Science.gov

Sample records for pressure annular two-phase

  1. High pressure annular two-phase flow in a narrow duct. Part 1: Local measurements in the droplet field, and Part 2: Three-field modeling

    SciTech Connect

    Trabold, T.A.; Kumar, R.

    1999-07-01

    In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with

  2. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect

    Wongwises, Somchai; Pipathattakul, Manop

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a

  3. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  4. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  5. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  6. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Astrophysics Data System (ADS)

    Bousman, W. Scott; McQuillen, John B.

    1994-08-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  7. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  8. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  9. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1988-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.

  10. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1989-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the

  11. Program calculates two-phase pressure drop

    SciTech Connect

    Blackwell, W.W.

    1980-11-24

    Analysts have developed a program for determining the two-phase pressure drop in piping. Written for the TI-59 programmable calculator used with a PC-100C printer, the program incorporates several unique features: it calculates single-phase as well as two-phase pressure drops, has a 10-20 s execution time, permits the operating data to be changed easily, and includes an option for calculating the estimated surface tension of paraffinic hydrocarbon liquids.

  12. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  13. Vapor core turbulence in annular two-phase flow

    SciTech Connect

    Trabold, T.A.; Kumar, R.

    1998-06-01

    This paper reports a new technique to measure vapor turbulence in two-phase flows using hot-film anemometry. Continuous vapor turbulence measurements along with local void fraction, droplet frequency, droplet velocity and droplet diameter were measured in a thin, vertical duct. By first eliminating the portion of the output voltage signal resulting from the interaction of dispersed liquid droplets with the HFA sensor, the discrete voltage samples associated with the vapor phase were separately analyzed. The data revealed that, over the range of liquid droplet sizes and concentrations encountered, the presence of the droplet field acts to enhance vapor turbulence. In addition, there is evidence that vapor turbulence is significantly influenced by the wall-bounded liquid film. The present results are qualitatively consistent with the limited data available in the open literature.

  14. Pressure drop in two-phase flow

    NASA Astrophysics Data System (ADS)

    Akashah, S. A.

    1980-12-01

    A computer program was developed containing some of the methods for predicting pressure drop in two-phase flow. The program contains accurate methods for predicting phase behavior and physical properties and can be used to calculate pressure drops for horizontal, inclined and vertical phases. The program was used to solve test cases for many types of flow, varying the diameter, roughness, composition, overall heat transfer coefficient, angle of inclination, and length. The Lockhart-Martinelli correlation predicts the highest pressure drop while the Beggs and Brill method predicts the lowest. The American Gas Association-American Petroleum Institute method is consistent and proved to be reliable in vertical, horizontal and inclined flow. The roughness of the pipe diameter had great effect on pressure drop in two-phase flow, while the overall heat transfer coefficient had little effect.

  15. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  16. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  17. An experimental study on the static and dynamic characteristics of pump annular seals with two phase flow

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Nishino, T.

    1994-01-01

    A new test apparatus is reconstructed and is applied to investigate static and dynamic characteristics of annular seals leaked by two phase flow (gas and liquid) for turbopumps. The fluid forces acting on the seals are measured for various parameters such as void ratio, the preswirl velocity, the pressure difference between the inlet and outlet of the seal, the whirling amplitude, and the ratio of whirling speed to spinning speed of the rotor. Influence of these parameters on the static and dynamic characteristics is investigated from the experimental results. As a result, with regard to the two phase flow, as the void ratio increases, the flow induced force decreases. Another dynamic characteristic of two phase flow is as almost similar as that of the monophase flow.

  18. Two-phase pressure drop across a hydrofoil-based micro pin device using R-123

    SciTech Connect

    Kosar, Ali

    2008-05-15

    The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)

  19. Development of electro-optical instrumentation for annular two-phase flow studies

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1981-05-01

    Th development of new electro-optical instrumentation for studying the annular dispersed two phase flow regime is described. The system measures the thickness of the water film and droplet size and velocity distributions which would be encountered in such a flow regime. The water film thickness is measured by an improved capacitance method with a short time constant using newly developed sensor electrodes. The electrodes are made flush with the inner wall of a cylindrical tube and do not disturb the flow. In the test equipment, steady, laminar flow of water along the inner wall of the tube is controlled by appropriate valves and a porous jacket while droplets are introduced by means of a special spray nozzle.

  20. Correlation for liquid entrainment in annular two-phase flow of viscous fluid

    SciTech Connect

    Ishii, Mamoru; Mishima, Kaichiro

    1981-03-01

    The droplet entrainment from a liquid film by gas flow is important to mass, momentum, and energy transfer in annular two-phase flow. The amount of entrainment can significantly affect occurrences of the dryout and post-dryout heat flux as well as the rewetting phenomena of a hot dry surface. In view of these, a correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasiequilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, and total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which have not been available previously. (author)

  1. Two-Phase Flow Pressure Drop of High Quality Steam

    SciTech Connect

    Curtis, J. M.; Coffield, R. D.

    2001-10-01

    Two-phase pressure drop across a straight test pipe was experimentally determined for high Reynolds (Re) number steam flow for a flow quality range of 0.995 to 1.0. The testing described has been performed in order to reduce uncertainties associated with the effects of two-phase flow on pressure drop. Two-phase flow develops in steam piping because a small fraction of the steam flow condenses due to heat loss to the surroundings. There has been very limited two-phase pressure drop data in open literature for the tested flow quality range. The two-phase pressure drop data obtained in this test has enabled development of a correlation between friction factor, Reynolds number, and flow quality.

  2. The Annular Two-phase Flow on Rod Bundle: The Effects of Spacers

    NASA Astrophysics Data System (ADS)

    Kunugi, Tomoaki; Pham, Son; Kawara, Zensaku; Yokomine, Takehiko

    2013-11-01

    The annular two-phase flow on rod bundle keeps an important role in many heat exchange systems but our knowledge about it, especially the interaction between the liquid film flowing on the rods' surfaces and the spacers is very limited. This study is aimed to the investigation of how the spacer affects the disturbance waves of the flow in a 3 × 3 simulating BWR fuel rod bundle test section. Firstly, the characteristics of the disturbance waves at both upstream and downstream locations of the spacer were obtained by using reflected light arrangement with a high speed camera Phantom V7.1 (Vision Research Inc.) and a Nikon macro lens 105mm f/2.8. The data showed that the parameters such as frequency and circumferential coherence of the disturbance waves are strongly modified when they go through the spacer. Then, the observations at the locations right before and after the spacer were performed by using the back light arrangement with the same high speed camera and a Cassegrain optical system (Seika Cooperation). The obtained images at micro-scale of time and space provided the descriptions of the wavy interface behaviors right before and after the spacer as well as different droplets creation processes caused by the presence of this spacer.

  3. Two-phase flow characteristic of inverted bubbly, slug and annular flow in post-critical heat flux region

    SciTech Connect

    Ishii, M.; Denten, J.P.

    1988-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs.

  4. Vertical two-phase flow regimes and pressure gradients: Effect of viscosity

    SciTech Connect

    Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2007-05-15

    The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)

  5. Annular Pressure Seals and Hydrostatic Bearings

    DTIC Science & Technology

    2006-11-01

    affecting the rotordynamics of liquid turbopumps, in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals... rotordynamic stability. Hydrostatic bearings rely on external fluid pressurization to generate load support and large centering stiffnesses, even in...SEALS IN PUMP APPLICATIONS Seal rotordynamic characteristic have a primary influence on the stability response of high-performance turbomachinery [1

  6. Theoretical and pragmatic modeling of governing equations for two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M.; Ajuha, S.; Sengpiel, W.

    1994-12-31

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy derived for a two-phase flow by volume-averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration; bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities makes the rigorously formulated terms useless for computational purposes, modeling of these terms is discussed.

  7. Theoretical and pragmatic modelling of governing equations for a two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M.; Sengpiel, W.

    1992-12-01

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.

  8. Theoretical and pragmatic modelling of governing equations for a two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M. . Materials and Components Technology Div.); Sengpiel, W. . Inst. fuer Reaktorsicherheit)

    1992-01-01

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.

  9. Steam-water two-phase flow in large diameter vertical piping at high pressures and temperatures

    SciTech Connect

    Hasanein, H.A.; Kawaji, Masahiro; Chan, A.M.C.; Yoshioka, Yuzuru

    1996-08-01

    No information on steam/water two-phase flow behavior in large diameter pipes (10 inch or larger) at elevated pressures is available in the open literature. However, there are many applications, in the nuclear, chemical and petroleum industries among others where two-phase flows in large diameter pipes at elevated pressures and temperatures are encountered routinely or under accident scenarios. Experimental data on steam-water two-phase flow in a large diameter (20 inch, 50.08 cm I.D.) vertical pipe at elevated pressures and temperatures (2.8 MPa/230 C--6.4 MPa/280 C) have been obtained. Void fraction, two-phase mass flux, phase and velocity distributions as well as pressure drop along the test pipe have been measured using the Ontario Hydro Technologies (OHT) Pump Test Loop. The void fraction distributions were found to be axially symmetric and nearly flat over a wide range of two-phase flow conditions. The two-phase flow regime could be inferred from the dynamic void fluctuations data. For the 280 C tests, the flow was found to be relatively stable with bubbly flow at low average void fractions and churn turbulent or wispy-annular flow at higher void fractions. At 230 C, the flow became rather oscillatory and slugging was suspected at relatively low voids. It has also been found that the average void fractions in the test section can be determined reasonably accurately using the axial pressure drop data.

  10. The limit of the film extraction technique for annular two-phase flow in a small tube

    SciTech Connect

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirely from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.

  11. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  12. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  13. Controlling the pressure within an annular volume of a wellbore

    SciTech Connect

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  14. Controlling the pressure within an annular volume of a wellbore

    SciTech Connect

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  15. Refrigerant pressurization system with a two-phase condensing ejector

    DOEpatents

    Bergander, Mark

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  16. Heat transfer, pressure drop and void fraction in two- phase, two-component flow in a vertical tube

    NASA Astrophysics Data System (ADS)

    Sujumnong, Manit

    1998-09-01

    There are very few data existing in two-phase, two- component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick- closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were: tested against the present data for mean heat-transfer coefficients. It was found that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid

  17. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  18. The transition between stratified and annular regimes for horizontal two-phase flow in small diameter tubes

    SciTech Connect

    Galbiati, L.; Andreini, P. )

    1992-03-01

    In this paper a modification to the model of Taitel and Dukler to include the effect of surface tension in transition between stratified and annular regimes is proposed. The predictions of the modified theory given in this paper are compared with empirical boundaries presented in literature. A good agreement has been found.

  19. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  20. Two-phase flow pattern recognition in a varying section based on void fraction and pressure measurements

    NASA Astrophysics Data System (ADS)

    de Kerret, F.; Benito, I.; Béguin, C.; Pelletier, D.; Etienne, S.

    2016-11-01

    In a hydroelectric turbine, the air injected during operation has an impact on the yield of the machine leading to important losses of energy. To understand those losses and be able to reduce them, a first step is to understand the pattern of the two-phase flows and describe their characteristics in the turbine. Those two-phase flows can be bubbly, intermittent, or annular, with different types of intermittent flow possible. Two-phase flow patterns are well defined in classical geometries such as cylinders with reliable descriptions available [5]. But, there is a critical lack of knowledge for flow patterns in other geometries. In our present work we take interest into a geometry that is a pipe with periodical changes of the section and realize a flow pattern map. To realize this map, we measure the pressure variations and void fraction fluctuations while changing the flow rates of water and air in our test section. We then use our physical understanding of the phenomena to analyze data and identify different flow patterns, characterize them, and build a new flow pattern map.

  1. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    PubMed Central

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  2. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.

    PubMed

    Dong, S; Wang, X

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.

  3. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  4. New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Braisted, Jon; Kurwitz, Cable; Best, Frederick

    2004-02-01

    The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.

  5. A new linearized theory of laminar film condensation of two phase annular flow in a capillary pumped loop

    NASA Technical Reports Server (NTRS)

    Hsu, Y. K.; Swanson, T.; Mcintosh, R.

    1988-01-01

    Future large space based facilities, such as Space Station, will require energy management systems capable of transporting tens of kilowatts of heat over a hundred meters or more. This represents better than an order of magnitude improvement over current technology. Two-phase thermal systems are currently being developed to meet this challenge. Condensation heat transfer plays a very important role in this system. The present study attempts an analytic solution to the set of linearized partial differential equations. The axial velocity and temperature functions were found to be Bessel functions which have oscillatory behavior. This result agrees qualitatively with the experimental evidence from tests at both NASA Goddard Space Flight Center and elsewhere.

  6. Comparison of Pressure Drop between Calculation and Experiment for a Two-phase Carbon Dioxide Loop

    NASA Astrophysics Data System (ADS)

    Mo, D.-C.; Xiao, W.-J.; Huang, Z.-C.; Sun, X.-H.; Chen, Y.; Lu, S.-S.; Li, T.-X.; Qi, X.-M.; Wang, Z.-X.; Pauw, A.; Bsibsi, M.; Gargiulo, C.; van Es, J.; He, Z.-H.

    2008-09-01

    Tracker thermal control system (TTCS) is an active-pumped two-phase carbon dioxide cooling loop, which is developed for the Alpha Magnetic Spectrometer tracker front-end electronics. The maintenance-free centrifugal pump is a critical component in the design mainly due to the limited pressure head with small mass flows. Therefore a correct pressure drop is required to predict the pressure drop for dynamic modeling. As the normal operational temperature of the carbon dioxide in the TTCS is from - 15°C to +15°C, which is very close to its critical point, 33°C, and many two-phase pressure drop correlations may not fit well here. In this paper, we attempt to correlate the pressure drops between the calculations and the experiment of the two-phase CO2 loop. The comparison will focus on one evaporator. Here, the Lockhart/Martinelli correlation is recorrelated with different definition C value for CO2 according to the test results. Comparison shows that, the new correlation can fit the test results well.

  7. Pressure Profiles in Two-Phase Geothermal Wells: Comparison of Field Data and Model Calculations

    SciTech Connect

    Ambastha, A.K.; Gudmundsson, J.S.

    1986-01-21

    Increased confidence in the predictive power of two-phase correlations is a vital part of wellbore deliverability and deposition studies for geothermal wells. Previously, the Orkiszewski (1967) set of correlations has been recommended by many investigators to analyze geothermal wellbore performance. In this study, we use measured flowing pressure profile data from ten geothermal wells around the world, covering a wide range of flowrate, fluid enthalpy, wellhead pressure and well depth. We compare measured and calculated pressure profiles using the Orkiszewski (1967) correlations.

  8. Modelling of bubbly and annular two-phase flow in subchannel geometries with BACCHUS-3D/TP

    SciTech Connect

    Bottoni, M.; Lyczkowski, R.W.

    1992-01-01

    The theoretical and computational bases of the BACCHUS-3D/TP computer program are reviewed. The computer program is used for thermal-hydraulic analyses of nuclear fuel bundles under normal and accident conditions. The present program combines two models and solution procedures previously used separately, namely, the Improved Slip Model (ISM) and the Separated-Phases Model (SPM). The former model uses mixture equations with accounting for slip between the phases, whereas the latter uses separate continuity and momentum equations. At the present stage of development, both assume thermodynamic equilibrium. Techniques used to affect smooth transition between the two models are described. including treatment of frictional pressure drop and solution of the Poisson and momentum equations. A detailed derivation of the computation of mass transfer between the phases is given because it is a central and novel feature of the model.

  9. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a

  10. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  11. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  12. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  13. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  14. Flow Pressure Loss through Straight Annular Corrugated Pipes

    NASA Technical Reports Server (NTRS)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  15. Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen

    1990-01-01

    A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.

  16. The effect of pressure on annular flow pressure drop in a small pipe

    SciTech Connect

    de Bertodano, M.A.L.; Beus, S.G.; Shi, Jian-Feng

    1996-09-01

    New experimental data was obtained for pressure drop and entrainment for annular up-flow in a vertical pipe. The 9.5 mm. pipe has an L/D ratio of 440 to insure fully developed annular flow. The pressure ranged from 140 kPa to 660 kPa. Therefore the density ratio was varied by a factor of four approximately. This allows the investigation of the effect of pressure on the interfacial shear models. Gas superficial velocities between 25 and 126 m/s were tested. This extends the range of previous data to higher gas velocities. The data were compared with well known models for interfacial shear that represent the state of the art. Good results were obtained when the model by Asali, Hanratty and Andreussi was modified for the effect of pressure. Furthermore an equivalent model was obtained based on the mixing length theory for rough pipes. It correlates the equivalent roughness to the film thickness.

  17. Two-phase pressure drop with twisted-tape swirl generators

    SciTech Connect

    Jensen, M.K.; Bensler, H.P.; Pourdoshti, M.

    1985-03-01

    An experimental study has been conducted to determine the effect of twisted-tape swirl generators on adiabatic and diabatic two-phase flow pressure drops in vertical straight tubes. Tape-twist ratios (length for 180/sup 0/ twist/inside tube diameter) of 3.94, 8.94, and 13.92 were tested with R-113 over a range of pressures, mass velocities, qualities, and heat fluxes. Empty tube reference data were successfully predicted with a correlation from the literature. The twisted tape data wer successfully correlated by using the hydraulic diameter and a single-phase swirl flow friction factor in the empty tube correlation. Data from the literature also were predicted well with this correlation.

  18. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    SciTech Connect

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)

  19. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.

    PubMed

    Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H

    2015-06-07

    We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.

  20. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-01-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  1. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-02-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  2. Three-dimensional Modelling of Two-phase Flow involving Droplets and Atmospheric Pressure Discharge

    NASA Astrophysics Data System (ADS)

    Iqbal, M. M.; Stallard, C. P.; Dowling, D. P.; Turner, M. M.

    2013-09-01

    We employ a three-dimensional coupled fluid-droplet model (FD3d) to describe the complex mechanism of droplet-plasma interaction that occurs when a liquid precursor is injected through a nebulizer into an atmospheric pressure discharge (APD). The formation of conducting channels in the APD plasma illustrates that the electron concentration around the pulse of droplets emitted by the nebulizer is perturbed by the influence of different gas impurities due to the impact of Penning ionization. The development of the sheath potential around the pulse of HMDSO droplets is significantly stronger in the case of He-air than a He-N2 gas mixture, which illustrates the contribution of oxygen impurities. The volumetric density profiles of ionic species are discussed by describing the complex situation of two-phase flow at distinct driving frequencies (5 - 100 kHz). The uniform structure of APD plasma is formed by considering an appropriate size distribution of droplets because the non-uniformities grow due to the existence of larger radii of droplets. The comparison of numerical modelling results of droplet size distributions is performed with experimental measurements using laser diffraction particle size analysis technique. The desired properties of surface coating applications can be predicted by controlling various parameters mentioned in the fluid-droplet model. Science Foundation Ireland under Grant No. 08/SRC/I1411.

  3. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels

    NASA Astrophysics Data System (ADS)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  4. Experimental study on the flow patterns and the two-phase pressure drops in a horizontal impacting T-Junction

    NASA Astrophysics Data System (ADS)

    Bertani, C.; Malandrone, M.; Panella, B.

    2014-04-01

    The present paper analyzes the experimental results concerning the flow patterns and pressure drops in two-phase flow through a horizontal impacting T-junction, whose outlet pipes are aligned and perpendicular to the inlet pipe. The test section consists of plexiglass pipes with inner diameter of 10 mm. A mixture of water and air at ambient temperature and pressures up to 2.4 bar flows through the T-junction, with different splitting of flow rates in the two outlet branches; superficial velocities of air and water in the inlet pipe have been varied up to a maximum of 35 m/s and 3.5 m/s respectively. The flow patterns occurring in the inlet and branch pipes are compared with the predictions of the Baker and Taitel - Dukler maps. The pressure drops along the branches have been measured relatively to different splitting of the flow rate through the two branches and the pressure loss coefficients in the junction have been evaluated. Friction pressure drops have allowed us to evaluate two-phase friction multipliers, which have then been compared to the predictions of Lockhart-Martinelli, and Friedel correlations. Local pressure drops have been extrapolated at the junction centre and analyzed; the two-phase multiplier has been evaluated and compared with the predictions of Chisholm correlation; the value of the empirical coefficient that minimizes the discrepancy has also been evaluated.

  5. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  6. Annularly grooved membrane combined with rood beam piezoresistive pressure sensor for low pressure applications

    NASA Astrophysics Data System (ADS)

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L.

    2017-03-01

    A novel structural piezoresistive pressure sensor with annularly grooved membrane combined with rood beam has been proposed for low pressure measurements based on silicon substrate. In this study, a design method, including the model design, dimensions optimization, and performance prediction of the novel structure sensor, is presented. The finite element method has been used to analyze the stress distribution of sensitive elements and the deflection of membrane. On the basis of simulation results, the relationships between structural dimension variables and mechanical performance are deduced, which make the fabrication processes more efficient. According to statistics theory, the coefficient of determination R2 and residual sum of squares are introduced to indicate whether the fitting equations and curves match well with the simulation results. After that, a series of the optimal membrane dimensions are determined. Compared with other structural sensors, the optimized sensor achieves the best overall properties as it mitigates the contradiction between sensitivity and linearity. The reasons why the proposed sensor can maximize sensitivity and minimize nonlinearity are also discussed. By localizing more strain energy in the high concentrated stress profile and creating partially stiffened membrane, the proposed sensor has achieved a high sensitivity of 34.5 (mV/V)/psi and a low nonlinearity of 0.25% FSS. Thus, the proposed structure sensor will be a proper choice for low pressure applications less than 1 psi.

  7. Annularly grooved membrane combined with rood beam piezoresistive pressure sensor for low pressure applications.

    PubMed

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L

    2017-03-01

    A novel structural piezoresistive pressure sensor with annularly grooved membrane combined with rood beam has been proposed for low pressure measurements based on silicon substrate. In this study, a design method, including the model design, dimensions optimization, and performance prediction of the novel structure sensor, is presented. The finite element method has been used to analyze the stress distribution of sensitive elements and the deflection of membrane. On the basis of simulation results, the relationships between structural dimension variables and mechanical performance are deduced, which make the fabrication processes more efficient. According to statistics theory, the coefficient of determination R(2) and residual sum of squares are introduced to indicate whether the fitting equations and curves match well with the simulation results. After that, a series of the optimal membrane dimensions are determined. Compared with other structural sensors, the optimized sensor achieves the best overall properties as it mitigates the contradiction between sensitivity and linearity. The reasons why the proposed sensor can maximize sensitivity and minimize nonlinearity are also discussed. By localizing more strain energy in the high concentrated stress profile and creating partially stiffened membrane, the proposed sensor has achieved a high sensitivity of 34.5 (mV/V)/psi and a low nonlinearity of 0.25% FSS. Thus, the proposed structure sensor will be a proper choice for low pressure applications less than 1 psi.

  8. Ventless pressure control of two-phase propellant tanks in microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Panzarella, Charles H.

    2004-01-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  9. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  10. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  11. Two-Phase Pressure Drop in a Twisted Tape Boiler for a Microgravity Rankine Cycle Power System

    NASA Astrophysics Data System (ADS)

    Oinuma, Ryoji; Bean, David; Neill, Charles; Supak, Kevin; Best, Frederick

    2006-01-01

    A once-through type boiler with twisted tape inserts has been proposed for a Rankine cycle power system in space since the 1960s. However, information regarding fluid dynamics such as pressure drop in the boiler is not established well. As a fundamental study of the system characteristics, adiabatic two-phase pressure drop is measured over the range of 0 to 175.4 kg/m2s for water and 0 to 25.4 kg/m2s for air and is compared using the Homogeneous model and correlations of two-phase multipliers. The Homogeneous model and the Lockhart-Martinelli correlations predict by 30 % of the experimental results. The Friedel correlation predicts much higher values and the Jensen correlation predicts much lower values. Flow regimes for each test point are observed by a high speed camera. To evaluate the diabatic pressure drop, a heat exchanger with a twisted tape insert is designed. R-11 is used as a working fluid and boiler is heated with hot water. For the diabatic pressure drop, the values predicted by the Homogeneous model are approximately 30% lower than the experimental results.

  12. A rotating two-phase gas/liquid flow for pressure reduction in underwater plasma arc welding

    SciTech Connect

    Steinkamp, H.; Creutz, M.; Mewes, D.; Bartzsch, J.

    1994-12-31

    Plasma arc welding processes are used in off-shore industry for the construction and maintenance in the wet surrounding of underwater structures and pipelines. In greater water depth the density of the plasma gas increase because of the greater hydrostatic pressure. This causes an increase of the conductive heat losses to the wet surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. The plasma arc has to burn in a locally dry area. This requirement can be fulfilled by a rotating disc placed above the workpiece. In the gap between the lower end of the cylinder and the workpiece a rotating two-phase flow is maintained. The flow around the rotating disc is experimentally investigated. The rotating disc is placed above the surface of the workpiece which is simulated by a flat plate. Water is forced out of the cylinder due to centrifugal forces set up by the rotating disc and flat plate. The velocity distribution in the flow is measured by Laser-Doppler-Anemometry. The phase distribution in the two-phase flow in the gap is measured by local electrical probes. The static pressure in the gaseous atmosphere is reduced in comparison to the hydrostatic pressure of the surrounding water. The pressure reduction is given by the void fraction, the phase distribution and the volume flow rates of both phases in the gap as well as by the speed of revolution and the design of the disc and the work surface. Apart from the investigations on the fluid dynamics, the method to reduce the pressure was technically proved. Experiments were carried out under water with a plasma MIG welder.

  13. Performance at Simulated High Altitudes of a Prevaporizing Annular Turbojet Combustor Having Low Pressure Loss

    NASA Technical Reports Server (NTRS)

    Norgren, Carl T

    1956-01-01

    An annular prevaporizing turbojet combustor having pressure losses lower than those obtained in current turbojet combustors was developed, Pressure losses of 2 to 4 percent, satisfactory temperature profiles, and combustion efficiencies of 98, 88, and 81 percent were obtained at 56,000, 70,000, and 80,000 feet respectively, for a simulated 5.2- pressure-ratio engine at rated speed and 0.6 flight Mach number with JP-4 fuel. Use of JP-5 fuel resulted in a small penalty in efficiency due, at least in part, to insufficient prevaporizer capacity.

  14. Prediction of pressure drop of two-phase coal slurries in pipelines

    NASA Astrophysics Data System (ADS)

    Sanghvi, S. M.; Tolan, J. S.

    1982-11-01

    Pressure drop and flow rate measurements through pipeline viscometers were analyzed using the power law, Bingham-plastic and Bowen non-Newtonian heological models in a computer program. Wall slip was corrected with Hanks' modification of the Rabinowitsch-Mooney equation. The possibility of solids settling was analyzed with the Oroskar-Turian correlation. The program relates shear stress to shear rate for Fort Lewis coal-slurry data to within 5% for flow without solids settling. Wilsonville coal-slurry data with solids settling were fit to within 17% by the Bowen model, but the Bowen parameters are very sensitive to operating conditions. Pressure drop is predicted in the program as a function of flow rate and pipe diameter, using the analysis of best-fit rheological parameters and literature correlations for friction factors. The effect of wall slip on shear stress decreased with increasing pipe diameter. A modification to the graphical criterion for turbulence was proposed that utilizes the numerical value of the slopes of the branched flow curves.

  15. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    SciTech Connect

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  16. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    PubMed

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m(3) was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor.

  17. Study on the two-phase critical flow through a small bottom break in a pressurized horizontal pipe

    NASA Astrophysics Data System (ADS)

    Chung, Moon-Sun

    2008-06-01

    Two-phase critical flow rates through a small bottom break of a pressurized horizontal pipe are calculated by using an improved critical flow model with a well-known quality prediction model. This phenomenon has many difficulties in predicting the two-phase critical flow rate at the break points mainly due to the inaccuracies of the critical flow model as well as the quality prediction model. In this study, the critical flow model is improved as a first step that is based on a new sound speed criterion derived from the hyperbolic two-fluid model for non-equilibrium flow and this model is applied to a system analysis code. Following to a conceptual problem of the vertically upward flow with quality variation, the small bottom break of a pressurized horizontal pipe is simulated and discussed in some detail. From the test results without any adjustment like empirical discharge coefficient, the assessment results on the critical flow test through a small bottom break in a horizontal pipe show that just improving the critical flow model can remarkably reduce the relative error.

  18. Review of critical flow rate, propagation of pressure pulse, and sonic velocity in two-phase media

    NASA Technical Reports Server (NTRS)

    Hsu, Y.

    1972-01-01

    For single-phase media, the critical discharge velocity, the sonic velocity, and the pressure pulse propagation velocity can be expressed in the same form by assuming isentropic, equilibria processes. In two-phase mixtures, the same concept is not valid due to the existence of interfacial transports of momentum, heat, and mass. Thus, the three velocities should be treated differently and separately for each particular condition, taking into account the various transport processes involved under that condition. Various attempts are reviewed to predict the critical discharge rate or the propagation velocities by considering slip ratio (momentum change), evaporation (mass and heat transport), flow pattern, etc. Experimental data were compared with predictions based on various theorems. The importance is stressed of the time required to achieve equilibrium as compared with the time available during the process, for example, of passing a pressure pulse.

  19. On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.; Oefelein, Joseph C.

    2013-09-01

    A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for

  20. Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line

    SciTech Connect

    Lee, Chi Young; Lee, Sang Yong

    2010-01-15

    In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air-water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%. (author)

  1. Transient two-phase CFD simulation of overload pressure pulsation in a prototype sized Francis turbine considering the waterway dynamics

    NASA Astrophysics Data System (ADS)

    Mössinger, P.; Conrad, P.; Jung, A.

    2014-03-01

    At high load operation points, Francis turbines generally produce large cavitation volumes of central vortex character in the draft tube. In order to gain a deeper understanding of the flow behaviour at high load conditions a combined 1D-3D transient two-phase numerical investigation at prototype size was carried out and these results were compared with measured site data. A one-dimensional model to capture hydroacoustic effects along a pipeline will be presented. The corresponding PDEs were solved using an implicit finite difference scheme on a staggered grid. In contrast to previous studies this model is coupled to the commercial software ANSYS CFX through an interface which exchanges pressure and discharge data within every time step until convergence. Results of the one-dimensional approach as well as the coupled solution were validated with commercial one-dimensional software (SIMSEN) and a full threedimensional calculation for hydroacoustic test cases. Unlike former investigations the described 1D-3D approach is used to compare site data with a numerical analysis at prototype size focused on the amplitude and frequency of the pressure pulsation at overload condition. The combined model is able to capture the occurring phase change in the draft tube as well as the propagating pressure oscillation through the hydraulic system without solving for the whole penstock in a 3D manner, thus saving time and computational resources.

  2. Two-phase flow in a diverging nozzle. Comparison between a new formula for the pressure rise in an expansion and numerical calculation using two-phase codes with experimental data

    NASA Astrophysics Data System (ADS)

    Wadle, M.

    1986-05-01

    Stationary two phase flow of steam-water and air-water mixtures in a well instrumented horizontal diverging nozzle was investigated. The test section consists of a constant diameter tube, a friction section followed by an expansion (the diffusor) which has a tan h contour, and another constant diameter tube. The initial conditions were varied to achieve subcritical and critical mass flow rates. The agreement between the experimentally determined pressure recovery in the nozzle expansion and seven analytical models is poor. A model based on the superficial velocity concept shows good agreement. Calculation with the two phase code DUESE shows that in the diffusion mechanical nonequilibrium prevails, while thermodynamic nonequilibrium has only a small effect.

  3. Two-phase flow heat transfer and pressure drop characteristics of R-22 and R-32/125

    SciTech Connect

    Wijaya, H.; Spatz, M.W.

    1995-08-01

    The two-phase heat transfer coefficient and pressure drop characteristics of refrigerants R-22 and R-32/125 (ASI 1990) (a mixture of 50 wt% R-32 and 50 wt% R-125 that exhibits azeotropic behavior) have been measured. The experiments were conducted without oil in the refrigerant loop. The condenser/evaporator test sections consist of smooth, horizontal copper tubes of 3/8-in. (9.53-mm) outer diameter (OD) and 0.305-in. (7.75-mm) inner diameter (ID). A lengths of the condenser and evaporator test sections are 10 ft (3.05 m) and 12 ft (3.66 m), respectively. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and a water-glycol mixture flowing in the annulus. The evaporator is a smooth copper tube sandwiched with aluminum blocks. Heating tapes are wrapped around the outer surface of these aluminum blocks. The average saturated condensing temperatures were 115 F (46.1 C) and 125 F (51.7 C), while the saturated evaporating temperature was 40 F (4.4 C). The average inlet and exit qualities for the condensation tests were 87% and 25%, respectively and for the evaporation tests they were 20% and 90%, respectively. The mass flux was varied from 118 klb/ft{sup 2}{minus}{center_dot}h (160 kg/s{center_dot}m{sup 2}) to 414 klb/ft{sup 2}{center_dot}h (561 kg/s{center_dot}m{sup 2}). A differential pressure transducer was used to measure the pressure drop across the test section. The results showed that at similar mass fluxes the condensation heat transfer coefficients for R-32/125 were slightly higher (about 2% to 6%) than those of R-22.

