Science.gov

Sample records for pressure bar tests

  1. On split Hopkinson pressure bar testing of rubbers

    NASA Astrophysics Data System (ADS)

    Harrigan, John

    2011-06-01

    Split Hopkinson pressure bar (SHPB) studies of rubber materials are difficult due to their ability to undergo large deformations at low levels of stress. Analytical, numerical and experimental investigations are reported. The tests were performed using polymer bars. A key stage in this is the experimental determination of the propagation coefficient. An analytical investigation of the experimental arrangements used to ascertain the propagation coefficient is reported. A finite element (FE) simulation of longitudinal stress waves in solid, circular, polymer bars is presented also. The viscoelastic material definition employed in the FE simulations is obtained by curve fitting Prony series expansions to the experimentally derived elastic modulus. In order to assess the accuracy of the experimental arrangement, an FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyper-elastic materials with specified properties. Finally, experimental data for rubber materials at strain rates of the order of 1000 s-1 are presented.

  2. Special Workshop: Kolsky/Split Hopkinson Pressure Bar Testing of Ceramics

    DTIC Science & Technology

    2006-09-01

    Exposition on Advanced Ceramics and Composites, Cocoa Beach, FL, on 27 January 2005. This special report is a collection of the pertinent information from...SHPB Ceramic Testing of Armor Ceramics, Cocoa Beach, FL, January 27, 2005 11 Special Workshop – Kolsky/Split Hopkinson Pressure Bar Testing of...Hopkinson Pressure Bar Testing of Ceramics held 27 January 2005 at the Holiday Inn, Cocoa Beach, FL, in conjunction with the American Ceramic

  3. A Miniaturized Split Hopkinson Pressure Bar for Very High Strain Rate Testing

    DTIC Science & Technology

    2004-03-01

    AFRL-MN-EG-TR-2005-7014 A Miniaturized Split Hopkinson Pressure Bar for Very High Strain Rate Testing Clive R. Siviour Physics and Chemistry of...Very High Strain Rate Testing 5. FUNDING NUMBERS PE: 61102F 6. AUTHOR(S) Clive R. Siviour, Jennifer L. Jordan PR: 2302...Measurements of material properties at very high rates of strain give an important insight into the structure of these materials, as well as

  4. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Luo, S. N.

    2008-12-01

    We propose and validate an indirect tensile testing method to measure the dynamic tensile strength of rocks and other brittle solids: semicircular bend (SCB) testing with a modified split Hopkinson pressure bar (SHPB) system. A strain gauge is mounted near the failure spot on the specimen to determine the rupture time. The momentum trap technique is utilized to ensure single pulse loading for postmortem examination. Tests without and with pulse shaping are conducted on rock specimens. The evolution of tensile stress at the failure spot is determined via dynamic and quasistatic finite element analyses with the dynamic loads measured from SHPB as inputs. Given properly shaped incident pulse, far-field dynamic force balance is achieved and the peak of the loading matches in time with the rupture onset of the specimen. In addition, the dynamic tensile stress history at the failure spot obtained from the full dynamic finite element analysis agrees with the quasistatic analysis. The opposite occurs for the test without pulse shaping. These results demonstrate that when the far-field dynamic force balance is satisfied, the inertial effects associated with stress wave loading are minimized and thus one can apply the simple quasistatic analysis to obtain the tensile strength in the SCB-SHPB testing. This method provides a useful and cost effective way to measure indirectly the dynamic tensile strength of rocks and other brittle materials.

  5. High Strain Rate Response Testing with the Split Hopkinson Pressure Bar Technique

    NASA Astrophysics Data System (ADS)

    Zwiessler, R.; Kenkmann, T.; Poelchau, M. H.; Nau, S.; Hess, S.

    2016-08-01

    We present a newly developed split Hopkinson pressure bar which is used to quantify the rate dependent uniaxial stress-strain response of rocks in the high strain rate regime as well as results of our first study on a sandstone and Carrara marble.

  6. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    NASA Astrophysics Data System (ADS)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  7. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  8. Geomechanics of penetration :laboratory analog experiments using a modified split hopkinson pressure bar/impact testing procedure.

    SciTech Connect

    Holcomb, David Joseph; Gettemy, Glen L.; Bronowski, David R.

    2005-11-01

    This research continues previous efforts to re-focus the question of penetrability away from the behavior of the penetrator itself and toward understanding the dynamic, possibly strain-rate dependent, behavior of the affected materials. A modified split Hopkinson pressure bar technique is prototyped to determine the value of reproducing the stress states, and mechanical responses, of geomaterials observed in actual penetrator tests within a laboratory setting. Conceptually, this technique simulates the passage of the penetrator surface past any fixed point in the penetrator trajectory by allowing for a controlled stress-time function to be transmitted into a sample, thereby mimicking the 1D radial projection inherent to analyses of the cavity expansion problem. Test results from a suite of weak (unconfined compressive strength, or UCS, of 22 MPa) concrete samples, with incident strain rates of 100-250 s{sup -1}, show that the complex mechanical response includes both plastic and anelastic wave propagation, and is critically dependent on incident particle velocity and saturation state. For instance, examination of the transmitted stress-time data, and post-test volumetric measurements of pulverized material, provide independent estimates of the plasticized zone length (1-2 cm) formed for incident particle velocity of {approx}16.7 m/s. The results also shed light on the elastic or energy propagation property changes that occur in the concrete. For example, the pre- and post-test zero-stress elastic wave propagation velocities show that the Young's modulus drops from {approx}19 GPa to <8 GPa for material within the first centimeter from the plastic transition front, while the Young's modulus of the dynamically confined, axially-stressed (in 6-18 MPa range) plasticized material drops to 0.5-0.6 GPa. The data also suggest that the critical particle velocity for formation of a plastic zone in the weak concrete is 13-15 m/s, with increased saturation tending to increase

  9. Blast Quantification Using Hopkinson Pressure Bars.

    PubMed

    Clarke, Samuel D; Fay, Stephen D; Rigby, Samuel E; Tyas, Andrew; Warren, James A; Reay, Jonathan J; Fuller, Benjamin J; Gant, Matthew T A; Elgy, Ian D

    2016-07-05

    Near-field blast load measurement presents an issue to many sensor types as they must endure very aggressive environments and be able to measure pressures up to many hundreds of megapascals. In this respect the simplicity of the Hopkinson pressure bar has a major advantage in that while the measurement end of the Hopkinson bar can endure and be exposed to harsh conditions, the strain gauge mounted to the bar can be affixed some distance away. This allows protective housings to be utilized which protect the strain gauge but do not interfere with the measurement acquisition. The use of an array of pressure bars allows the pressure-time histories at discrete known points to be measured. This article also describes the interpolation routine used to derive pressure-time histories at un-instrumented locations on the plane of interest. Currently the technique has been used to measure loading from high explosives in free air and buried shallowly in various soils.

  10. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    In this paper, a computational model that describes pressure control phase of a typical MHTB experiment will be presented. The fidelity of the model will be assessed by comparing the models predictions with MHTB experimental data. In this paper CFD results for MHTB spray bar cooling case with 50 tank fill ratio will be presented and analyzed. Effect of accommodation coefficient for calculating droplet-ullage mass transfer will be evaluated.

  11. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  12. Numerical Simulations of the Kolsky Compression Bar Test

    SciTech Connect

    Corona, Edmundo

    2015-10-01

    The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex- perimental apparatus used to obtain the stress-strain response of material specimens at strain rates in the order of 10 2 to 10 4 1/s. Its operation and associated data re- duction are based on principles of one-dimensional wave propagation in rods. Second order effects such as indentation of the bars by the specimen and wave dispersion in the bars, however, can significantly affect aspects of the measured material response. Finite element models of the experimental apparatus were used here to demonstrate these two effects. A procedure proposed by Safa and Gary (2010) to account for bar indentation was also evaluated and shown to improve the estimation of the strain in the bars significantly. The use of pulse shapers was also shown to alleviate the effects of wave dispersion. Combining the two can lead to more reliable results in Kolsky compression bar testing.

  13. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.

    PubMed

    Harrigan, John J; Ahonsi, Bright; Palamidi, Elisavet; Reid, Steve R

    2014-08-28

    Split Hopkinson pressure bar (SHPB) testing has traditionally been carried out using metal bars. For testing low stiffness materials such as rubbers or low strength materials such as low density cellular solids considered primarily herein, there are many advantages to replacing the metal bars with polymer bars. An investigation of a number of aspects associated with the accuracy of SHPB testing of these materials is reported. Test data are used to provide qualitative comparisons of accuracy using different bar materials and wave-separation techniques. Sample results from SHPB tests are provided for balsa, Rohacell foam and hydroxyl-terminated polybutadiene. The techniques used are verified by finite-element (FE) analysis. Experimentally, the material properties of the bars are determined from impact tests in the form of a complex elastic modulus without curve fitting to a rheological model. For the simulations, a rheological model is used to define the bar properties by curve fitting to the experimentally derived properties. Wave propagation in a polymer bar owing to axial impact of a steel bearing ball is simulated. The results indicate that the strain histories can be used to determine accurately the viscoelastic properties of polymer bars. An FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyperelastic materials.

  14. Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments

    NASA Astrophysics Data System (ADS)

    Lea, Lewis J.; Jardine, Andrew P.

    2015-09-01

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion and faster achievement of force equilibrium. Currently advantages are gained at a significant cost: the fact that input bar data is unavailable removes all information about the striker impacted specimen face, preventing the determination of force equilibrium, and requiring approximations to be made on the sample deformation history. Recently photon Doppler velocimetry methods have been developed, which can replace strain gauges on Hopkinson bars. In this paper we discuss an experimental method and complementary data analysis for using Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system, with the same level of convenience. We discuss extracting velocity and force measurements, and improving the accuracy and convenience of Doppler velocimetry on Hopkinson bars. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains.

  15. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  16. On backward dispersion correction of Hopkinson pressure bar signals

    PubMed Central

    Tyas, A.; Ozdemir, Z.

    2014-01-01

    Elastic theory shows that wide spectrum signals in the Hopkinson pressure bar suffer two forms of distortion as they propagate from the loaded bar face. These must be accounted for if accurate determination of the impact load is to be possible. The first form of distortion is the well-known phase velocity dispersion effect. The second form, which can be equally deleterious, is the prediction that at high frequencies, the stress and strain generated in the bar varies with radial position on the cross section, even for a uniformly applied loading. We consider the consequences of these effects on our ability to conduct accurate backward dispersion correction of bar signals, that is, to derive the impact face load from the dispersed signal recorded at some other point on the bar. We conclude that there is an upper limit on the frequency for which the distortion effects can be accurately compensated, and that this can significantly affect the accuracy of experimental results. We propose a combination of experimental studies and detailed numerical modelling of the impact event and wave propagation along the bar to gain better understanding of the frequency content of the impact event, and help assess the accuracy of experimental predictions of impact face load. PMID:25071236

  17. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of the Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.

  18. Numerical simulations of wave propagation in long bars with application to Kolsky bar testing

    SciTech Connect

    Corona, Edmundo

    2014-11-01

    Material testing using the Kolsky bar, or split Hopkinson bar, technique has proven instrumental to conduct measurements of material behavior at strain rates in the order of 103 s-1. Test design and data reduction, however, remain empirical endeavors based on the experimentalist's experience. Issues such as wave propagation across discontinuities, the effect of the deformation of the bar surfaces in contact with the specimen, the effect of geometric features in tensile specimens (dog-bone shape), wave dispersion in the bars and other particulars are generally treated using simplified models. The work presented here was conducted in Q3 and Q4 of FY14. The objective was to demonstrate the feasibility of numerical simulations of Kolsky bar tests, which was done successfully.

  19. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars

    SciTech Connect

    Lea, Lewis J. Jardine, Andrew P.

    2016-02-15

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials.

  20. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1982-03-15

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.

  1. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1984-03-13

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out is disclosed. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine. 3 figs.

  2. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, James B.

    1984-01-01

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out. Two gage balls (10, 12) are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit (14) and a rigid member (16, 18, 20, 22, 24). One gage ball (10) is secured by a magnetic socket knuckle assembly (34) which fixes its center with respect to the machine being tested. The other gage ball (12) is secured by another magnetic socket knuckle assembly (38) which is engaged or held by the machine in such manner that the center of that ball (12) is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball (10). As the moving ball (12) executes its trajectory, changes in the radial distance between the centers of the two balls (10, 12) caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly (50, 52, 54, 56, 58, 60) actuated by the parallel reed flexure unit (14). Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball (10) locations, thereby determining the accuracy of the machine.

  3. Blood Pressure Test

    MedlinePlus

    ... a minute to complete a single blood pressure measurement. After the procedure The nurse or technician taking ... online record. You can learn your blood pressure measurement as soon as your test is over. A ...

