaz; Fernández, Alejandro
2008-01-01
The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vías landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.
Nagaraja, Srinidhi; Di Prima, Matthew; Saylor, David; Takai, Erica
2017-08-01
In an effort to better understand current test practices and improve nonclinical testing of cardiovascular metallic implants, the Food and Drug Administration (FDA) held a public workshop on Cardiovascular Metallic Implants: corrosion, surface characterization, and nickel leaching. The following topics were discussed: (1) methods used for corrosion assessments, surface characterization techniques, and nickel leach testing of metallic cardiovascular implant devices, (2) the limitations of each of these in vitro tests in predicting in vivo performance, (3) the need, utility, and circumstances when each test should be considered, and (4) the potential testing paradigms, including acceptance criteria for each test. In addition to the above topics, best practices for these various tests were discussed, and knowledge gaps were identified. Prior to the workshop, discussants had the option to provide feedback and information on issues relating to each of the topics via a voluntary preworkshop assignment. During the workshop, the pooled responses were presented and a panel of experts discussed the results. This article summarizes the proceedings of this workshop and background information provided by workshop participants. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. J Biomed Mater Res Part B: Appl Biomater, 105B: 1330-1341, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Luo, Houqiang; Zhang, Hui; Li, Kun; Rehman, Mujeeb Ur; Mehmood, Khalid; Lan, Yanfang; Huang, Shucheng
2017-01-01
Cysticercus tenuicollis, commonly known as “water bell,” is a larva of Taenia hydatigena, which is the most significant parasite of pigs. However, until now very few information is available regarding the prevalence and genetic characterization of the Cysticercus tenuicollis in Tibetan pigs. Therefore, the aim of this study was to investigate the prevalence and phylogenetic analysis of Cysticercus tenuicollis in Tibetan pigs. For this purpose, the COX2 gene of Cysticercus tenuicollis was amplified and sequenced for the first time in Tibetan pigs. The overall prevalence of Cysticercus tenuicollis was 43.93% in Tibetan pigs, with further distribution of 42.86% in 2014 and 45.35% in 2015. In Tibetan male and female pigs, the prevalence of Cysticercus tenuicollis was 43.39% and 44.56%, respectively. The prevalence of Cysticercus tenuicollis in different growing stages (juveniles, subadults, and adults) varied from 30.20% to 63.79%. The phylogenetic analysis of the Cysticercus tenuicollis isolates showed very close resemblance to 16 reference strains, isolates from Gansu, Hunan, and Sichuan provinces of China. To the best of our knowledge, this is the first report on the prevalence and genetic characterization of Cysticercus tenuicollis derived from Tibetan pigs. The data of present study provides baseline information for controlling cysticerci infections in pigs in Tibetan Plateau, China. PMID:28607936
Nunes, Márcio Roberto Teixeira; de Souza, William Marciel; Acrani, Gustavo Olszanski; Cardoso, Jedson Ferreira; da Silva, Sandro Patroca; Badra, Soraya Jabur; Figueiredo, Luiz Tadeu Moraes; Vasconcelos, Pedro Fernando da Costa
2018-01-01
Group C serogroup includes members of the Orthobunyavirus genus (family Peribunyaviridae) and comprises 15 arboviruses that can be associated with febrile illness in humans. Although previous studies described the genome characterization of Group C orthobunyavirus, there is a gap in genomic information about the other viruses in this group. Therefore, in this study, complete genomes of members of Group C serogroup were sequenced or re-sequenced and used for genetic characterization, as well as to understand their phylogenetic and evolutionary aspects. Thus, our study reported the genomes of three new members in Group C virus (Apeu strain BeAn848, Itaqui strain BeAn12797 and Nepuyo strain BeAn10709), as well as re-sequencing of original strains of five members: Caraparu (strain BeAn3994), Madrid (strain BT4075), Murucutu (strain BeAn974), Oriboca (strain BeAn17), and Marituba (strain BeAn15). These viruses presented a typical genomic organization related to members of the Orthobunyavirus genus. Interestingly, all viruses of this serogroup showed an open reading frame (ORF) that encodes the putative nonstructural NSs protein that precedes the nucleoprotein ORF, an unprecedented fact in Group C virus. Also, we confirmed the presence of natural reassortment events. This study expands the genomic information of Group C viruses, as well as revalidates the genomic organization of viruses that were previously reported.
