CD8+ T Cells Cause Disability and Axon Loss in a Mouse Model of Multiple Sclerosis
Schmalstieg, William F.; Sauer, Brian M.; Wang, Huan; German, Christopher L.; Windebank, Anthony J.; Rodriguez, Moses; Howe, Charles L.
2010-01-01
Background The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice. Methodology/Principal Findings To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters. Conclusions/Significance In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis. PMID:20814579
Brain Connectivity and Functional Recovery in Patients With Ischemic Stroke.
Almeida, Sara Regina Meira; Vicentini, Jessica; Bonilha, Leonardo; De Campos, Brunno M; Casseb, Raphael F; Min, Li Li
2017-01-01
Brain mapping studies have demonstrated that functional poststroke brain reorganization is associated with recovery of motor function. Nonetheless, the specific mechanisms associated with functional reorganization leading to motor recovery are still partly unknown. In this study, we performed a cross-sectional evaluation of poststroke subjects with the following goals: (1) To assess intra- and interhemispheric functional brain activation patterns associated with motor function in poststroke patients with variable degrees of recovery; (2) to investigate the involvement of other nonmotor functional networks in relationship with recovery. We studied 59 individuals: 13 patients with function Rankin > 1 and Barthel < 100; 19 patients with preserved function with Rankin 0-1 and Barthel = 100; and 27 healthy controls. All subjects underwent structural and functional magnetic resonance imaging (3T Philips Achieva, Holland) using the same protocol (TR = 2 seconds, TE = 30 ms, FOV = 240 × 240 × 117, slice = 39). Resting state functional connectivity was used by in-house software, based on SPM12. Among patients with and without preserved function, the functional connectivity between the primary motor region (M1) and the contralateral hemisphere was increased compared with controls. Nonetheless, only patients with decreased function exhibited decreased functional connectivity between executive control, sensorimotor and visuospatial networks. Functional recovery after stroke is associated with preserved functional connectivity of motor to nonmotor networks. Copyright © 2016 by the American Society of Neuroimaging.
Motor and cognitive outcomes in children after functional hemispherectomy.
Samargia, Sharyl A; Kimberley, Teresa Jacobson
2009-01-01
Medically intractable epilepsy is a chronic recurrence of seizures that often requires surgery to reduce or eliminate them. Although a reduction of seizures is the primary goal of hemispherectomy, the effect of surgery on motor and cognitive skills is also of importance. This review will provide a discussion of (1) evidence regarding motor and cognitive outcomes, (2) predictors of these outcomes, and (3) neural mechanisms responsible for preservation of function after hemispherectomy. Motor and cognitive outcomes after hemispherectomy are variable and depend on many predictors including etiology and duration of seizure disorder, age at the time of surgery, premorbid status, and postsurgical seizure control. A refined ipsilateral pathway may explain the preservation of motor function in some children. A clear understanding of outcome predictors is important for planning effective rehabilitative programs after surgery.
Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa
2016-12-01
Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P
2017-08-01
Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.
Microsurgical resection of cauda equina schwannoma with nerve root preservation.
McCormick, Paul C
2014-09-01
The occurrence of motor deficit following resection of an intradural spinal schwannoma is an uncommon but potentially serious complication. This video illustrates the technique of microsurgical resection of an L-4 sensory nerve root schwannoma with preservation of the corresponding functional L-4 motor nerve root. The video can be found here: http://youtu.be/HrZkGj1JKd4.
Boumil, Edward F; Vohnoutka, Rishel Brenna; Liu, Yuguan; Lee, Sangmook; Shea, Thomas B
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive disease of motor neurons that has no cure or effective treatment. Any approach that could sustain minor motor function during terminal stages would improve quality of life. We examined the impact of omega-3 (Ω-3) and Ω-6, on motor neuron function in mice expressing mutant human superoxide dismutase-1 (SOD-1), which dominantly confers familial ALS and induces a similar sequence of motor neuron decline and eventual death when expressed in mice. Mice received standard diets supplemented with equivalent amounts of Ω-3 and Ω-6 or a 10x increase in Ω-6 with no change in Ω-3 commencing at 4 weeks of age. Motor function and biochemical/histological parameters were assayed by standard methodologies. Supplementation with equivalent Ω-3 and Ω-6 hastened motor neuron pathology and death, while 10x Ω-6 with no change in Ω-3 significantly delayed motor neuron pathology, including preservation of minor motor neuron function during the terminal stage. In the absence of a cure or treatment, affected individuals may resort to popular nutritional supplements such as Ω-3 as a form of "self-medication". However, our findings and those of other laboratories indicate that such an approach could be harmful. Our findings suggest that a critical balance of Ω-6 and Ω-3 may temporarily preserve motor neuron function during the terminal stages of ALS, which could provide a substantial improvement in quality of life for affected individuals and their caregivers.
Nichols, Nicole L.; Gowing, Genevieve; Satriotomo, Irawan; Nashold, Lisa J.; Dale, Erica A.; Suzuki, Masatoshi; Avalos, Pablo; Mulcrone, Patrick L.; McHugh, Jacalyn
2013-01-01
Rationale: Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease causing paralysis and death from respiratory failure. Strategies to preserve and/or restore respiratory function are critical for successful treatment. Although breathing capacity is maintained until late in disease progression in rodent models of familial ALS (SOD1G93A rats and mice), reduced numbers of phrenic motor neurons and decreased phrenic nerve activity are observed. Decreased phrenic motor output suggests imminent respiratory failure. Objectives: To preserve or restore phrenic nerve activity in SOD1G93A rats at disease end stage. Methods: SOD1G93A rats were injected with human neural progenitor cells (hNPCs) bracketing the phrenic motor nucleus before disease onset, or exposed to acute intermittent hypoxia (AIH) at disease end stage. Measurements and Main Results: The capacity to generate phrenic motor output in anesthetized rats at disease end stage was: (1) transiently restored by a single presentation of AIH; and (2) preserved ipsilateral to hNPC transplants made before disease onset. hNPC transplants improved ipsilateral phrenic motor neuron survival. Conclusions: AIH-induced respiratory plasticity and stem cell therapy have complementary translational potential to treat breathing deficits in patients with ALS. PMID:23220913
DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.
2013-01-01
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314
Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections
Mendelsohn, Alana I.; Simon, Christian M.; Abbott, L. F.; Mentis, George Z.; Jessell, Thomas M.
2015-01-01
Summary The construction of spinal sensory-motor circuits involves the selection of appropriate synaptic partners and the allocation of precise synaptic input densities. Many aspects of spinal sensory-motor selectivity appear to be preserved when peripheral sensory activation is blocked, which has led to a view that sensory-motor circuits are assembled in an activity-independent manner. Yet it remains unclear whether activity-dependent refinement has a role in the establishment of connections between sensory afferents and those motor pools that have synergistic biomechanical functions. We show here that genetically abolishing central sensory-motor neurotransmission leads to a selective enhancement in the number and density of such “heteronymous” connections, whereas other aspects of sensory-motor connectivity are preserved. Spike-timing dependent synaptic refinement represents one possible mechanism for the changes in connectivity observed after activity blockade. Our findings therefore reveal that sensory activity does have a limited and selective role in the establishment of patterned monosynaptic sensory-motor connections. PMID:26094608
Tafoya, Sara; Aathavan, K.; Schnitzbauer, Joerg; Grimes, Shelley; Jardine, Paul J.; Bustamante, Carlos
2014-01-01
SUMMARY Multimeric, ring-shaped molecular motors rely on the coordinated action of their subunits to perform crucial biological functions. During these tasks, motors often change their operation in response to regulatory signals. Here, we investigate a viral packaging machine as it fills the capsid with DNA and encounters increasing internal pressure. We find that the motor rotates the DNA during packaging and that the rotation per basepair increases with filling. This change accompanies a reduction in the motor’s step size. We propose that these adjustments preserve motor coordination by allowing one subunit to make periodic, specific, and regulatory contacts with the DNA. At high filling, we also observe the down-regulation of the ATP-binding rate and the emergence of long-lived pauses, suggesting a throttling-down mechanism employed by the motor near the completion of packaging. This study illustrates how a biological motor adjusts its operation in response to changing conditions, while remaining highly coordinated. PMID:24766813
Kobyakov, G L; Lubnin, A Yu; Kulikov, A S; Gavrilov, A G; Goryaynov, S A; Poddubskiy, A A; Lodygina, K S
2016-01-01
Awake craniotomy is a neurosurgical intervention aimed at identifying and preserving the eloquent functional brain areas during resection of tumors located near the cortical and subcortical language centers. This article provides a review of the modern literature devoted to the issue. The anatomical rationale and data of preoperative functional neuroimaging, intraoperative electrophysiological monitoring, and neuropsychological tests as well as the strategy of active surgical intervention are presented. Awake craniotomy is a rapidly developing technique aimed at both preserving speech and motor functions and improving our knowledge in the field of speech psychophysiology.
2018-01-01
The design of a multicomponent system that aims at the direct visualization of a synthetic rotary motor at the single molecule level on surfaces is presented. The synthesis of two functional motors enabling photochemical rotation and fluorescent detection is described. The light-driven molecular motor is found to operate in the presence of a fluorescent tag if a rigid long rod (32 Å) is installed between both photoactive moieties. The photochemical isomerization and subsequent thermal helix inversion steps are confirmed by 1H NMR and UV–vis absorption spectroscopies. In addition, the tetra-acid functioned motor can be successfully grafted onto amine-coated quartz and it is shown that the light responsive rotary motion on surfaces is preserved. PMID:29741383
Immediate improvement of motor function after epilepsy surgery in congenital hemiparesis.
Pascoal, Tharick; Paglioli, Eliseu; Palmini, André; Menezes, Rafael; Staudt, Martin
2013-08-01
Hemispherectomy often leads to a loss of contralateral hand function. In some children with congenital hemiparesis, however, paretic hand function remains unchanged. An immediate improvement of hand function has never been reported. A 17-year-old boy with congenital hemiparesis and therapy-refractory seizures due to a large infarction in the territory of the middle cerebral artery underwent epilepsy surgery. Intraoperatively, electrical cortical stimulation of the affected hemisphere demonstrated preserved motor projections from the sensorimotor cortex to the (contralateral) paretic hand. A frontoparietal resection was performed, which included a complete disconnection of all motor projections originating in the sensorimotor cortex of the affected hemisphere. Surprisingly, the paretic hand showed a significant functional improvement immediately after the operation. This observation demonstrates that, in congenital hemiparesis, crossed motor projections from the affected hemisphere are not always beneficial, but can be dysfunctional, interfering with ipsilateral motor control over the paretic hand by the contralesional hemisphere. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Ferreira Junior, Rui Seabra
2016-01-01
Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617
Cognitive and fine motor deficits in a pediatric sickle cell disease cohort of mixed ethnic origin.
Burkhardt, Luise; Lobitz, Stephan; Koustenis, Elisabeth; Rueckriegel, Stefan Mark; Hernáiz Driever, Pablo
2017-02-01
Cerebrovascular disease is an important feature of pediatric sickle cell disease (SCD) and may lead to cognitive and motor impairment. Our cross-sectional study examined the incidence and severity of these impairments in a pediatric cohort without clinical cerebrovascular events from Berlin of mixed ethnic origin. Thirty-two SCD patients (mean age 11.14 years, range 7.0-17.25 years; males 14) were evaluated for full-scale intelligence (IQ) (German version WISC-III), fine motor function (digital writing tablet), and executive function (planning, attention, working memory, and visual-spatial abilities) with the Amsterdam Neuropsychological Tasks (ANT) program and the Tower of London (ToL). Data on clinical risk factors were retrieved from medical records. Full-scale IQ of patients was preserved, whereas performance IQ was significantly reduced (91.19 (SD 12.17) d = 0.7, p = 0.007). SCD patients scored significantly lower than healthy peers when tested for executive and fine motor functions, e.g., planning time in the ToL (6.73 s (SD 3.21) vs. 5.9 s in healthy peers (SD 2.33), d = 0.5, p = <0.001) and frequency on the writing tablet (mean z score -0.79, d = 0.7, p < 0.001). No clinical risk factors were significantly associated with incidence and severity of cognitive and motor deficits. Despite the preservation of full-scale IQ, our SCD cohort of mixed origin exhibited inferior executive abilities and reduced fine motor skills. Our study is limited by the small size of our cohort as well as the lack for control of sociodemographic and socioeconomic factors modulating higher functions but highlights the need for early screening, prevention, and specific interventions for these deficits.
Zhang, Jia-Shu; Qu, Ling; Wang, Qun; Jin, Wei; Hou, Yuan-Zheng; Sun, Guo-Chen; Li, Fang-Ye; Yu, Xin-Guang; Xu, Ban-Nan; Chen, Xiao-Lei
2017-12-20
For stereotactic brain biopsy involving motor eloquent regions, the surgical objective is to enhance diagnostic yield and preserve neurological function. To achieve this aim, we implemented functional neuro-navigation and intraoperative magnetic resonance imaging (iMRI) into the biopsy procedure. The impact of this integrated technique on the surgical outcome and postoperative neurological function was investigated and evaluated. Thirty nine patients with lesions involving motor eloquent structures underwent frameless stereotactic biopsy assisted by functional neuro-navigation and iMRI. Intraoperative visualisation was realised by integrating anatomical and functional information into a navigation framework to improve biopsy trajectories and preserve eloquent structures. iMRI was conducted to guarantee the biopsy accuracy and detect intraoperative complications. The perioperative change of motor function and biopsy error before and after iMRI were recorded, and the role of functional information in trajectory selection and the relationship between the distance from sampling site to nearby eloquent structures and the neurological deterioration were further analyzed. Functional neuro-navigation helped modify the original trajectories and sampling sites in 35.90% (16/39) of cases to avoid the damage of eloquent structures. Even though all the lesions were high-risk of causing neurological deficits, no significant difference was found between preoperative and postoperative muscle strength. After data analysis, 3mm was supposed to be the safe distance for avoiding transient neurological deterioration. During surgery, the use of iMRI significantly reduced the biopsy errors (p = 0.042) and potentially increased the diagnostic yield from 84.62% (33/39) to 94.87% (37/39). Moreover, iMRI detected intraoperative haemorrhage in 5.13% (2/39) of patients, all of them benefited from the intraoperative strategies based on iMRI findings. Intraoperative visualisation of functional structures could be a feasible, safe and effective technique. Combined with intraoperative high-field MRI, it contributed to enhance the biopsy accuracy and lower neurological complications in stereotactic brain biopsy involving motor eloquent areas.
Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.
2015-01-01
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996
Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G
2015-02-01
To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.
Ryu, Yasuhiko; Akagi, Yoshito; Yagi, Minoru; Sasatomi, Teruo; Kinugasa, Tetsushi; Yamaguchi, Keizo; Oka, Yousuke; Fukahori, Suguru; Shiratsuchi, Ichitaro; Yoshida, Takefumi; Gotanda, Yukito; Tanaka, Natsuki; Ohchi, Takafumi; Romeo, Kansakar; Shirouzu, Kazuo
2015-01-01
The aim of this study was to elucidate whether fecoflowmetry (FFM) could evaluate more detailed evacuative function than anorectal manometry by comparing between FFM or anorectal manometric findings and the clinical questionnaires and the types of surgical procedure in the patients who received anal-preserving surgery. Fifty-three patients who underwent anal-preserving surgery for low rectal cancer were enrolled. The relationships between FFM or the manometric findings and the clinical questionnaires and the types of procedure of anal-preserving surgery were evaluated. There were significant differences between FFM markers and the clinical questionnaire and the types of the surgical procedure, whereas no significant relationship was observed between the manometric findings and the clinical questionnaire and the types of the surgical procedure. FFM might be feasible and useful for the objective assessment of evacuative function and may be superior to manometry for patients undergoing anal-preserving surgery. PMID:25594637
Henriques, Alexandre; Huebecker, Mylene; Blasco, Hélène; Keime, Céline; Andres, Christian R; Corcia, Philippe; Priestman, David A; Platt, Frances M; Spedding, Michael; Loeffler, Jean-Philippe
2017-07-12
Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1 G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.
Speech and motor disturbances in Rett syndrome.
Bashina, V M; Simashkova, N V; Grachev, V V; Gorbachevskaya, N L
2002-01-01
Rett syndrome is a severe, genetically determined disease of early childhood which produces a defined clinical phenotype in girls. The main clinical manifestations include lesions affecting speech functions, involving both expressive and receptive speech, as well as motor functions, producing apraxia of the arms and profound abnormalities of gait in the form of ataxia-apraxia. Most investigators note that patients have variability in the severity of derangement to large motor acts and in the damage to fine hand movements and speech functions. The aims of the present work were to study disturbances of speech and motor functions over 2-5 years in 50 girls aged 12 months to 14 years with Rett syndrome and to analyze the correlations between these disturbances. The results of comparing clinical data and EEG traces supported the stepwise involvement of frontal and parietal-temporal cortical structures in the pathological process. The ability to organize speech and motor activity is affected first, with subsequent development of lesions to gnostic functions, which are in turn followed by derangement of subcortical structures and the cerebellum and later by damage to structures in the spinal cord. A clear correlation was found between the severity of lesions to motor and speech functions and neurophysiological data: the higher the level of preservation of elements of speech and motor functions, the smaller were the contributions of theta activity and the greater the contributions of alpha and beta activities to the EEG. The possible pathogenetic mechanisms underlying the motor and speech disturbances in Rett syndrome are discussed.
Role of the cerebellum in high stages of motor planning hierarchy
Federici, Alessandra; Cesareo, Ambra; Biffi, Emilia; Valtorta, Giulia; Molteni, Massimo; Ronconi, Luca; Borgatti, Renato
2017-01-01
Motor planning is not a monolithic process, and distinct stages of motor planning are responsible for encoding different levels of abstractness. However, how these distinct components are mapped into different neural substrates remains an open question. We studied one of these high-level motor planning components, defined as second-order motor planning, in a patient (R.G.) with an extremely rare case of cerebellar agenesis but without any other cortical malformations. Second-order motor planning dictates that when two acts must be performed sequentially, planning of the second act can influence execution of the first. We used an optoelectronic system for kinematic analysis to compare R.G.’s performance with age-matched controls in a second-order motor planning task. The first act was to reach for an object, and the second was to place it into a small or large container. Our results showed that despite the expected difficulties in fine-motor skills, second-order motor planning (i.e., the ability to modulate the first act as a function of the nature of the second act) was preserved even in the patient with congenital absence of the cerebellum. These results open new intriguing speculations about the role of the cerebellum in motor planning abilities. Although prudence is imperative when suggesting conclusions made on the basis of single-case findings, this evidence suggests fascinating hypotheses about the neural circuits that support distinct stages of the motor planning hierarchy, and regarding the functional role of second-order motor planning in motor cognition and its potential dysfunction in autism. NEW & NOTEWORTHY Traditionally, the cerebellum was considered essential for motor planning. By studying an extremely rare patient with cerebellar agenesis and a group of neurotypical controls, we found that high stages of the motor planning hierarchy can be preserved even in this patient with congenital absence of the cerebellum. Our results provide interesting insights that shed light on the neural circuits supporting distinct levels of motor planning. Furthermore, the results are intriguing because of their potential clinical implications in autism. PMID:28077667
Is a wake-up call in order? Review of the evidence for awake craniotomy.
Paldor, Iddo; Drummond, Katharine J; Awad, Mohammed; Sufaro, Yuval Z; Kaye, Andrew H
2016-01-01
Awake craniotomy (AC) has been used in increasing frequency in the past few decades. It has mainly been used for resection of intrinsic tumors, but also, rarely, for other pathologies. The vast majority of reports specific to one pathology, however, have focused on resection of low grade glioma in the awake setting. Tumors in eloquent areas have mainly been resected when the patient is awake for the purpose of preservation of function. Motor function is the most documented, and most successfully preserved function. Other functions are harder to localize with direct electrical stimulation (DES), and thus more difficult to preserve. The success rate of DES localization correlates to the rate of function preservation. The effect of AC on extent of resection is inconsistent in the literature. Other functions, such as sensory and visuospatial recognition, have been protected during AC, but this is best performed in large, referral centers that have experience with the procedure. Other benefits to AC, such as cost-effectiveness and reduction in patient pain and anxiety, have also been reported. Copyright © 2015 Elsevier Ltd. All rights reserved.
Provencher, Véronique; Demers, Louise; Gagnon, Lise; Gélinas, Isabelle
2012-05-01
Hospitalized frail older patients are usually assessed for their ability to perform some daily living activities in a clinical setting prior to discharge. However, assessments that take place in this unfamiliar environment might not be as representative of their functional performance as assessments at home. This may be related to a decline in some cognitive components, such as executive functions (EF), which enable one to cope with new environments. This study thus aims to compare cooking task performance in familiar and unfamiliar settings in a population of frail older adults with poor and preserved EF. Thirty-seven frail older adults were assigned to one of two groups: poor EF or preserved EF. Participants performed two cooking tasks in familiar and unfamiliar settings, using a counterbalanced design. Their performance was assessed with a reliable tool based on observation of motor and process skills (Assessment of Motor and Process Skills). Thirty-three participants were retained for analysis. They demonstrated significantly better motor skills (F = 5.536; p = 0.025) and process skills (F = 8.149; p = 0.008) in the familiar setting. The difference between settings was particularly marked for process skills in participants with poor EF (F = 16.920; p < 0.001). This study suggests that a home setting may be preferable for a more accurate assessment of cooking task performance in frail older adults, especially those with poor EF. These findings highlight the risk of underestimating frail older adults' performance when assessed in an unfamiliar setting (e.g. hospital), which could lead to inefficient allocation of home care services.
Santin, Joseph M; Hartzler, Lynn K
2017-04-01
Semiaquatic frogs may not breathe air for several months because they overwinter in ice-covered ponds. In contrast to many vertebrates that experience decreased motor performance after inactivity, bullfrogs, Lithobates catesbeianus , retain functional respiratory motor processes following cold-submergence. Unlike mammalian hibernators with unloaded limb muscles and inactive locomotor systems, respiratory mechanics of frogs counterintuitively allow for ventilatory maneuvers when submerged. Thus, we hypothesized that bullfrogs generate respiratory motor patterns during cold-submergence to avoid disuse and preserve motor performance. Accordingly, we measured activity of respiratory muscles (buccal floor compressor and glottal dilator) via electromyography in freely behaving bullfrogs at 20 and 2°C. Although we confirm that ventilation cycles occur underwater at 20°C, bullfrogs did not activate either respiratory muscle when submerged acutely or chronically at 2°C. We conclude that cold-submerged bullfrogs endure respiratory motor inactivity, implying that other mechanisms, excluding underwater muscle activation, maintain a functional respiratory motor system throughout overwintering. © 2017. Published by The Company of Biologists Ltd.
Platz, T
1996-10-01
Somaesthetic, motor and cognitive functions were studied in a man with impaired tactile object-recognition (TOR) in his left hand due to a right parietal convexity meningeoma which had been surgically removed. Primary motor and somatosensory functions were not impaired, and discriminative abilities for various tactile aspects and cognitive skills were preserved. Nevertheless, the patient could often not appreciate the object's nature or significance when it was placed in his left hand and was unable to name or to describe or demonstrate the use of these objects. Therefore, he can be regarded as an example of associative tactile agnosia. The view is taken and elaborated that defective modality-specific meaning representations account for associative tactile agnosia. These meaning representations are conceptualized as learned unimodal feature-entity relationships which are thought to be defective in tactile agnosia. In line with this hypothesis, tactile feature analysis and cross-modal matching of features were largely preserved in the investigated patient, while combining features to form entities was defective in the tactile domain. The alternative hypothesis of agnosia as deficit of cross-modal association of features was not supported. The presumed distributed functional network responsible for TOR is thought to involve perception of features, object recognition and related tactile motor behaviour interactively. A deficit leading primarily to impaired combining features to form entities can therefore be expected to result in additional minor impairment of related perceptual-motor processes. Unilaterality of the gnostic deficit can be explained by a lateralized organization of the functional network responsible for tactile recognition of objects.
Canonici, Ana Paula; Andrade, Larissa Pires de; Gobbi, Sebastião; Santos-Galduroz, Ruth Ferreira; Gobbi, Lílian Teresa Bucken; Stella, Florindo
2012-09-01
Cognitive decline has a negative impact on functional activities in Alzheimer's disease. Investigating the effects of motor intervention with the intent to reduce the decline in functionality is an expected target for patients and caregivers. The aim of this study was to verify if a 6-month motor intervention programme promoted functionality in Alzheimer's patients and attenuated caregivers' burden. The sample comprised 32 community patients with Alzheimer's disease and their 32 respective caregivers. Patients were divided into two groups: 16 participated in the motor intervention programme and 16 controls. Subjects performed 60 minutes of exercises, three times per week during the 6-month period, to improve flexibility, strength, agility and balance. Caregivers followed the procedures with their patients during this period. Functionality was evaluated by the Berg Functional Balance Scale and the Functional Independence Measure. Caregivers completed the Neuropsychiatric Inventory Caregiver Distress Scale and the Zarit Carer Burden Scale. Two-way ANOVA was used to verify the interaction between time (pre- and post-intervention) and the motor intervention program. While patients in the motor programme preserved their functionality, as assessed by the Functional Independence Measure, the controls suffered a relative decline (motor intervention group: from 109.6 to 108.4 vs controls: from 99.5 to 71.6; P= 0.01). Patients from motor intervention also had better scores than the controls on functional balance assessed by Berg scale (F: 22.2; P= 0.001). As assessed by the Neuropsychiatric Inventory and Zarit scale, burden was reduced among caregivers whose patients participated in the motor intervention programme compared with caregivers whose patients did not participate in this programme (Neuropsychiatric Inventory, caregiver's part: F: 9.37; P= 0.01; Zarit: F: 11.28; P= 0.01). Patients from the motor intervention group showed reduced functional decline compared to the controls, and there was an associated decrease in caregivers' burden. © 2012 The Authors. Psychogeriatrics © 2012 Japanese Psychogeriatric Society.
Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition
Potgieser, A. R. E.; de Jong, B. M.; Wagemakers, M.; Hoving, E. W.; Groen, R. J. M.
2014-01-01
The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the SMA. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength and mutism. A remarkable feature is that these symptoms completely resolve within weeks to months, leaving only a disturbance in alternating bimanual movements. In this review we give an overview of the old and new insights from the SMA syndrome and extrapolate these findings to seemingly unrelated diseases and symptoms such as Parkinson’s disease (PD) and tics. Furthermore, we integrate findings from lesion, stimulation and functional imaging studies to provide insight in the motor function of the SMA. PMID:25506324
The relationship between executive function and fine motor control in young and older adults.
Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M
2017-01-01
The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.
Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie
2014-05-01
Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.
Marotta, Angela; Bombieri, Federica; Zampini, Massimiliano; Schena, Federico; Dallocchio, Carlo; Fiorio, Mirta; Tinazzi, Michele
2017-01-01
Functional movement disorders (FMD) are characterized by motor symptoms (e.g., tremor, gait disorder, and dystonia) that are not compatible with movement abnormalities related to a known organic cause. One key clinical feature of FMD is that motor symptoms are similar to voluntary movements but are subjectively experienced as involuntary by patients. This gap might be related to abnormal self-recognition of bodily action, which involves two main components: sense of agency and sense of body ownership. The aim of this study was to systematically investigate whether this function is altered in FMD, specifically focusing on the subjective feeling of agency, body ownership, and their interaction during normal voluntary movements. Patients with FMD ( n = 21) and healthy controls ( n = 21) underwent the moving Rubber Hand Illusion (mRHI), in which passive and active movements can differentially elicit agency, ownership or both. Explicit measures of agency and ownership were obtained via a questionnaire. Patients and controls showed a similar pattern of response: when the rubber hand was in a plausible posture, active movements elicited strong agency and ownership; implausible posture of the rubber hand abolished ownership but not agency; passive movements suppressed agency but not ownership. These findings suggest that explicit sense of agency and body ownership are preserved in FMD. The latter finding is shared by a previous study in FMD using a static version of the RHI, whereas the former appears to contrast with studies demonstrating altered implicit measures of agency (e.g., sensory attenuation). Our study extends previous findings by suggesting that in FMD: (i) the sense of body ownership is retained also when interacting with the motor system; (ii) the subjective experience of agency for voluntary tapping movements, as measured by means of mRHI, is preserved.
Nardo, Giovanni; Trolese, Maria Chiara; Bendotti, Caterina
2016-01-01
Neuronal expression of major histocompatibility complex I (MHCI)-related molecules in adults and during CNS diseases is involved in the synaptic plasticity and axonal regeneration with mechanisms either dependent or independent of their immune functions. Motor neurons are highly responsive in triggering the expression of MHCI molecules during normal aging or following insults and diseases, and this has implications in the synaptic controls, axonal regeneration, and neuromuscular junction stability of these neurons. We recently reported that MHCI and immunoproteasome are strongly activated in spinal motor neurons and their peripheral motor axon in a mouse model of familial amyotrophic lateral sclerosis (ALS) during the course of the disease. This response was prominent in ALS mice with slower disease progression in which the axonal structure and function was better preserved than in fast-progressing mice. This review summarizes and discusses our observations in the light of knowledge about the possible role of MHCI in motor neurons providing additional insight into the pathophysiology of ALS. PMID:27379008
DeVan, Allison E.; Cruickshank-Quinn, Charmion; Reisdorph, Nichole; Bassett, Candace J.; Evans, Trent D.; Brooks, Forrest A.; Bryan, Nathan S.; Chonchol, Michel B.; Giordano, Tony; McQueen, Matthew B.; Seals, Douglas R.
2015-01-01
Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 or 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging. PMID:26626856
Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS
2015-08-01
using AAV at UW - Madison . Although we prepared our animal colony for diaphragm injections of AAV-GDNF, we decided to postpone the experiments based on...data obtained by Dr. Masatoshi Suzuki (University of Wisconsin- Madison ) with AAV2/6-GDNF. As methods used in the current study were identical to the...study animals (figure 4C), no overt relationship was observed. Figure 4- Motor neuron quantification in the lumbar spinal cord of animals treated
Evaluation of Serial Casting for Boys with Duchenne Muscular Dystrophy: A Case Report.
Carroll, Kate; de Valle, Katy; Kornberg, Andrew; Ryan, Monique; Kennedy, Rachel
2018-02-01
To report the effects of below-knee serial casting in two boys with Duchenne muscular dystrophy who presented with well-preserved strength and calf shortening. Bilateral below-knee serial casts were applied over two weeks with follow-up of daily stretching and wearing of customized night splints. Outcome measures were performed at baseline, 1, 3, 6, and 12 months post-casting. These included measures of calf length, leg strength, motor function, endurance, and spatio-temporal gait parameters. Both boys completed serial casting with gains in muscle length. No adverse effects on strength or motor function were observed over a 12-month follow-up period.
Functional integrity in children with anoxic brain injury from drowning.
Ishaque, Mariam; Manning, Janessa H; Woolsey, Mary D; Franklin, Crystal G; Tullis, Elizabeth W; Beckmann, Christian F; Fox, Peter T
2017-10-01
Drowning is a leading cause of accidental injury and death in young children. Anoxic brain injury (ABI) is a common consequence of drowning and can cause severe neurological morbidity in survivors. Assessment of functional status and prognostication in drowning victims can be extremely challenging, both acutely and chronically. Structural neuroimaging modalities (CT and MRI) have been of limited clinical value. Here, we tested the utility of resting-state functional MRI (rs-fMRI) for assessing brain functional integrity in this population. Eleven children with chronic, spastic quadriplegia due to drowning-induced ABI were investigated. All were comatose immediately after the injury and gradually regained consciousness, but with varying ability to communicate their cognitive state. Eleven neurotypical children matched for age and gender formed the control group. Resting-state fMRI and co-registered T1-weighted anatomical MRI were acquired at night during drug-aided sleep. Network integrity was quantified by independent components analysis (ICA), at both group- and per-subject levels. Functional-status assessments based on in-home observations were provided by families and caregivers. Motor ICNs were grossly compromised in ABI patients both group-wise and individually, concordant with their prominent motor deficits. Striking preservations of perceptual and cognitive ICNs were observed, and the degree of network preservation correlated (ρ = 0.74) with the per-subject functional status assessments. Collectively, our findings indicate that rs-fMRI has promise for assessing brain functional integrity in ABI and, potentially, in other disorders. Furthermore, our observations suggest that the severe motor deficits observed in this population can mask relatively intact perceptual and cognitive capabilities. Hum Brain Mapp 38:4813-4831, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Southwell, Derek G; Hervey-Jumper, Shawn L; Perry, David W; Berger, Mitchel S
2016-05-01
OBJECT To avoid iatrogenic injury during the removal of intrinsic cerebral neoplasms such as gliomas, direct electrical stimulation (DES) is used to identify cortical and subcortical white matter pathways critical for language, motor, and sensory function. When a patient undergoes more than 1 brain tumor resection as in the case of tumor recurrence, the use of DES provides an unusual opportunity to examine brain plasticity in the setting of neurological disease. METHODS The authors examined 561 consecutive cases in which patients underwent DES mapping during surgery forglioma resection. "Positive" and "negative" sites-discrete cortical regions where electrical stimulation did (positive) or did not (negative) produce transient sensory, motor, or language disturbance-were identified prior to tumor resection and documented by intraoperative photography for categorization into functional maps. In this group of 561 patients, 18 were identified who underwent repeat surgery in which 1 or more stimulation sites overlapped with those tested during the initial surgery. The authors compared intraoperative sensory, motor, or language mapping results between initial and repeat surgeries, and evaluated the clinical outcomes for these patients. RESULTS A total of 117 sites were tested for sensory (7 sites, 6.0%), motor (9 sites, 7.7%), or language (101 sites, 86.3%) function during both initial and repeat surgeries. The mean interval between surgical procedures was 4.1 years. During initial surgeries, 95 (81.2%) of 117 sites were found to be negative and 22 (18.8%) of 117 sites were found to be positive. During repeat surgeries, 103 (88.0%) of 117 sites were negative and 14 (12.0%) of 117 were positive. Of the 95 sites that were negative at the initial surgery, 94 (98.9%) were also negative at the repeat surgery, while 1 (1.1%) site was found to be positive. Of the 22 sites that were initially positive, 13 (59.1%) remained positive at repeat surgery, while 9 (40.9%) had become negative for function. Overall, 6 (33.3%) of 18 patients exhibited loss of function at 1 or more motor or language sites between surgeries. Loss of function at these sites was not associated with neurological impairment at the time of repeat surgery, suggesting that neurological function was preserved through neural circuit reorganization or activation of latent functional pathways. CONCLUSIONS The adult central nervous system reorganizes motor and language areas in patients with glioma. Ultimately, adult neural plasticity may help to preserve motor and language function in the presence of evolving structural lesions. The insight gained from this subset of patients has implications for our understanding of brain plasticity in clinical settings.
Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong
2017-10-01
Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Forgacs, Peter B; Conte, Mary M; Fridman, Esteban A; Voss, Henning U; Victor, Jonathan D; Schiff, Nicholas D
2014-12-01
Standard clinical characterization of patients with disorders of consciousness (DOC) relies on observation of motor output and may therefore lead to the misdiagnosis of vegetative state or minimally conscious state in patients with preserved cognition. We used conventional electroencephalographic (EEG) measures to assess a cohort of DOC patients with and without functional magnetic resonance imaging (fMRI)-based evidence of command-following, and correlated the findings with standard clinical behavioral evaluation and brain metabolic activity. We enrolled 44 patients with severe brain injury. Behavioral diagnosis was established using standardized clinical assessments. Long-term EEG recordings were analyzed to determine wakeful background organization and presence of elements of sleep architecture. A subset of patients had fMRI testing of command-following using motor imagery paradigms (26 patients) and resting brain metabolism measurement using (18) fluorodeoxyglucose positron emission tomography (31 patients). All 4 patients with fMRI evidence of covert command-following consistently demonstrated well-organized EEG background during wakefulness, spindling activity during sleep, and relative preservation of cortical metabolic activity. In the entire cohort, EEG organization and overall brain metabolism showed no significant association with bedside behavioral testing, except in a few cases when EEG was severely abnormal. These findings suggest that conventional EEG is a simple strategy that complements behavioral and imaging characterization of DOC patients. Preservation of specific EEG features may be used to assess the likelihood of unrecognized cognitive abilities in severely brain-injured patients with very limited or no motor responses. © 2014 American Neurological Association.
Neuromodulation of lower limb motor control in restorative neurology.
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-06-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuromodulation of lower limb motor control in restorative neurology
Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried
2012-01-01
One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657
The effect of Functional Electric Stimulation in stroke patients' motor control - a case report
NASA Astrophysics Data System (ADS)
Pripas, Denise; Rogers Venditi Beas, Allan; Fioramonte, Caroline; Gonsales de Castro, Pedro Claudio; Goroso, Daniel Gustavo; Cecília dos Santos Moreira, Maria
2011-12-01
Functional Electric Stimulation (FES) has been studied as a therapeutic resource to reduce spasticity in hemiplegic patients, however there are no studies about the effects of FES in motor control of these patients during functional tasks like balance maintenance. Muscular activation of gastrocnemius medialis and semitendinosus was investigated in both limbs of a hemiparetic patient during self-disturbed quiet stance before and after FES on tibialis anterior, by surface electromyography. The instant of maximum activation peak of GM and ST were calculated immediately after a motor self-disturbance, in order to observe muscular synergy between these two muscles, and possible balance strategies used (ankle or hip strategy). At the preserved limb there occurred distal-proximal synergy (GM followed by ST), expected for small perturbations; however, at spastic limb there was inversion of this synergy (proximal-distal) after FES. It is possible that intervention of electricity had inhibited synergical pathways due to antidromic effect, making it difficult to use ankle strategy in the spastic limb.
Marotta, Angela; Bombieri, Federica; Zampini, Massimiliano; Schena, Federico; Dallocchio, Carlo; Fiorio, Mirta; Tinazzi, Michele
2017-01-01
Functional movement disorders (FMD) are characterized by motor symptoms (e.g., tremor, gait disorder, and dystonia) that are not compatible with movement abnormalities related to a known organic cause. One key clinical feature of FMD is that motor symptoms are similar to voluntary movements but are subjectively experienced as involuntary by patients. This gap might be related to abnormal self-recognition of bodily action, which involves two main components: sense of agency and sense of body ownership. The aim of this study was to systematically investigate whether this function is altered in FMD, specifically focusing on the subjective feeling of agency, body ownership, and their interaction during normal voluntary movements. Patients with FMD (n = 21) and healthy controls (n = 21) underwent the moving Rubber Hand Illusion (mRHI), in which passive and active movements can differentially elicit agency, ownership or both. Explicit measures of agency and ownership were obtained via a questionnaire. Patients and controls showed a similar pattern of response: when the rubber hand was in a plausible posture, active movements elicited strong agency and ownership; implausible posture of the rubber hand abolished ownership but not agency; passive movements suppressed agency but not ownership. These findings suggest that explicit sense of agency and body ownership are preserved in FMD. The latter finding is shared by a previous study in FMD using a static version of the RHI, whereas the former appears to contrast with studies demonstrating altered implicit measures of agency (e.g., sensory attenuation). Our study extends previous findings by suggesting that in FMD: (i) the sense of body ownership is retained also when interacting with the motor system; (ii) the subjective experience of agency for voluntary tapping movements, as measured by means of mRHI, is preserved. PMID:28634447
Hanakawa, Takashi; Goldfine, Andrew M; Hallett, Mark
2017-01-01
Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy ( A base ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved A base for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.
2017-01-01
Abstract Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine. PMID:29379873
Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T
2015-12-01
This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi
2018-02-01
Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Formation of cortical plasticity in older adults following tDCS and motor training
Goodwill, Alicia M.; Reynolds, John; Daly, Robin M.; Kidgell, Dawson J.
2013-01-01
Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12–22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38–54%) and short-interval intracortical inhibition was released (21–36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults. PMID:24367333
Liu, Ying Hsiu; Sahashi, Kentaro; Rigo, Frank; Bennett, C. Frank
2015-01-01
Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice. PMID:25583329
Kluger, Benzi M.; Brown, R. Preston; Aerts, Shanae; Schenkman, Margaret
2014-01-01
Background Parkinson disease (PD) may lead to functional limitations through both motor and non-motor symptoms. While patients with advanced disease have well-documented and profound functional limitations, less is known about the determinants of function in early to mid-stage disease where interventions may be more likely to benefit and preserve function. Objective The objective of the current study was to identify motor, cognitive and gait determinants of physical functional performance in patients with early to mid-stage PD. Design Secondary analysis of cross-sectional baseline data from a randomized clinical trial of exercise. Setting Tertiary academic medical center. Participants 121 patients with early to mid-stage PD. Methods Our functional performance outcomes included: 1) the Continuous Scale Functional Performance Test (CS-PFP; primary outcome); 2) the timed up and go (TUG) tests; and Section 2 (Activities of Daily Living) of the Unified Parkinson's Disease Rating Scale (UPDRS). Explanatory variables included measures of disease severity, motor function, cognitive function, balance and gait. Step-wise linear regression models were used to determine correlations between explanatory variables and outcome measures. Results In our regression models the CS-PFP significantly correlated with walking endurance (six minute walk; r2 = 0.12, p < .0001), turning ability (360 degree turn; r2 = .03, p = .002), attention (brief test of attention; r2 = .01, p = .03), overall cognitive status (Mini-mental State Examination; r2 = .01, p = .04) and bradykinesia (timed tapping; r2 = .02, p = .02). The TUG significantly correlated with walking speed (5 meter walk; r2 = 0.33, p <.0001), stride length (r2 = 0.25, p <.0001), turning ability (360 turn r2 = .05, p = .0003) and attention (r2 = .016, p = .03). Section 2 of the UPDRS was significantly correlated with endurance (r2 = .09, p < .0001), turning ability (r2 = .03, p = .001) and attention (r2 = .01, p = .03). Conclusions Gait, motor and cognitive function all contribute to objectively measured global functional ability in mild to moderate PD. Subjectively measured functional activity outcomes may underestimate the impact of both motor and non-motor symptoms. PMID:24880056
Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S
2004-02-01
The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.
Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.
2014-01-01
The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564
Functional but Inefficient Kinesthetic Motor Imagery in Adolescents with Autism Spectrum Disorder.
Chen, Ya-Ting; Tsou, Kuo-Su; Chen, Hao-Ling; Wong, Ching-Ching; Fan, Yang-Teng; Wu, Chien-Te
2018-03-01
Whether action representation in individuals with autism spectrum disorder (ASD) is deficient remains controversial, as previous studies of action observation or imitation report conflicting results. Here we investigated the characteristics of action representation in adolescents with ASD through motor imagery (MI) using a hand rotation and an object rotation task. Comparable with the typically-developing group, the individuals with ASD were able to spontaneously use kinesthetic MI to perform the hand rotation task, as manifested by the significant biomechanical effects. However, the ASD group performed significantly slower only in the hand rotation task, but not in the object rotation task. The findings suggest that the adolescents with ASD showed inefficient but functional kinesthetic MI, implicating that their action representation might be preserved.
Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A.; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J.; Finkenstaedt, Felix W.; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas
2016-01-01
Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient’s environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS (‘immune paralysis’), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788
Sensitive and Motor Neuroanastomosis After Facial Trauma.
Ribeiro-Junior, Paulo Domingos; Senko, Ricardo Alexandre Galdioli; Mendes, Gabriel Cury Batista; Peres, Fernando Gianzanti
2016-10-01
Facial nerve has great functional and aesthetic importance to the face, and damage to its structure can lead to major complications. This article reports a clinical case of neuroanastomosis of the facial nerve after facial trauma, describing surgical procedure and postoperative follow-up. A trauma patient with extensive injury cut in right mandibular body causing neurotmesis of the VIIth cranial nerve and mandibular angle fracture right side was treated. During surgical exploration, the nerve segments were identified and a neuroanastomosis was performed using nylon 10-0, after reduction and internal fixation of the mandibular fracture. Postoperatively, an 8-month follow-up showed good evolution and preservation of motor function of the muscles of facial mime, highlighting the success of the surgical treatment. Nerve damage because of facial trauma can be a surgical treatment challenge, but when properly conducted can functionally restore the damaged nerve.