  4. Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2005-01-01

    To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  5. ECN Pressure Test

    SciTech Connect

    Dixon, K.; /Fermilab

    1991-07-18

    This note describes: the rationale for the test pressure of the inner ECN cryostat vessel, the equipment to be used in this test, the test procedure, the status of the vessel prior to the test, the actual test results, and a schematic diagram of the testing set up and the pressure testing permit. The test, performed in the evening of July 17, 1991, was a major success. Based on a neglible pressure drop indicated on the pressure gages (1/4 psi), the vessel appeared to be structurally sound throughout the duration of the test (approx. 1.5 hrs.). No pressure increases were observed on the indicators looking at the beam tube bellows volumes. There was no indication of bubbles form the soap test on the welds and most of the fittings that were checked. There were some slight deviations in the actual procedure used. The UO filter was removed after the vessel had bled down to about 18 psig in order to speed up that aspect of the test. The rationale was that the higher velocity gas had already passed through at the higher pressures and there was no visible traces of the black uo particles. The rate of 4 psi/10 minutes seemed incredibly slow and often that time was reduced to just over half that rate. The testing personnel was allowed to stay in the pit throughout the duration of the test; this was a slight relaxation of the rules.

  6. High Velocity Tensile Test for Thin Plate Specimen with One Bar Method

    NASA Astrophysics Data System (ADS)

    Itabashi, Masaaki

    In order to design thin-walled impact-resistant structure, for example, an automotive body, dynamic behavior of thin plate is essential. So far, except for laminated composite materials, high velocity tensile test of thin plate specimen did not attract impact researchers' and engineers' attention very much. In this paper, the previous thin plate specimen assembly for the one bar method was improved. The one bar method has been utilized for cylindrical specimens of various solid materials and is known as an effective high velocity tensile testing technique. Unfortunately, the previous assembly introduced a tremendous initial peak on stress-strain curves, even for aluminum alloys. With a new specimen assembly, stress-strain curves for IF (Interstitial-atom Free) steel and 7075-T6 aluminum alloy obtained by the one bar method were almost equivalent to those obtained by the tensile version of the split Hopkinson pressure bar method.

  7. Fatigue testing of reinforced-concrete steel bars

    NASA Astrophysics Data System (ADS)

    Maropoulos, S.; Fasnakis, D.; Voulgaraki, Ch; Papanikolaou, S.; Maropoulos, A.; Antonatos, A.

    2016-11-01

    A number of low-cycle fatigue tests were conducted on reinforced-concrete steel bars of various diameters to study their behaviour under axial loading according to EN 10080 and EN 1421-3. Scanning electron microscopy was used to study the specimen fracture surfaces. The problems faced during testing are presented and a specimen preparation method is described that will aid researchers on fatigue testing to obtain accurate test results and save on material and time.

  8. Influence of pressures up to 50bar on two-stage anaerobic digestion.

    PubMed

    Merkle, Wolfgang; Baer, Katharina; Lindner, Jonas; Zielonka, Simon; Ortloff, Felix; Graf, Frank; Kolb, Thomas; Jungbluth, Thomas; Lemmer, Andreas

    2017-05-01

    The concept of pressurized two-stage anaerobic digestion integrates biogas production, purification and pressure boosting within one process. The produced methane-rich biogas can be fed into gas grids with considerably less purification effort. To investigate biogas production under high pressures up to 50bar, a lab scale two-stage anaerobic digestion system was constructed including one continuously operated pressurized methane reactor. This investigation examined the effects of different operating pressures in methane reactor (10, 25, 50bar) on biogas quantity and quality, pH value and process stability. By increasing operating pressures in methane reactor, the pH value decreased from 6.65 at 10bar to 6.55 at 50bar. Simultaneously, methane content increased from 79.08% at 10bar to 90.45% at 50bar. The results show that methane reactors can be operated up to 50bar pressure continuously representing a viable alternative to commonly used gas upgrading methods because of reduced purification effort.

  9. Design of a split Hopkinson pressure bar with partial lateral confinement

    NASA Astrophysics Data System (ADS)

    Barr, Andrew D.; Clarke, Sam D.; Rigby, Sam E.; Tyas, Andrew; Warren, James A.

    2016-12-01

    This paper presents the design of a modified split Hopkinson pressure bar (SHPB) where partial lateral confinement of the specimen is provided by the inertia of a fluid annulus contained in a long steel reservoir. In contrast to unconfined testing, or a constant cell pressure applied before axial loading, lateral restraint is permitted to develop throughout the axial loading: this enables the high-strain-rate shear behaviour of soils to be characterised under conditions which are more representative of buried explosive events. A pressure transducer located in the wall of the reservoir allows lateral stresses to be quantified, and a dispersion-correction technique is used to provide accurate measurements of axial stress and strain. Preliminary numerical modelling is utilised to inform the experimental design, and the capability of the apparatus is demonstrated with specimen results for a dry quartz sand.

  10. Testing of a Spray-Bar Thermodynamic Vent System in Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2006-04-01

    To support development of a microgravity pressure control capability for liquid oxygen (LO2), Thermodynamic Vent System (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as an LO2 simulant. The spray-bar TVS hardware used was originally designed by The Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray-bar mixer/heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.8-kPa band for fill levels of approximately 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated satisfactorily with GHe in the ullage. However, the total cycle duration increase ranged from 14% to 28% compared to similar tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  11. 8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING MACHINE USED BY VON SCHON IN EXPERIMENTS ON METHODS OF MIXING CONCRETE AND ON CONCRETE AGGREGATES WHICH USED LOCAL MATERIALS. (4) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  12. High pressure sample cell for total internal reflection fluorescence spectroscopy at pressures up to 2500 bar

    NASA Astrophysics Data System (ADS)

    Koo, Juny; Czeslik, Claus

    2012-08-01

    Total internal reflection fluorescence (TIRF) spectroscopy is a surface sensitive technique that is widely used to characterize the structure and dynamics of molecules at planar liquid-solid interfaces. In particular, biomolecular systems, such as protein adsorbates and lipid membranes can easily be studied by TIRF spectroscopy. Applying pressure to molecular systems offers access to all kinds of volume changes occurring during assembly of molecules, phase transitions, and chemical reactions. So far, most of these volume changes have been characterized in bulk solution, only. Here, we describe the design and performance of a high pressure sample cell that allows for TIRF spectroscopy under high pressures up to 2500 bar (2.5 × 108 Pa), in order to expand the understanding of volume effects from the bulk phase to liquid-solid interfaces. The new sample cell is based on a cylindrical body made of Nimonic 90 alloy and incorporates a pressure transmitting sample cuvette. This cuvette is composed of a fused silica prism and a flexible rubber gasket. It contains the sample solution and ensures a complete separation of the sample from the liquid pressure medium. The sample solution is in contact with the inner wall of the prism forming the interface under study, where fluorescent molecules are immobilized. In this way, the new high pressure TIRF sample cell is very useful for studying any biomolecular layer that can be deposited at a planar water-silica interface. As examples, high pressure TIRF data of adsorbed lysozyme and two phospholipid membranes are presented.

  13. Raising the Bar: Increased Hydraulic Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis

    SciTech Connect

    Straub, AP; Yip, NY; Elimelech, M

    2014-01-01

    Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation at this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.

  14. Dynamic response of brittle materials from penetration and split Hopkinson pressure bar experiments

    NASA Astrophysics Data System (ADS)

    Frew, Danny Joe

    This research began with a study on the penetration of limestone targets with ogive-nose rod projectiles. Three sets of experiments were conducted with geometrically similar, steel rod projectiles that had length-to-diameter ratios of 10 and 7.1, 12.7, and 25.4-mm-diameters. Results from these penetration experiments and previously developed penetration models suggested that the limestone target exhibited strain-rate sensitivity. In order to investigate this hypothesis, an experimental/analytical program to study the dynamic material response of limestone was begun. As a first step, it was decided to focus on the dynamic material responses of brittle materials, such as limestone, under a state of one-dimensional stress. A split Hopkinson pressure bar (SHPB) facility was built at the Geotechnical and Structures Laboratory, U.S. Army Waterways Experiment Station. Early in the experimental program it became clear that new modifications had to be made to the traditional SHPB apparatus and experimental techniques. In addition, it was decided to model the responses of the SHPB apparatus and the sample under test in order to guide the experimental designs and minimize the experimental trials. The conventional split Hopkinson pressure bar apparatus was modified by shaping the incident pulse such that the samples are in dynamic stress equilibrium and have nearly constant strain rate over most of the test duration. A thin disk of annealed or hard C11000 copper is placed on the impact surface of the incident bar in order to shape the incident pulse. After impact by the striker bar, the copper disk deforms plastically and spreads the pulse in the incident bar. An analytical model and data show that a wide variety of incident strain pulses can be produced by varying the geometry of the copper disks and the length and striking velocity of the striker bar. The pulse shaping model predictions are in good agreement with measurements. Analytic models predict that a ramp stress pulse

  15. High-pressure ignition plasma torch for aerospace testing facilities

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Kulikov, Yu M.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Son, E. E.

    2016-11-01

    The present paper discusses the issues of implementation of high-pressure ignition plasma torch in terms of discharge phenomena in compressed gases, dense nitrogen plasma properties and stable arcing power requirements. Contact ignition has been tested in a pressure range p = 1-25 bar and has proved to be a reliable solution for pilot arc burning.

  16. Pressure locking test results

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1996-12-01

    The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; the authors will publish the results of their thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  17. Properties of Compacted Backfill Split Hopkinson Pressure Bar

    DTIC Science & Technology

    1985-12-01

    4 3. SOIL SPECIMEN PREPARATION AND EXPERIMENTAL APPARATUS ....................................................... 19 4. DATA...soil, and how the I specimens were prepared . The data reduction procedure have been addressed in chapter 4. Chapter 5 presents the experimental results...rolling it down a ramp. Their results showed that the response of the clay was influenced • by the preconsolidation pressure at which it was prepared

  18. Gap Formations Along Specimen-Bar Interfaces in Numerical Simulations of SHPB Tests on Elastic Materials Soft in Shear

    NASA Astrophysics Data System (ADS)

    Raftenberg, Martin N.; Scheidler, Mike

    2009-06-01

    Simulations of split Hopkinson pressure bar (SHPB) tests on elastic materials were performed using LS-DYNA. The specimens were much stiffer in dilatation than in shear. A compressible form of Mooney-Rivlin elasticity was applied with parameters evaluated from ballistic gelatin data. The bars were aluminum. The velocity prescribed on the incident bar increased over a rise time until attaining a steady-state value corresponding to a nominal strain rate of 2500/s. The rise time was varied to observe effects of pulse shaping. All calculations were 2D axisymmetric. A penalty-based contact algorithm was applied at the specimen-bar interfaces. This algorithm introduced a stiffness and a viscosity parameter. In sensitivity studies we varied the radius of the bars, the specimen's mesh, and the two contact parameters. In all calculations with the Mooney-Rivlin model, gaps formed at both specimen-bar interfaces over a wide range of strains. This gap phenomenon appears not to have been previously reported in the SHPB literature. We replaced the Mooney-Rivlin model with linear elasticity in order to explore whether the gaps were associated with material nonlinearity. We fixed Young's modulus at a value much smaller than that of aluminum. For sufficiently large Poisson ratios, we again observed gap formations at both specimen-bar interfaces.

  19. IMPROVED BAR IMPACT TESTS USING A PHOTONIC DOPPLER VELOCIMETER

    SciTech Connect

    Bless, S. J.; Tolman, J.; Levinson, S.; Nguyen, J.

    2009-12-28

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and a glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression, and the 'steady state' strength. For borosilicate glass and soda lime glass, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic (25% spinel) was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic, as opposed to intrinsic property.

  20. IMPROVED BAR IMPACT TESTS USING A PHOTONIC DOPPLER VELOCIMETER

    SciTech Connect

    Bless, S J; Tolman, J; Levinson, S; Nguyen, J

    2009-08-24

    Bar impact tests, using the techniques described elsewhere in this symposium, were used to measure compressive and tensile strengths of borosilicate glass, soda lime glass, and a glass ceramic. The glass ceramic was 25% crystalline spinel, furnished by Corning Inc. There are two measures of compressive strength: the peak stress that can be transmitted in unconfined compression, and the 'steady state' strength. For borosilicate glass and soda lime glass, these values were similar, being about 1.8 and 1.5 GPa, respectively. The glass ceramic (25% spinel) was almost 50% stronger. Tensile failure in the glass and glass ceramic takes places via surface flaws, and thus tensile strength is an extrinsic, as opposed to intrinsic property.

  1. Transient Pressure Test Article (TPTA) Test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at the Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.

  2. Transient Pressure Test Article (TPTA) Test Stand

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at thw Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.

  3. Submarine rescue decompression procedure from hyperbaric exposures up to 6 bar of absolute pressure in man: effects on bubble formation and pulmonary function.