  4. High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge.

    PubMed

    Wahidunnabi, Abdullahil K; Eskicioglu, Cigdem

    2014-12-01

    This study compared advanced anaerobic digestion combining two-phased anaerobic digestion (2PAD) with high pressure homogenization (HPH) pretreatment to conventional anaerobic digestion of municipal sludge at laboratory scale. The study began with examination of thickened waste activated sludge (TWAS) solubilization due to HPH pretreatment at different pressure (0-12,000 psi) and chemical dose (0.009-0.036 g NaOH/g total solids). Homogenizing pressure was found as the most significant factor (p-value < 0.05) for increasing solubilization of particulate chemical oxygen demand (COD) and biopolymers in TWAS. Based on the preliminary results, a pretreatment with chemical dose of 0.009 g NaOH/g total solids and pressure of 12,000 psi was selected for digester studies. Upon acclimation of anaerobic inocula to pretreatments, a total number of twelve lab-scale digesters were operated under scenarios including single-stage (control), 2PAD, and HPH coupled with 2PAD (HPH + 2PAD) at sludge retention times (SRTs) of 20, 14 and 7 days. Between mesophilic and thermophilic temperatures, mesophilic digestion was found to benefit more from pretreatments. Relative (to control) improvements in methane yield and volatile solids (VS) removals increased noticeably as SRT was shortened from 20 to 14 and 7 days. HPH + 2PAD system was found to achieve the maximum methane production (0.61-1.32 L CH4/Ldigester-d) and VS removals (43-64%). Thermophilic control, 2PAD and HPH + 2PAD systems resulted in significant pathogen removals meeting Class A biosolids requirements according to Organic Matter Recycling Regulations (OMRR) of British Columbia (BC) at 20 d SRT. Energy analysis indicated that all the digestion scenarios attained positive energy balance with 2PAD system operated at 20 d SRT producing the maximum net energy of 4.76 GJ/tonne CODadded.

  5. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  6. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    SciTech Connect

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  7. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  8. Two-phase flow boiling frictional pressure drop of liquid nitrogen in horizontal circular mini-tubes: Experimental investigation and comparison with correlations

    NASA Astrophysics Data System (ADS)

    Chen, Xingya; Chen, Shuangtao; Chen, Jun; Li, Jiapeng; Liu, Xiufang; Chen, Liang; Hou, Yu

    2017-04-01

    The two-phase flow boiling characteristics of liquid nitrogen (LN2) in horizontal circular mini-tubes were experimentally studied. Experiments were performed in a wide range of flow conditions, e.g. inlet pressure from 0.17 to 0.35 MPa, mass flux from 140 to 330 kg/m2 s, heat flux from 0.5 to 69.4 kW/m2 and tube diameters of 2.92 mm and 3.96 mm. The influences of mass flux, heat flux, and inlet pressure on the pressure drop were discussed. The results indicated that the pressure drop increases with the increasing mass flux and heat flux but decreases with the increasing inlet pressure. But the influence of heat flux on the frictional pressure drop of LN2 was weaker than mass flux and inlet pressure. The frictional pressure drop of two-phase flow of LN2 was compared with homogeneous model and several semi-empirical correlations. An improved correlation based on the Lockhart-Martinelli model, which used coefficient C as a function of Reynolds number and Weber number was proposed.

  9. Experimental investigation on film cooling performance of pressure side in annular cascades

    NASA Astrophysics Data System (ADS)

    Li, Guoqing; Deng, Hongwu

    2011-06-01

    Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where 18 blades were installed with chord length of 124.3 mm and height of 99 mm. A film hole with diameter of 4 mm, angled 28° to the tangential of the pressure surface in streamwise, was set in the middle span of the blade. The Reynolds number based on the outlet mainstream velocity and the blade chord length of the second stage varied from 1.52×105 to 2.00×105. All measurements were made with the blowing ratio varying from 0.3 to 3.0. Air and CO2 worked as coolant to achieve the coolant-to-mainstream density ratio of 1.03 and 1.57. The results show that the film coverage and cooling effectiveness scale up with the blowing ratio. Higher density ratio can generate larger film cooling coverage and effectiveness. The higher the Reynolds number, the larger the film coverage and cooling effectiveness.

  10. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements.

    PubMed

    Vanierschot, Maarten; Van den Bulck, Eric

    2008-11-28

    In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  11. Using ultrasonic measurements and a two-phase composite model to assess radiation damage in reactor pressure vessel steels

    SciTech Connect

    Wang, J.A.

    1996-05-01

    Ultrasonic methods used in the study of radiation damage and recovery in single crystals appear to also be useful for similar studies on polycrystalline alloys. Ultrasonic methods have demonstrated a sensitivity to radiation damage as affected by neutron fluence, irradiation temperature, large changes in composition, and possibly, as well, by neutron energy spectrum. On the microstructure defect evolution, only the residual defects created through the radiation event will contribute to the final macroscopic material property change. From a microstructure point, it is generally accepted that radiation hardening and embrittlement in metals are caused by clusters of vacancies, interstitial, and solute atoms that impede the motion of slip dislocations. Although vacancy-type defects are a major contributor to the material hardening, they also indicate the presence of other interstitial defects. Thus the total volume change of vacancy-type defects before and after irradiation can serve as a direct index to the final material property changes. The volume change of the vacancy-type defects can be determined by utilizing the two -phase composite model (matrix and void-type inclusion) to interpret wave velocities of baseline and irradiated specimens that are obtained from the ultrasonic wave experiment. This is a relatively economic and straightforward procedure. The correlation of the volume change of the vacancy-type defects with the existing destructive mechanical test results may play an important role in the future for the prediction of the radiation embrittlement and remaining plant lifetime, especially for the older plants on the verge of exhausting all the available mechanical test specimens loaded in the surveillance capsules. The above hypothesis was supported by the limited irradiated data analyzed and presented in his paper. The proposed ultrasonic methodology also has a potential application to assess creep damage in fossil power plants.

  12. Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles

    NASA Astrophysics Data System (ADS)

    Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.

    2017-02-01

    Experimental data on heat transfer to supercritical pressure water presented at ISSCWR-5, 6, and 7 international symposiums—which took place in 2011-2015 in Canada, China, and Finland—and data printed in recent periodical scientific publications were analyzed. Results of experiments with annular channels and three- and four-rod bundles of heating elements positioned in square or triangular grids were examined. Methodology used for round pipes was applied at generalization of experimental data and establishing of correlations suitable for engineering analysis of heat exchange coefficient in conditions of strongly changing water properties in the near-critical pressure region. Empiric formulas describing normal heat transfer to supercritical pressure water mowing in annular channels and rod bundles were obtained. As compared to existing recommendations, suggested correlations are distinguished by specified dependency of heat exchange coefficient on density of heat flux and mass flow velocity of water near pseudo-critical temperature. Differences between computed values of heat exchange coefficient and experimental data usually do not exceed ±25%. Detailed statistical analysis of deviations between computed and experimental results at different states of supercritical pressure water flow was carried out. Peculiarities of deteriorated heat exchange were considered and their existence boundaries were defined. Experimental results obtained for these regimes were generalized using criteria by J.D. Jackson that take the influence of thermal acceleration and Archimedes forces on heat exchange processes into account. Satisfactory agreement between experimental data on heat exchange at flowing of water in annular channels and rod bundles and data for round pipes was shown.

  13. Numerical study of two-phase flows in porous media : extraction of a capillary pressure saturation curve free from boundary effects

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Moura, Marcel; Jørgen Måløy, Knut; Toussaint, Renaud; Schäfer, Gerhard

    2015-04-01

    The capillary pressure saturation relationship is a key element in the resolution of hydrological problems that involve the closure partial-flow Darcy relations. This relationship is derived empirically, and the two typical curve fitting equations that are used to describe it are the Brooks-Corey and Van Genüchten models. The question we tackle is the influence of the boundary conditions of the experimental set-up on the measurement of this retention curve, resulting in a non physical pressure-saturation curve in porous media, due the "end effects" phenomenon. In this study we analyze the drainage of a two-phase flow from a quasi 2D random porous medium, and compare it to simulations arising from an invasion percolation algorithm. The medium is initially saturated with a viscous fluid, and as the pressure difference is gradually increased, air penetrates from an open inlet, thus displacing the fluid which leaves the system from the outlet in the opposing side. In the initial stage, the liquid-air interface evolves from a planar front to the fractal structure characteristic of slow drainage processes, giving the initial downward curvature. In the final stage, air spreads all along the filter, and must reach narrower pores, calling for an increase of the pressure difference, reflected by the final upward curvature. Measuring the pressure-saturation (P-S) law in subwindows located at the inlet, outlet and middle of the network, we emphasize that these boundary effects are the fact of a fraction of pores that is likely to be negligible for high scale systems. We analyze the value of the air saturation at the end of the experiment for a series of simulations with different sample geometries : we observe that this saturation converges to a plateau when the distance between the inlet ant outlet increases, and that the value of this plateau is determined by the distance between the lateral walls. We finally show that the pressure difference between the two phases

  14. Asymptotic theory of two-phase gas-solid flow through a vertical tube at moderate pressure gradient

    NASA Astrophysics Data System (ADS)

    Sergeev, Y. A.; Zhurov, A. I.

    1997-02-01

    Based on the equations, constitutive relations and boundary conditions of the kinetic theory of colliding particles in a gas-solid suspension, the approximate theory of the steady, developed vertical flow of a gas-particulate mixture is developed for the case of moderate gas pressure gradient in a vertical tube. The basic equations and boundary conditions show a singular behaviour of the solution of the problem at the wall. The method of matched asymptotic expansions is applied to develop a boundary layer-type theory for the flow parameters of the particulate phase. The basic equations in the bulk flow are reduced to a system of two ordinary integrodifferential equations for the particle-phase concentration and mean kinetic energy of particle velocity fluctuations (particle-phase pseudotemperature). The distributions of the particle concentration and velocity are found in both the bulk and the boundary layer. The solutions shows the bifurcation of flow parameters, and an explicit criterion is derived to identify a range of the given macroscopic parameters corresponding to upward or downward particulate flow. The integrated parameters (total fluxes of the gas and particle phase) are calculated.

  15. Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow

    NASA Astrophysics Data System (ADS)

    Müller, A.; Dreyer, M.; Andreini, N.; Avellan, F.

    2013-04-01

    Hydraulic machines play an increasingly important role in providing a secondary energy reserve for the integration of renewable energy sources in the existing power grid. This requires a significant extension of their usual operating range, involving the presence of cavitating flow regimes in the draft tube. At overload conditions, the self-sustained oscillation of a large cavity at the runner outlet, called vortex rope, generates violent periodic pressure pulsations. In an effort to better understand the nature of this unstable behavior and its interaction with the surrounding hydraulic and mechanical system, the flow leaving the runner is investigated by means of particle image velocimetry. The measurements are performed in the draft tube cone of a reduced scale model of a Francis turbine. A cost-effective method for the in-house production of fluorescent seeding material is developed and described, based on off-the-shelf polyamide particles and Rhodamine B dye. Velocity profiles are obtained at three streamwise positions in the draft tube cone, and the corresponding discharge variation in presence of the vortex rope is calculated. The results suggest that 5-10 % of the discharge in the draft tube cone is passing inside the vortex rope.

  16. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  17. Experimental sizing and assessment of two-phase pressure drop correlations for a capillary tube with transcritical and subcritical carbon dioxide flow

    NASA Astrophysics Data System (ADS)

    Trinchieri, R.; Boccardi, G.; Calabrese, N.; Celata, G. P.; Zummo, G.

    2014-04-01

    In the last years, CO2 was proposed as an alternative refrigerant for different refrigeration applications (automotive air conditioning, heat pumps, refrigerant plants, etc.) In the case of low power refrigeration applications, as a household refrigerator, the use of too expensive components is not economically sustainable; therefore, even if the use of CO2 as the refrigerant is desired, it is preferable to use conventional components as much as possible. For these reasons, the capillary tube is frequently proposed as expansion system. Then, it is necessary to characterize the capillary in terms of knowledge of the evolving mass flow rate and the associate pressure drop under all possible operative conditions. For this aim, an experimental campaign has been carried out on the ENEA test loop "CADORE" to measure the performance of three capillary tubes having same inner diameter (0.55 mm) but different lengths (4, 6 and 8 meters). The test range of inlet pressure is between about 60 and 110 bar, whereas external temperatures are between about 20 to 42 °C. The two-phase pressure drop through the capillary tube is detected and experimental values are compared with the predictions obtained with the more widely used correlations available in the literature. Correlations have been tested over a wide range of variation of inlet flow conditions, as a function of different inlet parameters.

  18. A comparison of experimental and theoretical results for leakage, pressure gradients, and rotordynamic coefficients for tapered annular gas seal

    NASA Technical Reports Server (NTRS)

    Elrod, D. A.; Childs, D. W.

    1986-01-01

    A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.

  19. Phase-averaged wall shear stress, wall pressure, and near-wall velocity field measurements in a whirling annular seal

    SciTech Connect

    Morrison, G.L.; Winslow, R.B.; Thames, H.D. III

    1996-07-01

    The flow field inside a 50 percent eccentric whirling annular seal operating at a Reynolds number of 24,000 and a Taylor number of 6600 has been measured using a three-dimensional laser-Doppler anemometer system. Flush mount pressure and wall shear stress probes have been used to measure the stresses (normal and shear) along the length of the stator. The rotor was mounted eccentrically on the shaft so that the rotor orbit was circular and rotated at the same speed as the shaft (a whirl ratio of 1.0). This paper presents mean pressure, mean wall shear stress magnitude, and mean wall shear stress direction distributions along the length of the seal. Phase-averaged wall pressure and wall shear stress are presented along with phase-averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall, where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure, and wall shear stress are very complex and do not follow simple bulk flow predictions.

  20. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    SciTech Connect

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A.

    2013-07-01

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  1. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  2. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  3. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  4. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  5. A comparison of experimental and theoretical results for leakage, pressure distribution, and rotordynamic coefficients for annular gas seals

    NASA Technical Reports Server (NTRS)

    Nicks, C. O.; Childs, D. W.

    1984-01-01

    The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.

  6. On the use of a small-scale two-phase thermosiphon to cool high-power electronics

    NASA Astrophysics Data System (ADS)

    Schrage, D. S.

    1990-01-01

    An experimental and analytical investigation of the steady-state thermal-hydraulic operating characteristics of a small-scale two-phase thermosiphon cooling actual power electronics are presented. Boiling heat transfer coefficients and circulation mass velocities were measured while varying heat load and pressure. Both a plain and augmented riser structure, utilizing micro-fins and reentrant cavities, were simultaneously tested. The boiling heat transfer coefficients increased with both increasing heat load and pressure. The mass velocity increased with increasing pressure while both increasing and then decreasing with increasing heat load. The reentrant cavity enhancement factor, a ratio of the augmented-to-plain riser nucleate boiling heat transfer coefficients, ranged from 1 to 1.4. High-speed photography revealed bubbly, slug, churn, wispy-annular and annular flow patterns. The experimental mass velocity and heat transfer coefficient data were compared to an analytical model with average absolute deviations of 16.3 and 26.3 percent, respectively.

  7. Effect of Ratio of Jet Area to Total Area and of Pressure Ratio on Lift Augmentation of Annular Jets in Ground Effect Under Static Conditions

    NASA Technical Reports Server (NTRS)

    Goodson, Kenneth W.; Otis, James H., Jr.

    1961-01-01

    The present investigation was undertaken to determine the effects of the ratio of jet area to total area and of the pressure ratio on the lift-augmentation characteristics of annular jets in ground effect. The investigation was made over an area-ratio range of 1.00 to 0.02 and a pressure-ratio range of about 1.04 to 1.95. Several configurations with center jets were tested through an angle-of-attack range to determine the pitching-moment characteristics. The tests were conducted in a static test room with the use of the compressed-air facilities. The results show that lift augmentation increases somewhat as the area ratio is reduced to about 0.10, below which it deteriorates due to thin jet mixing. The effect of pressure ratio on lift was negligible for the area-ratio range investigated. Calculations of the lift per air horsepower for a given base loading indicate that the greatest lift per air horsepower occurs at area ratios above 0.10, where the greatest lift augmentation occurs. The data show that annular-Jet vehicles are unstable at ratios of height above ground to nozzle diameter above about 0.10. The stability of the annular-jet vehicle can be improved by the use of large center jets. Base compartments also reduces the unstable moment.

  8. Low-pressure performance of annular, high-pressure (40 atm) high-temperature (2480 K) combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.

    1980-01-01

    Experimental tests were conducted to develop a combustion system for a 40 atmosphere pressure, 2480 K exhaust gas temperature, turbine cooling facility. The tests were conducted in an existing facility with a maximum pressure capability of 10 atmospheres and where inlet air temperatures as high as 894 K could be attained. Exhaust gas temperatures were as high as 2365 K. Combustion efficiences were about 100 percent over a fuel air ratio range of 0.016 to 0.056. Combustion efficiency decreased at leaner and richer ratios when the inlet air temperature was 589 K. Data are presented that show the effect of fuel air ratio and inlet air temperature on liner metal temperature. Isothermal system pressure loss as a function of diffuser inlet Mach number is also presented. Data included exhaust gas pattern factors; unburned hydrocarbon, carbon monoxide, and oxides of nitrogen emission index values; and smoke numbers.

  9. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2010-05-15

    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  10. Annular flow film characteristics in variable gravity.

    PubMed

    MacGillivray, Ryan M; Gabriel, Kamiel S

    2002-10-01

    Annular flow is a frequently occurring flow regime in many industrial applications. The need for a better understanding of this flow regime is driven by the desire to improve the design of many terrestrial and space systems. Annular two-phase flow occurs in the mining and transportation of oil and natural gas, petrochemical processes, and boilers and condensers in heating and refrigeration systems. The flow regime is also anticipated during the refueling of space vehicles, and thermal management systems for space use. Annular flow is mainly inertia driven with little effect of buoyancy. However, the study of this flow regime is still desirable in a microgravity environment. The influence of gravity can create an unstable, chaotic film. The absence of gravity, therefore, allows for a more stable and axisymmetric film. Such conditions allow for the film characteristics to be easily studied at low gas flow rates. Previous studies conducted by the Microgravity Research Group dealt with varying the gas or liquid mass fluxes at a reduced gravitational acceleration.(1,2) The study described here continues this work by examining the effect of changing the gravitational acceleration (hypergravity) on the film characteristics. In particular, the film thickness and the associated pressure drops are examined. The film thickness was measured using a pair of two-wire conductance probes. Experimental data was collected over a range of annular flow set points by changing the liquid and gas mass flow rates, the liquid-to-gas density ratio and the gravitational acceleration. The liquid-to-gas density ratio was varied by collecting data with helium-water and air-water at the same flow rates. The gravitational effect was examined by collecting data during the microgravity and pull-up (hypergravity) portions of the parabolic flights.

  11. Annular wing

    NASA Technical Reports Server (NTRS)

    Walker, H. J. (Inventor)

    1981-01-01

    An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.

  12. Two-phase viscoelastic jetting

    SciTech Connect

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  13. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  14. Experimental and modeling studies of two-phase flow in pipelines

    SciTech Connect

    Manabe, Ryo; Tochikawa, Tetsuro; Tsukuda, M.; Arihara, Norio

    1997-11-01

    The objectives of this study are to develop and evaluate a mechanistic model for gas/liquid two-phase flow in pipelines. A mechanistic model has been developed by combining currently available models and correlations. The approach of the modeling study was based on the work by Xiao et al. Modifications have been made on the annular flow model by implementing the currently developed film-thickness-distribution model. An experimental database has been developed for model evaluation. Seventy-five runs of steady-state air/water flow tests in horizontal and slightly inclined pipes were conducted using a large-scale experimental facility. The experimental program was set up in a wide range of experimental conditions to cover the intermittent, dispersed bubble, and annular flow patterns. An evaluation of the model was carried out for each flow pattern, namely, intermittent, dispersed bubble, and annular flow. The comparisons between the measured and calculated pressure drops show good agreement for each flow pattern. Also, overall evaluation revealed that the proposed model provided the best performance among the commonly used empirical correlations, such as Beggs and Brill, Mukherjee and Brill, and Dukler et al.

  15. Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

    NASA Technical Reports Server (NTRS)

    Begg, E.; Faghri, A.; Krustalev, D.

    1999-01-01

    A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.

  16. Convective heat transfer to CO{sub 2} at a supercritical pressure flowing vertically upward in tubes and an annular channel

    SciTech Connect

    Bae, Yoon-Yeong; Kim, Hwan-Yeol

    2009-01-15

    The Super-Critical Water-Cooled Reactor (SCWR) has been chosen by the Generation IV International Forum as one of the candidates for the next generation nuclear reactors. Heat transfer to water from a fuel assembly may deteriorate at certain supercritical pressure flow conditions and its estimation at degraded conditions as well as in normal conditions is very important to the design of a safe and reliable reactor core. Extensive experiments on a heat transfer to a vertically upward flowing CO{sub 2} at a supercritical pressure in tubes and an annular channel have been performed. The geometries of the test sections include tubes of an internal diameter (ID) of 4.4 and 9.0 mm and an annular channel (8 x 10 mm). The heat transfer coefficient (HTC) and Nusselt numbers were derived from the inner wall temperature converted by using the outer wall temperature measured by adhesive K-type thermocouples and a direct (tube) or indirect (annular channel) electric heating power. From the test results, a correlation, which covers both a deteriorated and a normal heat transfer regime, was developed. The developed correlation takes different forms in each interval divided by the value of parameter Bu. The parameter Bu (referred to as Bu hereafter), a function of the Grashof number, the Reynolds number and the Prandtl number, was introduced since it is known to be a controlling factor for the occurrence of a heat transfer deterioration due to a buoyancy effect. The developed correlation predicted the HTCs for water and HCFC-22 fairly well. (author)

  17. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source

    NASA Astrophysics Data System (ADS)

    Barna, I. F.; Imre, A. R.; Rosta, L.; Mezei, F.

    2008-12-01

    Two-phase flow calculations are presented to investigate the thermo-hydraulical effects of the interaction between 2 ms long 1.3 GeV proton pulses with a closed mercury loop which can be considered as a model system of the target of the planned European Spallation Source (ESS) facility. The two-fluid model consists of six first-order partial differential equations that present one dimensional mass, momentum and energy balances for mercury vapor and liquid phases are capable to describe quick transients like cavitation effects or shock waves. The absorption of the proton beam is represented as instantaneous heat source in the energy balance equations. Densities and internal energies of the mercury liquid-vapor system is calculated from the van der Waals equation, but general method how to obtain such properties using arbitrary equation of state is also presented. A second order accurate high-resolution shock-capturing numerical scheme is applied with different kind of limiters in the numerical calculations. Our analysis show that even 75 degree temperature heat shocks cannot cause considerable cavitation effects in mercury.

  18. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  19. Implementation of a Two-Phase Boiling Model into the RELAP5/MOD2 Computer Code to Predict Void Distribution in Low-Pressure Subcooled Boiling Flows

    SciTech Connect

    Yeoh, G.H.; Tu, J.Y.

    2002-02-15

    This paper demonstrates that the empirical models developed for subcooled flow boiling in RELAP5/MOD2 at high pressures are not valid for applications at low pressures. Modifications carried out in RELAP5/MOD2 to include better correlations of the interphase heat transfer and mean bubble diameter, and the wall heat flux partition model are shown to yield substantial improvements in the predictions of the axial void fraction distribution. When compared against experimental data covering a wide range of heat fluxes and flow rates, predicted axial void fraction profiles follow closely the measured data. Predictions made by the default subcooled boiling model show, however, an unacceptable margin of error with the experimental data.

  20. The Langley Annular Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Habel, Louis W; Henderson, James H; Miller, Mason F

    1952-01-01

    Report describes the development of the Langley annular transonic tunnel, a facility in which test Mach numbers from 0.6 to slightly over 1.0 are achieved by rotating the test model in an annular passage between two concentric cylinders. Data obtained for two-dimensional airfoil models in the Langley annular transonic tunnel at subsonic and sonic speeds are shown to be in reasonable agreement with experimental data from other sources and with theory when comparisons are made for nonlifting conditions or for equal normal-force coefficients rather than for equal angles of attack. The trends of pressure distributions obtained from measurements in the Langley annular transonic tunnel are consistent with distributions calculated for Prandtl-Meyer flow.

  1. Dealing with two-phase flows

    SciTech Connect

    Daniels, L.

    1995-06-01

    Gas- and vapor-liquid flows through pipework or equipment often pose major difficulties in both design and operation. Typically, two-phase fluid systems are susceptible to flow instabilities, blockages, and pressure and temperature fluctuations. As a result, gas-liquid flows are avoided whenever possible by separating the two phases into individual streams of nearly homogeneous gas and liquid. However, certain process conditions require or inevitably produce two phases. Examples include condensate-return lines flashing into steam, vapor-liquid feed lines entering distillation columns, and refrigerant-return lines that must maintain a specific vapor-liquid ratio for efficient operation. The thermohydraulic behavior of two-phase systems includes variations in pressure drop, flow patterns, and liquid holdup or void fraction. Increasing the pipe diameter reduces the pressure drop for a given flowrate, or alternatively produces an increase in the flowrate for a given pressure drop in a piping system. However, increased pipeline diameters lead to higher costs, and may require installation of more expensive equipment to accommodate the resulting larger slug volumes. There have been numerous improvements in correlations and methods for the prediction of pressure drop in gas-liquid flows. A few of them attempt to take into account the highly complex flow structure of a two-phase flow. One must keep in mind that the flow structure varies with time and position in the pipework. The paper discusses empirical correlations, pressure drop due to friction, gravity, and acceleration, transitions in flow patterns, liquid inventories, and erosion. 46 refs.

  2. Microgravity Two-Phase Flow Transition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  3. Linear stability of a surfactant-laden annular film in a time-periodic pressure-driven flow through a capillary.

    PubMed

    Wei, Hsien-Hung; Halpern, David; Grotberg, James B

    2005-05-15

    This paper analyzes the effect of surfactant on the linear stability of an annular film in a capillary undergoing a time-periodic pressure gradient force. The annular film is thin compared to the radius of the tube. An asymptotic analysis yields a coupled set of equations with time-periodic coefficients for the perturbed fluid-fluid interface and the interfacial surfactant concentration. Wei and Rumschitzki (submitted for publication) previously showed that the interaction between a surfactant and a steady base flow could induce a more severe instability than a stationary base state. The present work demonstrates that time-periodic base flows can modify the features of the steady-flow-based instability, depending on surface tension, surfactant activity, and oscillatory frequency. For an oscillatory base flow (with zero mean), the growth rate decreases monotonically as the frequency increases. In the low-frequency limit, the growth rate approaches a maximum corresponding to the growth rate of a steady base flow having the same amplitude. In the high-frequency limit, the growth rate reaches a minimum corresponding to the growth rate in the limit of a stationary base state. The underlying mechanisms are explained in detail, and extension to other time-periodic forms is further exploited.

  4. Usefulness of time interval between end of diastolic mitral annular velocity pattern and onset of QRS for predicting left ventricular end-diastolic pressure.

    PubMed

    Su, Ho-Ming; Lin, Tsung-Hsien; Voon, Wen-Chol; Lee, Kun-Tai; Chu, Chih-Sheng; Cheng, Kai-Hung; Yen, Hsueh-Wei; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2007-01-01

    Diastolic mitral annular motion may terminate earlier in patients with higher left ventricular end-diastolic pressure (LVEDP). It was therefore hypothesized that the time interval measured from the end of the diastolic mitral annular velocity pattern to the onset of QRS (the AQ interval) would be a useful parameter in predicting LVEDP. The aim of this study was to evaluate the relation between the AQ interval and LVEDP. Forty-six patients with suspected coronary artery disease who underwent Doppler echocardiographic studies and cardiac catheterization were included. LVEDP was determined using a micromanometer-tipped catheter. On univariate analysis, the AQ interval had positive correlations with the PR interval (r = 0.405, p = 0.005), transmitral E-wave velocity (r = 0.502, p <0.001), isovolumic contraction time (r = 0.635, p <0.001), and LVEDP (r = 0.514, p <0.001) and a negative correlation with E-wave deceleration time (r = -0.430, p = 0.003). After stepwise multiple linear regression analysis, the PR interval, transmitral E-wave velocity, and LVEDP were the independent predictors of the AQ interval (beta = 0.234, p = 0.033; beta = 0.331, p = 0.004; and beta = 0.350, p = 0.003, respectively). In conclusion, the AQ interval is a novel, simple, and easily obtained index in the prediction of LVEDP.

  5. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  6. Two-phase/two-phase heat exchanger analysis

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1992-01-01

    A capillary pumped loop (CPL) system with a condenser linked to a double two-phase heat exchanger is analyzed numerically to simulate the performance of the system from different starting conditions to a steady state condition based on a simplified model. Results of the investigation are compared with those of similar apparatus available in the Space Station applications of the CPL system with a double two-phase heat exchanger.

  7. Apparatus for monitoring two-phase flow

    DOEpatents

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  8. Cold-air annular-cascade investigation of aerodynamic performance of core-engine-cooled turbine vanes. 2: Pressure surface trailing edge ejection and split trailing edge ejection

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Goldman, L. J.

    1976-01-01

    The aerodynamic performance of two trailing edge ejection cooling configurations of a core-engine stator vane were experimentally determined in an ambient inlet-air full-annular cascade where three-dimensional effects could be obtained. The tests were conducted at the design mean-radius ideal aftermixed critical velocity ratio of 0.778. Overall vane aftermixed thermodynamic and primary efficiencies were obtained over a range of coolant flows to about 10 percent of the primary flow at a primary to coolant total temperature ratio of 1.0. The radial variation in efficiency and the circumferential and radial variations in vane-exit total pressure were determined. Comparisons are made with the solid (uncooled) vane.

  9. Cryogenic two-phase flow and phase-change heat transfer in microgravity

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng

    The applications of cryogenic flow and heat transfer are found in many different types of industries, whether it be the liquid fuel for propulsion or the cryogenic cooling in medical applications. It is very common to find the transportation of cryogenic flow under microgravity in space missions. For example, the liquid oxygen and hydrogen are used to power launch vehicles and helium is used for pressurizing the fuel tank. During the transportation process in pipes, because of high temperature and heat flux from the pipe wall, the cryogenic flow is always in a two-phase condition. As a result, the physics of cryogenic two-phase flow and heat transfer is an important topic for research. In this research, numerical simulation is employed to study fluid flow and heat transfer. The Sharp Interface Method (SIM) with a Cut-cell approach (SIMCC) is adopted to handle the two-phase flow and heat transfer computation. In SIMCC, the background grid is Cartesian and explicit true interfaces are immersed into the computational domain to divide the entire domain into different sub-domains/phases. In SIMCC, each phase comes with its own governing equations and the interfacial conditions act as the bridge to connect the information between the two phases. The Cut-cell approach is applied to handle nonrectangular cells cut by the interfaces and boundaries in SIMCC. With the Cut-cell approach, the conservative properties can be maintained better near the interface. This research will focus on developing the numerical techniques to simulate the two-phase flow and phase change phenomena for one of the major flow patterns in film boiling, the inverted annular flow.

  10. Effects of EHD on heat transfer enhancement and pressure drop during two-phase condensation of pure R-134a at high mass flux in a horizontal micro-fin tube

    SciTech Connect

    Laohalertdecha, Suriyan; Wongwises, Somchai

    2006-07-15

    Effects of electrohydrodynamic (EHD) on the two-phase heat transfer enhancement and pressure drop of pure R-134a condensing inside a horizontal micro-fin tube are experimentally investigated. The test section is a 2.5m long counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from micro-fin horizontal copper tubing of 9.52mm outer diameter. The electrode is made from cylindrical stainless steel of 1.47mm diameter. Positive high voltage is supplied to the electrode wire, with the micro-fin tube grounded. In the presence of the electrode, a maximum heat transfer enhancement of 1.15 is obtained at a heat flux of 10kW/m{sup 2}, mass flux of 200kg/m{sup 2}s and saturation temperature of 40{sup o}C, while the application of an EHD voltage of 2.5kV only slightly increases the pressure drop. New correlations of the experimental data based on the data gathered during this work for predicting the condensation heat transfer coefficients are proposed for practical application. (author)

  11. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  12. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.