Raffa, Giovanni; Conti, Alfredo; Scibilia, Antonino; Sindorio, Carmela; Quattropani, Maria Catena; Visocchi, Massimiliano; Germanò, Antonino; Tomasello, Francesco
2017-01-01
Surgery of low-grade gliomas (LGGs) in eloquent areas still presents a challenge. New technologies have been introduced to enable the performance of "functional", customized preoperative planning aimed at maximal resection, while reducing the risk of postoperative deficits. We describe our experience in the surgery of LGGs in eloquent areas using preoperative planning based on navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging (DTI) tractography. Sixteen patients underwent preoperative planning, using nTMS and nTMS-based DTI tractography. Motor and language functions were mapped. Preoperative data allowed for tailoring of the surgical strategy. The impact of these modalities on surgical planning was evaluated. Influence on functional outcome was analyzed in comparison with results in a historical control group. In 12 patients (75 %), nTMS added useful information on functional anatomy and surgical risks. Surgical strategy was modified in 9 of 16 cases (56 %). The nTMS "functional approach" provided a good outcome at discharge, with a decrease in postoperative motor and/or language deficits, as compared with controls (6 vs. 44 %; p = 0.03). The functional preoperative mapping of speech and motor pathways based on nTMS and DTI tractography provided useful information, allowing us to plan the best surgical strategy for radical resection; this resulted in improved postoperative neurological results.
Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin
2014-04-01
Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.
Bertelli, Jayme Augusto; Ghizoni, Marcos Flavio
2010-07-01
In C7-T1 palsies of the brachial plexus, shoulder and elbow function are preserved, but finger motion is absent. Finger flexion has been reconstructed by tendon or nerve transfers. Finger extension has been restored ineffectively by attaching the extensor tendons to the distal aspect of the dorsal radius (termed tenodesis) or by tendon transfers. In these palsies, supinator muscle function is preserved, because innervation stems from the C-6 root. The feasibility of transferring supinator branches to the posterior interosseous nerve has been documented in a previous anatomical study. In this paper, the authors report the clinical results of supinator motor nerve transfer to the posterior interosseous nerve in 4 patients with a C7-T1 root lesion. Four adult patients with C7-T1 root lesions underwent surgery between 5 and 7 months postinjury. The patients had preserved motion of the shoulder, elbow, and wrist, but they had complete palsy of finger motion. They underwent finger flexion reconstruction via transfer of the brachialis muscle, and finger and thumb extension were restored by transferring the supinator motor branches to the posterior interosseous nerve. This nerve transfer was performed through an incision over the proximal third of the radius. Dissection was carried out between the extensor carpi radialis brevis and the extensor digitorum communis. The patients were followed up as per regular protocol and underwent a final evaluation 12 months after surgery. To document the extent of recovery, the authors assessed the degree of active metacarpophalangeal joint extension of the long fingers. The thumb span was evaluated by measuring the distance between the thumb pulp and the lateral aspect of the index finger. Surgery to transfer the supinator motor branches to the posterior interosseous nerve was straightforward. Twelve months after surgery, all patients were capable of opening their hand and could fully extend their metacarpophalangeal joints. The distance of thumb abduction improved from 0 to 5 cm from the lateral aspect of the index finger. Transferring supinator motor nerves directly to the posterior interosseous nerve is effective in at least partially restoring thumb and finger extension in patients with lower-type injuries of the brachial plexus.
Macoun, Sarah J; Kerns, Kimberly A
2016-01-01
Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.
Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity
Vallejo, Mauricio; Hartzler, Lynn K
2017-01-01
Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal. PMID:28914603
Psychosocial Modulators of Motor Learning in Parkinson’s Disease
Zemankova, Petra; Lungu, Ovidiu; Bares, Martin
2016-01-01
Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495
Vancea, Roxana; Simonyan, Kristina; Petracca, Maria; Brys, Miroslaw; Di Rocco, Alessandro; Ghilardi, Maria Felice; Inglese, Matilde
2017-09-23
Cognitive impairment in Parkinson's disease (PD) is related to the reorganization of brain topology. Although drug challenge studies have proven how levodopa treatment can modulate functional connectivity in brain circuits, the role of chronic dopaminergic therapy on cognitive status and functional connectivity has never been investigated. We sought to characterize brain functional topology in mid-stage PD patients under chronic antiparkinson treatment and explore the presence of correlation between reorganization of brain architecture and specific cognitive deficits. We explored networks topology and functional connectivity in 16 patients with PD and 16 matched controls through a graph theoretical analysis of resting state-functional MRI data, and evaluated the relationships between network metrics and cognitive performance. PD patients showed a preserved small-world network topology but a lower clustering coefficient in comparison with healthy controls. Locally, PD patients showed lower degree of connectivity and local efficiency in many hubs corresponding to functionally relevant areas. Four disconnected subnetworks were also identified in regions responsible for executive control, sensory-motor control and planning, motor coordination and visual elaboration. Executive functions and information processing speed were directly correlated with degree of connectivity and local efficiency in frontal, parietal and occipital areas. While functional reorganization appears in both motor and cognitive areas, the clinical expression of network imbalance seems to be partially compensated by the chronic levodopa treatment with regards to the motor but not to the cognitive performance. In a context of reduced network segregation, the presence of higher local efficiency in hubs regions correlates with a better cognitive performance.
Proportional Recovery From Lower Limb Motor Impairment After Stroke.
Smith, Marie-Claire; Byblow, Winston D; Barber, P Alan; Stinear, Cathy M
2017-05-01
In people with preserved corticospinal tract (CST) function after stroke, upper limb impairment resolves by ≈70% within 3 months. This is known as the proportional recovery rule. Patients without CST function do not fit this rule and have worse upper limb outcomes. This study investigated resolution of motor impairment in the lower limb (LL). Patients with stroke and LL weakness were assessed 3 days and 3 months after stroke with the LL Fugl-Meyer. CST integrity was determined in a subset of patients using transcranial magnetic stimulation to test for LL motor-evoked potentials and magnetic resonance imaging to measure CST lesion load. Linear regression analyses were conducted to predict resolution of motor impairment (ΔFugl-Meyer) including factors initial impairment, motor-evoked potential status, CST lesion load, and LL therapy dose. Thirty-two patients completed 3-month follow-up and recovered 74% (95% confidence interval, 60%-88%) of initial LL motor impairment. Initial impairment was the only significant predictor of resolution of motor impairment. There was no identifiable cluster of patients who did not fit the proportional recovery rule. Measures of CST integrity did not predict proportional LL recovery. LL impairment resolves by ≈70% within 3 months after stroke. The absence of a nonfitter group may be because of differences in the neuroanatomical organization of descending motor tracts to the upper limb and LL. Proportional recovery of the LL is not influenced by therapy dose providing further evidence that it reflects a fundamental biological process. © 2017 American Heart Association, Inc.
Plavsić, Aleksandra; Svirtlih, Laslo; Stefanović, Aleksandra; Jović, Stevan; Durović, Aleksandar; Popović, Mirjana
2011-01-01
New neurorehabilitation together with conventional techniques provide methods and technologies for maximizing what is preserved from the sensory motor system after cerebrovascular insult. The rehabilitation technique named functional electrical therapy was investigated in more than 60 patients in acute, subacute and chronic phase after cerebrovascular insult. The functional sensory information generated by functional electrical therapy was hypothesized to result in the intensive functional brain training of the activities performed. Functional electrical therapy is a combination of functional exercise and electrical therapy. The functional electrical therapy protocol comprises voluntary movement of the paretic arm in synchrony with the electrically assisted hand functions in order to perform typical daily activities. The daily treatment of 30 minutes lasts three weeks. The outcome measures include several tests for the evaluation of arm/hand functionality: upper extremity function test, drawing test, modified Aschworth scale, motor activity log and passive range of movement. Results from our several clinical studies showed that functional electrical therapy, if applied in acute and subacute stroke patients, leads to faster and greater improvement of functioning of the hemiplegic arm/hand compared to the control group. The outcomes were significantly superior at all times after the treatment for the higher functioning group. Additional well-planned clinical studies are needed to determine the adequate dose of treatment (timing, duration, intensity) with functional electrical therapy regarding the patient's status. A combination with other techniques should be further investigated.
Motor demands impact speed of information processing in Autism Spectrum Disorders
Kenworthy, Lauren; Yerys, Benjamin E.; Weinblatt, Rachel; Abrams, Danielle N.; Wallace, Gregory L.
2015-01-01
Objective The apparent contradiction between preserved or even enhanced perceptual processing speed on inspection time tasks in autism spectrum disorders (ASD) and impaired performance on complex processing speed tasks that require motor output (e.g. Wechsler Processing Speed Index) has not yet been systematically investigated. This study investigates whether adding motor output demands to an inspection time task impairs ASD performance compared to that of typically developing control (TDC) children. Method The performance of children with ASD (n=28; mean FSIQ=115) and TDC (n=25; mean FSIQ=122) children was compared on processing speed tasks with increasing motor demand. Correlations were run between ASD task performance and Autism Diagnostic Observation Schedule (ADOS) Communication scores. Results Performance by the ASD and TDC groups on a simple perceptual processing speed task with minimal motor demand was equivalent, though it diverged (ASD worse than TDC) on two tasks with the same stimuli, but increased motor output demands. ASD performance on the moderate but not the high speeded motor output demand task was negatively correlated with ADOS communication symptoms. Conclusions These data address the apparent contradiction between preserved inspection time in the context of slowed “processing speed” in ASD. They show that processing speed is preserved when motor demands are minimized, but that increased motor output demands interfere with the ability to act on perceptual processing of simple stimuli. Reducing motor demands (e.g. through the use of computers) may increase the capacity of people with ASD to demonstrate good perceptual processing in a variety of educational, vocational and social settings. PMID:23937483
Neuroanatomy of conversion disorder: towards a network approach.
Conejero, Ismael; Thouvenot, Eric; Abbar, Mocrane; Mouchabac, Stéphane; Courtet, Philippe; Olié, Emilie
2018-06-27
The pathophysiology of conversion disorder is not well understood, although studies using functional brain imaging in patients with motor and sensory symptoms are progressively increasing. We conducted a systematic review of the literature with the aim of summarising the available data on the neuroanatomical features of this disorder. We also propose a general model of the neurobiological disturbance in motor conversion disorder. We systematically searched articles in Medline using the Medical Subject Headings terms '(conversion disorder or hysterical motor disorder) and (neuropsychology or cognition) or (functional magnetic resonance imaging or positron emission tomography or neuroimaging) or (genetics or polymorphisms or epigenetics) or (biomarkers or biology)', following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two authors independently reviewed the retrieved records and abstracts, assessed the exhaustiveness of data abstraction, and confirmed the quality rating. Analysis of the available literature data shows that multiple specialised brain networks (self-agency, action monitoring, salience system, and memory suppression) influence action selection and modulate supplementary motor area activation. Some findings suggest that conceptualisation of movement and motor intention is preserved in patients with limb weakness. More studies are needed to fully understand the brain alterations in conversion disorders and pave the way for the development of effective therapeutic strategies.
Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study
Parker Jones, ‘Ōiwi; Prejawa, Susan; Hope, Thomas M. H.; Oberhuber, Marion; Seghier, Mohamed L.; Leff, Alex P.; Green, David W.; Price, Cathy J.
2014-01-01
The aim of this paper was to investigate the neurological underpinnings of auditory-to-motor translation during auditory repetition of unfamiliar pseudowords. We tested two different hypotheses. First we used functional magnetic resonance imaging in 25 healthy subjects to determine whether a functionally defined area in the left temporo-parietal junction (TPJ), referred to as Sylvian-parietal-temporal region (Spt), reflected the demands on auditory-to-motor integration during the repetition of pseudowords relative to a semantically mediated nonverbal sound-naming task. The experiment also allowed us to test alternative accounts of Spt function, namely that Spt is involved in subvocal articulation or auditory processing that can be driven either bottom-up or top-down. The results did not provide convincing evidence that activation increased in either Spt or any other cortical area when non-semantic auditory inputs were being translated into motor outputs. Instead, the results were most consistent with Spt responding to bottom up or top down auditory processing, independent of the demands on auditory-to-motor integration. Second, we investigated the lesion sites in eight patients who had selective difficulties repeating heard words but with preserved word comprehension, picture naming and verbal fluency (i.e., conduction aphasia). All eight patients had white-matter tract damage in the vicinity of the arcuate fasciculus and only one of the eight patients had additional damage to the Spt region, defined functionally in our fMRI data. Our results are therefore most consistent with the neurological tradition that emphasizes the importance of the arcuate fasciculus in the non-semantic integration of auditory and motor speech processing. PMID:24550807
Mondragon-Lozano, Rodrigo; Ríos, Camilo; Roldan-Valadez, Ernesto; Cruz, Guillermo J; Olayo, Maria G; Olayo, Roberto; Salgado-Ceballos, Hermelinda; Morales, Juan; Mendez-Armenta, Marisela; Alvarez-Mejia, Laura; Fabela, Omar; Morales-Guadarrama, Axayacatl; Sánchez-Torres, Stephanie; Diaz-Ruiz, Araceli
2017-04-01
Traumatic spinal cord injury (SCI) causes irreversible damage with loss of motor, sensory, and autonomic functions. Currently, there is not an effective treatment to restore the lost neurologic functions. Injection of polypyrrole-iodine(PPy-I) particle suspension is proposed as a therapeutic strategy. This is an in vivo animal study. This study evaluates the use of such particles in rats after SCI by examining spared nervous tissue and the Basso, Beattie, and Bresnahan (BBB) scale to evaluate the functional outcome. Diffusive magnetic resonance imaging (MRI) was employed to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) as non-invasive biomarkers of damage after SCI. Fractional anisotropy decreased, whereas ADC increased in all groups after the lesion. There were significant differences in FA when compared with the SCI-PPy-I group versus the SCI group (p<.05). Significant positive correlations between BBB and FA (r 2 =0.449, p<.05) and between FA and preserved tissue (r 2 =0.395, p<.05) were observed, whereas significant negative associations between BBB and ADC (r 2 =0.367, p<.05) and between ADC and preserved tissue (r 2 =0.421, p<.05) were observed. The results suggested that PPy-I is neuroprotective as it decreased the amount of damaged tissue while improving the motor function. Non-invasive MRI proved to be useful in the characterization of SCI and recovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Intact proprioception and control of labour pain during epidural analgesia.
Abrahams, M; Higgins, P; Whyte, P; Breen, P; Muttu, S; Gardiner, J
1999-01-01
Accurate proprioception is critical while walking, yet an ambulatory epidural regimen that provides adequate analgesia for labour while simultaneously preserving proprioceptive input has not been described. Sixty primigravidae in established labour received bupivacaine 15 mg (15 ml of 0.1% w/v) and fentanyl 100 micrograms through a lumbar epidural catheter. Clinical assessment of dorsal column sensory function included: vibration sense, distal proprioception and the Romberg test, and were all performed before catheter insertion and 30 min after the study bolus. Sensory modalities were also tested compared to an unblocked dermatome. Pain was scored on a 0-10 cm visual analogue scale (VAS) before and 30 min after induction. Intensity of the motor block was tested using a modified Bromage score (grade 1-6). The study bolus provided reliable analgesia with 43 parturients attaining a VAS pain score of zero. Mean duration of analgesia was 67.5 min (SD 22.85). All parturients retained the ability to perform a partial knee bend while standing (grade 6). No mothers exhibited impaired distal proprioception, altered vibration sense or a positive Romberg sign. This study confirms that the addition of lumbar epidural fentanyl 100 micrograms to 15 mg of epidural bupivacaine provides good control of labour pain with no motor block and establishes that this combination preserves dorsal column sensory function.
Hermsdörfer, Joachim; Hagl, Elke; Nowak, Dennis A
2004-11-01
Healthy subjects adjust their grip force economically to the weight of a hand-held object. In addition, inertial loads, which arise from arm movements with the grasped object, are anticipated by parallel grip force modulations. Internal forward models have been proposed to predict the consequences of voluntary movements. Anesthesia of the fingers impairs grip force economy but the feedforward character of the grip force/load coupling is preserved. To further analyze the role of sensory input for internal forward models and to characterize the consequences of central nervous system damage for anticipatory grip force control, we measured grip force behavior in neurological patients. We tested a group of stroke patients with varying degrees of impaired fine motor control and sensory loss, a single patient with complete and permanent differentation from all tactile and proprioceptive input, and a group of patients with amyotrophic lateral sclerosis (ALS) that exclusively impairs the motor system without affecting sensory modalities. Increased grip forces were a common finding in all patients. Sensory deficits were a strong but not the only predictor of impaired grip force economy. The feedforward mode of grip force control was typically preserved in the stroke patients despite their central sensory deficits, but was severely disturbed in the patient with peripheral sensory deafferentation and in a minority of stroke patients. Moderate deficits of feedforward control were also obvious in ALS patients. Thus, the function of the internal forward model and the precision of grip force production may depend on a complex anatomical and functional network of sensory and motor structures and their interaction in time and space.
Psychomotor development and psychopathology in childhood.
de Raeymaecker, Dirk M J
2006-01-01
The sensorimotor developmental phase, leading to a gradual acquisition of skilled actions, is of crucial importance for the young child and its growing sense of competence. Three vital steps in motor development are mentioned: first, the smooth and spontaneous movements of the "graceful and elegant" baby, expression of his well-being and vitality, with their profound effect on the mother-infant relationship; second, the emergence of intentional and goal-oriented acts leading to Funktionslust and playful repetitions; and finally, the development of symbolic acts and increasing technical capacity to use playthings in imaginative play. The psychodynamic significance of the most important motor milestones for the child's ego development is set out. Motility is one of the most important avenues for exercising such functions as mastery, integration, reality testing (self-preservation), and control of impulses. One may consider this early childhood period of rapid motor development as the motor phase of ego and libido development. Hence, many forms of developmental psychopathology are attended with motor impairment or insufficient motor mastery and integration. From that clinical perspective pass in review: perinatal complications and motor disturbance, attention deficit/hyperactivity disorder, dissociated motor development, low birth weight children and their developmental difficulties, developmental coordination disorder, aspects of pervasive developmental disorder, and stereotypic movement disorder.
Low-Cost Robotic Assessment of Visuo-Motor Deficits in Alzheimer's Disease.
Bartoli, Eleonora; Caso, Francesca; Magnani, Giuseppe; Baud-Bovy, Gabriel
2017-07-01
A low-cost robotic interface was used to assess the visuo-motor performance of patients with Alzheimer's disease (AD). Twenty AD patients and twenty age-matched controls participated in this work. The battery of tests included simple reaction times, position tracking, and stabilization tasks performed with both hands. The regularity, velocity, visual and haptic feedback were manipulated to vary movement complexity. Reaction times and movement tracking error were analyzed. Results show a marked group effect on a subset of conditions, in particular when the patients could not rely on the visual feedback of hand movement. The visuo-motor performance correlated with the measures of global cognitive functioning and with different memory-related abilities. Our results support the hypothesis that the ability to recall and use visuo-spatial associations might underlie the impairment in complex motor behavior that has been reported in AD patients. Importantly, the patients had preserved learning effects across sessions, which might relate to visuo-motor deficits being less evident in every-day life and clinical assessments. This robotic assessment, lasting less than 1 h, provides detailed information about the integrity of visuo-motor abilities. The data can aid the understanding of the complex pattern of deficits that characterizes this pervasive disease.
Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.
Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya
2011-01-01
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.
Human Hepatocyte Growth Factor Promotes Functional Recovery in Primates after Spinal Cord Injury
Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya
2011-01-01
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI. PMID:22140459
Rise and fall of the two visual systems theory.
Rossetti, Yves; Pisella, Laure; McIntosh, Robert D
2017-06-01
Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Roux, Alexandre; Mellerio, Charles; Lechapt-Zalcman, Emmanuelle; Still, Megan; Zerah, Michel; Bourgeois, Marie; Pallud, Johan
2018-06-01
We report the surgical management of a lesional drug-resistant epilepsy caused by a meningioangiomatosis associated with a type IIIc focal cortical dysplasia located in the left supplementary motor area in a young male patient. A first anatomically based partial surgical resection was performed on an 11-year-old under general anesthesia without intraoperative mapping, which allowed for postoperative seizure control (Engel IA) for 6 years. The patient then exhibited intractable right sensatory and aphasic focal onset seizures despite 2 appropriate antiepileptic drugs. A second functional-based surgical resection was performed using intraoperative corticosubcortical functional mapping with direct electrical stimulation under awake conditions. A complete surgical resection was performed, and a left partial supplementary motor area syndrome was observed. At 6 months postoperatively, the patient is seizure free (Engel IA) with an ongoing decrease in antiepileptic drug therapy. Intraoperative functional brain mapping can be applied to preserve the brain function and networks around a meningioangiomatosis to facilitate the resection of potentially epileptogenic perilesional dysplastic cortex and to tailor the extent of resection to functional boundaries. Copyright © 2018 Elsevier Inc. All rights reserved.
Is Implicit Motor Learning Preserved after Stroke? A Systematic Review with Meta-Analysis
Kal, E.; Winters, M.; van der Kamp, J.; Houdijk, H.; Groet, E.; van Bennekom, C.; Scherder, E.
2016-01-01
Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients’ automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved post-stroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts. PMID:27992442
[Effect of biological electric stimulation on free muscle transfer].
Yuang, F; Guan, W; Cao, Y
1997-01-01
The rectus femoris muscles of rabbits were used as muscle model. The electrical stimulation which resembled the normal motor-unit activity was used to observe its effects on free transferred muscle. After three months, the moist muscle weight (MW), its maximum cross-section area, its contractility and its histochemical characteristics were examined. The results showed that the function and morphology of the muscles were well preserved. These findings might encourage its clinical application.
Garcia-Ovejero, Daniel; González, Susana; Paniagua-Torija, Beatriz; Lima, Analía; Molina-Holgado, Eduardo; De Nicola, Alejandro F.
2014-01-01
Abstract Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury. PMID:24460450
Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.
2015-01-01
Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162
A matter of motion or an emotional matter? Management of depression in Parkinson's disease.
Lagopoulos, Jim; Malhi, Gin S; Ivanovski, Belinda; Cahill, Catherine M; Morris, John G L
2005-11-01
Depression is one of the most frequent comorbidities occurring in Parkinson's disease, affecting up to 50% of patients. Depression is associated with severe negative symptoms and has been shown to contribute to an increased rate of decline of both cognitive and motor function, profoundly impacting on the patient's quality of life. The symptoms of depression overlap with the motor features of Parkinson's disease, making detection difficult. Moreover, the lack of specialized screening tools means that depression remains undiagnosed and untreated in a high percentage of patients. However, depression in Parkinson's disease, when identified early, can be effectively treated with a variety of antidepressant medications, improving quality of life and preserving daily function. The focus of this review is to provide an overview of current knowledge regarding depression in Parkinson's disease, followed by a practical discussion addressing the issues of the detection, diagnosis and treatment.
[Awake craniotomy for brain tumours].
Milos, Peter; Metcalf, Kerstin; Vigren, Patrick; Lindehammar, Hans; Nilsson, Malin; Boström, Sverre
2016-10-11
Awake craniotomy for brain tumours Awake neurosurgery is a useful method in lesions near eloquent brain areas, particularly low-grade gliomas.The aim is to maximise tumour resection and preserve neurological function. We performed 40 primary awake surgeries and 8 residual surgeries. Patients were operated awake throughout the procedure or with a laryngeal mask and general anaesthesia during the opening stage and then awake during intracerebral surgery. Language and motor function were mapped with direct cortical stimulation, motor evoked potential and standardised neurological testing. Radiologically, complete resection was achieved in 18 out of 40 patients in the primary surgeries. Full neurological recovery at three months was observed in 29 patients. Of the 11 patients with persisting neurological deficits at three months, symptoms were present preoperatively in 9 patients. We conclude that awake surgery, combined with intraoperative neurophysiological methods, is a safe method to improve treatment for low-grade gliomas.
Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M
2016-08-01
Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally induced TFD through PNB.
Laundre, Bryan J; Jellison, Brian J; Badie, Behnam; Alexander, Andrew L; Field, Aaron S
2005-04-01
The role of diffusion tensor imaging (DTI) in neurosurgical planning and follow-up is currently being defined and needs clinical validation. To that end, we sought correlations between preoperative and postoperative DTI and clinical motor deficits in patients with space-occupying lesions involving the corticospinal tract (CST). DTI findings in four patients with masses near the CST and not involving motor cortex were retrospectively reviewed and compared with contralateral motor strength. CST involvement was determined from anisotropy and eigenvector directional color maps. The CST was considered involved if it was substantially deviated or had decreased anisotropy. Interpretations of the DTIs were blinded to assessments of motor strength, and vice versa. Of the four patients with potential CST involvement before surgery, DTI confirmed CST involvement in three, all of whom had preoperative motor deficits. The patient without CST involvement on DTI had no motor deficit. After surgery, DTI showed CST preservation and normalization of the position and/or anisotropy in two of the three patients with preoperative deficits, and both of those patients had improvement in motor strength. The other patient with preoperative deficits had evidence of wallerian degeneration on DTI and had only equivocal clinical improvement. Preoperative CST involvement, as determined on DTI, was predictive of the presence or absence of motor deficits, and postoperative CST normalization on DTI was predictive of clinical improvement. Further study is warranted to define the role of DTI in planning tumor resections and predicting postoperative motor function.
48 CFR 552.211-75 - Preservation, Packaging and Packing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... preserved, packaged, and packed in accordance with normal commercial practices, as defined in the applicable... Classification and the National Motor Freight Classification (issue in effect at time of shipment) and each...
Focused and Sustained Attention Is Modified by a Goal-Based Rehabilitation in Parkinsonian Patients.
Ferrazzoli, Davide; Ortelli, Paola; Maestri, Roberto; Bera, Rossana; Gargantini, Roberto; Palamara, Grazia; Zarucchi, Marianna; Giladi, Nir; Frazzitta, Giuseppe
2017-01-01
Rehabilitation for patients with Parkinson's disease (PD) is based on cognitive strategies that exploit attention. Parkinsonians exhibit impairments in divided attention and interference control. Nevertheless, the effectiveness of specific rehabilitation treatments based on attention suggests that other attentional functions are preserved. Data about attention are conflicting in PD, and it is not clear whether rehabilitative treatments that entail attentional strategies affect attention itself. Reaction times (RTs) represent an instrument to explore attention and investigate whether changes in attentional performances parallel rehabilitation induced-gains. RTs of 103 parkinsonian patients in "on" state, without cognitive deficits, were compared with those of a population of 34 healthy controls. We studied those attentional networks that subtend the use of cognitive strategies in motor rehabilitation: alertness and focused and sustained attention, which is a component of the executive system. We used visual and auditory RTs to evaluate alertness and multiple choices RTs (MC RTs) to explore focused and sustained attention. Parkinsonian patients underwent these tasks before and after a 4-week multidisciplinary, intensive and goal-based rehabilitation treatment (MIRT). Unified Parkinson's Disease Rating Scale (UPDRS) III and Timed Up and Go test (TUG) were assessed at the enrollment and at the end of MIRT to evaluate the motor-functional effectiveness of treatment. We did not find differences in RTs between parkinsonian patients and controls. Further, we found that improvements in motor-functional outcome measures after MIRT ( p < 0.0001) paralleled a reduction in MC RTs ( p = 0.014). No changes were found for visual and auditory RTs. Correlation analysis revealed no association between changes in MC RTs and improvements in UPDRS-III and TUG. These findings indicate that alertness, as well as focused and sustained attention, are preserved in "on" state. This explains why Parkinsonians benefit from a goal-based rehabilitation that entails the use of attention. The reduction in MC RTs suggests a positive effect of MIRT on the executive component of attention and indicates that this type of rehabilitation provides benefits by exploiting executive functions. This ensues from different training approaches aimed at bypassing the dysfunctional basal ganglia circuit, allowing the voluntary execution of the defective movements. These data suggest that the effectiveness of a motor rehabilitation tailored for PD lies on cognitive engagement.
Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.
2015-01-01
Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p < 0.05). CTB–SAP caused minimal cell death in other brainstem or spinal cord regions. CTB–SAP: 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493
2016-10-01
site as well as in the cervical and lumbar cords out to at least 10 months post-injury. While our rodent study was ongoing, a multi-center clinical...lead to a preservation of motor function and an attenuation in long-term pathologies like neuropathic pain in rats following an acute therapeutic...chemotherapeutic resistance, mass spectrometry, riluzole, licofelone, neuropathic pain , locomotor, bioavailability 11 University of Mississippi
Sodium benzoate, a food preservative, induces anxiety and motor impairment in rats.
Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied
2014-01-01
To investigate the behavioral characteristics, including anxiety and motor impairment, in sodium benzoate (NaB) treated rats. The study was carried out between July and September 2012 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats were divided into 2 groups receiving distilled water and NaB (200mg/kg/day). All the animals received daily gavages for 4 weeks. At the end of the fourth week, anxiety, and motor function were assessed in elevated plus maze and rotarod test. According to the results, NaB-treated rats spent less time in the open arm and had fewer entrances to the open arms in comparison with the control group (p<0.04). Also, the performance of the NaB-treated rats in fixed and accelerating speed rotarods was impaired, and the riding time (endurance) was lower than the control group (p<0.01). The performance of the NaB-treated rats was impaired in the elevated plus maze, an indicator of anxiety. Their riding time in fixed and accelerating speed rotarods was decreased, indicating motor impairment.
Technology of Performance Improvement Brushless DC Motors and Inverter for Air conditioning
NASA Astrophysics Data System (ADS)
Baba, Kazuhiko; Matsuoka, Atsushi; Shinomoto, Yosuke; Arisawa, Koichi
High efficiency motors are demanded because of the viewpoint of environmental preservation. It is necessary to develop the technology of the energy conservation that can be achieved at low cost so that we may expand high efficiency motors onto the world. In this paper, the current status of the brushless DC motors and invertors to satisfy high efficiency, small size, high power and low cost is reviewed.
[Guillain-Barré syndrome with preserved reflexes].
Zouiri, G; Abilkassem, R; Zerhouni, A; Dini, N; Agadr, A
2016-05-01
Guillain-Barré is a rare, autoimmune disease of the peripheral nervous system. It can affect all ages beginning in the intrauterine or neonatal period. Clinical forms are diverse and include acute motor axonal neuropathy (AMAN). We report on a pediatric case of AMAN. A 2.5-year-old child presented with acute flaccid paralysis and preserved reflexes. Etiologic investigations argued in favor of Guillain-Barré syndrome in its AMAN form. Treatment based on IV immunoglobulins resulted in a total decline of paralysis and motor recovery. The AMAN form of Guillain-Barré syndrome should be considered as a potential diagnosis in all cases of acute flaccid paralysis with preserved reflexes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Constitutively active 5-HT2/α1 receptors facilitate muscle spasms after human spinal cord injury
D'Amico, Jessica M.; Murray, Katherine C.; Li, Yaqing; Chan, K. Ming; Finlay, Mark G.; Bennett, David J.
2013-01-01
In animals, the recovery of motoneuron excitability in the months following a complete spinal cord injury is mediated, in part, by increases in constitutive serotonin (5-HT2) and norepinephrine (α1) receptor activity, which facilitates the reactivation of calcium-mediated persistent inward currents (CaPICs) without the ligands serotonin and norepinephrine below the injury. In this study we sought evidence for a similar role of constitutive monoamine receptor activity in the development of spasticity in human spinal cord injury. In chronically injured participants with partially preserved sensory and motor function, the serotonin reuptake inhibitor citalopram facilitated long-lasting reflex responses (spasms) previously shown to be mediated by CaPICs, suggesting that in incomplete spinal cord injury, functional descending sources of monoamines are present to activate monoamine receptors below the lesion. However, in participants with motor or motor/sensory complete injuries, the inverse agonist cyproheptadine, which blocks both ligand and constitutive 5-HT2/α1 receptor activity, decreased long-lasting reflexes, whereas the neutral antagonist chlorpromazine, which only blocks ligand activation of these receptors, had no effect. When tested in noninjured control participants having functional descending sources of monoamines, chlorpromazine was effective in reducing CaPIC-mediated motor unit activity. On the basis of these combined results, it appears that in severe spinal cord injury, facilitation of persistent inward currents and muscle spasms is mainly mediated by the activation of constitutive 5-HT2 and α1 receptor activity. Drugs that more selectively block these constitutively active monoamine receptors may provide better oral control of spasticity, especially in motor complete spinal cord injury where reducing motoneuron excitability is the primary goal. PMID:23221402
Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.
Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R
2017-08-23
When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory feedback to the brain guides further change that preserves old behaviors. This finding contributes to a new understanding of spinal cord function and to development of new rehabilitation therapies. Copyright © 2017 the authors 0270-6474/17/378198-09$15.00/0.
Small vestibular schwannomas presenting with facial nerve palsy.
Espahbodi, Mana; Carlson, Matthew L; Fang, Te-Yung; Thompson, Reid C; Haynes, David S
2014-06-01
To describe the surgical management and convalescence of two patients presenting with severe facial nerve weakness associated with small intracanalicular vestibular schwannomas (VS). Retrospective review. Two adult female patients presenting with audiovestibular symptoms and subacute facial nerve paralysis (House-Brackmann Grade IV and V). In both cases, post-contrast T1-weighted magnetic resonance imaging revealed an enhancing lesion within the internal auditory canal without lateral extension beyond the fundus. Translabyrinthine exploration demonstrated vestibular nerve origin of tumor, extrinsic to the facial nerve, and frozen section pathology confirmed schwannoma. Gross total tumor resection with VIIth cranial nerve preservation and decompression of the labyrinthine segment of the facial nerve was performed. Both patients recovered full motor function between 6 and 8 months after surgery. Although rare, small VS may cause severe facial neuropathy, mimicking the presentation of facial nerve schwannomas and other less common pathologies. In the absence of labyrinthine extension on MRI, surgical exploration is the only reliable means of establishing a diagnosis. In the case of confirmed VS, early gross total resection with facial nerve preservation and labyrinthine segment decompression may afford full motor recovery-an outcome that cannot be achieved with facial nerve grafting.
Farina, Elisabetta; Baglio, Francesca; Pomati, Simone; D'Amico, Alessandra; Campini, Isabella C.; Di Tella, Sonia; Belloni, Giulia; Pozzo, Thierry
2017-01-01
The aim of the current study is to investigate the integrity of the Mirror Neurons (MN) network in normal aging, Mild Cognitive Impairment (MCI), and Alzheimer disease (AD). Although AD and MCI are considered “cognitive” diseases, there has been increasing recognition of a link between motor function and AD. More recently the embodied cognition hypothesis has also been developed: it postulates that a part of cognition results from the coupling between action and perception representations. MN represent a neuronal population which links perception, action, and cognition, therefore we decided to characterize MN functioning in neurodegenerative cognitive decline. Three matched groups of 16 subjects (normal elderly-NE, amnesic MCI with hippocampal atrophy and AD) were evaluated with a focused neuropsychological battery and an fMRI task specifically created to test MN: that comprised of an observation run, where subjects were shown movies of a right hand grasping different objects, and of a motor run, where subjects observed visual pictures of objects oriented to be grasped with the right hand. In NE subjects, the conjunction analysis (comparing fMRI activation during observation and execution), showed the activation of a bilateral fronto-parietal network in “classical” MN areas, and of the superior temporal gyrus (STG). The MCI group showed the activation of areas belonging to the same network, however, parietal areas were activated to a lesser extent and the STG was not activated, while the opposite was true for the right Broca's area. We did not observe any activation of the fronto-parietal network in AD participants. They did not perform as well as the NE subjects in all the neuropsychological tests (including tests of functions attributed to MN) whereas the MCI subjects were significantly different from the NE subjects only in episodic memory and semantic fluency. Here we show that the MN network is largely preserved in aging, while it appears involved following an anterior-posterior gradient in neurodegenerative decline. In AD, task performance decays and the MN network appears clearly deficient. The preservation of the anterior part of the MN network in MCI could possibly supplement the initial decay of the posterior part, preserving cognitive performance. PMID:29249956
Ansai, Juliana H; Andrade, Larissa P; Rossi, Paulo G; Takahashi, Anielle C M; Vale, Francisco A C; Rebelatto, José R
Studies with functional and applicable methods and new cognitive demands involving executive function are needed to improve screening, prevention and rehabilitation of cognitive impairment and falls. to identify differences in gait, dual task performances, and history of falls between elderly people with preserved cognition, mild cognitive impairment and mild Alzheimer's disease. A cross-sectional study was conducted. The sample consisted of 40 community-dwelling older adults with preserved cognition, 40 older adults with mild cognitive impairment, and 38 older adults with mild Alzheimer's disease. The assessment consisted of anamneses, gait (measured by the 10-meter walk test), dual task (measured by the Timed Up and Go Test associated with the motor-cognitive task of calling a phone number), and history of falls in the past year. There were no differences among all groups for all variables. However, the Alzheimer's disease Group performed significantly worse in the dual task than the other groups. No item of dual task could distinguish people with preserved cognition from those with mild cognitive impairment. The groups with cognitive impairment included more fallers, and specific characteristics in history of falls between groups were identified. Dual task could distinguish Alzheimer's disease patients specifically from other cognitive profiles. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Placental Mesenchymal Stromal Cells Rescue Ambulation in Ovine Myelomeningocele
Brown, Erin G.; Lankford, Lee; Keller, Benjamin A.; Pivetti, Christopher D.; Sitkin, Nicole A.; Beattie, Michael S.; Bresnahan, Jacqueline C.; Farmer, Diana L.
2015-01-01
Myelomeningocele (MMC)—commonly known as spina bifida—is a congenital birth defect that causes lifelong paralysis, incontinence, musculoskeletal deformities, and severe cognitive disabilities. The recent landmark Management of Myelomeningocele Study (MOMS) demonstrated for the first time in humans that in utero surgical repair of the MMC defect improves lower limb motor function, suggesting a capacity for improved neurologic outcomes in this disorder. However, functional recovery was incomplete, and 58% of the treated children were unable to walk independently at 30 months of age. In the present study, we demonstrate that using early gestation human placenta-derived mesenchymal stromal cells (PMSCs) to augment in utero repair of MMC results in significant and consistent improvement in neurologic function at birth in the rigorous fetal ovine model of MMC. In vitro, human PMSCs express characteristic MSC markers and trilineage differentiation potential. Protein array assays and enzyme-linked immunosorbent assay show that PMSCs secrete a variety of immunomodulatory and angiogenic cytokines. Compared with adult bone marrow MSCs, PMSCs secrete significantly higher levels of brain-derived neurotrophic factor and hepatocyte growth factor, both of which have known neuroprotective capabilities. In vivo, functional and histopathologic analysis demonstrated that human PMSCs mediate a significant, clinically relevant improvement in motor function in MMC lambs and increase the preservation of large neurons within the spinal cord. These preclinical results in the well-established fetal ovine model of MMC provide promising early support for translating in utero stem cell therapy for MMC into clinical application for patients. Significance This study presents placenta-derived mesenchymal stromal cell (PMSC) treatment as a potential therapy for myelomeningocele (MMC). Application of PMSCs can augment current in utero surgical repair in the well-established and rigorously applied fetal lamb model of MMC. Treatment with human PMSCs significantly and dramatically improved neurologic function and preserved spinal cord neuron density in experimental animals. Sixty-seven percent of the PMSC-treated lambs were able to ambulate independently, with two exhibiting no motor deficits whatsoever. In contrast, none of the lambs treated with the vehicle alone were capable of ambulation. The locomotor rescue demonstrated in PMSC-treated lambs indicates great promise for future clinical trials to improve paralysis in children afflicted with MMC. PMID:25911465
Stanley-Cary, Chloe; Rinehart, Nicole; Tonge, Bruce; White, Owen; Fielding, Joanne
2011-03-01
It remains unclear whether autism and Asperger's disorder (AD) exist on a symptom continuum or are separate disorders with discrete neurobiological underpinnings. In addition to impairments in communication and social cognition, motor deficits constitute a significant clinical feature in both disorders. It has been suggested that motor deficits and in particular the integrity of cerebellar modulation of movement may differentiate these disorders. We used a simple volitional saccade task to comprehensively profile the integrity of voluntary ocular motor behaviour in individuals with high functioning autism (HFA) or AD, and included measures sensitive to cerebellar dysfunction. We tested three groups of age-matched young males with normal intelligence (full scale, verbal, and performance IQ estimates >70) aged between 11 and 19 years; nine with AD, eight with HFA, and ten normally developing males as the comparison group. Overall, the metrics and dynamics of the voluntary saccades produced in this task were preserved in the AD group. In contrast, the HFA group demonstrated relatively preserved mean measures of ocular motricity with cerebellar-like deficits demonstrated in increased variability on measures of response time, final eye position, and movement dynamics. These deficits were considered to be consistent with reduced cerebellar online adaptation of movement. The results support the notion that the integrity of cerebellar modulation of movement may be different in AD and HFA, suggesting potentially differential neurobiological substrates may underpin these complex disorders.
Bonhomme, Vincent; Boveroux, Pierre; Hans, Pol; Brichant, Jean François; Vanhaudenhuyse, Audrey; Boly, Melanie; Laureys, Steven
2011-10-01
To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and anesthesia-induced alteration of consciousness. Cerebral cortex is the primary target of the hypnotic effect of anesthetic agents, and higher-order association areas are more sensitive to this effect than lower-order processing regions. Increasing concentration of anesthetic agents progressively attenuates connectivity in the consciousness networks, while connectivity in lower-order sensory and motor networks is preserved. Alteration of thalamic sub-cortical regulation could compromise the cortical integration of information despite preserved thalamic activation by external stimuli. At concentrations producing unresponsiveness, the activity of consciousness networks becomes anticorrelated with thalamic activity, while connectivity in lower-order sensory networks persists, although with cross-modal interaction alterations. Accumulating evidence suggests that hypnotic anesthetic agents disrupt large-scale cerebral connectivity. This would result in an inability of the brain to generate and integrate information, while external sensory information is still processed at a lower order of complexity.
Neither Serotonin nor Adenosine-dependent Mechanisms Preserve Ventilatory Capacity in ALS rats
Nichols, N.L.; Johnson, R.A.; Satriotomo, I.; Mitchell, G.S.
2014-01-01
In rats over-expressing SOD1G93A, ventilation is preserved despite significant loss of respiratory motor neurons. Thus, unknown forms of compensatory respiratory plasticity may offset respiratory motor neuron cell death. Although mechanisms of such compensation are unknown, other models of respiratory motor plasticity may provide a conceptual guide. Multiple cellular mechanisms give rise to phrenic motor facilitation; one mechanism requires spinal serotonin receptor and NADPH oxidase activity whereas another requires spinal adenosine receptor activation. Here, we studied whether these mechanisms contribute to compensatory respiratory plasticity in SOD1G93A rats. Using plethysmography, we assessed ventilation in end-stage SOD1G93A rats after: 1) serotonin depletion with parachlorophenylalanine (PCPA), 2) serotonin (methysergide) and A2A (MSX-3) receptor inhibition, 3) NADPH oxidase inhibition (apocynin), and 4) combined treatments. The ability to increase ventilation was not decreased by individual or combined treatments; thus, these mechanisms do not maintain breathing capacity at end-stage motor neuron disease. Possible mechanisms giving rise to enhanced breathing capacity with combined treatment in end-stage SOD1G93A rats are discussed. PMID:24681328
Non-motor symptoms and cardiac innervation in SYNJ1-related parkinsonism.