    PubMed

    Blatteau, Jean-Eric; Hugon, Julien; Castagna, Olivier; Meckler, Cédric; Vallée, Nicolas; Jammes, Yves; Hugon, Michel; Risberg, Jan; Pény, Christophe

    2013-01-01

    Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or

  4. A modified Hopkinson pressure bar experiment to evaluate a damped piezoresistive MEMS accelerometer.

    SciTech Connect

    Frew, Danny Joe; Duong, Henry

    2009-03-01

    We conducted a series of modified Hopkinson pressure bar (HPB) experiments to evaluate a new, damped, high-shock accelerometer that has recently been developed by PCB Piezotronics Inc. Pulse shapers were used to create a long duration, non-dispersive stress pulse in an aluminum bar that interacted with a tungsten disk at the end of the incident bar. We measured stress at the aluminum bar-disk interface with a quartz gage and measured acceleration at the free-end of the disk with an Endevco brand 7270A and the new PCB 3991 accelerometers. The rise-time of the incident stress pulse in the aluminum bar was long enough and the disk length short enough so that the response of the disk can be approximated closely as rigid-body motion; an experimentally verified analytical model has been shown previously to support this assumption. Since the cross-sectional area and mass of the disk were known, we calculated acceleration of the rigid-disk from the quartz-gage force measurement and Newton's Second Law of Motion. Comparisons of accelerations calculated from the quartz-gage data and measured acceleration data show excellent agreement for acceleration pulses with the PCB accelerometer for peak amplitudes between 4,000 and 40,000 Gs , rise times as short as 40 microsec, and pulse durations between 150 and 320 microsec.

  5. 49 CFR 195.304 - Test pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Test pressure. 195.304 Section 195.304... PIPELINE Pressure Testing § 195.304 Test pressure. The test pressure for each pressure test conducted under... continuous hours at a pressure equal to 125 percent, or more, of the maximum operating pressure and, in...

  6. 49 CFR 195.304 - Test pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Test pressure. 195.304 Section 195.304... PIPELINE Pressure Testing § 195.304 Test pressure. The test pressure for each pressure test conducted under... continuous hours at a pressure equal to 125 percent, or more, of the maximum operating pressure and, in...

  7. 49 CFR 195.304 - Test pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Test pressure. 195.304 Section 195.304... PIPELINE Pressure Testing § 195.304 Test pressure. The test pressure for each pressure test conducted under... continuous hours at a pressure equal to 125 percent, or more, of the maximum operating pressure and, in...

  8. 49 CFR 195.304 - Test pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Test pressure. 195.304 Section 195.304... PIPELINE Pressure Testing § 195.304 Test pressure. The test pressure for each pressure test conducted under... continuous hours at a pressure equal to 125 percent, or more, of the maximum operating pressure and, in...

  9. Hydrogen no-vent fill testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  10. Transient Pressure Test Article Test Program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1989-01-01

    The Transient Pressure Test Article (TPTA) test program is being conducted at a new test facility located in the East Test Area at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This facility, along with the special test equipment (STE) required for facility support, was constructed specifically to test and verify the sealing capability of the Redesigned Solid Rocket Motor (RSRM) field, igniter, and nozzle joints. The test article consists of full scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The TPTA is pressurized by igniting a propellant cartridge capable of inducing a pressure rise rate which stimulates the ignition transient that occurs during launch. Dynamic loads are applied during the pressure cycle to simulate external tank attach (ETA) strut loads present on the ETA ring. Sealing ability of the redesigned joints is evaluated under joint movement conditions produced by these combined loads since joint sealing ability depends on seal resilience velocity being greater than gap opening velocity. Also, maximum flight dynamic loads are applied to the test article which is either pressurized to 600 psia using gaseous nitrogen (GN2) or applied to the test article as the pressure decays inside the test article on the down cycle after the ignition transient cycle. This new test facility is examined with respect to its capabilities. In addition, both the topic of test effectiveness versus space vehicle flight performance and new aerospace test techniques, as well as a comparison between the old SRM design and the RSRM are presented.

  11. Impact strength of continuous-carbon-fiber-reinforced silicon nitride measured by using the split Hopkinson pressure bar

    SciTech Connect

    Ogawa, Kinya; Sugiyama, Fumiko; Pezzotti, G.; Nishida, Toshihiko

    1998-01-01

    Three-point impact bending tests, using the split Hopkinson pressure bar method, were performed to evaluate the fracture resistance of monolithic silicon nitride (SN) and carbon-fiber-reinforced silicon nitride (CFRSN) ceramics. By applying ramped incident-stress waves in the split Hopkinson pressure bar apparatus, relatively smooth stress-time curves could be recorded without using any artificial filtering process. The maximum load in the load-deflection curve of the CFRSN material increased, in comparison to its static value, when impact testing was applied. Such behavior was substantially different from that of the monolithic SN material, for which the maximum load values from impact and static testing were almost the same. The time dependence of strength in the CFRSN ceramic was then investigated by using relaxation tests, and the impact strength behavior could be explained by these results. Also, the shear strength was significantly dependent on the deformation rate, whereas the tensile strength was almost independent of it. The experimental results were compared with the numerical predictions of the stress distribution that were obtained by using finite-element analysis.

  12. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  13. Testing of an actively damped boring bar featuring structurally integrated PZT stack actuators

    SciTech Connect

    Redmond, J.; Barney, P.

    1998-06-01

    This paper summarizes the results of cutting tests performed using an actively damped boring bar to minimize chatter in metal cutting. A commercially available 2 inch diameter boring bar was modified to incorporate PZT stack actuators for controlling tool bending vibrations encountered during metal removal. The extensional motion of the actuators induce bending moments in the host structure through a two-point preloaded mounting scheme. Cutting tests performed at various speeds and depths of cuts on a hardened steel workpiece illustrate the bar`s effectiveness toward eliminating chatter vibrations and improving workpiece surface finish.

  14. Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens

    DTIC Science & Technology

    2015-02-01

    ARL-RP-0519 ● FEB 2015 US Army Research Laboratory Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens...originator. ARL-RP-0519 ● FEB 2015 US Army Research Laboratory Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens...

  15. Onsite testing of pressure sampling

    NASA Technical Reports Server (NTRS)

    Mallory, R.

    1980-01-01

    Portable test instrument containing controller, pressure port identification, 5-V power source for transducer excitation, and digital voltmeter to test pressure sampling valves completely, including leak and plug check before, during, or after installation in any location or environment. Controller comprises 117/24-Vac 100-watt transformer, bridge rectifier, capacitive-discharge stepper, and constant voltage source for homing sampling valve. It also includes 5-V regulated power supply and bipolar digital voltmeter having 10-uV resolution.

  16. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    SciTech Connect

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  17. Transient Pressure Test Article test program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1988-01-01

    The Transient Pressure Test Article test program being conducted at NASA-Marshall is described. The main goal of the TPTA test program is to provide data to verify the sealing capability of the redesigned SRM field joints, the nozzle-to-case joint, and the igniter joint. The TPTA test program can be used to demonstrate the assembly/disassembly and reusability of the redesigned joints along with the adequacy of assembly/disassembly tooling, procedures, and inspections.

  18. Transient Pressure Test Article (TPTA) Test Firing

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Marshall Space Flight Center (MSFC) successfully test fired the third in a series of Transient Pressure Test Articles (TPTA) in its east test area. The test article was a short-stack solid rocket motor 52-feet long and 12-feet in diameter. The TPTA tests were designed to evaluate the effects of temperature, pressure and external loads encountered by the SRM, primarily during ignition transients. Instrumentation on the motor recorded approximately 1,000 charnels of data to verify the structural performance, thermal response, sealing capability of the redesign field, and case-to-nozzle joints. The TPTA test stand, 14-feet wide by 26-feet long by 33-feet high, was built in 1987. The TPTA series was a joint effort among Morton Thiokol, Inc., United Space Boosters, Inc., Wyle Laboratories, and MSFC. Wyle Laboratories conducted the tests for the MSFC, which manages the redesigned SRM program for NASA.

  19. Pressure test in normal subjects.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Izukura, H

    1994-01-01

    The application of pressure to the middle ear changes the normal inner ear pressure in animal experiments. In this study we tested the effect of exposure to under- or overpressure on hearing in a total of 78 normal ears (40 subjects) in a soundproof pressure chamber. [After exposure to underpressure, a 10 dB or more gain in 3 ears and loss in 2 ears for at least one of the test frequencies was observed in 38 ears. After exposure to overpressure, a 10 dB or more gain in 5 ears and loss in 1 ear for at least one of the test frequencies was observed in 40 ears.] The characteristics of transferred inner ear pressure during a series of exposures to underpressure seemed to be similar to those during exposures to overpressure.

  20. 49 CFR 195.304 - Test pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Test pressure. 195.304 Section 195.304... PIPELINE Pressure Testing § 195.304 Test pressure. The test pressure for each pressure test conducted under... case of a pipeline that is not visually inspected for leakage during the test, for at least...

  1. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  2. High-pressure anaerobic digestion up to 100 bar: influence of initial pressure on production kinetics and specific methane yields.

    PubMed

    Merkle, Wolfgang; Baer, Katharina; Haag, Nicola Leonard; Zielonka, Simon; Ortloff, Felix; Graf, Frank; Lemmer, Andreas

    2017-02-01

    To ensure an efficient use of biogas produced by anaerobic digestion, in some cases it would be advisable to upgrade the biogenic gases and inject them into the transnational gas grids. To investigate biogas production under high-pressure conditions up to 100 bar, new pressure batch methane reactors were developed for preliminary lab-scale experiments with a mixture of grass and maize silage hydrolysate. During this investigation, the effects of different initial pressures (1, 50 and 100 bar) on pressure increase, gas production and the specific methane yield using nitrogen as inert gas were determined. Based on the experimental findings increasing initial pressures alter neither significantly, further pressure increases nor pressure increase rates. All supplied organic acids were degraded and no measurable inhibition of the microorganisms was observed. The results show that methane reactors can be operated at operating pressures up to 100 bar without any negative effects on methane production.

  3. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  4. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiji

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 °C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample.

  5. Relationship of Bar Examinations to Performance Tests of Lawyering Skills. Rand Paper Series.

    ERIC Educational Resources Information Center

    Klein, Stephen P.

    The relationship between scores on a typical bar exam and the ability to practice law was investigated with 485 applicants who took the bar exam and a 2-day performance test involving basic oral and written legal tasks. These tasks consisted of simulated cases; each participant functioned as the attorney for the plantiff in one case and as the…

  6. Thermodynamic and related properties of parahydrogen from the triple point to 300 K at pressures to 1000 bar

    NASA Technical Reports Server (NTRS)

    Weber, L. A.

    1975-01-01

    Compressibility measurements and thermodynamic properties data for parahydrogen were extended to higher temperatures and pressures. Results of an experimental program are presented in the form of new pressure, volume and temperature data in the temperature range 23 to 300 K at pressures up to 800 bar. Also given are tables of thermodynamic properties on isobars to 1000 bar including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and surface derivatives. The accuracy of the data is discussed and comparisons are made with previous data.

  7. High pressure cell for neutron reflectivity measurements up to 2500 bar

    NASA Astrophysics Data System (ADS)

    Jeworrek, Christoph; Steitz, Roland; Czeslik, Claus; Winter, Roland

    2011-02-01

    The design of a high pressure (HP) cell for neutron reflectivity experiments is described. The cell can be used to study solid-liquid interfaces under pressures up to 2500 bar (250 MPa). The sample interface is based on a thick silicon block with an area of about 14 cm2. This area is in contact with the sample solution which has a volume of only 6 cm3. The sample solution is separated from the pressure transmitting medium, water, by a thin flexible polymer membrane. In addition, the HP cell can be temperature-controlled by a water bath in the range 5-75°C. By using an aluminum alloy as window material, the assembled HP cell provides a neutron transmission as high as 41%. The maximum angle of incidence that can be used in reflectivity experiments is 7.5°. The large accessible pressure range and the low required volume of the sample solution make this HP cell highly suitable for studying pressure-induced structural changes of interfacial proteins, supported lipid membranes, and, in general, biomolecular systems that are available in small quantities, only. To illustrate the performance of the HP cell, we present neutron reflectivity data of a protein adsorbate under high pressure and a lipid film which undergoes several phase transitions upon pressurization.

  8. 14 CFR 23.843 - Pressurization tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurization tests. 23.843 Section 23.843... Pressurization § 23.843 Pressurization tests. (a) Strength test. The complete pressurized cabin, including doors... in § 23.365(d). (b) Functional tests. The following functional tests must be performed: (1) Tests...

  9. 14 CFR 23.843 - Pressurization tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurization tests. 23.843 Section 23.843... Pressurization § 23.843 Pressurization tests. (a) Strength test. The complete pressurized cabin, including doors... in § 23.365(d). (b) Functional tests. The following functional tests must be performed: (1) Tests...

  10. 14 CFR 23.843 - Pressurization tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurization tests. 23.843 Section 23.843... Pressurization § 23.843 Pressurization tests. (a) Strength test. The complete pressurized cabin, including doors... in § 23.365(d). (b) Functional tests. The following functional tests must be performed: (1) Tests...

  11. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  12. SOL Tests Create Unfair Pressure.