  13. Abatement of CF{sub 4} and CHF{sub 3} byproducts using low-pressure plasmas generated by annular-shaped electrodes

    SciTech Connect

    Hur, Min; Lee, Jae O. K.; Hoon Song, Young; Yoo, Hoon A.

    2012-03-15

    Three different driving schemes are tested for a plasma reactor designed to abate the greenhouse gases emitted by the semiconductor industry. The reactor and electrodes all have a concentric annular shape, which allows them to be easily connected to pre-existing pipelines without any disturbance to the exhaust stream. The destruction and removal efficiencies are measured for CF{sub 4} by varying the O{sub 2}/CF{sub 4} ratio and pressure. The influences of adding O{sub 2} and H{sub 2}O to the byproducts of the CHF{sub 3} abatement process are investigated by analyzing the spectra resulting from Fourier transform infrared spectroscopy measurements. Based on the experimental results we suggest an appropriate combination of driving scheme and reactant gas species for efficient and economical abatement of a mixture of CHF{sub 3} and CF{sub 4}. Then, the optimal flow rate of the reactant gas is presented. Finally, the reduction rates for global warming emissions are estimated to demonstrate the feasibility of using our device for abatement of greenhouse gases emitted by the semiconductor industry.

  14. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  15. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  16. Two-phase potential flow

    NASA Technical Reports Server (NTRS)

    Wallis, Graham B.

    1989-01-01

    Some features of two recent approaches of two-phase potential flow are presented. The first approach is based on a set of progressive examples that can be analyzed using common techniques, such as conservation laws, and taken together appear to lead in the direction of a general theory. The second approach is based on variational methods, a classical approach to conservative mechanical systems that has a respectable history of application to single phase flows. This latter approach, exemplified by several recent papers by Geurst, appears generally to be consistent with the former approach, at least in those cases for which it is possible to obtain comparable results. Each approach has a justifiable theoretical base and is self-consistent. Moreover, both approaches appear to give the right prediction for several well-defined situations.

  17. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  18. Momentum flux in two phase two component low quality flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Graham, R. W.; Henry, R. E.

    1972-01-01

    In two phase flow systems line losses comprise frictional and momentum pressure drops. For design purposes, it would be desirable to estimate the line losses employing a one-dimensional calculation. Two methods for computing one-dimensional momentum flux at a test section discharge station are compared to the experimental value for a range of two-phase flow conditions. The one-dimensional homogeneous model appears to be more accurate generally in predicting the momentum than the variable slip model.

  19. A novel technique to predict pulmonary capillary wedge pressure utilizing central venous pressure and tissue Doppler tricuspid/mitral annular velocities.

    PubMed

    Uemura, Kazunori; Inagaki, Masashi; Zheng, Can; Li, Meihua; Kawada, Toru; Sugimachi, Masaru

    2015-07-01

    Assessing left ventricular (LV) filling pressure (pulmonary capillary wedge pressure, PCWP) is an important aspect in the care of patients with heart failure (HF). Physicians rely on right ventricular (RV) filling pressures such as central venous pressure (CVP) to predict PCWP, assuming concordance between CVP and PCWP. However, the use of this method is limited because discordance between CVP and PCWP is observed. We hypothesized that PCWP can be reliably predicted by CVP corrected by the relationship between RV and LV function, provided by the ratio of tissue Doppler peak systolic velocity of tricuspid annulus (S(T)) to that of mitral annulus (S(M)) (corrected CVP:CVP·S(T)/S(M)). In 16 anesthetized closed-chest dogs, S T and S M were measured by transthoracic tissue Doppler echocardiography. PCWP was varied over a wide range (1.8-40.0 mmHg) under normal condition and various types of acute and chronic HF. A significantly stronger linear correlation was observed between CVP·S(T)/S(M) and PCWP (R2 = 0.78) than between CVP and PCWP (R2 = 0.22) (P < 0.01). Receiver-operating characteristic (ROC) analysis indicated that CVP·S(T)/S(M) >10.5 mmHg predicted PCWP >18 mmHg with 85% sensitivity and 88% specificity. Area under ROC curve for CVP·S T/S M to predict PCWP >18 mmHg was 0.93, which was significantly larger than that for CVP (0.66) (P < 0.01). Peripheral venous pressure (PVP) corrected by S T/S M (PVP·S(T)/S(M) also predicted PCWP reasonably well, suggesting that PVP·S(T)/S (M) may be a minimally invasive alternative to CVP·S(T)/S(M) In conclusion, our technique is potentially useful for the reliable prediction of PCWP in HF patients.

  20. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  1. Coal-Face Fracture With A Two-Phase Liquid

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  2. Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.

    1996-01-01

    The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same

  3. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis.

    PubMed

    Guazzi, M; Bandera, F; Pelissero, G; Castelvecchio, S; Menicanti, L; Ghio, S; Temporelli, P L; Arena, R

    2013-11-01

    Echo-derived pulmonary arterial systolic pressure (PASP) and right ventricular (RV) tricuspid annular plane systolic excursion (TAPSE; from the end of diastole to end-systole) are of basic relevance in the clinical follow-up of heart failure (HF) patients, carrying two- to threefold increase in cardiac risk when increased and reduced, respectively. We hypothesized that the relationship between TAPSE (longitudinal RV fiber shortening) and PASP (force generated by the RV) provides an index of in vivo RV length-force relationship, with their ratio better disclosing prognosis. Two hundred ninety-three HF patients with reduced (HFrEF, n = 247) or with preserved left ventricular (LV) ejection fraction (HFpEF, n = 46) underwent echo-Doppler studies and N-terminal pro-brain-type natriuretic peptide assessment and were tracked for adverse events. The median follow-up duration was 20.8 mo. TAPSE vs. PASP relationship showed a downward regression line shift in nonsurvivors who were more frequently presenting with higher PASP and lower TAPSE. HFrEF and HFpEF patients exhibited a similar distribution along the regression line. Given the TAPSE, PASP, and TAPSE-to-PASP ratio (TAPSE/PASP) collinearity, separate Cox regression and Kaplan-Meier analyses were performed: one with TAPSE and PASP as individual measures, and the other combining them in ratio form. Hazard ratios for variables retained in the multivariate regression were as follows: TAPSE/PASP

  4. Rotating single cycle two-phase thermally activated heat pump

    SciTech Connect

    Fabris, G.

    1993-06-08

    A thermally activated heat pump is described which utilizes single working fluid which as a whole passes consecutively through all parts of the apparatus in a closed loop series; the working fluid in low temperature saturated liquid state at condensation is pumped to higher pressure with a pump; subsequently heat is added to the liquid of increased pressure, the liquid via the heating is brought to a high temperature saturated liquid state; the high temperature liquid passes and flashes subsequently in form of two-phase flow through a rotating two-phase flow turbine; in such a way the working fluid performs work on the two-phase turbine which in turn powers the liquid pump and a lower compressor; two-phase flow exiting the two-phase turbine separated by impinging tangentially on housing of the turbine; low temperature heat is added to the housing in such a way evaporating the separated liquid on the housing; in such a way the liquid is fully vaporized the vapor then enters a compressor, the compressor compresses the vapor to a higher condensation pressure and corresponding increased temperature, the vapor at the condensation pressure enters a condenser whereby heat is rejected and the vapor is fully condensed into state of saturated liquid, mid saturated liquid enters the pump and repeats the cycle.

  5. Annular pancreas (image)

    MedlinePlus

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  6. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  7. Mechanically expandable annular seal

    DOEpatents

    Gilmore, Richard F.

    1983-01-01

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.

  8. Annular nozzle engine technology

    NASA Technical Reports Server (NTRS)

    Martinez, AL

    1992-01-01

    The topics covered include: (1) driver rocket subsystem; (2) annular nozzle engine technology; (3) expansion-deflection nozzle; (4) aerospike-nozzled engine background; (5) aerospike testing; (6) linear aerospike; and (7) the combined cycle engine.

  9. Partial annular pancreas

    PubMed Central

    Jindal, Gunjan; Mittal, Amit; Singal, Rikki; Singal, Samita

    2016-01-01

    Annular pancreas is a developmental anomaly that can be associated with other conditions such as Down syndrome, duodenal atresia, and Hirschsprung disease. A band of pancreatic tissue, in continuity with the pancreatic head, completely or incompletely encircles the descending duodenum, sometimes assuming a “crocodile jaw” configuration. We present the case of an adult who presented with epigastric pain and vomiting and was found to have annular pancreas. PMID:27695176

  10. Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct

    SciTech Connect

    Trabold, T.A.; Moore, W.E.; Morris, W.O.

    1997-06-01

    A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 {le} {bar Z} {le} 0.80, where {bar Z} is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets.

  11. Power production with two-phase expansion through vapor dome

    SciTech Connect

    Amend, W.E.; Toner, S.J.

    1984-08-07

    In a system wherein a fluid exhibits a regressive vapor dome in a T-S diagram, the following are provided: a two-phase nozzle receiving the fluid in pressurized and heated liquid state and expanding the received liquid into saturated or superheated vapor state, and apparatus receiving the saturated or superheated vapor to convert the kinetic energy thereof into power.

  12. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  13. Acoustic velocities of two-phase mixtures of cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Griggs, E. I.; Winter, E. R. F.; Schoenhals, R. J.; Hendricks, R. C.

    1982-01-01

    Calculated values of the acoustic velocity are presented for single-component and two-component, two-phase mixtures. Three different analytic models were employed. For purposes of comparison, all three models were used in making acoustic-velocity calculations for single-component, equivalent bubbly two-phase mixtures (with insoluble gas) of oxygen and helium and hydrogen and helium. In all cases the results are shown graphically so that the effects of variation in quality or void fraction, temperature and pressure are illustrated.

  14. Thermal analysis of two-phase microchannel cooling

    SciTech Connect

    Chen, N.C.J.; Felde, D.K.; Yoder, G.L.

    1996-09-01

    A design calculation has been performed to determine thermal limits in support of an experiment in two-phase microchannel water cooling. Under the operating condition (one atmosphere pressure and 23{degrees}C inlet temperature), the calculation predicts that the experimental channel can withstand a maximum surface temperature of 115{degrees}C and a heat flux up to 975 W/cm{sup 2} without exceeding the critical heat flux limit. The predicted results also indicate that a uniform heat flux along the channel in the two-phase domain can be achieved so that the heat losses from the experimental test section can be calculated in a straightforward manner.

  15. Experimental study on confined two-phase jets

    SciTech Connect

    Levy, Y.; Albagli, D. )

    1991-09-01

    The basic mixing phenomena in confined, coaxial, particle-laden turbulent flows are studied within the scope of ram combustor research activities. Cold-flow experiments in a relatively simple configuration of confined, coaxial two-phase jets provided both qualitative and quantitative insight on the multiphase mixing process. Pressure, tracer gas concentration, and two-phase velocity measurements revealed that unacceptably long ram combustors are needed for complete confined jet mixing. Comparison of the experimental results with a previous numerical simulation displayed a very good agreement, indicating the potential of the experimental facility for validation of computational parametric studies. 38 refs.

  16. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  17. Method and apparatus for monitoring two-phase flow. [PWR

    DOEpatents

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  18. A bi-directional two-phase/two-phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    1993-01-01

    This paper describes the design and test of a heat exchanger that transfers heat from one two-phase thermal loop to another with very small drops in temperature and pressure. The heat exchanger condenses the vapor in one loop while evaporating the liquid in the other without mixing of the condensing and evaporating fluids. The heat exchanger is bidirectional in that it can transfer heat in reverse, condensing on the normally evaporating side and vice versa. It is fully compatible with capillary pumped loops and mechanically pumped loops. Test results verified that performance of the heat exchanger met the design requirements. It demonstrated a heat transfer rate of 6800 watts in the normal mode of operation and 1000 watts in the reverse mode with temperature drops of less than 5 C between two thermal loops.

  19. SILVA: EDF two-phase 1D annular model of a CFB boiler furnace

    SciTech Connect

    Montat, D.; Fauquet, P.; Lafanechere, L.; Bursi, J.M.

    1997-12-31

    Aiming to improve its knowledge of CFB boilers, EDF has initiated a R and D program including: laboratory work on mock-ups, numerical modelling and on-site tests in CFB power plants. One of the objectives of this program is the development of a comprehensive steady-state 1D model of the solid circulation loop, named SILVA, for plant operation and design evaluation purposes. This paper describes its mathematical and physical modelling. Promising validation of the model on cold mock-up and industrial CFB is presented.

  20. Theoretical and empirical study of single-substance, upward two-phase flow in a constant-diameter adiabatic pipe

    SciTech Connect

    Laoulache, R.N.; Maeder, P.F.; DiPippo, R.

    1987-05-01

    A Scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. Emphasis is placed upon the latter case since the range of experimental measurements of pressure, temperature, and void fraction collected in this study fall in the slug-churn''- annular'' flow regimes. The core is turbulent, whereas the liquid film may be laminar or turbulent. Turbulent stresses are modeled by using Prandtl's mixing-length theory. The working fluid is Dichlorotetrafluoroethane CCIF{sub 2}-CCIF{sub 2} known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. The compressibility is accounted for through the acceleration pressure gradient of the core and not directly through the Mach number. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Finally, an actual steam-water geothermal well is simulated; it is based on actual field data from New Zealand. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114.

  1. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  2. Two-Phase Flow Separator Investigation

    NASA Video Gallery

    The goal of the Two-Phase Flow Separator investigation is to help increase understanding of how to separate gases and liquids in microgravity. Many systems on the space station contain both liquids...

  3. The influence of annular seal clearance to the critical speed of the multistage pump

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shen, H. P.; Y Ye, X.; Hu, J. N.; Feng, Y. N.

    2013-12-01

    In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest.

  4. Nonlinear features of Northern Annular Mode variability

    NASA Astrophysics Data System (ADS)

    Fu, Zuntao; Shi, Liu; Xie, Fenghua; Piao, Lin

    2016-05-01

    Nonlinear features of daily Northern Annular Mode (NAM) variability at 17 pressure levels are quantified by two different measures. One is nonlinear correlation, and the other is time-irreversible symmetry. Both measures show that there are no significant nonlinear features in NAM variability at the higher pressure levels, however as the pressure level decreases, the strength of nonlinear features in NAM variability becomes predominant. This indicates that in order to reach better prediction of NAM variability in the lower pressure levels, nonlinear features must be taken into consideration to build suitable models.

  5. Investigations of two-phase flame propagation under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets

  6. A chaotic system of two-phase flow in a small, horizontal, rectangular channel

    SciTech Connect

    Cai, Y.; Wambsganss, M.W.; Jendrzejczyk, J.A.

    1995-07-01

    Various measurement tools that are used in chaos theory were applied to analyze two-phase pressure signals with the objective of identifying and interpreting flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identifying certain two-phase flow patterns and transitions.

  7. Energy efficient two-phase cooling for concentrated photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Reeser, Alexander Douglas

    Concentrated sunlight focused on the aperture of a photovoltaic solar cell, coupled with high efficiency, triple junction cells can produce much greater power densities than traditional 1 sun photovoltaic cells. However, the large concentration ratios will lead to very high cell temperatures if not efficiently cooled by a thermal management system. Two phase, flow boiling is an attractive cooling option for such CPV arrays. In this work, two phase flow boiling in mini/microchannels and micro pin fin arrays will be explored as a possible CPV cooling technique. The most energy efficient microchannel design is chosen based on a least-material, least-energy analysis. Heat transfer and pressure drop obtained in micro pin fins will be compared to data in the recent literature and new correlations for heat transfer coefficient and pressure drop will be presented. The work concludes with an energy efficiency comparison of micro pin fins with geometrically similar microchannel geometry.

  8. Two-Phase Thermal Transport in Microgap Channels—Theory, Experimental Results, and Predictive Relations

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Avram; Sheehan, Jessica R.; Rahim, Emil

    2012-01-01

    A comprehensive literature review and analysis of recent microchannel/microgap heat transfer data for two-phase flow of refrigerants and dielectric liquids is presented. The flow regime progression in such a microgap channel is shown to be predicted by the traditional flow regime maps. Moreover, Annular flow is shown to be the dominant regime for this thermal transport configuration and to grow in importance as the channel diameter decreases. The results of heat transfer studies of single miniature channels, as well as the analysis and inverse calculation of IR images of a heated microgap channel wall, are used to identify the existence of a characteristic M-shaped heat transfer coefficient variation with quality (or superficial velocity), with inflection points corresponding to transitions in the two-phase cooling modalities. For the high-quality, Annular flow conditions, the venerable Chen correlation is shown to yield predictive agreement for microgap channels that is comparable to that attained for macrochannels and to provide a mechanistic context for the thermal transport rates attained in microgap channels. Results obtained from infrared imaging, revealing previously undetected, large surface temperature variations in Annular flow, are also reviewed and related to the termination of the favorable thin-film evaporation mode in such channels.

  9. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGES

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  10. Two-phase convective CO2 dissolution in saline aquifers

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Hesse, M. A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  11. Two-Phase Flow Hydrodynamics in Superhydrophobic Channels

    NASA Astrophysics Data System (ADS)

    Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian

    2016-11-01

    Superhydrophobic surfaces have been shown to reduce drag in single-phase channel flow; however, little work has been done to characterize the drag reduction found in two-phase channel flow. Adiabatic, air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics which might be present in flow condensation. Pressure drop in a parallel plate channel with one superhydrophobic wall (cross-section 0.5 x 10 mm) and a transparent hydrophilic wall were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-215 and 50-210, respectively, were obtained for superhydrophobic surfaces with three different cavity fractions. Agreement between experimentally obtained two-phase pressure drops and correlations in the literature for conventional smooth control surfaces was better than 20 percent. The reduction in pressure drop for channels with a single superhydrophobic wall were found to be more significant than that for single phase flow. The effect of cavity fraction on drag reduction was within experimental error.

  12. Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.

    1994-01-01

    In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.

  13. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  14. Elastic-plastic analysis of annular plate problems using NASTRAN

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.

    1983-01-01

    The plate elements of the NASTRAN code are used to analyze two annular plate problems loaded beyond the elastic limit. The first problem is an elastic-plastic annular plate loaded externally by two concentrated forces. The second problem is stressed radially by uniform internal pressure for which an exact analytical solution is available. A comparison of the two approaches together with an assessment of the NASTRAN code is given.

  15. Two phase detonation studies conducted in 1971

    NASA Technical Reports Server (NTRS)

    Nicholls, J. A.

    1972-01-01

    A report is presented describing the research conducted on five phases: (1) ignition of fuel drops by a shock wave and passage of a shock wave over a burning drop, (2) the energy release pattern of a two-phase detonation with controlled drop sizes, (3) the attenuation of shock and detonation waves passing over an acoustic liner, (4) experimental and theoretical studies of film detonations, and (5) a simplified analytical model of a rotating two-phase detonation wave in a rocket motor.

  16. Two-phase flow in horizontal pipes

    SciTech Connect

    Maeder, P.F.; Michaelides, E.E.; DiPippo, R.

    1981-09-01

    A method is developed in this paper which calculates the two-phase flow friction factor at any state of the fluid in the pipe. The mixing-length theory was employed for the calculation of the Reynolds stresses in turbulent two-phase flow. The friction factors obtained this way are in good agreement with experimental data. It is clear that the choice of the parameter m, or the density distribution, is rather arbitrary. Careful experimentation is required to refine the analysis given in this study, and in particular to provide guidance in the proper selection of the parameter m.

  17. Two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Bush, Mia L.; Omrani, Adel; Yan, An

    1995-01-01

    Coiled tube heat exchangers involving two-phase flows are used in a variety of application areas, extending from the aerospace industry to petrochemical, refrigeration land power generation industries. The optimal design in each situation requires a fundamental understanding of the heat, mass and momentum transfer characteristic of the flowing two-phase mixture. However, two-phase flows in lengths of horizontal or vertical straight channels with heat transfer are often quite difficult in themselves to understand sufficiently well to permit accurate system designs. The present study has the following general objectives: (1) Observe two-phase flow patterns of air-water and R-113 working fluids over a range of flow conditions, for helical and spiral coil geometries, of circular and rectangular cross-section; (2) Compare observed flow patterns with predictions of existing flow maps; (3) Study criteria for flow regime transitions for possible modifications of existing flow pattern maps; and (4) Measure associated pressure drops across the coiled test sections over the rage of flow conditions specified.

  18. Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels - Data on Flow Resistance and Interfacial Friction Coefficients for the Cross-Flow

    SciTech Connect

    Tatsuya Higuchi; Akimaro Kawahara; Michio Sadatomi; Hiroyuki Kudo

    2006-07-01

    Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity. (authors)

  19. Condensing, Two-Phase, Contact Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Oren, J. A.; Sauer, L. W.

    1988-01-01

    Two-phase heat exchanger continuously separates liquid and vapor phases of working fluid and positions liquid phase for efficient heat transfer. Designed for zero gravity. Principle is adapted to other phase-separation applications; for example, in thermodynamic cycles for solar-energy conversion.

  20. Annular ballast resistor: Symmetry breaking, pinning, and coarsening in a globally constrained reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Tsori, Yoav

    1998-01-01

    The wire ballast resistor (BR) is one of the simplest physical systems that exhibit bistability and pattern formation. An annular BR is suggested as a simple two-dimensional extension of the wire BR. The nonuniformity of the electric current density in the annular BR leads to translational symmetry breaking in the temperature domain dynamics. As a result, the steady-state position of the domain wall is ``pinned'' and the system exhibits coarsening. The two-phase steady-state relaxation towards it and coarsening in the annular BR are investigated analytically and numerically.

  1. Two-phase flow research. Phase I. Two-phase nozzle research. Final report

    SciTech Connect

    Toner, S.J.

    1981-07-01

    An investigation of energy transfer in two-phase nozzles was conducted. Experimental performance of converging-diverging nozzles operating on air-water mixtures is presented for a wide range of parameters. Thrust measurements characterized the performance and photographic documentation was used to visually observe the off-design regimes. Thirty-six nozzle configurations were tested to determine the effects of convergence angle, area ratio, and nozzle length. In addition, the pressure ratio and mass flowrate ratio were varied to experimentally map off-design performance. The test results indicate the effects of wall friction and infer temperature and velocity differences between phases and the effect on nozzle performance. The major conclusions reached were: the slip ratio between the phases, gas velocity to liquid velocity, is shown to be below about 4 or 5, and, in most of the test cases run, was estimated to between about 1-1/2 to 2-1/2; in all cases except the free-jet the mass )

  2. Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids

    SciTech Connect

    Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.; Cimbala, J.M.

    2002-07-01

    Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained from operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces

  3. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  4. Annular recuperator design

    DOEpatents

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  5. Granuloma annulare - close-up (image)

    MedlinePlus

    Granuloma annulare is usually a self-limiting disorder characterized by raised lesions arranged in an annular shape. ... This picture shows a close-up of a granuloma annulare that is subcutaneous (deeper). It demonstrates the ...

  6. Two-Phase Nozzle Theory and Parametric Analysis. Phase II. Parametric Analysis and Optimization.

    DTIC Science & Technology

    1981-07-01

    Dekker, Inc., 1969. 4. Netzer, D . W.: Calculations of Flow Characteristics for Two-Phase Flow in Annular Converging-Diverging Nozzles. Report No. TM-62-3...Astronautica Acta, Vol. 11, No. 3, pp. 207-216, 1965. 6. Crowe, C. T., M. P. Sharma and D . E. Stock: The Particle-Source-In Cell (PSI-Cell) Model for...Dispersed Droplet-in-Vapor Flows Including Normal Shock Waves. ASME J. of Fluids Eng’g., pp. 355-362, 1978. 8. Elliott, D . G.: "Theoretical and

  7. Dynamic failure in two-phase materials

    SciTech Connect

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.

  8. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  9. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  10. Two-phase charge-coupled device

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.

  11. Critical thinking: a two-phase framework.

    PubMed

    Edwards, Sharon L

    2007-09-01

    This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.

  12. Development of an Advanced Annular Combustor

    NASA Technical Reports Server (NTRS)

    Rusnak, J. P.; Shadowen, J. H.

    1969-01-01

    The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.

  13. Multiple annular linear diffractive axicons.

    PubMed

    Bialic, Emilie; de la Tocnaye, Jean-Louis de Bougrenet

    2011-04-01

    We propose a chromatic analysis of multiple annular linear diffractive axicons. Large aperture axicons are optical devices providing achromatic nondiffracting beams, with an extended depth of focus, when illuminated by a white light source, due to chromatic foci superimposition. Annular apertures introduce chromatic foci separation, and because chromatic aberrations result in focal segment axial shifts, polychromatic imaging properties are partially lost. We investigate here various design parameters that can be used to achieve color splitting, filtering, and combining using these properties. In order to improve the low-power efficiency of a single annular axicon, we suggest a spatial multiplexing of concentric annular axicons with different sizes and periods we call multiple annular aperture diffractive axicons (MALDAs). These are chosen to maintain focal depths while enabling color imaging with sufficient diffraction efficiency. Illustrations are given for binary phase diffractive axicons, considering technical aspects such as grating design wavelength and phase dependence due to the grating thickness.

  14. Membrane-less micro fuel cell based on two-phase flow

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M. H.; Neuenschwander, M.; Hadikhani, P.; Modestino, M. A.; Psaltis, D.

    2017-04-01

    Most microfluidic fuel cells use highly soluble fuels and oxidants in streams of liquid electrolytes to overcome the mass transport limitations that result from the low solubility of gaseous reactants such as hydrogen and oxygen. In this work, we address these limitations by implementing controlled two-phase flows of these gases in a set of microchannels electrolytically connected through a narrow gap. Annular flows of the gases reshape the concentration boundary layer over the surface of electrodes and increase the mass-transport limited current density in the system. Our results show that the power density of a two-phase system with hydrogen and oxygen streams is an order of magnitude higher than that of single phase system consisting of liquid electrolytes saturated with the same reactants. The reactor design described here can be employed to boost the performance of MFFCs and put them in a more competitive position compared to membrane based fuel cells.

  15. Determination and characteristics of the transition to two-phase slug flow in small channels

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-12-01

    Two-phase pressure drop was measured in a small horizontal rectangular channel (hydraulic diameter = 5.44 mm). The two-phase fluid was an air/water mixture at atmospheric pressure tested over a mass flux range of 50 to 2000 kg/m{sup 2}{center_dot}s. Two-phase flow patterns were identified and an objective method was found for determining the flow pattern transition from bubble or plug flow to slug flow. The method is based on an RMS pressure measurement. In particular, it is shown that the transition is accompanied by a clear and abrupt increase in the RMS pressure when plotted as a function of mass quality. Use of the RMS pressure as a two-phase flow pattern transition indicator is shown to have advantages over pressure-versus-time trace evaluations reported in the literature. The transition is substantiated by a clear local change in slope in the curve of two-phase pressure drop plotted as a function of either Martinelli parameter or mass quality. For high mass fluxes, the change in slope is distinguished by a local peak. Some degree of substantiation was found in previous work for both of the results (the RMS pressure change and the local pressure drop change) at the transition to slug flow.

  16. Determination and characteristics of the transition to two-phase slug flow in small channels

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A. ); France, D.M. . Dept. of Mechanical Engineering)

    1992-01-01

    Two-phase pressure drop was measured in a small horizontal rectangular channel (hydraulic diameter = 5.44 mm). The two-phase fluid was an air/water mixture at atmospheric pressure tested over a mass flux range of 50 to 2000 kg/m[sup 2][center dot]s. Two-phase flow patterns were identified and an objective method was found for determining the flow pattern transition from bubble or plug flow to slug flow. The method is based on an RMS pressure measurement. In particular, it is shown that the transition is accompanied by a clear and abrupt increase in the RMS pressure when plotted as a function of mass quality. Use of the RMS pressure as a two-phase flow pattern transition indicator is shown to have advantages over pressure-versus-time trace evaluations reported in the literature. The transition is substantiated by a clear local change in slope in the curve of two-phase pressure drop plotted as a function of either Martinelli parameter or mass quality. For high mass fluxes, the change in slope is distinguished by a local peak. Some degree of substantiation was found in previous work for both of the results (the RMS pressure change and the local pressure drop change) at the transition to slug flow.

  17. Axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2012-06-01

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect.

  18. Two-phase visualization at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Rousset, Bernard; Chatain, Denis; Beysens, Daniel; Jager, Bernard

    2001-05-01

    This paper presents two different applications for two-phase visualization at low temperature. In the first application, a CCD video camera located inside vacuum is directly supported by the Pyrex pipe containing a two-phase superfluid flow. In the case of slightly positive slopes in which the flow is co-current but ascending, two different flow patterns have been seen, stratified and intermittent, depending on the vapor mass flow. Experimental investigations from stratified to intermittent flow have been made visually and compared to a code derived from the Taitler/Dukler model. The second application concerns phase transition of hydrogen near critical point (33 K) in zero gravity. The experiments have been performed in a cryostat equipped with a 10 T superconducting coil allowing the gravity compensation for hydrogen. Images of the condensation cell are shifted to the top of the cryostat with a specific cryogenic endoscope because CCD cameras do not work in high magnetic fields. The sample was enlightened with diffuse or parallel (coherent) light using a second endoscope. Images obtained in this apparatus are similar with those obtained in space.

  19. Dynamic failure in two-phase materials

    DOE PAGES

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; ...

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less

  20. Lumped element modeling of air-coupled capacitive micromachined ultrasonic transducers with annular cell geometry.

    PubMed

    Na, Shuai; Wong, Lawrence L P; Chen, Albert I H; Li, Zhenhao; Macecek, Mirek; Yeow, John T W

    2017-04-01

    Air-coupled capacitive micromachined ultrasonic transducers (CMUTs) based on annular cell geometry have recently been reported. Finite element analysis and experimental studies have demonstrated their significant improvement in transmit efficiency compared with the conventional circular-cell CMUTs. Extending the previous work, this paper proposed a lumped element model of annular-cell CMUTs. Explicit expressions of the resonance frequency, modal vector, and static displacement of a clamped annular plate under uniform pressure were first derived based on the plate theory and curve fitting method. The lumped model of an annular CMUT cell was then developed by adopting the average displacement as the spatial variable. Using the proposed model, the ratio of average-to-maximum displacement was derived to be 8/15. Experimental and simulation studies on a fabricated annular CMUT cell verified the effectiveness of the lumped model. The proposed model provides an effective and efficient way to analyze and design air-coupled annular-cell CMUTs.

  1. Phase distribution of nitrogen-water two-phase flow in parallel micro channels

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Wang, Shuangfeng; Zhou, You

    2016-08-01

    The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.

  2. Two-phase flow key to offshore line design

    SciTech Connect

    Corteville, J.; Besse, J.; Grouvel, J.M.; Roux, A.

    1981-08-10

    The aim of the research project is to supply engineers with a good knowledge of two-phase oil and gas flow and the means to predict flow regimes; average pressure drop; average liquid hold-up; and, for slug flow, the volume, frequency, and velocity of slugs. The research group has developed a theoretical stratified flow model based on the equations published by Y. Taitel and A.E. Dukler, J.M. Fitremann, and others. This model considers the gas and the liquid layers independently and takes into account the interaction at the interface. Standard fluid mechanics is applied to each phase. The geometry and the transfer characteristics of the interface are modeled semiempirically. The coefficients are obtained from regression analysis of the experimental data measured in the 6-in. test loop. This model gives the liquid hold-up as well as the pressure drop. 7 refs.

  3. Stability of oscillatory two phase Couette flow

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.

    1993-01-01

    We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.

  4. Laser-produced annular plasmas

    SciTech Connect

    Veloso, F.; Chuaqui, H.; Aliaga-Rossel, R.; Favre, M.; Mitchell, I. H.; Wyndham, E.

    2006-06-15

    A new technique is presented for the formation of annular plasmas on a metal surface with a high-power laser using a combination of axicon and converging lenses. The annular plasma formed on a titanium target in a chamber of hydrogen gas was investigated using schlieren imaging and Mach Zehnder interferometry. Expansion of the plasma was shown to be anisotropic with velocities of {approx}10{sup 3}-10{sup 4} m/s. Electron densities of 10{sup 18} cm{sup -3} were measured with radial profiles that confirm the presence of a hollow structure. The interferometric observations also show the presence of an inward shock wave traveling to the center of the annular plasma, which compresses the background neutrals, reaching a density around 18 times initial gas density, at 95 ns after the initial annular plasma is produced.

  5. A two phase Mach number description of the equilibrium flow of nitrogen in ducts

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.; Adcock, J. B.

    1979-01-01

    Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.

  6. On-demand generation of aqueous two-phase microdroplets with reversible phase transitions

    SciTech Connect

    Boreyko, Jonathan B; Mruetusatorn, Prachya; Retterer, Scott T; Collier, Pat

    2013-01-01

    Aqueous two-phase systems contained entirely within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microgel states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.