De Rosa, A; Pellegrino, T; Pappatà, S; Lieto, M; Bonifati, V; Palma, V; Topa, A; Santoro, L; Bilo, L; Cuocolo, A; De Michele, G
2016-02-01
PARK20 is a rare autosomal recessive parkinsonism related to the SYNJ1 gene and characterized by early-onset of disease and atypical signs such as supranuclear vertical gaze palsy, dementia, dystonia, and generalized tonic-clonic seizures. Non-motor features and cardiac sympathetic innervation were assessed in two siblings affected by parkinsonism who harboured the homozygous Arg258Gln mutation in the SYNJ1 gene. The Non-Motor Symptoms, the SCOPA-AUT, the Mayo Sleep Questionnaires and polysomnography were used to investigate non-motor signs (NMS), autonomic dysfunction and REM Behavioural Disorder (RBD). Cognitive functions were examined by an extensive battery of neuropsychological tests. In addition, motor and sensory nerve conduction studies and evoked laser potentials were performed. Cardiac sympathetic innervation was assessed in the two patients by (123)I-metaiodobenzylguanidine (MIBG) scintigraphy, computing early and late heart-to-mediastinum (H/M) ratios and myocardial washout rates (WR). Among the non-motor symptoms and autonomic signs, case 1 had cold intolerance, drooling and dysphagia, while case 2 had pain and urinary dysfunction. Both cases showed mood and behavioural disorders. RBD were not found, whereas the neuropsychological assessment revealed a progressive cognitive impairment. Neurophysiological studies revealed no abnormalities. Indexes of cardiac sympathetic innervation in the two patients did not differ from those of control subjects. Our findings expand the phenotypic profile of SYNJ1-related parkinsonism. Preserved cardiac sympathetic function and absence of RBD suggest that PARK20 should be explained by a pathogenic mechanism different from Lewy Body pathology, or that the latter is not as widespread as idiopathic Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Karl, Jenni M; Sacrey, Lori-Ann R; McDonald, Robert J; Whishaw, Ian Q
2008-09-05
Neurotoxic, cell-specific lesions of the rat caudate-putamen (CPu) have been proposed as a model of human Huntington's disease and as such impair performance on many motor tasks, including skilled forelimbs tasks such as reaching for food. Because the CPu and motor cortex share reciprocal connections, it has been proposed that the motor deficits are due in part to a secondary disruption of motor cortex. The purpose of the present study was to examine the functionality of the motor cortex using intracortical microstimulation (ICMS) following neurotoxic lesions of the CPu. ICMS maps have been shown to be sensitive indicators of motor skill, cortical injury, learning, and experience. Long-evans hooded rats received a sham, a medial, or a lateral CPu lesion using the neurotoxin, quinolinic acid (2,3-pyridinedicarboxylic acid). Two weeks later the motor cortex was stimulated under light ketamine anesthesia. Neither lateral nor medial lesions of the CPu altered the stimulation threshold for eliciting forelimb movements, the type of movements elicited, or the size of the rostral forelimb (RFA) and caudal forelimb areas (CFA) from which movements were elicited. The preservation of ICMS forelimb movement representations (the forelimb map) in rats with cell-specific CPu lesions suggests motor impairments following lesions of the lateral striatum are not due to the disruption of the motor map. Therefore, the impairments that follow striatal cell loss are due either to alterations in circuitry that is independent of motor cortex or to alterations in circuitry afferent to the motor cortex projections.
Evidence for adaptive cortical changes in swallowing in Parkinson's disease.
Suntrup, Sonja; Teismann, Inga; Bejer, Joke; Suttrup, Inga; Winkels, Martin; Mehler, David; Pantev, Christo; Dziewas, Rainer; Warnecke, Tobias
2013-03-01
Dysphagia is a relevant symptom in Parkinson's disease, whose pathophysiology is poorly understood. It is mainly attributed to degeneration of brainstem nuclei. However, alterations in the cortical contribution to deglutition control in the course of Parkinson's disease have not been investigated. Here, we sought to determine the patterns of cortical swallowing processing in patients with Parkinson's disease with and without dysphagia. Swallowing function in patients was objectively assessed with fiberoptic endoscopic evaluation. Swallow-related cortical activation was measured using whole-head magnetoencephalography in 10 dysphagic and 10 non-dysphagic patients with Parkinson's disease and a healthy control group during self-paced swallowing. Data were analysed applying synthetic aperture magnetometry, and group analyses were done using a permutation test. Compared with healthy subjects, a strong decrease of cortical swallowing activation was found in all patients. It was most prominent in participants with manifest dysphagia. Non-dysphagic patients with Parkinson's disease showed a pronounced shift of peak activation towards lateral parts of the premotor, motor and inferolateral parietal cortex with reduced activation of the supplementary motor area. This pattern was not found in dysphagic patients with Parkinson's disease. We conclude that in Parkinson's disease, not only brainstem and basal ganglia circuits, but also cortical areas modulate swallowing function in a clinically relevant way. Our results point towards adaptive cerebral changes in swallowing to compensate for deficient motor pathways. Recruitment of better preserved parallel motor loops driven by sensory afferent input seems to maintain swallowing function until progressing neurodegeneration exceeds beyond the means of this adaptive strategy, resulting in manifestation of dysphagia.
[Technological advances in neurorehabilitation].
Gutiérrez-Martínez, Josefina; Núñez-Gaona, Marco Antonio; Carrillo-Mora, Paul
2014-07-01
Neurological rehabilitation arose as formal method in the 60's, for the therapeutic treatment of patients with stroke or spinal cord injury, which develop severe sequelae that affect their motor and sensory abilities. Although the Central Nervous System has plasticity mechanisms for spontaneous recovery, a high percentage of patients should receive specialized therapies to regain motor function, such as Constraint Induced Movement Therapy or Upright physical Therapy. The neurorehabilitation has undergone drastic changes over the last two decades due to the incorporation of computer and robotic electronic devices, designed to produce positive changes in cortical excitability of the cerebral hemisphere damaged and so to improve neuroplasticity. Among equipment, we can mention those for electrotherapy devices, apparatus for transcranial magnetic stimulation, the robotic lower limb orthoses, robot for upper limb training, systems for functional electrical stimulation, neuroprosthesis and brain computer interfaces. These devices have caused controversy because of its application and benefits reported in the literature. The aim of Neurorehabilitation technologies is to take advantage of the functional neuromuscular structures preserved, and they compensate or re-learn the functions that previously made the damaged areas. The purpose of this article is to mention some clinical applications and benefits that these technologies offer to patients with neuronal injury.
Awake right hemisphere brain surgery.
Hulou, M Maher; Cote, David J; Olubiyi, Olutayo I; Smith, Timothy R; Chiocca, E Antonio; Johnson, Mark D
2015-12-01
We report the indications and outcomes of awake right hemispheric brain surgery, as well as a rare patient with crossed aphasia. Awake craniotomies are often performed to protect eloquent cortex. We reviewed the medical records for 35 of 96 patients, in detail, who had awake right hemisphere brain operations. Intraoperative cortical mapping of motor and/or language function was performed in 29 of the 35 patients. A preoperative speech impairment and left hand dominance were the main indicators for awake right-sided craniotomies in patients with right hemisphere lesions. Four patients with lesion proximity to eloquent areas underwent awake craniotomies without cortical mapping. In addition, one patient had a broncho-pulmonary fistula, and another had a recent major cardiac procedure that precluded awake surgery. An eloquent cortex representation was identified in 14 patients (48.3%). Postoperatively, seven of 17 patients (41.1%) who presented with weakness, experienced improvements in their motor functions, 11 of 16 (68.7%) with seizures became seizure-free, and seven of nine (77.7%) with moderate to severe headaches and one of two with a visual field deficit improved significantly. There were also improvements in speech and language functions in all patients who presented with speech difficulties. A right sided awake craniotomy is an excellent option for left handed patients, or those with right sided cortical lesions that result in preoperative speech impairments. When combined with intraoperative cortical mapping, both speech and motor function can be well preserved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fuentes, María Antonia; Borrego, Adrián; Latorre, Jorge; Colomer, Carolina; Alcañiz, Mariano; Sánchez-Ledesma, María José; Noé, Enrique; Llorens, Roberto
2018-04-02
Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected arm in task oriented movements. However, active movements may not be possible after severe impairment of the upper limbs. Different techniques, such as mirror therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical activity in absence of movements, which could be used to preserve the available neural circuits and promote motor learning. We present a virtual reality-based paradigm for upper limb rehabilitation that allows for interaction of individuals with restricted movements from active responses triggered when they attempt to perform a movement. The experimental system also provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial direct current stimulation coherent to the observed movements. A feasibility study with a chronic stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two years of its inclusion in a physical therapy program showed clinically meaningful improvement of the upper limb function after the experimental intervention and maintenance of gains in both the body function and activity. The experimental intervention also was reported to be usable and motivating. Although very preliminary, these results could highlight the potential of this intervention to promote functional recovery in severe impairments of the upper limb.
Nichols, Nicole L; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S
2015-05-01
Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3-28days after intrapleural injections of: 1) CTB-SAP (25 and 50μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB+SAP). CTB-SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7days post-25μg CTB-SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36±7%; intercostal: 56±10% of controls; n=9; p<0.05). CTB-SAP caused minimal cell death in other brainstem or spinal cord regions. 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7days post-25μg, 0.3±0.07V; CTB+SAP: 1.5±0.3; n=9; p<0.05). Intrapleural CTB-SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. Copyright © 2014 Elsevier Inc. All rights reserved.
Boy, Nikolas; Heringer, Jana; Haege, Gisela; Glahn, Esther M; Hoffmann, Georg F; Garbade, Sven F; Kölker, Stefan; Burgard, Peter
2015-12-22
Glutaric aciduria type I (GA-I) is an inherited metabolic disease due to deficiency of glutaryl-CoA dehydrogenase (GCDH). Cognitive functions are generally thought to be spared, but have not yet been studied in detail. Thirty patients detected by newborn screening (n = 13), high-risk screening (n = 3) or targeted metabolic testing (n = 14) were studied for simple reaction time (SRT), continuous performance (CP), visual working memory (VWM), visual-motor coordination (Tracking) and visual search (VS). Dystonia (n = 13 patients) was categorized using the Barry-Albright-Dystonia Scale (BADS). Patients were compared with 196 healthy controls. Developmental functions of cognitive performances were analysed using a negative exponential function model. BADS scores correlated with speed tests but not with tests measuring stability or higher cognitive functions without time constraints. Developmental functions of GA-I patients significantly differed from controls for SRT and VS but not for VWM and showed obvious trends for CP and Tracking. Dystonic patients were slower in SRT and CP but reached their asymptote of performance similar to asymptomatic patients and controls in all tests. Asymptomatic patients did not differ from controls, except showing significantly better results in Tracking and a trend for slower reactions in visual search. Data across all age groups of patients and controls fitted well to a model of negative exponential development. Dystonic patients predominantly showed motor speed impairment, whereas performance improved with higher cognitive load. Patients without motor symptoms did not differ from controls. Developmental functions of cognitive performances were similar in patients and controls. Performance in tests with higher cognitive demand might be preserved in GA-I, even in patients with striatal degeneration.
Popović, Dejan B; Popović, Mirjana B
2006-01-01
This paper suggests that the optimal method for promoting of the recovery of upper extremity function in hemiplegic individuals is the use of hybrid assistive systems (HAS). The suggested HAS is a combination of stimulation of paralyzed distal segments (hand) in synchrony with robot controlled movements of proximal segments (upper arm and forearm). The use of HAS is envisioned as part of voluntary activation of preserved sensory-motor systems during task related exercise. This HAS design follows our results from functional electrical therapy, constraint induced movement therapy, intensive exercise therapy, and use of robots for rehabilitation. The suggestion is also based on strong evidences that cortical plasticity is best promoted by task related exercise and patterned electrical stimulation.
Application of reliability-centered-maintenance to BWR ECCS motor operator valve performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Choi, Y.A.
1993-01-01
This paper describes the application of reliability-centered maintenance (RCM) methods to plant probabilistic risk assessment (PRA) and safety analyses for four boiling water reactor emergency core cooling systems (ECCSs): (1) high-pressure coolant injection (HPCI); (2) reactor core isolation cooling (RCIC); (3) residual heat removal (RHR); and (4) core spray systems. Reliability-centered maintenance is a system function-based technique for improving a preventive maintenance program that is applied on a component basis. Those components that truly affect plant function are identified, and maintenance tasks are focused on preventing their failures. The RCM evaluation establishes the relevant criteria that preserve system function somore » that an RCM-focused approach can be flexible and dynamic.« less
Barbour, John; Yee, Andrew; Kahn, Lorna C; Mackinnon, Susan E
2012-10-01
Functional motor recovery after peripheral nerve injury is predominantly determined by the time to motor end plate reinnervation and the absolute number of regenerated motor axons that reach target. Experimental models have shown that axonal regeneration occurs across a supercharged end-to-side (SETS) nerve coaptation. In patients with a recovering proximal ulnar nerve injury, a SETS nerve transfer conceptually is useful to protect and preserve distal motor end plates until the native axons fully regenerate. In addition, for nerve injuries in which incomplete regeneration is anticipated, a SETS nerve transfer may be useful to augment the regenerating nerve with additional axons and to more quickly reinnervate target muscle. We describe our technique for a SETS nerve transfer of the terminal anterior interosseous nerve (AIN) to the pronator quadratus muscle (PQ) end-to-side to the deep motor fascicle of the ulnar nerve in the distal forearm. In addition, we describe our postoperative therapy regimen for these transfers and an evaluation tool for monitoring progressive muscle reinnervation. Although the AIN-to-ulnar motor group SETS nerve transfer was specifically designed for ulnar nerve injuries, we believe that the SETS procedure might have broad clinical utility for second- and third-degree axonotmetic nerve injuries, to augment partial recovery and/or "babysit" motor end plates until the native parent axons regenerate to target. We would consider all donor nerves currently utilized in end-to-end nerve transfers for neurotmetic injuries as candidates for this SETS technique. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Management of Recurrent Delayed Neurologic Deficit After Thoracoabdominal Aortic Operation.
Boutrous, Mina L; Afifi, Rana O; Safi, Hazim J; Estrera, Anthony L
2016-01-01
Delayed neurologic deficit (DND) is a devastating adverse event after thoracoabdominal aortic aneurysm repair. Multiple adjuncts have been devised to counteract the development of DND, most notably cerebrospinal fluid (CSF) drainage. We report a case of a 63-year-old woman in whom DND developed four times during the first 10 days after her thoracoabdominal aortic operation. This necessitated lumbar drain "weaning" to allow for a slowly rising CSF pressure and preservation of lower extremity motor function. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Bell, Marshall T; Puskas, Ferenc; Smith, Phillip D; Agoston, Viktor A; Fullerton, David A; Meng, Xianzhong; Weyant, Michael J; Reece, T Brett
2012-11-01
Despite surgical adjuncts, paralysis remains a devastating complication after thoracoabdominal aortic interventions. Dexmedetomidine, a selective α-2a agonist commonly used for sedation in the critical care setting, has been shown to have protective effects against ischemia-reperfusion injuries in multiple organ systems. We hypothesized that treatment with dexmedetomidine would attenuate spinal cord ischemia-reperfusion injury via α-2a receptor activation. Adult C57BL/6 mice underwent sternotomy, followed by occlusion of the aortic arch for 4 minutes. Eight experimental mice received pretreatment with intraperitoneal dexmedetomidine (25 μg/kg) and at 12-hour intervals after reperfusion. Eight control mice received an equivalent amount of 0.9% normal saline. Five mice underwent the same procedure with dexmedetomidine (25 μg/kg) and atipamezole (250 μg/kg), an α-2a receptor antagonist. Functional analysis of the mice was obtained at 12-hour intervals and scored using the Basso Mouse Scale for Locomotion until 60 hours. All mice were euthanized at 60 hours. Their spinal cords were removed en bloc and were stained with hematoxylin and eosin to assess cytoarchitecture and neuronal viability. Mice treated with the α-2a agonist demonstrated preserved motor function compared with ischemic controls and with mice treated with the α-2a antagonist in addition to the agonist. Functional differences in the dexmedetomidine group were statistically significant from 24 hours through the remainder of the experiment (P < .05). In addition, the treated mice had preserved cytoarchitecture, decreased vacuolization, and improved neuronal viability compared with ischemic control mice and mice concurrently treated with atipamezole, the dexmedetomidine α-2a antagonist. Treatment of mice with the α-2a agonist dexmedetomidine preserves motor function and neuronal viability after aortic cross-clamping. In addition, mice exhibited almost complete reversal of the protective effect with the administration of the α-2a receptor antagonist atipamezole. Dexmedetomidine appears to attenuate spinal cord ischemia-reperfusion injury via α-2a receptor-mediated agonism. There remains a significant risk of paraplegia after thoracoabdominal aortic interventions. This complication is devastating to the patient and the health care system. Pharmacologic adjuncts to further decrease this complication have been studied; however, few viable options exist. The α-2a agonists have been shown to improve outcomes after strokes but have not been studied in spinal cord ischemia. We show that dexmedetomidine, a commonly used α-2a agonist in the operating room, can preserve neurologic function in mice after aortic cross-clamping. Although the protective mechanism of dexmedetomidine remains unknown, it might prove to be beneficial in reducing the incidence of paraplegia after aortic interventions. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Sleep/wake firing patterns of human genioglossus motor units.
Bailey, E Fiona; Fridel, Keith W; Rice, Amber D
2007-12-01
Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.
Subjective and psychological well-being in Parkinson's Disease: A systematic review.
Vescovelli, F; Sarti, D; Ruini, C
2018-04-25
The aim of this review is to summarize studies investigating subjective and psychological well-being in patients with Parkinson's disease (PD). A systematic and integrative review according to PRISMA criteria was performed with a literature search from inception up to September 2017 in multidisciplinary databases (PubMED, Scopus, Web of Knowledge) by combining together key words related to PD and well-being. Studies were included if: their full-text was available; they involved PD patients; focused on the selected positive dimensions; written in English. Case studies, conference proceedings, abstract, dissertations, book chapters, validation studies and reviews were excluded. Data extracted from the studies included sample characteristics, the positive dimension investigated, type of measure, study aims, design and results. One reviewer extracted details and commented results with other reviewers. The studies' quality was assessed following Kmet, Lee, and Cook. Out of 1425 studies extracted, 12 studies (9 quantitative, 2 qualitative, 1 mixed methods) involving 2204 patients with PD were included. Most of the studies had a cross-sectional design and/or evaluated the effect of physical rehabilitation on well-being. Articles documented that the illness could impair well-being for its progressive impact on patients' motor autonomy. Preserving motor and musculoskeletal functioning facilitate patients' experience of well-being, social contribution and the maintenance of their job. Research on positive resources in PD is still scarce compared to other chronic illnesses. The few available investigations suggest the need of preserving motor abilities by proper rehabilitation programs for maintaining and/or promoting patients' well-being and life engagement. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.
2015-12-01
Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.
Ballester-Plané, Júlia; Schmidt, Ruben; Laporta-Hoyos, Olga; Junqué, Carme; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Toro, Esther; de Reus, Marcel A; van den Heuvel, Martijn P; Pueyo, Roser
2017-09-01
Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole-brain deterministic tractography. Graph theoretical metrics and the network-based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto-occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto-parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto-striatal and parieto-frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594-4612, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Karandeev, D.
2015-10-01
The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.
Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis.
Sawada, Hideyuki
2017-05-01
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disease. Although the pathogenesis remains unresolved, oxidative stress is known to play a pivotal role. Edaravone works in the central nervous system as a potent scavenger of oxygen radicals. In ALS mouse models, edaravone suppresses motor functional decline and nitration of tyrosine residues in the cerebrospinal fluid. Areas covered: Three clinical trials, one phase II open-label trial, and two phase III placebo-control randomized trials were reviewed. In all trials, the primary outcome measure was the changes in scores on the revised ALS functional rating scale (ALSFRS-R) to evaluate motor function of patients. Expert opinion: The phase II open label trial suggested that edaravone is safe and effective in ALS, markedly reducing 3-nitrotyrosine levels in the cerebrospinal fluid. One of the two randomized controlled trials showed beneficial effects in ALSFRS-R, although the differences were not significant. The last trial demonstrated that edaravone provided significant efficacy in ALSFRS-R scores over 24 weeks where concomitant use of riluzole was permitted. Eligibility was restricted to patients with a relatively short disease duration and preserved vital capacity. Therefore, combination therapy with edaravone and riluzole should be considered earlier.
Yin, Terry C; Britt, Jeremiah K; De Jesús-Cortés, Héctor; Lu, Yuan; Genova, Rachel M; Khan, Michael Z; Voorhees, Jaymie R; Shao, Jianqiang; Katzman, Aaron C; Huntington, Paula J; Wassink, Cassie; McDaniel, Latisha; Newell, Elizabeth A; Dutca, Laura M; Naidoo, Jacinth; Cui, Huxing; Bassuk, Alexander G; Harper, Matthew M; McKnight, Steven L; Ready, Joseph M; Pieper, Andrew A
2014-09-25
The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage. Initiation of daily treatment with our recently reported lead agent, P7C3-S243, 1 day after blast-mediated TBI blocks axonal degeneration and preserves normal synaptic activity, learning and memory, and motor coordination in mice. We additionally report persistent neurologic deficits and acquisition of an anxiety-like phenotype in untreated animals 8 months after blast exposure. Optimized variants of P7C3 thus offer hope for identifying neuroprotective agents for conditions involving axonal damage, neuronal cell death, or both, such as occurs in TBI. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Jones, Sarah E.
2016-01-01
Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. PMID:26888109
Jones, Sarah E; Dutschmann, Mathias
2016-05-01
Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation. Copyright © 2016 the American Physiological Society.
Cecatto, Rebeca Boltes; Maximino, Jessica Ruivo; Chadi, Gerson
2014-09-01
The aim of this study was to investigate the functional responses and plastic cortical changes in a sample of animals with sequelae of cerebral ischemia that were subjected to a model of functional electrical stimulation (FES). Rats received an ischemic cortical lesion (Rose Bengal method) and were randomized and submitted to an FES stimulation (1-2 mA, 30 Hz, 20-40 mins for 14 days) or sham stimulation. The Foot Fault Test was performed before inducing the cortical lesion and also before and after FES. Brain immunochemistry labeling with microtubule-associated protein-2 and neurofilament-200 markers was performed after FES. The authors found a decreased percentage of errors in the Foot Fault Test (P < 0.001) in the stimulated group compared with the sham group after FES. FES has not altered the lesion size. Spontaneous motor parameters returned to basal values in both groups. The qualitative analysis showed an increased amount of radial microtubule-associated protein-2 immunoreactive fibers in the preserved cortex adjacent to stroke site in the stimulated animals. Regarding the measurements of neurofilament-200 immunostaining, there were no differences between the hemispheres or groups in area or intensity. Acute and short period of FES led to motor recovery of ankle joint neurodisability. The extent to which compensatory plasticity occurs after stroke or after FES and the extent to which it contributes to functional recovery are yet unclear. The changes induced by the stimulation may improve the ability of the nervous system to undergo spontaneous recovery, which is of substantial interest for neurorehabilitation strategies.
[Anesthesia for surgery of degenerative and abnormal cervical spine].
Béal, J L; Lopin, M C; Binnert, M
1993-01-01
A feature common to all congenital or inflammatory abnormalities of the cervical spine is an actual or potential reduction in the lumen of the spinal canal. The spinal cord and nerve roots are at risk. During intubation, and positioning the patient on the table, all untoward movements of the cervical spine may lead to spinal cord compression. Abnormalities of the cervical spine carry the risk of a difficult intubation. If there is much debate as to what constitutes optimum management of the airway, there is no evidence that any one method is the best. Recognizing the possible instability and intubating with care, are probably much more important in preserving neurological function than any particular mode of intubation. During maintenance of anaesthesia, the main goal is to preserve adequate spinal cord perfusion in order to prevent further damage. Spinal cord blood flow seems to be regulated by the same factors as cerebral blood flow. Hypercapnia increases cord blood flow while hypocapnia decreases it. Therefore, normocapnia or mild hypocapnia is recommended. Induced hypotension is frequently used to decrease blood loss. However, in patients with a marginally perfused spinal cord, the reduction in blood flow may cause ischaemia of the spinal cord and may therefore be relatively contraindicated. In addition to standard intraoperative monitoring, spinal cord monitoring is almost mandatory. Monitoring somatosensory evoked potentials is used routinely. However, the major limitation is that this technique only monitors dorsal column function; theoretically, motor paralysis can occur despite a lack of change in recorded signals. Neurogenic motor evoked potentials may now be used to monitor anterior spinal cord integrity.(ABSTRACT TRUNCATED AT 250 WORDS)
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin
2017-02-01
Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.
Marur, Tania; Tuna, Yakup; Demirci, Selman
2014-01-01
Dermatologic problems of the face affect both function and aesthetics, which are based on complex anatomical features. Treating dermatologic problems while preserving the aesthetics and functions of the face requires knowledge of normal anatomy. When performing successfully invasive procedures of the face, it is essential to understand its underlying topographic anatomy. This chapter presents the anatomy of the facial musculature and neurovascular structures in a systematic way with some clinically important aspects. We describe the attachments of the mimetic and masticatory muscles and emphasize their functions and nerve supply. We highlight clinically relevant facial topographic anatomy by explaining the course and location of the sensory and motor nerves of the face and facial vasculature with their relations. Additionally, this chapter reviews the recent nomenclature of the branching pattern of the facial artery. © 2013 Elsevier Inc. All rights reserved.
Scibilia, Antonino; Raffa, Giovanni; Rizzo, Vincenzo; Quartarone, Angelo; Visocchi, Massimiliano; Germanò, Antonino; Tomasello, Francesco
2017-01-01
Although there is recent evidence for the role of intraoperative neurophysiological monitoring (IONM) in spine surgery, there are no uniform opinions on the optimal combination of the different tools. At our institution, multimodal IONM (mIONM) approach in spine surgery involves the evaluation of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) with electrical transcranial stimulation, including the use of a multipulse technique with multiple myomeric registration of responses from limbs, and a single-pulse technique with D-wave registration through epi- and intradural recording, and free running and evoked electromyography (frEMG and eEMG) with bilateral recording from segmental target muscles. We analyzed the impact of the mIONM on the preservation of neuronal structures and on functional restoration in a prospective series of patients who underwent spine surgery. We observed an improvement of neurological status in 50 % of the patients. The D-wave registration was the most useful intraoperative tool, especially when MEP and SEP responses were absent or poorly recordable. Our preliminary data confirm that mIONM plays a fundamental role in the identification and functional preservation of the spinal cord and nerve roots. It is highly sensitive and specific for detecting and avoiding neurological injury during spine surgery and represents a helpful tool for achieving optimal postoperative functional outcome.
Park, Myoung-Ok; Lee, Sang-Heon
2018-06-01
Preservation and enhancement of cognitive function are essential for the restoration of functional abilities and independence following stroke. While cognitive-motor dual-task training (CMDT) has been utilized in rehabilitation settings, many patients with stroke experience impairments in cognitive function that can interfere with dual-task performance. In the present study, we investigated the effects of CMDT combined with auditory motor synchronization training (AMST) utilizing rhythmic cues on cognitive function in patients with stroke. The present randomized controlled trial was conducted at a single rehabilitation hospital. Thirty patients with chronic stroke were randomly divided an experimental group (n = 15) and a control group (n = 15). The experimental group received 3 CMDT + AMST sessions per week for 6 weeks, whereas the control group received CMDT only 3 times per week for 6 weeks. Changes in cognitive function were evaluated using the trail making test (TMT), digit span test (DST), and stroop test (ST). Significant differences in TMT-A and B (P = .001, P = .001), DST-forward (P = .001, P = .001), DST-backward (P = .000, P = .001), ST-word (P = .001, P = .001), and ST-color (P = .002, P = .001) scores were observed in both the control and experimental groups, respectively. Significant differences in TMT-A (P = .001), DST-forward (P = .027), DST-backward (P = .002), and ST-word (P = .025) scores were observed between the 2 groups. Performance speed on the TMT-A was faster in the CMDT + AMST group than in the CMDT group. Moreover, DST-forward and DST-backward scores were higher in the CMDT + AMST group than in the CDMT group. Although ST-color results were similar in the 2 groups, ST-word scores were higher in the CMDT + AMST group than in the CMDT group. This finding indicates that the combined therapy CMDT and AMST can be used to increase attention, memory, and executive function for people with stroke.
[Clinical feature of ALS with communication disturbance; the possibility to communicate in TLS].
Nagao, Masahiro
2013-01-01
In the subsets of amyotrohic lateral sclerosis (ALS), totally-locked in state (TLS) is shown as the result of marked progression of motor neuron degeneration. In TLS, patients are impossible to move any voluntary muscles. As the result, patients with TLS cannot communicate with any augmentative and alternative communication devices(AACD) at present. To find the AACD that enables for TLS to communicate, we examined the clinical character, brain MRI, SPECT and evoked potentials in TLS. Brain MRI showed marked brain atrophy including the brainstem, but the occipital lobe was spared. SPECT and visual evoked potentials (VEP) showed preserved physiological function of the occipital lobe in TLS. The results suggest that neuronal degeneration in TLS is not restricted to motor system, but that the visual pathways are spared. Patients with TLS may be possible to use AACD that utilize the visual pathway.
Functional significance of the electrocorticographic auditory responses in the premotor cortex.
Tanji, Kazuyo; Sakurada, Kaori; Funiu, Hayato; Matsuda, Kenichiro; Kayama, Takamasa; Ito, Sayuri; Suzuki, Kyoko
2015-01-01
Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI) studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS). The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the "sensory theory of speech production," in which it was proposed that sensory representations are used to guide motor-articulatory processes.
Nichols, Nicole L.; Satriotomo, Irawan; Harrigan, Daniel J.; Mitchell, Gordon S.
2015-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated superoxide dismutase-1 (SOD1G93A), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1G93A (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600µM; 12µL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms preserving/enhancing the capacity for pLTF in MT rats are not known. PMID:26287750
Silva, Gleidy A A; Pradella, Fernando; Moraes, Adriel; Farias, Alessandro; dos Santos, Leonilda M B; de Oliveira, Alexandre L R
2014-01-01
Background Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. Aims The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. Methods and results The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Conclusions Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction. PMID:25365796
Visual Functions of the Thalamus
Usrey, W. Martin; Alitto, Henry J.
2017-01-01
The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context. PMID:28217740
Kuznetsov, S V; Sizonov, V A; Dmitrieva, L E
2014-01-01
On newborn rat pups, for the first day after birth, there was studied the character of mutual influences between the slow-wave rhythmical components of the cardiac, respiratory, and motor activities reflecting interactions between the main functional systems of the developing organism. The study was carried out in norm and after pharmacological depression of the spontaneous periodical motor activity (SPMA) performed by narcotization of rat pups with urethane at low (0.5 g/kg, i/p) and maximal (1 g/kg, i/p) doses. Based on the complex of our obtained data, it is possible to conclude that after birth in rat pups the intersystemic interactions are realized mainly by the slow-wave oscillations of the near- and manyminute diapason. The correlational interactions mediated by rhythms of the decasecond diapason do not play essential role in integrative processes. Injection to the animals of urethane producing selective suppression of reaction of consciousness, but not affecting activating influences of reticular formation on cerebral cortex does not cause marked changes of autonomous parameters, but modulates structure and expression of spontaneous periodical motor activity. There occurs an essential decrease of mutual influences between motor and cardiovascular systems. In the case of preservation of motor activity bursts, a tendency for enhancement of correlational relations between the modulating rhythms of motor and somatomotor systems is observed. The cardiorespiratory interactions, more pronounced in intact rat pups in the near- and many-minute modulation diapason, under conditions of urethane, somewhat decrease, whereas the rhythmical components of the decasecond diapason--are weakly enhanced.
Garcea, Frank E.; Dombovy, Mary; Mahon, Bradford Z.
2013-01-01
A number of studies have observed that the motor system is activated when processing the semantics of manipulable objects. Such phenomena have been taken as evidence that simulation over motor representations is a necessary and intermediary step in the process of conceptual understanding. Cognitive neuropsychological evaluations of patients with impairments for action knowledge permit a direct test of the necessity of motor simulation in conceptual processing. Here, we report the performance of a 47-year-old male individual (Case AA) and six age-matched control participants on a number of tests probing action and object knowledge. Case AA had a large left-hemisphere frontal-parietal lesion and hemiplegia affecting his right arm and leg. Case AA presented with impairments for object-associated action production, and his conceptual knowledge of actions was severely impaired. In contrast, his knowledge of objects such as tools and other manipulable objects was largely preserved. The dissociation between action and object knowledge is difficult to reconcile with strong forms of the embodied cognition hypothesis. We suggest that these, and other similar findings, point to the need to develop tractable hypotheses about the dynamics of information exchange among sensory, motor and conceptual processes. PMID:23641205
[Proceeding memory in Alzheimer's disease].
Arroyo-Anlló, Eva Ma; Chamorro-Sánchez, Jorge; Díaz-Marta, Juan Poveda; Gil, Roger
2013-01-01
Procedural learning can acquire or develop skills through performance and repetition of a task unconsciously or unintentionally. Procedural skills are considered as the cornerstone in the neuropsychological rehabilitation to promote the autonomy of patients with brain damage, as those with Alzheimer's disease. This review presents data about procedural skills in Alzheimer's disease. Over the past three decades, we have found 40 articles studying various procedural skills in the Alzheimer's disease: motor, perceptual-motor, cognitive, perceptual-cognitive and those developed through serial reaction-time paradigm. We analyzed every study evaluating a procedural skill, indicating the used task and preservation or no preservation of procedural learning. Overall, most of the papers published describe conservation of learning procedures or relatively conserved in Alzheimer's disease, which could be used to promote patient autonomy.
Shell shock at Queen Square: Lewis Yealland 100 years on
Jones, Edgar; Lees, Andrew J.
2013-01-01
This article reviews the treatment of functional neurological symptoms during World War I by Lewis Yealland at the National Hospital for the Paralysed and Epileptic in London. Yealland was among the first doctors in Britain to incorporate electricity in the systematic treatment of shell shock. Our analysis is based on the original case records of his treatment of 196 soldiers with functional motor and sensory symptoms, functional seizures and somatoform disorders. Yealland’s treatment approach integrated peripheral and central electrical stimulation with a variety of other—psychological and physical—interventions. A combination of electrical stimulation of affected muscles with suggestion of imminent improvement was the hallmark of his approach. Although his reported success rates were high, Yealland conducted no formal follow-up. Many of the principles of his treatment, including the emphasis on suggestion, demonstration of preserved function and the communication of a physiological illness model, are encountered in current therapeutic approaches to functional motor and sensory symptoms. Yealland has been attacked for his use of electrical stimulation and harsh disciplinary procedures in popular and scientific literature during and after World War I. This criticism reflects changing views on patient autonomy and the social role of doctors and directly impacts on current debates on ethical justification of suggestive therapies. We argue that knowledge of the historical approaches to diagnosis and management of functional neurological syndromes can inform both aetiological models and treatment concepts for these challenging conditions. PMID:23384604
Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats
Satriotomo, Irawan; Grebe, Ashley M.
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p < 0.001), BDNF and phosphorylated ERK expression were increased in spared phrenic motor neurons (p < 0.05), consistent with increased Q-pathway contributions to pLTF. Our results increase understanding of respiratory plasticity and its potential to preserve/restore breathing capacity in ALS. SIGNIFICANCE STATEMENT Since neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), end life via respiratory failure, the ability to harness respiratory motor plasticity to improve breathing capacity could increase the quality and duration of life. In a rat ALS model (SOD1G93A) we previously demonstrated that spinal respiratory motor plasticity elicited by acute intermittent hypoxia is enhanced at disease end-stage, suggesting greater potential to preserve/restore breathing capacity. Here we demonstrate that enhanced intermittent hypoxia-induced phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. PMID:28500219
Cognitive Rehabilitation in Parkinson's Disease: Is it Feasible?
Biundo, Roberta; Weis, Luca; Fiorenzato, Eleonora; Antonini, Angelo
2017-11-01
Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by motor and non-motor symptoms. Dementia is one of the most relevant non-motor symptoms considering its functional affect on PD patients' activities of daily living and family members' wellbeing. Cognitive abnormalities in PD are heterogeneous and reliable biomarkers to detect patients at risk for dementia early on remain to be identified. Pharmacological treatments specifically for PD dementia and mild cognitive impairment are lacking, and alternative approaches have recently been implemented, including cognitive rehabilitation. The state of the art indicates that cognitive rehabilitation is feasible in PD and may either improve or preserve cognitive performance over time.Advances in this area depend on selection of patients with a homogeneous cognitive phenotype as well as definition of appropriate timing of intervention and clinical variables. This review also discusses the application of non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), to enhance the effect of cognitive rehabilitation. However, there is need for a broad consensus about standard treatment guidelines to properly compare efficacy of these procedures and implement them in routine clinical practice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhong, Shi-Jiang; Gong, Yan-Hua; Lin, Yan-Chen
2017-08-24
Amyotrophic lateral sclerosis (ALS) is a fatal disease that selectively involves motor neurons. Neurotrophic factor supplementation and neural stem cell (NSC) alternative therapy have been used to treat ALS. The two approaches can affect each other in their pathways of action, and there is a possibility for synergism. However, to date, there have been no studies demonstrating the effects of combined therapy in the treatment of ALS. In this study, for the first time, we adopted a method involving the intranasal administration of nerve growth factor combined with lateral ventricle NSC transplantation using G93A-SOD1 transgenic mice as experimental subjects to explore the treatment effect of this combined therapy in ALS. We discover that the combined therapy increase the quantity of TrkA receptors, broaden the migration of exogenous NSCs, further promote active proliferation in neurogenic regions of the brain and enhance the preservation of motor neurons in the spinal cord. Regarding physical activity, the combined therapy improved motor functions, further postponed ALS onset and extended the survival time of the mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of bariatric surgery on the esophagus.
Savarino, Edoardo; Marabotto, Elisa; Savarino, Vincenzo
2018-07-01
Bariatric surgery is the best therapeutic approach to patients with morbid obesity, but there is mounting evidence that it is associated with esophageal dysfunctions, including gastroesophageal reflux disease (GERD) and motor disorders. In the present review, we summarize the existing information on the complex link between bariatric surgery and esophageal disorders. Although high-quality studies on these effects are lacking, because of evident methodological flaws and retrospective nature, the review of published investigations show that pure restrictive procedures, such as laparoscopic adjustable gastric banding (LAPG) and laparoscopic sleeve gastrectomy (LSG), are associated with de novo development or worsening of GERD. Moreover, LAGB is the procedure with the greatest frequency of esophageal motor disorders, including impairment of LES relaxation and ineffective esophageal peristalsis associated with esophageal dilation. LSG seems to be less associated with esophageal dysmotility, although evidence derived from studies with objective measurements of esophageal dysfunction is limited. Finally, RYGB seems to be the best procedure for improvement of GERD symptoms and preservation of esophageal function. Overall, the restrictive-malabsorptive approach represented by RYGB must be preferred to pure restrictive operations in order to avoid the negative consequences of bariatric surgery on esophageal functions.
Voorhees, Jaymie R.; Genova, Rachel M.; Britt, Jeremiah K.; McDaniel, Latisha; Harper, Matthew M.
2016-01-01
Abstract Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve–dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI. PMID:27822499
Yin, Terry C; Voorhees, Jaymie R; Genova, Rachel M; Davis, Kevin C; Madison, Ashley M; Britt, Jeremiah K; Cintrón-Pérez, Coral J; McDaniel, Latisha; Harper, Matthew M; Pieper, Andrew A
2016-01-01
Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain ( WldS ) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve-dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI.
Park, Eun-Young; Kim, Won-Ho
2013-05-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J
2011-11-09
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P
2015-09-28
Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.
Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.
Latash, M L
1992-01-01
In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.
Napolitano, Francesco; Bonito-Oliva, Alessandra; Federici, Mauro; Carta, Manolo; Errico, Francesco; Magara, Salvatore; Martella, Giuseppina; Nisticò, Robert; Centonze, Diego; Pisani, Antonio; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro
2010-08-18
Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, impulsivity, and motor hyperactivity. Several lines of research support a crucial role for the dopamine transporter (DAT) gene in this psychiatric disease. Consistently, the most commonly prescribed medications in ADHD treatment are stimulant drugs, known to preferentially act on DAT. Recently, a knock-in mouse [DAT-cocaine insensitive (DAT-CI)] has been generated carrying a cocaine-insensitive DAT that is functional but with reduced dopamine uptake function. DAT-CI mutants display enhanced striatal extracellular dopamine levels and basal motor hyperactivity. Herein, we showed that DAT-CI animals present higher striatal dopamine turnover, altered basal phosphorylation state of dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP32) at Thr75 residue, but preserved D(2) receptor (D(2)R) function. However, although we demonstrated that striatal D(1) receptor (D(1)R) is physiologically responsive under basal conditions, its stimulus-induced activation strikingly resulted in paradoxical electrophysiological, behavioral, and biochemical responses. Indeed, in DAT-CI animals, (1) striatal LTP was completely disrupted, (2) R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297) treatment induced paradoxical motor calming effects, and (3) SKF 81297 administration failed to increase cAMP/protein kinase A (PKA)/DARPP32 signaling. Such biochemical alteration selectively affected dopamine D(1)Rs since haloperidol, by blocking the tonic inhibition of D(2)R, unmasked a normal activation of striatal adenosine A(2A) receptor-mediated cAMP/PKA/DARPP32 cascade in mutants. Most importantly, our studies highlighted that amphetamine, nomifensine, and bupropion, through increased striatal dopaminergic transmission, are able to revert motor hyperactivity of DAT-CI animals. Overall, our results suggest that the paradoxical motor calming effect induced by these drugs in DAT-CI mutants depends on selective aberrant phasic activation of D(1)R/cAMP/PKA/DARPP32 signaling in response to increased striatal extracellular dopamine levels.
The consequences of resistance training for movement control in older adults.
Barry, Benjamin K; Carson, Richard G
2004-07-01
Older adults who undertake resistance training are typically seeking to maintain or increase their muscular strength with the goal of preserving or improving their functional capabilities. The extent to which resistance training adaptations lead to improved performance on tasks of everyday living is not particularly well understood. Indeed, studies examining changes in functional task performance experienced by older adults following periods of resistance training have produced equivocal findings. A clear understanding of the principles governing the transfer of resistance training adaptations is therefore critical in seeking to optimize the prescription of training regimes that have as their aim the maintenance and improvement of functional movement capacities in older adults. The degenerative processes that occur in the aging motor system are likely to influence heavily any adaptations to resistance training and the subsequent transfer to functional task performance. The resulting characteristics of motor behavior, such as the substantial decline in the rate of force development and the decreased steadiness of force production, may entail that specialized resistance training strategies are necessary to maximize the benefits for older adults. In this review, we summarize the alterations in the neuromuscular system that are responsible for the declines in strength, power, and force control, and the subsequent deterioration in the everyday movement capabilities of older adults. We examine the literature concerning the neural adaptations that older adults experience in response to resistance training, and consider the readiness with which these adaptations will improve the functional movement capabilities of older adults.
Mundell, Niamh L; Daly, Robin M; Macpherson, Helen; Fraser, Steve F
2017-04-01
Androgen deprivation therapy (ADT) is an effective and widely prescribed treatment for prostate cancer (PCa), but it is associated with multiple treatment-induced adverse effects that impact on various musculoskeletal and cardiometabolic health outcomes. Emerging research has shown that ADT is also associated with cognitive impairment, which has been linked to a loss of independence, increased falls and fracture risk and greater use of medical services. The aim of this review is to outline the evidence related to the effect of ADT use on cognitive function, and propose a role for exercise training as part of usual care to prevent and/or manage cognitive impairments for PCa survivors on ADT. The following results have been obtained from this study. ADT has been shown to adversely affect specific cognitive domains, particularly verbal memory, visuomotor function, attention and executive function. However, current clinical guidelines do not recommend routine assessment of cognitive function in these men. No studies have examined whether exercise training can preserve or improve cognitive function in these men, but in healthy adults', multimodal exercise training incorporating aerobic training, progressive resistance training (PRT) and challenging motor control exercises have the potential to attenuate cognitive decline. In conclusion, as treatment with ADT for men with PCa has been associated with a decline in cognition, it is recommended that cognitive function be routinely monitored in these men and that regular exercise training be prescribed to preserve (or improve) cognitive function. Assessment of cognition and individualised exercise training should be considered in the usual treatment plan of PCa patients receiving ADT. © 2017 Society for Endocrinology.