    ERIC Educational Resources Information Center

    Ernst, Katie

    2000-01-01

    A seventh-grader explains why the Virginia Standards of Learning tests unfairly pressure her and her teachers. She wants her free reading time restored and wishes politicians would worry more about students understanding--not just memorizing--facts. She praises teachers who go beyond the SOL. (MLH)

  13. Report on FY15 Two-Bar Thermal Ratcheting Test Results

    SciTech Connect

    Wang, Yanli; Jetter, Robert I; Baird, Seth T; Pu, Chao; Sham, Sam

    2015-06-22

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH* for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above . The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, , is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures. These newly proposed rules also address a long-term objective to provide an option for more simple, comprehensive and easily applied rules than the current so called simplified rules These two-bar tests discussed herein are part of an ongoing series of tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. The initial focus of the two-bar ratcheting test program, to verify the procedure for evaluation of strain limits for Alloy 617 at very high temperatures, has been expanded to respond to guidance from

  14. Explaining fish guidance characteristics of mesh and bar screens: The relative pressure signature hypothesis

    SciTech Connect

    Nestler, J.M.; Davidson, R.

    1995-12-31

    Hydropower dams on the Columbia River block migration of anadromous fishes. Extensive bypass facilities have been installed to guide migrating fishes around the dams. The first component of such systems encountered by out-migrating smolts is submerged bypass screens of one of two major design alternatives. Screens are constructed of either relatively fine woven mesh (traveling screens) or closely spaced bars (bar screens). Using underwater videoimaging, we quantified the relative fish impingement characteristics of each screen design at McNary Dam and The Dalles Dam. Each design was operated under a variety of deployment alternatives and turbine discharges. Video images of the screen surface were obtained from 5-6 cameras distributed on the screen centerline from the screen top (nearest the deck or intake) to the screen bottom. Over 4000 smolt-screen interactions were imaged, processed, and analyzed. A selection of hydraulic and behavioral variables was collected from each recorded image. Screen type had a significant effect on fish impingement and near-screen flow fields. These findings, in conjunction with the known influence of background noise levels on ability of fish to detect specific underwater signals, suggest that guidance effectiveness of a specific screen design may be partially determined by characteristics of the pressure field that the screen generates relative to background turbulence patterns - the Relative Pressure Signature Hypothesis.

  15. Quasi-CW Laser Diode Bar Life Tests

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  16. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  17. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  18. Behavior of metallic materials between 550 and 870/sup 0/C in high-temperature gas-cooled reactor helium under pressures of 2 and 50 bar

    SciTech Connect

    Cappelaere, M.; Perrot, M.; Sannier, J.

    1984-08-01

    In order to estimate the influence of the helium pressure on the corrosion of ferritic and austenitic materials, tests were carried out under 2 absolute bar in a circuit without helium recirculation and under 50 bar in the AIDA loop. In both cases the partial pressures of impurities were 1.500, 50, 450, and 50 ..mu..atm for H/sub 2/, H/sub 2/O, CO, and CH/sub 4/, respectively. The interruption of the French high-temperature gas-cooled reactor RandD program has only produced limited results: 1. At 650/sup 0/C the behavior of 11% chromium ferritic steel HT 9, Types 304 and 316 austenitic steels, and Incoloy Alloy 800H is excellent; the oxidation rates are low and decrease with time. 2. At 750 and 870/sup 0/C, Hastelloy-X offers better resistance to external and intergranular oxidation than alloys 800H and Inconel-617. 3. At these three temperatures, the oxidation kinetics are appreciably faster under a pressure of 50 bar than under 2 bar. 4. Whereas carbon steel is subject to decarburization at 550/sup 0/C, a carburization phenomenon is observed for alloys 800H, Inconel-617, and Hastelloy-X at 750 and especially at 870/sup 0/C. 5. As for the influence of the initial surface preparation, mechanically polished specimens generally present a lower oxidation rate than those polished electrochemically.

  19. Analysis of echoes in ultrasonic testing for round bar using angle beam immersion technique

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Kameyama, S.; Misu, K.; Wadaka, S.; Tanaka, H.

    2001-04-01

    A design is presented for a probe, used for automatic ultrasonic testing for a round bar using the angle beam immersion technique, to improve a signal to noise ratio. It is defined based on a flaw echo height and a spurious echo height, taking into consideration of a time gate and variation of the flaw echo height along with a rotation of the probe round the bar. The result of the design is in good agreement with that of experiments.

  20. Testing for Controlled Rapid Pressurization

    DOE Data Explorer

    Steven Knudsen

    2014-09-03

    Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole w-1

  1. 33 CFR 159.109 - Pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pressure test. 159.109 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.109 Pressure test. Any sewage retention tank that is designed to operate under pressure must be pressurized hydrostatically at a...

  2. 49 CFR 230.35 - Pressure testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Pressure testing. 230.35 Section 230.35... Pressure Testing of Boilers § 230.35 Pressure testing. The temperature of the steam locomotive boiler shall be raised to at least 70 deg. F any time hydrostatic pressure is applied to the boiler....

  3. 49 CFR 230.35 - Pressure testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Pressure testing. 230.35 Section 230.35... Pressure Testing of Boilers § 230.35 Pressure testing. The temperature of the steam locomotive boiler shall be raised to at least 70 deg. F any time hydrostatic pressure is applied to the boiler....

  4. 49 CFR 230.35 - Pressure testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Pressure testing. 230.35 Section 230.35... Pressure Testing of Boilers § 230.35 Pressure testing. The temperature of the steam locomotive boiler shall be raised to at least 70 deg. F any time hydrostatic pressure is applied to the boiler....

  5. 33 CFR 159.109 - Pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pressure test. 159.109 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.109 Pressure test. Any sewage retention tank that is designed to operate under pressure must be pressurized hydrostatically at a...

  6. 49 CFR 230.35 - Pressure testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Pressure testing. 230.35 Section 230.35... Pressure Testing of Boilers § 230.35 Pressure testing. The temperature of the steam locomotive boiler shall be raised to at least 70 deg. F any time hydrostatic pressure is applied to the boiler....

  7. 33 CFR 159.109 - Pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pressure test. 159.109 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.109 Pressure test. Any sewage retention tank that is designed to operate under pressure must be pressurized hydrostatically at a...

  8. 49 CFR 230.35 - Pressure testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Pressure testing. 230.35 Section 230.35... Pressure Testing of Boilers § 230.35 Pressure testing. The temperature of the steam locomotive boiler shall be raised to at least 70 deg. F any time hydrostatic pressure is applied to the boiler....

  9. 33 CFR 159.109 - Pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pressure test. 159.109 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.109 Pressure test. Any sewage retention tank that is designed to operate under pressure must be pressurized hydrostatically at a...

  10. Effect of confining pressure due to external jacket of steel plate or shape memory alloy wire on bond behavior between concrete and steel reinforcing bars.

    PubMed

    Choi, Eunsoo; Kim, Dongkyun; Park, Kyoungsoo

    2014-12-01

    For external jackets of reinforced concrete columns, shape memory alloy (SMA) wires are easy to install, and they provide active and passive confining pressure; steel plates, on the other hand, only provide passive confining pressure, and their installation on concrete is not convenient because of the requirement of a special device. To investigate how SMA wires distinctly impact bond behavior compared with steel plates, this study conducted push-out bond tests of steel reinforcing bars embedded in concrete confined by SMA wires or steel plates. For this purpose, concrete cylinders were prepared with dimensions of 100 mm x 200 mm, and D-22 reinforcing bars were embedded at the center of the concrete cylinders. External jackets of 1.0 mm and 1.5 mm thickness steel plates were used to wrap the concrete cylinders. Additionally, NiTiNb SMA wire with a diameter of 1.0 mm was wound around the concrete cylinders. Slip of the reinforcing bars due to pushing force was measured by using a displacement transducer, while the circumferential deformation of specimens was obtained by using an extensometer. The circumferential deformation was used to calculate the circumferential strains of the specimens. This study assessed the radial confining pressure due to the external jackets on the reinforcing bars at bond strength from bond stress-slip curves and bond stress-circumferential strain curves. Then, the effects of the radial confining pressure on the bond behavior of concrete are investigated, and an equation is suggested to estimate bond strength using the radial confining pressure. Finally, this study focused on how active confining pressure due to recovery stress of the SMA wires influences bond behavior.

  11. A regularized model for impact in explicit dynamics applied to the split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Otto, Peter; De Lorenzis, Laura; Unger, Jörg F.

    2016-10-01

    In the numerical simulation of impact phenomena, artificial oscillations can occur due to an instantaneous change of velocity in the contact area. In this paper, a nonlinear penalty regularization is used to avoid these oscillations. A particular focus is the investigation of higher order methods in space and time to increase the computational efficiency. The spatial discretization is realized by higher order spectral element methods that are characterized by a diagonal mass matrix. The time integration scheme is based on half-explicit Runge-Kutta scheme of fourth order. For the conditionally stable scheme, the critical time step is influenced by the penalty regularization. A framework is presented to adjust the penalty stiffness and the time step for a specific mesh to avoid oscillations. The methods presented in this paper are applied to 1D-simulations of a split Hopkinson pressure bar, which is commonly used for the investigation of materials under dynamic loading.

  12. Thermodynamic and related properties of oxygen from the triple point to 300 K at pressures to 1000 bar

    NASA Technical Reports Server (NTRS)

    Weber, L. A.

    1977-01-01

    The results of an experimental program are presented in the form of PVT data in the temperature range 58 to 300 K at pressures up to 800 bar. Tables of the derived thermodynamic properties on isobars to 1000 bar are given, including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and the surface derivatives (delta P/delta T) sub rho and (delta P/delta Rho) sub T. Auxiliary tables in engineering units are also given. The accuracy of the data is discussed and comparisons are made with previous data.

  13. Development of a miniature tensile Kolsky bar for dynamic testing of thin films

    NASA Astrophysics Data System (ADS)

    Paul, Jastin V.

    Mechanical properties such as yield stress and ultimate strength are most commonly obtained under quasi-static (strain rate of 10--4 s--1) loading conditions Materials such as metals, ceramics, and polymers may exhibit significant changes in mechanical response when subjected to high strain rate (102 --105 per second) conditions. The loading rate or strain rate can affect the material properties such as elastic modulus, yield strength, work hardening, and ductility. To ensure product quality and reliability under impact conditions, the mechanical responses of materials under dynamic loading conditions must be characterized. A Kolsky bar is a tool that can be used to study the uniaxial compressive constitutive behavior of materials under high strain rates. The goal of this thesis is to develop a miniature Tensile Kolsky bar that can be used to test materials with thickness on the order of 200 micrometers (thin foils). The system consists of a cylindrical launch tube with an internal striker, a rectangular incident bar and a transmitted bar. The specimen is held in pockets that were milled directly into the incident and transmitted bar. The rectangular incident and transmitted bars facilitate specimen and strain gage mounting. The rectangular section also provides a reduced cross sectional bar area compared to a bar of circular cross section with diameter equivalent to the width of the rectangular bar, which increases the system sensitivity. This thesis presents the detailed description of the miniature Kolsky bar device, specimen geometry, diagnostic techniques and different calibration and validation techniques used for developing the system. The Kolsky bar setup was used to test 99.9 percent pure magnesium at two different strain rates (5000 and 10000 per second). Specimens were cut from billets processed via the 4Bc equal channel angular extrusion route and were tested in three different directions: extrusion, longitudinal and transverse. The results from the

  14. Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods

    SciTech Connect

    Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B; Celik, Cihangir

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highly detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.

  15. Surface Fatigue Tests Of M50NiL Gears And Bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1994-01-01

    Report presents results of tests of steels for use in gears and bearings of advanced aircraft. Spur-gear endurance tests and rolling-element surface fatigue tests performed on gear and bar specimens of M50NiL steel processed by vacuum induction melting and vacuum arc remelting (VIM-VAR). Compares results of tests with similar tests of specimens of VIM-VAR AISI 9310 steel and of AISI 9310 steel subjected to VAR only.

  16. Influence of grid bar shape on field cleaner performance - field testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A test was conducted to evaluate the influence of grid bar cross sectional shape on cotton stripper field cleaner performance in terms of cleaning efficiency, seed cotton loss, and fiber and yarn quality. Three field cleaner configurations were tested on a cotton stripper harvester operating under f...

  17. Test Your Blood Pressure IQ

    MedlinePlus

    ... How High Blood Pressure is Diagnosed BP vs. Heart Rate Low Blood Pressure Resistant Hypertension Pulmonary Hypertension High Blood Pressure Myths ... Healthy 6 What are the Symptoms of High Blood Pressure? 7 All About Heart Rate (Pulse) 8 Tachycardia | Fast Heart Rate 9 Warning ...