  7. Development of ITER Divertor Vertical Target with Annular Flow Concept - I: Thermal-Hydraulic Characteristics of Annular Swirl Tube

    SciTech Connect

    Ezato, K.; Dairaku, M.; Taniguchi, M.; Sato, K.; Suzuki, S.; Akiba, M.; Ibbott, C.; Tivey, R.

    2004-12-15

    Thermal-hydraulic tests for pressurized water in an annular tube with a twist fin have been performed to examine its applicability to high-heat-flux components of the International Thermonuclear Experimental Reactor (ITER) divertor. The annular swirl tube consists of two concentric tubes: an outer smooth tube and an inner tube with an external twist fin to enhance heat transfer of the cooling water in the annulus section between the outer and the inner tubes. Critical heat flux (CHF) tests under one-sided-heating conditions show that the annular swirl tube has as high removal limitation as the conventional swirl tube, the dimensions of which are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required for 28 MW/m{sup 2}, the ITER design value. Pressure drops in the annulus section and the end return have been measured. The applicability of the existing correlations for heat transfer and CHF to the annular swirl tube has also been examined.

  8. Waves, Instabilities, and Rivulets in High Quality Microgap Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Holloway, C.

    2016-09-01

    Two-phase flow in sub-millimeter microgap channels offers highly potent thermal management capability and is the foundation for the emerging "embedded cooling" paradigm of electronic cooling. While the thermofluid characteristics and operational limits of such microcoolers are intimately tied to distinct forms of vapor-liquid aggregation in the microgap channel, insufficient attention has been paid to the formation of distinct wave patterns and instabilities on the thin liquid films associated with high-quality microgap channel flow. This paper focuses on the results of visualization and heat transfer studies of such two-phase flows, under both adiabatic and diabatic conditions, for FC-72 flowing in a 184 micron microgap channel at a mass flux of 230 kg/(m2.s). The study has revealed the existence of a post-annular, high-quality Rivulet flow regime, in which the liquid film breakdown and local wall dryout drives large surface anisothermalities and limits the heat transfer rate from the wall. As predicted by the prevailing flow regime models, annular flow is found to be the dominant flow regime for this microgap configuration.. For the adiabatic conditions, flow qualities ranged between 27% and 81%, and widely spaced, 3D waves, with a wavelength that decreases with increasing flow quality, were observed on the liquid-vapor interface. For the diabatic condition, the inlet flow quality was maintained at 36% and the exit flow quality varied between 47% and 97%. For exit qualities greater than 61%, the liquid film would periodically rupture into rivulet of varying width and length. The spacing, length, and width of the rivulets varied considerably, and can easily stretch well into dryout region. The axial variation of the wall heat transfer coefficient was found to reflect and confirm the expected axial propagation of the two- phase flow regimes and the onset of local dryout associated with the newly-defined Rivulet regime.

  9. Characterizing dynamic hysteresis and fractal statistics of chaotic two-phase flow and application to fuel cells

    NASA Astrophysics Data System (ADS)

    Burkholder, Michael B.; Litster, Shawn

    2016-05-01

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.

  10. Two-phase methane fermentation of municipal-industrial sludge

    SciTech Connect

    Ghosh, S.; Sajjad, A.

    1984-01-01

    This paper presents the development of an innovative two-phase methane fermentation process that provided a mesophilic methane yield of about 0.5 SCM/kg VS (8 SCF/lb VS) added from digestion of a municipal-industrial sludge at a system hydraulic residence time (HRT) of about 6 days compared with a yield of 0.22 to 0.31 SCM/kg VS (3.5 to 5.0 SCF/lb VS) added obtained from single-stage conventional high-rate digesters operated at HRT's of 10 to 20 days. This innovative process has substantive beneficial impact on the production of net energy and availability of surplus digester methane for sale or conversion to such other energy forms as substitute natural gas, electric power, hot water, or low-pressure steam. The research was conducted with a high-metal-content and difficult-to-treat primary sludge from the South Essex Sewerage District (SESD) water pollution control plant, Salem, Massachusetts. Wastewaters received at the plant include 40 to 60 vol % industrial wastes, the remainder being residential liquid wastes. Incineration, which was the sludge disposal process at the plant, is now unacceptable because it leads to the production of hexavalent chromium and other oxidized metals, and the incinerator ash containing these materials cannot be landfilled. The two-phase process does not generate oxidized species such as Cr/sup 6 +/, produces renewable energy and a highly stabilized residue, and could be an answer to the sludge disposal problems of SESD or other sewage districts. Results of bench-scale process development work are presented here. Design and operation of a 7500 L/day (2000 gal/day) two-phase pilot plant will be started this year with support from the above industrial sponsors and other governmental and public agencies. 6 references, 1 figure, 5 tables.

  11. Experimental and Analytical Study of Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, D.; Howerton, J.; Barez, F.; McQuillen, John

    1999-01-01

    A two-phase test loop has been designed and constructed to generate the necessary data for two-phase pressure drop and Critical Heat Flux (CHF) under reduced gravity conditions. A series of airplane trajectory tests aboard NASA KC-135 were performed and the data was used to evaluate the applicability of the earth gravity models for prediction of the reduced gravity data. Several commonly used correlations for the two-phase friction multiplier and critical heat flux were used to predict the data. It was generally concluded that the two-phase pressure drop can be predicted by the earth gravity correlations. The critical heat flux under reduced gravity conditions did not show a strong dependence on mass flow rate and the measured CHF were generally lower than the equivalent 1g conditions. The earth gravity models need to be modified for application to reduced gravities.

  12. Single and two-phase flow fluid dynamics in parallel helical coils

    NASA Astrophysics Data System (ADS)

    De Salve, M.; Orio, M.; Panella, B.

    2014-04-01

    The design of helical coiled steam generators requires the knowledge of the single and two-phase fluid dynamics. The present work reports the results of an experimental campaign on single-phase and two phase pressure drops and void fraction in three parallel helicoidal pipes, in which the total water flow rate is splitted by means of a branch. With this test configuration the distribution of the water flow rate in the helicoidal pipes and the phenomena of the instability of the two-phase flow have been experimentally investigated.

  13. Reduced gravity and ground testing of a two-phase thermal management system for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hill, D. G.; Hsu, K.; Parish, R.; Dominick, J.

    1988-01-01

    Experiments were performed aboard the NASA-JSC KC-135 aircraft to study the effect of reduced gravity on two-phase (liquid/vapor) flow and condensation. A prototype two-phase thermal management system for a large spacecraft was tested. Both visual observation and photography of the flow regimes were made. Ground test simulations of the KC-135 flight tests were conducted for comparison purposes. Two-phase pressure drops were predictable by the Heat Transfer Research Institute (HTRI) method, or the Friedel correlation.

  14. Two-Phase Quality/Flow Meter

    NASA Technical Reports Server (NTRS)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  15. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B. ); Hughes, E.D. )

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  16. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1991-12-31

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  17. Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel

    SciTech Connect

    Cai, Y.; Wambsganss, M.W.; Jendrzejczyk, J.A.

    1996-02-01

    Various measurement tools of chaos theory were applied to analyze two-phase pressure signals with the objective to identify and interpret flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic in nature. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identification of certain two-phase flow patterns and transitions.

  18. Critical heat flux estimation for annular channel geometry

    NASA Astrophysics Data System (ADS)

    Pagh, Richard T.

    Critical Heat Flux (CHF) is an important safety parameter for the design of nuclear reactors. The most commonly used predictive tool for determination of CHF is a look-up table developed using tube data with an average hydraulic test diameter of 8 mm. There exist in the world today nuclear reactors whose geometry is annular, not tubular, and whose hydraulic diameter is significantly smaller than 8 mm. In addition, any sub-channel thermal hydraulic model of fuel assemblies is annular and not tubular. Comparisons were made between this predictive tool and annular correlations developed from test data. These comparisons showed the look-up table over-predicts the CHF values for annular channels, thus questioning its ability to perform correct safety evaluations. Since no better tool exists to predict CHF for annular geometry, an effort was undertaken to produce one. A database of open literature annular CHF values was created as a basis for this new tool. By compiling information from eighteen sources and requiring that the data be inner wall, unilaterally, uniformly heated with no spacers or heat transfer enhancement devices, a database of 1630 experimental values was produced. After a review of the data in the database, a new look-up table was created. A look-up table provides localized control of the prediction to overcome sparseness of data. Using Shepard's Method as the extrapolation technique, a regular mesh look-up table was produced using four main variables: pressure, quality, mass flux, and hydraulic diameter. The root mean square error of this look-up table was found to be 0.8267. However, by fixing the hydraulic diameter locations to the database values, the root mean square error was further reduced to 0.2816. This look-up table can now predict CHF values for annular channels over a wide range of fluid conditions.

  19. Investigation of single-substance horizontal two-phase flow

    SciTech Connect

    Dickinson, D.A.; Maeder, P.F.

    1984-03-01

    Despite the abundance of work in the field of two-phase flow, it seems as though a consensus has not been reached on some of the fundamental points. Although exceptions exist, adequate physical interpretation of the flow seems to be hindered either by complexity of analysis or, in the opposite extreme, the trend toward limited-range analysis and correlations. The dissertation presents the derivation of basic conservation equations for the phases. The combined equations are used to examine the phenomenon of slip and its practical limitations, the Fanno line for single-substance flow and the effect of slip on choking. Equations for critical mass flux in the presence of slip are derived. The Mach, Reynolds and Froude numbers based on conditions at flashing are introduced as the characteristic parameters, and the importance of compressibility in single-substance two-phase flow is discussed. Experimental measurements of pressure change and void fraction for flow in the highly compressible range (.5 < Ma < 1) are presented. The working fluid is Refrigerant R-114, at room temperature, in a test section of diameter 5 cm and length 8 m. The effect of the Froude and Mach numbers is examined. The experimental facility is operated intermittently with running times of approximately two minutes and is instrumented for rapid measurements using a computer data acquisition and control system. A description of the facility and procedure is provided.

  20. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  1. Neutron Imaging of a Two-Phase Refrigerant Flow

    SciTech Connect

    Geoghegan, Patrick J

    2015-01-01

    Void fraction remains a crucial parameter in understanding and characterizing two-phase flow. It appears as a key variable in both heat transfer and pressure drop correlations of two-phase flows, from the macro to micro- channel scale. Void fraction estimation dictates the sizing of both evaporating and condensing phase change heat exchangers, for example. In order to measure void fraction some invasive approach is necessary. Typically, visualization is achieved either downstream of the test section or on top by machining to expose the channel. Both approaches can lead to inaccuracies. The former assumes the flow will not be affected moving from the heat exchanger surface to the transparent section. The latter distorts the heat flow path. Neutron Imaging can provide a non-invasive measurement because metals such as Aluminum are essentially transparent to neutrons. Hence, if a refrigerant is selected that provides suitable neutron attenuation; steady-state void fraction measurements in two-phase flow are attainable in-situ without disturbing the fluid flow or heat flow path. Neutron Imaging has been used in the past to qualitatively describe the flow in heat exchangers in terms of maldistributions without providing void fraction data. This work is distinguished from previous efforts because the heat exchanger has been designed and the refrigerant selected to avail of neutron imaging. This work describes the experimental flow loop that enables a boiling two-phase flow; the heat exchanger test section and downstream transparent section are described. The flow loop controls the degree of subcooling and the refrigerant flowrate. Heating cartridges embedded in the test section are employed to control the heat input. Neutron-imaged steady-state void fraction measurements are captured and compared to representative high-speed videography captured at the visualization section. This allows a qualitative comparison between neutron imaged and traditional techniques. The

  2. Two-phase microfluidics: thermophysical fundamentals and engineering concepts

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.

    2016-10-01

    Thermophysical fundamentals and engineering concepts of the two-phase microfluidic devises based on controlled liquid decay are discussed in this paper. The results of an experimental study of the explosive evaporation at a thin film heater of the MEMS devise in application to thermal inkjet printing are presented. The peculiarities of homogeneous nucleation and bubble growth in the liquid subjected to pulse heating are discussed. Using experimental data a simple equation suitable for predicting the growth rate of a vapor bubble in a non-uniformly superheated liquid was obtained and used to complete a mathematical model of the self-consistent nucleation and vapor bubbles growth in the induced pressure field. The results of numerical calculations according to the proposed model showed good agreement with the experimental data on a time of nucleation and duration of the initial stage of an explosive evaporation of water.

  3. Flooding in counter-current two-phase flow

    SciTech Connect

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  4. Measurement of two-phase flow momentum with force transducers

    SciTech Connect

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs.

  5. Conceptual design for spacelab two-phase flow experiments

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; King, C. D.

    1977-01-01

    KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.

  6. STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS

    SciTech Connect

    Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams

    1998-11-18

    Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of

  7. Two-Phase Nozzle Theory and Parametric Analysis.

    DTIC Science & Technology

    1980-06-01

    prime-mover applications and for geothermal power generation. The major difference between single-phase (gas) nozzle flow and two-phase nozzle flow is...and the thermophysical properties of the two phases. will increase the enthalpy of the two-phase mixture as well as heat transfer from the droplets to...of the thermal energy of the liquid is transferred efficiently to the gas phase, and the resulting two-phase enthalpy is then converted into kinetic

  8. Two phase granular transport in cylindrical confinement

    NASA Astrophysics Data System (ADS)

    Ayaz, Monem; Toussaint, Renaud; Måløy, Knut-Jørgen

    2016-04-01

    We experimentally study the granular transport properties of a gas/liquid interface as it progresses trough a horizontal capillary tube, filled with a mixture of water and a sedimented granular layer.The displacement dynamics of such dense mixtures exhibit a rheology determined by the frictional interactions between the individual grains, capillary thresholds and the viscous interactions. By direct imaging and pressure measurements we observe different transport regimes as the pumping rate is varied. We classify these regimes according to the observed predominance of frictional or viscous interactions in a phase diagram. For the frictional regime the granular material is not transported out of the tube but structured in a pattern, characterized by its series of granular plugs and gaps. with the pressure signal displaying intermittent stick-slip behavior.

  9. Dynamics of two-phase face seals

    NASA Technical Reports Server (NTRS)

    Beeler, R. M.; Hughes, W. F.

    1984-01-01

    An analytic study is presented of the effects of phase change on load support for parallel and tapered face seals. Consideration is given to an adiabatic model for low Reynolds number flow. Numerical integration is carried out of the descriptive fluid equations, giving the opening force due to fluid film pressure. The loci of steady-state solutions are then plotted for water to provide curves of load support as a function of film thickness. For axial excursions of the seal rings, a quasi-steady transient analysis is made. It is found that the load support generated by fluid pressure can be multivalued for a given film thickness. Another finding is that axial disturbances of the seal rings may lead to sudden drops in load support generated by fluid pressure with three possible results. The first is that sufficient damping may permit the seal to return to the previous equilibrium operating position. The second is that the seal may collapse to an equilibrium position of smaller film thickness where face contact is more likely and a significantly higher operating temperature is assured. The third is that a limit cycle of self-sustained oscillation in the axial direction may occur if damping is sufficiently low.

  10. Hydrodynamics of annular-dispersed flow. [PWR; BWR

    SciTech Connect

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data.

  11. Interfacial transfer in annular dispersed flow. [PWR; BWR

    SciTech Connect

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, droplet deposition and droplet-size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The onset of droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet-size distribution have been obtained from a simple model in collaboration with a large number of data. Then the rate equations for entrainment and deposition have been developed. The drag correlations relevant to the droplet transfer is also presented. The comparison of the correlations to various data show satisfactory agreement.

  12. Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.

    1996-01-01

    For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.

  13. The measurement of thermodynamic performance in cryogenic two-phase turbo-expander

    NASA Astrophysics Data System (ADS)

    Niu, Lu; Hou, Yu; Sun, Wan; Chen, Shuangtao

    2015-09-01

    Liquid fraction measurement in cryogenic two-phase flow is a complex issue, especially for an industrial cryogenic system. In this paper, a simple thermal method is proposed for measuring the liquid fraction in cryogenic two-phase turbo-expander by an electric heating unit in experimental study. The liquid fraction of the cryogenic two-phase flow is determined through the heat balance built at the outlet of the turbo-expander (inlet of heating unit) and the outlet of the heating unit. Liquid fractions from 1.16% to 5.02% are obtained from five two-phase expansion cases. Under the same turbo-expander inlet pressure and rotating speed, five superheated expansion cases are tested to evaluate the wetness loss in two-phase expansion. The results show that the proposed method is successful in measuring the liquid fraction of cryogenic two-phase expansion for turbo-expander in an industrial air separation plant. The experimental isentropic efficiency ratio and the tested Baumann factor decrease with the increasing mean wetness. Based on prediction of Baumann rule, the cryogenic turbo-expander with low liquid fraction in two-phase expansion cases suffers from more severe wetness loss than that with the higher liquid fraction.

  14. Epidermal activity in annular dermatophytosis.

    PubMed

    Berk, S H; Penneys, N S; Weinstein, G D

    1976-04-01

    In five patients with annular tinea corporis, the tritated thymidine labeling indexes were determined in the rim, center, and intermediate areas of the lesion and compared with normal skin. Labeling indexes at the rim were much higher than those of normal skin (mean, 4.2 times). Labeling indexes elsewhere in the lesion were not significantly different from those of normal skin. Histologic examination showed epidermal thickening in all areas of the lesion as compared with normal skin. This study suggests that there is an increased epidermal turnover at the rim of annular dermatophytosis that may be important in the pathophysiology and morphogenesis of such lesions.

  15. Annular Eclipse as Seen by Hinode

    NASA Video Gallery

    This timelapse shows an annular eclipse as seen by JAXA's Hinode satellite on Jan. 4, 2011. An annular eclipse occurs when the moon, slightly more distant from Earth than on average, moves directly...

  16. Study of two-phase flow and heat transfer in reduced gravities

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Barez, Fred

    1994-01-01

    Design of the two-phase systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and perform a series of experiments to generate the data for the Critical Heat Flux (CHF) and onset of instability under reduced gravities. In addition to low gravity airplane trajectory testing, the experimental program consists of a set of laboratory tests with vertical upflow and downflow configurations. Modularity is considered in the design of this experiment and the test loop in instrumented to provide data for two-phase pressure drop and flow regime behavior. Since the program is in the final stages of the design and construction task, this article is intended to discuss the phenomena, design approach, and the description of the test loop.

  17. Study of momentum transfer in two-fluid formulation of two-phase flow

    NASA Astrophysics Data System (ADS)

    Egely, G.; Saha, P.

    Advanced nuclear safety codes such as TRAC and BFIAP5 use two-fluid hydraulic models. However, there are uncertainties for the application of different correlations. The effects and importance of a number of correlations for wall friction, interphase drag, and virtual mass are shown. The homogeneous wall shear model yields good results up to the annular flow regime, the single bubble drag correlation is acceptable, and the inclusion of virtual mass coefficient is helpful. The critical Weber number is not appropriate for bubble radius calculation; it predicts an opposing tendency when compared with the test data. Also, a two phase diffuser efficiency is required for diverging ducts and a correlation for the same was proposed.

  18. Hydrodynamic dryout in two-phase flows: Observations of low bond number systems

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark M.; McQuillen, John B.

    1998-01-01

    Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Reg~O(103), Rel~O(104), and Ca~O(10-1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. From such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with ``hot spots.'' A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.

  19. Hydrodynamic Dryout in Two-Phase Flows: Observations of Low Bond Number Systems

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; McQuillen, John B.

    1998-01-01

    Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Re(sub g) approximately 0(10(exp 3)), Re(sub l) approximately 0(10(exp 4)), and Ca approximately 0(10(exp -1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. Rom such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with "hot spots." A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.

  20. Dual Luminescence Imaging for Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Sakaue, Hirotaka; Morita, Katsuaki

    2016-11-01

    Dual luminescence imaging gives time-resolved information of fluid dynamic phenomena. It uses two luminescent probes; one is sensitive to the detecting medium and the other as a reference. It is a non-intrusive technique, and both luminescent outputs are captured by a high-speed color camera as color-filtered images. By taking a ratio of the two images at the same time frame, this imaging technique can give time-resolved information. It is suitable for a moving and free surface objects. It is also suitable for a measurement where a target is small to mount a conventional thermocouple and pressure probes. Some of the applications of this imaging are described in the presentation, such as icing and boiling phenomena.

  1. Thermal hydraulic analysis of annular fuel-based assemblies

    SciTech Connect

    Kyu Hyun Han; Soon Heung Chang

    2004-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels. (authors)

  2. Two phase damage theory and the failure enveloppes of sandstone

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Bercovici, D.

    2003-04-01

    Using a classical averaging approach, we derive a two-phase theory to describe the deformation of a porous material made of a matrix containing voids. The presence and evolution of surface energy at the interface between the solid matrix and voids is taken into account with non-equilibrium thermodynamic considerations that allow storage of deformational work as surface energy on growing or newly created voids. This treatment leads to a simple description of isotropic damage that can be applied to low-cohesion media such as sandstone. In particular, the theory yields two possible solutions wherein samples can either ``break" by shear localization with dilation (i.e., void creation), or undergo shear-enhanced compaction (void collapse facilitated by deviatoric stress). For a given deviatoric stress and confining pressure, the dominant solution is the one with the largest absolute value of the dilation rate, |Γ|, which thus predicts that shear-localization and dilation occur at low effective pressures, while shear-enhanced compaction occurs at larger effective pressure. Stress trajectories of constant |Γ| represent potential failure envelopes that are ogive (Gothic-arch) shaped curves wherein the ascending branch represents failure by dilation and shear-localization, and the descending branch denotes shear-enhanced compactive failure. The theory further predicts that the onset of dilation preceding shear-localization and failure necessarily occurs at the transition from compactive to dilational states and thus along a line connecting the peaks of constant-|Γ| ogives. Finally, the theory implies that while shear-enhanced compaction first occurs with increasing deviatoric stress (at large effective pressure), dilation will occur at higher deviatoric stresses. All these predictions in fact compare very successfully with various experimental data. Indeed, the theory leads to a normalization where all the data of failure envelopes and dilation thresholds collapse to a

  3. Basic study on an energy conversion system using gas-liquid two-phase flows of magnetic fluid

    SciTech Connect

    Okubo, Masaaki; Ishimoto, Jun; Kamiyama, Schinichi.

    1994-12-31

    The mechanism of the pressure rise in a gas-liquid two-phase pipe flow of magnetic fluid under a nonuniform magnetic field is investigated in detail both theoretically and experimentally. First, governing equations of one-dimensional gas-liquid two-phase magnetic fluid flow are presented and numerically solved. Next, the pressure distribution in a nonuniform magnetic wild region is measured in the cases of two-phase flow, single-phase flow and the stationary state using a new experimental apparatus for the flow system. From the numerical measurement results, the magnitude of the pressure components which contribute to the total driving force is accurately estimated. These results on the pressure distribution will contribute to the development of the new energy conversion system using a gas-liquid two-phase magnetic fluid flow.

  4. [Two-phase Interfaces in Weak External Fields

    NASA Technical Reports Server (NTRS)

    Percus, J. K.

    1996-01-01

    Our aim has been that of understanding from first principles the behavior of two-phase interfaces in the absence of gravitational constraints. This is fundamental to our ability to deal with the fluid structures that abound in the real biological, chemical, and physical world. A substantial effort was mounted to determine how familiar hydrodynamic concepts have to be modified and interpreted to make them appropriate to the multi-level structure alluded to above. This was primarily in the context of the microscopic symmetric pressure tensor, which was, for the first time, expressed in the invaluable density functional format, and the used to follow the predictions of popular microscopic models of the energetics of interfacial systems. In the course of these investigations, the previous murky relation between pressure tensor and thermodynamics was completely clarified. The process of extending thermodynamic information to interfacial dynamics was initiated along two paths. One was from the viewpoint of an inertialess lattice gas, resulting in the surprising conclusion that at this level, all transport is governed by precisely the thermodynamic free energy, albeit with a non-trivial effective particle mobility. The other aimed at understanding the fashion in which slow macroscopic motions, accounted for by a time-varying microscopic energy, generate effective hydrodynamic parameters. By examining a solvable model system, it was found that all current procedures for doing so are deficient, and suitable alleviation suggested. The major effect of this project was to set the stage for the analysis of the substantial dynamical regimes in which extensive equilibrium information provides the dominant background. This produces a smooth junction to the models of Araki and Munakata, Giacomin and Lebowitz, and Oxtoby. It is also crucial to our understanding of the complex interfacial equilibrium configurations required for intermediate stages of two-phase separation, for which

  5. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis.

    PubMed

    Oppermann, Sebastian; Stein, Florian; Kragl, Udo

    2011-02-01

    The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.

  6. Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves

    NASA Astrophysics Data System (ADS)

    Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2011-02-01

    Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

  7. Evaluation of the Sensitivity of Two-Phase Flow Model for the Steam Separator Analysis

    SciTech Connect

    Michio Murase; Masao Chaki

    2006-07-01

    Reducing of the pressure losses of steam separator systems of boiling water reactor (BWR) plants is useful to reduce the required pump head and enhance core stability design margin. The need to reduce the pressure losses of steam separator systems is especially important in BWR plants that have high power density cores and natural circulation systems. The core flow rate of a BWR plant with a natural circulation system is affected by the pressure losses of steam separator systems. In BWR plants with high power density cores, the core stability design margin is affected by these pressure losses. Generally, reducing the pressure losses of the steam separator systems leads to increased carry-under and carryover. Reducing the pressure losses while keeping the characteristics of both carry-under and carryover is desired, so many studies have been done. The steam separator of a BWR plant consists of a standpipe section, a swirl vane section and three-barrel sections. Two-phase flow of steam and water enters the steam separator through the standpipe section and reaches the swirl vane section. In the swirl vane section, the two-phase flow is given centrifugal force and is basically separated into steam and water. Therefore investigating the two-phase flow characteristics of the swirl vane section is very important. After the swirl vane section, the two-phase flow enters the barrel sections. Each barrel has a pick-off ring. The water in the barrel section is mainly removed by these pick-off rings because the water mainly flows upward as a liquid film in the barrel section due to the centrifugal force given in the swirl vane section. We researched the effect of using the drag force model of the swirling two-phase flow in analyzing a steam separator and we found that the drag force model greatly affects the results of the analysis. (authors)

  8. Next steps in two-phase flow: executive summary

    SciTech Connect

    DiPippo, R.

    1980-09-01

    The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)

  9. Two-phase flow measurements with advanced instrumented spool pieces

    SciTech Connect

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  10. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  11. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  12. Experimental and Analytical Study of Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Abdollahian, Davood; Quintal, J.; Zahm, J.

    1996-01-01

    Design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and to perform a series of experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop is also instrumented to generate data for two-phase pressure drop. In addition to low gravity airplane trajectory testing, the experimental program consisted of a set of laboratory tests which were intended to generate data under the bounding conditions (+1 g and -1 g) in order to plan the test matrix. One set of airplane trajectory tests has been performed and several modifications to the test set-up have been identified. Preliminary test results have been used to demonstrate the applicability of the earth gravity models for prediction of the two-phase friction pressure drop.

  13. Scaling of Two-Phase Flows to Partial-Earth Gravity

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Witte, Larry C.

    2003-01-01

    A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

  14. Gas-liquid two-phase flow across a bank of micropillars

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  15. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  16. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  17. Droplet deposition and momentum transfer in annular flow

    SciTech Connect

    Fore, L.B.; Dukler, A.E.

    1995-09-01

    Entrainment and deposition in gas-liquid annular upflow are known to account for as much as 20% of the pressure gradient, through droplet accelerations in the core region. Momentum is transferred from the core when droplets decelerate upon impact with the liquid film. It is usually assumed that all of this momentum is transferred to the film, essentially driving the film upward in conjunction with interfacial friction. New data, obtained for annular gas-liquid upflow in a 5.08-cm-ID tube, are used in a momentum balance analysis to determine the mechanism of momentum transfer from depositing droplets. Measurements include the liquid film thickness, wall shear stress, pressure gradient, entrained liquid fraction, droplet deposition rate, droplet centerline axial velocity, and mass-average drop size for two gas-liquid systems. This analysis supports the idea that large droplets displace the film locally and decelerate primarily at the wall, effectively transferring negligible momentum to the liquid film.

  18. Separated Vs. homogeneous two-phase flow in violent strombolian activity

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Cashman, K.; Wallace, P.

    2007-12-01

    The term "violent Strombolian" was first used to describe mafic eruptions that formed ash-charged columns up to 6 km high, and dispersed material up to a few hundred km from the source (Walker, 1971). These eruptions are often discontinuous and strongly pulsatory and are typically associated with simultaneous effusive activity: they form composite deposits constituted by a cinder cone, tephra blanket, and lava flows spreading from lateral vents. This eruptive regime is typical of water-rich mafic magmas and is characterized by average mass flows (103-105 kg/s) intermediate between Hawaiian and subplinian regimes. Within this interval, there is a direct correlation between explosivity, as defined by tephra production, and magma flux. When magma flow exceeds 105 kg/s, gas segregation is no longer possible and eruptive activity takes the form of sustained columns (subplinian to plinian activity). At eruption rates below 103 kg/s passive degassing processes dominate, causing lava effusion and/or mild explosive activity (Strombolian to Hawaiian). We suggest that very shallow gas segregation processes play a fundamental role in violent strombolian dynamics, affecting both explosive and effusive activity. Simultaneous eruption of tephra from the cone and lava flows from lateral vents requires both a gas-rich mixture ascending the central conduit and gas-poor lava flowing in the lateral system. Uneven distribution of liquid and gas phases is possible only when gas and magma are characterized by different momentum, i.e. the flow is separated. At a first approximation, the phase distribution is controlled by the two-phase flow regime (bubbly, slug, churn or annular), both gas and liquid fluxes, and the ratio between conduit and dike diameters. To quantify this process, we analyze in detail the dynamics of a particularly long-lived and well-known eruption of the last century- the Paricutin eruption (1943-1952) of central Mexico. Specific two-phase flow models are then used to

  19. Sound speed criterion for two-phase critical flow

    NASA Astrophysics Data System (ADS)

    Chung, M.-S.; Park, S.-B.; Lee, H.-K.

    2004-09-01

    Critical flow simulation for non-homogeneous, non-equilibrium two-phase flows is improved by applying a new sound speed model which is derived from the characteristic analysis of hyperbolic two-fluid model. The hyperbolicity of two-fluid model was based on the concept of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speeds in the bubbly flow regime that agree well with the existing experimental data. The analytic sound speed is consistent with that obtained by the earlier study of Nguyen et al. though there is a difference between them especially in the limiting condition. The present sound speed shows more reasonable result in that condition than Nguyen et al.'s does. The present critical flow criterion derived by the present sound speed is employed in the MARS code and is assessed by treating several nozzle flow tests. The assessment results, without any adjustment made by some discharge coefficients, demonstrate more accurate predictions of critical flow rate than those of the earlier critical flow calculations in the bubbly flow regime.

  20. A two-phase code for protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Inaba, S.; Barge, P.; Daniel, E.; Guillard, H.

    2005-02-01

    A high accuracy 2D hydrodynamical code has been developed to simulate the flow of gas and solid particles in protoplanetary disks. Gas is considered as a compressible fluid while solid particles, fully coupled to the gas by aerodynamical forces, are treated as a pressure-free diluted second phase. The solid particles lose energy and angular momentum which are transfered to the gas. As a result particles migrate inward toward the star and gas moves outward. High accuracy is necessary to account for the coupling. Boundary conditions must account for the inward/outward motions of the two phases. The code has been tested on one and two dimensional situations. The numerical results were compared with analytical solutions in three different cases: i) the disk is composed of a single gas component; ii) solid particles migrate in a steady flow of gas; iii) gas and solid particles evolve simultaneously. The code can easily reproduce known analytical solutions and is a powerful tool to study planetary formation at the decoupling stage. For example, the evolution of an over-density in the radial distribution of solids is found to differ significantly from the case where no back reaction of the particles onto the gas is assumed. Inside the bump, solid particles have a drift velocity approximately 16 times smaller than outside which significantly increases the residence time of the particles in the nebula. This opens some interesting perspectives to solve the timescale problem for the formation of planetesimals.

  1. Particle migration in two-phase, viscoelastic flows

    NASA Astrophysics Data System (ADS)

    Jaensson, Nick; Hulsen, Martien; Anderson, Patrick

    2014-11-01

    Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.