Fujita, Satoshi; Sakurai, Masahiro; Baba, Hironori; Abe, Koji; Tominaga, Ryuji
2015-11-01
The development of spinal cord injury is believed to be related to the vulnerability of spinal motor neurons to ischemia. However, the mechanisms underlying this vulnerability have not been fully investigated. Previously, we reported that spinal motor neurons are lost likely due to autophagy and that local hypothermia prevents such spinal motor neuron death. Therefore, we investigated the role of autophagy in normothermic and hypothermic spinal cord ischemia using an immunohistochemical analysis of Beclin 1 (BCLN1; B-cell leukemia 2 protein [Bcl-2] interacting protein), Bcl-2, and γ-aminobutyric acid type-A receptor-associated protein (GABARAP), which are considered autophagy-related proteins. We used rabbit normothermic and hypothermic transient spinal cord ischemia models using a balloon catheter. Neurologic function was assessed according to the Johnson score, and the spinal cord was removed at 8 hours and 1, 2, and 7 days after reperfusion, and morphologic changes were examined using hematoxylin and eosin staining. A Western blot analysis and histochemical study of BCLN1, Bcl-2, and GABARAP, and double-labeled fluorescent immunocytochemical studies were performed. There were significant differences in the physiologic function between the normothermic model and hypothermic model after the procedure (P < .05). In the normothermic model, most of the motor neurons were selectively lost at 7 days of reperfusion (P < .001 compared with the sham group), and they were preserved in the hypothermic model (P = .574 compared with the sham group). The Western blot analysis revealed that the sustained expression of the autophagy markers, BCLN1 and GABARAP, was observed (P < .001 compared with the sham group) and was associated with neuronal cell death in normothermic ischemic conditions. In hypothermic ischemic conditions, the autophagy inhibitory protein Bcl-2 was powerfully induced (P < .001 compared with the sham group) and was associated with blunted expression of BCLN1 and GABARAP and neuronal cell survival. The double-label fluorescent immunocytochemical study revealed that immunoreactivitiy for BCLN1, Bcl-2, and GABARAP was induced in the same motor neurons. These data suggest that the prolonged induction of autophagy might be a potential factor responsible for delayed motor neuron death, and the induction of the autophagy inhibitory protein Bcl-2 using hypothermia might limit autophagy and protect against delayed motor neuron death. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Potulska-Chromik, Anna; Zakrzewska-Pniewska, Beata; Szmidt-Sałkowska, Elżbieta; Lewandowski, Jacek; Siński, Maciej; Przyjałkowski, Witold; Kostera-Pruszczyk, Anna
2013-10-30
Botulism is an acute form of poisoning caused by one of four types (A, B, E, F) toxins produced by Clostridium botulinum, ananaerobic, spore forming bacillus. Usually diagnosis of botulism is considered in patients with predominant motor symptoms: muscle weakness with intact sensation and preserved mental function. We report a case of 56-year-old Caucasian female with a history of arterial hypertension, who presented with acute respiratory failure and bilateral ptosis misdiagnosed as brainstem ischemia. She had severe external and internal ophtalmoplegia, and autonomic dysfunction with neither motor nor sensory symptoms from upper and lower limbs. Diagnosis of botulinum toxin poisoning was made and confirmed by serum antibody testing in the mouse inoculation test. Ophtalmoplegia, autonomic dysfunction and respiratory failure can be caused by botulism. Early treatment and intensive care is essential for survival and recovery. The electrophysiological tests are crucial to correct and rapid diagnosis. Botulism (especially type B) should be considered in any case of acute or predominant isolated autonomic dysfunction.
Prilutsky, Boris I.; Maas, Huub; Bulgakova, Margarita; Hodson-Tole, Emma F.; Gregor, Robert J.
2011-01-01
Denervation of selected ankle extensors in animals results in locomotor changes. These changes have been suggested to permit preservation of global kinematic characteristics of the hindlimb during stance. The peak ankle joint moment is also preserved immediately after denervation of several ankle extensors in the cat, suggesting that the animal's response to peripheral nerve injury may also be aimed at preserving ankle mechanical output. We tested this hypothesis by comparing joint moments and power patterns during walking before and after denervation of soleus and lateral gastrocnemius muscles. Hindlimb kinematics, ground reaction forces and electromyographic activity of selected muscles were recorded during level, downslope (−50%) and upslope (50%) walking before and 1–3 weeks after nerve denervation. Denervation resulted in increased activity of the intact medial gastrocnemius and plantaris muscles, greater ankle dorsiflexion, smaller knee flexion, and the preservation of the peak ankle moment during stance. Surprisingly, ankle positive power generated in the propulsion phase of stance was increased (up to 50%) after denervation in all walking conditions (p < 0.05). The obtained results suggest that the short-term motor compensation to denervation of lateral gastrocnemius and soleus muscles may allow for preservation of mechanical output at the ankle. The additional mechanical energy generated at the ankle during propulsion can result, in part, from increased activity of intact synergists, the use of passive tissues around the ankle and by the tendon action of ankle two-joint muscles and crural fascia. PMID:21411965
Shoemaker, Jennifer L.; Seely, Kathryn A.; Reed, Ronald L.; Crow, John P.; Prather, Paul L.
2010-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, paralysis and death within 2–5 years of diagnosis. Currently, no effective pharmacological agents exist for the treatment of this devastating disease. Neuroinflammation may accelerate the progression of ALS. Cannabinoids produce anti-inflammatory actions via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), and delay the progression of neuroinflammatory diseases. Additionally, CB2 receptors, which normally exist primarily in the periphery, are dramatically up-regulated in inflamed neural tissues associated with CNS disorders. In G93A-SOD1 mutant mice, the most well-characterized animal model of ALS, endogenous cannabinoids are elevated in spinal cords of symptomatic mice. Furthermore, treatment with non-selective cannabinoid partial agonists prior to, or upon, symptom appearance minimally delays disease onset and prolongs survival through undefined mechanisms. We demonstrate that mRNA, receptor binding and function of CB2, but not CB1, receptors are dramatically and selectively up-regulated in spinal cords of G93A-SOD1 mice in a temporal pattern paralleling disease progression. More importantly, daily injections of the selective CB2 agonist AM-1241, initiated at symptom onset, increase the survival interval after disease onset by 56%. Therefore, CB2 agonists may slow motor neuron degeneration and preserve motor function, and represent a novel therapeutic modality for treatment of ALS. PMID:17241118
Park, Myoung-Ok
2017-02-01
[Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.
NASA Astrophysics Data System (ADS)
Zhang, Hang; Yao, Li; Long, Zhiying
2011-03-01
Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle Permits § 13.930 Do I... 14.8) and continues to the former Mt. McKinley National Park boundary north of Wonder Lake (mile 87.9). ...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle Permits § 13.930 Do I... 14.8) and continues to the former Mt. McKinley National Park boundary north of Wonder Lake (mile 87.9). ...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle Permits § 13.930 Do I... 14.8) and continues to the former Mt. McKinley National Park boundary north of Wonder Lake (mile 87.9). ...
Hermsdörfer, J; Elias, Z; Cole, J D; Quaney, B M; Nowak, D A
2008-01-01
Although feed-forward mechanisms of grip force control are a prerequisite for skilled object manipulation, somatosensory feedback is essential to acquire, maintain, and adapt these mechanisms. Individuals with complete peripheral deafferentation provide the unique opportunity to study the function of the motor system deprived of somatosensory feedback. Two individuals (GL and IW) with complete chronic deafferentation of the trunk and limbs were tested during cyclic vertical movements of a hand-held object. Such movements induce oscillating loads that are typically anticipated by parallel modulations of the grip force. Load magnitude was altered by varying either the movement frequency or object weight. GL and IW employed excessive grip forces probably reflecting a compensatory mechanism. Despite this overall force increase, both deafferented participants adjusted their grip force level according to the load magnitude, indicating preserved scaling of the background grip force to physical demands. The dynamic modulation of the grip force with the load force was largely absent in GL, whereas in IW only slower movements were clearly affected. The authors hypothesize that the deafferented patients may have utilized visual and vestibular cues and/or an efferent copy of the motor command of the arm movement to scale the grip force level. Severely impaired grip force-load coupling in GL suggests that sensory information is important for maintaining a precise internal model of dynamic grip force control. However, comparably better performance in IW argues for the possibility that alternative cues can be used to trigger a residual internal model.
36 CFR 13.1158 - Prohibitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1158 Prohibitions. (a) Operating a motor vessel in Glacier Bay without a required permit is...
36 CFR 13.1158 - Prohibitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1158 Prohibitions. (a) Operating a motor vessel in Glacier Bay without a required permit is...
36 CFR 13.1158 - Prohibitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1158 Prohibitions. (a) Operating a motor vessel in Glacier Bay without a required permit is...
36 CFR 13.1158 - Prohibitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1158 Prohibitions. (a) Operating a motor vessel in Glacier Bay without a required permit is...
D'Iorio, Alfonsina; Vitale, Carmine; Piscopo, Fausta; Baiano, Chiara; Falanga, Anna Paola; Longo, Katia; Amboni, Marianna; Barone, Paolo; Santangelo, Gabriella
2017-10-01
Parkinson's disease (PD) is characterized by a wide spectrum of non-motor symptoms that may impact negatively on the activities of the patient's daily life and reduce Health-related quality of life (HRQoL). The present study explored the impact of specific non-motor symptoms on the HRQoL in PD. Eighty-four outpatients underwent the Montreal Cognitive Assessment (MoCA) assessing global functioning and several questionnaires to assess depression, apathy, impulse control disorders (ICD), anxiety, anhedonia and functional impact of cognitive impairment. The perceived QoL was assessed by Parkinson's Disease Questionnaire (PDQ-8). The PD sample was divided into patients with high and low HRQoL around the median of PDQ-8 and compared on clinical features, cognitive and neuropsychiatric variables. A linear regression analysis, in which the global functioning, apathy, depression, anxiety, anhedonia, ICD and the functional autonomy scores were entered as independent variables and PDQ-8 score as dependent variable, was applied. Patients with lower HRQoL were more depressed, apathetic, anxious and showed more severe reduction of functional autonomy and global functioning than patients with high HRQoL. The regression analysis revealed that higher level of anxiety, executive apathy and more reduced functional autonomy were significantly associated with higher score on PDQ-8. The finding indicated that anxiety, apathy associated with impaired planning, attention and organization (i.e., executive apathy evaluated by the Dimensional Apathy Scale) and reduced functional autonomy contribute significantly to reduce the HRQoL in PD. Therefore, early identification and management of these neuropsychiatric symptoms should be relevant to preserve HRQoL in PD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Junsong; Du, Junhua; Jiang, Xiangyun; Wang, Quan; Li, Xigong; Du, Jingyu; Lin, Xiangjin
2014-06-17
To explore the changes of range-of-motion (ROM) in patients with degenerative lumbar disease on the treatment of WavefleX dynamic stabilization system and examine the postoperative lumbar regularity and tendency of ROM. Nine patients with degenerative lumbar disease on the treatment of WavefleX dynamic stabilization system were followed up with respect to ROMs at 5 timepoints within 12 months. Records of ROM were made for instrumented segments, adjacent segments and total lumbar. Compared with preoperation, ROMs in non-fusional segments with WavefleX dynamic stabilization system decreased statistical significantly (P < 0.05 or P < 0.01) at different timepoints; ROMs in adjacent segments increased at some levels without wide statistical significance. The exception was single L3/4 at Month 12 (P < 0.05) versus control group simultaneously at the levels of L3/4, L4/5 and L5/S1, ROMs decreased at Months 6 and 12 with wide statistical significance (P < 0.05 or P < 0.01). ROMs in total lumbar had statistical significant decrease (P < 0.01) in both group of non-fusional segments and hybrid group of non-fusion and fusion. The trends of continuous augments were observed during follow-ups. Statistically significant augments were also acquired at 4 timepoints as compared to control group (P < 0.01). The treatment of degenerative lumbar diseases with WavefleX dynamic stabilization system may limit excessive extension/inflexion and preserve some motor functions. Moreover, it can sustain physiological lordosis, decrease and transfer disc load in adjacent segments to prevent early degeneration of adjacent segment. Trends of motor function augment in total lumbar need to be confirmed during future long-term follow-ups.
Heise, Kirstin-Friederike; Niehoff, Martina; Feldheim, J.-F.; Liuzzi, Gianpiero; Gerloff, Christian; Hummel, Friedhelm C.
2014-01-01
Changes in γ-aminobutyric acid (GABA) mediated synaptic transmission have been associated with age-related motor and cognitive functional decline. Since anodal transcranial direct current stimulation (atDCS) has been suggested to target cortical GABAergic inhibitory interneurons, its potential for the treatment of deficient inhibitory activity and functional decline is being increasingly discussed. Therefore, after-effects of a single session of atDCS on resting-state and event-related short-interval intracortical inhibition (SICI) as evaluated with double-pulse TMS and dexterous manual performance were examined using a sham-controlled cross-over design in a sample of older and younger participants. The atDCS effect on resting-state inhibition differed in direction, magnitude, and timing, i.e., late relative release of inhibition in the younger and early relative increase in inhibition in the older. More pronounced release of event-related inhibition after atDCS was exclusively seen in the older. Event-related modulation of inhibition prior to stimulation predicted the magnitude of atDCS-induced effects on resting-state inhibition. Specifically, older participants with high modulatory capacity showed a disinhibitory effect comparable to the younger. Beneficial effects on behavior were mainly seen in the older and in tasks requiring higher dexterity, no clear association with physiological changes was found. Differential effects of atDCS on SICI, discussed to reflect GABAergic inhibition at the level of the primary motor cortex, might be distinct in older and younger participants depending on the functional integrity of the underlying neural network. Older participants with preserved modulatory capacity, i.e., a physiologically “young” motor network, were more likely to show a disinhibitory effect of atDCS. These results favor individually tailored application of tDCS with respect to specific target groups. PMID:25071555
Somatosensory responses in a human motor cortex
Donoghue, John P.; Hochberg, Leigh R.
2013-01-01
Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902
Del-Monte, Jonathan; Capdevielle, Delphine; Varlet, Manuel; Marin, Ludovic; Schmidt, Richard C.; Salesse, Robin N.; Bardy, Benoît G.; Boulenger, Jean Philippe; Gély-Nargeot, Marie Christine; Attal, Jérôme; Raffard, Stéphane
2013-01-01
Intermediate endophenotypes emerge as an important concept in the study of schizophrenia. Although research on phenotypes mainly investigated cognitive, metabolic or neurophysiological markers so far, some authors also examined the motor behavior anomalies as a potential trait-marker of the disease. However, no research has investigated social motor coordination despite the possible importance of its anomalies in schizophrenia. The aim of this study was thus to determine whether coordination modifications previously demonstrated in schizophrenia are trait-markers that might be associated with the risk for this pathology. Interpersonal motor coordination in 27 unaffected first-degree relatives of schizophrenia patients and 27 healthy controls was assessed using a hand-held pendulum task to examine the presence of interpersonal coordination impairments in individuals at risk for the disorder. Measures of neurologic soft signs, clinical variables and neurocognitive functions were collected to assess the cognitive and clinical correlates of social coordination impairments in at-risk relatives. After controlling for potential confounding variables, unaffected relatives of schizophrenia patients had impaired intentional interpersonal coordination compared to healthy controls while unintentional interpersonal coordination was preserved. More specifically, in intentional coordination, the unaffected relatives of schizophrenia patients exhibited coordination patterns that had greater variability and in which relatives did not lead the coordination. These results show that unaffected relatives of schizophrenia patients, like the patients themselves, also present deficits in intentional interpersonal coordination. For the first time, these results suggest that intentional interpersonal coordination impairments might be a potential motor intermediate endophenotype of schizophrenia opening new perspectives for early diagnosis. PMID:24106467
Guo, Shan-Shan; Gao, Xiao-Fang; Gu, Yan-Rong
2016-01-01
Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex. Fourteen-month-old male ICR mice received maca powder administered by gavage for five weeks. Maca improved cognitive function, motor coordination, and endurance capacity in middle-aged mice, accompanied by increased mitochondrial respiratory function and upregulation of autophagy-related proteins in cortex. Our findings suggest that maca is a newly defined nutritional plant which can improve mitochondrial function and upregulate autophagy-related proteins and may be an effective functional food for slowing down age-related cognitive decline. PMID:27648102
Guo, Shan-Shan; Gao, Xiao-Fang; Gu, Yan-Rong; Wan, Zhong-Xiao; Lu, A-Ming; Qin, Zheng-Hong; Luo, Li
2016-01-01
Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex. Fourteen-month-old male ICR mice received maca powder administered by gavage for five weeks. Maca improved cognitive function, motor coordination, and endurance capacity in middle-aged mice, accompanied by increased mitochondrial respiratory function and upregulation of autophagy-related proteins in cortex. Our findings suggest that maca is a newly defined nutritional plant which can improve mitochondrial function and upregulate autophagy-related proteins and may be an effective functional food for slowing down age-related cognitive decline.
Prilutsky, Boris I.; Gregor, Robert J.; Abelew, Thomas A.; Nichols, T. Richard
2016-01-01
In this study, we sought to identify sensory circuitry responsible for motor deficits or compensatory adaptations after peripheral nerve cut and repair. Self-reinnervation of the ankle extensor muscles abolishes the stretch reflex and increases ankle yielding during downslope walking, but it remains unknown whether this finding generalizes to other muscle groups and whether muscles become completely deafferented. In decerebrate cats at least 19 wk after nerve cut and repair, we examined the influence of quadriceps (Q) muscles' self-reinnervation on autogenic length feedback, as well as intermuscular length and force feedback, among the primary extensor muscles in the cat hindlimb. Effects of gastrocnemius and soleus self-reinnervation on intermuscular circuitry were also evaluated. We found that autogenic length feedback was lost after Q self-reinnervation, indicating that loss of the stretch reflex appears to be a generalizable consequence of muscle self-reinnervation. However, intermuscular force and length feedback, evoked from self-reinnervated muscles, was preserved in most of the interactions evaluated with similar relative inhibitory or excitatory magnitudes. These data indicate that intermuscular spinal reflex circuitry has the ability to regain functional connectivity, but the restoration is not absolute. Explanations for the recovery of intermuscular feedback are discussed, based on identified mechanisms responsible for lost autogenic length feedback. Functional implications, due to permanent loss of autogenic length feedback and potential for compensatory adaptations from preserved intermuscular feedback, are discussed. PMID:27306676
The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.
Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I
2016-12-01
The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.
López-Barroso, Diana; de Diego-Balaguer, Ruth
2017-01-01
Dorsal and ventral pathways connecting perisylvian language areas have been shown to be functionally and anatomically segregated. Whereas the dorsal pathway integrates the sensory-motor information required for verbal repetition, the ventral pathway has classically been associated with semantic processes. The great individual differences characterizing language learning through life partly correlate with brain structure and function within these dorsal and ventral language networks. Variability and plasticity within these networks also underlie inter-individual differences in the recovery of linguistic abilities in aphasia. Despite the division of labor of the dorsal and ventral streams, studies in healthy individuals have shown how the interaction of them and the redundancy in the areas they connect allow for compensatory strategies in functions that are usually segregated. In this mini-review we highlight the need to examine compensatory mechanisms between streams in healthy individuals as a helpful guide to choosing the most appropriate rehabilitation strategies, using spared functions and targeting preserved compensatory networks for brain plasticity. PMID:29021751
Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.
Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J
2011-03-01
There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.
Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Rodriguez, Moses
2015-04-29
Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.
[The hip joint in neuromuscular disorders].
Strobl, W M
2009-07-01
Physiologic motor and biomechanical parameters are prerequisites for normal hip development and hip function. Disorders of muscle activity and lack of weight bearing due to neuromuscular diseases may cause clinical symptoms such as an unstable hip or reduced range of motion. Disability and handicap because of pain, hip dislocation, osteoarthritis, gait disorders, or problems in seating and positioning are dependent on the severity of the disease, the time of occurrence, and the means of prevention and treatment. Preservation of pain-free and stable hip joints should be gained by balancing muscular forces and by preventing progressive dislocation. Most important is the exact indication of therapeutic options such as movement and standing therapy as well as drugs and surgery.
Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari
2016-01-01
Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.
Wanibuchi, Masahiko; Akiyama, Yukinori; Mikami, Takeshi; Komatsu, Katsuya; Sugino, Toshiya; Suzuki, Kengo; Kanno, Aya; Ohtaki, Shunya; Noshiro, Shouhei; Mikuni, Nobuhiro
2016-06-01
Damage to the motor division of the lower cranial nerves that run into the jugular foramen leads to hoarseness, dysphagia, and the risk of aspiration pneumonia; therefore, its functional preservation during surgical procedures is important. Intraoperative mapping and monitoring of the motor rootlets at the cerebellomedullary cistern using endotracheal tube electrodes is a safe and effective procedure to prevent its injury. To study the location of the somatic and autonomic motor fibers of the lower cranial nerves related to vocal cord movement. Twenty-four patients with pathologies at the cerebellopontine lesion were studied. General anesthesia was maintained with fentanyl and propofol. A monopolar stimulator was used at amplitudes of 0.05 to 0.1 mA. Both acoustic and visual signals were displayed as vocalis muscle electromyographic activity using endotracheal tube surface electrodes. The average number of rootlets was 7.4 (range, 5-10); 75% of patients had 7 or 8 rootlets. As many as 6 rootlets (2-4 in most cases) were responsive in each patient. In 23 of the 24 patients, the responding rootlets congregated on the caudal side. The maximum electromyographic response was predominantly in the most caudal or second most caudal rootlet in 79%. The majority of motor fibers of the lower cranial nerves run through the caudal part of the rootlets at the cerebellomedullary cistern, and the maximal electromyographic response was elicited at the most caudal or second most caudal rootlet. EMG, electromyographic.
Kotchoubey, Boris; Pavlov, Yuri G; Kleber, Boris
2015-01-01
According to a prevailing view, the visual system works by dissecting stimuli into primitives, whereas the auditory system processes simple and complex stimuli with their corresponding features in parallel. This makes musical stimulation particularly suitable for patients with disorders of consciousness (DoC), because the processing pathways related to complex stimulus features can be preserved even when those related to simple features are no longer available. An additional factor speaking in favor of musical stimulation in DoC is the low efficiency of visual stimulation due to prevalent maladies of vision or gaze fixation in DoC patients. Hearing disorders, in contrast, are much less frequent in DoC, which allows us to use auditory stimulation at various levels of complexity. The current paper overviews empirical data concerning the four main domains of brain functioning in DoC patients that musical stimulation can address: perception (e.g., pitch, timbre, and harmony), cognition (e.g., musical syntax and meaning), emotions, and motor functions. Music can approach basic levels of patients' self-consciousness, which may even exist when all higher-level cognitions are lost, whereas music induced emotions and rhythmic stimulation can affect the dopaminergic reward-system and activity in the motor system respectively, thus serving as a starting point for rehabilitation.
Kotchoubey, Boris; Pavlov, Yuri G.; Kleber, Boris
2015-01-01
According to a prevailing view, the visual system works by dissecting stimuli into primitives, whereas the auditory system processes simple and complex stimuli with their corresponding features in parallel. This makes musical stimulation particularly suitable for patients with disorders of consciousness (DoC), because the processing pathways related to complex stimulus features can be preserved even when those related to simple features are no longer available. An additional factor speaking in favor of musical stimulation in DoC is the low efficiency of visual stimulation due to prevalent maladies of vision or gaze fixation in DoC patients. Hearing disorders, in contrast, are much less frequent in DoC, which allows us to use auditory stimulation at various levels of complexity. The current paper overviews empirical data concerning the four main domains of brain functioning in DoC patients that musical stimulation can address: perception (e.g., pitch, timbre, and harmony), cognition (e.g., musical syntax and meaning), emotions, and motor functions. Music can approach basic levels of patients’ self-consciousness, which may even exist when all higher-level cognitions are lost, whereas music induced emotions and rhythmic stimulation can affect the dopaminergic reward-system and activity in the motor system respectively, thus serving as a starting point for rehabilitation. PMID:26640445
Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses?
Montagnani, Federico; Controzzi, Marco; Cipriani, Christian
2015-07-01
Building prostheses with dexterous motor function equivalent to that of the human hand is one of the ambitious goals of bioengineers. State of art prostheses lack several degrees of freedom (DoF) and force the individuals to compensate for them by changing the motions of their arms and body. However, such compensatory movements often result in residual limb pain and overuse syndromes. Significant efforts were spent in designing artificial hands with multiple allowed grasps but little work has been done with regards to wrist design, regardless the fact that the wrist contributes significantly to the execution of upper limb motor tasks. We hypothesized that a single DoF hand with wrist flexion/extension allowed function comparable to a highly performant multi DoF hand without wrist flexion/extension. To assess this we compared four emulated architectures of hand-wrist prostheses using the Southampton Hand Assessment Procedure and evaluating the extent of compensatory movements with unimpaired subjects wearing ortheses. Our findings show indeed that shifting the dexterity from the hand to the wrist could preserve the ability of transradial amputees in performing common tasks with limited effect on the compensatory movements. Hence, this study invites rehabilitation engineers to focus on novel artificial wrist architectures.
Freyschlag, Christian Franz; Kerschbaumer, Johannes; Pinggera, Daniel; Bacher, Gabriele; Mur, Erich; Thomé, Claudius
2017-07-01
Preservation of neurologic function is mandatory when offering a surgical intervention to patients with low-grade gliomas (LGGs), given that the goal of any treatment is the patient's return to their normal everyday life. To determine whether a structured evaluation by an occupational therapist can reveal deficits that might be overseen in routine clinical examination of patients with a surgically treated LGG. A total of 20 patients with radiographically suspected LGG were examined in a standardized fashion at 3 stages: preoperatively, postoperatively, and 3 months thereafter. Results were analyzed descriptively. A total of 19 patients (95%) showed no postoperative motor deficit; one suffered from akinesia due to supplementary motor area involvement and demonstrated a transient deficit with manifestation on the first postoperative day. Patients with eloquent LGGs, involving speech (n = 6, 30%), exhibited different transient speech disturbances according to the location of the lesion. Structured testing revealed a postoperative worsening of movement mirroring (upper extremity) and finger discrimination (sensory) in 5 of 20 patients (25%). Force meter evaluation of the upper extremity was decreased significantly postoperatively for the affected hemisphere, even though motor deficits were absent in most patients. The action research arm test detected deterioration in more than one half of the patients postoperatively. Patients recovered from these deficits within the first 3 months. Routine clinical examination and neuropsychological evaluation fail to detect mild deficits in sensory function, reactivity, and apraxia, which may have a serious impact on patients' ability to return to their normal lives and work. Copyright © 2017 Elsevier Inc. All rights reserved.
Relation between hand function and gross motor function in full term infants aged 4 to 8 months.
Nogueira, Solange F; Figueiredo, Elyonara M; Gonçalves, Rejane V; Mancini, Marisa C
2015-01-01
In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. RESULTS revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development.
Raco, Antonino; Pesce, Alessandro; Fraschetti, Flavia; D'Andrea, Giancarlo; Polli, Filippo Maria; Acqui, Michele; Frati, Alessandro
2018-03-09
In surgery for gliomas and brain metastases, preservation of neurologic functions is essential to ensure a good quality of life and the eligibility for adjuvant therapies. This article assesses which factors could influence the functional outcome in patients with lesions located in the motor pathways. A total of 92 patients with gliomas and metastases involving the motor pathways were studied for concerns regarding quality of life (Karnofsky performance status [KPS] and modified Rankin scale [mRS]) before and after surgical treatment supported by intraoperative neuromonitoring. Patient-related, surgery-related, and lesion-related data were recorded to identify the relationships with postoperative performance status. The relationship between lesions and the corticospinal tract were investigated with preoperative magnetic resonance imaging sequences and tractographic reconstructions. Means of preoperative mRS and KPS were 1.91 ± 1.34 and 80.8 ± 20, and at 30 days postoperatively they were 1.93 ± 1.63 and 79.8 ± 24.4, respectively. The better preoperative performance status was a predictor of better outcome in terms of quality of life. Gender showed a statistical association with ∆KPS ( p = 0.033) and ∆mRS ( p = 0.031). A recurrent lesion was a predictor of poor functional outcome ( p = 0.045 for KPS at 30 days).A left-sided lesion showed a statistical association with a lesser improvement with respect to right sided. Complications were associated with a lesser functional improvement (∆mRS, ∆KPS, and clinical improvement: p = 0.001, p = 0.006, and p = 0.003, respectively). Hemorrhagic complications were associated with the worst functional prognosis. In our experience, factors associated with worse functional prognosis and quality of life were a poor preoperative performance status, female gender, operating on a recurrent lesion, involvement of the left corticospinal tract, and surgical or medical postoperative complications. Georg Thieme Verlag KG Stuttgart · New York.
Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M
2015-08-01
Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.
Eilam, David
2015-02-01
Behavior in obsessive compulsive disorder (OCD), in habitual daily tasks, and in sport and cultural rituals is deconstructed into elemental acts and categorized into common acts, performed by all individuals completing a similar task, and idiosyncratic acts, not performed by all individuals. Never skipped, common acts establish the pragmatic part of motor tasks. Repetitive performance of a few common acts renders rituals a rigid form, whereby common acts may serve as memes for cultural transmission. While idiosyncratic acts are not pragmatically necessary for task completion, they fulfill important cognitive roles. They form a long preparatory phase in tasks that involve high stakes, and a long confirmatory phase in OCD rituals. Idiosyncratic acts also form transitional phases between motor tasks, and are involved in establishing identity and preserving the flexibility necessary for adapting to varying circumstances. Behavioral variability, as manifested in idiosyncrasy, thus does not seem to be a noise or by-product of motor activity, but an essential cognitive component that has been preserved in the evolution of behavioral patterns, similar to the genetic variability in biology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular motors and their functions in plants
NASA Technical Reports Server (NTRS)
Reddy, A. S.
2001-01-01
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Identification of intestinal ion transport defects in microvillus inclusion disease.
Kravtsov, Dmitri V; Ahsan, Md Kaimul; Kumari, Vandana; van Ijzendoorn, Sven C D; Reyes-Mugica, Miguel; Kumar, Anoop; Gujral, Tarunmeet; Dudeja, Pradeep K; Ameen, Nadia A
2016-07-01
Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl(-)) and sodium (Na(+)) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na(+)), CFTR (Cl(-)), and SLC26A3 (DRA) (Cl(-)/HCO3 (-)) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl(-) and Na(+) stool loss in MVID diarrhea.
Identification of intestinal ion transport defects in microvillus inclusion disease
Kravtsov, Dmitri V.; Ahsan, Md Kaimul; Kumari, Vandana; van Ijzendoorn, Sven C. D.; Reyes-Mugica, Miguel; Kumar, Anoop; Gujral, Tarunmeet; Dudeja, Pradeep K.
2016-01-01
Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl−) and sodium (Na+) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na+), CFTR (Cl−), and SLC26A3 (DRA) (Cl−/HCO3−) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl− and Na+ stool loss in MVID diarrhea. PMID:27229121
Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio
2015-01-01
The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.
Cerebral palsy in Victoria: motor types, topography and gross motor function.
Howard, Jason; Soo, Brendan; Graham, H Kerr; Boyd, Roslyn N; Reid, Sue; Lanigan, Anna; Wolfe, Rory; Reddihough, Dinah S
2005-01-01
To study the relationships between motor type, topographical distribution and gross motor function in a large, population-based cohort of children with cerebral palsy (CP), from the State of Victoria, and compare this cohort to similar cohorts from other countries. An inception cohort was generated from the Victorian Cerebral Palsy Register (VCPR) for the birth years 1990-1992. Demographic information, motor types and topographical distribution were obtained from the register and supplemented by grading gross motor function according to the Gross Motor Function Classification System (GMFCS). Complete data were obtained on 323 (86%) of 374 children in the cohort. Gross motor function varied from GMFCS level I (35%) to GMFCS level V (18%) and was similar in distribution to a contemporaneous Swedish cohort. There was a fairly even distribution across the topographical distributions of hemiplegia (35%), diplegia (28%) and quadriplegia (37%) with a large majority of young people having the spastic motor type (86%). The VCPR is ideal for population-based studies of gross motor function in children with CP. Gross motor function is similar in populations of children with CP in developed countries but the comparison of motor types and topographical distribution is difficult because of lack of consensus with classification systems. Use of the GMFCS provides a valid and reproducible method for clinicians to describe gross motor function in children with CP using a universal language.
Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS
Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva
2016-01-01
The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807
Fling, Brett W; Knight, Christopher A; Kamen, Gary
2009-08-01
As a part of the aging process, motor unit reorganization occurs in which small motoneurons reinnervate predominantly fast-twitch muscle fibers that have lost their innervation. We examined the relationship between motor unit size and the threshold force for recruitment in two muscles to determine whether older individuals might develop an alternative pattern of motor unit activation. Young and older adults performed isometric contractions ranging from 0 to 50% of maximal voluntary contraction in both the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. Muscle fiber action potentials were recorded with an intramuscular needle electrode and motor unit size was computed using spike-triggered averaging of the global EMG signal (macro EMG), which was also obtained from the intramuscular needle electrode. As expected, older individuals exhibited larger motor units than young subjects in both the FDI and the TA. However, moderately strong correlations were obtained for the macro EMG amplitude versus recruitment threshold relationship in both the young and older adults within both muscles, suggesting that the size principle of motor unit recruitment seems to be preserved in older adults.
Vincristine and fine motor function of children with acute lymphoblastic leukemia
Sabarre, Cheryl L; Rassekh, Shahrad R; Zwicker, Jill G
2014-10-01
Children with acute lymphoblastic leukemia receive vincristine, a chemotherapy drug known to cause peripheral neuropathy. Yet, few studies have examined the association of vincristine to fine motor function. This study will describe the fine motor skills and function of children with acute lymphoblastic leukemia on maintenance vincristine. A prospective case series design assessed manual dexterity and parent-reported fine motor dysfunction of 15 children with acute lymphoblastic leukemia in relation to cumulative vincristine exposure. Almost half of the participants had below-average fine motor skills compared to age-related norms, and 57% of parents observed functional motor problems in their children. No significant associations were found between vincristine, manual dexterity, and functional motor skills. Early detection and intervention for fine motor difficulties is suggested. Research with a larger sample is necessary to further explore the association of vincristine and fine motor function in this clinical population.
Holloway, Jamie M; Long, Toby M; Biasini, Fred
2018-05-02
The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.
Luz, Carolina Lundberg; Moura, Maria Clara Drummond Soares de; Becker, Karine Kyomi; Teixeira, Rosani Aparecida Antunes; Voos, Mariana Callil; Hasue, Renata Hydee
2017-08-01
Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven's Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman's correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.
Relation between hand function and gross motor function in full term infants aged 4 to 8 months
Nogueira, Solange F.; Figueiredo, Elyonara M.; Gonçalves, Rejane V.; Mancini, Marisa C.
2015-01-01
Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development. PMID:25714437
Reigada, D; Nieto-Díaz, M; Navarro-Ruiz, R; Caballero-López, M J; Del Águila, A; Muñoz-Galdeano, T; Maza, R M
2015-08-06
Secondary death of neural cells plays a key role in the physiopathology and the functional consequences of traumatic spinal cord injury (SCI). Pharmacological manipulation of cell death pathways leading to the preservation of neural cells is acknowledged as a main therapeutic goal in SCI. In the present work, we hypothesize that administration of the neuroprotective cell-permeable compound ucf-101 will reduce neural cell death during the secondary damage of SCI, increasing tissue preservation and reducing the functional deficits. To test this hypothesis, we treated mice with ucf-101 during the first week after a moderate contusive SCI. Our results reveal that ucf-101 administration protects neural cells from the deleterious secondary mechanisms triggered by the trauma, reducing the extension of tissue damage and improving motor function recovery. Our studies also suggest that the effects of ucf-101 may be mediated through the inhibition of HtrA2/OMI and the concomitant increase of inhibitor of apoptosis protein XIAP, as well as the induction of ERK1/2 activation and/or expression. In vitro assays confirm the effects of ucf-101 on both pathways as well as on the reduction of caspase cascade activation and apoptotic cell death in a neuroblastoma cell line. These results suggest that ucf-101 can be a promising therapeutic tool for SCI that deserves more detailed analyses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Artificial Gravity: Will it Preserve Bone Health on Long-Duration Missions?
NASA Technical Reports Server (NTRS)
Davis-Street, Janis; Paloski, William H.
2005-01-01
Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of resistive and aerobic exercise, have not yet proven fully successful for preventing bone loss during long-duration spaceflight. While other bone-specific countermeasures, such as pharmacological therapy and dietary modifications, are under consideration, countermeasure approaches that simultaneously address multiple physiologic systems may be more desirable for exploration-class missions, particularly if they can provide effective protection at reduced mission resource requirements (up-mass, power, crew time, etc). The most robust of the multi-system approaches under consideration, artificial gravity (AG), could prevent all of the microgravity-related physiological changes from occurring. The potential methods for realizing an artificial gravity countermeasure are reviewed, as well as selected animal and human studies evaluating the effects of artificial gravity on bone function. Future plans for the study of the multi-system effects of artificial gravity include a joint, cooperative international effort that will systematically seek an optimal prescription for intermittent AG to preserve bone, muscle, and cardiovascular function in human subjects deconditioned by 6 degree head-down-tilt-bed rest. It is concluded that AG has great promise as a multi-system countermeasure, but that further research is required to determine the appropriate parameters for implementation of such a countermeasure for exploration-class missions.
The negotiated equilibrium model of spinal cord function.
Wolpaw, Jonathan R
2018-04-16
The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Schalow, G
2009-01-01
This report describes a case of a now 20-year-old young lady with a severe spinal cord injury (SCI) at cervical 5/6 levels (ASIA A), in whom a repair of some spinal cord functions could be achieved within 3 years of optimal coordination dynamics therapy (CDT). Magnetic Resonance Imaging (MRI) showed a destruction of almost 95% of the cross-sectional area at the injury levels. The 5% (if at all) spared cord tissue most likely consisted of only sensory tracts, since no motor functions were preserved below the level of injury. A near-complete recovery of the important vegetative functions urinary bladder control, respiration, and vasomotor tone could be achieved. Her motor and sensory functions also improved to some extent, and she is off all medications. However, her motor recovery was limited and she is still wheel-chair-dependent. There is functional and structural (MRI) evidence that the human spinal cord regenerates upon CDT. The movement-based learning therapy included the training of supported crawling, up-righting, walking, running, jumping, balance training, and exercising on special CDT devices. The regeneration of the spinal cord started after more than one year of CDT, it was very limited but continuous, and gave rise to substantial functional recovery. The recovery induced by regeneration upon CDT was quantified in terms of transient increases of coordination dynamics values, the improvement of motor programs as assessed by surface electromyography (sEMG), the improvement of movement performances, and the increase of the spinal cord matter at the injury site, quantified by MRI. The similarity between the improvement at cellular and integrative (network) level during this regeneration and development is analyzed with respect to 'walking'. Comparing the effort, required to achieve substantial improvement in this case of severe cervical SCI (with 95% cord destruction; 5% spared tissue) with the effort required in the case of partial cervical SCI (50% destruction; 50% spared tissue), IT is noted that the 95% injury is 10 times more intractable. It is inferred that in severe SCI, the repair crucially depends on the percentage of the spared tissue (tracts fibres and neuronal networks) at the injury site. Improper handling of the patient therefore, as false transport or too late relief of spinal cord compression, may give rise to further mechanical damage of the cord tissue for which a later administered intensive cCDT cannot compensate for.
Motor function domains in alternating hemiplegia of childhood.
Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A
2017-08-01
To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.
Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics
Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S.
2016-01-01
Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling demanding less phase-dependent sensory processing and motor planning, as opposed to walking. PMID:26924977
Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.
2016-01-01
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794
Zoccali, Carmine; Skoch, Jesse; Patel, Apar S; Walter, Christina M; Maykowski, Philip; Baaj, Ali A
2016-12-01
Sacrectomy is a highly demanding surgery representing the main treatment for primary tumors arising in the sacrum and pelvis. Unfortunately, it is correlated with loss of important function depending on the resection level and nerve roots sacrificed. The current literature regarding residual function after sacral resection comes from several small case series. The goal of this review is to appraise residual motor function and gait, sensitivity, bladder, bowel, and sexual function after sacrectomies, with consideration to the specific roots sacrificed. An exhaustive literature search was conducted. All manuscripts published before May 2015 regarding residual function after sacrectomy were considered; if a clear correlation between root level and functioning was not present, the paper was excluded. The review identified 15 retrospective case series, totaling 244 patients; 42 patients underwent sacrectomies sparing L4/L4, L4/L5 and L5/L5; 45 sparing both L5 and one or both S1 roots; 8 sparing both S1 and one S2; 48 sparing both S2; 11 sparing both S2 and one S3, 54 sparing both S3, 9 sparing both S3 and one or both S4, and 27 underwent unilateral variable resection. Patients who underwent a sacrectomy maintained functionally normal ambulation in 56.2 % of cases when both S2 roots were spared, 94.1 % when both S3 were spared, and in 100 % of more distal resections. Normal bladder and bowel function were not present when both S2 were cut. When one S2 root was spared, normal bladder function was present in 25 % of cases; when both S2 were spared, 39.9 %; when one S3 was spared, 72.7 %; and when both S3 were spared, 83.3 %. Abnormal bowel function was present in 12.5 % of cases when both S1 and one S2 were spared; in 50.0 % of cases when both S2 were spared; and in 70 % of cases when one S3 was spared; if both S3 were spared, bowel function was normal in 94 % of cases. When even one S4 root was spared, normal bladder and bowel function were present in 100 % of cases. Unilateral sacral nerve root resection preserved normal bladder function in 75 % of cases and normal bowel function in 82.6 % of cases. Motor function depended on S1 root involvement. Total sacrectomy is associated with compromising important motor, bladder, bowel, sensitivity, and sexual function. Residual motor function is dependent on sparing L5 and S1 nerve roots. Bladder and bowel function is consistently compromised in higher sacrectomies; nevertheless, the probability of maintaining sufficient function increases progressively with the roots spared, especially when S3 nerve roots are spared. Unilateral resection is usually associated with more normal function. To the best of our knowledge, this is the first comprehensive literature review to analyze published reports of residual sacral nerve root function after sacrectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binukumar, BK; Gupta, Nidhi; Bal, Amanjit
Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q{sub 10} (CoQ{sub 10}) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, {alpha}-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg bodymore » weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, {alpha}-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q{sub 10} (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q{sub 10} administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, {alpha}-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: > CoQ{sub 10} administration attenuates dichlorvos induced nigrostriatal neurodegenaration. > CoQ{sub 10} pre treatment leads to preservation of TH-IR neurons. > CoQ{sub 10} may decrease oxidative damage and {alpha}-synuclin aggregation. > CoQ{sub 10} treatment enhances motor function and protects rats from catalepsy.« less
Infante, Jon; García, Antonio; Serrano-Cárdenas, Karla M; González-Aguado, Rocío; Gazulla, José; de Lucas, Enrique M; Berciano, José
2018-06-01
The aim of this study was to describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and preserved limb muscle stretch reflexes. All five patients were in the seventh decade of age, their gait imbalance having been initiated in the fifth decade. In four patients cough antedated gait imbalance between 15 and 29 years; cough was spasmodic and triggered by variable factors. Established clinical picture included severe hypopallesthesia predominating in the lower limbs with postural imbalance, and variable degree of cerebellar axial and appendicular ataxia, dysarthria and horizontal gaze-evoked nystagmus. Upper- and lower-limb tendon jerks were preserved, whereas jaw jerk was absent. Vestibular function testing showed bilateral impairment of the vestibulo-ocular reflex. Nerve conduction studies demonstrated normal motor conduction parameters and absence or severe attenuation of sensory nerve action potentials. Somatosensory evoked potentials were absent or severely attenuated. Biceps and femoral T-reflex recordings were normal, while masseter reflex was absent or attenuated. Sympathetic skin responses were normal. Cranial MRI showed vermian and hemispheric cerebellar atrophy predominating in lobules VI, VII and VIIa. We conclude that spasmodic cough may be an integral part of the clinical picture in CANVAS, antedating the appearance of imbalance in several decades and that sparing of muscle spindle afferents (Ia fibres) is probably the pathophysiological basis of normoreflexia.