MEMS tactile display: from fabrication to characterization
NASA Astrophysics Data System (ADS)
Miki, Norihisa; Kosemura, Yumi; Watanabe, Junpei; Ishikawa, Hiroaki
2014-03-01
We report fabrication and characterization of MEMS-based tactile display that can display users various tactile information, such as Braille codes and surface textures. The display consists of 9 micro-actuators that are equipped with hydraulic displacement amplification mechanism (HDAM) to achieve large enough displacement to stimulate the human tactile receptors. HDAM encapsulates incompressible liquids. We developed a liquid encapsulation process, which we termed as Bonding-in-Liquid Technique, where bonding with a UV-curable resin in glycerin is conducted in the liquid, which prevented interfusion of air bubbles and deformation of the membrane during the bonding. HDAM successfully amplified the displacement generated by piezoelectric actuators by a factor of 6. The display could virtually produce "rough" and "smooth" surfaces, by controlling the vibration frequency, displacement, and the actuation periods of an actuator until the adjacent actuator was driven. We introduced a sample comparison method to characterize the surfaces, which involves human tactile sensation. First, we prepared samples whose mechanical properties are known. We displayed a surface texture to the user by controlling the parameters and then, the user selects a sample that has the most similar surface texture. By doing so, we can correlate the parameters with the mechanical properties of the sample as well as find the sets of the parameters that can provide similar tactile information to many users. The preliminary results with respect to roughness and hardness is presented.
Asymmetric flow field-flow fractionation in the field of nanomedicine.
Wagner, Michael; Holzschuh, Stephan; Traeger, Anja; Fahr, Alfred; Schubert, Ulrich S
2014-06-03
Asymmetric flow field-flow fractionation (AF4) is a widely used and versatile technique in the family of field-flow fractionations, indicated by a rapidly increasing number of publications. It represents a gentle separation and characterization method, where nonspecific interactions are reduced to a minimum, allows a broad separation range from several nano- up to micrometers and enables a superior characterization of homo- and heterogenic systems. In particular, coupling to multiangle light scattering provides detailed access to sample properties. Information about molar mass, polydispersity, size, shape/conformation, or density can be obtained nearly independent of the used material. In this Perspective, the application and progress of AF4 for (bio)macromolecules and colloids, relevant for "nano" medical and pharmaceutical issues, will be presented. The characterization of different nanosized drug or gene delivery systems, e.g., polymers, nanoparticles, micelles, dendrimers, liposomes, polyplexes, and virus-like-particles (VLP), as well as therapeutic relevant proteins, antibodies, and nanoparticles for diagnostic usage will be discussed. Thereby, the variety of obtained information, the advantages and pitfalls of this emerging technique will be highlighted. Additionally, the influence of different fractionation parameters in the separation process is discussed in detail. Moreover, a comprehensive overview is given, concerning the investigated samples, fractionation parameters as membrane types and buffers used as well as the chosen detectors and the corresponding references. The perspective ends up with an outlook to the future.
High-fidelity operations in microfabricated surface ion traps
NASA Astrophysics Data System (ADS)
Maunz, Peter
2017-04-01
Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures. While these traps may enable the scaling of trapped ion quantum information processing (QIP), microfabricated ion traps also pose several technical challenges. Here, we present Sandia's trap fabrication capabilities and characterize trap properties and shuttling operations in our most recent high optical access trap (HOA-2). To demonstrate the viability of Sandia's microfabricated ion traps for QIP we realize robust single and two-qubit gates and characterize them using gate set tomography (GST). In this way we are able to demonstrate the first single qubit gates with a diamond norm of less than 1 . 7 ×10-4 , below a rigorous fault tolerance threshold for general noise of 6 . 7 ×10-4. Furthermore, we realize Mølmer-Sørensen two qubit gates with a process fidelity of 99 . 58(6) % also characterized by GST. These results demonstrate the viability of microfabricated surface traps for state of the art quantum information processing demonstrations. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).