  2. Turbulent transition modification in dispersed two-phase pipe flow

    NASA Astrophysics Data System (ADS)

    Winters, Kyle; Longmire, Ellen

    2014-11-01

    In a pipe flow, transition to turbulence occurs at some critical Reynolds number, Rec , and transition is associated with intermittent swirling structures extending over the pipe cross section. Depending on the magnitude of Rec , these structures are known either as puffs or slugs. When a dispersed second liquid phase is added to a liquid pipe flow, Rec can be modified. To explore the mechanism for this modification, an experiment was designed to track and measure these transitional structures. The facility is a pump-driven circuit with a 9m development and test section of diameter 44mm. Static mixers are placed upstream to generate an even dispersion of silicone oil in a water-glycerine flow. Pressure signals were used to identify transitional structures and trigger a high repetition rate stereo-PIV system downstream. Stereo-PIV measurements were obtained in planes normal to the flow, and Taylor's Hypothesis was employed to infer details of the volumetric flow structure. The presentation will describe the sensing and imaging methods along with preliminary results for the single and two-phase flows. Supported by Nanodispersions Technology.

  3. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  4. Two-Phase Technology at NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.

  5. Dense Heterogeneous Continuum Model of Two-Phase Explosion Fields

    SciTech Connect

    Kuhl, A L; Bell, J B

    2010-04-07

    A heterogeneous continuum model is proposed to describe the dispersion of a dense Aluminum particle cloud in an explosion. Let {alpha}{sub 1} denote the volume fraction occupied by the gas and {alpha}{sub 2} the fraction occupied by the solid, satisfying the volume conservation relation: {alpha}{sub 1} + {alpha}{sub 2} = 1. When the particle phase occupies a non-negligible volume fraction (i.e., {alpha}{sub 2} > 0), additional terms, proportional to {alpha}{sub 2}, appear in the conservation laws for two-phase flows. These include: (i) a particle pressure (due to particle collisions), (ii) a corresponding sound speed (which produces real eigenvalues for the particle phase system), (iii) an Archimedes force induced on the particle phase (by the gas pressure gradient), and (iv) multi-particle drag effects (which enhance the momentum coupling between phases). These effects modify the accelerations and energy distributions in the phases; we call this the Dense Heterogeneous Continuum Model. A characteristics analysis of the Model equations indicates that the system is hyperbolic with real eigenvalues for the gas phase: {l_brace}v{sub 1}, v{sub 1} {+-} {alpha}{sub 1}{r_brace} and for the 'particle gas' phase: {l_brace}v{sub 2}, v{sub 2} {+-}{alpha}{sub 2}{r_brace} and the particles: {l_brace}v{sub 2}{r_brace}, where v{sub i} and {alpha}{sub i} denote the velocity vector and sound speed of phase i. These can be used to construct a high-order Godunov scheme to integrate the conservation laws of a dense heterogeneous continuum.

  6. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    NASA Technical Reports Server (NTRS)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  7. Managing decline: Optimising generation by prediction of two-phase well productivities

    SciTech Connect

    Clotworthy, Allan W.

    1994-01-20

    Economic optimisation of the Ohaaki Geothermal Field dual-flash system indicated the requirement to program for sliding High Pressure turbine inlet pressures and the de-rating of individual wells to Intermediate Pressure. A wellbore simulator was used to generate output curves up to 5 years into the future to enable 'what-if' modelling for maximum electrical generation under different scenarios. The key to predicting future output curves as a function of wellhead pressure was predicting two-phase well productivities as a function of field pressure and enthalpy trends. Using a wellbore simulator to generate inflow pressure curves from output test data and matching measured downhole data showed that the Duns and Ros flow correlation produced a linear response with a consistent relationship to static pressures for most wells. This was used to generate predicted output characteristic curves up to 1998, enabling the modelling of varying turbine inlet pressures.

  8. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  9. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  10. Annular Solar Eclipse of 10 May 1994

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1993-01-01

    An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.

  11. Two-phase flow characterization for fluid components and variable gravity conditions

    NASA Technical Reports Server (NTRS)

    Dzenitis, John M.; Miller, Kathryn M.

    1992-01-01

    This paper describes a program initiated by the NASA Johnson Space Center to investigate vapor-liquid flow regimes and pressure drops in pipe components and variable gravity conditions. This program supports the Space Station Freedom External Active Thermal Control System design and future space missions, including the Space Exploration Initiative activities. The objectives for this program include studying two-phase flow behavior in fluid components (smooth pipes, bellows lines, quick-disconnect fittings), expanding the two-phase database for zero-g conditions, developing a database for low-g conditions (for example, Moon-g, Mars-g), and validating models for two-phase flow analyses. Zero-g and low-g data will be gathered using a Freon-12 flow loop during four test series on the KC-135 aircraft beginning in August 1991.

  12. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    SciTech Connect

    Brauner, N.; Rovinsky, J.; Maron, D.M.

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  13. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    SciTech Connect

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure.

  14. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    SciTech Connect

    Not Available

    1991-07-01

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  15. Two-phase-flow models and their limitations

    SciTech Connect

    Ishii, M.; Kocamustafaogullari, G.

    1982-01-01

    An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper.

  16. Void fraction correlations in two-phase horizontal flow

    SciTech Connect

    Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

    1983-05-01

    This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.

  17. What types of investors generate the two-phase phenomenon?

    NASA Astrophysics Data System (ADS)

    Ryu, Doojin

    2013-12-01

    We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.

  18. Design and test of a mechanically pumped two-phase thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Stark, J. A.; Butler, C. D.; Mcintosh, R.

    1987-01-01

    A flight experiment of a mechanically pumped two-phase ammonia thermal control system, incorporating a number of new component designs, has been assembled and tested in a 1-g environment. Additional microgravity tests are planned on the Space Shuttle when Shuttle flights are resumed. The primary purpose of this experiment is to evaluate the operation of a mechanically pumped two-phase ammonia system, with emphasis on determining the performance of an evaporative Two-Phase Mounting Plate. The experiment also evaluates the performance of other specially designed components, such as the two-phase reservoir for temperature control, condensing radiator/heat sink, spiral tube boiler, and pressure drop experiment. The 1-g tests have shown that start-up of the two-phase experiment is easily accomplished with only a partial fill of ammonia. The experiment maintained a constant mounting plate temperature without flow rate controls over a very wide range of heat loads, flow rates, inlet flow conditions and exit qualities. The tests also showed the successful operation of the mounting plate in the heat sharing condensing mode.

  19. A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit

    SciTech Connect

    Deledicque, Vincent; Papalexandris, Miltiadis V.

    2008-11-10

    In this article, we present and analyze a conservative approximation to reduced one-pressure one-velocity models for compressible two-phase flows that contain non-conservative products. This approximation is valid when certain material properties of the two phases are considerably different from each other. Although it cannot be applied to arbitrary mixtures, it is applicable to many heterogeneous mixtures of technological interest. Herein, we derive the Rankine-Hugoniot relations and Riemann invariants for the homogeneous part of the proposed model and develop an exact Riemann solver for it. Further, we investigate the structure of the steady two-phase detonation waves, with inert or reactive solid particles, admitted by the proposed model. Comparisons with the corresponding gaseous detonations are also made. Moreover, we derive a lower limit for the propagation speed of steady two-phase detonations in the case of reactive particles. At the limiting case of very dilute mixtures, this minimum speed tends to the Chapman-Jouguet velocity of gaseous detonations. Finally, we report on numerical simulations of the transmission of a purely gaseous detonation to heterogeneous mixtures containing inert or reactive solid particles. The effect of the solid particles on the structure of the resulting two-phase detonation is discussed in detail.

  20. Characterization of Lumbar Spine Annular Disruption in PMHS Using MRI, Cryomicrotomy and Histology Techniques.

    PubMed

    Curry, William H; Stemper, Brian D; Pryzbylo, Jason; Trueden, Justine; Wilkins, Natasha; Paskoff, Glenn R; Shender, Barry S

    2015-01-01

    Internal intervertebral disc disruption is involved in the onset of a wide range of spinal dysfunction, ultimately affecting not only the disc itself but the surrounding osseous and neural structures as well. The ability of disc to withstand and effectively distribute axial load is dependent upon whether peripherally located annular fibers provide the support necessary to contain and corral the pressure sensitive nucleus. Any alteration in the structures immediate to the nucleus jeopardize this ability. While annular tears and fissures have been thoroughly investigated, one form of internal disc disruption is less well-understood. A network of elastin cross-bridges provides resistance to delamination of the collagenous sheets that comprise the annulus. The current investigation utilized a Nitrogen gas-induced pressure mechanism to disrupt elastin cross links that exist between annular lamellae. Twenty five cadaveric lumbar spine motion segments (mean age: 52±12 yr.) were subjected to the annular disruption protocol. Damage to the annulus was assessed using MRI, cryomicrotome and histological staining procedures. MRI images were compared to cryomicrotome images to determine the ability of standard clinical MRI scans to determine annular damage. In many cases MRI was moderately revealing in terms of damage. Future studies will quantify biomechanical consequences of these low level annular disruptions relative to segmental stability.

  1. Transient two-phase performance of LOFT reactor coolant pumps

    SciTech Connect

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  2. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  3. Experimental Investigations of Two-Phase Cooling in Microgap Channel

    DTIC Science & Technology

    2011-04-25

    contact between chemically inert, dielectric fluids and the back surface of an active electronic component, thus eliminating the significant...interface thermal resistance associated with Thermal Interface Materials and/or solid-solid contact between the component and a microchannel cold plate. In...liquid. Annular flow, which is associated with thin liquid layers flowing along the outer walls of the channel and the vapour flows in the center of the

  4. A jet polishing technique for thinning two phase materials

    SciTech Connect

    Witcomb, M.J. ); Dahmen, U. )

    1990-11-01

    A common problem in the preparation of thin foils for transmission electron microscopy is the different thinning rate in two-phase materials. Often this leads to foils in which the majority, or matrix, phase is evenly polished while the minority, or precipitate, phase is either etched out or stands proud of the surrounding material. In the present report we describe a two-stage jet polishing technique that has been used successfully on different relatively coarse two-phase structures. 3 figs.

  5. Advanced Nanostructures for Two-Phase Fluid and Thermal Transport

    DTIC Science & Technology

    2014-08-07

    AFRL-OSR-VA-TR-2014-0183 (YIP 11) Advanced Nanostructures for Two-Phase Fluid and Thermal Transport Evelyn Wang MASSACHUSETTS INSTITUTE OF TECHNOLOGY...Advanced Nanostructures for Two-Phase Fluid and Thermal Transport AFOSR Grant FA9550-11-1-0059 Final Report Evelyn N. Wang Associate Professor...heated channel wall. Small fluctuations in the measured heater surface temperature (± 3-8 °C) indicated increased flow stability, and the heat transfer

  6. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    SciTech Connect

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.; Evbota, D.; Lopes, M.; Nicol, T.; Sanders, R.; Schmitt, R.; Voirin, E.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  7. Experimental investigations of single-phase and two-phase flow resistance in narrow rectangular duct under rolling condition

    NASA Astrophysics Data System (ADS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Wang, Yang

    2013-07-01

    Effects of rolling motion on single-phase and two-phase flow resistance were compared experimentally under ambient temperature and pressure. In the single-phase flow experiments, the different pump head was obtained by a variable speed electromotor, and the flow rate was adjusted combining with a regulating valve. However, for the two-phase pressure drop measurements, the pump delivering water operated with an invariable pressure head of 48m, in order to neglect the effect of pump head on flow fluctuation. The results indicated that effects of rolling motion on single-phase flow resistance depend on the pump head. The fluctuation amplitude of flow rate and frictional pressure drop decreases rapidly as the pump head increases, finally, the flow will tend to be steady if the pump head dramatically exceeds the additional pressure drop. Different from the case of single-phase flow, transient frictional pressure drop of two-phase flow fluctuates synchronously with the rolling motion when liquid Reynolds number is less than 1400, whereas keeps a stable steady state without obvious oscillation for other cases. The fluctuation amplitude is independent of rolling period and amplitude and decreases with the increase of flow rate. The inclination angle and phase interface distribution is taken into account in analyzing the influence of rolling motion on two-phase flow resistance. Comparing with the vertical condition, rolling motion nearly has no effects on time-averaged frictional resistance for both the single-phase and two-phase flow.

  8. Performance of a cascade in an annular vortex-generating tunnel over range of Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Thurston, Sidney; Brunk, Ralph E

    1951-01-01

    Total-pressure deficiency for an annular cascade of 65-(12)10 blades was measured at three radial stations over a range of Reynolds numbers from 50,000 to 250,000 and at angles of attack of 15 degrees and 25 degrees. The variation of turning angle and shape of static pressure distribution at these stations is also shown.

  9. A study of unsteady flow induced by annular cascade

    SciTech Connect

    Takama, N.; Yoshiki, H.; Nishimura, K.; Sumiyoshi, K.

    1999-07-01

    The authors have experimentally studied phenomena of unsteady flow induced by annular cascade. The test apparatus consists of a swirl generator connected to a suction-type wind tunnel. The swirl generator duplicates variable inlet guide vanes (VIGV). The authors measured distributions of velocity flow by a hot wire anemometer and a three-hole Pilot tube, and pressure by semiconductor transducers. Results are: (1) the Strouhal number is independent of Reynolds number under each experimental condition; (2) the velocity wave propagates from pressure side of a vane to suction side of a neighboring vane; and (3) the setting angle of VIGV has effects on a fundamental frequency.

  10. Investigation of Two-Phase Flows in Piping Bends and Elbows

    NASA Technical Reports Server (NTRS)

    Duncan, Allen B.; Sciascia, Vincent M.

    1996-01-01

    An experimental investigation of the hydrodynamic characteristics of two-phase R-113 flow has been carried out. Straight tube pressure drop data, as a function of mass flow rate (mass flux) and flow quality has been obtained using the Two-Phase Flow Test Facility located in the Advanced Thermal Laboratories of the Crew and Thermal Systems Division at the Lyndon B. Johnson Space Center. Additionally, after successfully obtaining the straight tube pressure drop data, the test facility was modified in order to obtain pressure drop data for the flow of two-phase R-113 through 180 deg piping bends. Inherent instabilities of the test facility prevented the successful acquisition of pressure drop data through the piping bends. The experimental straight tube data will be presented and compared with existing predictive correlations in an attempt to gain insight into the utility of such correlations as the basis for developing design criteria. A discussion of the instabilities which rendered successful acquisition of the piping bend data will be presented and suggestions will be made for eliminating these system tendencies. Finally, recommendations for future investigations, based on successful reconfiguration of the test facility, will be made.

  11. Impulsively started, steady and pulsated annular inflows

    NASA Astrophysics Data System (ADS)

    Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John

    2017-04-01

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.

  12. Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Nakagawa, Masafumi; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones

  13. Critical Heat Flux in a Thin Annular Channel

    NASA Astrophysics Data System (ADS)

    Habtour, Ahmed; Anderson, Elgin

    2002-11-01

    The improved accuracy in predicting critical heat flux (CHF) for specific reactor core geometry would allow for increased power output. The objectives of this project were to incorporate a scale model test to determine the feasibility of generating high power density in an annular fuel arrangement in a reactor. The desired power density was 100W/cm2. This would be accomplished by using resistive heating on the outer cylinder of an annular flow channel between concentric cylinders. The inner cylinder consists of a hemispherical shape in the upstream direction to condition the flow. The second objective was to study the behavior of two-phase flow through a simulated reactor core. The CHF would be measured and compared with existing correlations. Finally, the concept of a future full scale testing would be investigated. The results of this project are not only applicable to nuclear reactors, but can be used to increase the efficiency of other applications such as fuel cells, combustion engines, turbines and polymer processes.

  14. Velocity and phase distribution measurements in vertical air-water annular flows

    SciTech Connect

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film.

  15. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  16. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu

    2013-01-01

    The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ɛ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.

  17. Two-phase convective CO2 dissolution in saline aquifers

    SciTech Connect

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  18. An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images.

    PubMed

    Shanthi, C; Pappa, N

    2017-02-13

    Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows.

  19. Study of two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Yan, AN; Omrani, Adel

    1990-01-01

    The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.

  20. Means of manufacturing annular arrays

    DOEpatents

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  1. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  2. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  3. Tracking Interfaces in Vertical Two-Phase Flows

    SciTech Connect

    Aktas, Birol

    2002-07-01

    The presence of stratified liquid-gas interfaces in vertical flows poses difficulties to most classes of solution methods for two-phase flows of practical interest in the field of reactor safety and thermal-hydraulics. These difficulties can plague the reactor simulations unless handled with proper care. To illustrate these difficulties, the US NRC Consolidated Thermal-hydraulics Code (TRAC-M) was exercised with selected numerical bench-mark problems. These numerical benchmarks demonstrate that the use of an average void fraction for computational volumes simulating vertical flows is inadequate when these volumes consist of stratified liquid-gas interfaces. In these computational volumes, there are really two regions separated by the liquid-gas interface and each region has a distinct flow topology. An accurate description of these divided computational volumes require that separate void fractions be assigned to each region. This strategy requires that the liquid-gas interfaces be tracked in order to determine their location, the volumes of regions separated by the interface, and the void fractions in these regions. The idea of tracking stratified liquid-gas interfaces is not new. There are examples of tracking methods that were developed for reactor safety codes and applied to reactor simulations in the past with some limited success. The users of these safety codes were warned against potential flow oscillations, conflicting water levels, and pressure disturbances which could be caused by the tracking methods themselves. An example of these methods is the level tracking method of TRAC-M. A review of this method is given here to explore the reasons behind its failures. The review shows that modifications to the field equations are mostly responsible for these failures. Following the review, a systematic approach to incorporate interface tracking methods is outlined. This approach is applicable to most classes of solution methods. For demonstration, the approach to

  4. Free vortex theory for efficiency calculations from annular cascade data

    SciTech Connect

    Main, A.J.; Oldfield, M.L.G.; Lock, G.D.; Jones, T.V.

    1997-04-01

    This paper describes a new three-dimensional theory to calculate the efficiency or loss of nozzle guide vane annular cascades from experimental area traverse measurements of the compressible downstream flow. To calculate such an efficiency, it is necessary to mix out the measured flow computationally to either a uniform state or one that is a function of radius only. When this is done by conserving momentum, mass, and energy flow, there is a remaining degree of freedom in that the radial distribution of circumferential velocity can be chosen. This extra freedom does not arise in two-dimensional cascades. The new method mixes the flow out to a free (i.e., irrotational) vortex. This is preferred to existing methods in that it gives a physically realistic flow and also provides a unique, lossless, isentropic reference flow. The annular cascade efficiency is then uniquely defined as the ratio of the mixed-out experimental kinetic energy flux to the ideal isentropic kinetic energy flux at the same mean radius static pressure. The mathematical derivation of this method is presented. This new theory has been used to process data obtained from a large, transonic, annular cascade in a blowdown tunnel. A four-hole pyramid probe, mounted on a computer-controlled traverse, has been used to map the passage flowfield downstream of the nozzle guide vanes. Losses calculated by the new method are compared with those calculated from the same data using earlier analysis methods.

  5. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  6. Dual shell pressure balanced vessel

    DOEpatents

    Fassbender, Alexander G.

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  7. Two Phase Flow and Space-Based Applications

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  8. The transient performance of a two-phase fluid reservoir

    NASA Technical Reports Server (NTRS)

    Chi, Joseph

    1989-01-01

    Thermal control of future large, high power spacecraft will require a two-phase fluid central bus. The two-phase fluid reservoir is a critical component in the two-phase fluid bus. It both controls the saturation temperature and provides a space for volumetric changes. A dynamic reservoir simulation model does not currently exist, but it is needed to expedite efforts and reduce risk. During 1989 an effort was made to develop a simulation model of the transient performance of a two-phase fluid reservoir. As a beginning, a preliminary model was developed. It is based upon component mathematical models in lumped parametric form and build upon five component mathematical models for calculating dynamic responses of two-phase fluid reservoirs, primary feedback elements, controller commands, heater actuators, and reservoir heaters. As much as possible, the model took advantage of the available SINDA'85/FLUINT thermal/fluid integrator. Additional calculation logic and computer subroutines were developed to complete implementation of the model. The model is capable of simulating dynamic response of an equilibrium two-phase fluid reservoir. Modification of the model to include the liquid/vapor nonequilibrium is required for applications of the model to simulate performance of reservoir in which the liquid and vapor phases of the reservoir fluid are not in equilibrium. In addition, the model in its present form, needs to be refined in several respects. More empirical data are needed to guide the model development. The model may then be used to conduct a full parametric study of two-phase fluid reservoirs. More complexities in two-phaes flow regions in laboratory and flight conditions may have to be considered eventually if empirical data cannot be simulated satisfactorily. System with other components arrangement also need to be simulated if optimization is ever to be attained. The present model does, however, preliminarily demonstrates that such analyses are quite possible

  9. Growth of a two-phase finger in eutectics systems.

    PubMed

    Boussinot, G; Hüter, C; Brener, E A

    2011-02-01

    We present a theoretical study of the growth of a two-phase finger in eutectic systems. This pattern was observed experimentally by Akamatsu and Faivre [Phys. Rev. E 61, 3757 (2000)]. We study this two-phase finger using a boundary-integral formulation and we complement our investigation by a phase-field validation of the stability of the pattern. The deviations from the eutectic temperature and from the eutectic concentration provide two independent control parameters, leading to very different patterns depending on their relative importance. We propose scaling laws for the velocity and the different length scales of the pattern.

  10. Two-Phase Model of Combustion in Explosions

    SciTech Connect

    Kuhl, A L; Khasainov, B; Bell, J

    2006-06-19

    A two-phase model for Aluminum particle combustion in explosions is proposed. It combines the gas-dynamic conservation laws for the gas phase with the continuum mechanics laws of multi-phase media, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by the Khasainov model. Combustion is specified as material transformations in the Le Chatelier diagram which depicts the locus of thermodynamic states in the internal energy-temperature plane according to Kuhl. Numerical simulations are used to show the evolution of two-phase combustion fields generated by the explosive dissemination of a powdered Al fuel.

  11. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    SciTech Connect

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.

  12. A Heat Transfer Investigation of Liquid and Two-Phase Methane

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan

    2010-01-01

    A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.

  13. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass

  14. Extraction of phenol in wastewater with annular centrifugal contactors.

    PubMed

    Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen

    2006-04-17

    Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.

  15. Heat transfer analysis of two-phase dispersed swirl flow

    SciTech Connect

    Chang Ching.

    1991-01-01

    A thermodynamic nonequilibrium model was developed for a two-phase, vapor and liquid droplet, dispersed swirl flow in a vertical tube with a twisted-tape insert. It takes account of the heat transfer phenomena between two phases, and each phase with solid boundary where a variable heat flux along axial direction is imposed. A numerical method is developed to solve the system of nonlinear differential equations. The local equilibrium conditions of the fluid at the point of critical heat flux (CHF) are chosen as the initial conditions to start the numerical integration to the downstream. Wall temperature, superheat vapor temperature, heat transfer rate from two phases, and velocity distributions of two phases were predicted and analyzed, which were then verified by comparing them with the low wall-superheat heat exchanger experimental data of water-steam in the range of 900.0 {le} G {le} 1,900.0, 2.51 {le} y {le} 7.53, X{sub CHF} {ge} 0.444. Additional parametric studies of the CHF quality, mass flux, and tape-twist ratio are presented. It is found that higher mass flux, lower tape-twist ratio, and low wall-superheat will give a stronger direct wall-droplet interaction and less superheating of vapor.

  16. Low gravity two-phase flow with heat transfer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1991-01-01

    A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.

  17. Higher modes in the coupling cells of coaxial and annular-ring coupled linac structures

    SciTech Connect

    Hoffswell, R.A.; Laszewski, R.M.

    1983-08-01

    Dipole- and quadrupole-like modes in the coupling cells of coaxial and annular-ring coupled structures have been examined up to a frequency of 4 GHz. The quadrupole mode frequencies appear to lie high enough above the frequency of the accelerating mode to make coupling between the two unlikely. In the annular-ring case, however, a dipole mode was found very near the accelerating mode frequency. Evidence is presented which suggests that some power may couple between these two modes in a real cavity.

  18. A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows

    SciTech Connect

    Ray A. Berry; Richard Saurel; Fabien Petitpas

    2009-05-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.

  19. A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model

    SciTech Connect

    Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh

    2011-10-01

    We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.

  20. Method and apparatus for continuous annular electrochromatography

    DOEpatents

    Scott, Charles D.

    1987-01-01

    Separation of complex mixtures and solutions can be carried out using a method and apparatus for continuous annular electrochromatography. Solutes are diverted radially by an imposed electrical field as they move downward in a rotating chromatographic column.

  1. Multiple Granuloma Annulare in a 2-year-old Child

    PubMed Central

    Siddalingappa, Karjigi; Murthy, Sambasiviah Chidambara; Herakal, Kallappa; Kusuma, Marganahalli Ramachandra

    2015-01-01

    Granuloma annulare is a benign, self-limiting, inflammatory and granulomatous disease of unknown etiology occurring in both adults and children. An 18-month-old male child had multiple progressive annular plaques over the lower extremities. Clinical and histopathological features were consistent with granuloma annulare. Localized granuloma annulare is the most common form in children. We report a young child with multiple, progressive granuloma annulare over the lower extremities. PMID:26677301

  2. Three-dimensional aerodynamics of an annular airfoil cascade including loading effects

    NASA Astrophysics Data System (ADS)

    Fleeter, S.; Stauter, R. C.; Manwaring, S. R.

    1989-10-01

    A series of experiments are described which investigate and quantify the effect of loading on the three-dimensional flow through a subsonic annular cascade of cambered airfoils. At two levels of loading, detailed data quantify the cascade inlet velocity, the intrapassage flow field, the airfoil surface pressure distributions, the exit flow field, and the total pressure loss distributions. Aerodynamic loading is shown to strengthen the radial pressure gradient, the passage vortex structure, the vortex-endwall boundary layer interactions, and the losses.

  3. Three-dimensional aerodynamics of an annular airfoil cascade including loading effects

    NASA Technical Reports Server (NTRS)

    Fleeter, S.; Stauter, R. C.; Manwaring, S. R.

    1989-01-01

    A series of experiments are described which investigate and quantify the effect of loading on the three-dimensional flow through a subsonic annular cascade of cambered airfoils. At two levels of loading, detailed data quantify the cascade inlet velocity, the intrapassage flow field, the airfoil surface pressure distributions, the exit flow field, and the total pressure loss distributions. Aerodynamic loading is shown to strengthen the radial pressure gradient, the passage vortex structure, the vortex-endwall boundary layer interactions, and the losses.

  4. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  5. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  6. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  7. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  8. Asymmetry during a horizontal annular flow in a micro-channel: optical measurements and effect of dimensionless numbers

    NASA Astrophysics Data System (ADS)

    Capo, C.; Layssac, T.; Lips, S.; Mauro, A. W.; Revellin, R.

    2017-01-01

    New applications of HFC refrigerants in organic Rankine cycles at high saturation temperatures and the wider use of CO2 for air-conditioning have pushed research to the characterization of two-phase heat transfer at medium/high reduced pressures and have pointed out the effect of these operating conditions on asymmetric distribution of refrigerant around tube perimeter and its indirect effect on heat transfer. Currently there is a lack of data about asymmetric distribution of liquid film at the wall, especially for refrigerants and micro-channels. In order to have a physical evidence of this asymmetry also for micro-channels and approach to a relationship between this phenomenon and dimensionless parameters, new data are here presented. The asymmetric annular flow of the refrigerant R245fa inside a horizontal, round 2.95 mm inner diameter channel is studied with pictures captured by a high speed video camera. The experimental results here presented were obtained at saturation temperatures equal to 20 °C and 40 °C at low mass velocities (50, 100 and 200 kg m-2s-1) to asymmetric distribution, enriching the database presented in previous studies. The new dimensionless parameter, eccentricity, has been related to the dimensionless groups: Froude and Bond numbers, and Martinelli parameter, showing the mutual correlation among them.

  9. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  10. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    NASA Astrophysics Data System (ADS)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  11. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    NASA Technical Reports Server (NTRS)

    Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.

    1992-01-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.

  12. Performance Prediction of Two-Phase Geothermal Reservoir using Lumped Parameter Model

    NASA Astrophysics Data System (ADS)

    Nurlaela, F.; Sutopo

    2016-09-01

    Many studies have been conducted to simulate performance of low-temperature geothermal reservoirs using lumped parameter method. Limited work had been done on applying non-isothermal lumped parameter models to higher temperature geothermal reservoirs. In this study, the lumped parameter method was applied to high-temperature two phase geothermal reservoirs. The model couples both energy and mass balance equations thus can predict temperature, pressure and fluid saturation changes in the reservoir as a result of production, reinjection of water, and/or natural recharge. This method was validated using reservoir simulation results of TOUGH2. As the results, the two phase lumped parameter model simulation without recharge shows good matching, however reservoir model with recharge condition show quite good conformity.

  13. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.

  14. Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo

    Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.

  15. Dynamic characteristics of two-phase thermal control system for spacecraft

    NASA Astrophysics Data System (ADS)

    Malozemov, Vladimir V.; Kudryavtseva, Natal'ya S.; Antonov, Viktor A.; Zagar, Oleg V.; Chernobaev, Nikolaj N.

    1992-07-01

    This paper deals with review of the issues associated with modelling the dynamic processes in the spacecraft two-phase thermal control systems. The work presents the results of modelling the nonstationary conditions of the evaporative and condensation heat exchangers functioning, investigates their response to the characteristic external influences. Disclosed are the results of the computer-aided modelling the two-phase thermal control system with a pump. The dynamic characteristics of the change in the inputs of pressures, temperatures and vapor content of a coolant in various branches of the system, as well as the lengths of the heat transfer zones in the evaporator and condenser under effect of the typical disturbing actions are obtained. The attained transients are analyzed.

  16. The Effect of Nonuniform Inlet Conditions on Annular Diffusers

    NASA Astrophysics Data System (ADS)

    Padilla, Angelina; Elkins, Chris; Eaton, John

    2010-11-01

    Most practical diffusers have complex 3D geometries and may have highly disturbed inlet flows. The performance of diffusers designed for optimum pressure recovery is governed by flow separation which can be very sensitive to inlet perturbations. We are examining the effect of upstream disturbances on the performance of practical annular diffusers. Experiments are conducted in an annular diffuser sector containing a single NACA 0015 airfoil shaped support strut. Three component, time averaged velocities are measured using magnetic resonance velocimetry and static pressure data are measured with conventional wall taps. We are testing four inlet conditions: a uniform velocity profile with thin boundary layers and relatively low turbulence intensity, a similar case with higher turbulence levels, a mean profile with uniform velocity except for a high velocity wall jet at the outer radius, and a nonuniform profile in which the mean velocity decreases with increasing radius. Generally, the results show that the diffuser acts to increase flow distortion. For the case with the radial velocity gradient, passing through the diffuser strongly increases the velocity gradient. The wall jet on the outer (diffusing) wall eliminates flow separation resulting in higher pressure recovery and thicker wall boundary layers on the other three walls. Interestingly, the separated wake of the support strut closes more rapidly for the case with the radial velocity gradient.

  17. Baroclinic annular variability of internal motions in a Patagonian fjord

    NASA Astrophysics Data System (ADS)

    Ross, Lauren; Valle-Levinson, Arnoldo; Pérez-Santos, Iván.; Tapia, Fabian J.; Schneider, Wolfgang

    2015-08-01

    Time series of horizontal velocities, echo intensity, wind velocity, and atmospheric pressure were collected for ˜200 days in a Patagonian fjord to explore pycnocline motions produced by the Southern Hemisphere's baroclinic annular mode (BAM). The BAM variability occurs between 20 and 30 days and is associated with fluctuations in atmospheric kinetic energy and in turbulent fluxes of heat. Spectra of horizontal velocities and normalized echo intensity in the fjord's water showed highest energy between 25 and 30 days. This was explained by sustained westerly winds associated with extreme low-pressure systems (˜900 hPa) that had periodicity related to the BAM. Wind forcing produced >40 cm s-1 along-channel and cross-channel currents in the surface layer, which in turn created a wind-induced setup toward the head of the fjord. The setup was accompanied by a deepening of the pycnocline (from 5 to 15 m depth) with ˜25 to 30 day periodicity, as derived from the normalized echo intensity. The dominant empirical orthogonal function mode of the normalized echo intensity profiles explained 70.8% of the variance and also exhibited a ˜25-30 day periodicity. Further, a wavelet and spectral analysis of 10 years of atmospheric pressure indicated peaks between 25 and 30 days each year, indicating that the BAM consistently influences weather patterns in Chilean Patagonia. This is the first documented case of baroclinic annular variability in a specific region of the Southern Hemisphere, and of its effects on fjord systems.