Betts, Matthew J; O'Neill, Michael J; Duty, Susan
2012-01-01
BACKGROUND AND PURPOSE We recently reported that broad spectrum agonist-induced activation of presynaptic group III metabotropic glutamate (mGlu) receptors within the substantia nigra pars compacta using L-2-amino-4-phosphonobutyrate provided functional neuroprotection in the 6-hydroxydopamine lesion rat model of Parkinson's disease. The aim of this study was to establish whether selective activation of the mGlu4 receptor alone could afford similar functional neuroprotection. EXPERIMENTAL APPROACH The neuroprotective effects of 8 days of supranigral treatment with a positive allosteric modulator of mGlu4 receptors, (+/−)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), were investigated in rats with unilateral 6-hydroxydopamine lesions. The effects of VU0155041 treatment on motor function were assessed using both habitual (cylinder test) and forced (adjusted stepping, amphetamine-induced rotations) behavioural tests. Nigrostriatal tract integrity was examined by analysis of tyrosine hydroxylase, dopa decarboxylase or dopamine levels in the striatum and tyrosine hydroxylase-positive cell counts in the substantia nigra pars compacta. KEY RESULTS VU0155041 provided around 40% histological protection against a unilateral 6-hydroxydopamine lesion as well as significant preservation of motor function. These effects were inhibited by pre-treatment with (RS)-α-cyclopropyl-4-phosphonophenylglycine, confirming a receptor-mediated response. Reduced levels of inflammatory markers were also evident in the brains of VU0155041-treated animals. CONCLUSIONS AND IMPLICATIONS Allosteric potentiation of mGlu4 receptors in the substantia nigra pars compacta provided neuroprotective effects in the 6-hydroxydopamine rat model A reduced inflammatory response may contribute, in part, to this action. In addition to the reported symptomatic effects, activation of mGlu4 receptors may also offer a novel approach for slowing the progressive degeneration observed in Parkinson's disease. PMID:22404342
Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI.
Agosta, Federica; Spinelli, Edoardo Gioele; Marjanovic, Ivan V; Stevic, Zorica; Pagani, Elisabetta; Valsasina, Paola; Salak-Djokic, Biljana; Jankovic, Milena; Lavrnic, Dragana; Kostic, Vladimir S; Filippi, Massimo
2018-02-20
To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase ( SOD1 ) gene compared with sporadic ALS. Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls ( p = 0.001-0.02) and SOD1-related ALS ( p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS ( p < 0.001). No cord MTR differences were found between patient groups. Patients with SOD1 ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies. © 2018 American Academy of Neurology.
Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury.
Tweedy, Sean M; Beckman, Emma M; Geraghty, Timothy J; Theisen, Daniel; Perret, Claudio; Harvey, Lisa A; Vanlandewijck, Yves C
2017-02-01
Traumatic spinal cord injury (SCI) may result in tetraplegia (motor and/or sensory nervous system impairment of the arms, trunk and legs) or paraplegia (motor and/or sensory impairment of the trunk and/or legs only). The adverse effects of SCI on health, fitness and functioning are frequently compounded by profoundly sedentary behaviour. People with paraplegia (PP) and tetraplegia (TP) have reduced exercise capacity due to paralysis/paresis and reduced exercising stroke volume. TP often further reduces exercise capacity due to lower maximum heart-rate and respiratory function. There is strong, consistent evidence that exercise can improve cardiorespiratory fitness and muscular strength in people with SCI. There is emerging evidence for a range of other exercise benefits, including reduced risk of cardio-metabolic disease, depression and shoulder pain, as well as improved respiratory function, quality-of-life and functional independence. Exercise recommendations for people with SCI are: ≥30min of moderate aerobic exercise on ≥5d/week or ≥20min of vigorous aerobic ≥3d/week; strength training on ≥2d/week, including scapula stabilisers and posterior shoulder girdle; and ≥2d/week flexibility training, including shoulder internal and external rotators. These recommendations may be aspirational for profoundly inactive clients and stratification into "beginning", "intermediate" and "advanced" will assist application of the recommendations in clinical practice. Flexibility exercise is recommended to preserve upper limb function but may not prevent contracture. For people with TP, Rating of Perceived Exertion may provide a more valid indication of exercise intensity than heart rate. The safety and effectiveness of exercise interventions can be enhanced by initial screening for autonomic dysreflexia, orthostatic hypotension, exercise-induced hypotension, thermoregulatory dysfunction, pressure sores, spasticity and pain. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.
Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C
2012-01-01
The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.
Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.
Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro
2012-07-30
Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Corso, Claudia Rita; Martins, Daniel Fernandes; Borges, Stephanie Carvalho; Beltrame, Olair Carlos; Telles, José Ederaldo Queiroz; Buttow, Nilza Cristina; Werner, Maria Fernanda de Paula
2018-06-01
The present study compares the effects of a low and high doses of simvastatin in a model of peripheral neuropathy by evaluating sensorial, motor, and morphological parameters. First, male Wistar rats were orally treated with vehicle (saline, 1 mL/kg), simvastatin (2 and 80 mg/kg) or morphine (2 mg/kg, s.c.), 1 h before 2.5% formalin injection. Neuropathic pain was induced by crushing the sciatic nerve, and mechanical and cold allodynia, nerve function, histology, MPO and NAG concentrations, as well as mevalonate induced-nociception were evaluated. Animals were orally treated with vehicle, simvastatin, or gabapentin (30 mg/kg) for 18 days. Simvastatin (2 and 80 mg/kg) reduced the inflammatory pain induced by formalin, but failed to decrease the paw edema. Mechanical allodynia was reduced by the simvastatin (2 mg/kg) until the 12th day after injury and until the 18th day by gabapentin. However, both simvastatin and gabapentin treatments failed in attenuated cold allodynia or improved motor function. Interestingly, both doses of simvastatin showed a neuroprotective effect and inhibited MPO activity without altering kidney and hepatic parameters. Additionally, only the higher dose of simvastatin reduced the cholesterol levels and the nociception induced by mevalonate. Our results reinforce the antinociceptive, antiallodynic, and anti-inflammatory effects of oral simvastatin administration, which can strongly contribute to the sciatic nerve morphology preservation. Furthermore, our data suggest that lower and higher doses of simvastatin present beneficial effects that are dependent and independent of the mevalonate pathway, respectively, without causing signs of nerve damage.
Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M
2017-04-01
The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.
Harkema, Susan; Gerasimenko, Yury; Hodes, Jonathan; Burdick, Joel; Angeli, Claudia; Chen, Yangsheng; Ferreira, Christie; Willhite, Andrea; Rejc, Enrico; Grossman, Robert G.; Edgerton, V. Reggie
2011-01-01
Summary Background Repeated periods of stimulation of the spinal cord and training seems to have amplified the ability to consciously control movement. Methods An individual three years post C7-T1 subluxation presented with a complete loss of clinically detectable voluntary motor function and partial preservation of sensation below the T1 cord segment. Following 170 locomotor training sessions, a 16-electrode array was surgically placed on the dura (L1-S1 cord segments) to allow for chronic electrical stimulation. After implantation and throughout stand retraining with epidural stimulation, 29 experiments were performed. Extensive stimulation combinations and parameters were tested to achieve standing and stepping. Findings Epidural stimulation enabled the human lumbosacral spinal circuitry to dynamically elicit full weight-bearing standing with assistance provided only for balance for 4·25 minutes in a subject with a clinically motor complete SCI. This occurred when using stimulation at parameters optimized for standing while providing bilateral load-bearing proprioceptive input. Locomotor-like patterns were also observed when stimulation parameters were optimized for stepping. In addition, seven months after implantation, the subject recovered supraspinal control of certain leg movements, but only during epidural stimulation. Interpretation Even after a severe low cervical spinal injury, the neural networks remaining within the lumbosacral segments can be reactivated into functional states so that it can recognize specific details of ensembles of sensory input to the extent that it can serve as the source of neural control. In addition, newly formed supraspinal input to this same lumbosacral segments can re-emerge as another source of control. Task specific training with epidural stimulation may have reactivated previously silent spared neural circuits or promoted plasticity. This suggests that these interventions could be a viable clinical approach for functional recovery after severe paralysis. Funding National Institutes of Health and Christopher and Dana Reeve Foundation. PMID:21601270
Perugi, Giulio; Poletti, Michele; Logi, Chiara; Berti, Caterina; Romano, Anna; Del Dotto, Paolo; Lucetti, Claudio; Ceravolo, Roberto; Dell'Osso, Liliana; Bonuccelli, Ubaldo
2013-09-01
Patients with Parkinson's disease (PD) may present delusional jealousy (DJ). In a previous cross-sectional prevalence study we identified 15 cognitively preserved and five demented PD patients with DJ. The current study aimed at evaluating their clinical (motor and non-motor) characteristics and the pharmacological treatments associated with DJ, and its subsequent pharmacological management. Patients were assessed by neurologists and psychiatrists using the Hoehn and Yahr scale, the Unified Parkinson's Disease Rating Scale, the Brief Psychiatric Rating Scale, the Beck Depression Inventory, the Hamilton Anxiety Scale and the Neuropsychiatric Inventory. Efficacy of DJ management was evaluated in follow-up visits. All patients were in therapy with dopamine agonists. A subgroup of five cognitively preserved patients developed DJ after a short period of treatment of therapy with dopamine agonists, while other patients developed DJ after a longer period of dopaminergic treatment. Psychiatric comorbidities were common in cognitively preserved and in demented patients. The pharmacological management included the interruption of dopamine agonists in two patients and the reduction of dopamine agonist dose plus the use of antipsychotics in other patients. These clinical data suggest that the management of medicated PD patients should include investigation for the presence of DJ and the evaluation of clinical characteristics potentially relevant to the prevention or the early recognition of delusions.
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H
2014-01-28
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
Bai, Liangjie; Mei, Xifan; Shen, Zhaoliang; Bi, Yunlong; Yuan, Yajiang; Guo, Zhanpeng; Wang, Hongyu; Zhao, Haosen; Zhou, Zipeng; Wang, Chen; Zhu, Kunming; Li, Gang; Lv, Gang
2017-01-01
Autophagy is an process for the degradation of cytoplasmic aggregated proteins and damaged organelles and plays an important role in the development of SCI. In this study, we investigated the therapeutic effect of Netrin-1 and its potential mechanism for autophagy regulation after SCI. A rat model of SCI was established and used for analysis. Results showed that administration of Netrin-1 not only significantly enhanced the phosphorylation of AMP-activated protein kinase (AMPK) but also reduced the phosphorylation of mammalian target of rapamycin (mTOR) and P70S6K. In addition, the expression of Beclin-1 and the ratio of the light-chain 3B-II (LC3B-II)/LC3B-I in the injured spinal cord significantly increased in Netrin-1 group than those in SCI group. Moreover, the ratio of apoptotic neurons in the anterior horn of the spinal cord and the cavity area of spinal cord significantly decreased in Netrin-1 group compared with those in SCI group. In addition, Netrin-1 not only preserved motor neurons but also significantly improved motor fuction of injured rats. These results suggest that Netrin-1 improved functional recovery through autophagy stimulation by activating the AMPK/mTOR signaling pathway in rats with SCI. Thus, Netrin-1 treatment could be a novel therapeutic strategy for SCI. PMID:28186165
Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia.
Valenza, N; Ptak, R; Zimine, I; Badan, M; Lazeyras, F; Schnider, A
2001-11-01
Disorders of tactile object recognition (TOR) may result from primary motor or sensory deficits or higher cognitive impairment of tactile shape representations or semantic memory. Studies with healthy participants suggest the existence of exploratory motor procedures directly linked to the extraction of specific properties of objects. A pure deficit of these procedures without concomitant gnostic disorders has never been described in a brain-damaged patient. Here, we present a patient with a right hemispheric infarction who, in spite of intact sensorimotor functions, had impaired TOR with the left hand. Recognition of 2D shapes and objects was severely deficient under the condition of spontaneous exploration. Tactile exploration of shapes was disorganized and exploratory procedures, such as the contour-following strategy, which is necessary to identify the precise shape of an object, were severely disturbed. However, recognition of 2D shapes under manually or verbally guided exploration and the recognition of shapes traced on the skin were intact, indicating a dissociation in shape recognition between active and passive touch. Functional MRI during sensory stimulation of the left hand showed preserved activation of the spared primary sensory cortex in the right hemisphere. We interpret the deficit of our patient as a pure tactile apraxia without tactile agnosia, i.e. a specific inability to use tactile feedback to generate the exploratory procedures necessary for tactile shape recognition.
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H
2015-08-15
Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.
Physical activity, motor function, and white matter hyperintensity burden in healthy older adults.
Fleischman, Debra A; Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E; Turner, Arlener D; Barnes, Lisa L; Bennett, David A; Buchman, Aron S
2015-03-31
To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = -0.304, slope = -0.133) and low (10th percentile; estimate = -1.793, slope = -0.241) activity. Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. © 2015 American Academy of Neurology.
Physical activity, motor function, and white matter hyperintensity burden in healthy older adults
Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E.; Turner, Arlener D.; Barnes, Lisa L.; Bennett, David A.; Buchman, Aron S.
2015-01-01
Objective: To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Methods: Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Results: Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = −0.304, slope = −0.133) and low (10th percentile; estimate = −1.793, slope = −0.241) activity. Conclusions: Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. PMID:25762710
Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.
Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly
2016-01-01
Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.
Chauvel, Guillaume; Maquestiaux, François; Hartley, Alan A; Joubert, Sven; Didierjean, André; Masters, Rich S W
2012-01-01
Can motor learning be equivalent in younger and older adults? To address this question, 48 younger (M = 23.5 years) and 48 older (M = 65.0 years) participants learned to perform a golf-putting task in two different motor learning situations: one that resulted in infrequent errors or one that resulted in frequent errors. The results demonstrated that infrequent-error learning predominantly relied on nondeclarative, automatic memory processes whereas frequent-error learning predominantly relied on declarative, effortful memory processes: After learning, infrequent-error learners verbalized fewer strategies than frequent-error learners; at transfer, a concurrent, attention-demanding secondary task (tone counting) left motor performance of infrequent-error learners unaffected but impaired that of frequent-error learners. The results showed age-equivalent motor performance in infrequent-error learning but age deficits in frequent-error learning. Motor performance of frequent-error learners required more attention with age, as evidenced by an age deficit on the attention-demanding secondary task. The disappearance of age effects when nondeclarative, automatic memory processes predominated suggests that these processes are preserved with age and are available even early in motor learning.
Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V
2017-09-01
Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study
Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.
2011-01-01
Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979
Grimm, Florian; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.
Grimm, Florian; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658
Cortical Reorganization in Dual Innervation by Single Peripheral Nerve.
Zheng, Mou-Xiong; Shen, Yun-Dong; Hua, Xu-Yun; Hou, Ao-Lin; Zhu, Yi; Xu, Wen-Dong
2017-09-21
Functional recovery after peripheral nerve injury and repair is related with cortical reorganization. However, the mechanism of innervating dual targets by 1 donor nerve is largely unknown. To investigate the cortical reorganization when the phrenic nerve simultaneously innervates the diaphragm and biceps. Total brachial plexus (C5-T1) injury rats were repaired by phrenic nerve-musculocutaneous nerve transfer with end-to-side (n = 15) or end-to-end (n = 15) neurorrhaphy. Brachial plexus avulsion (n = 5) and sham surgery (n = 5) rats were included for control. Behavioral observation, electromyography, and histologic studies were used for confirming peripheral nerve reinnervation. Cortical representations of the diaphragm and reinnervated biceps were studied by intracortical microstimulation techniques before and at months 0.5, 3, 5, 7, and 10 after surgery. At month 0.5 after complete brachial plexus injury, the motor representation of the injured forelimb disappeared. The diaphragm representation was preserved in the "end-to-side" group but absent in the "end-to-end" group. Rhythmic contraction of biceps appeared in "end-to-end" and "end-to-side" groups, and the biceps representation reappeared in the original biceps and diaphragm areas at months 3 and 5. At month 10, it was completely located in the original biceps area in the "end-to-end" group. Part of the biceps representation remained in the original diaphragm area in the "end-to-side" group. Destroying the contralateral motor cortex did not eliminate respiration-related contraction of biceps. The brain tends to resume biceps representation from the original diaphragm area to the original biceps area following phrenic nerve transfer. The original diaphragm area partly preserves reinnervated biceps representation after end-to-side transfer. Copyright © 2017 by the Congress of Neurological Surgeons
Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function
Leisman, Gerry; Moustafa, Ahmed A.; Shafir, Tal
2016-01-01
In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937
Olfaction Is Related to Motor Function in Older Adults.
Tian, Qu; Resnick, Susan M; Studenski, Stephanie A
2017-08-01
Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p < .05). In those with available cognitive data, additional adjustment for depressive symptoms, verbal memory, or visuoperceptual speed demonstrated especially strong independent relationships with challenging motor tasks such as 400-m walk and nondominant hand manual dexterity (p < .005). This study demonstrates for the first time that, in older adults, olfactory function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
49 CFR 382.501 - Removal from safety-sensitive function.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...
Matsubayashi, Yoshito; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu
2016-01-01
[Purpose] This study examined whether low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring. [Subjects] The subjects were community-dwelling elderly people in a rural area of Japan. [Methods] One group (n = 50) performed group exercise combined with home exercise with self-monitoring. Another group (n = 37) performed group exercise only. Low-frequency group exercise (warm-up, exercises for motor functions, and cool-down) was performed in seven 40 to 70-minute sessions over 9 weeks by both groups. Five items of motor functions were assessed before and after the intervention. [Results] Significant interactions were observed between groups and assessment times for all motor functions. Improvements in motor functions were significantly greater in the group that performed group exercise combined with home exercise with self-monitoring than in the group that performed group exercise only. Post-hoc comparisons revealed significant differences in 3 items of motor functions. No significant improvements were observed in motor functions in the group that performed group exercise only. [Conclusions] Group exercise combined with home exercise with self-monitoring improved motor functions in the setting of low-frequency group exercise for community-dwelling elderly people in a rural area. PMID:27065520
Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.
Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion
Plowman, Emily K.; Maling, Nicholas; Rivera, Benjamin J.; Larson, Krista; Thomas, Nagheme J.; Fowler, Stephen C.; Manfredsson, Fredric P.; Shrivastav, Rahul; Kleim, Jeffrey A.
2012-01-01
The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n = 20) or control (n = 20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson’s disease are more effective for limb motor symptoms than cranial motor impairments. PMID:23018122
Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G
2016-01-01
To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto
2014-03-01
We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling
2014-02-01
Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.
Gross motor function change after multilevel soft tissue release in children with cerebral palsy.
Chang, Chia-Hsieh; Chen, Yu-Ying; Yeh, Kuo-Kuang; Chen, Chia-Ling
2017-06-01
Improving motor function is a major goal of therapy for children with cerebral palsy (CP). However, changes in motor function after orthopedic surgery for gait disorders are seldom discussed. This study aimed to evaluate the postoperative changes in gross motor function and to investigate the prognostic factors for such changes. We prospectively studied 25 children with CP (4-12 years) who were gross motor function classification system (GMFCS) level II to IV and and underwent bilateral multilevel soft-tissue release for knee flexion gait. Patients were evaluated preoperatively and at 6 weeks and 3 and 6 months postoperatively for Gross Motor Function Measure (GMFM-66), range of motion, spasticity, and selective motor control. The associations between change in GMFM-66 score and possible factors were analyzed. 25 children with gross motor function level II to IV underwent surgery at a mean age of 8.6 years (range, 4-12 years). Mean GMFM-66 score decreased from 55.9 at baseline to 54.3 at 6-weeks postoperatively and increased to 57.5 at 6-months postoperatively (p < 0.05). Regression analysis revealed better gross motor function level and greater surgical reduction of spasticity were predictors for decreased GMFM-66 score at 6-weeks postoperatively. Younger age was a predictor for increased GMFM-66 score at 6-months postoperatively. Reduction of contracture and spasticity and improvement of selective motor control were noted after surgery in children with CP. However, a down-and-up course of GMFM-66 score was noted. It is emphasized that deterioration of motor function in children with ambulatory ability and the improvement in young children after orthopedic surgery for gait disorders. case series, therapeutic study, level 4. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.
David, Brian T.; Sampath, Sujitha; Dong, Wei; Heiman, Adee; Rella, Courtney E.; Elkabes, Stella
2014-01-01
Abstract Spinal cord injury (SCI) affects motor, sensory, and autonomic functions. As current therapies do not adequately alleviate functional deficits, the development of new and more effective approaches is of critical importance. Our earlier investigations indicated that intrathecal administration of a toll-like receptor 9 (TLR9) antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), to mice sustaining a severe, mid-thoracic contusion injury diminished neuropathic pain but did not alter locomotor deficits. These changes were paralleled by a decrease in the pro-inflammatory response at the injury epicenter. Using the same SCI paradigm and treatment regimen, the current studies investigated the effects of the TLR9 antagonist on bladder function. We report that the TLR9 antagonist decreases SCI-elicited urinary retention and ameliorates bladder morphopathology without affecting kidney function. A significant improvement in white matter sparing was also observed, most likely due to alterations in the inflammatory milieu. These findings indicate that the TLR9 antagonist has beneficial effects not only in reducing sensory deficits, but also on bladder dysfunction and tissue preservation. Thus, modulation of innate immune receptor signaling in the spinal cord can impact the effects of SCI. PMID:24936867
David, Brian T; Sampath, Sujitha; Dong, Wei; Heiman, Adee; Rella, Courtney E; Elkabes, Stella; Heary, Robert F
2014-11-01
Spinal cord injury (SCI) affects motor, sensory, and autonomic functions. As current therapies do not adequately alleviate functional deficits, the development of new and more effective approaches is of critical importance. Our earlier investigations indicated that intrathecal administration of a toll-like receptor 9 (TLR9) antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), to mice sustaining a severe, mid-thoracic contusion injury diminished neuropathic pain but did not alter locomotor deficits. These changes were paralleled by a decrease in the pro-inflammatory response at the injury epicenter. Using the same SCI paradigm and treatment regimen, the current studies investigated the effects of the TLR9 antagonist on bladder function. We report that the TLR9 antagonist decreases SCI-elicited urinary retention and ameliorates bladder morphopathology without affecting kidney function. A significant improvement in white matter sparing was also observed, most likely due to alterations in the inflammatory milieu. These findings indicate that the TLR9 antagonist has beneficial effects not only in reducing sensory deficits, but also on bladder dysfunction and tissue preservation. Thus, modulation of innate immune receptor signaling in the spinal cord can impact the effects of SCI.
Assessment of motor functioning in the preschool period.
Piek, Jan P; Hands, Beth; Licari, Melissa K
2012-12-01
The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children.
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.
2012-01-01
While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270
Maturation of Sensori-Motor Functional Responses in the Preterm Brain.
Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne
2016-01-01
Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.
Motor modules during adaptation to walking in a powered ankle exoskeleton.
Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P
2018-01-03
Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.
Evaluation of Esophageal Motor Function With High-resolution Manometry
2013-01-01
For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094
Gender-related differences in recovery of locomotor function after spinal cord injury in mice.
Farooque, M; Suo, Z; Arnold, P M; Wulser, M J; Chou, C-T; Vancura, R W; Fowler, S; Festoff, B W
2006-03-01
In order to study the role of gender in recovery, we induced a thoracic compression spinal cord injury (SCI) separately in 2-month-old male and female C57Bl/6 mice. We intended to assess effects of gender on recovery of hindlimb motor function and to correlate these with histomorphologic profiles of injured spinal cord tissue. Locomotor function was evaluated by three means: a modified locomotor scoring system for rodents, beam walking and computerized activity meter. Histology was analyzed by comparison of hematoxylin and eosin-stained perfused specimens. Locomotor scores were 2.2+/-0.9 on day 1 in male mice, while, in contrast, they were significantly higher, 7.3+/-1.7, in females (P<0.02). On day 14 Basso, Beattie and Bresnahan scores were 9.5+/-2.2 in male mice and 16.0+/-2.2 in females (P<0.03). Terminal histology showed that the spinal cord architecture was relatively better preserved in female mice and that the extent of necrosis and infiltration of inflammatory cells was less compared to males. Neurobiology Research Laboratory of University of Kansas Medical School in US Department of Veterans Affairs Medical Center, Kansas City, Missouri. We found that the severity of the initial injury as well as the ultimate recovery of motor function after SCI is significantly influenced by gender, being remarkably better in females. The mechanism(s) of neuroprotection in females, although not yet elucidated, may be associated with the effects of estrogen on pathophysiological processes (blood flow, leukocyte migration inhibition, antioxidant properties, and inhibition of apoptosis). Medical Research, US Department of Veterans Affairs, the Christopher Reeve Paralysis Foundation and NIH.
Developmental outcomes of cord blood transplantation for Krabbe disease: A 15-year study.
Wright, Matthew D; Poe, Michele D; DeRenzo, Anthony; Haldal, Shilpa; Escolar, Maria L
2017-09-26
To describe long-term outcomes of children with early-infantile Krabbe disease who underwent hematopoietic stem cell transplantation (HSCT) in the first 7 weeks of life. In this prospective longitudinal study, evaluations performed at baseline and follow-up included brain imaging, neurodiagnostic tests, and neurobehavioral evaluations. Of the 18 patients in this study (11 girls, 7 boys; mean follow-up 9.5 years, range 4-15), 5 died (3 of peritransplant complications, 1 of a surgical complication unrelated to Krabbe disease, 1 of disease progression). One of the surviving patients has normal cognitive function and 10 continue to develop cognitive skills at a slightly slower rate than normal. All surviving patients continue to gain receptive language skills, with 7 falling within the normal range. Ten patients receive speech therapy, and 2 of these patients require augmentative communication devices. Gross motor development varies widely, but 3 patients can walk independently, and 7 walk with assistive devices. Spasticity ranges from mild to severe, and 12 patients wear orthotics. Fine motor skills are generally preserved. Brain myelination and atrophy stabilized in 8 patients, improved in 4 patients, and worsened in 1 patient. Nerve conduction velocities initially improved but continue to be abnormal in most patients. The surviving patients function at a much higher level than untreated children or symptomatic children who underwent HSCT. These results show that early HSCT changes the natural history of this disease by improving both lifespan and functional abilities. This study provides Class IV evidence that for children with early-infantile Krabbe disease, early HSCT improves lifespan and functional abilities. © 2017 American Academy of Neurology.
Witte, Otto W.; Grosskreutz, Julian
2017-01-01
Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations. PMID:28832631
Non-declarative memory in the rehabilitation of amnesia.
Cavaco, S; Malec, J F; Bergquist, T
2005-09-01
The ability of amnesic patients to learn and retain non-declarative information has been consistently demonstrated in the literature. This knowledge provided by basic cognitive neuroscience studies has been widely neglected in neuropsychological rehabilitation of memory impaired patients. This study reports the case of a 43 year old man with severe amnesia following an anterior communicating artery (ACoA) aneurysm rupture. The patient integrated a comprehensive (holistic) day treatment programme for rehabilitation of brain injury. The programme explored the advantages of using preserved non-declarative memory capacities, in the context of commonly used rehabilitation approaches (i.e. compensation for lost function and domain-specific learning). The patient's ability to learn and retain new cognitive and perceptual-motor skills was found to be critical for the patient's improved independence and successful return to work.
Tomata, Yasutake; Kogure, Mana; Sugawara, Yumi; Watanabe, Takashi; Asaka, Tadayoshi; Tsuji, Ichiro
2016-01-01
Objective Previous studies have reported that elderly victims of natural disasters might be prone to a subsequent decline in motor function. Victims of the Great East Japan Earthquake (GEJE) relocated to a wide range of different types of housing. As the evacuee lifestyle varies according to the type of housing available to them, their degree of motor function loss might also vary accordingly. However, the association between postdisaster housing type and loss of motor function has never been investigated. The present study was conducted to investigate the association between housing type after the GEJE and loss of motor function in elderly victims. Methods We conducted a prospective observational study of 478 Japanese individuals aged ≥65 years living in Miyagi Prefecture, one of the areas most significantly affected by the GEJE. Information on housing type after the GEJE, motor function as assessed by the Kihon checklist and other lifestyle factors was collected by interview and questionnaire in 2012. Information on motor function was then collected 1 year later. The multiple logistic regression model was used to estimate the multivariate adjusted ORs of motor function loss. Results We classified 53 (11.1%) of the respondents as having loss of motor function. The multivariate adjusted OR (with 95% CI) for loss of motor function among participants who were living in privately rented temporary housing/rental housing was 2.62 (1.10 to 6.24) compared to those who had remained in the same housing as that before the GEJE, and this increase was statistically significant. Conclusions The proportion of individuals with loss of motor function was higher among persons who had relocated to privately rented temporary housing/rental housing after the GEJE. This result may reflect the influence of a move to a living environment where few acquaintances are located (lack of social capital). PMID:27810976
Aasvang, Eske Kvanner; Jørgensen, Christoffer Calov; Laursen, Mogens Berg; Madsen, Jacob; Solgaard, Søren; Krøigaard, Mogens; Kjærsgaard-Andersen, Per; Mandøe, Hans; Hansen, Torben Bæk; Nielsen, Jørgen Ulrich; Krarup, Niels; Skøtt, Annette Elisabeth; Kehlet, Henrik
2017-06-01
Postanesthesia care unit (PACU) discharge without observation of lower limb motor function after spinal anesthesia has been suggested to significantly reduce PACU stay and enhance resource optimization and early rehabilitation but without enough data to allow clinical recommendations. A multicenter, semiblinded, noninferiority randomized controlled trial of discharge from the PACU with or without assessment of lower limb motor function after elective total hip or knee arthroplasty under spinal anesthesia was undertaken. The primary outcome was frequency of a successful fast-track course (length of stay 4 days or less and no 30-day readmission). Noninferiority would be declared if the odds ratio (OR) for a successful fast-track course was no worse for those patients receiving no motor function assessment versus those patients receiving motor function assessment by OR = 0.68. A total of 1,359 patients (98.8% follow-up) were available for analysis (93% American Society of Anesthesiologists class 1 to 2). The primary outcome occurred in 92.2% and 92.0%, corresponding to no motor function assessment being noninferior to motor function assessment with OR 0.97 (95% CI, 0.70 to 1.35). Adverse events in the ward during the first 24 h occurred in 5.8% versus 7.4% with or without motor function assessment, respectively (OR, 0.77; 95% CI, 0.5 to 1.19, P = 0.24). PACU discharge without assessment of lower limb motor function after spinal anesthesia for total hip or knee arthroplasty was noninferior to motor function assessment in achieving length of stay 4 days or less or 30-day readmissions. Because a nonsignificant tendency toward increased adverse events during the first 24 h in the ward was discovered, further safety data are needed in patients without assessment of lower limb motor function before PACU discharge.
2011-01-01
Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls. PMID:22088094
Givens, Robert M; Mesner, Larry D; Hamlin, Joyce L; Buck, Michael J; Huberman, Joel A
2011-11-16
Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.
Aach, Mirko; Cruciger, Oliver; Sczesny-Kaiser, Matthias; Höffken, Oliver; Meindl, Renate Ch; Tegenthoff, Martin; Schwenkreis, Peter; Sankai, Yoshiyuki; Schildhauer, Thomas A
2014-12-01
Treadmill training after traumatic spinal cord injury (SCI) has become an established therapy to improve walking capabilities. The hybrid assistive limb (HAL) exoskeleton has been developed to support motor function and is tailored to the patients' voluntary drive. To determine whether locomotor training with the exoskeleton HAL is safe and can increase functional mobility in chronic paraplegic patients after SCI. A single case experimental A-B (pre-post) design study by repeated assessments of the same patients. The subjects performed 90 days (five times per week) of HAL exoskeleton body weight supported treadmill training with variable gait speed and body weight support. Eight patients with chronic SCI classified by the American Spinal Injury Association (ASIA) Impairment Scale (AIS) consisting of ASIA A (zones of partial preservation [ZPP] L3-S1), n=4; ASIA B (with motor ZPP L3-S1), n=1; and ASIA C/D, n=3, who received full rehabilitation in the acute and subacute phases of SCI. Functional measures included treadmill-associated walking distance, speed, and time, with additional analysis of functional improvements using the 10-m walk test (10MWT), timed-up and go test (TUG test), 6-minute walk test (6MWT), and the walking index for SCI II (WISCI II) score. Secondary physiologic measures including the AIS with the lower extremity motor score (LEMS), the spinal spasticity (Ashworth scale), and the lower extremity circumferences. Subjects performed standardized functional testing before and after the 90 days of intervention. Highly significant improvements of HAL-associated walking time, distance, and speed were noticed. Furthermore, significant improvements have been especially shown in the functional abilities without the exoskeleton for over-ground walking obtained in the 6MWT, TUG test, and the 10MWT, including an increase in the WISCI II score of three patients. Muscle strength (LEMS) increased in all patients accompanied by a gain of the lower limb circumferences. A conversion in the AIS was ascertained in one patient (ASIA B to ASIA C). One patient reported a decrease of spinal spasticity. Hybrid assistive limb exoskeleton training results in improved over-ground walking and leads to the assumption of a beneficial effect on ambulatory mobility. However, evaluation in larger clinical trials is required. Copyright © 2014 Elsevier Inc. All rights reserved.
Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.
Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D
2009-10-01
To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).
Imaging: what can it tell us about parkinsonian gait?
Bohnen, Nicolaas I.; Jahn, Klaus
2013-01-01
Functional neuroimaging has provided new tools to study cerebral gait control in Parkinson disease (PD). First, imaging of blood flow functions has identified a supraspinal locomotor network that includes the (frontal) cortex, basal ganglia, brainstem tegmentum and the cerebellum. These studies emphasize also the cognitive and attentional dependency of gait in PD. Furthermore, gait in PD and related syndromes like progressive supranuclear palsy may be associated with dysfunction of the indirect, modulatory prefrontal–subthalamic–pedunculopontine loop of locomotor control. The direct, stereotyped locomotor loop from the primary motor cortex to the spinal cord with rhythmic cerebellar input appears preserved and may contribute to the unflexible gait pattern in parkinsonian gait. Second, neurotransmitter and proteinopathy imaging studies are beginning to unravel novel mechanisms of parkinsonian gait and postural disturbances. Dopamine displacement imaging studies have shown evidence for a mesofrontal dopaminergic shift from a depleted striatum in parkinsonian gait. This may place additional burden on other brain systems mediating attention functions to perform previously automatic motor tasks. For example, our preliminary cholinergic imaging studies suggest significant slowing of gait speed when additional forebrain cholinergic denervation occurs in PD. Cholinergic denervation of the pedunculopontine nucleus and its thalamic projections have been associated with falls and impaired postural control. Deposition of β-amyloid may represent another non-dopaminergic correlate of gait disturbance in PD. These findings illustrate the emergence of dopamine non-responsive gait problems to reflect the transition from a predominantly hypodopaminergic disorder to a multisystem neurodegenerative disorder involving non-dopaminergic locomotor network structures and pathologies. PMID:24132837
Are There Age-Related Differences in the Ability to Learn Configural Responses?
Clark, Rachel; Freedberg, Michael; Hazeltine, Eliot; Voss, Michelle W.
2015-01-01
Age is often associated with a decline in cognitive abilities that are important for maintaining functional independence, such as learning new skills. Many forms of motor learning appear to be relatively well preserved with age, while learning tasks that involve associative binding tend to be negatively affected. The current study aimed to determine whether age differences exist on a configural response learning task, which includes aspects of motor learning and associative binding. Young (M = 24 years) and older adults (M = 66.5 years) completed a modified version of a configural learning task. Given the requirement of associative binding in the configural relationships between responses, we predicted older adults would show significantly less learning than young adults. Older adults demonstrated lower performance (slower reaction time and lower accuracy). However, contrary to our prediction, older adults showed similar rates of learning as indexed by a configural learning score compared to young adults. These results suggest that the ability to acquire knowledge incidentally about configural response relationships is largely unaffected by cognitive aging. The configural response learning task provides insight into the task demands that constrain learning abilities in older adults. PMID:26317773
Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.
2008-01-01
Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710
Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas
2018-06-01
This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.
Spectrum of gross motor and cognitive functions in children with cerebral palsy: gender differences.
Romeo, Domenico M M; Cioni, Matteo; Battaglia, Laura R; Palermo, Filippo; Mazzone, Domenico
2011-01-01
Multiple differences between males and females are reported both in physiological and pathophysiological conditions. To test the hypothesis that gender could influence the motor and cognitive development in children with cerebral palsy (CP). Prospective, cross-sectional. One hundred seventy one children with CP (98 males and 73 females) were evaluated for motor (Gross Motor Function Measure, Gross Motor Function Classification System) and cognitive (Bayley II, Wechsler Scales) functions. Eighty-four of them were assessed before and other eighty-seven children after 4 years of age. No gender-related differences were observed in children with diplegia or quadriplegia, both for motor and cognitive functions. On the contrary, females with hemiplegia scored significantly better (P < 0.01) in cognitive functions and in the dimension D (standing) of the Gross Motor Function Measure, under the age of 4 years. These differences were not observed after this age. In this study we point out that gender might influence differently the psycho-motor development of children with hemiplegia and of those with a more severe clinical involvement as diplegia and quadriplegia. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.
2011-01-01
SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257
Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577
Motor functions and adaptive behaviour in children with childhood apraxia of speech.
Tükel, Şermin; Björelius, Helena; Henningsson, Gunilla; McAllister, Anita; Eliasson, Ann Christin
2015-01-01
Undiagnosed motor and behavioural problems have been reported for children with childhood apraxia of speech (CAS). This study aims to understand the extent of these problems by determining the profile of and relationships between speech/non-speech oral, manual and overall body motor functions and adaptive behaviours in CAS. Eighteen children (five girls and 13 boys) with CAS, 4 years 4 months to 10 years 6 months old, participated in this study. The assessments used were the Verbal Motor Production Assessment for Children (VMPAC), Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) and Adaptive Behaviour Assessment System (ABAS-II). Median result of speech/non-speech oral motor function was between -1 and -2 SD of the mean VMPAC norms. For BOT-2 and ABAS-II, the median result was between the mean and -1 SD of test norms. However, on an individual level, many children had co-occurring difficulties (below -1 SD of the mean) in overall and manual motor functions and in adaptive behaviour, despite few correlations between sub-tests. In addition to the impaired speech motor output, children displayed heterogeneous motor problems suggesting the presence of a global motor deficit. The complex relationship between motor functions and behaviour may partly explain the undiagnosed developmental difficulties in CAS.
36 CFR 13.1154 - Commercial vessel permits and conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conditions. 13.1154 Section 13.1154 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and... motor vessel must have a permit to operate in Glacier Bay National Park and Preserve in accordance with...
36 CFR 13.934 - How will the superintendent manage the permit program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... manage the permit program? 13.934 Section 13.934 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle Permits § 13.934 How will the superintendent manage the permit...
36 CFR 13.934 - How will the superintendent manage the permit program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... manage the permit program? 13.934 Section 13.934 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle Permits § 13.934 How will the superintendent manage the permit...
36 CFR 13.936 - What is prohibited?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false What is prohibited? 13.936 Section 13.936 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle...
36 CFR 13.934 - How will the superintendent manage the permit program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... manage the permit program? 13.934 Section 13.934 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle Permits § 13.934 How will the superintendent manage the permit...
36 CFR 13.936 - What is prohibited?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false What is prohibited? 13.936 Section 13.936 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle...
36 CFR 13.936 - What is prohibited?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false What is prohibited? 13.936 Section 13.936 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Denali National Park and Preserve Motor Vehicle...
Motor function and incident dementia: a systematic review and meta-analysis.
Kueper, Jacqueline Kathleen; Speechley, Mark; Lingum, Navena Rebecca; Montero-Odasso, Manuel
2017-09-01
cognitive and mobility decline are interrelated processes, whereby mobility decline coincides or precedes the onset of cognitive decline. to assess whether there is an association between performance on motor function tests and incident dementia. electronic database, grey literature and hand searching identified studies testing for associations between baseline motor function and incident dementia in older adults. of 2,540 potentially relevant documents, 37 met the final inclusion criteria and were reviewed qualitatively. Three meta-analyses were conducted using data from 10 studies. Three main motor domains-upper limb motor function, parkinsonism and lower limb motor function-emerged as associated with increased risk of incident dementia. Studies including older adults without neurological overt disease found a higher risk of incident dementia associated with poorer performance on composite motor function scores, balance and gait velocity (meta-analysis pooled HR = 1.94, 95% CI: 1.41, 2.65). Mixed results were found across different study samples for upper limb motor function, overall parkinsonism (meta-analysis pooled OR = 3.05, 95% CI: 1.31, 7.08), bradykinesia and rigidity. Studies restricted to older adults with Parkinson's Disease found weak or no association with incident dementia even for motor domains highly associated in less restrictive samples. Tremor was not associated with an increased risk of dementia in any population (meta-analysis pooled HR = 0.80, 95% CI 0.31, 2.03). lower limb motor function was associated with increased risk of developing dementia, while tremor and hand grip strength were not. Our results support future research investigating the inclusion of quantitative motor assessment, specifically gait velocity tests, for clinical dementia risk evaluation. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
Motor Function Is Associated With Incident Disability in Older African Americans
Wilson, Robert S.; Yu, Lei; Boyle, Patricia A.; Bennett, David A.; Barnes, Lisa L.
2016-01-01
Background: Disability in older African American adults is common, but its basis is unclear. We tested the hypothesis that the level of motor function is associated with incident disability in older African Americans after adjusting for cognition. Methods: A prospective observational cohort study of 605 older community-dwelling African American adults without dementia was carried out. Baseline global motor score summarized 11 motor performances, cognition was based on 19 cognitive tests, and self-reported disability was obtained annually. We examined the association of motor function with incident disability (instrumental activities of daily living [IADL], activities of daily living [ADL], and mobility disability) with a series of Cox proportional hazards models which controlled for age, sex, and education. Results: Average follow-up was about 5 years. In proportional hazards models, a 1-SD increase in baseline level of global motor score was associated with about a 50% decrease in the risk of subsequent IADL, ADL, and mobility disability (all p values < .001). These associations were unchanged in analyses controlling for cognition and other covariates. Further, the association of global motor score and incident ADL disability varied with the level of cognition (estimate −5.541, SE 1.634, p < .001), such that higher motor function was more protective at higher levels of cognition. Mobility and dexterity components of global motor score were more strongly associated with incident disability than strength (all p values < .001). Conclusions: Better motor function in older African Americans is associated with a decreased risk of developing disability. Moreover, the association of motor function and disability is stronger in individuals with better cognitive function. PMID:26525087
Pashmdarfard, Marzieh; Amini, Malek; Badv, Reza Shervin; Ghaffarzade Namazi, Narges; Rassafiani, Mehdi
2017-01-01
The aim of this study was to assess the effect of parent report gross motor function level of cerebral palsy (CP) children on the parent report quality of life of CP children. Sampling of this cross-sectional study was done in occupational therapy clinics and CP children's schools in 2016 in Zanjan, Iran. Samples size was 60 CP children aged 6-12 yr and for sampling method, a non-probability convenience was used. For assessing the quality of life of CP children the cerebral palsy quality of life (CP QOL) questionnaire and for assessing the level of gross motor function of CP children the Gross Motor Function Classification System Family Report Questionnaire (GMFCSFRQ) were used. The average age of children (22 males and 30 females) was 8.92 yr old (minimum 6 yr and maximum 12 yr). The relationship between the level of gross motor function and participation and physical health was direct and significant (r=0.65). The relationship between functioning, access to services and family health with the level of gross motor function was direct but was not significant ( P >0.05) and the relationship between pain and impact of disability and emotional well-being with the level of gross motor function was significant ( P <0.05). There was no strong correlation between the level of gross motor function and quality of life of children with cerebral palsy. It means that the level of gross motor function cannot be used as a predictor of quality of life for children with cerebral palsy alone.
Engineered kinesin motor proteins amenable to small-molecule inhibition
Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.
2016-01-01
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608
ERIC Educational Resources Information Center
Wuang, Y-P.; Su, C-Y.; Huang, M-H.
2012-01-01
Background: Deficit in motor performance is common in children with intellectual disabilities (ID). A motor function measure with sound psychometric properties is indispensable for clinical and research use. The purpose of this study was to compare the psychometric properties of three commonly used clinical measures for assessing motor function in…
Egger, Fabienne; Benzing, Valentin; Jäger, Katja; Conzelmann, Achim; Roebers, Claudia M.; Pesce, Caterina
2017-01-01
Even though positive relations between children’s motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination), core executive functions (t2: updating, inhibition, shifting), and academic achievement (t3: mathematics, reading, spelling). Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children’s academic achievement. However, only in the case of children’s motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children’s physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning. PMID:28817625
[Procedural learning disorder: neuropsychological characteristics].