Distributed Data Networks That Support Public Health Information Needs.
Tabano, David C; Cole, Elizabeth; Holve, Erin; Davidson, Arthur J
Data networks, consisting of pooled electronic health data assets from health care providers serving different patient populations, promote data sharing, population and disease monitoring, and methods to assess interventions. Better understanding of data networks, and their capacity to support public health objectives, will help foster partnerships, expand resources, and grow learning health systems. We conducted semistructured interviews with 16 key informants across the United States, identified as network stakeholders based on their respective experience in advancing health information technology and network functionality. Key informants were asked about their experience with and infrastructure used to develop data networks, including each network's utility to identify and characterize populations, usage, and sustainability. Among 11 identified data networks representing hundreds of thousands of patients, key informants described aggregated health care clinical data contributing to population health measures. Key informant interview responses were thematically grouped to illustrate how networks support public health, including (1) infrastructure and information sharing; (2) population health measures; and (3) network sustainability. Collaboration between clinical data networks and public health entities presents an opportunity to leverage infrastructure investments to support public health. Data networks can provide resources to enhance population health information and infrastructure.
NASA Astrophysics Data System (ADS)
Scotti, Oona; Peruzza, Laura
2016-04-01
The key questions we ask are: What is the best strategy to fill in the gap in knowledge and know-how in Europe when considering faults in seismic hazard assessments? Are field geologists providing the relevant information for seismic hazard assessment? Are seismic hazard analysts interpreting field data appropriately? Is the full range of uncertainties associated with the characterization of faults correctly understood and propagated in the computations? How can fault-modellers contribute to a better representation of the long-term behaviour of fault-networks in seismic hazard studies? Providing answers to these questions is fundamental, in order to reduce the consequences of future earthquakes and improve the reliability of seismic hazard assessments. An informal working group was thus created at a meeting in Paris in November 2014, partly financed by the Institute of Radioprotection and Nuclear Safety, with the aim to motivate exchanges between field geologists, fault modellers and seismic hazard practitioners. A variety of approaches were presented at the meeting and a clear gap emerged between some field geologists, that are not necessarily familiar with probabilistic seismic hazard assessment methods and needs and practitioners that do not necessarily propagate the "full" uncertainty associated with the characterization of faults. The group thus decided to meet again a year later in Chieti (Italy), to share concepts and ideas through a specific exercise on a test case study. Some solutions emerged but many problems of seismic source characterizations with people working in the field as well as with people tackling models of interacting faults remained. Now, in Wien, we want to open the group and launch a call for the European community at large to contribute to the discussion. The 2016 EGU session Fault2SHA is motivated by such an urgency to increase the number of round tables on this topic and debate on the peculiarities of using faults in seismic hazard assessment in Europe. Europe is a country dominated by slow deforming regions where the long histories of seismicity are the main source of information to infer fault behaviour. Geodetic studies, geomorphological studies as well as paleoseismological studies are welcome complementary data that are slowly filling in the database but are at present insufficient, by themselves, to allow characterizing faults. Moreover, Europe is characterized by complex fault systems (Upper Rhine Graben, Central and Southern Apennines, Corinth, etc.) and the degree of uncertainty in the characterization of the faults can be very different from one country to the other. This requires developing approaches and concepts that are adapted to the European context. It is thus the specificity of the European situation that motivates the creation of a predominantly European group where field geologists, fault modellers and fault-PSHA practitioners may exchange and learn from each other's experience.