  18. Coupling of two-phase flow in fractured-vuggy reservoir with filling medium

    NASA Astrophysics Data System (ADS)

    Xie, Haojun; Li, Aifen; Huang, Zhaoqin; Gao, Bo; Peng, Ruigang

    2017-01-01

    Caves in fractured-vuggy reservoir usually contain lots of filling medium, so the two-phase flow in formations is the coupling of free flow and porous flow, and that usually leads to low oil recovery. Considering geological interpretation results, the physical filled cave models with different filling mediums are designed. Through physical experiment, the displacement mechanism between un-filled areas and the filling medium was studied. Based on the experiment model, we built a mathematical model of laminar two-phase coupling flow considering wettability of the porous media. The free fluid region was modeled using the Navier-Stokes and Cahn-Hilliard equations, and the two-phase flow in porous media used Darcy's theory. Extended BJS conditions were also applied at the coupling interface. The numerical simulation matched the experiment very well, so this numerical model can be used for two-phase flow in fracture-vuggy reservoir. In the simulations, fluid flow between inlet and outlet is free flow, so the pressure difference was relatively low compared with capillary pressure. In the process of water injection, the capillary resistance on the surface of oil-wet filling medium may hinder the oil-water gravity differentiation, leading to no fluid exchange on coupling interface and remaining oil in the filling medium. But for the water-wet filling medium, capillary force on the surface will coordinate with gravity. So it will lead to water imbibition and fluid exchange on the interface, high oil recovery will finally be reached at last.

  19. Two Phase Compressible Flow Fields in One Dimensional and Eulerian Grid Framework

    NASA Astrophysics Data System (ADS)

    Lee, Sungsu; Park, Chan Wook

    2008-11-01

    Numerical investigation for two phase compressible flow fields of air-water in one dimensional tube are performed in the fixed Eulerian grid framework. Using an equation of states of Tait's type for a multiphase cell, the two phase compressible flow is modeled as equivalent single phase which is discretized using the Roe`s approximate Riemann solver, while the phase interface is captured via volume fractions of each phase. The most common problem found in the computational approaches in compressible multiphase flow is occurrence of the pressure oscillation at the phase interface. In order to suppress that phenomenon, tried are two approaches; a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The results show that the direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. This work was supported by a research fund granted from Agency for Defense Development, South Korea

  20. Numerical investigations of small diameter two-phase closed thermosyphon

    NASA Astrophysics Data System (ADS)

    Naresh, Y.; Balaji, C.

    2016-09-01

    In this work, a CFD model is developed to simulate the working of a 6mm diameter two-phase closed thermosyphon using water as the working fluid. At each section (evaporator, condenser, adiabatic) of the thermosyphon, lumped equations have been developed to calculate the temperatures at corresponding sections. In order to process two phase flow inside the system, a user-defined function (UDF) has been developed and integrated with the CFD model. The volume of fluid (VOF) method is used to carry out the simulations in Ansys FLUENT 15 and the lumped equations are solved in MATLAB 2013a. Volume fractions and temperature profiles obtained from CFD simulations and the lumped parametric estimations are found to be in good agreement with the experimental results available in literature.

  1. Two-phase flows in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Murakami, Takuji; Shimada, Toru

    Axisymmetric gas-particle two-phase flows in solid-rocket-motor combustion chambers and nozzles with small throat radius of curvature and with submerged configuration are investigated numerically by utilizing a second-order finite-volume method with van Leer's flux-vector splitting in conjunction with a technique of body-fitted cell system. Effects of the particle radius and the particle mass fraction on the two-phase flow, especially on the particle density distribution, the particle-free zone, and the rate of deceleration of the gas are studied. The scheme can capture the particle-free zone with a relatively coarse cell system without numerical oscillation, being benefited by internal dissipative effect which this high-resolution upwind method involves. The validity of the present numerical simulation is thus confirmed.

  2. Two-phase flow regime map predictions under microgravity

    SciTech Connect

    Karri, S.B.R.; Mathur, V.K.

    1988-01-01

    In this paper, the widely used models of Taitel-Dukler and Weisman et al. are extrapolated to microgravity levels to compare predicted flow pattern boundaries for horizontal and vertical flows. Efforts have been made to analyze how the two-phase flow models available in the literature predict flow regime transitions in microgravity. The models of Taitel-Dukler and Weisman et al. have been found to be more suitable for extrapolation to a wide range of system parameters than the other two-phase flow regime maps available in the literature. The original criteria for all cases are used to predict the transition lines, except for the transition to dispersed flow regime in case of the Weisman model for horizontal flow. The constant 0.97 on the righthand side of this correlation should be two times that value, i.e., 1.94, in order to match this transition line in their original paper.

  3. Convective heat transfer in a closed two-phase thermosyphon

    NASA Astrophysics Data System (ADS)

    Al-Ani, M. A.

    2014-08-01

    A numerical analysis of heat transfer processes and hydrodynamics in a two-phase closed thermosyphon in a fairly wide range of variation of governing parameters has been investigated. A mathematical model is formulated based on the laws of mass conservation, momentum and energy in dimensionless variables "stream function - vorticity vector velocity - temperature". The analysis of the modes of forced and mixed convection for different values of Reynolds number and heat flows in the evaporation zone, the possibility of using two-phase thermosyphon for cooling gas turbine blades, when the heat is coming from the turbine blades to the thermosyphon is recycled a secondary refrigerant has been studied with different values of the centrifugal velocity. Nusselet Number, streamlines, velocity, temperature fields and temperature profile has been calculated during the investigation.

  4. Theory and Tests of Two-Phase Turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.

  5. Two-fluid model for two-phase flow

    SciTech Connect

    Ishii, M.

    1987-01-01

    The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research. 87 refs.

  6. Recent advances in two-phase flow numerics

    SciTech Connect

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  7. An experimental investigation of two-phase liquid oxygen pumping

    NASA Technical Reports Server (NTRS)

    Gross, L. A.

    1973-01-01

    The results of an experimental program to explore the feasibility of pumping two-phase oxygen (liquid and gas) at the pump inlet are reported. Twenty-one cavitation tests were run on a standard J-2 oxygen pump at the MSFC Components Test Laboratory. All tests were run with liquid oxygen 5 to 10 K above the normal boiling point temperature. During ten tests run at approximately at the pump inlet were noted before complete pump performance 50 percent of the nominal operating speed, two phase conditions were achieved. Vapor volumes of 40 to 50 percent at the pump inlet were noted before complete pump performance loss. The experimental results compared to predictions. Nine cavitation tests run at the nominal pump speed over a 5 K temperature range showed progressively lower net positive suction head (NPSH) requirements as temperature was increased. Two-phase operation was not achieved. The temperature varying NPSH data were used to calculate thermodynamic effects on NPSH, and the results were compared to existing data.

  8. Overcoming ecologic bias using the two-phase study design.

    PubMed

    Wakefield, Jon; Haneuse, Sebastien J-P A

    2008-04-15

    Ecologic (aggregate) data are widely available and widely utilized in epidemiologic studies. However, ecologic bias, which arises because aggregate data cannot characterize within-group variability in exposure and confounder variables, can only be removed by supplementing ecologic data with individual-level data. Here the authors describe the two-phase study design as a framework for achieving this objective. In phase 1, outcomes are stratified by any combination of area, confounders, and error-prone (or discretized) versions of exposures of interest. Phase 2 data, sampled within each phase 1 stratum, provide accurate measures of exposure and possibly of additional confounders. The phase 1 aggregate-level data provide a high level of statistical power and a cross-classification by which individuals may be efficiently sampled in phase 2. The phase 2 individual-level data then provide a control for ecologic bias by characterizing the within-area variability in exposures and confounders. In this paper, the authors illustrate the two-phase study design by estimating the association between infant mortality and birth weight in several regions of North Carolina for 2000-2004, controlling for gender and race. This example shows that the two-phase design removes ecologic bias and produces gains in efficiency over the use of case-control data alone. The authors discuss the advantages and disadvantages of the approach.

  9. Estimating disease prevalence in two-phase studies.

    PubMed

    Alonzo, Todd A; Pepe, Margaret Sullivan; Lumley, Thomas

    2003-04-01

    Disease prevalence is ideally estimated using a 'gold standard' to ascertain true disease status on all subjects in a population of interest. In practice, however, the gold standard may be too costly or invasive to be applied to all subjects, in which case a two-phase design is often employed. Phase 1 data consisting of inexpensive and non-invasive screening tests on all study subjects are used to determine the subjects that receive the gold standard in the second phase. Naive estimates of prevalence in two-phase studies can be biased (verification bias). Imputation and re-weighting estimators are often used to avoid this bias. We contrast the forms and attributes of the various prevalence estimators. Distribution theory and simulation studies are used to investigate their bias and efficiency. We conclude that the semiparametric efficient approach is the preferred method for prevalence estimation in two-phase studies. It is more robust and comparable in its efficiency to imputation and other re-weighting estimators. It is also easy to implement. We use this approach to examine the prevalence of depression in adolescents with data from the Great Smoky Mountain Study.

  10. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.

    2014-12-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  11. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  12. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  13. Cross-field transport of electrons at the magnetic throat in an annular plasma reactor

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2017-01-01

    Cross-field transport of electrons has been studied at the magnetic throat of the annular Chi-Kung reactor. This annular configuration allows the creation of a low pressure argon plasma with two distinct electron heating locations by independently operating a radio-frequency antenna surrounding the outer source tube, or an antenna housed inside the inner source tube. The two antenna cases show opposite variation trends in radial profiles of electron energy probability function, electron density, plasma potential and electron temperature. The momentum and energy transport coefficients are obtained from the electron energy probability functions, and the related electron fluxes follow the path of electron cooling across the magnetic throat.

  14. Production and delivery of a fluid mixture to an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Bland, Ronald Gene [Houston, TX; Foley, Ron Lee [Magnolia, TX; Bloys, James B [Katy, TX; Gonzalez, Manuel E [Kingwood, NM; Daniel, John M [Germantown, TN; Robinson, Ian M [Guisborough, GB; Carpenter, Robert B [Tomball, TX

    2012-01-24

    The methods described herein generally relate to preparing and delivering a fluid mixture to a confined volume, specifically an annular volume located between two concentrically oriented casing strings within a hydrocarbon fluid producing well. The fluid mixtures disclosed herein are useful in controlling pressure in localized volumes. The fluid mixtures comprise at least one polymerizable monomer and at least one inhibitor. The processes and methods disclosed herein allow the fluid mixture to be stored, shipped and/or injected into localized volumes, for example, an annular volume defined by concentric well casing strings.

  15. Effect of design features on performance of a double-annular ram-induction combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1975-01-01

    An extensive test program was undertaken to determine the effect of many design features such as the size and number of air scoops, and the type of diffuser airflow distribution to use to optimize performance of a double-annular ram-induction combustor of 94 cm outer diameter. Six combustor configurations were tested. It was found that a snouted double annular combustor built with 256 ram-induction air scoops with a combustor open area giving a total pressure loss of 5.0 percent at a diffuser inlet Mach number of 0.25 gave the best overall performance of the configurations tested.

  16. Two-phase flow in regionally saturated fractured rock near excavations

    SciTech Connect

    Geller, J.T.; Doughty, C.; Long, J.C.S.

    1994-11-01

    Hydrologic characterization for potential nuclear waste repositories relies upon data obtained from testing in excavations. The Simulated Drift Experiment in the Stripa Mine in Sweden, a fractured granitic formation below the water table, investigated excavation effects on hydrologic response. Measured water inflow to the drift at atmospheric pressure was nine times less than the value predicted from the inflow to boreholes with pressure held at 2.7 bars. This flow reduction may be due to dissolved gas that comes out of solution at pressures below 2.7 bars, creating a two-phase regime. To investigate this possibility, theoretical studies of flow through fractures when the water is super-saturated with respect to dissolved gas are carried out, using a simple analytical solution followed by a numerical model which relaxes some of the simplifying assumptions. Laboratory experiments that simulate degassing in transparent fracture replicas are conducted to test the assumptions used in the theoretical studies.

  17. A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow

    NASA Astrophysics Data System (ADS)

    Tokareva, S. A.; Toro, E. F.

    2016-10-01

    Here we extend the Toro-Vázquez flux vector splitting approach (TV), originally proposed for the ideal 1D Euler equations in [1], to the Baer-Nunziato equations of compressible two-phase flow. Following the TV approach we identify corresponding advection and pressure operators. We perform a rigorous analysis of the associated non-conservative pressure system and derive its complete characteristic structure. The choice of the advection numerical flux is obvious. For the pressure system, several schemes are presented. The complete schemes are then implemented in the setting of finite volume and path-conservative methods and are systematically assessed in terms of accuracy and efficiency, through a carefully selected suite of test problems. The presented schemes constitute a building block for the construction of high-order numerical methods for solving the Baer-Nunziato equations. Here, as an illustrative example of such possibility, we present the construction of a second-order scheme.

  18. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  19. Two-phase flow in geothermal energy sources. Final technical report

    SciTech Connect

    Not Available

    1981-07-01

    A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.

  20. Theoretical and experimental study of inverted annular film boiling and regime transition during reflood transients

    NASA Astrophysics Data System (ADS)

    Mohanta, Lokanath

    from single tube experiments. The root mean square error in predicting the FLECHT-SEASET data is 20% whereas for single tube data it is 12%. In previous studies, the transition criterion from the IAFB to the ISFB regime is purely empirical. In this work, a theoretical stability analysis of a liquid jet co-flowing with its vapor in a tube is carried out to seek a better understanding of the underlying physics of the regime transition. The effect of heat and mass transfer at the interface is included in the stability analysis. Also, the effect of viscous force is included in the stability analysis, by employing the viscous potential flow method. The wavelength that is responsible for breakup of the liquid core in IAFB is predicted in the present analysis and is compared with the adiabatic experiments of IAFB from the literature. The effects of various controlling parameters including the relative Weber number, vapor Reynolds number, velocity ratio, density ratio and viscosity ratio of vapor and liquid are studied to understand the physics of transition. Finally a physics-based heat transfer model is proposed for heat transfer in the ISFB regime using the wavelength obtained from the stability analysis. Keywords: Inverted annular film boiling, Two-phase heat transfer, Subcooled flow film boiling, Inverted slug film boiling, Regime transition, Void fraction in post CHF regime, Rod bundle, Spacer grid, Stability, Two-phase flow, Kelvin-Helmholtz instability, Capillary instability, Co-axial jets, Viscous potential flow, Interfacial heat and mass transfer.

  1. Development of two-phase pipeline hydraulic analysis model based on Beggs-Brill correlation

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko; Hermawan, Achilleus; Indarto

    2016-06-01

    The hydraulic analysis is an important stage in a reliable pipeline design. In the implementation, fluid distribution from a source to the sinks often occurs on parallel pipeline networks. The solution to the problem is complicated because of the iterative technique requirement. Regarding its solution effectiveness, there is a need for analysis related to the model and the solution method. This study aims to investigate pipeline hydraulic analysis on distributing of two-phase fluids flow. The model uses Beggs-Brill correlation to converse mass flow rates into pressure drops. In the solution technique, the Newton-Raphson iterative method is utilized. The iterative technique is solved using a computer program. The study is carried out using a certain pipeline network. The model is validated by comparing between Beggs-Brill towards Mukherjee-Brill correlation. The result reveals that the computer program enables solving of iterative calculation on the parallel pipeline hydraulic analysis. Convergence iteration is achieved by 50 iterations. The main results of the model are mass flow rate and pressure drop. The mass flow rate is obtained in the deviation up to 2.06%, between Beggs-Brill and Mukherjee-Brill correlation. On the other hand, the pressure gradient deviation is achieved on a higher deviation due to the different approach of the two correlations. The model can be further developed in the hydraulic pipeline analysis for two-phase flow.

  2. A consistent projection-based SUPG/PSPG XFEM for incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Liao, Jian-Hui; Zhuang, Zhuo

    2012-10-01

    In this paper, a consistent projection-based streamline upwind/pressure stabilizing Petrov-Galerkin (SUPG/PSPG) extended finite element method (XFEM) is presented to model incompressible immiscible two-phase flows. As the application of linear elements in SUPG/PSPG schemes gives rise to inconsistency in stabilization terms due to the inability to regenerate the diffusive term from viscous stresses, the numerical accuracy would deteriorate dramatically. To address this issue, projections of convection and pressure gradient terms are constructed and incorporated into the stabilization formulation in our method. This would substantially recover the consistency and free the practitioner from burdensome computations of most items in the residual. Moreover, the XFEM is employed to consider in a convenient way the fluid properties that have interfacial jumps leading to discontinuities in the velocity and pressure fields as well as the projections. A number of numerical examples are analyzed to demonstrate the complete recovery of consistency, the reproduction of interfacial discontinuities and the ability of the proposed projection-based SUPG/PSPG XFEM to model two-phase flows with open and closed interfaces.

  3. Stroke volume and mitral annular velocities. Insights from tissue Doppler imaging.

    PubMed

    Bruch, C; Stypmann, J; Gradaus, R; Breithardt, G; Wichter, T

    2004-10-01

    The aim of this study was to assess the impact of stroke volume (SV) on mitral annular velocities derived from tissue Doppler imaging (TDI). To this end, conventional echocardiographic variables and TDI derived mitral annular velocities (S', E', A') were obtained in 14 patients (pts) with increased SV (due to primary mitral (n=12) (ISV group)), in 41 pts with reduced SV (due to ischemic (n=27) or dilated cardiomyopathy (n=9) or hypertensive heart disease (n=5) (RSV group)) and 29 asymptomatic controls with normal SV (CON group). Systolic (S') and early diastolic (E') mitral annular velocities were elevated in the ISV group in the comparison to the CON group, but were significantly reduced in the RSV group. Late diastolic annular velocities (A') did not differ between the ISV and the CON group, but were lowest in the RSV group. On simple linear regression analysis, SV was significantly related to S' (r=0.74, p<0.001), to E' (r=0.74, p<0.001) and to A' (r=0.43, p<0.01). On multiple regression analysis, SV was a stronger independent predictor of S' and E' than conventional systolic or diastolic echocardiographic variables. Thus, stroke volume has a significant impact on TDI derived systolic (S') and early diastolic (E') mitral annular velocities. This should be considered, when TDI is used in the evaluation of LV performance or in the estimation of filling pressures.

  4. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    NASA Astrophysics Data System (ADS)

    Moran, Joaquin E.

    An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass

  5. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  6. Two phase flow and heat transfer in porous beds under variable body forces, part 2

    NASA Technical Reports Server (NTRS)

    Evers, J. L.; Henry, H. R.

    1969-01-01

    Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.

  7. Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the

  8. Gas-liquid two phase flow through a vertical 90 elbow bend

    SciTech Connect

    Spedding, P.L.; Benard, E.

    2007-07-15

    Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90 elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s{sup -1}. The elbow bend pressure drop was best correlated in terms of l{sub e}/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data. (author)

  9. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    SciTech Connect

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  10. On the use of an analytical cascade response function to predict sound transmission through an annular cascade

    NASA Astrophysics Data System (ADS)

    Posson, H.; Bériot, H.; Moreau, S.

    2013-07-01

    The present study aims at developing and assessing an analytical model for the sound transmission through an annular stator row in a configuration without mean flow. The model reformulates a three-dimensional annular model dedicated to turbulence interaction noise to deal with the case of an incident acoustic mode of an annular duct. It is a strip theory approach coupled with a previously published analytical formulation for the unsteady vane loading in a rectilinear cascade. Three formulations are developed on the basis of different definitions of the incident acoustic waves impinging on the rectilinear cascade. The latter are designed to match most of the properties of the incident mode in the annular case. The formulations are compared with a finite element method solution and with a rectilinear cascade model in configurations with no mean flow. The benchmarks consist in four annular ducts from very high (0.98) to moderate (0.5) hub-to-tip ratio containing a possibly staggered annular cascade. The frequency and the radial mode order of the incident mode are varied. Both pressure field and pressure coefficients are compared.

  11. Centrifugal inertia effects in two-phase face seal films

    NASA Technical Reports Server (NTRS)

    Basu, P.; Hughes, W. F.; Beeler, R. M.

    1987-01-01

    A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.

  12. A real two-phase submarine debris flow and tsunami

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-09-01

    The general two-phase debris flow model proposed by Pudasaini [1] is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  13. Similarity considerations in one-component two-phase flow

    SciTech Connect

    Maeder, P.F.; DiPippo, R.; Dickinson, D.A.; Nikitopoulos, D.E.

    1984-07-01

    The simplified model fluid presented here for two-phase flow can serve as a basis for the similarity analysis of a variety of substance flows. For the special case of water and R114, it is seen that exact similarity does not exist in the range of interest for geothermal applications, but that conditions can be found for reasonable similarity which permit one to replace water with R114 in laboratory-size apparatus. Thus experimental data and results obtained using R114 in a properly scaled laboratory setup can be converted with reasonable accuracy to those for water.

  14. A real two-phase submarine debris flow and tsunami

    SciTech Connect

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  15. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  16. What causes Mars' annular polar vortices?

    NASA Astrophysics Data System (ADS)

    Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.

    2017-01-01

    A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.

  17. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  18. Geometry optimization of linear and annular plasma synthetic jet actuators

    NASA Astrophysics Data System (ADS)

    Neretti, G.; Seri, P.; Taglioli, M.; Shaw, A.; Iza, F.; Borghi, C. A.

    2017-01-01

    The electrohydrodynamic (EHD) interaction induced in atmospheric air pressure by a surface dielectric barrier discharge (DBD) actuator has been experimentally investigated. Plasma synthetic jet actuators (PSJAs) are DBD actuators able to induce an air stream perpendicular to the actuator surface. These devices can be used in the field of aerodynamics to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where often only diffusive mechanisms are considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets has been fabricated on two-layer printed circuit boards (PCBs). Both linear and annular geometries were considered, testing different upper electrode distances in the linear case and different diameters in the annular one. An AC voltage supplied at a peak of 11.5 kV and a frequency of 5 kHz was used. Lower electrodes were connected to the ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface. Voltage and current measurements were carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed the induced jets to be visualized and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the velocity profiles of the PSJAs and to estimate the mechanical power delivered to the fluid. The optimal values of the inter-electrode distance and diameter were found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries were found to achieve the best performance.

  19. Two-phase electrochemical lithiation in amorphous silicon.

    PubMed

    Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting

    2013-02-13

    Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.

  20. Ultrasonic wave propagation in two-phase media: Spherical inclusions

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Sheu, Y. C.

    1983-01-01

    The scattering theory, recently developed via the extended method of equivalent inclusion, is used to study the propagation of time-harmonic waves in two-phase media of elastic matrix with randomly distributed elastic spherical inclusion materials. The elastic moduli and mass density of the composite medium are determined as functions of frequencies when given properties and concentration of the spheres and the matrix. Velocity and attenuation of ultrasonic waves in two-phase media are determined for cases of distributed spheres and localized damage. An averaging theorem that requires the equivalence of the strain energy and the kinetic energy between the effective medium and the original matrix with spherical inhomogeneities is employed to derive the effective moduli and mass density. The functional dependency of these quantities upon frequencies and concentration provides a method of data analysis in ultrasonic evaluation of material properties. Numerical results or moduli, velocity and/or attenuation as functions of concentration of inclusion material, or porosity, are graphically displayed.

  1. Nondestructive ultrasonic characterization of two-phase materials

    NASA Technical Reports Server (NTRS)

    Salama, Kamel

    1987-01-01

    The development of ultrasonic methods for the nondestructive characterization of mechanical properties of two phase engineering materials are described. The primary goal was to establish relationships between the nonlinearity parameter and the percentage of solid solution phase in two phase systems such as heat treatable aluminum alloys. The acoustoelastic constant was also measured on these alloys. A major advantage of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes the method more applicable to inservice nondestructive characterization. The results obtained on the heat treatable 7075 and the work hardenable 5086 and 5456 aluminum alloys show that both the acoustoelastic constant and the acoustic nonlinearity parameter change considerable with the volume fraction of second phase precipitates in these aluminum alloys. A mathematical model was also developed to relate the effective acoustic nonlinearity parameter to volume fraction of second phase precipitates in an alloy. The equation is approximated to within experimental error by a linear expression for volume fractions up to approx. 10%.

  2. Advanced two-phase digestion of sewage sludge

    SciTech Connect

    Ghosh, S.

    1984-01-01

    This paper describes the development and operating results of a novel configuration of the two-phase digestion concept. The two-phase system, comprises two custom-designed upflow digesters, which were operated in tandem to optimize the liquefying-acidification and acetogenesis-methanation reactions. The results are based on system operation for more than one year with a high-metal-content sewage sludge. During the operating period, the system exhibited an increasing methane yield at hydraulic retention times (HRT) of less than 6 days. With continuing culture enrichment and improvements in reactor design, the methane yield increased from 5 to 6.8 SCF/lb VS added, and then to 7.7 SCF/lb VS added. This methane yield was about 80% of the theoretical methane yield achievable with this sewage sludge--and the highest methane yield reported for sludge at this HRT. Operation of the novel process configuration was very stable and superior to that of conventional single-stage digestion in terms of methane yield, gas generation rate, and net energy production. About 75 weight percent of the organic solids was gasified; this could be the maximum attainable feed conversion efficiency for sludge, considering that between 75% and 80% of this feed is normally biodegradable. 3 references, 7 tables.

  3. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  4. Two-phase deformation of lower mantle mineral analogs

    NASA Astrophysics Data System (ADS)

    Kaercher, P.; Miyagi, L.; Kanitpanyacharoen, W.; Zepeda-Alarcon, E.; Wang, Y.; Parkinson, D.; Lebensohn, R. A.; De Carlo, F.; Wenk, H. R.

    2016-12-01

    The lower mantle is estimated to be composed of mostly bridgmanite and a smaller percentage of ferropericlase, yet very little information exists for two-phase deformation of these minerals. To better understand the rheology and active deformation mechanisms of these lower mantle minerals, especially dislocation slip and the development of crystallographic preferred orientation (CPO), we deformed mineral analogs neighborite (NaMgF3, iso-structural with bridgmanite) and halite (NaCl, iso-structural with ferropericlase) together in the deformation-DIA at the Advanced Photon Source up to 51% axial shortening. Development of CPO was recorded in situ with X-ray diffraction, and information on microstructural evolution was collected using X-ray microtomography. Results show that when present in as little as 15% volume, the weak phase (NaCl) controls the deformation. Compared to single phase NaMgF3 samples, samples with just 15% volume NaCl show a reduction of CPO in NaMgF3 and weakening of the aggregate. Microtomography shows both NaMgF3 and NaCl form highly interconnected networks of grains. Polycrystal plasticity simulations were carried out to gain insight into slip activity, CPO evolution, and strain and stress partitioning between phases for different synthetic two-phase microstructures. The results suggest that ferropericlase may control deformation in the lower mantle and reduce CPO in bridgmanite, which implies a less viscous lower mantle and helps to explain why the lower mantle is fairly isotropic.

  5. Diffusion analysis for two-phase metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1976-01-01

    Diffusion controlled filament matrix interaction in a metal matrix composite, where the filaments and matrix comprise a two phase binary alloy system, was mathematically modeled. The problem of a diffusion controlled, two phase moving interface by means of a one dimensional, variable grid, finite difference technique was analyzed. Concentration dependent diffusion coefficients and equilibrium solubility limits were used, and the change in filament diameter and compositional changes in the matrix were calculated as a function of exposure time at elevated temperatures. With the tungsten nickel (W-Ni) system as a model composite system, unidirectional composites containing from 0.06 to 0.44 initial filament volume fraction were modeled. Compositional changes in the matrix were calculated by superposition of the contributions from neighboring filaments. Alternate methods for determining compositional changes between first and second nearest neighbor filaments were also considered. The results show the relative importance of filament volume fraction, filament diameter, exposure temperature, and exposure time as they affect the rate and extent of filament matrix interaction.

  6. Droplets formation and merging in two-phase flow microfluidics.

    PubMed

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  7. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    PubMed Central

    Gu, Hao; Duits, Michel H. G.; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  8. The study of flow characteristic of gas-liquid two-phase flow based on the near-infrared detection device

    NASA Astrophysics Data System (ADS)

    Fang, Lide; Liang, Yujiao; Zhang, Yao; Zhang, Chen; Gao, Jingzhe

    2014-04-01

    With the importance of the two-phase flow, many scholars pay attention on it; and for the so many parameters in the gas-liquid two-phase flow, flow characteristic is the basis. For the four flow patterns in the vertical direction, slug flow, bubbly flow, annular flow, and milk foam-like flow, the paper used the laser diode of 980nm and the silicon photodiode to detect the flow status. The absorption coefficients of the infrared in the gas and the liquid are very different; at the meantime, the infrared is affected by the interface obviously. As a result, it can reflect the fluctuation of the gas-liquid two-phase flow with the detection by the infrared. By analyzing the experiment data, four characteristic parameters are extracted, such as the average value, the variance, the kurtosis, and the frequency center of gravity. They can not only reflect the change of the different flow patterns, but also can reflect the fluctuation in the same flow pattern. The feature vector constituted of the four characteristic parameters can identify the flow pattern correctly in this system. What's more, it can achieve an accurate measurement of the real-time online, providing a basis for the other parameters' analysis in the gas-liquid two-phase flow.

  9. Comparison of spectral and finite element methods applied to the study of the core-annular flow in an undulating tube

    NASA Astrophysics Data System (ADS)

    Kouris, Charalampos; Dimakopoulos, Yannis; Georgiou, Georgios; Tsamopoulos, John

    2002-05-01

    A Galerkin/finite element and a pseudo-spectral method, in conjunction with the primitive (velocity-pressure) and streamfunction-vorticity formulations, are tested for solving the two-phase flow in a tube, which has a periodically varying, circular cross section. Two immiscible, incompressible, Newtonian fluids are arranged so that one of them is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). The physical and flow parameters are such that the interface between the two fluids remains continuous and single-valued. This arrangement is usually referred to as Core-Annular flow. A non-orthogonal mapping is used to transform the uneven tube shape and the unknown, time dependent interface to fixed, cylindrical surfaces. With both methods and formulations, steady states are calculated first using the Newton-Raphson method. The most dangerous eigenvalues of the related linear stability problem are calculated using the Arnoldi method, and dynamic simulations are carried out using the implicit Euler method. It is shown that with a smooth tube shape the pseudo-spectral method exhibits exponential convergence, whereas the finite element method exhibits algebraic convergence, albeit of higher order than expected from the relevant theory. Thus the former method, especially when coupled with the streamfunction-vorticity formulation, is much more efficient. The finite element method becomes more advantageous when the tube shape contains a cusp, in which case the convergence rate of the pseudo-spectral method deteriorates exhibiting algebraic convergence with the number of the axial spectral modes, whereas the convergence rate of the finite element method remains unaffected. Copyright

  10. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  11. Design and construction of an experiment for two-phase flow in fractured porous media

    SciTech Connect

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  12. The development of two-phase xenon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Kwong, John

    The nature of dark matter remains one of the great unsolved mysteries of modern physics. The existence of dark matter has been inferred from its gravitational interactions and is strongly supported on theoretical grounds. A primary candidate for the dark matter is the Weakly Interacting Massive Particle (WIMP), which may be an undiscovered particle from the supersymmetric sector. This dissertation describes the research and development in two-phase liquid xenon dark matter detector technology and the results from the full-scale detector XENON10. Two-phase liquid xenon detectors use position sensitivity and simultaneous measurement of light and charge to remove background electron recoil events. The development of this technology has been rapid - the work in this dissertation began in the summer of 2003 when the potential of this technology had yet to be determined, and in early 2008 the XENON10 collaboration published the then world-best upper limit on the spin-independent WIMP-nucleon cross section. The first measurement of the charge based discrimination performance at low energies was achieved in a prototype in early 2005. This prototype also determined the performance of discrimination via scintillation pulse shape. Although pulse shape discrimination was shown to be far weaker than that from charge yield, the combined use of the two methods demonstrated a discrimination power beyond that achieved by either method alone. Alternative detector technologies were also explored. Electron multiplication on wire grids was demonstrated in a two-phase prototype and its discrimination power potential is shown to be near that of the typical electroluminescence charge-readout technique. This could allow for the removal of some or all of the photo-multipliers in the detector, which would greately reduce radioactive backgrounds. The use of a wavelength shifter was tested in an attempt to improve light collection and was shown to impede charge collection. The magnitude of

  13. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    PubMed Central

    Baroncini, Virgínia H.V.; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E.M.

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  14. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  15. A TEMPERATURE DROP MODEL FOR TWO-PHASE FLOW IN GEOTHERMAL WELLBORES

    SciTech Connect

    Michels, D.E.

    1985-01-22

    This temperature-drop model is formulated as an answer to the question, ''How much further up the wellbore will a unit mass of fluid be when its temperature is exactly one-degree cooler than at its current position''. The repeated calculation yields a temperature profile extending upwardly from the bubble point. This approach is based on a paradigm that emphasizes temperature and volume for a system that is dominated by one component. It has only a small overlap with the more popular paradigm for this topic which involves mechanical pressures and energy balances. A set of plots is given which shows the effects on temperature and pressure profiles due to changes of single factors when all other factors are held constant. The factors include common wellbore and reservoir parameters. These latter plots give considerable insight into wellbore processes and the nature of constraints on two-phase flow for an essentially one-component substance.