  18. High-calorific biogas production by selective CO₂ retention at autogenerated biogas pressures up to 20 bar.

    PubMed

    Lindeboom, Ralph E F; Weijma, Jan; van Lier, Jules B

    2012-02-07

    Autogenerative high pressure digestion (AHPD) is a novel configuration of anaerobic digestion, in which micro-organisms produce autogenerated biogas pressures up to 90 bar with >90% CH(4)-content in a single step reactor. (1) The less than 10% CO(2)-content was postulated to be resulting from proportionally more CO(2) dissolution relative to CH(4) at increasing pressure. However, at 90 bar of total pressure Henry's law also predicts dissolution of 81% of produced CH(4). Therefore, in the present research we studied whether CO(2) can be selectively retained in solution at moderately high pressures up to 20 bar, aiming to produce high-calorific biogas with >90% methane. Experiments were performed in an 8 L closed fed-batch pressure digester fed with acetate as the substrate. Experimental results confirmed CH(4) distribution over gas and liquid phase according to Henry's law, but the CO(2)-content of the biogas was only 1-2%, at pH 7, that is, much lower than expected. By varying the ratio between acid neutralizing capacity (ANC) and total inorganic carbon (TIC(produced)) of the substrate between 0 and 1, the biogas CO(2)-content could be controlled independently of pressure. However, by decreasing the ANC relative to the TIC(produced) CO(2) accumulation in the aqueous medium caused acidification to pH 5, but remarkably, acetic acid was still converted into CH(4) at a rate comparable to neutral conditions.

  19. Crack initiation at high loading rates applying the four-point bending split Hopkinson pressure bar technique

    NASA Astrophysics Data System (ADS)

    Henschel, Sebastian; Krüger, Lutz

    2015-09-01

    Dynamic crack initiation with crack-tip loading rates of K˙ ≈ 2.106MPa√ms-1 in a high strength G42CrMoS4 steel was investigated. To this end, a previously developed split Hopkinson pressure bar with four-point bending was utilised. V-notched and pre-cracked Charpy specimens were tested. The detection of dynamic crack initiation was performed by analysing the dynamic force equilibrium between the incident and the transmission bar. Additionally, the signal of a near-field strain gauge and high-speed photography were used to determine the instant of crack initiation. To account for vibrations of the sample, a dynamic analysis of the stress intensity factor was performed. The dynamic and static analyses of the tests produced nearly the same results when a force equilibrium was achieved. Fracture-surface analysis revealed that elongated MnS inclusions strongly affected both the dynamic crack initiation and growth. Blunting of the precrack did not take place when a group of MnS inclusions was located directly at the precrack tip. Due to the direction of the elongated MnS inclusions perpendicular to the direction of crack growth, the crack could be deflected. The comparison with a 42CrMo4 steel without elongated MnS inclusions revealed the detrimental effect in terms of resistance to crack initiation. Taking the loading-rate dependency into consideration, it was shown that there was no pronounced embrittlement due to the high loading rates.

  20. Pressure-Application Device for Testing Pressure Sensors

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  1. BaBar superconducting coil: design, construction and test

    SciTech Connect

    Bell, R A; Berndt, M; Burgess, W; Craddock, W; Dormicchi, O; Fabbricatore, P; Farinon, S; Keller, L; Moreschi, P; Musenich, R; O'Connor, T G; Penco, R; Priano, C; Shen, S; Valente, P

    2001-01-26

    The BABAR Detector, located in the PEP-II B-Factory at the Stanford Linear Accelerator Center, includes a large 1.5 Tesla superconducting solenoid, 2.8 m bore and length 3.7 m. The two layer solenoid is wound with an aluminum stabilized conductor which is graded axially to produce a {+-} 3% field uniformity in the tracking region. This paper summarizes the 3 year design, fabrication and testing program of the superconducting solenoid. The work was carried out by an international collaboration between INFN, LLNL and SLAC. The coil was constructed by Ansaldo Energia. Critical current measurements of the superconducting strand, cable and conductor, cool-down, operation with the thermo-siphon cooling, fast and slow discharges, and magnetic forces are discussed in detail.

  2. Capillary-based instrument for the simultaneous measurement of solution viscosity and solute diffusion coefficient at pressures up to 2000 bar and implications for ultrahigh pressure liquid chromatography.

    PubMed

    Kaiser, Theodore J; Thompson, J Will; Mellors, J Scott; Jorgenson, James W

    2009-04-15

    An instrument based on the Poiseuille flow principle capable of measuring solution viscosities at high pressures has been modified to observe UV-absorbent analytes in order to allow for the simultaneous measurement of analyte diffusivity. A capillary time-of-flight (CTOF) instrument was used to measure the viscosity of acetonitrile-water mixtures in all decade volume percent increments and the corresponding diffusion coefficients of small aromatic molecules in these solvent mixtures from atmospheric pressure to 2000 bar (approximately 30,000 psi) at 25 degrees C. The instrument works by utilizing a relatively small pressure drop (<100 bar) across a fused-silica capillary which has both the inlet and outlet pressurized so that the average column pressure can be significantly elevated (up to 2000 bar). Measurements with this instrument agree with high-pressure viscosity data collected previously using a CTOF viscometer, as well as with literature values obtained with falling-body viscometers of the Bridgman design. It has been further determined that, for the small molecules included in this study, trends in solute diffusivity with respect to pressure follow the predictions of the Stokes-Einstein equation when the solvent viscosity is corrected as a function of pressure. Because the instrument described herein determines viscosity and diffusivity independently, the effect of pressure on analyte hydrodynamic radius can also be monitored. An analysis of ultrahigh pressure liquid chromatography (UHPLC) data was performed using the pressure-corrected diffusion coefficient of hydroquinone to demonstrate the effect of this phenomenon on the analysis of chromatographic performance.

  3. 33 CFR 159.109 - Pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Pressure test. 159.109 Section 159.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.109 Pressure test. Any...

  4. Pressure Dependence of the Acid/Base Equilibria of Methyl Orange in Aqueous Solutions to 1000 bars at 20°C

    SciTech Connect

    Suleimenov, Oleg M; Boily, Jean F

    2006-07-31

    The pressure dependence on the acid/base equilibria of methyl orange in aqueous solution was measured at 20°C in the 1-1000 bar range with a newly designed flow-through spectrophotometric cell. Combined chemometric and thermodynamic analyses of uv-vis spectrophotometric data were used to extract the dissociation constants as well as the changes in molar volume and isothermal compressibility of methyl orange as a function of pressure. The results show increasing pressure promotes the deprotonation of the methyl orange, with pK values ranging from 3.505 at 1 bar to 3.445 (0.002) at 1000 bars. Increasing pressure also yields small values of negative changes in the molar volume ranging from –6.9 cm3∙mol-1 at 1 bar to –1.7 cm3∙mol-1 at 1000 bars. The isothermal compressibility of methyl orange in this pressure range was estimated using the 2nd derivative of 2nd and 3rd order polynomial fits to the constants and gave rise to a constant value of –48.4x 10-4 cm3∙mol-1∙bar-1 in the former case, and increasing values from -107×10-4 cm3∙mol-1∙bar-1 at 1 bar to 3.43×10-4 cm3∙mol-1∙bar-1 at 1000 bars in the latter case. Molar absorption coefficients for the protonated and deprotonated species were also shown to be only slightly affected by pressure changes and can be used to accurately predict the absorption spectra of methyl orange as a function of pressure.

  5. Pressurized solid oxide fuel cell testing

    SciTech Connect

    Basel, R.A.; Pierre, J.F.

    1995-08-01

    The goals of the SOFC pressurized test program are to obtain cell voltage versus current (VI) performance data as a function of pressure; to evaluate the effects of operating parameters such as temperature, air stoichiometry, and fuel utilization on cell performance, and to demonstrate long term stability of the SOFC materials at elevated pressures.

  6. Pressurized solid oxide fuel cell testing

    SciTech Connect

    Ray, E.R.; Basel, R.A.; Pierre, J.F.

    1995-12-31

    The Pressurized SOFC Test Program is an integral part of the Cooperative Agreement between Westinghouse and DOE and was put into place to evaluate the effects of pressurization on SOFC performance. The goals of the SOFC pressurized test program are to obtain cell voltage versus current (VI) performance data as a function of pressure; to evaluate the effects of operating parameters such as temperature, air stoichiometry, and fuel utilization on cell performance, and to demonstrate long term stability of the SOFC materials at elevated pressures.

  7. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 {times} 6 {times} 2 mm{sup 3} with a span-to-depth ratio of 10/1.

  8. Torsion Tests of 24S-T Aluminum-alloy Noncircular Bar and Tubing

    NASA Technical Reports Server (NTRS)

    Moore, R L; Paul, D A

    1943-01-01

    Tests of 24S-T aluminum alloy have been made to determine the yield and ultimate strengths in torsion of noncircular bar and tubing. An approximate basis for predicting these torsional strength characteristics has been indicated. The results show that the torsional stiffness and maximum shearing stresses within the elastic range may be computed quite closely by means of existing formulas based on mathematical analysis and the membrane analogy.

  9. High blood pressure tests (image)

    MedlinePlus

    ... factors. These lab tests include urinalysis, blood cell count, blood chemistry (potassium, sodium, creatinine, fasting glucose, total cholesterol and HDL cholesterol), and an ECG (electrocardiogram). ...

  10. Effect of pressure and shielding gas on the microstructure of hyperbaric metal cored GMAW welds down to 111 bar

    SciTech Connect

    Jorge, J.C.F.; Santos, V.R. dos

    1995-12-31

    The microstructural evolution of hyperbaric C-Mn weld metals was studied by means of bead-on-plate welds deposit with GMAW process using a commercial metal cored wire. The welding was carried out in the flat position in the range of 51 bar to 111 bar with He+ CO{sub 2} as shielding gas, which CO{sub 2} content varied from 0.1% to 0.8 %. The microstructures were quantitatively analyzed by optical microscopy to evaluate the amount of constituents according to the IIW/IIS terminology. The results showed that all weld metals presented great amounts of acicular ferrite and a stronger influence of pressure on microstructure compared to the influence of the shielding gas.

  11. A New Fast, Accurate and Non-Oscillatory Numerical Approach for Wave Propagation Problems in Solids Application to High-frequency Pulse Propagation in the Hopkinson Pressure Bar

    DTIC Science & Technology

    2015-09-16

    frequency Pulse Propagation in the Hopkinson Pressure Bar Alexander ldesman TEXAS TECH UNIVERSITY SYSTEM 09/ 16/2015 Final Report DISTRIBUTION A...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) TEXAS TECH UNIVERSITY 2500 BROADWAY...Solids: Application to High-Frequency Pulse Propagation in the Hopkinson Pressure Bar Alexander Idesman Texas Tech University Final report The

  12. Multi-Canister overpack pressure testing

    SciTech Connect

    SMITH, K.E.

    1998-11-03

    The Multi-Canister Overpack (MCO) shield plug closure assembly will be hydrostatically tested at the fabricator's shop to the 150 psig design test requirement in accordance with the ASME Code. Additionally, the MCO shell and collar will be hydrostatically tested at the fabricator's shop to the 450 psig design test requirement. Commercial practice has not required a pressure test of the closure weld after spent fuel is loaded in the containers. Based on this precedent and Code Case N-595-I, the MCO closure weld will not be pressure tested in the field.

  13. Analysis of pressure distortion testing

    NASA Technical Reports Server (NTRS)

    Koch, K. E.; Rees, R. L.

    1976-01-01

    The development of a distortion methodology, method D, was documented, and its application to steady state and unsteady data was demonstrated. Three methodologies based upon DIDENT, a NASA-LeRC distortion methodology based upon the parallel compressor model, were investigated by applying them to a set of steady state data. The best formulation was then applied to an independent data set. The good correlation achieved with this data set showed that method E, one of the above methodologies, is a viable concept. Unsteady data were analyzed by using the method E methodology. This analysis pointed out that the method E sensitivities are functions of pressure defect level as well as corrected speed and pattern.

  14. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  15. Normal-Pressure Tests of Rectangular Plates

    NASA Technical Reports Server (NTRS)

    Ramberg, Walter; Mcpherson, Albert E; Levy, Samuel

    1942-01-01

    Report presents the results of normal-pressure tests made of 56 rectangular plates with clamped edges and of 5 plates with freely supported edges. Pressure was applied and the center deflection and the permanent set at the center were measured. For some of the plates, in addition, strains and contours were measured.

  16. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone

    PubMed Central

    Cloete, T. J.; Paul, G.; Ismail, E. B.

    2014-01-01

    Detailed knowledge of the dynamic viscoelastic properties of bone is required to understand the mechanisms of macroscopic bone fracture in humans, and other terrestrial mammals, during impact loading events (e.g. falls, vehicle accidents, etc.). While the dynamic response of bone has been studied for several decades, high-quality data remain limited, and it is only within the last decade that techniques for conducting dynamic compression tests on bone at near-constant strain rates have been developed. Furthermore, there appears to be a lack of published bone data in the intermediate strain rate (ISR) range (i.e. 1–100 s−1), which represents a regime in which many dynamic bone fractures occur. In this paper, preliminary results for the dynamic compression of bovine cortical bone in the ISR regime are presented. The results are obtained using two Hopkinson-bar-related techniques, namely the conventional split Hopkinson bar arrangement incorporating a novel cone-in-tube striker design, and the recently developed wedge bar apparatus. The experimental results show a rapid transition in the strain rate sensitive behaviour of bovine cortical bone in the ISR range. Finally, a new viscoelastic model is proposed that captures the observed transition behaviour. PMID:24711493

  17. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone.