Yoon, Jong H; Sheremata, Summer L; Rokem, Ariel; Silver, Michael A
2013-10-31
Cognitive and information processing deficits are core features and important sources of disability in schizophrenia. Our understanding of the neural substrates of these deficits remains incomplete, in large part because the complexity of impairments in schizophrenia makes the identification of specific deficits very challenging. Vision science presents unique opportunities in this regard: many years of basic research have led to detailed characterization of relationships between structure and function in the early visual system and have produced sophisticated methods to quantify visual perception and characterize its neural substrates. We present a selective review of research that illustrates the opportunities for discovery provided by visual studies in schizophrenia. We highlight work that has been particularly effective in applying vision science methods to identify specific neural abnormalities underlying information processing deficits in schizophrenia. In addition, we describe studies that have utilized psychophysical experimental designs that mitigate generalized deficit confounds, thereby revealing specific visual impairments in schizophrenia. These studies contribute to accumulating evidence that early visual cortex is a useful experimental system for the study of local cortical circuit abnormalities in schizophrenia. The high degree of similarity across neocortical areas of neuronal subtypes and their patterns of connectivity suggests that insights obtained from the study of early visual cortex may be applicable to other brain regions. We conclude with a discussion of future studies that combine vision science and neuroimaging methods. These studies have the potential to address pressing questions in schizophrenia, including the dissociation of local circuit deficits vs. impairments in feedback modulation by cognitive processes such as spatial attention and working memory, and the relative contributions of glutamatergic and GABAergic deficits.
Protein dynamics as seen by (quasi) elastic neutron scattering.
Magazù, S; Mezei, F; Falus, P; Farago, B; Mamontov, E; Russina, M; Migliardo, F
2017-01-01
Elastic and quasielastic neutron scattering studies proved to be efficient probes of the atomic mean square displacement (MSD), a fundamental parameter for the characterization of the motion of individual atoms in proteins and its evolution with temperature and compositional environment. We present a technical overview of the different types of experimental situations and the information quasi-elastic neutron scattering approaches can make available. In particular, MSD can crucially depend on the time scale over which the averaging (building of the "mean") takes place, being defined by the instrumental resolution. Due to their high neutron scattering cross section, hydrogen atoms can be particularly sensitively observed with little interference by the other atoms in the sample. A few examples, including new data, are presented for illustration. The incoherent character of neutron scattering on hydrogen atoms restricts the information obtained to the self-correlations in the motion of individual atoms, simplifying at the same time the data analysis. On the other hand, the (often overlooked) exploration of the averaging time dependent character of MSD is crucial for unambiguous interpretation and can provide a wealth of information on micro- and nanoscale atomic motion in proteins. By properly exploiting the broad range capabilities of (quasi)elastic neutron scattering techniques to deliver time dependent characterization of atomic displacements, they offer a sensitive, direct and simple to interpret approach to exploration of the functional activity of hydrogen atoms in proteins. Partial deuteration can add most valuable selectivity by groups of hydrogen atoms. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of alternative styles of risk information on EMF risk perception.
Nielsen, Jesper Bo; Elstein, Arthur; Gyrd-Hansen, Dorte; Kildemoes, Helle Wallach; Kristiansen, Ivar Sønbø; Støvring, Henrik
2010-10-01
Risk scenarios characterized by exposures to new technologies with unknown health effects, together with limited appreciation of benefits pose a challenge to risk communication. The present report illustrates this situation through a study of the perceived risk from mobile phones and mobile masts in residential areas. Good information should objectively convey the current state of knowledge. The research question is then how to inform lay people so that they trust and understand the information. We used an Internet-based survey with 1687 Danish participants randomized to three types of information about radiation from mobile phones and masts. The objective was to study whether different types of information were rated as equally useful, informative, comprehensible, and trustworthy. Moreover, an important issue was whether information would influence risk perception and intended behavior. The conclusion is that lay people rate information about risks associated with a new and largely unknown technology more useful and trustworthy when provided with brief statements about how to handle the risk, rather than more lengthy technical information about why the technology may or may not entail health hazards. Further, the results demonstrate that information may increase concern among a large proportion of the population, and that discrepancies exist between expressed concern and intended behavior.
Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R
2016-01-21
The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Recent developments on algal biochar production and characterization.