  16. Effects of two-phase flow on the deflagration of porous energetic materials

    SciTech Connect

    Margolis, S.B.; Williams, F.A.

    1994-07-01

    Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids, such as degraded nitramine propellants, that experience significant gas flow in the solid preheat region and are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces. Relative motion between the gas and condensed phases is taken into account in both regions, and expressions for the mass burning rate and other quantities of interest, such as temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure effects through the gas-phase equation of state. As a consequence, it is demonstrated how most aspects of the deflagration wave, including its structure, propagation speed and final temperature, depend on the local pressure in the two-phase regions.

  17. Characterization of flooding and two-phase flow in polymer electrolyte membrane fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Karimi, G.; Jafarpour, F.; Li, X.

    A partially flooded gas diffusion layer (GDL) model is proposed and solved simultaneously with a stack flow network model to estimate the operating conditions under which water flooding could be initiated in a polymer electrolyte membrane (PEM) fuel cell stack. The models were applied to the cathode side of a stack, which is more sensitive to the inception of GDL flooding and/or flow channel two-phase flow. The model can predict the stack performance in terms of pressure, species concentrations, GDL flooding and quality distributions in the flow fields as well as the geometrical specifications of the PEM fuel cell stack. The simulation results have revealed that under certain operating conditions, the GDL is fully flooded and the quality is lower than one for parts of the stack flow fields. Effects of current density, operating pressure, and level of inlet humidity on flooding are investigated.

  18. Global effects of thermal conduction on two-phase media. [in astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Mckee, Christopher F.

    1990-01-01

    The evolution of two-phase systems of astrophysical gases which change mass between the phases is studied to see whether a steady state is ever reached. The criterion for thermal instability in a cloudy medium is derived. The evolution of the pressure and density of the intercloud medium under the combined effects of heating and radiative cooling of the intercloud gas on the one hand and evaporation and condensation of the clouds on the other is determined. The equilibrium density to which the system evolves is determined for the case when the pressure is fixed. The theory is illustrated by the case in which the intercloud gas is heated by Compton scattering in a hard radiation field and cooled by bremsstrahlung and inverse Compton scattering.

  19. Theory and tests of two-phase turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1982-01-01

    A theoretical model for two-phase turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water and nitrogen mixtures and refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water and nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water and nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for refrigerant 22 with a single stage turbine, and 0,70 (measured) and 0.85 (theoretical) for water and nitrogen mixtures with a two-stage turbine.

  20. Tsunami Generated by a Two-Phase Submarine Debris Flow

    NASA Astrophysics Data System (ADS)

    Pudasaini, S. P.

    2012-04-01

    The general two-phase debris flow model proposed by Pudasaini (2011) is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model includes several essential physical aspects, including Mohr-Coulomb plasticity for the solid stress, while the fluid stress is modelled as a solid volume fraction gradient enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes the viscous drag, buoyancy, and the virtual mass. The generalized drag covers both the solid-like and fluid-like contributions, and can be applied to linear to quadratic drags. Strong couplings exist between the solid and the fluid momentum transfer. The advantage of the real two-phase debris flow model over classical single-phase or quasi-two-phase models is that by considering the solid (and/or the fluid) volume fraction appropriately, the initial mass can be divided into several (even mutually disjoint) parts; a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This offers a unique and innovative opportunity within a single framework to simultaneously simulate (a) the sliding debris (or landslide), (b) the water lake or ocean, (c) the debris impact at the lake or ocean, (d) tsunami generation and propagation, (e) mixing and separation between the solid and the fluid phases, and (f) sediment transport and deposition process in the bathymetric surface. The new model is applied to two-phase subaerial and submarine debris flows. Benchmark numerical simulations reveal that the dynamics of the debris impact induced tsunamis are fundamentally different than the tsunami generated by pure rock avalanche and landslides. Special attention is paid to study the basic features of the debris impact to the mountain lakes or oceans. This includes the generation, amplification and propagation of the multiple

  1. Conservation laws for two-phase filtration models

    NASA Astrophysics Data System (ADS)

    Baikov, V. A.; Ibragimov, N. H.; Zheltova, I. S.; Yakovlev, A. A.

    2014-02-01

    The paper is devoted to investigation of group properties of a one-dimensional model of two-phase filtration in porous medium. Along with the general model, some of its particular cases widely used in oil-field development are discussed. The Buckley-Leverett model is considered in detail as a particular case of the one-dimensional filtration model. This model is constructed under the assumption that filtration is one-dimensional and horizontally directed, the porous medium is homogeneous and incompressible, the filtering fluids are also incompressible. The model of "chromatic fluid" filtration is also investigated. New conservation laws and particular solutions are constructed using symmetries and nonlinear self-adjointness of the system of equations.

  2. Design of an advanced two-phase capillary cold plate

    NASA Technical Reports Server (NTRS)

    Chalmers, D. R.; Kroliczek, E. J.; Ku, J.

    1986-01-01

    The functional principles and implementation of capillary pumped loop (CPL) two phase heat transport system for various elements of the Space Station program are described. Circulation of the working fluid by the surface-tension forces in a fine-pore capillary wick is the core principle of CPL systems. The liquid, usually NH3 at the moment, is changed into a vapor by heat absorption at one end of the loop, and the vapor is carrried back along the wick by the surface tension within the wick. NASA specifications and the results of mechanical and thermal tests for prototype cold plate and the capillary pump designs are outlined. The CPL is targeted for installation on free-flying platforms, attached payloads, and power subsystem thermal control systems.

  3. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  4. Two-phase flow cell for chemiluminescence and bioluminescence measurements

    SciTech Connect

    Mullin, J.L.; Seitz, W.R.

    1984-01-01

    A new approach to two-phase CL (chemiluminescence) measurements is reported. A magnetically stirred reagent phase is separated from the analyte phase by a dialysis membrane so that only smaller molecules can go from one phase to the other. The system is designed so that the analyte phase flows through a spiral groove on an aluminum block that is flush against the dialysis membrane. As solution flows through the spiral grove, analyte diffuses into the reagent phase where it reacts to produce light. A simple model is developed to predict how this system will behave. Experimentally, the system is evaluated by using the luminol reaction catalyzed by peroxidase, the firefly reaction, and the bacterial bioluminescence reaction. 10 references, 4 tables, 6 figures.

  5. Transient thermohydraulic modeling of two-phase fluid systems

    NASA Astrophysics Data System (ADS)

    Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.

    2012-11-01

    This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.

  6. Rationale for two phase polymer system microgravity separation experiments

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.

    1984-01-01

    The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.

  7. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  8. Higher order time integration methods for two-phase flow

    NASA Astrophysics Data System (ADS)

    Kees, Christopher E.; Miller, Cass T.

    Time integration methods that adapt in both the order of approximation and time step have been shown to provide efficient solutions to Richards' equation. In this work, we extend the same method of lines approach to solve a set of two-phase flow formulations and address some mass conservation issues from the previous work. We analyze these formulations and the nonlinear systems that result from applying the integration methods, placing particular emphasis on their index, range of applicability, and mass conservation characteristics. We conduct numerical experiments to study the behavior of the numerical models for three test problems. We demonstrate that higher order integration in time is more efficient than standard low-order methods for a variety of practical grids and integration tolerances, that the adaptive scheme successfully varies the step size in response to changing conditions, and that mass balance can be maintained efficiently using variable-order integration and an appropriately chosen numerical model formulation.

  9. Particle-fluid two-phase flow modeling

    SciTech Connect

    Mortensen, G.A.; Trapp, J.A. |

    1992-09-01

    This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.

  10. Particle-fluid two-phase flow modeling

    SciTech Connect

    Mortensen, G.A. ); Trapp, J.A. Idaho National Engineering Lab., Idaho Falls, ID )

    1992-01-01

    This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.

  11. Two-phase partitioning bioreactors in environmental biotechnology.

    PubMed

    Quijano, Guillermo; Hernandez, María; Thalasso, Frédéric; Muñoz, Raúl; Villaverde, Santiago

    2009-10-01

    Two-phase partitioning bioreactors (TPPBs) in environmental biotechnology are based on the addition of a non-aqueous phase (NAP) into a biological process in order to overcome both mass-transfer limitations from the gas to aqueous phase and pollutant-mediated inhibitions. Despite constituting a robust and reliable technology in terms of pollutant biodegradation rates and process stability in wastewater, soil, and gas treatment applications, this superior performance only applies for a restricted number of pollutants or contamination events. Severe limitations such as high energy requirements, high costs of some NAPs, foaming, or pollutant sequestration challenge the full-scale application of this technology. The introduction of solid NAPs into this research field has opened a promising pathway for the future development of TPPBs. Finally, this work reviews fundamental aspects of NAP selection and mass transfer and identifies the niches for future research: low energy-demand bioreactor designs, experimental determination of partial mass transfers, and solid NAP tailoring.

  12. Supporting universal prevention programs: a two-phased coaching model.

    PubMed

    Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S

    2013-06-01

    Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.

  13. Supporting Universal Prevention Programs: A Two-Phased Coaching Model

    PubMed Central

    Becker, Kimberly D.; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S.

    2013-01-01

    Schools are adopting evidence-based programs designed to enhance students’ emotional and behavioral competencies at increasing rates (Hemmeter, Snyder, & Artman, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter & Van Norman, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al., 2005; Stormont, Reinke, Newcomer, Darney, & Lewis, 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker, Bradshaw, Domitrovich, & Ialongo, 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS® curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs. PMID:23660973

  14. Correct numerical simulation of a two-phase coolant

    NASA Astrophysics Data System (ADS)

    Kroshilin, A. E.; Kroshilin, V. E.

    2016-02-01

    Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.

  15. Interfacial characteristic measurements in horizontal bubbly two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

    1990-10-01

    Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

  16. Two-phase methanization of food wastes in pilot scale.

    PubMed

    Lee, J P; Lee, J S; Park, S C

    1999-01-01

    A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  17. Characterization of interfacial waves in horizontal core-annular flow

    NASA Astrophysics Data System (ADS)

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.

    2016-11-01

    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  18. Annular lichenoid syphilis: A rare entity.

    PubMed

    Khurana, Ananta; Singal, Archana; Gupta, Seema

    2014-01-01

    Syphilis is a disease known for centuries, but still continues to be a diagnostic challenge as the myriad manifestations of secondary syphilis can mimic a lot many dermatological disorders. Lichenoid syphilis is an uncommon entity, reported only occasionally in the penicillin era. We present the case of a 32-year-old woman presenting with localized annular lichenoid lesions on the neck.

  19. Annular lichenoid syphilis: A rare entity

    PubMed Central

    Khurana, Ananta; Singal, Archana; Gupta, Seema

    2014-01-01

    Syphilis is a disease known for centuries, but still continues to be a diagnostic challenge as the myriad manifestations of secondary syphilis can mimic a lot many dermatological disorders. Lichenoid syphilis is an uncommon entity, reported only occasionally in the penicillin era. We present the case of a 32-year-old woman presenting with localized annular lichenoid lesions on the neck. PMID:26396452

  20. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  1. Visual Measurements of Droplet Size in Gas Liquid Annular Flow

    SciTech Connect

    Fore, L.B.; Ibrahim, B.B.; Beus, S.G.

    2000-07-01

    Drop size distributions have been measured for nitrogen-water annular flow in a 9.67 mm hydraulic diameter duct, at system pressures of 3.4 and 17 atm and a temperature of 38 C. These new data extend the range of conditions represented by existing data in the open literature, primarily through an increase in system pressure. Since most existing correlations were developed from data obtained at lower pressures, it should be expected that the higher-pressure data presented in this paper would not necessarily follow those correlations. The correlation of Tatterson, et al. (1977) does not predict the new data very well, while the correlation of Kataoka, et al. (1983) only predicts those data taken at the lower pressure of 3.4 atm. However, the maximum drop size correlation of Kocamustafaogullari, et al. (1994) does predict the current data to a reasonable approximation. Similarly, their correlation for the Sauter mean diameter can predict the new data, provided the coefficient in the equation is adjusted.

  2. High Pressure Rotary Shaft Sealing Mechanism

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    2001-05-08

    A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

  3. Heat transfer and fluid dynamics of air-water two-phase flow in micro-channels

    SciTech Connect

    Kaji, Masuo; Sawai, Toru; Kagi, Yosuke; Ueda, Tadanobu

    2010-05-15

    Heat transfer, pressure drop, and void fraction were simultaneously measured for upward heated air-water non-boiling two-phase flow in 0.51 mm ID tube to investigate thermo-hydro dynamic characteristics of two-phase flow in micro-channels. At low liquid superficial velocity j{sub l} frictional pressure drop agreed with Mishima-Hibiki's correlation, whereas agreed with Chisholm-Laird's correlation at relatively high j{sub l}. Void fraction was lower than the homogeneous model and conventional empirical correlations. To interpret the decrease of void fraction with decrease of tube diameter, a relation among the void fraction, pressure gradient and tube diameter was derived. Heat transfer coefficient fairly agreed with the data for 1.03 and 2.01 mm ID tubes when j{sub l} was relatively high. But it became lower than that for larger diameter tubes when j{sub l} was low. Analogy between heat transfer and frictional pressure drop was proved to hold roughly for the two-phase flow in micro-channel. But satisfactory relation was not obtained under the condition of low liquid superficial velocity. (author)

  4. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  5. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    SciTech Connect

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical

  6. Management of Periocular Granuloma Annulare Using Topical Dapsone

    PubMed Central

    Patel, Mayha; Shitabata, Paul; Horowitz, David

    2015-01-01

    Granuloma annulare is a disease characterized by granulomatous inflammation of the dermis. Localized granuloma annulare may resolve spontaneously, while generalized granuloma annulare may persist for decades. The authors present the case of a 41-year-old Hispanic man with a two-week history of periocular granuloma annulare. Due to previously reported success in the use of systemic dapsone for the treatment of granuloma annulare, and the periocular proximity of the patient’s lesion, topical dapsone was used for treatment. Various additional therapies for the management of granuloma annulare have been reported, such as topical and systemic steroids, isotretinoin, pentoxifylline, cyclosporine, Interferon gamma, potassium iodide, nicotinamide, niacinamide, salicylic acid, fumaric acid ester, etanercept, infliximab, and hydroxychloroquine. Additional clinical trials are necessary to further evaluate the effectiveness of topical dapsone in the management of granuloma annulare. PMID:26203321

  7. Creep of two-phase microstructures for microelectronic applications

    NASA Astrophysics Data System (ADS)

    Reynolds, Heidi Linch

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructures. The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructures found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructures in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from 0°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ag eutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructures, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  8. Creep of Two-Phase Microstructures for Microelectronic Applications

    SciTech Connect

    Reynolds, Heidi Linch

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  9. Advanced numerical methods for three dimensional two-phase flow calculations

    SciTech Connect

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  10. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  11. Disturbed zone effects: Two phase flow in regionally water-saturated fractured rock

    SciTech Connect

    Geller, J.T.; Doughty, C.; Long, J.C.S.

    1995-01-01

    Field evidence suggests that two-phase flow may develop near underground excavations in regionally-saturated fractured crystalline rock, resulting in lower inflow rates compared to undisturbed rock. Mechanisms for the development of two-phase flow conditions include depressurization of formation water that is supersaturated with dissolved gas and buoyancy-driven air invasion into fractures from the drift. Models that assume gas-liquid phase equilibrium indicate that for constant head boundary conditions, the build-up of pressure behind the gas phase evolving from depressurization should redissolve the gas and maintain higher flowrates, requiring unreasonably high dissolved gas concentrations to produce observed flow reductions at the Stripa Mine in Sweden. This discrepancy initiated a laboratory-scale investigation. Gas evolution following depressurization is simulated in two different 8 cm x 8 cm transparent fracture replicas for linear flow with constant head boundary conditions. Gas forms and accumulates in the large apertures and the extent of flow reduction is greater when the flow through the fracture is controlled by a large aperture channel, compared to a fracture where large aperture regions are relatively isolated. An effective continuum numerical model (TOUGH2) is used to describe the development of two-phase flow under degassing conditions. Numerical simulations were made for a homogeneous porous medium and for a heterogeneous medium using the aperture distribution of one of the fractures used in the laboratory experiments, which allows a direct comparison between laboratory and numerical results. The incorporation of kinetic expressions into the numerical model will allow the prediction of resaturation rates of a repository following closure.

  12. Near-limit propagation of gaseous detonations in narrow annular channels

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  13. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  14. An automated two-phase system for hydrogel microbead production.

    PubMed

    Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali

    2012-09-01

    Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.

  15. Particle clustering within a two-phase turbulent pipe jet

    NASA Astrophysics Data System (ADS)

    Lau, Timothy; Nathan, Graham

    2016-11-01

    A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 <= ReD <= 40000 , while the exit Stokes number was in the range 0 . 3 <= SkD <= 22 . 4 . The particle mass loading was fixed at ϕ = 0 . 4 , resulting in a flow that was in the two-way coupling regime. Instantaneous particle distributions within a two-dimensional sheet was measured using planar nephelometry while particle clusters were identified and subsequently characterised using an in-house developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 <= SkD <= 5 . 6 , with the degree of clustering increasing as SkD is decreased. The clusters, which typically appeared as filament-like structures with high aspect ratio oriented at oblique angles to the flow, were measured right from the exit plane, suggesting that they were generated inside the pipe. The authors acknowledge the financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).

  16. Unsteady flow analysis of a two-phase hydraulic coupling

    NASA Astrophysics Data System (ADS)

    Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.

    2016-06-01

    Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.

  17. Cryogenic Two-Phase Flight Experiment: Results overview

    NASA Technical Reports Server (NTRS)

    Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

    1995-01-01

    This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

  18. Passive Two-Phase Cooling for Automotive Power Electronics

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate the concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  19. A turbulent two-phase flow model for nebula flows

    NASA Technical Reports Server (NTRS)

    Champney, Joelle M.; Cuzzi, Jeffrey N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles.

  20. Biofluid dynamics of two phase stratified flow through flexible membranes

    NASA Astrophysics Data System (ADS)

    Bhagavatula Nvssr, Dinesh; Pushpavanam, S.

    2016-11-01

    Two phase stratified flows between flexible membranes arise in biological flows like lung airway reopening, blood flow in arteries and movement of spinal cord. It is important to understand the physics behind the interaction of flexible membranes and the fluid flow. In this work, a theoretical model is developed and different types of instabilities that arise due to the fluid flow are understood. The solid membrane is modeled as an incompressible linear viscoelastic solid. To simplify the analysis, inertia in the solid is neglected. Linear stability analysis is carried around the base state velocity of the fluid and displacement field of the solid. The flow is perturbed by a small disturbance and a normal mode analysis is carried out to study the growth rate of the disturbance. An eigenvalue problem in formulated using Chebyshev spectral method and is solved to obtain the growth rate of the disturbance. The effect of different parameters such as thickness of the flexible membrane, Reynolds number, viscosity ratio, density ratio, Capillary number and Weissenberg number on the stability characteristics of the flow is studied in detail. Dispersion curves are obtained which explain the stability of the flow. A detail energy analysis is carried out to determine different ways through which energy transfers from the base flow to the disturbed flow.

  1. Dynamic force and moment coefficients for short length annular seals

    NASA Astrophysics Data System (ADS)

    San Andres, Luis

    1993-01-01

    Close form expressions for the dynamic force and moment coefficients in short length annular pressure seals operating at the concentric and aligned position are derived. The analysis considers fully developed turbulent flow within the seal and determines a set of ordinary differential equations for the bulk-flow field due to perturbations in rotor displacements and angular motions. The flow equations are solved exactly for seals of short length where dynamic variations in circumferential velocity are neglected. The analytical solution derived is simple and reasonably accurate for seals of length to diameter ratios (L/D) as large as 0.5 as comparisons with results from full-scale numerical solutions show. The formulae presented are practical for use in preliminary design stages and parametric studies of dynamic seal performance.

  2. Fuel Injector Design Optimization for an Annular Scramjet Geometry

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    2003-01-01

    A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.

  3. Closed-cycle annular-flow-return laser

    SciTech Connect

    Olson, R.A.; Sarka, B. Jr.; Garscadden, A.; Bletzinger, P.

    1981-07-01

    A compact, high repetition rate, closed-cycle rare-gas laser has been achieved in a novel design utilizing an annular flow return surrounding the laser flow channel. The 112-cm long by 30.5-cm-diam. laser head is compact and attractive for portable applications. High repetition rate (to 15 kHz) multiline laser operation has been achieved in high-pressure (to 2 atm) mixtures of Ne--Xe (6 lines), Ar--Xe (7 lines), He--Xe (9 lines), He--Kr (4 lines), and He--Ar (3 lines). Reliable long lifetime performance has been demonstrated by operating a He--Xe laser continuously for 100 hours at a pulse-repetition rate of 5 kHz (1.8 x 10/sup 9/ pulses) with no degradation of the 1.1-W average laser output power.

  4. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  5. The influence of interfacial properties on two-phase liquid flow of organic contaminants in groundwater

    SciTech Connect

    Hayes, K.F.; Demond, A.H.

    1990-09-01

    The purpose of this project is to investigate how changes in interfacial chemical properties affect two-phase transport relationships. Specifically, the objective is to develop a quantitative theory that will enable the prediction of changes in the capillary pressure-saturation relationship, a fundamental constitutive relationship in multiphase flow modeling, from changes in interfacial properties through a knowledge of their effect on wettability. The information presented here summarizes the progress we have made in the first project period. Based on preliminary adsorption, surface charge and surface potential measurements, we have demonstrated that it is possible to change the wettability of silica in a controlled manner by adsorbing varying quantities of a strongly-binding, cationic surfactant like cetyltrimethylammonium bromide (CTAB). Adsorption, surface charge and surface potential measurements have been made on the silica-water-CTAB system to yield a relationship between the amount adsorbed and the interfacial potential. Our work on the ideal soil model has demonstrated that the incorporation of roughness effects in the ideal soil model improves the prediction of the operative contact angles for drainage and imbibition from the intrinsic contact angle. This leads to better estimates of the capillary pressure-saturation relationships. Preliminary capillary pressure experiments on the silica-water-air system have shown that adsorption of a surfactant at the solid surface changes the capillary pressure-saturation relationship significantly.

  6. One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2012-01-01

    Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.

  7. Numerical simulation of two-phase flow in horizontal interconnected subchannels

    SciTech Connect

    Shourki, M.; Carver, M.B.; Tahir, A.

    1985-11-01

    Different subchannel computer codes have been successfully used for the thermal-hydraulic analysis of coolant flow in vertical fuel channels. None of these methods, however, is suitable for two-phase flow in horizontal fuel channels, such as those of the CANDU nuclear reactors, due to the lack of appropriate constitutive relationships that can correctly account for the gravity separation effects. A transverse vapor drift model that accounts for the combined effect of gravity separation and turbulent diffusion has been incorporated into the existing subchannel computer code SAGA. Although the basic structure of the code remains similar to SAGA III, some modifications in both the mathematical formulation and numerical solution have been incorporated. These modifications resulted in significant improvements in the code's ability to model horizontal two-phase subchannel flow. The new version of the code was tested and found to be capable of simulating the complex exchange phenomenon between adjacent horizontal subchannels caused by the interaction of turbulent diffusion, pressure gradient, and gravity-induced cross flows. The code predictions were compared with experimental data obtained from two different sources and showed good agreement.

  8. Volume-Of-Fluid Simulation for Predicting Two-Phase Cooling in a Microchannel

    NASA Astrophysics Data System (ADS)

    Gorle, Catherine; Parida, Pritish; Houshmand, Farzad; Asheghi, Mehdi; Goodson, Kenneth

    2014-11-01

    Two-phase flow in microfluidic geometries has applications of increasing interest for next generation electronic and optoelectronic systems, telecommunications devices, and vehicle electronics. While there has been progress on comprehensive simulation of two-phase flows in compact geometries, validation of the results in different flow regimes should be considered to determine the predictive capabilities. In the present study we use the volume-of-fluid method to model the flow through a single micro channel with cross section 100 × 100 μm and length 10 mm. The channel inlet mass flux and the heat flux at the lower wall result in a subcooled boiling regime in the first 2.5 mm of the channel and a saturated flow regime further downstream. A conservation equation for the vapor volume fraction, and a single set of momentum and energy equations with volume-averaged fluid properties are solved. A reduced-physics phase change model represents the evaporation of the liquid and the corresponding heat loss, and the surface tension is accounted for by a source term in the momentum equation. The phase change model used requires the definition of a time relaxation parameter, which can significantly affect the solution since it determines the rate of evaporation. The results are compared to experimental data available from literature, focusing on the capability of the reduced-physics phase change model to predict the correct flow pattern, temperature profile and pressure drop.

  9. A complete two-phase model of a porous cathode of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.

    This paper has developed a complete two-phase model of a proton exchange membrane (PEM) fuel cell by considering fluid flow, heat transfer and current simultaneously. In fluid flow, two momentum equations governing separately the gaseous-mixture velocity (u g) and the liquid-water velocity (u w) illustrate the behaviors of the two-phase flow in a porous electrode. Correlations for the capillary pressure and the saturation level connect the above two-fluid transports. In heat transfer, a local thermal non-equilibrium (LTNE) model accounting for intrinsic heat transfer between the reactant fluids and the solid matrices depicts the interactions between the reactant-fluid temperature (T f) and the solid-matrix temperature (T s). The irreversibility heating due to electrochemical reactions, Joule heating arising from Ohmic resistance, and latent heat of water condensation/evaporation are considered in the present non-isothermal model. In current, Ohm's law is applied to yield the conservations in ionic current (i m) and electronic current (i s) in the catalyst layer. The Butler-Volmer correlation describes the relation of the potential difference (overpotential) and the transfer current between the electrolyte (such as Nafion™) and the catalyst (such as Pt/C).

  10. Thermal effects in two-phase flow through face seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Basu, Prithwish

    1988-01-01

    When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.

  11. Extraordinary increase of lifetime of localized cold clouds by the viscous effect in thermally unstable two-phase interstellar media.

    PubMed

    Yatou, Hiroki; Toh, Sadayoshi

    2009-03-01

    We numerically examine the influence of the viscosity on the relaxation process of localized clouds in thermally unstable two-phase media, which are locally heated by cosmic ray and cooled by radiation. Pulselike stationary solutions of the media are numerically obtained by a shooting method. In one-dimensional direct numerical simulations, localized clouds are formed during the two-phase separation and sustained extraordinarily. Such long-lived clouds have been recently observed in interstellar media. We demonstrate that the balance of the viscosity with a pressure gradient remarkably suppresses the evaporation of the clouds and controls the relaxation process. This balance fixes the peak pressure of localized structures and then the structure is attracted and trapped to one of the pulselike stationary solutions. While the viscosity has been neglected in most of previous studies, our study suggests that the precise treatment of the viscosity is necessary to discuss the evaporation of the clouds.

  12. Efficiency Enhancement of Chiller and Heat Pump Using Natural Working Fluids with Two-phase Flow Ejector

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao

    An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the absorption and the compression cycle, the performance of the refrigerator can be greatly improved. Until now, many studies have been conducted with regard to the single-phase flow ejector. But, single or two component two-phase flow ejector which needs for the compression and absorption cycle has not been examined sufficiently. This paper constructs the simulation model of single and two component two-phase flow ejector and investigates the characteristics of that ejector by the simulation. Working fluids are ammonia, CO2 and ammonia-water mixture. As a result, the optimum mixing section inlet pressure exists to maximize the performance of the ejector. And the ejector performance is analyzed in detail.

  13. The Effect of Subcooling on the Flow and Heat Transfer Characteristics in a Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Takeshita, Kazuhiro; Doi, Kyoji; Noda, Ken-Ichi

    A two-phase loop thermosyphon is used as a heat transfer device in an energy-saving heat transportation system and so forth, because it transports thermal energy without any external power supply such as a pump under a body force field. We previously performed a fundamental study on the flow and heat transfer characteristics in a two-phase loop thermosyphon installed with a single heated tube evaporator both experimentally and theoretically which was made under the condition of near saturation temperature of liquid in a reservoir. In the present study, the effects of liquid subcooling and the heat input on the circulation mass flow rates, pressure and temperature distributions, and heat transfer coefficients in the evaporator were examined experimentally using water, ethanol, benzene and Freon 113 as the working fluids. On the other hand, the circulation mass flow rates, pressure and temperature distributions were theoretically calculated and compared with the experimental results.

  14. Two-phase Flow Characteristics in a Gas-Flow Channel of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Cho, Sung Chan

    patterns are obtained optically and two-phase pressure drop is measured experimentally. Cross-sectional view of two-phase flow is visualized in simplified circumstance to understand liquid-phase location in gas flow channels. Various surfaces on the GDL side are examined and are compared. The two-phase friction multipliers (pressure drop) predicted by two model groups are compared showing a good agreement for the cases with low liquid flow rate. Optimization of one relative permeability correlation is presented. Theoretical analysis is also presented to examine the relative permeability correlation for annulus flow. Real-time pressure drops are presented to show the effect of flow patterns on pressure drop. This work presents analytical results for droplet deformation, criteria for droplet detachment, and compares empirical and physical two-phase flow models for the gas flow channel of PEM fuel cells. These fundamentals are important for channel design, fuel cell diagnostic, water management, and understanding of two-phase flow in PEM fuel cells.

  15. Experimental investigation of two-phase flow in rock salt

    SciTech Connect

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  16. Flow regime mapping of vertical two-phase downflow in a ribbed annulus

    SciTech Connect

    Kielpinski, A.L.

    1992-12-01

    Two-phase flow regimes have been mapped for vertical, cocurrent downflow in a narrow annulus which is partially segmented by the presence of longitudinal ribs. This geometry and flow condition has application to the analysis of a Large-Break Loss of Coolant Accident (LB-LOCA) in the production K-Reactor at the Savannah River Site (SRS). The ribbed annular geometry, particularly the presence of non-sealing ribs, gives rise to some unique phenomenological features. The flow behavior is influenced by the partial segmentation of the annulus into four quadrants or subchannels. A random element is induced by the natural bowing of the slender tubes; the width of the azimuthal flow path between two subchannels at a given axial location is indeterminate, and can take on any value between zero and the maximum clearance of 7.6 {times} l0{sup {minus}4} m. When the rib gap is zero at a given location, it is at a maximum 180P away at the same axial location. The range of rib gaps is spanned in a single test section, as it would be also in a reactor assembly. As a result of these effects, flow regime maps obtained by other researchers for downflow in annuli are not accurate for defining flow regimes in a ribbed annulus. Flow regime transitions similar to those noted by, e.g., Bamea, were observed; the locations of these transitions were displaced with respect to the transition equations derived by Bamea. Experimental bubble rise velocity measurements were also obtained in the same test section. The bubble rise velocities were much higher than expected from the theory developed for slug bubbles in tubes, unribbed annuli, and rectangular channels. An elliptical-cap bubble rises faster than a slug bubble of the same area. Large, slug-shaped bubbles injected into the test section were observed to reduce in size as they rose, due to interaction with a longitudinal rib. They thereby adopted a shape more like an elliptical-cap bubble, hence rising faster than the original slug bubble.

  17. Flow regime mapping of vertical two-phase downflow in a ribbed annulus

    SciTech Connect

    Kielpinski, A.L.

    1992-01-01

    Two-phase flow regimes have been mapped for vertical, cocurrent downflow in a narrow annulus which is partially segmented by the presence of longitudinal ribs. This geometry and flow condition has application to the analysis of a Large-Break Loss of Coolant Accident (LB-LOCA) in the production K-Reactor at the Savannah River Site (SRS). The ribbed annular geometry, particularly the presence of non-sealing ribs, gives rise to some unique phenomenological features. The flow behavior is influenced by the partial segmentation of the annulus into four quadrants or subchannels. A random element is induced by the natural bowing of the slender tubes; the width of the azimuthal flow path between two subchannels at a given axial location is indeterminate, and can take on any value between zero and the maximum clearance of 7.6 [times] l0[sup [minus]4] m. When the rib gap is zero at a given location, it is at a maximum 180P away at the same axial location. The range of rib gaps is spanned in a single test section, as it would be also in a reactor assembly. As a result of these effects, flow regime maps obtained by other researchers for downflow in annuli are not accurate for defining flow regimes in a ribbed annulus. Flow regime transitions similar to those noted by, e.g., Bamea, were observed; the locations of these transitions were displaced with respect to the transition equations derived by Bamea. Experimental bubble rise velocity measurements were also obtained in the same test section. The bubble rise velocities were much higher than expected from the theory developed for slug bubbles in tubes, unribbed annuli, and rectangular channels. An elliptical-cap bubble rises faster than a slug bubble of the same area. Large, slug-shaped bubbles injected into the test section were observed to reduce in size as they rose, due to interaction with a longitudinal rib. They thereby adopted a shape more like an elliptical-cap bubble, hence rising faster than the original slug bubble.