    PubMed

    Cloete, T J; Paul, G; Ismail, E B

    2014-05-13

    Detailed knowledge of the dynamic viscoelastic properties of bone is required to understand the mechanisms of macroscopic bone fracture in humans, and other terrestrial mammals, during impact loading events (e.g. falls, vehicle accidents, etc.). While the dynamic response of bone has been studied for several decades, high-quality data remain limited, and it is only within the last decade that techniques for conducting dynamic compression tests on bone at near-constant strain rates have been developed. Furthermore, there appears to be a lack of published bone data in the intermediate strain rate (ISR) range (i.e. 1-100 s(-1)), which represents a regime in which many dynamic bone fractures occur. In this paper, preliminary results for the dynamic compression of bovine cortical bone in the ISR regime are presented. The results are obtained using two Hopkinson-bar-related techniques, namely the conventional split Hopkinson bar arrangement incorporating a novel cone-in-tube striker design, and the recently developed wedge bar apparatus. The experimental results show a rapid transition in the strain rate sensitive behaviour of bovine cortical bone in the ISR range. Finally, a new viscoelastic model is proposed that captures the observed transition behaviour.

  18. 14 CFR 23.843 - Pressurization tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... emergency release valve, to simulate the effects of closed regulator valves. (2) Tests of the pressurization..., up to the maximum altitude for which certification is requested. (3) Flight tests, to show the... limitations of the airplane, up to the maximum altitude for which certification is requested. (4) Tests...

  19. 14 CFR 23.843 - Pressurization tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency release valve, to simulate the effects of closed regulator valves. (2) Tests of the pressurization..., up to the maximum altitude for which certification is requested. (3) Flight tests, to show the... limitations of the airplane, up to the maximum altitude for which certification is requested. (4) Tests...

  20. Validation testing of shallow notched round-bar screening test specimens. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Vroman, G. A.

    1975-01-01

    The capability of shallow-notched, round-bar, tensile specimens for screening critical environments as they affect the material fracture properties of the space shuttle main engine was tested and analyzed. Specimens containing a 0.050-inch-deep circumferential sharp notch were cyclically loaded in a 5000-psi hydrogen environment at temperatures of +70 and -15 F. Replication of test results and a marked change in cyclic life because of temperature variation demonstrated the validity of the specimen type to be utilized for screening tests.

  1. High pressure turbomachinery ground test facility

    NASA Technical Reports Server (NTRS)

    Scheuermann, Patrick E.

    1992-01-01

    Turbomachinery test facilities are at present scarce to non-existent world-wide. The turbomachinery test facility at Stennis Space Center will provide for advanced development and research and development capabilities for liquid hydrogen/liquid oxygen propellant rocket engine components. The facility will provide ultra-high pressure via gas generators to deliver the needed turbine drive on various turbomachinery. State of the art process control systems will provide the vital pressure, temperature and flow requirements during tests. These systems will better control adverse transient conditions during start-up and shutdown, and by using advanced control theory, as well as incorporate test article health monitoring. Also, digital data acquisition systems will obtain high frequency (up to 20 KHz) and low frequency (up to 1 KHz) data during the test. Pressures of up to 15,000 psi will be generated to pressurize high pressure tanks supplying cryogens to various test article inlets thus pushing turbopump materials and manufacturing processes to their limits. By planning for future projects the test facility will be easily adaptable to multi-program test configurations over a range of thermodynamic positions.

  2. Normal pressure tests on unstiffened flat plates

    NASA Technical Reports Server (NTRS)

    Head, Richard M; Sechler, Ernest J

    1944-01-01

    Flat sheet panels of aluminum alloy (all 17S-T except for two specimens of 24S-T) were tested under normal pressures with clamped edge supports in the structures laboratory of the Guggenheim Aeronautical Laboratory, California Institute of Technology. The thicknesses used ranged from 0.010 to 0.080 inch; the panel sizes ranged from 10 by 10 inches to 10 by 40 inches; and the pressure range was from 0 to 60-pounds-per-square-inch gage. Deflection patterns were measured and maximum tensile strains in the center of the panel were determined by electric strain gages. The experimental data are presented by pressure-strain, pressure-maximum-deflection, and pressure-deflection curves. The results of these tests have been compared with the corresponding strains and deflections as calculated by the simple membrane theory and by large deflection theories.

  3. Commonwealth Edison Company pressure locking test report

    SciTech Connect

    Bunte, B.D.; Kelly, J.F.

    1996-12-01

    Pressure Locking is a phenomena which can cause the unseating thrust for a gate valve to increase dramatically from its typical static unseating thrust. This can result in the valve actuator having insufficient capability to open the valve. In addition, this can result in valve damage in cases where the actuator capability exceeds the valve structural limits. For these reasons, a proper understanding of the conditions which may cause pressure locking and thermal binding, as well as a methodology for predicting the unseating thrust for a pressure locked or thermally bound valve, are necessary. This report discusses the primary mechanisms which cause pressure locking. These include sudden depressurization of piping adjacent to the valve and pressurization of fluid trapped in the valve bonnet due to heat transfer. This report provides a methodology for calculating the unseating thrust for a valve which is pressure locked. This report provides test data which demonstrates the accuracy of the calculation methodology.

  4. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    PubMed Central

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  5. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing.

    PubMed

    de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D

    2015-12-24

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  6. Test of scintillator bars coupled to Silicon Photomultipliers for a charged particle tracking device

    NASA Astrophysics Data System (ADS)

    Cecchini, S.; D'Antone, I.; Esposti, L. Degli; Lax, I.; Mandrioli, G.; Mauri, N.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Sirri, G.; Tenti, M.

    2017-02-01

    This work is the first step in the implementation of a tracking detector for instrumenting a light spectrometer to study O(1 GeV) νμ CC interactions. A spatial resolution of O(1 mm) is required for the precise determination of momentum and charge of muons produced in such interactions. A tracking system prototype composed of planes of scintillator bars coupled to Silicon Photomultipliers in analog mode readout has been developed. The devised system provides a spatial resolution of better than 2 mm in reconstructing muon tracks. Results obtained in laboratory tests and with cosmic ray muons are discussed.

  7. A novel automated rat catalepsy bar test system based on a RISC microcontroller.

    PubMed

    Alvarez-Cervera, Fernando J; Villanueva-Toledo, Jairo; Moo-Puc, Rosa E; Heredia-López, Francisco J; Alvarez-Cervera, Margarita; Pineda, Juan C; Góngora-Alfaro, José L

    2005-07-15

    Catalepsy tests performed in rodents treated with drugs that interfere with dopaminergic transmission have been widely used for the screening of drugs with therapeutic potential in the treatment of Parkinson's disease. The basic method for measuring catalepsy intensity is the "standard" bar test. We present here an easy to use microcontroller-based automatic system for recording bar test experiments. The design is simple, compact, and has a low cost. Recording intervals and total experimental time can be programmed within a wide range of values. The resulting catalepsy times are stored, and up to five simultaneous experiments can be recorded. A standard personal computer interface is included. The automated system also permits the elimination of human error associated with factors such as fatigue, distraction, and data transcription, occurring during manual recording. Furthermore, a uniform criterion for timing the cataleptic condition can be achieved. Correlation values between the results obtained with the automated system and those reported by two independent observers ranged between 0.88 and 0.99 (P<0.0001; three treatments, nine animals, 144 catalepsy time measurements).

  8. Pressure Change Measurement Leak Testing Errors

    SciTech Connect

    Pryor, Jeff M; Walker, William C

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  9. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  10. High-Pressure Oxygen Test Evaluations

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.; Key, C. F.

    1974-01-01

    The relevance of impact sensitivity testing to the development of the space shuttle main engine is discussed in the light of the special requirements for the engine. The background and history of the evolution of liquid and gaseous oxygen testing techniques and philosophy is discussed also. The parameters critical to reliable testing are treated in considerable detail, and test apparatus and procedures are described and discussed. Materials threshold sensitivity determination procedures are considered and a decision logic diagram for sensitivity threshold determination was plotted. Finally, high-pressure materials sensitivity test data are given for selected metallic and nonmetallic materials.

  11. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  12. AGARD Flight Test Instrumentation Series. Volume 11. Pressure and Flow Measurement

    DTIC Science & Technology

    1980-07-01

    PdgPt-Pa pression qc,Pd dynamischer qc impact pressure pressure dynamique Druck 1 24 q 7k:v kinetic - pression q kinetischer q dynamic...number of parallel transducers may have to be used. To save weight and cost, up to 48 pressures of up to 200 bar press- ure scanners (scanivalves...control is accomplished following "ATLAS"-requirement5 by means of a scanner unit, giving access to designated test pins on the computer’s main

  13. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S.

    2008-03-01

    In support of the development of a micro-gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center (MSFC) with the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray-bar thermodynamic vent system (TVS). The testing, with an ambient heat leak of about 70 W and tank fill levels of 90, 50, and 25%, was performed for 14 days during August and September 2005. The TVS successfully controlled the tank pressure within a ±3.45 kPa band with various gaseous helium (GHe) masses in the ullage. Relative to pressure control with an "all hydrogen" ullage, the GHe presence resulted in 37 to 68% longer pressure reduction cycle durations, depending on the fill level, during the mixing/venting phase of the control cycle. Testing was also conducted to evaluate thermodynamic venting without the recirculation pump operating, at a very low fill level. Although ullage stratification was present, the ullage pressure was successfully controlled without the pump. It was evident that the spray-bar and heat exchanger configuration, which extended almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the pump operating.

  14. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  15. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  16. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  17. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  18. 30 CFR 7.307 - Static pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static pressure test. 7.307 Section 7.307... pressure test. (a) Test procedure. (1) The enclosure shall be internally pressurized to a minimum of 150 psig and the pressure maintained for a minimum of 10 seconds. (2) Following the pressure hold,...

  19. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    NASA Technical Reports Server (NTRS)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  20. PRSEUS Pressure Cube Test Data and Response

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2013-01-01

    NASA s Environmentally Responsible Aviation (ERA) Program is examining the hybrid wing body (HWB) aircraft, among others, in an effort to increase the fuel efficiency of commercial aircraft. The HWB design combines features of a flying wing with features of conventional transport aircraft, and has the advantage of simultaneously increasing both fuel efficiency and payload. Recent years have seen an increased focus on the structural performance of the HWB. The key structural challenge of a HWB airframe is the ability to create a cost and weight efficient, non-circular, pressurized shell. Conventional round fuselage sections react cabin pressure by hoop tension. However, the structural configuration of the HWB subjects the majority of the structural panels to bi-axial, in-plane loads in addition to the internal cabin pressure, which requires more thorough examination and analysis than conventional transport aircraft components having traditional and less complex load paths. To address this issue, while keeping structural weights low, extensive use of advanced composite materials is made. This report presents the test data and preliminary conclusions for a pressurized cube test article that utilizes Boeing's Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), and which is part of the building block approach used for HWB development.

  1. Pressure Distribution over Thick Airfoils - Model Tests

    NASA Technical Reports Server (NTRS)

    Norton, F H; Bacon, D L

    1923-01-01

    This investigation was undertaken to study the distribution of loading over thick wings of various types. The unloading on the wing was determined by taking the pressure at a number of holes on both the upper and lower surfaces of a model wing in the wind tunnel. The results from these tests show, first, that the distribution of pressure over a thick wing of uniform section is very little different from that over a thin wing; second, that wings tapering either in chord or thickness have the lateral center of pressure, as would be expected, slightly nearer the center of the wings; and, third, that wings tapering in plan form and with a section everywhere proportional to the center section may be considered to have a loading at any point which is proportional to the chord when compared to a wing with a similar constant section. These tests confirm the belief that wings tapering both in thickness and plan form are of considerable structural value because the lateral center of pressure is thereby moved toward the center of the span.

  2. Progress Report: Pressure Vessel Burst Test Study

    DTIC Science & Technology

    1994-08-01

    report is provided on a program developed to study through test and analysis, the characteristics of blast waves and fragmentation generated by ruptured ...vessels were composite overwrapped pressure vessels ( COPV ) and were cut with a shaped charge (no groove) around its center. The burst location on the...and the shaped charge cut area (shown with dotted lines). BURST INITIATION Longitudinal stress in the circumferential grooves (for developing axial

  3. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  4. Apparatus for Leak Testing Pressurized Hoses

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D. (Inventor); Garrison, Steve G. (Inventor); Gant, Bobby D. (Inventor); Palmer, John R. (Inventor)

    2015-01-01

    A hose-attaching apparatus for leak-testing a pressurized hose may include a hose-attaching member. A bore may extend through the hose-attaching member. An internal annular cavity may extend coaxially around the bore. At least one of a detector probe hole and a detector probe may be connected to the internal annular cavity. At least a portion of the bore may have a diameter which is at least one of substantially equal to and less than a diameter of a hose to be leak-tested.