Yu, Kai Ling; Lau, Beng Fye; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Ng, Eng Poh; Chang, Jo-Shu
2017-12-01
Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
First evidence of tyre debris characterization at the nanoscale by focused ion beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, M.; Pucillo, F.P.; Ballerini, M.
2004-07-15
In this paper, we present a novel technique for the nanoscale characterization of the outer and inner structure of tyre debris. Tyre debris is produced by the normal wear of tyres. In previous studies, the microcharacterization and identification were performed by analytical electron microscopy. This study is a development of the characterization of surface and microstructure of tyre debris. For the first time, tyre debris was analysed by focused ion beam (FIB), a technique with 2- to 5-nm resolution that does not require any sample preparation. We studied tyre debris produced in the laboratory. We made electron and ionic imagingmore » of the surface of the material, and after a ionic cut, we studied the internal microstructure of the same sample. The tyre debris was analysed by FIB without any sample preparations unlike the case of scanning and transmission electron microscopy (SEM and TEM). Useful information was derived to improve detection and monitoring techniques of pollution by tyre degradation processes.« less
NASA Astrophysics Data System (ADS)
Schweinberger, Florian F.; Meyer-Plath, Asmus
2011-07-01
Nanotechnologies promise to contribute significantly to major technological challenges of the upcoming century. Despite profound scientific progress in the last decades, only minor advances have been made in the field of nanomaterial toxicology. The International Team in Nanosafety (TITNT) is an international and multidisciplinary group of scientists, which aims at better understanding the risks of nanomaterials. Carbon nanotubes (CNT) account for one of the most promising nanomaterials and have therefore been chosen as representative material for nanoscaled particles. They are currently investigated by the different platforms of TITNT. As a starting point, the present report summarizes a literature-based study on the physico-chemical properties of CNT, as they are closely linked with toxicological properties. A brief introduction to synthesis, purification and material properties is given. Characterization methods for CNT are discussed with respect to their reliability and the information content on chemical properties. Recommendations for a set of standard characterizations mandatory for toxicological assessment are derived.
Gholizadeh, Shima; Draz, Mohamed; Zarghooni, Maryam; Nezhad, Amir Sanati; Ghavami, Saeid; Shafiee, Hadi; Akbari, Mohsen
2017-01-01
Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complication and inflammatory disorders. Despite increasing scientific and clinical interest in this field, at the time of writing there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs. PMID:28088752
Characterizing Space Environments with Long-Term Space Plasma Archive Resources
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Miller, J. Scott; Diekmann, Anne M.; Parker, Linda N.
2009-01-01
A significant scientific benefit of establishing and maintaining long-term space plasma data archives is the ready access the archives afford to resources required for characterizing spacecraft design environments. Space systems must be capable of operating in the mean environments driven by climatology as well as the extremes that occur during individual space weather events. Long- term time series are necessary to obtain quantitative information on environment variability and extremes that characterize the mean and worst case environments that may be encountered during a mission. In addition, analysis of large data sets are important to scientific studies of flux limiting processes that provide a basis for establishing upper limits to environment specifications used in radiation or charging analyses. We present applications using data from existing archives and highlight their contributions to space environment models developed at Marshall Space Flight Center including the Chandra Radiation Model, ionospheric plasma variability models, and plasma models of the L2 space environment.
Synthesis and characterization of attosecond light vortices in the extreme ultraviolet
Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.
2016-01-01
Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787
NASA Astrophysics Data System (ADS)
Gutiérrez, J. M.; Primo, C.; Rodríguez, M. A.; Fernández, J.
2008-02-01
We present a novel approach to characterize and graphically represent the spatiotemporal evolution of ensembles using a simple diagram. To this aim we analyze the fluctuations obtained as differences between each member of the ensemble and the control. The lognormal character of these fluctuations suggests a characterization in terms of the first two moments of the logarithmic transformed values. On one hand, the mean is associated with the exponential growth in time. On the other hand, the variance accounts for the spatial correlation and localization of fluctuations. In this paper we introduce the MVL (Mean-Variance of Logarithms) diagram to intuitively represent the interplay and evolution of these two quantities. We show that this diagram uncovers useful information about the spatiotemporal dynamics of the ensemble. Some universal features of the diagram are also described, associated either with the nonlinear system or with the ensemble method and illustrated using both toy models and numerical weather prediction systems.