  18. On the effects of centrifugal forces in air-water two-phase flow regime transitions in an adiabatic helical geometry

    NASA Astrophysics Data System (ADS)

    Young, Eric Paul

    Two-phase flow in helical conduits is important in many industries where reaction between components, heat transfer, and mass transport are utilized as processes. The helical design is chosen for the effects of secondary flow patterns that reduce axial dispersion, increased heat transfer, and also their compact design. The first is a result of the secondary flow, which continually transports fluid from the near wall region to the bulk of the flow. In single-phase chemical reactor design this secondary flow increases radial mixing and reduces axial dispersion. In heat exchanger design it increases laminar heat transfer while extending the Reynolds number range of laminar flow. A literature review of the work on helical pipe flow shows that the vast majority of the work is on toroidal single-phase flow, and analyses of two-phase flow are sparse. This dissertation addresses this void by presenting an analytical model of the stratified and annular flow regime transitions in helical conduits, by consideration of the governing equations and mechanisms for transition in the toroidal geometry including the major impact of pitch. Studies have taken a similar approach for straight inclined horizontal and vertical geometries, but none have been found which resolve two-phase flow in the curved geometry of a helix. The main issue in resolving the flow in this geometry is that of determining appropriate inter-phase momentum transfer, and the appropriate friction correlations for wall interaction. These issues are resolved to yield a novel attempt at modeling helical two-phase flow. Pitch is considered negligible in introduction of torsion, while the dominating influence of the centrifugal force is retained. The formulation of the governing equations are taken from a general vector form that is readily extended to a true helix that includes torsion. The predictive capability of the current model is compared to the data and observations of the two-phase helical flow studies

  19. LDV Measurements in an Annular Combustor Model

    NASA Technical Reports Server (NTRS)

    Barron, Dean A.

    1996-01-01

    This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  20. Continuous separation of proteins by annular chromatography

    SciTech Connect

    Bloomingburg, G.F.; Bauer, J.S.; Carta, G. ); Byers, C.H. )

    1991-05-01

    In this paper, the separation of protein mixtures by continuous annular chromatography (CAC) is studied in a preparative-scale apparatus. S-Sepharose, a strong-acid porous cation-exchange resin is used as the separation medium, and mixtures of albumin, hemoglobin and cytochrome c are used as model separation system. Equilibrium and mass-transfer parameters are developed for this system on the basis of fixed-bed chromatograph experiments. A mathematical model is then successfully used in conjunction with these parameters to simulate the performance of the CAC separations. The continuous separation performance of the annular apparatus is found to be essentially the same as the batchwise performance of an equivalent conventional chromatograph, making the unit attractive for preparative and process-scale applications where continuous throughput is desirable.

  1. HIFU focusing efficiency and a twin annular array source for prostate treatment.

    PubMed

    Christopher, Ted

    2005-09-01

    A measure of focusing efficiency is introduced for high-intensity, focused ultrasound (HIFU). The measure consists of the fraction of the total acoustic power emitted that linearly propagates through a circle located at the focus. The medium is absorption-free water, and power is computed using pressure and the normal component of velocity. 3 MHz phased-array designs involving different element layouts and curvatures are placed in square apertures of length 2.2 cm. The acoustic fields of these devices then are propagated to on-axis foci. The resulting focal efficiencies then are calculated using a two wavelength (0.1 cm) radius circle. Among these array designs, an annular array with 27 wavelength-wide rings then is extended to be the basis of a twin phased-array device for prostate hyperthermia treatment. The two annular arrays are attached to door-like hinges to allow for joint two-dimensional focusing. The focusing efficiency of this device then is compared to rectangular element-array devices with the same 5.4 by 2.2 cm source extent. With the addition of absorption and finite-amplitude distortion, the heating rate and temperature rise produced by the twin annular device in prostate tissue is considered. As a final look at the potential of annular array-based designs, three larger 2 MHz devices are briefly considered for abdominal treatment.

  2. Tobacco protein separation by aqueous two-phase extraction.

    PubMed

    Balasubramaniam, Deepa; Wilkinson, Carol; Van Cott, Kevin; Zhang, Chenming

    2003-03-07

    Tobacco has long been considered as a host to produce large quantity of high-valued recombinant proteins. However, dealing with large quantities of biomass is a challenge for downstream processing. Aqueous two-phase extraction (ATPE) has been widely used in purifying proteins from various sources. It is a protein-friendly process and can be scaled up easily. In this paper, ATPE was studied for its applicability to recombinant protein purification from tobacco with egg white lysozyme as the model protein. Separate experiments with poly(ethylene glycol) (PEG)-salt-tobacco extract and PEG-salt-lysozyme were carried out to determine the partition behavior of tobacco protein and lysozyme, respectively. Two-level fractional factorial designs were used to study the effects of factors such as, PEG molecular mass, PEG concentration, the concentration of phase forming salt, sodium chloride concentration and pH, on protein partitioning. The results showed that, among the studied systems, PEG-sodium sulfate system was most suitable for lysozyme purification. Detailed experiments were conducted by spiking lysozyme into the tobacco extract. The conditions with highest selectivity of lysozyme over native tobacco protein were determined using a response surface design. The purification factor was further improved by decreasing the phase ratio along the tie line corresponding to the phase compositions with the highest selectivity. Under selected conditions the lysozyme yield was predicted to be 87% with a purification factor of 4 and concentration factor of 14. From this study, ATPE was shown to be suitable for initial protein recovery and partial purification from transgenic tobacco.

  3. Two-phase transformation of lepidocrocite to maghemite

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Gapeev, A. K.; Gendler, T. S.; Gribov, S. K.; Shcherbakov, V. P.

    2003-04-01

    A detailed investigation of CRM acquired at different stages of the transformation lepidocrocite -> maghemite -> hematite is carried out. Apparently, at least two-stage lepidocrocite maghemite transformation was revealed from: a) the two-peak Ms(T) curve; b) the observation of constricted hysteresis loops appearing after annealing fresh lepidocrocite samples at elevated temperatures; c) continuous monitoring (for 500 hrs) of CRM acquisition at elevated temperatures. For the latter two sets of CRM acquisition experiments at 12 temperatures from 175C to 550C in the presence of 0.1 mT magnetic field were performed: 1) with fine dispersed natural lepidocrocite grains in a kaolin matrix (about 1 volume % of lepidocrocite), 2) for lepidocrocite peaces 3x3x3 mm in size. In both cases the CRM was detected already at 175C after 1 day of annealing. Note that this temperature is lower than the temperature of the TGA peak of the lepidocrocite -> maghemite transformation. Mossbauer spectra obtained from the peaces after annealing at 225C during 6 and 14 hours, respectively, revealed significantly different patterns. Unexpectadly, fine dispersed maghemite grains formed due the lepidocrocite dehydration in the first peace (6 hrs of annealing) occurred to be more ordered than those of from the second peace. The samples are subjected to the X-ray analysis in an attempt to clarify the observed difference. The observed phenomena can be explained by the two-phase conception of the transformation lepidocrocite -> maghemite. First the precipitation of small superparamagnetic particles of maghemite takes place growing with time. Second, these grains coalesce with each other resulting in appearance of the antiphase boundaries decreasing the susceptibility, slowing down the process of CRM acquisition and generating the constricted hysteresis loops. The work is supported by INTAS 99-1273.

  4. Endoscopic measurements using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1992-01-01

    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.

  5. Annular and Total Solar Eclipses of 2003

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    2002-01-01

    On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.

  6. The Annular Suspension and Pointing System /ASPS/

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Woolley, C. T.

    1978-01-01

    The Annular Suspension and Pointing System (ASPS) may be attached to a carrier vehicle for orientation, mechanical isolation, and fine pointing purposes applicable to space experiments. It has subassemblies for both coarse and vernier pointing. A fourteen-degree-of-freedom simulation of the ASPS mounted on a Space Shuttle has yielded initial performance data. The simulation describes: the magnetic actuators, payload sensors, coarse gimbal assemblies, control algorithms, rigid body dynamic models of the payload and Shuttle, and a control system firing model.

  7. Two-phase, passive separator-and-filter assembly

    NASA Technical Reports Server (NTRS)

    Erickson, A. C.; Porter, F. J., Jr.

    1974-01-01

    Assembly separates liquid from gas by passive hydrophilic/hydrophobic material approach. Apparatus is comprised of porous glass hydrophilic tubes. Quantity, lateral size, and pore size of glass tubes are determined by particular design requirements with regard to water rate, water quality contamination level, application endurance life, and operating differential pressure level.

  8. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  9. Investigation of two-phase flow processes in coal slurry/hydrogen heaters. Final report

    SciTech Connect

    Sam, R.G.; Crowley, C.J.

    1986-08-01

    Experimental and analytical results are presented for two-phase slug flow in a horizontal, transparent pipe at large diameter (6.75 in.) at high gas density (20 times the density of air at atmospheric pressure) and at liquid viscosities ranging from 1 to 1000 centipoise. The test section replicates 1 1/2 rectangular coils (40 ft by 10 ft) of a fired heater in a coal liquefaction plant. Regime transtion, pressure drop, void fraction, and slug characteristic data have been obtained for liquid superficial velocities ranging from 0.2 to 6 ft/s and gas superficial velocities ranging from 0.2 to 12 ft/s. Regime transition results have been compared with the Taitel-Dukler analytical flow regime map. The transition from stratified to slug flow, which is underpredicted by the original analysis, has been studied in particular. Comparison with the dimensionless transition criterion (gas Froude number) shows that increased liquid viscosity increases the liquid level at which the transition occurs. Pressure drop data at the transition have been used to evaluate the interfacial shear and to show that it is greater than is assumed in the Taitel-Dukler analysis. Sensitivity studies for the transition criterion and interfacial shear illustrate exactly why the transition is underpredicted on the flow regime map and how the predictions can be improved. Photos of the flow patterns illustrate the mechanism of slug formation at high viscosity compared with low viscosity. Pressure drop, void fraction, and slug characteristic results are compared with an analysis for pressure drop in slug flow, demonstrating better predictive capability of this model at large pipe size, high gas density, and high viscosity, compared with correlations from the literature. The pressure drop model is also shown to be in excellent agreement with coal liquefaction pilot plant data. 34 refs.

  10. Stability of finite difference approximations of two fluid, two phase flow equations

    SciTech Connect

    Holmes, Mark Alan

    1995-01-01

    It is well known that the basic single pressure, two fluid model for two phase flow has complex characteristics and is dynamically unstable. Nevertheless, common nuclear reactor thermal-hydraulics codes use variants of this model for reactor safety calculations. In these codes, the non-physical instabilities of the model may be damped by the numerical method and/or additional momentum interchange terms. Both of these effects are investigated using the linearized Von Neumann stability analysis. The stability of the semi-implicit method is of primary concern, because of its computational efficiency and popularity. It is shown that there is likely no completely stable numerical method, including fully implicit methods, for the basic single pressure model. Additionally, the momentum interchange terms commonly added to the basic single pressure model do not result in stable numerical methods for all the physically interesting reference conditions. Although practical stable approximations may be realized on a coarse computational grid, it is concluded that the assumption of instantaneously equilibrated phasic pressures must be relaxed in order to develop a generally stable numerical solution of a two fluid model. The numerical stability of the semi-implicit discretization of the true two pressure models of Ransom and Hicks, and Holm and Kupershmidt is analyzed. The semi-implicit discretization of these models, which possess real characteristics, are found to be numerically stable as long as certain convective limits are satisfied. Based on the form of these models, the general form of a numerically stable, basic two pressure model is proposed. The evolution equation required for closure is a volume fraction transport equation, which may possibly be determined based on void wave propagation considerations.

  11. Theoretical analysis of rotating two phase detonation in a rocket motor

    NASA Technical Reports Server (NTRS)

    Shen, I.; Adamson, T. C., Jr.

    1973-01-01

    Tangential mode, non-linear wave motion in a liquid propellant rocket engine is studied, using a two phase detonation wave as the reaction model. Because the detonation wave is followed immediately by expansion waves, due to the side relief in the axial direction, it is a Chapman-Jouguet wave. The strength of this wave, which may be characterized by the pressure ratio across the wave, as well as the wave speed and the local wave Mach number, are related to design parameters such as the contraction ratio, chamber speed of sound, chamber diameter, propellant injection density and velocity, and the specific heat ratio of the burned gases. In addition, the distribution of flow properties along the injector face can be computed. Numerical calculations show favorable comparison with experimental findings. Finally, the effects of drop size are discussed and a simple criterion is found to set the lower limit of validity of this strong wave analysis.

  12. Two-phase Flow Patterns in High Temperature Generator of Absorption Chiller / Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kanuma, Hitoshi; Sekoguchi, Kotohiko; Takeishi, Masayuki

    There is a lack of information about vapor-liquid two-phase flow patterns determined using void signals in high temperature generator of absorption chiller/heater. Sensing void fraction has been hampered because lithium bromide aqueous solution of strong alkalinity is employed as working fluid at high temperature and high level of vacuum. New void sensor applicable to such difficult conditions was developed. The void Fractions at 48 locations in a high temperature generator were measured simultaneously in both cooling and heating operations. Analysis of void signals detected reveals that the most violent boiling occurs at the upper part of rear plate of combustion chamber and the first line of vertical tubes located in the flue. The flow patterns are strongly affected by the system pressure difference between the cooling and heating operations: there appear bubbly, slug and froth flows in the cooling operation, but only bubbly flow in the heating operation.

  13. Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.

  14. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  15. Modelling of transient two-phase heat transfer for spacecraft thermal management

    NASA Technical Reports Server (NTRS)

    Shyy, W.

    1994-01-01

    A computational method for predicting the two-phase transient fluid flow and heat transfer characteristics within a reservoir of the capillary-pumped-loop, intended to be used for spacecraft thermal management, has been developed. The model is based on the enthalpy formulation in an axisymmetric configuration. The reservoir operates under a constant thermodynamic pressure by allowing mass exchange between the reservoir and the outside loop. Both 1 g and 0 g environments have been considered to assess the effects of gravity on the reservoir performance. Depending on the gravity level, the power input and the reservoir orientation, three different convection modes have been identified, namely, the thermocapillary mode, the buoyancy mode, and the rapid-expansion mode (caused by interface movement). The impact of these modes on the performance of the reservoir and the associated physical phenomena have been discussed.

  16. A one-dimensional model with water-like anomalies and two phase transitions

    NASA Astrophysics Data System (ADS)

    Heckmann, Lotta; Drossel, Barbara

    2012-08-01

    We investigate a one-dimensional model that shows several properties of water. The model combines the long-range attraction of the van der Waals model with the nearest-neighbor interaction potential by Ben-Naim, which is a step potential that includes a hard core and a potential well. Starting from the analytical expression for the partition function, we determine numerically the Gibbs energy and other thermodynamic quantities. The model shows two phase transitions, which can be interpreted as the liquid-gas transition and a transition between a high-density and a low-density liquid. At zero temperature, the low-density liquid goes into the crystalline phase. Furthermore, we find several anomalies that are considered characteristic for water. We explore a wide range of pressure and temperature values and the dependence of the results on the depth and width of the potential well.

  17. Non-equilibrium one-dimensional two-phase flow in variable area channels

    NASA Technical Reports Server (NTRS)

    Rohatgi, U. S.; Reshotko, E.

    1975-01-01

    A one-dimensional nonequilibrium flow analysis has been formulated for a one component two phase flow. The flow is considered homogeneous and essentially isothermal. Phase change is assumed to occur at heterogeneous nucleation sites and the growth of the vapor bubbles is governed by heat conduction from the liquid to the bubble. The analysis adjusted for friction is applied to liquid nitrogen flow in a venturi and comparison is made with the NASA experimental results of Simoneau. Good agreement with the experiments is obtained when one assumes the effective activation energy for nucleus formation to be small but nonzero. The computed pressure distributions deviate from the experimental results in the throat region of the venturi in a manner consistent with centrifugal effects not accounted for in the one-dimensional theory. The results are shown to depend not only on cavitation number but on additional dimensionless parameters governing the nonequilibrium production and subsequent growth of nuclei.

  18. Effect of two-phase maldistribution on the performance of an air-cooled condenser

    SciTech Connect

    Henry, J.R.; Farrant, P.E.

    1983-07-01

    Information is available in the literature for the case where a single-phase vapour is maldistributed by differing tube length or temperature difference. This paper examines the effects when the fluid being distributed is two-phase at entry and it is seen that significant reduction in heat-transfer rate results when the flow separates, although pressure drop is also very much less. It is shown that the performance with arbitrary distribution normally lies between the extremes of homogeneous (ideal) distribution and complete separation and is usually closer to the latter. More important is the large amount of heat which must be transferred by direct contact with subcooled condensate in the downstream header and pipework. This could cause problems if not allowed for.

  19. Droplet entrainment in vertical annular flow and its contribution to momentum transfer

    SciTech Connect

    Lopes, J.C.B.; Dukler, A.E.

    1986-09-01

    Simultaneous measurements were made of the size, axial and radial velocity of drops entrained by the gas in annular flow. A model is developed to use these data to compute the rate of deposition or entrainment and the pressure gradient, del p/sub E/, due to drop interchange. del p/sub E/ is a significant fraction of the measured total shear del p.

  20. Cryogenic two-phase flow during chilldown: Flow transition and nucleate boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Jackson, Jelliffe Kevin

    The recent interest in space exploration has placed a renewed focus on rocket propulsion technology. Cryogenic propellants are the preferred fuel for rocket propulsion since they are more energetic and environmentally friendly compared with other storable fuels. Voracious evaporation occurs while transferring these fluids through a pipeline that is initially in thermal equilibrium with the environment. This phenomenon is referred to as line chilldown. Large temperature differences, rapid transients, pressure fluctuations and the transition from the film boiling to the nucleate boiling regime characterize the chilldown process. Although the existence of the chilldown phenomenon has been known for decades, the process is not well understood. Attempts have been made to model the chilldown process; however the results have been fair at best. A major shortcoming of these models is the use of correlations that were developed for steady, non-cryogenic flows. The development of reliable correlations for cryogenic chilldown has been hindered by the lack of experimental data. An experimental facility was constructed that allows the flow structure, the temperature history and the pressure history to be recorded during the line chilldown process. The temperature history is then utilized in conjunction with an inverse heat conduction procedure that was developed, which allows the unsteady heat transfer coefficient on the interior of the pipe wall to be extracted. This database is used to evaluate present predictive models and correlations for flow regime transition and nucleate boiling heat transfer. It is found that by calibrating the transition between the stratified-wavy and the intermittent/annular regimes of the Taitel and Dukler flow regime map, satisfactory predictions are obtained. It is also found that by utilizing a simple model that includes the effect of flow structure and incorporating the enhancement provided by the local heat flux, significant improvement in the

  1. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    SciTech Connect

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Bianchi, Marco; Zhou, Quanlin; Illangasekare, Tissa

    2014-12-31

    During CO2 injection and storage in deep reservoirs, the injected CO2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm

  2. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...

    2014-12-31

    During CO2 injection and storage in deep reservoirs, the injected CO2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role formore » the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and

  3. A two phase harmonic model for left ventricular function.

    PubMed

    Dubi, Shay; Dubi, Chen; Dubi, Yonatan

    2007-11-01

    A minimal model for mechanical motion of the left ventricle is proposed. The model assumes the left ventricle to be a harmonic oscillator with two distinct phases, simulating the systolic and diastolic phases, at which both the amplitude and the elastic constant of the oscillator are different. Taking into account the pressure within the left ventricle, the model shows qualitative agreement with functional parameters of the left ventricle. The model allows for a natural explanation of heart failure with preserved systolic left ventricular function, also termed diastolic heart failure. Specifically, the rise in left ventricular filling pressures following increased left-ventricular wall stiffness is attributed to a mechanism aimed at preserving heart rate and cardiac output.

  4. Two-phase analysis in consensus genetic mapping.

    PubMed

    Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A

    2012-05-01

    Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the

  5. Study of hydrodynamics and heat transfer in non-Newtonian liquid-gas two-phase flow in horizontal pipes

    SciTech Connect

    Deshpande, S.D.

    1985-01-01

    Non-Newtonian liquid-gas stratified flow data in 0.026- and 0.052-m-diameter pipes were obtained. Interfacial level gradients between the two phases were observed. The Heywood-Charles model is found to be valid for pseudoplastic liquid-gas uniform stratified flow. Two-phase drag reduction in non-Newtonian systems was not achieved as the transition to semi-slug flow occurred before the model criteria were reached. Interfacial liquid and gas shear stresses were compared. A new parameter ..sigma../sup 2/ is introduced which is a numerical indication of the interfacial level gradient. Two-phase drag reduction was experimentally observed in polymer solution-air plug-slug flow in 0.026- and 0.052-m-diameter pipes. The Hubbard-Dukler pressure drop model was extended to non-Newtonian systems. Reasonable agreement between the experiment and the model predictions is obtained. However, more work needs to be done in order to better understand the two-phase drag reduction phenomena. Liquid holdup correlations were developed for both Newtonian and non-Newtonian systems which successfully correlate the holdup over a wide range of parameters. The Petukhov correlation is found to be better than the Dittus-Boelter correlation in predicting the single-phase water heat-transfer coefficients.

  6. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations

    NASA Astrophysics Data System (ADS)

    Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S.

    2001-10-01

    Of the two-phase mixture models used to study deflagration-to-detonation transition in granular explosives, the Baer-Nunziato model is the most highly developed. It allows for unequal phase velocities and phase pressures, and includes source terms for drag and compaction that strive to erase velocity and pressure disequilibria. Since typical time scales associated with the equilibrating processes are small, source terms are stiff. This stiffness motivates the present work where we derive two reduced models in sequence, one with a single velocity and the other with both a single velocity and a single pressure. These reductions constitute outer solutions in the sense of matched asymptotic expansions, with the corresponding inner layers being just the partly dispersed shocks of the full model. The reduced models are hyperbolic and are mechanically as well as thermodynamically consistent with the parent model. However, they cannot be expressed in conservation form and hence require a regularization in order to fully specify the jump conditions across shock waves. Analysis of the inner layers of the full model provides one such regularization [Kapila et al., Phys. Fluids 9, 3885 (1997)], although other choices are also possible. Dissipation associated with degrees of freedom that have been eliminated is restricted to the thin layers and is accounted for by the jump conditions.

  7. The numerical solution of the transient two-phase flow in rigid pipelines

    NASA Astrophysics Data System (ADS)

    Hadj-Taieb, Ezzeddine; Lili, Taieb

    1999-03-01

    Consideration is given in this paper to the numerical solution of the transient two-phase flow in rigid pipelines. The governing equations for such flows are two coupled, non-linear, hyperbolic, partial differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered as two principle dependent variables. The fluid is a homogeneous gas-liquid mixture for which the density is defined by an expression averaging the two-component densities where a polytropic process of the gaseous phase is admitted. Instead of the void fraction, which varies with the pressure, the gas-fluid mass ratio (or the quality) is assumed to be constant, and is used in the mathematical formulation. The problem has been solved by the method of non-linear characteristics and the finite difference conservative scheme. To verify their validity, the computed results of the two numerical techniques are compared for different values of the quality, in the case where the liquid compressibility and the pipe wall elasticity are neglected. Copyright

  8. The influence of interfacial properties on two-phase liquid flow of organic contaminants in groundwater

    SciTech Connect

    Hayes, K.F.; Demond, A.H.

    1991-08-01

    An improved understanding of the factors influencing the movement of a separate organic liquid phase in groundwater aquifers is important to the US Department of Energy's efforts to alleviate groundwater contamination by many common solvents. The overall objective of this project is to investigate how changes in interfacial chemical properties affect two-phase flow relationships. Specifically, the objective is to develop a quantitative theory that will enable the prediction of changes in the capillary pressure-saturation relationship, a fundamental constitutive relationship in multiphase flow modeling, from changes in interfacial properties through a knowledge of their effect on wettability. The work over the past eight months of the project summarized here shows the interrelationship between the surface chemical properties of sorption, electrophoretic mobility, contact angle, surface tension and capillary pressure, and how the effects on capillary pressure might be predicted on the basis of surface tension and contact angle. The model system we have been examining consists of o-xylene, water, silica sand, and cetyltrimethylammonium bromide (CTAB), in which all three interfacial tensions of the system change.

  9. Two-Phase Void Drift Phenomena in a 2 x 3 Rod Bundle: Flow Redistribution Data and Their Analysis

    SciTech Connect

    Sadatomi, Michio; Kawahara, Akimaro; Kuno, Tsukasa; Kano, Keiko

    2005-10-15

    To improve a void drift model used in a subchannel analysis, new experimental data are obtained for air-water two-phase flows in a vertical 2 x 3 rod channel consisting of six subchannels simulating a square array boiling water reactor fuel rod bundle. The data include the axial redistributions of flow rates of both phases and void fraction in the respective subchannels. By fitting the above data with the Lahey and Moody void settling model, we have determined a void diffusion coefficient in their model. It is found that the void diffusion coefficient for slug, churn, and annular flows could be well correlated in terms of a turbulent Peclet number developed in our previous study. Furthermore, a subchannel analysis code based on a two-fluid model proposed in our previous study is examined against the present data. In the code, the void settling model is incorporated with usual conservation equations of mass and momentum. From the examination, it is found that the subchannel analysis code can predict well the data on subchannel flow and void fraction for the 2 x 3 rod channel if appropriate correlations are adopted to evaluate wall and interfacial friction forces needed in the two-fluid model.

  10. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....

  11. 48 CFR 570.105-2 - Two-phase design-build selection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build..., you must use the two-phase design-build selection procedures in section 303M of the Federal Property... use of the two-phase selection procedures. (v) The capability of the agency to manage the...

  12. 48 CFR 570.305 - Two-phase design-build selection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... for Leasehold Interests in Real Property 570.305 Two-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if you use the two-phase...

  13. Enhanced simulation software for rocket turbopump, turbulent, annular liquid seals

    NASA Technical Reports Server (NTRS)

    Padavala, Satya; Palazzolo, Alan

    1994-01-01

    One of the main objectives of this work is to develop a new dynamic analysis for liquid annular seals with arbitrary profile and to analyze a general distorted interstage seal of the space shuttle main engine high pressure oxygen turbopump (SSME-ATD-HPOTP). The dynamic analysis developed is based on a method originally proposed by Nelson and Nguyen. A simpler scheme based on cubic splines is found to be computationally more efficient and has better convergence properties at higher eccentricities. The first order solution of the original analysis is modified by including a more exact solution that takes into account the variation of perturbed variables along the circumference. A new set of equations for dynamic analysis are derived based on this more general model. A unified solution procedure that is valid for both Moody's and Hirs' friction models is presented. Dynamic analysis is developed for three different models: constant properties, variable properties, and thermal effects with variable properties. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. An example case of an elliptical seal with varying degrees of axial curvature is analyzed in detail. A case study based on predicted clearances of an interstage seal of the SSME-ATD-HPOTP is presented. Dynamic coefficients based on external specified load are introduced to analyze seals that support a preload. The other objective of this work is to study the effect of large rotor displacements of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting transient motion. One task is to identify the magnitude of motion of the rotor about the centered position and establish limits of effectiveness of using current linear models. This task is accomplished by solving the bulk flow model seal governing equations directly for transient seal forces for any given type of motion, including motion with large eccentricities. Based on the above study, an equivalence is

  14. Two-phase flow instability and dryout in parallel channels in natural circulation

    SciTech Connect

    Duffey, R.B.; Rohatgi, U.S.; Hughes, E.D.

    1993-06-01

    The unique feature of parallel channel flows is that the pressure drop or driving head for the flow is maintained constant across any given channel by the flow in all the others, or by having a large downcomer or bypass in a natural circulation loop. This boundary condition is common in all heat exchangers, reactor cores and boilers, it is well known that the two-phase flow in parallel channels can exhibit both so-called static and dynamic instability. This leads to the question of the separability of the flow and pressure drop boundary conditions in the study of stability and dryout. For the areas of practical interest, the flow can be considered as incompressible. The dynamic instability is characterized by density (kinematic) or continuity waves, and the static instability by inertial (pressure drop) or manometric escalations. The static has been considered to be the zero-frequency or lowest mode of the dynamic case. We briefly review the status of the existing literature on both parallel channel static and dynamic instability, and the latest developments in theory and experiment. The difference between the two derivations lies in the retention of the time-dependent terms in the conservation equations. The effects and impact of design options are also discussed. Since dryout in parallel systems follows instability, it has been traditional to determine the dryout power for a parallel channel by testing a single channel with a given (inlet) flow boundary condition without particular regard for the pressure drop. Thus all modern dryout correlations are based on constant or fixed flow tests, a so-called hard inlet, and subchannel and multiple bundle effects are corrected for separately. We review the thinking that lead to this approach, and suggest that for all multiple channel and natural circulation systems close attention should be paid to the actual (untested) pressure drop conditions. A conceptual formulation is suggested as a basis for discussion.

  15. Annular-slot arrays as far-infrared bandpass filters.

    PubMed

    Krug, P A; Dawes, D H; McPhedran, R C; Wright, W; Macfarlane, J C; Whitbourn, L B

    1989-09-01

    Arrays of both annular and square annular slots in a conducting sheet on a dielectric substrate have been fabricated photolithographically. The structures are shown to behave as bandpass filters in the far infrared, with a resonant wavelength slightly larger than the average circumference or perimeter of the slot. The measured far-infrared transmittance of the annular array is approximately 76% of that predicted by theory, while its resonant frequency agrees with theory to within 5%.

  16. Capillary Two-Phase Thermal Devices for Space Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    This is the presentation file for an invited seminar for Department of Mechanical and Aerospace Engineering at the Case Western Reserve University. The seminar is scheduled for April 1, 2016.Description: This presentation will discuss operating principles and performance characteristics of heat pipes (HPs) and loop heat pipes (LHPs) and their application for spacecraft thermal control. Topics include: 1) HP operating principles; 2) HP performance characteristics; 3) LHP pressure profiles; 4) LHP operating temperature; 5) LHP operating temperature control; and 6) Examples of using HPs and LHPs on NASA flight projects.

  17. Enhanced two phase flow in heat transfer systems

    DOEpatents

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  18. Gravitational Collapse and Shocks in Two-Phase Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Grinfield, Michael; Grinfeld, Pavel

    The phenomenon of gravitational collapse (GC) is well-known in theoretical astro- and planetary physics. It occurs when the incompressibility of substances is unable to withstand the pressure due to gravitational forces in celestial bodies of sufficiently large mass. The GC never occurs in incompressible models - homogeneous or layered. This situation changes dramatically when different incompressible layers appear to be different phases of the same chemical substance and the mass exchange between the phases can occur due to phase transformation. The possibility of destabilization in such system becomes realistic, as it was first discovered in the Ramsey static analysis. We will present our generalization of the Ramsey's results using dynamic approach.

  19. 75 FR 23582 - Annular Casing Pressure Management for Offshore Wells

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... serious harm to human life and the environment. The final rule will establish criteria for monitoring and... represents an ongoing safety hazard and can cause serious or immediate harm or damage to human life,...

  20. On the possibility to develop an advanced non-equilibrium model of depressurisation in two-phase fluids

    NASA Astrophysics Data System (ADS)

    Duc, Linh Do; Horák, Vladimír; Kulish, Vladimir; Lukáč, Tomáš

    2017-01-01

    Carbon dioxide is widely used as the power gas in the gas guns community due to its ease of handling, storability at room temperature, and high vapor pressure depending only upon temperature, but not a tank size, as long as some liquid carbon dioxide remains in the tank. This high vapor pressure can be used as the pressurant, making it what is referred to as a self-pressurising propellant. However, as a two-phase substance, carbon dioxide does have its drawbacks: (1) vaporization of liquefied CO2 inside a tank when shooting rapidly or a lot causes the tank to get cool, resulting in pressure fluctuations that makes the gun's performance and accuracy worse, (2) solid carbon dioxide that is also known as dry ice can appear on the output valve of the tank while shooting and it can cause damage or slow the gun's performance down, if it works its way into some control components, including the barrel of the gun. Hence, it is crucial to obtain a scientific understanding of carbon dioxide behavior and further the discharge characteristics of a wide range of pressure-tank configurations. For the purpose of satisfying this goal, a comprehensive discharge mathematical model for carbon dioxide tank dynamics is required. In this paper, the possibility to develop an advanced non-equilibrium model of depressurization in two-phase fluids is discussed.