  5. Changes in intraocular pressure after exercise test

    PubMed Central

    Esfahani, Morteza Abdar; Gharipour, Mojgan; Fesharakinia, Hamid

    2017-01-01

    Background: The decrease in intraocular pressure (IOP) within exercise has been recently suggested; however, this change remained ambiguous following exercise test. The present study aimed to assess changes in IOP induced by exercise test in patients who suspected to coronary artery disease (CAD) and indicated for exercise test evaluation. Methods: In a cross-sectional study at the cardiovascular research center of Amin Heart Hospital in Isfahan, 101 eyes from 51 consecutive patients suspected to CAD aged 30–70 years referred for exercise testing were evaluated. IOP was measured at the three time points of before exercise test as well as 5 and 20 min after completing exercise test using Schiotz tonometer. All exercise tests were programmed by the treadmill. Results: The mean IOP in all assessed eyes was 16.12 ± 2.61 mmHg initially that was gradually decreased to 13.79 ± 2.40 mmHg 5 min after the exercise test, but elevated to 15.67 ± 2.26 mmHg 20 min after the test. Assessing IOP following exercise testing showed a significant decrease in IOP in 75 eyes (74.3%), remained unchanged in 19.8% of eyes, and even elevated in 5.9% of eyes. There was a significant direct association between patients' age and IOP changes assessed by the Pearson's correlation test (r = 0.350,P = 0.009). No significant difference was revealed in the trend of the changes in IOP after exercise test between men and women, between left-sided and right-sided eyes as well as between different body mass index subgroups. Conclusion: IOP temporarily reduced after exercise test, but return to baseline value shortly after test. This lowering is more evident in advanced aging. PMID:28298859

  6. Solubilities of eta-octadecane, phenanthrene, and eta-octadecane/phenanthrene mixtures in supercritical propane at 390 and 420. Kappa. and pressures to 60 bar

    SciTech Connect

    Dimitrelis, D.; Prausnitz, J.M. )

    1989-07-01

    Solubility data were obtained for n-octadecane, phenanthrene, and a nearly equimolar n-octadecane/phenanthrene mixture in supercritical propane. Solubilities were measured in a flow apparatus at 390 and 420 {Kappa} over the pressure range 35-60 bar. The experimental data is correlated using the perturbed-hard-chain equation of state. Agreement between experiment and correlation is good.

  7. Partial pressure analysis in space testing

    NASA Technical Reports Server (NTRS)

    Tilford, Charles R.

    1994-01-01

    For vacuum-system or test-article analysis it is often desirable to know the species and partial pressures of the vacuum gases. Residual gas or Partial Pressure Analyzers (PPA's) are commonly used for this purpose. These are mass spectrometer-type instruments, most commonly employing quadrupole filters. These instruments can be extremely useful, but they should be used with caution. Depending on the instrument design, calibration procedures, and conditions of use, measurements made with these instruments can be accurate to within a few percent, or in error by two or more orders of magnitude. Significant sources of error can include relative gas sensitivities that differ from handbook values by an order of magnitude, changes in sensitivity with pressure by as much as two orders of magnitude, changes in sensitivity with time after exposure to chemically active gases, and the dependence of the sensitivity for one gas on the pressures of other gases. However, for most instruments, these errors can be greatly reduced with proper operating procedures and conditions of use. In this paper, data are presented illustrating performance characteristics for different instruments and gases, operating parameters are recommended to minimize some errors, and calibrations procedures are described that can detect and/or correct other errors.

  8. Liquid abrasive pressure pot scoping tests report

    SciTech Connect

    Archibald, K.E.

    1996-01-01

    The primary initiatives of the LITCO Decontamination Development group at the Idaho Chemical Process Plant (ICPP) are the development of methods to eliminate the use of sodium bearing decontamination chemicals and minimization of the amount of secondary waste generated during decontamination activities. In July of 1994, a Commerce Business Daily (CBD) announcement was issued by the INEL to determine commercial interest in the development of an in-situ liquid abrasive grit blasting system. As a result of the CBD announcement, Klieber & Schulz issued an Expression of Interest letter which stated they would be interested in testing a prototype Liquid Abrasive Pressure Pot (LAPP). LITCO`s Decontamination group and Kleiber & Schulz entered into a Cooperative Research and Development Agreement (CRADA) in which the Decontamination Development group tested the prototype LAPP in a non-radioactive hot cell mockup. Test results are provided.

  9. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  10. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  11. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  12. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  13. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  14. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  15. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  16. 30 CFR 18.67 - Static-pressure tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static-pressure tests. 18.67 Section 18.67....67 Static-pressure tests. Static-pressure tests shall be conducted by the applicant on each enclosure... pressure to be applied shall be 150 pounds per square inch (gage) or one and one-half times the...

  17. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  18. Development and testing of an active boring bar for increased chatter immunity

    SciTech Connect

    Redmond, J.; Barney, P.

    1997-12-01

    Recent advances in smart materials have renewed interest in the development of improved manufacturing processes featuring sensing, processing, and active control. In particular, vibration suppression in metal cutting has received much attention because of its potential for enhancing part quality while reducing the time and cost of production. Although active tool clamps have been recently demonstrated, they are often accompanied by interfacing issues that limit their applicability to specific machines. Under the auspices of the Laboratory Directed Research and Development program, the project titled {open_quotes}Smart Cutting Tools for Precision Manufacturing{close_quotes} developed an alternative approach to active vibration control in machining. Using the boring process as a vehicle for exploration, a commercially available tool was modified to incorporate PZT stack actuators for active suppression of its bending modes. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on many machines. Cutting tests conducted on a horizontal lathe fitted with a hardened steel workpiece verify that the actively damped boring bar yields significant vibration reduction and improved surface finishes as compared to an unmodified tool.

  19. Watts Bar Unit 1 Cycle Zero Power Physics Tests Analysis with VERA-CS

    SciTech Connect

    Gehin, Jess C; Godfrey, Andrew T; Evans, Thomas M; Hamilton, Steven P; Francheschini, F.

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.

  20. Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2007-01-01

    Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

  1. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    SciTech Connect

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; Martinez, D. T.; Addessio, F. L.; Bronkhorst, C. A.; Lookman, T.; Cerreta, E. K.

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip and twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.

  2. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGES

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  3. Test plan pressure fed thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Dunn, Glenn

    1990-01-01

    Aerojet is developing the technology for the design of a reliable, low cost, efficient, and lightweight LOX/RP-1 pressure fed engine. This technology program is a direct result of Aerojet's liquid rocket booster (LRB) study and previous NASA studies that identified liquid engines using high bulk density hydrocarbon fuels as very attractive for a space transportation system (STS). Previous large thrust LOX/RP-1 engine development programs were characterized by costly development problems due to combustion instability damage. The combustion stability solution was typically obtained through trial and error methods of minimizing instability damage by degrading engine performance. The approach to this program was to utilize existing and newly developed combustion analysis models and design methodology to create a thrust chamber design with features having the potential of producing reliable and efficient operation. This process resulted in an engine design with a unique high thrust-per-element OFO triplet injector utilizing a low cost modular approach. Cost efficient ablative materials are baselined for the injector face and chamber. Technology demonstration will be accomplished through a hot fire test program using appropriately sized subscale hardware. This subscale testing will provide a data base to supplement the current industry data bank and to anchor and validate the applied analysis models and design methodology. Once anchored and validated, these analysis models and design methodology can be applied with greatly increased confidence to design and characterize a large scale pressure fed LOX/RP-1 thrust chamber. The objective of this test program is to generate a data base that can be used to anchor and validate existing analysis models and design methodologies and to provide early concept demonstration of a low cost, efficient LOX/RP-1 thrust chamber. Test conditions and hardware instrumentation were defined to provide data sufficient to characterize combustion

  4. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  5. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure and leakage tests. 178.346-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  6. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Testing of Non-bulk Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification of all metal, plastic, and...

  7. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage tests. 178.346-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  8. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure and leakage tests. 178.346-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  9. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  10. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage test. 178.348-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  11. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  12. 30 CFR 250.1609 - Pressure testing of casing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Pressure testing of casing. 250.1609 Section... Pressure testing of casing. (a) Prior to drilling the plug after cementing, all casing strings, except the drive or structural casing, shall be pressure tested. The conductor casing shall be tested to at...

  13. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  14. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  15. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  16. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure and leakage test. 178.348-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  17. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  18. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure and leakage tests. 178.346-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  19. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pressure impulse test. 183.586...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.586 Pressure impulse test. A fuel... pressure test under § 183.580. (b) If the tank is non-metallic, fill it to capacity with a gasoline...

  20. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  1. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure and leakage test. 178.348-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  2. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure and leakage test. 178.348-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  3. 30 CFR 250.1609 - Pressure testing of casing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Pressure testing of casing. 250.1609 Section... Pressure testing of casing. (a) Prior to drilling the plug after cementing, all casing strings, except the drive or structural casing, shall be pressure tested. The conductor casing shall be tested to at...

  4. 30 CFR 250.1609 - Pressure testing of casing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Pressure testing of casing. 250.1609 Section... Pressure testing of casing. (a) Prior to drilling the plug after cementing, all casing strings, except the drive or structural casing, shall be pressure tested. The conductor casing shall be tested to at...

  5. 30 CFR 7.104 - Internal static pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal static pressure test. 7.104 Section 7... Internal static pressure test. (a) Test procedures. (1) Isolate and seal each segment of the intake system... system or exhaust system to four times the maximum pressure observed in each segment during the tests...

  6. Small Two-Bar Specimen Creep Testing of Grade P91 Steel at 650°C

    NASA Astrophysics Data System (ADS)

    Ali, Balhassn S. M.; Hyde, Tom H.; Sun, Wei

    2016-03-01

    Commonly used small creep specimen types, such as ring and impression creep specimens, are capable of providing minimum creep strain rate data from small volumes of material. However, these test types are unable to provide the creep rupture data. In this paper the recently developed two-bar specimen type, which can be used to obtain minimum creep strain rate and creep rupture creep data from small volumes of material, is described. Conversion relationships are used to convert (i) the applied load to the equivalent uniaxial stress, and (ii) the load line deformation rate to the equivalent uniaxial creep strain rate. The effects of the specimen dimension ratios on the conversion factors are also discussed in this paper. This paper also shows comparisons between two-bar specimen creep test data and the corresponding uniaxial creep test data, for grade P91 steel at 650°C.

  7. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  8. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  9. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  10. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  11. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  12. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  13. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  14. 49 CFR 195.307 - Pressure testing aboveground breakout tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference, see § 195.3). (d) For aboveground atmospheric pressure breakout tanks constructed of... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure testing aboveground breakout tanks. 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pressure Testing § 195.307 Pressure...

  15. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  16. The test bench for testing torsional stiffness of active anti-roll bar made of extended profiles with rectangular cross-section

    NASA Astrophysics Data System (ADS)

    Macikowski, K. R.; Kaszuba, S.

    2016-09-01

    The article describes the test bench constructed to determine the characteristics of torsional stiffness of extended rod elements, which can be used, for example, in cars as anti-roll bars. The bench has been designed so as to allow an examination of the samples with variable length and variable cross-sectional dimensions. It is possible to perform tests for different materials. The article contains a detailed description of the mentioned test bench and presentation of the results obtained from preliminary tests.

  17. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar.

    PubMed

    Berger, Terry A

    2016-12-02

    It has been widely suggested that the outlet pressure be changed to maintain constant density ("isopycnic" conditions) when comparing the kinetic performance of different columns in supercritical fluid chromatography (SFC). However, at high flow rates, flow in the tubing is turbulent, causing large extra-column pressure drops that limit options for changing outlet pressure. Some of these pressure drops occur before and some after the column, obscuring the actual column inlet and outlet pressures. In this work, a 4.6×100mm, 1.8μm R,R-Whelk-O1 column was used with low dispersion LD (120μm) plumbing to generate sub-1min chiral separations. However, the optimum, or near optimum, flow rate was 5mL-min(-1), producing a system pressure of 580bar (with 40% methanol, outlet pressure 120bar). Both the flow rate and pump pressure required were near the limits of the instrument, and significantly exceeded the capability of many other SFC's. Extra-column pressure drops (ΔPec) were as high as 200bar, caused mostly by turbulent flow in the tubing. The ΔPec increased by more than the square of the flow rate. Reynolds Numbers (Re) were calculated for tubing as a function of flow rate between 100 and 400bar and 5-20% methanol in CO2, and 40°-60°C. This represents the most extensive analysis of turbulence in tubing in the SFC literature. Flow in 120μm ID tubing was calculated to be laminar below 1.0mL-min(-1), mostly transitional up to 2.5mL-min(-1) and virtually always turbulent at 3mL-min(-1) and higher. Flow in 170μm tubing is turbulent at lower flows but generates half the ΔPec due to the lower mobile phase linear velocity. The results suggest that, while sub-minute chromatograms are easily generated, 4.6mm columns are not very user friendly for use with sub-2μm packings. The high flow rates required just to reach optimum result in high ΔPec generated by the tubing, causing uncertainty in the true column inlet, outlet, and average column pressure/density. When

  18. 49 CFR 178.255-12 - Pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure test. 178.255-12 Section 178.255-12... Specifications for Portable Tanks § 178.255-12 Pressure test. (a) Each completed portable tank prior to... 100 °F during the test, and applying a pressure of 60 psig. The tank shall be capable of holding...