Probabilistic Exposure Analysis for Chemical Risk Characterization
Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.
2009-01-01
This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660
Database on Performance of Neutron Irradiated FeCrAl Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken
The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less
An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits
Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.
2006-01-01
This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning aerial extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.
An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits
Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.
2007-01-01
This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning areal extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.
Improvement in the Characterization of the 2099 Al-Li Alloy by FE-SEM
NASA Astrophysics Data System (ADS)
Brodusch, Nicolas; Trudeau, Michel L.; Michaud, Pierre; Brochu, Mathieu; Rodrigue, Lisa; Boselli, Julien; Gauvin, Raynald
This paper describes how state-of-the-art Field-Emission Scanning Electron Microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy, and metallic alloys in general. Investigations were carried out on bulk and thinned samples. BSE imaging at 3kV and STEM imaging at 30kV along with highly efficient microanalysis permitted to correlate experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al and Cu in the T1 precipitates. Zinc and magnesium are also present in "rice grain" shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted in that it can provide information at the macro and micro scales with relevant details. Its ability to probe the distribution of precipitates from nano-to micro-sizes throughout the matrix makes Field-Emission Scanning Electron Microscopy a suitable technique for the characterization of metallic alloys.
Thakur, Krishan Gopal; Jaiswal, Ravi Kumar; Shukla, Jinal K; Praveena, T; Gopal, B
2010-12-01
The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the σ factor/anti-σ factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of σ factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. Copyright © 2010 Elsevier Inc. All rights reserved.
Han, Young-Soo; Lee, Jai-Young; Miller, Carol J; Franklin, Lance
2009-05-01
A detailed characterization was performed on the humic substances present in landfill leachate derived from the older (10-year) and younger (6-month) municipal landfill cells at a site in Inchion, Korea. The characterization focused on the humic and fulvic acid components of the leachate, relying on information gleaned from the UV/visible spectroscopy, molecular weight distribution, and Fourier transform infrared spectroscopy. The effect of the leachates, and specific components of the leachates, on the hydraulic conductivity of a geosynthetic clay liner (GCL), was evaluated. The humic acid extracted from the older leachate was composed primarily of high molecular weight and aromatic compounds, which is typical for humic acids. However, the humic acid extracted from the younger leachate showed characteristics more similar with fulvic acids, indicating that the younger humic acid was at the initial stage of humification. The hydraulic conductivity of the GCLs to the humic and fulvic acids of the older and younger leachate was similar to those permeated with the distilled deionized water (DI). However, the hydraulic conductivity of the samples tested with the raw leachate was more than 200 times the DI value. This fact suggests that cations present in leachate, rather than humic substances, are the key factor in the increase of the permeability.
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María
2017-11-13
The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Temporal distance and person memory: thinking about the future changes memory for the past.
Wyer, Natalie A; Perfect, Timothy J; Pahl, Sabine
2010-06-01
Psychological distance has been shown to influence how people construe an event such that greater distance produces high-level construal (characterized by global or holistic processing) and lesser distance produces low-level construal (characterized by detailed or feature-based processing). The present research tested the hypothesis that construal level has carryover effects on how information about an event is retrieved from memory. Two experiments manipulated temporal distance and found that greater distance (high-level construal) improves face recognition and increases retrieval of the abstract features of an event, whereas lesser distance (low-level construal) impairs face recognition and increases retrieval of the concrete details of an event. The findings have implications for transfer-inappropriate processing accounts of face recognition and event memory, and suggest potential applications in forensic settings.
Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...
2017-08-31
A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Eugene; Humble, Travis S.
The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hiddenmore » sources of noise. Lastly, our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.« less
Physicochemical characterization of modified clay based composites obtained by a novel method
NASA Astrophysics Data System (ADS)
Kalra, Swati; Dudi, D.; Singh, G. P.; Verma, S. K.; Bhojak, N.