Crespo-Eguílaz, N; Narbona, J
This research aims at neurocognitive delineation of the core features of procedural learning disorder (PLD), otherwise labeled as motor coordination disorder or non-verbal learning disorder. A sample of 209 correlative outpatients (73% males), aged 6-12 years, all of them having QI ranging from 81 to 120, was clustered into the following neurobehavioural groups: PLD (n = 16), PLD plus attention deficit hyperactivity disorder (ADHD) (n = 37), ADHD combined type (n = 47), ADHD predominantly inattentive type (n = 23), specific language impairment (n = 68), and semantic-pragmatic language impairment (n = 18). Two additional groups of patients were included for some comparisons: children with periventricular leukomalacia (PVL) without learning disability (n = 8) or associating PLD (n = 17). A set of behavioural scales and neurocognitive tests was used to evaluate verbal and non-verbal IQ, attention, impulsivity control, visuo-motor coordination, declarative memory, procedural memory and learning, formal and functional dimensions of language, peer relationships and academic achievement. Parametric analysis were used to test the differences and similarities of neurobehavioural variables between groups. Our results allow us to conclude that PLD implies a difficult acquisition of automatized motor, cognitive and communicative abilities required in school work and peer social relationships. PLD is different from autistic spectrum disorders. It is frequently associated to inattentive ADHD. Operational criteria for diagnosis of PLD are proposed, according to our results. A bilateral posterior parietal dysfunction is a plausible explanation of its physiopathology. Preserved general intelligence and formal linguistic abilities are the clues for intervention designs.
Exchange of rotor components in functioning bacterial flagellar motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, Hajime; Inoue, Yuichi; Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577
2010-03-26
The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP,more » and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s{sup -1}, meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.« less
Vohr, Betty R; Msall, Michael E; Wilson, Dee; Wright, Linda L; McDonald, Scott; Poole, W Kenneth
2005-07-01
The purpose of this study was to evaluate the relationship between cerebral palsy (CP) diagnoses as measured by the topographic distribution of the tone abnormality with level of function on the Gross Motor Function Classification System (GMFCS) and developmental performance on the Bayley Scales of Infant Development II (BSID-II). It was hypothesized that (1) the greater the number of limbs involved, the higher the GMFCS and the lower the BSID-II Motor Scores and (2) there would be a spectrum of function and skill achievement on the GMFCS and BSID-II Motor Scores for children in each of the CP categories. A multicenter, longitudinal cohort study was conducted of 1860 extremely low birth weight (ELBW) infants who were born between August 1, 1995 and February 1, 1998, and evaluated at 18 to 22 months' corrected age. Children were categorized into impairment groups on the basis of the typography of neurologic findings: spastic quadriplegia, triplegia, diplegia, hemiplegia, monoplegia, hypotonic and/or athetotic CP, other abnormal neurologic findings, and normal. The neurologic category then was compared with GMFCS level and BSID-II Motor Scores. A total of 282 (15.2%) of the 1860 children evaluated had CP. Children with more limbs involved had more abnormal GMFCS levels and lower BSID-II scores, reflecting more severe functional limitations. However, for each CP diagnostic category, there was a spectrum of gross motor functional levels and BSID-II scores. Although more than 1 (26.6%) in 4 of the children with CP had moderate to severe gross motor functional impairment, 1 (27.6%) in 4 had motor functional skills that allowed for ambulation. Given the range of gross motor skill outcomes for specific types of CP, the GMFCS is a better indicator of gross motor functional impairment than the traditional categorization of CP that specifies the number of limbs with neurologic impairment. The neurodevelopmental assessment of young children is optimized by combining a standard neurologic examination with measures of gross and fine motor function (GMFCS and Bayley Psychomotor Developmental Index). Additional studies to examine longer term functional motor and adaptive-functional developmental skills are required to devise strategies that delineate therapies to optimize functional performance.
Eroglu, Hakan; Nemutlu, Emirhan; Turkoglu, Omer Faruk; Nacar, Osman; Bodur, Ebru; Sargon, Mustafa Fevzi; Beskonakli, Etem; Oner, Levent
2010-09-01
Atorvastatin is commonly used as a cholesterol lowering agent in patients. Recently, the neuroprotective effects of atorvastatin became the focus of many research studies. In this study, we have formulated chitosan microspheres containing atorvastatin calcium. In-vitro characterization of chitosan microspheres and quantification of atorvastatin calcium from formulations were also evaluated. The neuroprotective efficiency of atorvastatin calcium was investigated by an experimental spinal cord injury model. Atorvastatin calcium microspheres were implanted at the laminectomy area (1 mg/kg) immediately after trauma. Twenty-four hours after injury, motor functions of animals were scored according to modified Tarlov Scale. In spinal cord tissues tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6 and lipid peroxidation levels were quantified and ultrastructural changes have been investigated. The results of all parameters indicate that microspheres containing atorvastatin calcium were capable of improving functional outcome, attenuating the expression of TNF-alpha, IL-1beta and IL-6; lowering lipid peroxidation levels and maintaining the preservation of the cellular uniformity.
[Posture and aging. Current fundamental studies and management concepts].
Mourey, F; Camus, A; Pfitzenmeyer, P
2000-02-19
FUNDAMENTAL IMPORTANCE OF POSTURE: In the elderly subject, preservation of posture is fundamental to maintaining functional independence. In recent years, there has been much progress in our understanding of the mechanisms underlying strategies used to control equilibrium in the upright position. Physiological aging, associated with diverse disease states, dangerously alters the postural function, particularly anticipated adjustments which allow an adaptation of posture to movement. CLINICAL ASSESSMENT OF POSTURE: Several tests have been developed to assess posture in the elderly subject, particularly the time it takes to start walking. We selected certain tests which can be used in everyday practice to predict falls: the stance test, the improved Romberg test, the "timed get up and go test", measurement of walking cadence, assessment of balance reactions, sitting-standing and standing-sitting movements and capacity to get up off the floor. PATIENT CARE: Elderly patients with equilibrium disorders can benefit from specific personalized rehabilitation protocols. Different techniques have been developed for multiple afferential stimulation, reprogramming postural strategies, and correcting for deficient motor automatisms.
Rehabilitation outcomes in children with cerebral palsy during a 2 year period
İçağasıoğlu, Afitap; Mesci, Erkan; Yumusakhuylu, Yasemin; Turgut, Selin Turan; Murat, Sadiye
2015-01-01
[Purpose] To observe motor and functional progress of children with cerebral palsy during 2 years. [Subjects and Methods] Pediatric cerebral palsy patients aged 3–15 years (n = 35/69) with 24-month follow-up at our outpatient cerebral palsy clinic were evaluated retrospectively. The distribution of cerebral palsy types was as follows: diplegia (n = 19), hemiplegia (n = 4), and quadriplegia (n = 12). Participants were divided into 3 groups according to their Gross Motor Functional Classification System scores (i.e., mild, moderate, and severe). All participants were evaluated initially and at the final assessment 2 years later. During this time, patients were treated 3 times/week. Changes in motor and functional abilities were assessed based on Gross Motor Function Measure-88 and Wee Functional Independence Measure. [Results] Significant improvements were observed in Gross Motor Function Measure-88 and Wee Functional Independence Measure results in all 35 patients at the end of 2 years. The Gross Motor Function Measure-88 scores correlated with Wee Functional Independence Measure Scores. Marked increases in motor and functional capabilities in mild and moderate cerebral palsy patients were observed in the subgroup assessments, but not in those with severe cerebral palsy. [Conclusion] Rehabilitation may greatly help mild and moderate cerebral palsy patients achieve their full potential. PMID:26644677
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.
Physical activity and motor decline in older persons.
Buchman, A S; Boyle, P A; Wilson, R S; Bienias, Julia L; Bennett, D A
2007-03-01
We tested the hypothesis that physical activity modifies the course of age-related motor decline. More than 850 older participants of the Rush Memory and Aging Project underwent baseline assessment of physical activity and annual motor testing for up to 8 years. Nine strength measures and nine motor performance measures were summarized into composite measures of motor function. In generalized estimating equation models, global motor function declined during follow-up (estimate, -0.072; SE, 0.008; P < 0.001). Each additional hour of physical activity at baseline was associated with about a 5% decrease in the rate of global motor function decline (estimate, 0.004; SE, 0.001; P = 0.007). Secondary analyses suggested that the association of physical activity with motor decline was mostly due to the effect of physical activity on the rate of motor performance decline. Thus, higher levels of physical activity are associated with a slower rate of motor decline in older persons.
Kim, Jin Hwan; Choi, Kyu Young; Lee, Kyu Ho; Lee, Dong Jin; Park, Bum Jung; Rho, Young-Soo
2014-01-01
To evaluate the motor input from the spinal accessory nerve (SAN) and the branches of the cervical plexus in an intraoperative motor nerve conduction study measuring motor action potentials by direct stimulation of the exposed nerve during neck dissection. The entire length of the SAN and the contributions from the upper cervical plexus were preserved. Compound muscle action potentials were measured for each part of the trapezius muscle on stimulation of the SAN, C2, C3, and C4 nerves. With stimulation of the spinal nerve, evoked responses were obtained from all 24 patients in the descending, transverse, and ascending trapezius muscle. C2 contributions were noted in 2 out of 24 patients; however, no patient revealed responses in all three parts of the muscle. C3 contributions were seen in 11 out of 24 patients, supplying all three parts of the muscle in 8 patients, and C4 contributions were noted in 20 out of 24 patients, supplying all three parts of the muscle in 16 of them. The SAN provided the most consistent motor input to the trapezius muscle. The C2, C3, and C4 nerves also provided motor input to the trapezius muscle; however, they were either inconsistently present or, when present, irregularly innervated the three parts of the trapezius muscle.
Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S
2017-07-01
The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.
McGregor, Heather R; Gribble, Paul L
2017-08-01
Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.
Lunardini, Francesca; Casellato, Claudia; Bertucco, Matteo; Sanger, Terence D; Pedrocchi, Alessandra
2015-01-01
Muscle synergies are hypothesized to represent motor modules recruited by the nervous system to flexibly perform subtasks necessary to achieve movement. Muscle synergy analysis may offer a better view of the neural structure underlying motor behaviors and how they change in motor deficits and rehabilitation. The aim of this study is to investigate if muscle synergies are able to encode regularities in the musculoskeletal system organization and dynamic behavior of patients with dystonia, or if they are altered as a consequence of the nervous system dysfunction in dystonia. To do so, we applied muscle synergies analysis to muscle activity recorded during the execution of upper limb writing tasks in 10 children with dystonia and 9 age-matched healthy controls. We show that, although children with dystonia present movement abnormalities compared to control subjects, the muscle synergies extracted from the two groups are very similar, and that the two groups share a significant number of motor modules. Our finding therefore suggests that a regular modular organization of upper limb muscle coordination is preserved for childhood dystonia.
Transformation of Context-dependent Sensory Dynamics into Motor Behavior
Latorre, Roberto; Levi, Rafael; Varona, Pablo
2013-01-01
The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114
McLeod, Kevin R; Langevin, Lisa Marie; Dewey, Deborah; Goodyear, Bradley G
2016-01-01
Developmental coordination disorder (DCD) and attention-deficit hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1) cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD), a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.
Dynamic Modulation of Human Motor Activity When Observing Actions
Press, Clare; Cook, Jennifer; Blakemore, Sarah-Jayne; Kilner, James
2012-01-01
Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography, we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions. PMID:21414901
Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.
2014-01-01
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465
Impairments of Social Motor Coordination in Schizophrenia
Varlet, Manuel; Marin, Ludovic; Raffard, Stéphane; Schmidt, R. C.; Capdevielle, Delphine; Boulenger, Jean-Philippe; Del-Monte, Jonathan; Bardy, Benoît G.
2012-01-01
It has been demonstrated that motor coordination of interacting people plays a crucial role in the success of social exchanges. Abnormal movements have been reported during interpersonal interactions of patients suffering from schizophrenia and a motor coordination breakdown could explain this social interaction deficit, which is one of the main and earliest features of the illness. Using the dynamical systems framework, the goal of the current study was (i) to investigate whether social motor coordination is impaired in schizophrenia and (ii) to determine the underlying perceptual or cognitive processes that may be affected. We examined intentional and unintentional social motor coordination in participants oscillating hand-held pendulums from the wrist. The control group consisted of twenty healthy participant pairs while the experimental group consisted of twenty participant pairs that included one participant suffering from schizophrenia. The results showed that unintentional social motor coordination was preserved while intentional social motor coordination was impaired. In intentional coordination, the schizophrenia group displayed coordination patterns that had lower stability and in which the patient never led the coordination. A coupled oscillator model suggests that the schizophrenia group coordination pattern was due to a decrease in the amount of available information together with a delay in information transmission. Our study thus identified relational motor signatures of schizophrenia and opens new perspectives for detecting the illness and improving social interactions of patients. PMID:22272247
Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing “assistance-as-needed” during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space (p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity (p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living. PMID:27895550
Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing "assistance-as-needed" during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space ( p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion ( p = 0.008), accuracy of movement ( p = 0.01), and movement velocity ( p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement ( p = 0.001), grip force ( p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 ( p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living.
Ito, Kumiko; Tomata, Yasutake; Kogure, Mana; Sugawara, Yumi; Watanabe, Takashi; Asaka, Tadayoshi; Tsuji, Ichiro
2016-11-03
Previous studies have reported that elderly victims of natural disasters might be prone to a subsequent decline in motor function. Victims of the Great East Japan Earthquake (GEJE) relocated to a wide range of different types of housing. As the evacuee lifestyle varies according to the type of housing available to them, their degree of motor function loss might also vary accordingly. However, the association between postdisaster housing type and loss of motor function has never been investigated. The present study was conducted to investigate the association between housing type after the GEJE and loss of motor function in elderly victims. We conducted a prospective observational study of 478 Japanese individuals aged ≥65 years living in Miyagi Prefecture, one of the areas most significantly affected by the GEJE. Information on housing type after the GEJE, motor function as assessed by the Kihon checklist and other lifestyle factors was collected by interview and questionnaire in 2012. Information on motor function was then collected 1 year later. The multiple logistic regression model was used to estimate the multivariate adjusted ORs of motor function loss. We classified 53 (11.1%) of the respondents as having loss of motor function. The multivariate adjusted OR (with 95% CI) for loss of motor function among participants who were living in privately rented temporary housing/rental housing was 2.62 (1.10 to 6.24) compared to those who had remained in the same housing as that before the GEJE, and this increase was statistically significant. The proportion of individuals with loss of motor function was higher among persons who had relocated to privately rented temporary housing/rental housing after the GEJE. This result may reflect the influence of a move to a living environment where few acquaintances are located (lack of social capital). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Diethelm, A G; Blackstone, E H
1978-07-01
All 54 kidneys obtained from heart-beating cadavers functioned when preserved by a brief washout using a hypothermic, hyperosmolar, hyperkalemic perfusate, followed by cold storage. The duration of preservation ranged from two hours and 57 minutes to 39 hours and 47 minutes. Two other kidneys retrieved from a nonheart-beating cadaver and preserved by the same technique failed to function because of irreversible acute tubular necrosis. Fifty-six consecutive transplant patients were divided into four groups according to the period of preservation. There was no correlation between graft rejection, frequency of post-transplant dialysis, long term graft function and survival time, when the duration of preservation was less than 24 hours. The advantages of this technique included technical simplicity, low cost, minimal risk of graft infection and easy transportation. The two primary disadvantages were an apparent 24 to 30 hour limit of organ preservation with prompt function and the inability to determine intrarenal perfusion pressure during preservation, thereby missing an important parameter of graft viability.
Change in motor function and adverse health outcomes in older African-Americans.
Buchman, Aron S; Wilson, Robert S; Leurgans, Sue E; Bennett, David A; Barnes, Lisa L
2015-10-01
We tested whether declining motor function accelerates with age in older African-Americans. Eleven motor performances were assessed annually in 513 older African-Americans. During follow-up of 5 years, linear mixed-effect models showed that motor function declined by about 0.03 units/year (Estimate, -0.026, p<0.001); about 4% more rapidly for each additional year of age at baseline. A proportional hazard model showed that both baseline motor function level and its rate of change were independent predictors of death and incident disability (all p's<0.001). These models showed that the additional annual amount of motor decline in 85 year old persons at baseline versus 65 year old persons was associated with a 1.5-fold higher rate of death and a 3-fold higher rate of developing Katz disability. The rate of declining motor function accelerates with increasing age and its rate of decline predicts adverse health outcomes in older African-Americans. Copyright © 2015 Elsevier Inc. All rights reserved.
Change in Motor Function and Adverse Health Outcomes in Older African Americas
Buchman, Aron S.; Wilson, Robert S.; Leurgans, Sue E.; Bennett, David A.; Barnes, Lisa L.
2015-01-01
Objective We tested whether declining motor function accelerates with age in older African Americans. Methods Eleven motor performances were assessed annually in 513 older African Americans. Results During follow-up of 5 years, linear mixed-effect models showed that motor function declined by about 0.03 units/yr (Estimate, −0.026, p<0.001); about 4% more rapidly for each additional year of age at baseline. A proportional hazard model showed that both baseline motor function level and its rate of change were independent predictors of death and incident disability (all p’s <0.001). These models showed that the additional annual amount of motor decline in 85 year old persons at baseline versus 65 year old persons was associated with a 1.5-fold higher rate of death and a 3-fold higher rate of developing Katz disability. Conclusions The rate of declining motor function accelerates with increasing age and its rate of decline predicts adverse health outcomes in older African Americans. PMID:26209439
Guo, LanJun; Li, Yan; Han, Ruquan; Gelb, Adrian W
2018-01-01
Motor evoked potentials (MEPs) are commonly used during surgery for spinal cord tumor resection. However, it can be difficult to record reliable MEPs from the muscles of the lower extremities during surgery in patients with preoperative weakness due to spinal cord compression. In this study, motor function of patients' lower extremities and their association with intraoperative MEP recording were compared. Patients undergoing thoracic spinal cord tumor resection were studied. Patients' motor function was checked immediately before the surgical procedure. MEP responses were recorded from the tibialis anterior and foot muscles, and the hand muscles were used as control. Electrical current with train of eight pulses, 200 to 500 V was delivered through 2 corkscrews placed at C3' and C4' sites. Anesthesia was maintained by total intravenous anesthesia using a combination of propofol and remifentanil after induction with intravenous propofol, remifentanil, and rocuronium. Rocuronium was not repeated. Bispectral Index was maintained between 40 to 50. From 178 lower limbs of 89 patients, myogenic MEPs could be recorded from 100% (105/105) of the patients with 5 of 5 motor strength in lower extremity; 90% (36/40) from the patients with 4/5 motor strength; only 25% (5/20) with 3/5; and 12.5% (1/8) with 2/5 motor strength; none (0/5) were able to be recorded if the motor strength was 1/5. The ability to record myogenic MEPs is closely associated with the patient's motor function. They are difficult to obtain if motor function is 3/5 motor strength in the lower extremity. They are almost impossible to record if motor function is worse than 3/5.
Zhou, Yue-fei; Li, Liang; Feng, Feng; Yuan, Hua; Gao, Da-kuan; Fu, Luo-an; Fei, Zhou
2013-12-01
Osthole, the main bioactive compounds isolated from the traditional Chinese medical herb broad Cnidium monnieri (L.) cusson, has been shown to exert spectrum of pharmacologic activities. The aim of this study was to investigate the potential neuroprotective effects of osthole against spinal cord ischemia-reperfusion injury in rats. Osthole was administrated at the concentration of 0.1, 1, 10, 50, or 200 mg/kg (intraperitoneally) 1 h before spinal cord ischemia. The effects on spinal cord injury were measured by spinal cord water content, infarct volume, hematoxylin and eosin staining, and neurologic assessment. Mitochondria were purified from injured spinal cord tissue to determine mitochondrial function. We found that treatment with osthole (10 and 50 mg/kg) significantly decreased spinal cord water content and infarct volume, preserved normal motor neurons, and improved neurologic functions. These protective effects can be also observed even if the treatment was delayed to 4 h after reperfusion. Osthole treatment preserved mitochondrial membrane potential level, reduced reactive oxygen species production, increased adenosine triphosphate generation, and inhibited cytochrome c release in mitochondrial samples. Moreover, osthole increased mitochondria respiratory chain complex activities in spinal cord tissue, with no effect on mitochondrial DNA content and the expression of mitochondrial-specific transcription factors. All these findings demonstrate the neuroprotective effect of osthole in spinal cord ischemia-reperfusion injury model and suggest that oshtole-induced neuroprotection was mediated by mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhou, Huanhuan; Wu, Wei; Zhang, Ying; He, Haiyang; Yuan, Zhefeng; Zhu, Zhiwei; Zhao, Zhengyan
2017-03-30
RTT is a neurodevelopmental disorder characterized by growth regression, motor dysfunction, stereotypic hand movements, and autism features. Typical Rett syndrome (RTT) is predominantly caused by mutations in X-linked MeCP2 gene which encodes methyl-CpG-binding protein 2 (MeCP2). The brain-abundant MeCP2 protein mainly functions as a transcriptional regulator for neurodevelopment-associated genes. Specific functions of MeCP2 in certain neuron types remain to be known. Although cholinergic system is an important modulating system in brain, how MeCP2 in cholinergic neurons contribute to RTT has not been clearly understood. Here we use a mouse model with selectively activated endogenous MeCP2 in cholinergic neurons in otherwise MeCP2 stop mice to determine the cholinergic MeCP2 effects on rescuing the RTT-like phenotypes. We found cholinergic MeCP2 preservation could reverse some aspects of the RTT-like phenotypes in mice including hypolocomotion and increased anxiety level, and delay the onset of underweight, instead of improving the hypersocial abnormality and the poor general conditions such as short lifespan, low brain weight, and increasing severity score. Our findings suggest that selective activation of cholinergic MeCP2 is sufficient to reverse the locomotor impairment and increased anxiety-like behaviors at least in early symptomatic stage, supporting future development of RTT therapies associated with cholinergic system. Copyright © 2017 Elsevier B.V. All rights reserved.
Normal sensorimotor plasticity in complex regional pain syndrome with fixed posture of the hand.
Morgante, Francesca; Naro, Antonino; Terranova, Carmen; Russo, Margherita; Rizzo, Vincenzo; Risitano, Giovanni; Girlanda, Paolo; Quartarone, Angelo
2017-01-01
Movement disorders associated with complex regional pain syndrome type I have been a subject of controversy over the last 10 years regarding their nature and pathophysiology, with an intense debate about the functional (psychogenic) nature of this disorder. The aim of this study was to test sensorimotor plasticity and cortical excitability in patients with complex regional pain syndrome type I who developed a fixed posture of the hand. Ten patients with complex regional pain syndrome type I in the right upper limb and a fixed posture of the hand (disease duration less than 24 months) and 10 age-matched healthy subjects were enrolled. The following parameters of corticospinal excitability were recorded from the abductor pollicis brevis muscle of both hands by transcranial magnetic stimulation: resting and active motor thresholds, short-interval intracortical inhibition and facilitation, cortical silent period, and short- and long-latency afferent inhibition. Sensorimotor plasticity was tested using the paired associative stimulation protocol. Short-interval intracortical inhibition and long-latency afferent inhibition were reduced only in the affected right hand of patients compared with control subjects. Sensorimotor plasticity was comparable to normal subjects, with a preserved topographic specificity. Our data support the view that motor disorder in complex regional pain syndrome type I is not associated with abnormal sensorimotor plasticity, and it shares pathophysiological abnormalities with functional (psychogenic) dystonia rather than with idiopathic dystonia. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Effects of a high protein diet on cognition and brain metabolism in cirrhotic rats.
Méndez-López, M; Méndez, M; Arias, J; Arias, J L
2015-10-01
Hepatic encephalopathy (HE) is a neurological complication observed in patients with liver disease. Patients who suffer from HE present neuropsychiatric, neuromuscular and behavioral symptoms. Animal models proposed to study HE resulting from cirrhosis mimic the clinical characteristics of cirrhosis and portal hypertension, and require the administration of hepatotoxins such as thioacetamide (TAA). The aim of this study was to assess the effects of a high protein diet on motor function, anxiety and memory processes in a model of cirrhosis induced by TAA administration. In addition, we used cytochrome c-oxidase (COx) histochemistry to assess the metabolic activity of the limbic system regions. Male rats were distributed into groups: control, animals with cirrhosis, Control rats receiving a high protein diet, and animals with cirrhosis receiving a high protein diet. Results showed preserved motor function and normal anxiety levels in all the groups. The animals with cirrhosis showed an impairment in active avoidance behavior and spatial memory, regardless of the diet they received. However, the animals with cirrhosis and a high protein diet showed longer escape latencies on the spatial memory task. The model of cirrhosis presented an under-activation of the dentate gyrus and CA3 hippocampal subfields and the medial part of the medial mammillary nucleus. The results suggest that a high protein intake worsens spatial memory deficits shown by the TAA-induced model of cirrhosis. However, high protein ingestion has no influence on the COx hypoactivity associated with the model. Copyright © 2015 Elsevier Inc. All rights reserved.
Kasparek, M S; Fatima, J; Iqbal, C W; Duenes, J A; Sarr, M G
2008-03-01
Intestinal denervation contributes to enteric motor dysfunction after intestinal transplantation [small bowel transplantation (SBT)]. Our aim was to determine long-term effects of extrinsic denervation on functional non-adrenergic, non-cholinergic innervation with vasoactive intestinal polypeptide (VIP) and substance P. Contractile activity of jejunal longitudinal muscle from six age-matched, naïve control rats (NC) and eight rats 1 year after syngeneic SBT were studied in tissue chambers. Spontaneous contractile activity did not differ between groups. Exogenous VIP inhibited contractile activity dose-dependently in both groups, greater in NC than in SBT. The VIP antagonist ([D-p-Cl-Phe(6),Leu(17)]-VIP) and the nitric oxide synthase inhibitor l-N(G)-nitro arginine prevented inhibition by exogenous VIP and electrical field stimulation (EFS) in both groups. Exogenous substance P increased contractile activity dose-dependently, greater in NC than in SBT. The substance P antagonist ([D-Pro(2),D-Trp(7,9)]-substance P) inhibited effects of exogenous substance P and increased the EFS-induced inhibitory response. Immunohistofluorescence showed staining for tyrosine hydroxylase in the jejunoileum 1 year after SBT suggesting sympathetic reinnervation. In rat jejunal longitudinal muscle after chronic denervation, response to exogenous VIP and substance P is decreased, while endogenous release of both neurotransmitters is preserved. These alterations in excitatory and inhibitory pathways occur despite extrinsic reinnervation and might contribute to enteric motor dysfunction after SBT.
KASPAREK, M. S.; FATIMA, J.; IQBAL, C. W.; DUENES, J. A.; SARR, M. G.
2008-01-01
Intestinal denervation contributes to enteric motor dysfunction after intestinal transplantation [small bowel transplantation (SBT)]. Our aim was to determine long-term effects of extrinsic denervation on functional non-adrenergic, non-cholinergic innervation with vasoactive intestinal polypeptide (VIP) and substance P. Contractile activity of jejunal longitudinal muscle from six age-matched, naïve control rats (NC) and eight rats 1 year after syngeneic SBT were studied in tissue chambers. Spontaneous contractile activity did not differ between groups. Exogenous VIP inhibited contractile activity dose-dependently in both groups, greater in NC than in SBT. The VIP antagonist ([D-p-Cl-Phe6,Leu17]-VIP) and the nitric oxide synthase inhibitor L-NG-nitro arginine prevented inhibition by exogenous VIP and electrical field stimulation (EFS) in both groups. Exogenous substance P increased contractile activity dose-dependently, greater in NC than in SBT. The substance P antagonist ([D-Pro2,D-Trp7,9]-substance P) inhibited effects of exogenous substance P and increased the EFS-induced inhibitory response. Immunohistofluorescence showed staining for tyrosine hydroxylase in the jejunoileum 1 year after SBT suggesting sympathetic reinnervation. In rat jejunal longitudinal muscle after chronic denervation, response to exogenous VIP and substance P is decreased, while endogenous release of both neurotransmitters is preserved. These alterations in excitatory and inhibitory pathways occur despite extrinsic reinnervation and might contribute to enteric motor dysfunction after SBT. PMID:17971029
Weisstanner, Christian; Saxer, Stefanie; Wiest, Roland; Kaelin-Lang, Alain; Newman, Christopher J; Steinlin, Maja; Grunt, Sebastian
2017-03-21
To investigate the neuronal activation pattern underlying the effects of mirror illusion in children/adolescents with normal motor development and in children/adolescents with hemiparesis and preserved contralateral corticospinal organisation. The type of cortical reorganisation was classified according to results of transcranial magnetic stimulation. Only subjects with congenital lesions and physiological contralateral cortical reorganisation were included. Functional magnetic resonance imaging was performed to investigate neuronal activation patterns with and without a mirror box. Each test consisted of a unimanual and a bimanual motor task. Seven children/adolescents with congenital hemiparesis (10-20 years old, three boys and four girls) and seven healthy subjects (8-17 years old, four boys and three girls) participated in this study. In the bimanual experiment, children with hemiparesis showed a significant effect of the mirror illusion (p<0.001 at voxel level, family-wise error corrected at cluster level) in the dorsolateral prefrontal cortex and anterior cingulate cortex of the affected and unaffected hemispheres, respectively. No significant effects of the mirror illusion were observed in unimanual experiments and in healthy participants. Mirror illusion in children/adolescents with hemiparesis leads to activation of brain areas involved in visual conflict detection and cognitive control to resolve this conflict. This effect is observed only in bimanual training. We consider that for mirror therapy in children and adolescents with hemiparesis a bimanual approach is more suitable than a unimanual approach.
Cognitive and motor function of neurologically impaired extremely low birth weight children.
Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen
2015-01-01
Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed.
Tokuda, Naoto; Kitaoka, Yasushi; Matsuzawa, Akiko; Tsukamoto, Ayaka; Sase, Kana; Sakae, Shinsuke; Takagi, Hitoshi
2017-01-01
The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Forty patients (40 eyes) with glaucoma (mean age: 62.0 ± 10.9 years) using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes) or preservative-free-Tafluprost group (20 eyes). The intraocular pressure, corneal epithelial barrier function (fluorescein uptake concentration with fluorophotometer FL-500), superficial punctate keratopathy (AD classification), and tear film breakup time (TBUT) were assessed before switching and at 12 weeks after switching. No significant differences in intraocular pressure were noted after switching in either group. Corneal epithelial barrier function was improved significantly after switching in both the Tafluprost-containing-preservative and the preservative-free-Tafluprost groups. There were no significant differences in AD scores after switching in the Tafluprost-containing-preservative group, but significant improvements were noted in the preservative-free-Tafluprost group. No significant differences in TBUT were noted in the Tafluprost-containing-preservative or preservative-free-Tafluprost groups after switching. After switching from preservative Latanoprost to Tafluprost containing-preservative or preservative-free Tafluprost, corneal epithelial barrier function was improved while the intraocular pressure reduction was retained.
ERIC Educational Resources Information Center
Park, Eun-Young; Kim, Won-Ho
2013-01-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study…
Music supported therapy promotes motor plasticity in individuals with chronic stroke.
Ripollés, P; Rojo, N; Grau-Sánchez, J; Amengual, J L; Càmara, E; Marco-Pallarés, J; Juncadella, M; Vaquero, L; Rubio, F; Duarte, E; Garrido, C; Altenmüller, E; Münte, T F; Rodríguez-Fornells, A
2016-12-01
Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.
Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation
Borich, M.R.; Brodie, S.M.; Gray, W.A.; Ionta, S.; Boyd, L.A.
2016-01-01
Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes. PMID:26164474
Case-Smith, J
2000-01-01
This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.
Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido
2015-01-01
Abstract Background: Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient’s motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. Objective: To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. Methods: 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Results: Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p < 0.001) and vestibular system plasticity (p = 0.02) as compared to G2. Conclusions: ERIGO training could be a valuable tool for the adaptation to the vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction. PMID:26410207
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
36 CFR 7.86 - Big Cypress National Preserve.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Road (State Road #B94). (B) The area north of Tamiami Trail. (ii) The following areas which are shown... of the Superintendent, are closed to motorized vehicles: (A) The areas between the Loop Road (State... signs, or by marking on a map which shall be available for public inspection at the office of the...
36 CFR 7.86 - Big Cypress National Preserve.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Road (State Road #B94). (B) The area north of Tamiami Trail. (ii) The following areas which are shown... of the Superintendent, are closed to motorized vehicles: (A) The areas between the Loop Road (State... signs, or by marking on a map which shall be available for public inspection at the office of the...
36 CFR 13.903 - Subsistence use of off-road vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Subsistence use of off-road... Preserve General Provisions § 13.903 Subsistence use of off-road vehicles. Operating a motor vehicle off road is prohibited except by authorized residents as defined in this section when engaged in...
36 CFR 7.86 - Big Cypress National Preserve.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Road (State Road #B94). (B) The area north of Tamiami Trail. (ii) The following areas which are shown... of the Superintendent, are closed to motorized vehicles: (A) The areas between the Loop Road (State... signs, or by marking on a map which shall be available for public inspection at the office of the...
36 CFR 13.903 - Subsistence use of off-road vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Subsistence use of off-road... Preserve General Provisions § 13.903 Subsistence use of off-road vehicles. Operating a motor vehicle off road is prohibited except by authorized residents as defined in this section when engaged in...
36 CFR 13.903 - Subsistence use of off-road vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Subsistence use of off-road... Preserve General Provisions § 13.903 Subsistence use of off-road vehicles. Operating a motor vehicle off road is prohibited except by authorized residents as defined in this section when engaged in...
36 CFR 7.86 - Big Cypress National Preserve.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Road (State Road #B94). (B) The area north of Tamiami Trail. (ii) The following areas which are shown... of the Superintendent, are closed to motorized vehicles: (A) The areas between the Loop Road (State... signs, or by marking on a map which shall be available for public inspection at the office of the...
36 CFR 13.903 - Subsistence use of off-road vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Subsistence use of off-road... Preserve General Provisions § 13.903 Subsistence use of off-road vehicles. Operating a motor vehicle off road is prohibited except by authorized residents as defined in this section when engaged in...
36 CFR 13.903 - Subsistence use of off-road vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Subsistence use of off-road... Preserve General Provisions § 13.903 Subsistence use of off-road vehicles. Operating a motor vehicle off road is prohibited except by authorized residents as defined in this section when engaged in...
36 CFR 13.934 - How will the superintendent manage the permit program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false How will the superintendent manage the permit program? 13.934 Section 13.934 Parks, Forests, and Public Property NATIONAL PARK... National Park and Preserve Motor Vehicle Permits § 13.934 How will the superintendent manage the permit...
36 CFR 13.934 - How will the superintendent manage the permit program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false How will the superintendent manage the permit program? 13.934 Section 13.934 Parks, Forests, and Public Property NATIONAL PARK... National Park and Preserve Motor Vehicle Permits § 13.934 How will the superintendent manage the permit...
Exploring satisfaction among paddlers in two Adirondack canoeing areas
Becky J. Pfaffenbach; Harry C. Zinn; Chad P. Dawson
2003-01-01
An exploratory study examining the relationships between visitor satisfaction, perceived crowding, and expected crowding was conducted using both quantitative and qualitative methods. The study sample consisted of non-motorized watercraft users in two adjacent popular canoe areas in New York State's Adirondack Forest Preserve: the Saint Regis Canoe Area (SRCA) and...
36 CFR 13.1154 - Commercial vessel permits and conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and... motor vessel must have a permit to operate in Glacier Bay National Park and Preserve in accordance with § 5.3 of this chapter. (a) A cruise ship must have a concession contract to operate in Glacier Bay. (b...
36 CFR 13.1154 - Commercial vessel permits and conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and... motor vessel must have a permit to operate in Glacier Bay National Park and Preserve in accordance with § 5.3 of this chapter. (a) A cruise ship must have a concession contract to operate in Glacier Bay. (b...
36 CFR 13.1154 - Commercial vessel permits and conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and... motor vessel must have a permit to operate in Glacier Bay National Park and Preserve in accordance with § 5.3 of this chapter. (a) A cruise ship must have a concession contract to operate in Glacier Bay. (b...
36 CFR 13.1154 - Commercial vessel permits and conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and... motor vessel must have a permit to operate in Glacier Bay National Park and Preserve in accordance with § 5.3 of this chapter. (a) A cruise ship must have a concession contract to operate in Glacier Bay. (b...
Otto, M; Markvardsen, L; Tankisi, H; Jakobsen, J; Fuglsang-Frederiksen, A
2017-06-01
To characterize changes in motor nerve conduction studies (MNCS) and motor unit number index (MUNIX) following treatment with subcutaneous immunoglobulin and to assess whether these changes are related to muscle strength. Data from 23 patients participating in a randomized, controlled trial were analyzed. MNCS and MUNIX were performed before and after 12 weeks of treatment. Isokinetic strength (IMS) was measured in various muscles together with grip strength (GS). Proximally evoked compound muscle action potential (CMAP) amplitudes and MUNIX tended to be better preserved in treated patients (P=.049 and .045). Changes in other parameters did not differ between groups. There was no correlation between changes in electrophysiological parameters and IMS. Changes in GS were related to median nerve motor conduction velocity, distal motor latency, CMAP amplitudes, and distally evoked CMAP duration (P=.013-.035). Proximally evoked CMAP amplitudes appear to be the best MNCS parameter to assess treatment outcome in chronic inflammatory demyelinating polyneuropathy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Drawing from Memory: Hand-Eye Coordination at Multiple Scales
Spivey, Michael J.
2013-01-01
Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894
Transverse loop colostomy and colonic motility.
Pucciani, F; Ringressi, M N; Maltinti, G; Bechi, P
2014-11-01
The motility of the defunctionalized colon, distal to transverse loop colostomy, has never been studied "in vivo." The aim of our study was to evaluate the influence of transverse loop colostomy on colonic motility. Thirteen patients were examined before stoma closure by means of clinical evaluation and colonic manometry; we studied both the right and distal colon in both fasting and fed patients in order to detect motor activity. Quantitative and qualitative manometric analyses showed that the diverted colon had motor activity even if no regular colonic motor pattern was observed. The spreading of aboral propagated contractions (PCs) was sometimes recorded from the right colon to the distal colon. The response of the proximal and distal colon to a standard meal, when compared to fasting values, increased more than 40 and 35 %, respectively. Stool and gas ejections from the colostomy were never related to a particular type of colonic motility: Motor quiescence such as PCs was chaotically related to stool escape. In conclusion, motility of the defunctionalized colon is preserved in patients with transverse loop colostomy.
Visuo-motor and cognitive procedural learning in children with basal ganglia pathology.
Mayor-Dubois, C; Maeder, P; Zesiger, P; Roulet-Perez, E
2010-06-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage. Copyright 2010 Elsevier Ltd. All rights reserved.
Fluet, Gerard G.; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V.; Tunik, Eugene; Merians, Alma S.
2016-01-01
Purpose The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. Methods This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl–Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Results Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. Conclusion This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. PMID:27669997
ERIC Educational Resources Information Center
Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn
2011-01-01
Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…
Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.
Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip
2016-01-01
Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.
Motor functioning in autistic spectrum disorders: a preliminary analysis.
Behere, Aniruddh; Shahani, Lokesh; Noggle, Chad A; Dean, Raymond
2012-01-01
The study sought to identify differences in motor functioning between autism and Asperger syndrome while also assessing the diagnostic contribution of such assessment. A sample of 16 individuals with autism and 10 with Asperger syndrome completed the Dean-Woodcock Sensory-Motor Battery, and outcomes were compared. Significant differences were found in measures of cerebellar functioning, favoring Asperger subjects. Deficits in coordination, ambulation, and the Romberg test were associated with both disorders. On the basis of motor outcomes alone, 100% were accurately differentiated. Findings support the idea that motor dysfunction is a core feature of these presentations and demonstrated the utility of motor assessment in diagnostic practice.
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
Motor unit recruitment by size does not provide functional advantages for motor performance
Dideriksen, Jakob L; Farina, Dario
2013-01-01
It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879
Motor unit recruitment by size does not provide functional advantages for motor performance.
Dideriksen, Jakob L; Farina, Dario
2013-12-15
It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.
Choo, Silvana X; Stratford, Paul; Richardson, Julie; Bosch, Jackie; Pettit, Susan M; Ansley, Barbara J; Harris, Jocelyn E
2017-09-10
To determine whether there was a difference in the sensitivity to change of the subscales of the Functional Independence Measure and the Assessment of Motor and Process Skills within three different post-acute inpatient rehabilitation populations. We conducted retrospective chart review of patients consecutively admitted to inpatient rehabilitation units, with both admission and discharge Functional Independence Measure and Assessment of Motor and Process Skills scores. A total of 276 participants were included and categorized into diagnostic groups (orthopedic, oncology, and geriatric). Within group, sensitivity to change was evaluated for the subscales of each measure by calculating the difference in standardized response means (SRM) and 95% confidence intervals (CI). The Functional Independence Measure motor subscale was more sensitive to change than the Assessment of Motor and Process Skills in the orthopedic and geriatric groups (SRM difference = 1.53 [95% CI 0.93, 2.3] and 0.65 [95% CI 0.3, 1.02], respectively) but not in the oncology group (SRM difference = 0.42 [95% CI -0.2, 1.04]). For the cognitive subscales, the Assessment of Motor and Process Skills was more sensitive to change than the Functional Independence Measure in all three groups (SRM difference = 0.38 [95% CI 004, 0.74], 0.65 [95% CI 0.45, 0.90], and 1.15 [95% CI 0.77, 1.69] for orthopedic, geriatric, and oncology, respectively). The Functional Independence Measure is a mandated measure for all rehabilitation units in Canada. As the cognitive subscale of the Assessment of Motor and Process Skills is more sensitive to change than the Functional Independence Measure, we recommend also administering the Assessment of Motor and Process Skills to better detect changes in the cognitive aspect of function. Implications for rehabilitation When deciding between the Functional Independence Measure or the Assessment of Motor and Process Skills, it is important to consider whether patients' functional status is expected to change similarly or differently. The difference in sensitivity to change between the subscales of the two outcome measures varies with the characteristics of change (similar or different) in patients' functional status. We recommend using the Assessment of Motor and Process Skills, along with the Functional Independence Measure, for patients who are expected to make similar amounts of change in functional status, as the cognitive subscale of the Assessment of Motor and Process Skills is more sensitive to change and can better detect changes in the cognitive aspect of functioning. For patients whose functional status are expected to change differently (diverse diagnoses), the Functional Independence Measure may be more useful as the motor subscale was more sensitive to change when comparing between rehabilitation populations.
Comani, Silvia; Schinaia, Lorenzo; Tamburro, Gabriella; Velluto, Lucia; Sorbi, Sandro; Conforto, Silvia; Guarnieri, Biancamaria
2015-01-01
One post-stroke patient underwent neuro-motor rehabilitation of one upper limb with a novel system combining a passive robotic device, Virtual Reality training applications and high resolution electroencephalography (HR-EEG). The outcome of the clinical tests and the evaluation of the kinematic parameters recorded with the robotic device concurred to highlight an improved motor recovery of the impaired limb despite the age of the patient, his compromised motor function, and the start of rehabilitation at the 3rd week post stroke. The time frequency and functional source analysis of the HR-EEG signals permitted to quantify the functional changes occurring in the brain in association with the rehabilitation motor tasks, and to highlight the recovery of the neuro-motor function.
Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.
2014-01-01
Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413
The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.
Wilson, J A
1979-01-01
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.
Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin
2017-06-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.
The artificial beetle, or a brief manifesto for engineered biomimicry
NASA Astrophysics Data System (ADS)
Bartl, Michael H.; Lakhtakia, Akhlesh
2015-03-01
The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.
Li, Jinjiang; Chen, Xiaolei; Zhang, Jiashu; Zheng, Gang; Lv, Xueming; Li, Fangye; Hu, Shen; Zhang, Ting; Xu, Bainan
2013-01-01
Insular lesions remain surgically challenging because of the need to balance aggressive resection and functional protection. Motor function deficits due to corticospinal tract injury are a common complication of surgery for lesions adjacent to the internal capsule and it is therefore essential to evaluate the corticospinal tract adjacent to the lesion. We used diffusion tensor imaging to evaluate the corticospinal tract in 89 patients with insular lobe lesions who underwent surgery in Chinese PLA General Hospital from February 2009 to May 2011. Postoperative motor function evaluation revealed that 57 patients had no changes in motor function, and 32 patients suffered motor dysfunction or aggravated motor dysfunction. Of the affected patients, 20 recovered motor function during the 6–12-month follow-up, and an additional 12 patients did not recover over more than 12 months of follow-up. Following reconstruction of the corticospinal tract, fractional anisotropy comparison demonstrated that preoperative, intraoperative and follow-up normalized fractional anisotropy in the stable group was higher than in the transient deficits group or the long-term deficits group. Compared with the transient deficits group, intraoperative normalized fractional anisotropy significantly decreased in the long-term deficits group. We conclude that intraoperative fractional anisotropy values of the corticospinal tracts can be used as a prognostic indicator of motor function outcome. PMID:25206435
Makary, Meena M; Seulgi, Eun; Kyungmo Park
2017-07-01
Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.
Fan, Yang-teng; Lin, Keh-chung; Liu, Ho-ling; Chen, Yao-liang; Wu, Ching-yi
2015-01-01
Diffusion tensor imaging (DTI) studies indicate the structural integrity of the ipsilesional corticospinal tract (CST) and the transcallosal motor tract, which are closely linked to stroke recovery. However, the individual contribution of these 2 fibers on different levels of outcomes remains unclear. Here, we used DTI tractography to investigate whether structural changes of the ipsilesional CST and the transcallosal motor tracts associate with motor and functional recovery after stroke rehabilitation. Ten participants with post-acute stroke underwent the Fugl-Meyer Assessment (FMA), the Wolf Motor Function Test (WMFT), the Functional Independence Measure (FIM), and DTI before and after bilateral robotic training. All participants had marked improvements in motor performance, functional use of the affected arm, and independence in daily activities. Increased fractional anisotropy (FA) in the ipsilesional CST and the transcallosal motor tracts was noted from pre-treatment to the end of treatment. Participants with higher pre-to-post differences in FA values of the transcallosal motor tracts had greater gains in the WMFT and the FIM scores. A greater improvement on the FMA was coupled with increased FA changes along the ipsilesional CST. These findings suggest 2 different structural indicators for post-stroke recovery separately at the impairment-based and function-based levels.
Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Thienel, Anna; Wohlschläger, Afra; Lampe, Renée
2015-01-01
Damage to the developing brain may lead to lifelong motor impairments namely of the hand function. Playing an instrument combines the execution of gross and fine motor movements with direct auditory feedback of performance and with emotional value. This motor-associated sensory information may work as a self-control of motor performance in therapeutic settings. The current study examined the occurrence of neuronal changes associated to piano training in youths with neurodevelopmental-associated hand motor deficits. Functional magnetic resonance imaging responses evoked during a finger tapping task in a group of ten youths with neuromotor impairments that received individualized piano lessons for eighteen months were analyzed. Functional imaging data obtained before and after the piano training was compared to that obtained from a similar group of six youths who received no training during the same period of time. Dynamic causal modeling of functional data indicated an increase in positive connectivity from the left primary motor cortical area to the right cerebellum from before to after the piano training. A wide variability across patients was observed and further studies remain necessary to clarify the neurophysiological basis of the effects of piano training in hand motor function of patients with neurodevelopmental motor disorders. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
van der Vorst, Maria M J; Jamal, Wafaa; Rotimi, Vincent O; Moosa, Alie
2006-01-01
To report the first case of infant botulism in Arabian Gulf States. A 6-week-old infant, presenting with signs of sepsis, was intubated and ventilated due to progressive weakness. Infant botulism was suspected with acute flaccid paralysis and a history of honey consumption. An electromyogram showed decreased amplitude of compound muscle action potential in all motor nerves, preserved sensory responses; the motor terminal latencies and motor conduction velocities were normal. Blood, stool and honey samples were sent for culture. Stool and honey cultures showed two identical strains of Clostridium botulinum. This case shows that the infant botulism occurred from the ingested contaminated honey. Hence vigilance should be maintained when a baby is fed honey and shows signs of progressive weakness because the disease can quickly progress to respiratory failure.
De Bellis, Francesco; Ferrara, Antonia; Errico, Domenico; Panico, Francesco; Sagliano, Laura; Conson, Massimiliano; Trojano, Luigi
2016-01-01
Recent evidence shows that activation of motor information can favor identification of related tools, thus suggesting a strict link between motor and conceptual knowledge in cognitive representation of tools. However, the involvement of motor information in further semantic processing has not been elucidated. In three experiments, we aimed to ascertain whether motor information provided by observation of actions could affect processing of conceptual knowledge about tools. In Experiment 1, healthy participants judged whether pairs of tools evoking different functional handgrips had the same function. In Experiment 2 participants judged whether tools were paired with appropriate recipients. Finally, in Experiment 3 we again required functional judgments as in Experiment 1, but also included in the set of stimuli pairs of objects having different function and similar functional handgrips. In all experiments, pictures displaying either functional grasping (aimed to use tools) or structural grasping (just aimed to move tools independently from their use) were presented before each stimulus pair. The results demonstrated that, in comparison with structural grasping, observing functional grasping facilitates judgments about tools' function when objects did not imply the same functional manipulation (Experiment 1), whereas worsened such judgments when objects shared functional grasp (Experiment 3). Instead, action observation did not affect judgments concerning tool-recipient associations (Experiment 2). Our findings support a task-dependent influence of motor information on high-order conceptual tasks and provide further insights into how motor and conceptual processing about tools can interact.
Modulation of motor performance and motor learning by transcranial direct current stimulation.
Reis, Janine; Fritsch, Brita
2011-12-01
Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.
Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats.
Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I; Holschneider, Daniel P
2015-01-01
Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (1) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (2) emergence of the ventrolateral striatum as a new broadly connected network hub; and (3) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the parkinsonian rats, which could underlie recovery in motor functions observed in these animals. Copyright © 2015 Elsevier Inc. All rights reserved.
Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman
2015-04-01
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
SMN is required for sensory-motor circuit function in Drosophila
Imlach, Wendy L.; Beck, Erin S.; Choi, Ben Jiwon; Lotti, Francesco; Pellizzoni, Livio; McCabe, Brian D.
2012-01-01
Summary Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous Survival Motor Neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to non-autonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K+ channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease. PMID:23063130
Neuropsychological Investigation of Motor Impairments in Autism
Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet
2013-01-01
It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036
Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J
2012-06-20
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Effects of early stress on adult affiliative behavior.
Henry, J P; Wang, S
1998-11-01
The recently evolved mammalian species preservative behavior as opposed to the ancient self preservative behavior involves parental care, nursing, social interaction, pair bonding and mutual defense. Gonadal steroids together with oxytocin are critical for this affiliative, attachment behavior. When there is stressful loss of control, gonadotrophins are diminished, and the self preservative, fight-flight catecholamine coping response takes priority. It is suggested that self preservation is associated with left hemispheric brain function and that species preservation is associated with right hemispheric function. Stress during infancy that is severe enough to create insecure attachment has a dissociative effect, disrupting right hemispheric emotional functioning and species preservative behavior, and a permanent bias towards self preservation can become an adult trait. In such a person with impaired affiliation, corticoid responses may be deficient. The coronary type A behavior pattern common in our society exhibits some of this deficiency in species preservative activity.
Combs, Hannah L.; Jones, Theresa A.; Kozlowski, Dorothy A.
2016-01-01
Abstract Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI. PMID:26421759
Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L
2016-04-15
Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.
Carmel, Jason B; Kimura, Hiroki; Martin, John H
2014-01-08
Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.
Li, Mingfen; Liu, Ye; Wu, Yi; Liu, Sirao; Jia, Jie; Zhang, Liqing
2014-06-01
We investigated the efficacy of motor imagery-based Brain Computer Interface (MI-based BCI) training for eight stroke patients with severe upper extremity paralysis using longitudinal clinical assessments. The results were compared with those of a control group (n = 7) that only received FES (Functional Electrical Stimulation) treatment besides conventional therapies. During rehabilitation training, changes in the motor function of the upper extremity and in the neurophysiologic electroencephalographic (EEG) were observed for two groups. After 8 weeks of training, a significant improvement in the motor function of the upper extremity for the BCI group was confirmed (p < 0.05 for ARAT), simultaneously with the activation of bilateral cerebral hemispheres. Additionally, event-related desynchronization (ERD) of the affected sensorimotor cortexes (SMCs) was significantly enhanced when compared to the pretraining course, which was only observed in the BCI group (p < 0.05). Furthermore, the activation of affected SMC and parietal lobe were determined to contribute to motor function recovery (p < 0.05). In brief, our findings demonstrate that MI-based BCI training can enhance the motor function of the upper extremity for stroke patients by inducing the optimal cerebral motor functional reorganization.
Kim, HyunJin; Lee, GyuChang; Song, ChangHo
2014-04-01
Motor recovery of the upper extremity in stroke patients is an important goal of rehabilitation. In particular, motor recovery can be accelerated when physical and cognitive interventions are combined. Thus, the aim of this study was to investigate the effects of functional electrical stimulation (FES) with mirror therapy (MT) on motor function of upper extremity in stroke patients. Twenty-seven stroke patients were recruited, and the 23 subjects who met the inclusion criteria were randomly allocated into 2 groups: the experimental group (n = 12) and the control group (n = 11). Both groups received conventional rehabilitation training for 60 minutes/day and 5 days/week for 4 weeks. In addition, members of the experimental group received FES with MT and members of the control group received FES without MT for 30 minutes/day and 5 days/week for 4 weeks. Immediately before and after intervention, motor recovery was measured using the Fugl-Meyer (FM) assessment, Brunnstrom's motor recovery stage (BMRS), the Manual Function Test (MFT), and the Box and Block Test (BBT). Significant upper extremity motor improvements were observed in the experimental and control groups according to the FM, BMRS, MFT, and BBT (P < .05). In particular, FM subscores for wrist, hand, and co-ordination and MFT subscores for hand function were more significantly improved in the experimental group (P < .05). Motor functions of the upper extremity were improved by FES with MT versus controls. The study shows that FES with MT during poststroke rehabilitation may effectively improve motor functions of the upper extremity. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo
2015-05-06
Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
Bala, Gustav; Katić, Ratko
2009-12-01
The study included a sample of 333 preschool children (162 male and 171 female) at the time of school enrolment. Study subjects were recruited from the population of children in kindergartens in the cities of Novi Sad, Sombor, Sremska Mitrovica and Backa Palanka (Province of Voivodina, Serbia). Eight anthropometric variables, seven motor variables and one cognitive variable were analyzed to identify quantitative and qualitative sex differences in anthropometric characteristics, motor and cognitive functioning. Study results showed statistically significant sex differences in anthropometric characteristics and motor abilities in favor of male children, whereas no such difference was recorded in cognitive functioning. Sex differences found in morphological and motor spaces contributed to structuring proper general factors according to space and sex. Somewhat stronger structures were observed in male children. The cognitive aspect of functioning yielded better correlation with motor functioning in female than in male children. Motor functioning correlated better with morphological growth and development in male children, whereas cognitive functioning was relatively independent. These results are not fully in accordance with the current concept of general conditions in preschool children, nor they fully confirm the theory of integral development of children, hence they should be re-examined in future studies. Although these study results cannot be applied to sports practice in general, since we believe that it is too early for preschool children to take up sports and sport competitions, they are relevant for pointing to the need of developing general motor ability and motor behavior in preschool children.
[Electrophysiological testing in spinal cord tumors].
André-Obadia, N; Mauguière, F
2017-11-01
Evoked potentials (EPs) are useful to evaluate the functional impairment of motor and somatosensory pathways in spinal cord tumors. Conduction through pyramidal tracts is evaluated by motor EPs (MEPs) elicited by transcranial stimulation, magnetic for awake patients or electric in the operating room. Somatosensory EPs (SEPs) and laser EPs (LEPs) are complementary procedures to explore conduction in dorsal columns and spinothalamic tracts, respectively. MEPs as well as SEPs show conduction abnormalities in about 60% of cases with a sensitivity that increases up to 70% when both procedures are carried out. Abnormalities are observed in the absence of any clinical sign in respectively 7% and 15% of cases for MEPs and SEPs. Multilevel stimulations for SEPs recordings permit to detect segmental dysfunction in 70% in case of cervical TIM, even in the absence of clinical signs. LEPs are useful in specific clinical situations: they allow a dermatomal stimulation and are correlated to segmental thermoalgic anaesthesia. Electrophysiological testing plays an important role in the diagnostic and therapeutic strategy: before surgery, MEPs and SEPs objectively evaluate the functional impairment directly related to the lesion. They also help by permitting a follow-up, either before surgery when the surgical decision is delayed because of a good clinical tolerance of the lesion, or after operation to evaluate the functional evolution. Intraoperative monitoring of MEPs and SEPs allows informing the surgeon about the impact on each surgical manipulation. No prospective randomized study has been performed to date to compare clinical evolution after surgery with or without monitoring. Nevertheless, a wide consensus became established in favor of monitoring to limit the risk of postoperative definite deficit and to permit an optimal surgical resection without risk when responses are preserved. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
"In Situ Vascular Nerve Graft" for Restoration of Intrinsic Hand Function: An Anatomical Study.
Mozaffarian, Kamran; Zemoodeh, Hamid Reza; Zarenezhad, Mohammad; Owji, Mohammad
2018-06-01
In combined high median and ulnar nerve injury, transfer of the posterior interosseous nerve branches to the motor branch of the ulnar nerve (MUN) is previously described in order to restore intrinsic hand function. In this operation a segment of sural nerve graft is required to close the gap between the donor and recipient nerves. However the thenar muscles are not innervated by this nerve transfer. The aim of the present study was to evaluate whether the superficial radial nerve (SRN) can be used as an "in situ vascular nerve graft" to connect the donor nerves to the MUN and the motor branch of median nerve (MMN) at the same time in order to address all denervated intrinsic and thenar muscles. Twenty fresh male cadavers were dissected in order to evaluate the feasibility of this modification of technique. The size of nerve branches, the number of axons and the tension at repair site were evaluated. This nerve transfer was technically feasible in all specimens. There was no significant size mismatch between the donor and recipient nerves Conclusions: The possible advantages of this modification include innervation of both median and ulnar nerve innervated intrinsic muscles, preservation of vascularity of the nerve graft which might accelerate the nerve regeneration, avoidance of leg incision and therefore the possibility of performing surgery under regional instead of general anesthesia. Briefly, this novel technique is a viable option which can be used instead of conventional nerve graft in some brachial plexus or combined high median and ulnar nerve injuries when restoration of intrinsic hand function by transfer of posterior interosseous nerve branches is attempted.
Benítez-Burraco, A
The task of cloning the genes whose products are involved in the organisation and functioning of the nerve centres that enable language tasks to be executed must necessarily start with the identification and the cognitive, linguistic, neuroanatomical and neurophysiological analysis of individuals with hereditary (specific) language impairment (SLI). The first of these genes to be characterised in this way--a gene called FOXP2--codes for a regulating factor that acts as a transcriptional repressor in the central nervous system. It is expressed in neuronal populations mainly situated in the basal ganglia, but also in the cortex, cerebellum and the thalamus, which are presumably involved in the development and/or functioning of the thalamic-cortical-striatal circuits associated with motor planning and learning. The protein FOXP2 shows several structural patterns that, when altered in other proteins, also give rise to different disorders in the central nervous system. The pattern of expression of the gene is preserved phylogenetically, although this does not happen in the case of the pattern of mRNA maturation. In individuals with a mutated version of FOXP2, morphological and functional anomalies are detected in those areas in which the gene is expressed. These abnormalities can be correlated satisfactorily with the phenotypic characteristics of the disorder, which are at the same time of both a motor and linguistic nature. The fact that other variations of SLI are not linked to the FOXP2 gene raises the need for further research into the genetic bases of the disorder, while also suggesting that it would be advisable to reassess the phenotypic scope of the variant associated to the mutation of this gene.
Lai, Chih-Jou; Liu, Wen-Yu; Yang, Tsui-Fen; Chen, Chia-Ling; Wu, Ching-Yi; Chan, Rai-Chi
2015-02-01
This study investigates the effects of pediatric aquatic therapy on motor function, enjoyment, activities of daily living, and health-related quality of life for children with spastic cerebral palsy of various motor severities. Children with spastic cerebral palsy were assigned to a pediatric aquatic therapy group (n = 11; mean age = 85.0 ± 33.1 months; male : female = 4 : 7) or a control group (n = 13; mean age = 87.6 ± 34.0 months; male : female = 9 : 4). The statistic results indicate that the pediatric aquatic therapy group had greater average 66-item Gross Motor Function Measure following intervention than the control group (η(2) = 0.308, P = .007), even for children with Gross Motor Function Classification System level IV (5.0 vs 1.3). The pediatric aquatic therapy group had higher Physical Activity Enjoyment Scale scores than the control group at post-treatment (P = .015). These findings demonstrate that pediatric aquatic therapy can be an effective and alternative therapy for children with cerebral palsy even with poor Gross Motor Function Classification System level. © The Author(s) 2014.
Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît
2017-01-01
MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.
Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip
2016-08-01
Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of sensory and motor connectivity on hand function in pediatric hemiplegia.
Gupta, Disha; Barachant, Alexandre; Gordon, Andrew M; Ferre, Claudio; Kuo, Hsing-Ching; Carmel, Jason B; Friel, Kathleen M
2017-11-01
We tested the hypothesis that somatosensory system injury would more strongly affect movement than motor system injury in children with unilateral cerebral palsy (USCP). This hypothesis was based on how somatosensory and corticospinal circuits adapt to injury during development; whereas the motor system can maintain connections to the impaired hand from the uninjured hemisphere, this does not occur in the somatosensory system. As a corollary, cortical injury strongly impairs sensory function, so we hypothesized that cortical lesions would impair hand function more than subcortical lesions. Twenty-four children with unilateral cerebral palsy had physiological and anatomical measures of the motor and somatosensory systems and lesion classification. Motor physiology was performed with transcranial magnetic stimulation and somatosensory physiology with vibration-evoked electroencephalographic potentials. Tractography of the corticospinal tract and the medial lemniscus was performed with diffusion tensor imaging, and lesions were classified by magnetic resonance imaging. Anatomical and physiological results were correlated with measures of hand function using 2 independent statistical methods. Children with disruptions in the somatosensory connectivity and cortical lesions had the most severe upper extremity impairments, particularly somatosensory function. Motor system connectivity was significantly correlated with bimanual function, but not unimanual function or somatosensory function. Both sensory and motor connectivity impact hand function in children with USCP. Somatosensory connectivity could be an important target for recovery of hand function in children with USCP. Ann Neurol 2017;82:766-780. © 2017 American Neurological Association.
Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.
2010-01-01
Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908
Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H
2012-01-01
Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.
DNA Repair Modulates The Vulnerability of The Developing Brain to Alkylating Agents
Kisby, G.E.; Olivas, A.; Park, T.; Churchwell, M.; Doerge, D.; Samson, L. D.; Gerson, S.L.; Turker, M.S.
2009-01-01
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag-/-) or O6-methylguanine methyltransferase (Mgmt-/-), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt-/- neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag-/- neurons were for the most part significantly less sensitive than wild type or Mgmt-/- neurons to MAM and HN2. Aag-/- neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt-/- mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM treated Aag-/- or MGMT overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant. PMID:19162564
Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho
2012-08-01
The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.
Global motion perception is associated with motor function in 2-year-old children.
Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E
2017-09-29
The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
Upper limb motor function in young adults with spina bifida and hydrocephalus
Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.
2011-01-01
Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605
Sterr, Annette; Dean, Phil J A; Szameitat, Andre J; Conforto, Adriana Bastos; Shen, Shan
2014-05-01
Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.
Kornysheva, Katja; Schubotz, Ricarda I.
2011-01-01
Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657
Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D
2011-01-01
We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.
Vos, Rimke C; Becher, Jules G; Voorman, Jeanine M; Gorter, Jan Willem; van Eck, Mirjam; van Meeteren, Jetty; Smits, Dirk-Wouter; Twisk, Jos W; Dallmeijer, Annet J
2016-08-01
To examine associations over longitudinal measurements between neuromusculoskeletal function and gross motor capacity in children and youth with cerebral palsy (CP). A prospective cohort study. Rehabilitation departments of university medical centers and rehabilitations centers. A sample (N=327) consisting of 148 children (aged 5-9y) and 179 youth (aged 11-20y) with CP, Gross Motor Function Classification System level I (n=180), level II (n=44), level III (n=36), level IV (n=34), and level V (n=33). Not applicable. Gross motor capacity was assessed with the Gross Motor Function Measure-66 over a period of 2 to 4 years in different age cohorts. Neuromusculoskeletal function included selective motor control (SMC), muscle strength, spasticity, and range of motion (ROM) of the lower extremities. Multilevel analyses showed that SMC was significantly associated with gross motor capacity in children and youth with CP, showing higher values and a more favorable course of gross motor capacity in those with better SMC. Strength was only associated with gross motor capacity in youth. Reduced ROM of hip (children) and knee extension (youth) and spasticity of the hip adductors (youth) were additionally-but more weakly-associated with lower values and a less favorable course of gross motor capacity. Results indicate that children and youth with more severely impaired SMC and youth with reduced muscle strength have a less favorable course of gross motor capacity, while spasticity and reduced ROM are less determinative. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D; Tkach, Jean; Holland, Scott K
2015-02-09
Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. This case-control study included 12 children with PSD (mean age 7.42 years, four female) and 12 controls (mean age 7.44 years, four female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. Copyright © 2014 Elsevier B.V. All rights reserved.
ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function
Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.
2016-01-01
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965
Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A
2016-02-04
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.
Miniaturized Technologies for Enhancement of Motor Plasticity
Moorjani, Samira
2016-01-01
The idea that the damaged brain can functionally reorganize itself – so when one part fails, there lies the possibility for another to substitute – is an exciting discovery of the twentieth century. We now know that motor circuits once presumed to be hardwired are not, and motor-skill learning, exercise, and even mental rehearsal of motor tasks can turn genes on or off to shape brain architecture, function, and, consequently, behavior. This is a very significant alteration from our previously static view of the brain and has profound implications for the rescue of function after a motor injury. Presentation of the right cues, applied in relevant spatiotemporal geometries, is required to awaken the dormant plastic forces essential for repair. The focus of this review is to highlight some of the recent progress in neural interfaces designed to harness motor plasticity, and the role of miniaturization in development of strategies that engage diverse elements of the neuronal machinery to synergistically facilitate recovery of function after motor damage. PMID:27148525
Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.
2013-01-01
This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in recent work where considerable quantification of fine digit function associated with grasping and manipulating small objects has been observed, very favorable recovery is possible with minimal forced use of the contralesional limb. Studies of the mechanisms underlying recovery have shown that following small lesions of the digit areas of primary motor cortex (M1), there is expansion of the digit motor representations into areas of M1 that did not produce digit movements prior to the lesion. However, after larger lesions involving the elbow, wrist and digit areas of M1, no such expansion of the motor representation was observed, suggesting that recovery was due to other cortical or subcortical areas taking over control of hand/digit movements. Recently, we showed that one possible mechanism of recovery after lesion to the arm areas of M1 and lateral premotor cortex is enhancement of corticospinal projections from the medially located supplementary motor area (M2) to spinal cord laminae containing neurons which have lost substantial input from the lateral motor areas and play a critical role in reaching and digit movements. Because human stroke and brain injury patients show variable, and usually poorer, recovery of hand motor function than that of nonhuman primates after motor cortex damage, we conclude with a discussion of implications of this work for further experimentation to improve recovery of hand function in human stroke patients. PMID:21960307
Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.
Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N
2016-06-01
Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. Copyright © 2016 Elsevier Inc. All rights reserved.
Prediction of recovery of motor function after stroke.
Stinear, Cathy
2010-12-01
Stroke is a leading cause of disability. The ability to live independently after stroke depends largely on the reduction of motor impairment and the recovery of motor function. Accurate prediction of motor recovery assists rehabilitation planning and supports realistic goal setting by clinicians and patients. Initial impairment is negatively related to degree of recovery, but inter-individual variability makes accurate prediction difficult. Neuroimaging and neurophysiological assessments can be used to measure the extent of stroke damage to the motor system and predict subsequent recovery of function, but these techniques are not yet used routinely. The use of motor impairment scores and neuroimaging has been refined by two recent studies in which these investigations were used at multiple time points early after stroke. Voluntary finger extension and shoulder abduction within 5 days of stroke predicted subsequent recovery of upper-limb function. Diffusion-weighted imaging within 7 days detected the effects of stroke on caudal motor pathways and was predictive of lasting motor impairment. Thus, investigations done soon after stroke had good prognostic value. The potential prognostic value of cortical activation and neural plasticity has been explored for the first time by two recent studies. Functional MRI detected a pattern of cortical activation at the acute stage that was related to subsequent reduction in motor impairment. Transcranial magnetic stimulation enabled measurement of neural plasticity in the primary motor cortex, which was related to subsequent disability. These studies open interesting new lines of enquiry. WHERE NEXT?: The accuracy of prediction might be increased by taking into account the motor system's capacity for functional reorganisation in response to therapy, in addition to the extent of stroke-related damage. Improved prognostic accuracy could also be gained by combining simple tests of motor impairment with neuroimaging, genotyping, and neurophysiological assessment of neural plasticity. The development of algorithms to guide the sequential combinations of these assessments could also further increase accuracy, in addition to improving rehabilitation planning and outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Spencer, Rebecca M. C.; Ivry, Richard B.
2009-01-01
Cerebellar pathology is associated with impairments on a range of motor learning tasks including sequence learning. However, various lines of evidence are at odds with the idea that the cerebellum plays a central role in the associative processes underlying sequence learning. Behavioral studies indicate that sequence learning, at least with short…
36 CFR 13.932 - How many permits will be issued each summer?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false How many permits will be issued each summer? 13.932 Section 13.932 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Preserve Motor Vehicle Permits § 13.932 How many permits will be issued each summer? The superintendent is...
36 CFR 13.932 - How many permits will be issued each summer?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false How many permits will be issued each summer? 13.932 Section 13.932 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Preserve Motor Vehicle Permits § 13.932 How many permits will be issued each summer? The superintendent is...
Tan, Xiaodong; Pecka, Jason L; Tang, Jie; Okoruwa, Oseremen E; Zhang, Qian; Beisel, Kirk W; He, David Z Z
2011-01-01
Prestin is the motor protein of cochlear outer hair cells. It belongs to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Members of this family serve two fundamentally distinct functions. Although most members transport different anion substrates across a variety of epithelia, prestin (SLC26A5) is unique, functioning as a voltage-dependent motor protein. Recent evidence suggests that prestin orthologs from zebrafish and chicken are electrogenic divalent/chloride anion exchangers/transporters with no motor function. These studies appear to suggest that prestin was evolved from an anion transporter. We examined the motor and transport functions of prestin and its orthologs from four different species in the vertebrate lineage, to gain insights of how these two physiological functions became distinct. Somatic motility, voltage-dependent nonlinear capacitance (NLC), and transporter function were measured in transfected human embryonic kidney (HEK) cells using voltage-clamp and anion uptake techniques. Zebrafish and chicken prestins both exhibited weak NLC, with peaks significantly shifted in the depolarization (right) direction. This was contrasted by robust NLC with peaks left shifted in the platypus and gerbil. The platypus and gerbil prestins retained little transporter function compared with robust anion transport capacities in the zebrafish and chicken orthologs. Somatic motility was detected only in the platypus and gerbil prestins. There appears to be an inverse relationship between NLC and anion transport functions, whereas motor function appears to have emerged only in mammalian prestin. Our results suggest that motor function is an innovation of therian prestin and is concurrent with diminished transporter capabilities.
Dempsey, Jerome A
2012-09-01
The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.
Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander
2016-01-01
Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158
Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso
2014-08-01
Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.
Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?
Lee, Will; Evans, Andrew; Williams, David R
2017-09-01
The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Duong, Tam; Kim, Jaetaek; Ruley, H. Earl; Jo, Daewoong
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo. PMID:25019626
Saturnino-Oliveira, Jeison; Santos, Daiana Do Carmo; Guimarães, Adriana Gibara; Santos Dias, Antônio; Tomaz, Marcelo Amorim; Monteiro-Machado, Marcos; Estevam, Charles Santos; Lucca Júnior, Waldecy De; Maria, Durvanei Augusto; Melo, Paulo A.; Araújo, Adriano Antunes de Souza; Santos, Márcio Roberto Viana; Almeida, Jackson Roberto Guedes da Silva; Oliveira, Rita de Cássia Meneses; Pereira de Oliveira, Aldeidia; Quintans Júnior, Lucindo José
2014-01-01
Snakebites are a public health problem, especially in tropical countries. However, treatment with antivenom has limited effectiveness against venoms' local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400 mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation. PMID:25136627
ERIC Educational Resources Information Center
Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy
2016-01-01
This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…
Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice
USDA-ARS?s Scientific Manuscript database
Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...
Gonçalves, Nélio; Simões, Ana T; Prediger, Rui D; Hirai, Hirokazu; Cunha, Rodrigo A; Pereira de Almeida, Luís
2017-03-01
Machado-Joseph disease (MJD) is a neurodegenerative spinocerebellar ataxia (SCA) associated with an expanded polyglutamine tract within ataxin-3 for which there is currently no available therapy. We previously showed that caffeine, a nonselective adenosine receptor antagonist, delays the appearance of striatal damage resulting from expression of full-length mutant ataxin-3. Here we investigated the ability of caffeine to alleviate behavioral deficits and cerebellar neuropathology in transgenic mice with a severe ataxia resulting from expression of a truncated fragment of polyglutamine-expanded ataxin-3 in Purkinje cells. Control and transgenic c57Bl6 mice expressing in the mouse cerebella a truncated form of human ataxin-3 with 69 glutamine repeats were allowed to freely drink water or caffeinated water (1g/L). Treatments began at 7 weeks of age, when motor and ataxic phenotype emerges in MJD mice, and lasted up to 20 weeks. Mice were tested in a panel of locomotor behavioral paradigms, namely rotarod, beam balance and walking, pole, and water maze cued-platform version tests, and then sacrificed for cerebellar histology. Caffeine consumption attenuated the progressive loss of general and fine-tuned motor function, balance, and grip strength, in parallel with preservation of cerebellar morphology through decreasing the loss of Purkinje neurons and the thinning of the molecular layer in different folia. Caffeine also rescued the putative striatal-dependent executive and cognitive deficiencies in MJD mice. Our findings provide the first in vivo demonstration that caffeine intake alleviates behavioral disabilities in a severely impaired animal model of SCA. Ann Neurol 2017;81:407-418. © 2016 American Neurological Association.
Catalin, Bogdan; Rogoveanu, O C; Pirici, Ionica; Balseanu, Tudor Adrian; Stan, Adina; Tudorica, Valerica; Balea, Maria; Mindrila, Ion; Albu, Carmen Valeria; Mohamed, Guleed; Pirici, Daniel; Muresanu, Dafin Fior
2018-04-25
Edema represents one of the earliest negative markers of survival and consecutive neurological deficit following stroke. The mixture of cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema, which leaves parenteral administration of a hypertonic solution as the only non-surgical alternative. New insights into water metabolism in the brain have opened the way for molecular targeted treatment, with aquaporin 4 channels (AQP4) taking center stage. We aimed here to assess the effect of inhibiting AQP4 together with the administration of a neurotropic factor (Cerebrolysin) in ischemic stroke. Using a permanent medial cerebral artery occlusion rat model, we administrated a single dose of the AQP4 inhibitor TGN-020 (100 mg/kg) at 15 minutes after ischemia followed by daily Cerebrolysin dosing (5ml/kg) for seven days. Rotarod motor testing and neuropathology examinations were next performed. We showed first that the combination treatment animals have a better motor function preservation at seven days after permanent ischemia. We have also identified distinct cellular contributions that represent the bases of behavior testing, such as less astrocyte scarring and a larger neuronal-survival phenotype rate in animals treated with both compounds than in animals treated with Cerebrolysin alone or untreated animals. Our data shows that water diffusion inhibition and Cerebrolysin administration after focal ischemic stroke reduces infarct size, leading to a higher neuronal survival in the peri-core glial scar region. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The aging neuromuscular system and motor performance
Keenan, Kevin G.
2016-01-01
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults. PMID:27516536
Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator
2017-01-01
Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans. PMID:28219984
ERIC Educational Resources Information Center
Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.
2012-01-01
The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…
Hsieh, Yu-wei; Liing, Rong-jiuan; Lin, Keh-chung; Wu, Ching-yi; Liou, Tsan-hon; Lin, Jui-chi; Hung, Jen-wen
2016-03-22
The combination of robot-assisted therapy (RT) and a modified form of constraint-induced therapy (mCIT) shows promise for improving motor function of patients with stroke. However, whether the changes of motor control strategies are concomitant with the improvements in motor function after combination of RT and mCIT (RT + mCIT) is unclear. This study investigated the effects of the sequential combination of RT + mCIT compared with RT alone on the strategies of motor control measured by kinematic analysis and on motor function and daily performance measured by clinical scales. The study enrolled 34 patients with chronic stroke. The data were derived from part of a single-blinded randomized controlled trial. Participants in the RT + mCIT and RT groups received 20 therapy sessions (90 to 105 min/day, 5 days for 4 weeks). Patients in the RT + mCIT group received 10 RT sessions for first 2 weeks and 10 mCIT sessions for the next 2 weeks. The Bi-Manu-Track was used in RT sessions to provide bilateral practice of wrist and forearm movements. The primary outcome was kinematic variables in a task of reaching to press a desk bell. Secondary outcomes included scores on the Wolf Motor Function Test, Functional Independence Measure, and Nottingham Extended Activities of Daily Living. All outcome measures were administered before and after intervention. RT + mCIT and RT demonstrated different benefits on motor control strategies. RT + mCIT uniquely improved motor control strategies by reducing shoulder abduction, increasing elbow extension, and decreasing trunk compensatory movement during the reaching task. Motor function and quality of the affected limb was improved, and patients achieved greater independence in instrumental activities of daily living. Force generation at movement initiation was improved in the patients who received RT. A combination of RT and mCIT could be an effective approach to improve stroke rehabilitation outcomes, achieving better motor control strategies, motor function, and functional independence of instrumental activities of daily living. ClinicalTrials.gov. NCT01727648.
Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario
2017-10-18
Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov; Pfister, James A.; Lima, Flavia G.
2013-02-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscularmore » paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.« less
Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.
Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M
2016-02-01
The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.
The contributions of balance to gait capacity and motor function in chronic stroke.
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-06-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability.
The contributions of balance to gait capacity and motor function in chronic stroke
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-01-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability. PMID:27390395
Why musical memory can be preserved in advanced Alzheimer's disease.
Jacobsen, Jörn-Henrik; Stelzer, Johannes; Fritz, Thomas Hans; Chételat, Gael; La Joie, Renaud; Turner, Robert
2015-08-01
Musical memory is considered to be partly independent from other memory systems. In Alzheimer's disease and different types of dementia, musical memory is surprisingly robust, and likewise for brain lesions affecting other kinds of memory. However, the mechanisms and neural substrates of musical memory remain poorly understood. In a group of 32 normal young human subjects (16 male and 16 female, mean age of 28.0 ± 2.2 years), we performed a 7 T functional magnetic resonance imaging study of brain responses to music excerpts that were unknown, recently known (heard an hour before scanning), and long-known. We used multivariate pattern classification to identify brain regions that encode long-term musical memory. The results showed a crucial role for the caudal anterior cingulate and the ventral pre-supplementary motor area in the neural encoding of long-known as compared with recently known and unknown music. In the second part of the study, we analysed data of three essential Alzheimer's disease biomarkers in a region of interest derived from our musical memory findings (caudal anterior cingulate cortex and ventral pre-supplementary motor area) in 20 patients with Alzheimer's disease (10 male and 10 female, mean age of 68.9 ± 9.0 years) and 34 healthy control subjects (14 male and 20 female, mean age of 68.1 ± 7.2 years). Interestingly, the regions identified to encode musical memory corresponded to areas that showed substantially minimal cortical atrophy (as measured with magnetic resonance imaging), and minimal disruption of glucose-metabolism (as measured with (18)F-fluorodeoxyglucose positron emission tomography), as compared to the rest of the brain. However, amyloid-β deposition (as measured with (18)F-flobetapir positron emission tomography) within the currently observed regions of interest was not substantially less than in the rest of the brain, which suggests that the regions of interest were still in a very early stage of the expected course of biomarker development in these regions (amyloid accumulation → hypometabolism → cortical atrophy) and therefore relatively well preserved. Given the observed overlap of musical memory regions with areas that are relatively spared in Alzheimer's disease, the current findings may thus explain the surprising preservation of musical memory in this neurodegenerative disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ballester-Plané, Júlia; Laporta-Hoyos, Olga; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Toro-Tamargo, Esther; Gimeno, Francisca; Narberhaus, Ana; Segarra, Dolors; Pueyo, Roser
2018-01-01
Cerebral palsy (CP) is a disorder of motor function often accompanied by cognitive impairment. There is a paucity of research focused on cognition in dyskinetic CP and on the potential effect of related factors. To describe the cognitive profile in dyskinetic CP and to assess its relationship with motor function and associated impairments. Fifty-two subjects with dyskinetic CP (28 males, mean age 24 y 10 mo, SD 13 y) and 52 typically-developing controls (age- and gender-matched) completed a comprehensive neuropsychological assessment. Gross Motor Function Classification System (GMFCS), Communication Function Classification System (CFCS) and epilepsy were recorded. Cognitive performance was compared between control and CP groups, also according different levels of GMFCS. The relationship between cognition, CFCS and epilepsy was examined through partial correlation coefficients, controlling for GMFCS. Dyskinetic CP participants performed worse than controls on all cognitive functions except for verbal memory. Milder cases (GMFCS I) only showed impairment in attention, visuoperception and visual memory. Participants with GMFCS II-III also showed impairment in language-related functions. Severe cases (GMFCS IV-V) showed impairment in intelligence and all specific cognitive functions but verbal memory. CFCS was associated with performance in receptive language functions. Epilepsy was related to performance in intelligence, visuospatial abilities, visual memory, grammar comprehension and learning. Cognitive performance in dyskinetic CP varies with the different levels of motor impairment, with more cognitive functions impaired as motor severity increases. This study also demonstrates the relationship between communication and epilepsy and cognitive functioning, even controlling for the effect of motor severity. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Guo, Xinyao; Xiang, Jing; Wang, Yingying; O’Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W.; Hershey, Andrew D.
2012-01-01
Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems. PMID:23185541
The effect of subclinical infantile thiamine deficiency on motor function in preschool children.
Harel, Yael; Zuk, Luba; Guindy, Michal; Nakar, Orly; Lotan, Dafna; Fattal-Valevski, Aviva
2017-10-01
We investigated the long-term implications of infantile thiamine (vitamin B1) deficiency on motor function in preschoolers who had been fed during the first 2 years of life with a faulty milk substitute. In this retrospective cohort study, 39 children aged 5-6 years who had been exposed to a thiamine-deficient formula during infancy were compared with 30 age-matched healthy children with unremarkable infant nutritional history. The motor function of the participants was evaluated with The Movement Assessment Battery for Children (M-ABC) and the Zuk Assessment. Both evaluation tools revealed statistically significant differences between the exposed and unexposed groups for gross and fine motor development (p < .001, ball skills p = .01) and grapho-motor development (p = .004). The differences were especially noteworthy on M-ABC testing for balance control functioning (p < .001, OR 5.4; 95% CI 3.4-7.4) and fine motor skills (p < .001, OR 3.2; 95% CI 1.8-4.6). In the exposed group, both assessments concurred on the high rate of children exhibiting motor function difficulties in comparison to unexposed group (M-ABC: 56% vs. 10%, Zuk Assessment: 59% vs. 3%, p < .001). Thiamine deficiency in infancy has long-term implications on gross and fine motor function and balance skills in childhood, thiamine having a crucial role in normal motor development. The study emphasizes the importance of proper infant feeding and regulatory control of breast milk substitutes. © 2017 John Wiley & Sons Ltd.
Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.
Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L
2009-01-01
Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.
Preserving and enhancing the functionality of highways in Texas : workshop.
DOT National Transportation Integrated Search
2010-01-01
Workshop Objectives: : To promote the importance of Highway Functionality : To review functionality in highway lifecycle : To provide how to materials to preserve, maintain, and enhance functionality : To promote coordination be...
Preserving and enhancing the functionality of highways in Texas : workshop.
DOT National Transportation Integrated Search
2010-01-01
Workshop Objectives: To promote the importance of Highway Functionality To review functionality in highway lifecycle To provide how to materials to preserve, maintain, and enhance functionality To promote coordination between Tx...
Intrinsic signature of essential tremor in the cerebello-frontal network
Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Vidailhet, Marie; Meunier, Sabine
2015-01-01
See Raethjen and Muthuraman (doi:10.1093/brain/awv238) for a scientific commentary on this article. Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections. PMID:26115677
Sütbeyaz, Serap; Yavuzer, Gunes; Sezer, Nebahat; Koseoglu, B Füsun
2007-05-01
To evaluate the effects of mirror therapy, using motor imagery training, on lower-extremity motor recovery and motor functioning of patients with subacute stroke. Randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 6 months. Rehabilitation education and research hospital. A total of 40 inpatients with stroke (mean age, 63.5 y), all within 12 months poststroke and without volitional ankle dorsiflexion. Thirty minutes per day of the mirror therapy program, consisting of nonparetic ankle dorsiflexion movements or sham therapy, in addition to a conventional stroke rehabilitation program, 5 days a week, 2 to 5 hours a day, for 4 weeks. The Brunnstrom stages of motor recovery, spasticity assessed by the Modified Ashworth Scale (MAS), walking ability (Functional Ambulation Categories [FAC]), and motor functioning (motor items of the FIM instrument). The mean change score and 95% confidence interval (CI) of the Brunnstrom stages (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 0.8; 95% CI, 0.5-1.2; P=.002), as well as the FIM motor score (mean, 21.4; 95% CI, 18.2-24.7; vs mean, 12.5; 95% CI, 9.6-14.8; P=.001) showed significantly more improvement at follow-up in the mirror group compared with the control group. Neither MAS (mean, 0.8; 95% CI, 0.4-1.2; vs mean, 0.3; 95% CI, 0.1-0.7; P=.102) nor FAC (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 1.5; 95% CI, 1.1-1.9; P=.610) showed a significant difference between the groups. Mirror therapy combined with a conventional stroke rehabilitation program enhances lower-extremity motor recovery and motor functioning in subacute stroke patients.
Wriessnegger, Selina C.; Steyrl, David; Koschutnig, Karl; Müller-Putz, Gernot R.
2014-01-01
Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity. PMID:25071505
Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke
Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.
2016-01-01
Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614
Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells.
Abdullah, Rafal H; Yaseen, Nahi Y; Salih, Shahlaa M; Al-Juboory, Ahmad Adnan; Hassan, Ayman; Al-Shammari, Ahmed Majeed
2016-11-01
The differentiation of mesenchymal stem cells (MSC) into acetylcholine secreted motor neuron-like cells, followed by elongation of the cell axon, is a promising treatment for spinal cord injury and motor neuron cell dysfunction in mammals. Differentiation is induced through a pre-induction step using Beta- mercaptoethanol (BME) followed by four days of induction with retinoic acid and sonic hedgehog. This process results in a very efficient differentiation of BM-MSCs into motor neuron-like cells. Immunocytochemistry showed that these treated cells had specific motor neural markers: microtubule associated protein-2 and acetylcholine transferase. The ability of these cells to function as motor neuron cells was assessed by measuring acetylcholine levels in a culture media during differentiation. High-performance liquid chromatography (HPLC) showed that the differentiated cells were functional. Motor neuron axon elongation was then induced by adding different concentrations of a nerve growth factor (NGF) to the differentiation media. Using a collagen matrix to mimic the natural condition of neural cells in a three-dimensional model showed that the MSCs were successfully differentiated into motor neuron-like cells. This process can efficiently differentiate MSCs into functional motor neurons that can be used for autologous nervous system therapy and especially for treating spinal cord injuries. Copyright © 2016 Elsevier B.V. All rights reserved.
Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke.