2018-05-01
Material science is one of the important fields where, absorption spectra of lanthanide ions have been a subject of several investigations because of their possible use as laser materials, diagnostic tools and sensors. Study of absorption spectra in visible and near infrared regions yields useful information regarding energy and intensity parameters, and nature and probabilities of transitions. Chemical physics provides fundamental tool to develop lanthanide chemistry, which has been increasingly significant in the last few years due to the wide variety of potential applications of their complexes in many important areas of biology and medicines. The present work describes the development of a novel method of composite preparation based on clay and its physiochemical characterization. Simultaneous measurement of some thermal properties has made study more useful. Results match with accepted models.
NASA Astrophysics Data System (ADS)
Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud
2017-12-01
We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.
Maury, Carl Peter J
2015-10-07
The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and evolvable. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W. A.; Kehrman, R.; Gist, C.
2002-02-26
The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.« less
Noise in any frequency range can enhance information transmission in a sensory neuron
NASA Astrophysics Data System (ADS)
Levin, Jacob E.
1997-05-01
The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.
Characterization of double continuum formulations of transport through pore-scale information
NASA Astrophysics Data System (ADS)
Porta, G.; Ceriotti, G.; Bijeljic, B.
2016-12-01
Information on pore-scale characteristics is becoming increasingly available at unprecedented levels of detail from modern visualization/data-acquisition techniques. These advancements are not completely matched by corresponding developments of operational procedures according to which we can engineer theoretical findings aiming at improving our ability to reduce the uncertainty associated with the outputs of continuum-scale models to be employed at large scales. We present here a modeling approach which rests on pore-scale information to achieve a complete characterization of a double continuum model of transport and fluid-fluid reactive processes. Our model makes full use of pore-scale velocity distributions to identify mobile and immobile regions. We do so on the basis of a pointwise (in the pore space) evaluation of the relative strength of advection and diffusion time scales, as rendered by spatially variable values of local Péclet numbers. After mobile and immobile regions are demarcated, we build a simplified unit cell which is employed as a representative proxy of the real porous domain. This model geometry is then employed to simplify the computation of the effective parameters embedded in the double continuum transport model, while retaining relevant information from the pore-scale characterization of the geometry and velocity field. We document results which illustrate the applicability of the methodology to predict transport of a passive tracer within two- and three-dimensional media upon comparison with direct pore-scale numerical simulation of transport in the same geometrical settings. We also show preliminary results about the extension of this model to fluid-fluid reactive transport processes. In this context, we focus on results obtained in two-dimensional porous systems. We discuss the impact of critical quantities required as input to our modeling approach to obtain continuum-scale outputs. We identify the key limitations of the proposed methodology and discuss its capability also in comparison with alternative approaches grounded, e.g., on nonlocal and particle-based approximations.
Bedrock geologic map of the Worcester South quadrangle, Worcester County, Massachusetts
Walsh, Gregory J.; Merschat, Arthur J.
2015-09-29
The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts. This report presents mapping by Gregory J. Walsh and Arthur J. Merschat from 2008 to 2010. The report consists of a map and GIS database, both of which are available for download at http://dx.doi.org/ 10.3133/sim3345. The database includes contacts of bedrock geologic units, faults, outcrop locations, structural information, and photographs.
Experimental investigation of criteria for continuous variable entanglement.
Bowen, W P; Schnabel, R; Lam, P K; Ralph, T C
2003-01-31
We generate a pair of entangled beams from the interference of two amplitude squeezed beams. The entanglement is quantified in terms of EPR paradox and inseparability criteria, with both results clearly beating the standard quantum limit. We experimentally analyze the effect of decoherence on each criterion and demonstrate qualitative differences. We also characterize the number of required and excess photons present in the entangled beams and provide contour plots of the efficacy of quantum information protocols in terms of these variables.
Experimental Estimation of Entanglement at the Quantum Limit
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander
2010-03-01
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.