Schulz, Robert; Frey, Benedikt M; Koch, Philipp; Zimerman, Maximo; Bönstrup, Marlene; Feldheim, Jan; Timmermann, Jan E; Schön, Gerhard; Cheng, Bastian; Thomalla, Götz; Gerloff, Christian; Hummel, Friedhelm C
2017-01-01
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. To investigate this, diffusion-weighted brain imaging was conducted in 26 well-characterized chronic stroke patients (aged 63 ± 1.9 years, 18 males) with supratentorial ischemic lesions and 26 healthy participants. Probabilistic tractography was used to reconstruct reciprocal cortico-cerebellar tracts and to relate their microstructural integrity to residual motor functioning applying linear regression modeling. The main finding was a significant association between cortico-cerebellar structural connectivity and residual motor function, independent from the level of damage to the cortico-spinal tract. Specifically, white matter integrity of the cerebellar outflow tract, the dentato-thalamo-cortical tract, was positively related to both general motor output and fine motor skills. Additionally, the integrity of the descending cortico-ponto-cerebellar tract contributed to rather fine motor skills. A comparable structure-function relationship was not evident in the controls. The present study provides first tract-related structural data demonstrating a critical importance of distinct cortico-cerebellar connections for motor output after stroke. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.
Curado, Marco; Fritsch, Brita; Reis, Janine
2016-02-04
Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.
Motor system evolution and the emergence of high cognitive functions.
Mendoza, Germán; Merchant, Hugo
2014-11-01
In human and nonhuman primates, the cortical motor system comprises a collection of brain areas primarily related to motor control. Existing evidence suggests that no other mammalian group has the number, extension, and complexity of motor-related areas observed in the frontal lobe of primates. Such diversity is probably related to the wide behavioral flexibility that primates display. Indeed, recent comparative anatomical, psychophysical, and neurophysiological studies suggest that the evolution of the motor cortical areas closely correlates with the emergence of high cognitive abilities. Advances in understanding the cortical motor system have shown that these areas are also related to functions previously linked to higher-order associative areas. In addition, experimental observations have shown that the classical distinction between perceptual and motor functions is not strictly followed across cortical areas. In this paper, we review evidence suggesting that evolution of the motor system had a role in the shaping of different cognitive functions in primates. We argue that the increase in the complexity of the motor system has contributed to the emergence of new abilities observed in human and nonhuman primates, including the recognition and imitation of the actions of others, speech perception and production, and the execution and appreciation of the rhythmic structure of music. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija
2013-01-01
The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558
Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija
2013-01-29
The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.
Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana
2011-01-01
Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306
Anti-correlated cortical networks of intrinsic connectivity in the rat brain.
Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.
Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain
Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836
The Motor System: The Whole and its Parts
Otten, E.
2001-01-01
Our knowledge of components of the human motor system has been growing steadily, but our understanding of its integration into a system is lagging behind. It is suggested that a combination of measurements of forces and movements of the motor system in a functionally meaningful environment in conjunction with computer simulations of the motor system may help us in understanding motor system properties. Neurotrauma can be seen as a natural deviation, with recovery as a slow path to yet another deviant state of the motor system. In that form they may be useful in explaining the close interaction between form and function of the human motor system. PMID:11530882
Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.
2014-01-01
Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046
David, Fabian J.; Baranek, Grace T.; Wiesen, Chris; Miao, Adrienne F.; Thorpe, Deborah E.
2012-01-01
Impaired motor coordination is prevalent in children with Autism Spectrum Disorders (ASD) and affects adaptive skills. Little is known about the development of motor patterns in young children with ASD between 2 and 6 years of age. The purpose of the current study was threefold: (1) to describe developmental correlates of motor coordination in children with ASD, (2) to identify the extent to which motor coordination deficits are unique to ASD by using a control group of children with other developmental disabilities (DD), and (3) to determine the association between motor coordination variables and functional fine motor skills. Twenty-four children with ASD were compared to 30 children with typical development (TD) and 11 children with DD. A precision grip task was used to quantify and analyze motor coordination. The motor coordination variables were two temporal variables (grip to load force onset latency and time to peak grip force) and two force variables (grip force at onset of load force and peak grip force). Functional motor skills were assessed using the Fine Motor Age Equivalents of the Vineland Adaptive Behavior Scale and the Mullen Scales of Early Learning. Mixed regression models were used for all analyses. Children with ASD presented with significant motor coordination deficits only on the two temporal variables, and these variables differentiated children with ASD from the children with TD, but not from children with DD. Fine motor functional skills had no statistically significant associations with any of the motor coordination variables. These findings suggest that subtle problems in the timing of motor actions, possibly related to maturational delays in anticipatory feed-forward mechanisms, may underlie some motor deficits reported in children with ASD, but that these issues are not unique to this population. Further research is needed to investigate how children with ASD or DD compensate for motor control deficits to establish functional skills. PMID:23293589
Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.
Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P
2017-12-13
A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.
Voon, V; Brezing, C; Gallea, C; Hallett, M
2014-01-01
Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985
Functional aging impairs the role of feedback in motor learning.
Liu, Yu; Cao, Chunmei; Yan, Jin H
2013-10-01
Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.
Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark
2011-11-01
Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.
Executive Function Is Associated With Off-Line Motor Learning in People With Chronic Stroke.
Al-Dughmi, Mayis; Al-Sharman, Alham; Stevens, Suzanne; Siengsukon, Catherine F
2017-04-01
Sleep has been shown to promote off-line motor learning in individuals following stroke. Executive function ability has been shown to be a predictor of participation in rehabilitation and motor recovery following stroke. The purpose of this study was to explore the association between executive function and off-line motor learning in individuals with chronic stroke compared with healthy control participants. Seventeen individuals with chronic stroke (>6 months poststroke) and 9 healthy adults were included in the study. Participants underwent 3 consecutive nights of polysomnography, practiced a continuous tracking task the morning of the third day, and underwent a retention test the morning after the third night. Participants underwent testing on 4 executive function tests after the continuous tracking task retention test. Participants with stroke showed a significant positive correlation between the off-line motor learning score and performance on the Trail-Making Test from Delis-Kaplan Executive Function System (r = 0.652; P = 0.005), while the healthy control participants did not. Regression analysis showed that the Trail-Making Test-Delis-Kaplan Executive Function System is a significant predictor of off-line motor learning (P = 0.008). This is the first study to demonstrate that better performance on an executive function test of attention and set-shifting predicts a higher magnitude of off-line motor learning in individuals with chronic stroke. This emphasizes the need to consider attention and set-shifting abilities of individuals following stroke as these abilities are associated with motor learning. This in turn could affect learning of activities of daily living and impact functional recovery following stroke.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A166).
[The mirror neuron system in motor and sensory rehabilitation].
Oouchida, Yutaka; Izumi, Shinichi
2014-06-01
The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.
Vollmar, Christian; O'Muircheartaigh, Jonathan; Barker, Gareth J; Symms, Mark R; Thompson, Pamela; Kumari, Veena; Duncan, John S; Janz, Dieter; Richardson, Mark P; Koepp, Matthias J
2011-06-01
Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.
Ren, Kai; Gong, Xiao-Ming; Zhang, Rong; Chen, Xiu-Hui
2016-10-01
To study the effects of virtual reality (VR) training on the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy. Thirty-five children with spastic diplegia cerebral palsy were randomly assigned to VR training group (n=19) and conventional training group (n=16). The conventional training group received conventional physical therapy and occupational therapy for three months. The VR training group received VR training and occupational therapy for three months. Grip and visual-motor integration subtests in Peabody Developmental Motor Scales-2 were used to evaluate the fine movement in patients before and after treatment. The D and E domains of the 88-item version of the Gross Motor Function Measure (GMFM-88), Modified Ashworth Scale (MAS), and Berg Balance Scale (BBS) were used to evaluate the gross movement in patients before and after treatment. Before treatment, there were no significant differences in grip, visual-motor integration, fine motor development quotient, scores of D and E domains of GMFM-88, MAS score, or BBS score between the two groups (P>0.05). After treatment, all the indices were significantly improved in the VR training group compared with the conventional training group (P<0.05). VR training can effectively improve the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy.
Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants.
Nebenführ, Andreas; Dixit, Ram
2018-04-29
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
Shin, Sung Yul; Kim, Jung Yoon; Lee, Sanghyeop; Lee, Junwon; Kim, Seung-Jong; Kim, ChangHwan
2013-06-01
The purpose of this paper is to propose a new assessment method for evaluating motor function of the patients who are suffering from physical weakness after stroke, incomplete spinal cord injury (iSCI) or other diseases. In this work, we use a robotic device to obtain the information of interaction occur between patient and robot, and use it as a measure for assessing the patients. The Intentional Movement Performance Ability (IMPA) is defined by the root mean square of the interactive torque, while the subject performs given periodic movement with the robot. IMPA is proposed to quantitatively determine the level of subject's impaired motor function. The method is indirectly tested by asking the healthy subjects to lift a barbell to disturb their motor function. The experimental result shows that the IMPA has a potential for providing a proper information of the subject's motor function level.
Controllable molecular motors engineered from myosin and RNA
NASA Astrophysics Data System (ADS)
Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev
2018-01-01
Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.
Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.
Nodera, Hiroyuki; Manto, Mario
2014-12-01
Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.
SMA-MAP: a plasma protein panel for spinal muscular atrophy.
Kobayashi, Dione T; Shi, Jing; Stephen, Laurie; Ballard, Karri L; Dewey, Ruth; Mapes, James; Chung, Brett; McCarthy, Kathleen; Swoboda, Kathryn J; Crawford, Thomas O; Li, Rebecca; Plasterer, Thomas; Joyce, Cynthia; Chung, Wendy K; Kaufmann, Petra; Darras, Basil T; Finkel, Richard S; Sproule, Douglas M; Martens, William B; McDermott, Michael P; De Vivo, Darryl C; Walker, Michael G; Chen, Karen S
2013-01-01
Spinal Muscular Atrophy (SMA) presents challenges in (i) monitoring disease activity and predicting progression, (ii) designing trials that allow rapid assessment of candidate therapies, and (iii) understanding molecular causes and consequences of the disease. Validated biomarkers of SMA motor and non-motor function would offer utility in addressing these challenges. Our objectives were (i) to discover additional markers from the Biomarkers for SMA (BforSMA) study using an immunoassay platform, and (ii) to validate the putative biomarkers in an independent cohort of SMA patients collected from a multi-site natural history study (NHS). BforSMA study plasma samples (N = 129) were analyzed by immunoassay to identify new analytes correlating to SMA motor function. These immunoassays included the strongest candidate biomarkers identified previously by chromatography. We selected 35 biomarkers to validate in an independent cohort SMA type 1, 2, and 3 samples (N = 158) from an SMA NHS. The putative biomarkers were tested for association to multiple motor scales and to pulmonary function, neurophysiology, strength, and quality of life measures. We implemented a Tobit model to predict SMA motor function scores. 12 of the 35 putative SMA biomarkers were significantly associated (p<0.05) with motor function, with a 13(th) analyte being nearly significant. Several other analytes associated with non-motor SMA outcome measures. From these 35 biomarkers, 27 analytes were selected for inclusion in a commercial panel (SMA-MAP) for association with motor and other functional measures. Discovery and validation using independent cohorts yielded a set of SMA biomarkers significantly associated with motor function and other measures of SMA disease activity. A commercial SMA-MAP biomarker panel was generated for further testing in other SMA collections and interventional trials. Future work includes evaluating the panel in other neuromuscular diseases, for pharmacodynamic responsiveness to experimental SMA therapies, and for predicting functional changes over time in SMA patients.
When concepts lose their color: A case of object color knowledge impairment
Stasenko, Alena; Garcea, Frank E.; Dombovy, Mary; Mahon, Bradford Z.
2014-01-01
Color is important in our daily interactions with objects, and plays a role in both low- and high-level visual processing. Previous neuropsychological studies have shown that color perception and object-color knowledge can doubly dissociate, and that both can dissociate from processing of object form. We present a case study of an individual who displayed an impairment for knowledge of the typical colors of objects, with preserved color perception and color naming. Our case also presented with a pattern of, if anything, worse performance for naming living items compared to nonliving things. The findings of the experimental investigation are evaluated in light of two theories of conceptual organization in the brain: the Sensory Functional Theory and the Domain-Specific Hypothesis. The dissociations observed in this case compel a model in which sensory/motor modality and semantic domain jointly constrain the organization of object knowledge. PMID:25058612
Sneeze related area in the medulla: localisation of the human sneezing centre?
Seijo-Martínez, M; Varela-Freijanes, A; Grandes, J; Vázquez, F
2006-04-01
Sneezing is a rarely explored symptom in neurological practice. In the cat, a sneeze evoking centre is located in the medulla. The existence of a sneezing centre has not been confirmed in humans. A case with abnormal sneezing secondary to a strategic infarct in the right latero-medullary region is presented. A 66 year old man suddenly presented paroxysmal sneezing followed by ataxia, right sided motor and sensory symptoms, and hoarseness. The application of stimuli to the right nasal fossa did not evoke sneezing nor the wish to sneeze. The same stimuli to the contralateral nasal fossa evoked normal sneezing. The preservation of the superficial sensitivity of the nasal fossa indicates that the lesion was localised in the hypothetical human sneezing centre, very close to the spinal trigeminal tract and nucleus. This centre appears to be bilateral and functionally independent on both sides.
Sneeze related area in the medulla: localisation of the human sneezing centre?
Seijo‐Martínez, M; Varela‐Freijanes, A; Grandes, J; Vázquez, F
2006-01-01
Sneezing is a rarely explored symptom in neurological practice. In the cat, a sneeze evoking centre is located in the medulla. The existence of a sneezing centre has not been confirmed in humans. A case with abnormal sneezing secondary to a strategic infarct in the right latero‐medullary region is presented. A 66 year old man suddenly presented paroxysmal sneezing followed by ataxia, right sided motor and sensory symptoms, and hoarseness. The application of stimuli to the right nasal fossa did not evoke sneezing nor the wish to sneeze. The same stimuli to the contralateral nasal fossa evoked normal sneezing. The preservation of the superficial sensitivity of the nasal fossa indicates that the lesion was localised in the hypothetical human sneezing centre, very close to the spinal trigeminal tract and nucleus. This centre appears to be bilateral and functionally independent on both sides. PMID:16354739
Behavioral, Cognitive and Neural Markers of Asperger Syndrome
Faridi, Farnaz; Khosrowabadi, Reza
2017-01-01
Asperger syndrome (AS) is a subtype of Autism Spectrum Disorder (ASD) characterized by major problems in social and nonverbal communication, together with limited and repetitive forms of behavior and interests. The linguistic and cognitive development in AS is preserved which help us to differentiate it from other subtypes of ASD. However, significant effects of AS on cognitive abilities and brain functions still need to be researched. Although a clear cut pathology for Asperger has not been identified yet, recent studies have largely focused on brain imaging techniques to investigate AS. In this regard, we carried out a systematic review on behavioral, cognitive, and neural markers (specifically using MRI and fMRI) studies on AS. In this paper, behavior, motor skills and language capabilities of individuals with Asperger are compared to those in healthy controls. In addition, common findings across MRI and fMRI based studies associated with behavior and cognitive disabilities are highlighted. PMID:29167722
Behavioral, Cognitive and Neural Markers of Asperger Syndrome.
Faridi, Farnaz; Khosrowabadi, Reza
2017-01-01
Asperger syndrome (AS) is a subtype of Autism Spectrum Disorder (ASD) characterized by major problems in social and nonverbal communication, together with limited and repetitive forms of behavior and interests. The linguistic and cognitive development in AS is preserved which help us to differentiate it from other subtypes of ASD. However, significant effects of AS on cognitive abilities and brain functions still need to be researched. Although a clear cut pathology for Asperger has not been identified yet, recent studies have largely focused on brain imaging techniques to investigate AS. In this regard, we carried out a systematic review on behavioral, cognitive, and neural markers (specifically using MRI and fMRI) studies on AS. In this paper, behavior, motor skills and language capabilities of individuals with Asperger are compared to those in healthy controls. In addition, common findings across MRI and fMRI based studies associated with behavior and cognitive disabilities are highlighted.
Kinesthetic alexia due to left parietal lobe lesions.
Ihori, Nami; Kawamura, Mitsuru; Araki, Shigeo; Kawachi, Juro
2002-01-01
To investigate the neuropsychological mechanisms of kinesthetic alexia, we asked 7 patients who showed kinesthetic alexia with preserved visual reading after damage to the left parietal region to perform tasks consisting of kinesthetic written reproduction (writing down the same letter as the kinesthetic stimulus), kinesthetic reading aloud, visual written reproduction (copying letters), and visual reading aloud of hiragana (Japanese phonograms). We compared the performance in these tasks and the lesion sites in each patient. The results suggested that deficits in any one of the following functions might cause kinesthetic alexia: (1) the retrieval of kinesthetic images (motor engrams) of characters from kinesthetic stimuli, (2) kinesthetic images themselves, (3) access to cross-modal association from kinesthetic images, and (4) cross-modal association itself (retrieval of auditory and visual images from kinesthetic images of characters). Each of these factors seemed to be related to different lesion sites in the left parietal lobe. Copyright 2002 S. Karger AG, Basel
Characterization of EEG signals revealing covert cognition in the injured brain.
Curley, William H; Forgacs, Peter B; Voss, Henning U; Conte, Mary M; Schiff, Nicholas D
2018-05-01
See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.
Palmer, Kathryn; Hebron, Clair; Williams, Jonathan M
2015-05-03
Dynamic knee valgus and internal femoral rotation are proposed to be contributory risk factors for patellofemoral pain and anterior cruciate ligament injuries. Multimodal interventions including hip abductor strengthening or functional motor control programmes have a positive impact of pain, however their effect on knee kinematics and muscle strength is less clear. The aim of this study was to examine the effect of isolated hip abductor strengthening and a functional motor control exercise on knee kinematics and hip abductor strength. This prospective, randomised, repeated measures design included 29 asymptomatic volunteers presenting with increase knee valgus and femoral internal rotation. Participants completed either isolated hip abductor strengthening or a functional motor control exercise for 5 weeks. Knee kinematics were measured using inertial sensors during 2 functional activities and hip abductor strength measured using a load cell during isometric hip abduction. There were no significant differences in dynamic knee valgus and internal rotation following the isolated hip abductor or functional motor control intervention, and no significant differences between the groups for knee angles. Despite this, the actual magnitude of reduction in valgus was 10° and 5° for the functional motor control group and strengthening group respectively. The actual magnitude of reduction in internal rotation was 9° and 18° for the functional motor control group and strengthening group respectively. Therefore there was a tendency towards clinically significant improvements in knee kinematics in both exercise groups. A statistically significant improvement in hip abductor strength was evident for the functional motor control group (27% increase; p = 0.008) and strengthening group (35% increase; p = 0.009) with no significant difference between the groups being identified (p = 0.475). Isolated hip strengthening and functional motor control exercises resulted in non-statistically significant changes in knee kinematics, however there was a clear trend towards clinically meaningful reductions in valgus and internal rotation. Both groups demonstrated similar significant gains in hip abductor strength suggesting either approach could be used to strengthen the hip abductors.
The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper
Lang, Eric J.; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L.; De Zeeuw, Chris I.; Ebner, Timothy J.; Heck, Detlef H.; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S.; Ozyildirim, Ozgecan; Popa, Laurentiu S.; Reeves, Alexander M.B.; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang
2016-01-01
For many decades the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum, and might also play a role in development. We then consider the potential problems and benefits of its having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, variable complex spike waveform) make it more or less suitable for one or the other of these functions, and why its having a dual role makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest it has the potential to act in both the motor learning and motor control functions of the cerebellum. PMID:27193702
ERIC Educational Resources Information Center
Cacciari, C.; Bolognini, N.; Senna, I.; Pellicciari, M. C.; Miniussi, C.; Papagno, C.
2011-01-01
We used Transcranial Magnetic Stimulation (TMS) to assess whether reading literal, non-literal (i.e., metaphorical, idiomatic) and fictive motion sentences modulates the activity of the motor system. Sentences were divided into three segments visually presented one at a time: the noun phrase, the verb and the final part of the sentence. Single…
ERIC Educational Resources Information Center
Wuang, Y.-P.; Wang, C.-C.; Huang, M.-H.; Su, C.-Y.
2008-01-01
Background: The purpose of the study was to describe sensorimotor profile in children with mild intellectual disability (ID), and to examine the association between cognitive and motor function. Methods: A total of 233 children with mild ID aged 7 to 8 years were evaluated with measures of cognitive, motor and sensory integrative functioning.…
Trends in pediatric epilepsy surgery.
Shah, Ritesh; Botre, Abhijit; Udani, Vrajesh
2015-03-01
Epilepsy surgery has become an accepted treatment for drug resistant epilepsy in infants and children. It has gained ground in India over the last decade. Certain epilepsy surgically remediable syndromes have been delineated and should be offered surgery earlier rather than later, especially if cognitive/behavioral development is being compromised. Advances in imaging, particularly in MRI has helped identify surgical candidates. Pre-surgical evaluation includes clinical assessment, structural and functional imaging, inter-ictal EEG, simultaneous video -EEG, with analysis of seizure semiology and ictal EEG and other optional investigations like neuropsychology and other newer imaging techniques. If data are concordant resective surgery is offered, keeping in mind preservation of eloquent cortical areas subserving motor, language and visual functions. In case of discordant data or non-lesional MRI, invasive EEG maybe useful using a two-stage approach. With multi-focal / generalized disease, palliative surgery like corpus callosotomy and vagal nerve stimulation maybe useful. A good outcome is seen in about 2/3rd of patients undergoing resective surgery with a low morbidity and mortality. This review outlines important learning aspects of pediatric epilepsy surgery for the general pediatrician.
Skeletal maturation in children with cerebral palsy and its relationship with motor functioning.
van Eck, Mirjam; Dallmeijer, Annet J; Voorman, Jeanine M; Becher, Jules G
2008-07-01
The objective of this study was to describe skeletal maturation in relation to chronological age in children with cerebral palsy (CP) aged 9 to 16 years, and to analyze the relationship between skeletal maturation and motor functioning. The skeletal age of 100 children with CP (37 females, 63 males; age 9, 11, or 13 y; 73 ambulant, 27 non-ambulant) was determined over a period of 3 years based on X-rays of the hand (Greulich and Pyle technique). Motor functioning was measured with the Gross Motor Function Measure-66. The skeletal age of females with CP was significantly higher than their chronological age, but this did not apply to males. Longitudinal analysis showed no difference in the course of skeletal age in relation to chronological age over a 3-year period for sex or for level of ambulation. No association was found between changes in skeletal age and changes in gross motor function over the 3-year period. Skeletal age during (pre-)puberty in females with CP is advanced in relation to chronological age. No evidence was found that children with CP are at risk for deterioration in gross motor function as a result of skeletal maturation during puberty.
Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc
2016-05-17
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Stimulus electrodiagnosis and motor and functional evaluations during ulnar nerve recovery
Fernandes, Luciane F. R. M.; Oliveira, Nuno M. L.; Pelet, Danyelle C. S.; Cunha, Agnes F. S.; Grecco, Marco A. S.; Souza, Luciane A. P. S.
2016-01-01
BACKGROUND: Distal ulnar nerve injury leads to impairment of hand function due to motor and sensorial changes. Stimulus electrodiagnosis (SE) is a method of assessing and monitoring the development of this type of injury. OBJECTIVE: To identify the most sensitive electrodiagnostic parameters to evaluate ulnar nerve recovery and to correlate these parameters (Rheobase, Chronaxie, and Accommodation) with motor function evaluations. METHOD: A prospective cohort study of ten patients submitted to ulnar neurorrhaphy and evaluated using electrodiagnosis and motor assessment at two moments of neural recovery. A functional evaluation using the DASH questionnaire (Disability of the Arm, Shoulder, and Hand) was conducted at the end to establish the functional status of the upper limb. RESULTS: There was significant reduction only in the Chronaxie values in relation to time of injury and side (with and without lesion), as well as significant correlation of Chronaxie with the motor domain score. CONCLUSION: Chronaxie was the most sensitive SE parameter for detecting differences in neuromuscular responses during the ulnar nerve recovery process and it was the only parameter correlated with the motor assessment. PMID:26786072
Flamand, Véronique H; Schneider, Cyril
2014-10-01
Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Stein, Marion; Auerswald, Max; Ebersbach, Mirjam
2017-01-01
There is growing evidence indicating positive, causal effects of acute physical activity on cognitive performance of school children, adolescents, and adults. However, only a few studies examined these effects in kindergartners, even though correlational studies suggest moderate relationships between motor and cognitive functions in this age group. One aim of the present study was to examine the correlational relationships between motor and executive functions among 5- to 6-year-olds. Another aim was to test whether an acute coordinative intervention, which was adapted to the individual motor functions of the children, causally affected different executive functions (i.e., motor inhibition, cognitive inhibition, and shifting). Kindergartners (N = 102) were randomly assigned either to a coordinative intervention (20 min) or to a control condition (20 min). The coordination group performed five bimanual exercises (e.g., throwing/kicking balls onto targets with the right and left hand/foot), whereas the control group took part in five simple activities that hardly involved coordination skills (e.g., stamping). Children’s motor functions were assessed with the Movement Assessment Battery for Children 2 (Petermann, 2009) in a pre-test (T1), 1 week before the intervention took place. Motor inhibition was assessed with the Simon says task (Carlson and Wang, 2007), inhibition and shifting were assessed with the Hearts and Flowers task (Davidson et al., 2006) in the pre-test and again in a post-test (T2) immediately after the interventions. Results revealed significant correlations between motor functions and executive functions (especially shifting) at T1. There was no overall effect of the intervention. However, explorative analyses indicated a three-way interaction, with the intervention leading to accuracy gains only in the motor inhibition task and only if it was tested directly after the intervention. As an unexpected effect, this result needs to be treated with caution but may indicate that the effect of acute coordinative exercise is temporally limited and emerges only for motor inhibition, but not for cognitive inhibition or shifting. More generally, in contrast to other studies including older participants and endurance exercises, no general effect of an acute coordinative intervention on executive functions was revealed for kindergartners. PMID:28611709
Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L
2018-01-01
Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2 = 0.36-0.46) and gait speed (R 2 = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background
Glabinski, Andrzej
2015-01-01
Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689
Stöckel, Tino; Wunsch, Kathrin; Hughes, Charmayne M L
2017-01-01
Anticipatory motor planning abilities mature as children grow older, develop throughout childhood and are likely to be stable till the late sixties. In the seventh decade of life, motor planning performance dramatically declines, with anticipatory motor planning abilities falling to levels of those exhibited by children. At present, the processes enabling successful anticipatory motor planning in general, as do the cognitive processes mediating these age-related changes, remain elusive. Thus, the aim of the present study was (a) to identify cognitive and motor functions that are most affected by normal aging and (b) to elucidate key (cognitive and motor) factors that are critical for successful motor planning performance in young ( n = 40, mean age = 23.1 ± 2.6 years) and older adults ( n = 37, mean age = 73.5 ± 7.1 years). Results indicate that normal aging is associated with a marked decline in all aspects of cognitive and motor functioning tested. However, age-related declines were more apparent for fine motor dexterity, processing speed and cognitive flexibility. Furthermore, up to 64% of the variance in motor planning performance across age groups could be explained by the cognitive functions processing speed, response planning and cognitive flexibility. It can be postulated that anticipatory motor planning abilities are strongly influenced by cognitive control processes, which seem to be key mechanisms to compensate for age-related decline. These findings support the general therapeutic and preventive value of cognitive-motor training programs to reduce adverse effects associated with high age.
Coleman, Andrea; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N
2013-11-01
To explore the communication skills of children with cerebral palsy (CP) at 24 months' corrected age with reference to typically developing children, and to determine the relationship between communication ability, gross motor function, and other comorbidities associated with CP. Prospective, cross-sectional, population-based cohort study. General community. Children with CP (N=124; mean age, 24mo; functional severity on Gross Motor Function Classification System [GMFCS]: I=47, II=14, III=22, IV=19, V=22). Not applicable. Parents reported communication skills on the Communication and Symbolic Behavior Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Two independent physiotherapists classified motor type, distribution, and GMFCS. Data on comorbidities were obtained from parent interviews and medical records. Children with mild CP (GMFCS I/II) had mean CSBS-DP scores that were 0.5 to 0.6 SD below the mean for typically developing peers, while those with moderate-severe impairment (GMFCS III-V) were 1.4 to 2.6 SD below the mean. GMFCS was significantly associated with performance on the CSBS-DP (F=18.55, P<.001), with gross motor ability accounting for 38% of the variation in communication. Poorer communication was strongly associated with gross motor function and full-term birth. Preschool-aged children with CP, with more severe gross motor impairment, showed delayed communication, while children with mild motor impairment were less vulnerable. Term-born children had significantly poorer communication than those born prematurely. Because a portion of each gross motor functional severity level is at risk, this study reinforces the need for early monitoring of communication development for all children with CP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola
2017-04-01
The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Rosenberg, Limor; Moran, Adva; Bart, Orit
2017-01-01
Decreased motor ability is a common feature in autism, leading to the proposal of a motor-social link in autism. The purpose of the study was to assess the contribution of motor abilities and social-communication skills to children's participation in daily activities, among children with low-functioning autism spectrum disorder (LFASD).…
Laird, Angela S; Mackovski, Nikolce; Rinkwitz, Silke; Becker, Thomas S; Giacomotto, Jean
2016-05-01
Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Task-dependent output of human parasternal intercostal motor units across spinal levels.
Hudson, Anna L; Gandevia, Simon C; Butler, Jane E
2017-12-01
During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P < 0.01). By contrast, during trunk rotation, the same motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P < 0.05). Tested for a subset of SMUs, the reliability of the breathing and rotation tasks, as well as the SMU recruitment measures, was good-excellent [intraclass correlation (2,1): 0.69-0.91]. Thus, the output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task. Given that the differential inspiratory output of parasternal intercostal muscles is linked to their relative mechanical effectiveness for inspiration and also that this output is altered in trunk rotation, we speculate that a mechanism matching neural drive to muscle mechanics underlies the task-dependent differences in output of axial motoneurone pools. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Complex-valued time-series correlation increases sensitivity in FMRI analysis.
Kociuba, Mary C; Rowe, Daniel B
2016-07-01
To develop a linear matrix representation of correlation between complex-valued (CV) time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis. The standard in fMRI is to discard the phase before the statistical analysis of the data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with CV time-series data, rather than with the standard of MO data. A MATLAB simulation compares the Fisher-z transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude change in the time-series. The increased sensitivity of the complex-valued Fourier representation of correlation is also demonstrated with experimental human data. Since the correlation description in the temporal frequency domain is represented as a summation of second order temporal frequencies, the correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor cortex and the supplementary motor cortex. The simulation demonstrates the increased strength of CV correlations over MO correlations for low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation maps after spatial processing. Including both magnitude and phase in the spatial correlation computations more accurately defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to preserve the signal of interest in fMRI data sets with high noise variance, and avoid excessive processing induced correlation. Copyright © 2016 Elsevier Inc. All rights reserved.
How does the motor relearning program improve neurological function of brain ischemia monkeys?☆
Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang
2013-01-01
The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440
Growing up with Down syndrome: Development from 6 months to 10.7 years.
Marchal, Jan Pieter; Maurice-Stam, Heleen; Houtzager, Bregje A; Rutgers van Rozenburg-Marres, Susanne L; Oostrom, Kim J; Grootenhuis, Martha A; van Trotsenburg, A S Paul
2016-12-01
We analysed developmental outcomes from a clinical trial early in life and its follow-up at 10.7 years in 123 children with Down syndrome. To determine 1) strengths and weaknesses in adaptive functioning and motor skills at 10.7 years, and 2) prognostic value of early-life characteristics (early developmental outcomes, parental and child characteristics, and comorbidity) for later intelligence, adaptive functioning and motor skills. We used standardized assessments of mental and motor development at ages 6, 12 and 24 months, and of intelligence, adaptive functioning and motor skills at 10.7 years. We compared strengths and weaknesses in adaptive functioning and motor skills by repeated-measures ANOVAs in the total group and in children scoring above-average versus below-average. The prognostic value of demographics, comorbidity and developmental outcomes was analysed by two-step regression. Socialisation was a stronger adaptive skill than Communication followed by Daily Living. Aiming and catching was a stronger motor skill than Manual dexterity, followed by Balance. Above-average and below-average scoring children showed different profiles of strengths and weaknesses. Gender, (the absence or presence of) infantile spasms and particularly 24-month mental functioning predicted later intelligence and adaptive functioning. Motor skills, however, appeared to be less well predicted by early life characteristics. These findings provide a reference for expected developmental levels and strengths and weaknesses in Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khan, Amanda J; Nair, Aarti; Keown, Christopher L; Datko, Michael C; Lincoln, Alan J; Müller, Ralph-Axel
2015-11-01
The cerebellum plays important roles in sensori-motor and supramodal cognitive functions. Cellular, volumetric, and functional abnormalities of the cerebellum have been found in autism spectrum disorders (ASD), but no comprehensive investigation of cerebro-cerebellar connectivity in ASD is available. We used resting-state functional connectivity magnetic resonance imaging in 56 children and adolescents (28 subjects with ASD, 28 typically developing subjects) 8-17 years old. Partial and total correlation analyses were performed for unilateral regions of interest (ROIs), distinguished in two broad domains as sensori-motor (premotor/primary motor, somatosensory, superior temporal, and occipital) and supramodal (prefrontal, posterior parietal, and inferior and middle temporal). There were three main findings: 1) Total correlation analyses showed predominant cerebro-cerebellar functional overconnectivity in the ASD group; 2) partial correlation analyses that emphasized domain specificity (sensori-motor vs. supramodal) indicated a pattern of robustly increased connectivity in the ASD group (compared with the typically developing group) for sensori-motor ROIs but predominantly reduced connectivity for supramodal ROIs; and 3) this atypical pattern of connectivity was supported by significantly increased noncanonical connections (between sensori-motor cerebral and supramodal cerebellar ROIs and vice versa) in the ASD group. Our findings indicate that sensori-motor intrinsic functional connectivity is atypically increased in ASD, at the expense of connectivity supporting cerebellar participation in supramodal cognition. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
New quantitative method for evaluation of motor functions applicable to spinal muscular atrophy.
Matsumaru, Naoki; Hattori, Ryo; Ichinomiya, Takashi; Tsukamoto, Katsura; Kato, Zenichiro
2018-03-01
The aim of this study was to develop and introduce new method to quantify motor functions of the upper extremity. The movement was recorded using a three-dimensional motion capture system, and the movement trajectory was analyzed using newly developed two indices, which measure precise repeatability and directional smoothness. Our target task was shoulder flexion repeated ten times. We applied our method to a healthy adult without and with a weight, simulating muscle impairment. We also applied our method to assess the efficacy of a drug therapy for amelioration of motor functions in a non-ambulatory patient with spinal muscular atrophy. Movement trajectories before and after thyrotropin-releasing hormone therapy were analyzed. In the healthy adult, we found the values of both indices increased significantly when holding a weight so that the weight-induced deterioration in motor function was successfully detected. From the efficacy assessment of drug therapy in the patient, the directional smoothness index successfully detected improvements in motor function, which were also clinically observed by the patient's doctors. We have developed a new quantitative evaluation method of motor functions of the upper extremity. Clinical usability of this method is also greatly enhanced by reducing the required number of body-attached markers to only one. This simple but universal approach to quantify motor functions will provide additional insights into the clinical phenotypes of various neuromuscular diseases and developmental disorders. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Wandschneider, Britta; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Duncan, John S.
2014-01-01
Juvenile myoclonic epilepsy is a heritable idiopathic generalized epilepsy syndrome, characterized by myoclonic jerks and frequently triggered by cognitive effort. Impairment of frontal lobe cognitive functions has been reported in patients with juvenile myoclonic epilepsy and their unaffected siblings. In a recent functional magnetic resonance imaging study we reported abnormal co-activation of the motor cortex and increased functional connectivity between the motor system and prefrontal cognitive networks during a working memory paradigm, providing an underlying mechanism for cognitively triggered jerks. In this study, we used the same task in 15 unaffected siblings (10 female; age range 18–65 years, median 40) of 11 of those patients with juvenile myoclonic epilepsy (six female; age range 22–54 years, median 35) and compared functional magnetic resonance imaging activations with 20 age- and gender-matched healthy control subjects (12 female; age range 23–46 years, median 30.5). Unaffected siblings showed abnormal primary motor cortex and supplementary motor area co-activation with increasing cognitive load, as well as increased task-related functional connectivity between motor and prefrontal cognitive networks, with a similar pattern to patients (P < 0.001 uncorrected; 20-voxel threshold extent). This finding in unaffected siblings suggests that altered motor system activation and functional connectivity is not medication- or seizure-related, but represents a potential underlying mechanism for impairment of frontal lobe functions in both patients and siblings, and so constitutes an endophenotype of juvenile myoclonic epilepsy. PMID:25001494
Motor network disruption in essential tremor: a functional and effective connectivity study.
Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur
2015-10-01
Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective connectivity analysis, tremor variation during the motor task has an excitatory effect on both the extrinsic connection from cerebellar lobule V to the thalamus, and the intrinsic activity of cerebellar lobule V and thalamus. Second, the functional integrity of the motor network is affected in essential tremor, with a decrease in functional connectivity between cortical and cerebellar motor regions. This decrease in functional connectivity, related to the motor task, correlates with an increase in clinical tremor severity. Interestingly, increased functional connectivity between right cerebellar lobules I-IV and the left thalamus correlates with an increase in clinical tremor severity. In conclusion, our findings suggest that cerebello-dentato-thalamic activity and cerebello-cortical connectivity is disturbed in essential tremor, supporting previous evidence of functional cerebellar changes in essential tremor. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zargar, Homayoun; Akca, Oktay; Autorino, Riccardo; Brandao, Luis Felipe; Laydner, Humberto; Krishnan, Jayram; Samarasekera, Dinesh; Stein, Robert J; Kaouk, Jihad H
2015-05-01
To objectively assess ipsilateral renal function (IRF) preservation and factors influencing it after robot-assisted partial nephrectomy (RAPN). Our database was queried to identify patients who had undergone RAPN from 2007 to 2013 and had complete pre- and postoperative mercapto-acetyltriglycine (MAG3) renal scan assessment. The estimated glomerular filtration rate (eGFR) for the operated kidney was calculated by multiplying the percentage of contribution from the renal scan by the total eGFR. IRF preservation was defined as a ratio of the postoperative eGFR for the operated kidney to the preoperative eGFR for the operated kidney. The percentage of total eGFR preservation was calculated in the same manner (postoperative eGFR/preoperative eGFR × 100). The amount of healthy rim of renal parenchyma removed was assessed by deducting the volume of tumour from the volume of the PN specimen assessed on pathology. Multivariable linear regression was used for analysis. In all, 99 patients were included in the analysis. The overall median (interquartile range) total eGFR preservation and IRF preservation for the operated kidney was 83.83 (75.2-94.1)% and 72 (60.3-81)%, respectively (P < 0.01). On multivariable analysis, volume of healthy rim of renal parenchyma removed, warm ischaemia time (WIT) > 30 min, body mass index (BMI) and operated kidney preoperative eGFR were predictive of IRF preservation. Using total eGFR tends to overestimate the degree of renal function preservation after RAPN. This is particularly relevant when studying factors affecting functional outcomes after nephron-sparing surgery. IRF may be a more precise assessment method in this setting. Operated kidney baseline renal function, BMI, WIT >30 min, and amount of resected healthy renal parenchyma represent the factors with a significant impact on the IRF preservation. RAPN provides significant preservation of renal function as shown by objective assessment criteria. © 2014 The Authors. BJU International © 2014 BJU International.
Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing
2009-10-01
Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.
Association between late-life social activity and motor decline in older adults.
Buchman, Aron S; Boyle, Patricia A; Wilson, Robert S; Fleischman, Debra A; Leurgans, Sue; Bennett, David A
2009-06-22
Loss of motor function is a common consequence of aging, but little is known about the factors that predict idiopathic motor decline. Our objective was to test the hypothesis that late-life social activity is related to the rate of change in motor function in old age. Longitudinal cohort study with a mean follow-up of 4.9 years with 906 persons without stroke, Parkinson disease, or dementia participating in the Rush Memory and Aging Project. At baseline, participants rated the frequency of their current participation in common social activities from which a summary measure of social activity was derived. The main outcome measure was annual change in a composite measure of global motor function, based on 9 measures of muscle strength and 9 motor performances. Mean (SD) social activity score at baseline was 2.6 (0.58), with higher scores indicating more frequent participation in social activities. In a generalized estimating equation model, controlling for age, sex, and education, global motor function declined by approximately 0.05 U/y (estimate, 0.016; 95% confidence interval [CI], -0.057 to 0.041 [P = .02]). Each 1-point decrease in social activity was associated with approximately a 33% more rapid rate of decline in motor function (estimate, 0.016; 95% CI, 0.003 to 0.029 [P = .02]). The effect of each 1-point decrease in the social activity score at baseline on the rate of change in global motor function was the same as being approximately 5 years older at baseline (age estimate, -0.003; 95% CI, -0.004 to -0.002 [P<.001]). Furthermore, this amount of motor decline per year was associated with a more than 40% increased risk of death (hazard ratio, 1.44; 95% CI, 1.30 to 1.60) and a 65% increased risk of incident Katz disability (hazard ratio, 1.65; 95% CI, 1.48 to 1.83). The association of social activity with the rate of global motor decline did not vary along demographic lines and was unchanged (estimate, 0.025; 95% CI, 0.005 to 0.045 [P = .01]) after controlling for potential confounders including late-life physical and cognitive activity, disability, global cognition depressive symptoms, body composition, and chronic medical conditions. Less frequent participation in social activities is associated with a more rapid rate of motor function decline in old age.
Bertule, Dace; Vetra, Anita
2014-01-01
An understanding of the needs of families of preschool children with cerebral palsy (CP) is of essential importance if efficient and cost-effective services are to be provided to them. The aims of this study were to identify the most frequently expressed needs of families with preschool children with CP; differences in the amount and types of family needs based on the child's gross motor function and communication function level; and the impact of the child's gross motor function and communication function level on the type and amount of family needs. A total of 227 parents of preschool children with CP completed a modified version of the Family Needs Survey and a demographic questionnaire. Children's gross motor function level and communication function level was classified using the Gross Motor Function Classification System (GMFCS) and the Communication Function Classification System (CFCS), respectively. The total number of family needs differed based on GMFCS and CFCS levels. Children's GMFCS and CFCS level were not significant predictors of overall family needs (adjusted R(2)=0.163). In this model the GMFCS level of children did not account for the total number of family needs, while the CFCS level did. Child's limitations in terms of communication and gross motor functions must be taken into consideration when planning services for families with preschool children with CP. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Association between Late-Life Social Activity and Motor Decline in Older Adults
Buchman, Aron S.; Boyle, Patricia A.; Wilson, Robert S.; Fleischman, Debra A.; Leurgans, Sue; Bennett, David A.
2009-01-01
Background Loss of motor function is a common consequence of aging, but little is known about factors that predict idiopathic motor decline. Methods We studied 906 persons without dementia, history of stroke or Parkinson's disease participating in the Rush Memory and Aging Project. At baseline, they rated their frequency of participation in common social activities. Outcome was annual change in global motor function, based on nine measures of muscle strength and nine motor performances. Results Mean social activity score at baseline was 2.6 (SD=0.58), with higher scores indicating more frequent participation in social activities. In a generalized estimating equation model, controlling for age, sex and education, motor function declined by about 0.05 unit/year [Estimate, 0.016; 95%CI (-0.057, -0.041); p=0.017]. Each 1-point decrease in social activity was associated with about a 33% more rapid rate of decline in motor function [Estimate, 0.016; 95%CI (0.003, 0.029); p=0.017)]. This amount of annual motor decline was associated with a more than 40% increased risk of death (Hazard Ratio: 1.44; 95%CI: 1.30, 1.60) and 65% increased risk of incident Katz disability (Hazard Ratio: 1.65; 95%CI: 1.48, 1.83). The association of social activity with change in motor function did not vary along demographic lines and was unchanged after controlling for potential confounders including late-life physical and cognitive activity, disability, global cognition, depressive symptoms, body composition and chronic medical conditions [Estimate, 0.025; 95%CI (0.005, 0.045); p=0.010]. Conclusion Less frequent participation in social activities is associated with a more rapid rate of motor decline in old age. PMID:19546415