  19. 30 CFR 250.1609 - Pressure testing of casing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Pressure testing of casing. 250.1609 Section... Operations § 250.1609 Pressure testing of casing. (a) Prior to drilling the plug after cementing, all casing strings, except the drive or structural casing, shall be pressure tested. The conductor casing shall...

  20. 49 CFR 178.255-12 - Pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure test. 178.255-12 Section 178.255-12... Portable Tanks § 178.255-12 Pressure test. (a) Each completed portable tank prior to application of lining... the test, and applying a pressure of 60 psig. The tank shall be capable of holding the...

  1. 49 CFR 178.255-12 - Pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure test. 178.255-12 Section 178.255-12... Portable Tanks § 178.255-12 Pressure test. (a) Each completed portable tank prior to application of lining... the test, and applying a pressure of 60 psig. The tank shall be capable of holding the...

  2. 49 CFR 178.255-12 - Pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure test. 178.255-12 Section 178.255-12... Portable Tanks § 178.255-12 Pressure test. (a) Each completed portable tank prior to application of lining... the test, and applying a pressure of 60 psig. The tank shall be capable of holding the...

  3. 49 CFR 178.255-12 - Pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure test. 178.255-12 Section 178.255-12... Portable Tanks § 178.255-12 Pressure test. (a) Each completed portable tank prior to application of lining... the test, and applying a pressure of 60 psig. The tank shall be capable of holding the...

  4. Environmental Testing of Glass-Fiber/Epoxy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1987-01-01

    Pair of reports discusses long-term environmental tests of glassfiber/epoxy composite pressure vessels. Strength diminishes during long exposure to environment. Since such data necessary for accurate design of long-life structures such as pressure vessels, NASA Lewis Research Center built outdoor test stand in 1973. Test stand maintains system under constant pressure loading without frequent intervention of personnel.

  5. Steam Oxidation at High Pressure

    SciTech Connect

    Holcomb, Gordon R.; Carney, Casey

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  6. Fracture-toughness tests and displacement and crack-stability analyses of round-bar bend specimens of liquid-phase-sintered tungsten. Final report

    SciTech Connect

    Underwood, J.H.; Baratta, F.I.; Zalinka, J.J.

    1991-10-01

    Plane strain fracture toughness tests were performed using the recently proposed round bar bend test procedure with a liquid-phase sintered tungsten alloy. The tests included a direct comparison of fracture toughness from rectangular and round bend specimens and measurements of load line compliance using the unloading technique of J integral fracture tests. Complementary displacement and crack growth stability analyses of the round bar were performed as an extension of recent work in these two areas.

  7. Apparatus and method for pressure testing closure disks

    DOEpatents

    Merten, Jr., Charles W.

    1992-01-21

    A method and device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A tensile load is transmitted by a piston in combination with fluid pressure to the hollow notched plug.

  8. Apparatus and method for pressure testing closure disks

    DOEpatents

    Merten, C.W. Jr.

    1992-01-21

    A method and device are described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A tensile load is transmitted by a piston in combination with fluid pressure to the hollow notched plug. 5 figs.

  9. Dynamic Strength and Fracturing Behavior of Single-Flawed Prismatic Marble Specimens Under Impact Loading with a Split-Hopkinson Pressure Bar

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Zhou, Tao; Li, Diyuan

    2017-01-01

    Dynamic impact tests are performed on prismatic marble specimens containing a single flaw using a modified split-Hopkinson pressure bar device. The effects of pre-existing flaws with different flaw angles and lengths on the dynamic mechanical properties are analyzed. The results demonstrate that the dynamic strength of marble is influenced by the flaw geometry. The dynamic fracturing process of flawed specimens is monitored and characterized with the aid of a high-speed camera. Cracking of marble specimens with a single pre-existing flaw under impact loading is analyzed based on experimental investigations. Cracking involves two major stages: formation of white patches and development of macrocracks. Six typical crack types are identified on the basis of their trajectories and initiation mechanisms. The presence of an artificial flaw may change the failure mode of marble from splitting-dominated for an intact specimen to shear-dominated for a flawed specimen under dynamic loading. Nevertheless, the geometry of the flaws appears to have a slight influence on the failure modes of flawed specimens under impact loading.

  10. Influence of grid bar shape on field cleaner performance - Laboratory screening test

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extractor type cleaners are used on cotton strippers and in the seed cotton cleaning machinery in the ginning process to remove large foreign material such as burrs and sticks. Early research indicated that the shape of the grid bars used in extractors may influence the performance of these machines...

  11. Space Shuttle solid rocket motor testing for return to flight - Transient Pressure Test Article test program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1988-01-01

    The Transient Pressure Test Article (TPTA) test program, which is being conducted at a new facility at NASA-Marshall, is described. The facility is designed to test and verify the sealing capability of the redesigned solid rocket motor's (RSRM) field, igniter, and nozzle joints. The test article consists of full-scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The test facility is described as well as test implementation, test effectiveness, and test results.

  12. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  13. Pressure Venting Tests of Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Knutson, Jeffrey R.

    2015-01-01

    A series of tests was devised to investigate the pressure venting behavior of one of the candidate ablators for the Orion capsule heat shield. Three different specimens of phenolic impregnated carbon ablator (PICA) were instrumented with internal pressure taps and subjected to rapid pressure changes from near vacuum to one atmosphere and simulated Orion ascent pressure histories. The specimens vented rapidly to ambient pressure and sustained no detectable damage during testing. Peak pressure differences through the thickness of a 3-inch-thick specimen were less than 1 psi during a simulated ascent pressure history.

  14. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be tested with the adjacent cargo tanks empty and at atmospheric pressure. Each closure, except... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure and leakage tests. 178.345-13 Section 178... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and...

  15. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pressure and vacuum pulse test... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.111 Pressure and... installed must be subjected to 50 fillings of water at a pressure head of 7 feet or the maximum...

  16. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pressure and vacuum pulse test... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.111 Pressure and... installed must be subjected to 50 fillings of water at a pressure head of 7 feet or the maximum...

  17. Quantitative respirator fit testing: dynamic pressure versus aerosol measurement.

    PubMed

    Carpenter, D R; Willeke, K

    1988-10-01

    A noninvasive, fast, inexpensive new fit testing method has been invented which relates the slope of the pressure decay inside a respirator during breath-holding to the fit of the respirator on the wearer's face. The dynamic pressure test has been compared with the conventional aerosol test at different leakage levels. The results of this comparison show that the sensitivity of the dynamic pressure test is similar to that of the aerosol test. The pressure test, however, is independent of leak site and probe location and can be performed on respirators before and after their use.

  18. Venus Pressure Chamber: A Small Testing Facility Available to the Community

    NASA Technical Reports Server (NTRS)

    Johnson, Natasha M.; Wegel, D. C.

    2011-01-01

    Venus is an inhospitable planet where the surface mean. temperature is approximately 740K and the global mean pressure is approximately 95 bars. The atmosphere is comprised mostly of CO2 (approximately 96.5%) and N2 (approximately3.5%) with trace amounts of CO and other reactive gases. Although Venus is very similar in size and mass with the Earth and is Earth's nearest planetary neighbor, it has not received many visitors from Earth, especially those that can land on the surface. The challenge most often cited for this scarcity of surface probes is the workability/survivability of instruments and equipment in Venus' harsh environment. In order to overcome this obstacle, a small pressure chamber has been acquired for use by the scientific community. It is housed at Goddard Space. Flight Center in Maryland and is available to the community for testing of small flight components, instruments and short-term experiments that require high temperatures and pressures.

  19. Volumetric Properties and Phase Relations of Binary H{sub 2}O-CO{sub 2}-CH{sub 4}-N{sub 2} Mixtures at 300 C and Pressures to 1000 Bars

    SciTech Connect

    Singh, J.; Blencoe, J.G.; Anovitz, M.

    1999-09-12

    The volumetric properties and phase relations of binary mixtures of H{sub 2}0, CO{sub 2}, CH{sub 4} and N{sub 2} were determined experimentally at 3OO C, 74.4--999.3 bars, using a custom-built vibrating-tube densimeter. Densities of all single-phase fluids increase steadily with increasing pressure. At a given pressure, CO{sub 2}-rich H{sub 2}O-CO{sub 2} mixtures show a pronounced nonlinear decrease in density with increasing mole fraction CO, in marked contrast to the densities of N{sub 2}-rich H{sub 2}O-N{sub 2} mixtures which are nearly independent of composition. At pressure up to 500 bars, non-aqueous mixtures have much smaller excess molar volumes than gas-rich aqueous mixtures. H{sub 2}O-rich mixtures at pressures ca.86 bars, and CO{sub 2}-poor non-aqueous mixtures at 99.4 bars, exhibit negative excess molar volumes. Excess molar volumes for aqueous mixtures peak at 86 bars, then decrease monotonically with increasing pressure above 86 bars. The H{sub 2}O-CO{sub 2} liquid-vapor field widens continuously from 86 to ca.400 bars, then narrows with increasing pressure, closing at ca.565 bars, in sharp contrast to the H{sub 2}O-N{sub 2} liquid-vapor field, which widens continuously with increasing pressure to at least 1000 bars.

  20. Triple bar, high efficiency mechanical sealer

    DOEpatents

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  1. An equation correlating the solubility of quartz in water from 25° to 900°C at pressures up to 10,000 bars

    USGS Publications Warehouse

    Fournier, Robert O.; Potter, Robert W.

    1982-01-01

    The solubility of quartz in water from 25° to 900°C at specific volume of the solvent ranging from about 1 to 10 and from 300° to 600°C at specific volume of the solvent ranging from about 10 to 100 is given by an empirically derived equation of the form: log m = A + B(log V) + C(log V)2 where m is the molal silica concentration, V is the specific volume of pure water, and A = −4.66206 + 0.0034063T + 2179.7T−1 − 1.1292 × 106T−2 + 1.3543 × 108T−3B = −0.0014180T— 806.97T−1C = 3.9465 × 10−4T T is temperature in kelvins. The experimental data used in formulating the empirical relation ranged in pressure from 1 bar at 25°C to about 10,000 bars at 900°C, and the lowest pressure in the low-density steam region was about 30 bars. According to the above equation, the average difference in molality between 518 measured and calculated solubilities is −0.016 m with a standard deviation of 0.089.

  2. Pressure levels and pulsation frequencies can be varied on high pressure/frequency testing device

    NASA Technical Reports Server (NTRS)

    Routson, J. W.

    1967-01-01

    Hydraulic system components test device obtains a pulsating pressure from a hydraulic actuator that is being driven by a vibration exciter of sufficient force and displacement. Input to the exciter controls the frequency of pressure variation.

  3. Pressure Roller For Tape-Lift Tests

    NASA Technical Reports Server (NTRS)

    Abrams, Eve

    1991-01-01

    Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.

  4. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure and leakage test. 178.348-5 Section 178... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b)...

  5. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure and leakage test. 178.347-5 Section 178... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b)...

  6. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure and leakage tests. 178.346-5 Section 178... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b)...

  7. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prior to testing. (c) Mount the tank on a test platform. (d) Fill the tank to capacity with water. (e) Cap and seal each opening in the tank. (f) Apply 25,000 cycles of pressure impulse at the rate of no... regulated source of air, inert gas, or water. (g) Perform the static pressure test under § 183.580....

  8. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prior to testing. (c) Mount the tank on a test platform. (d) Fill the tank to capacity with water. (e) Cap and seal each opening in the tank. (f) Apply 25,000 cycles of pressure impulse at the rate of no... regulated source of air, inert gas, or water. (g) Perform the static pressure test under § 183.580....

  9. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prior to testing. (c) Mount the tank on a test platform. (d) Fill the tank to capacity with water. (e) Cap and seal each opening in the tank. (f) Apply 25,000 cycles of pressure impulse at the rate of no... regulated source of air, inert gas, or water. (g) Perform the static pressure test under § 183.580....

  10. 33 CFR 183.586 - Pressure impulse test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... prior to testing. (c) Mount the tank on a test platform. (d) Fill the tank to capacity with water. (e) Cap and seal each opening in the tank. (f) Apply 25,000 cycles of pressure impulse at the rate of no... regulated source of air, inert gas, or water. (g) Perform the static pressure test under § 183.580....

  11. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Vermilion, D. J.; Tucker, S. P.

    2008-03-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. A Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Tests were conducted in the Marshall Space Flight Center (MSFC) Multi-purpose Hydrogen Test Bed (MHTB) to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) test liquids. The TVS used comprises a recirculation pump, a Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. A small amount of liquid extracted from the tank recirculation line was passed through the J-T valve and then through the heat exchanger, extracting thermal energy from the bulk liquid and ullage and thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25%, and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions were compared with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature.

  12. Submarine High Pressure Dehydrator Performance Test

    DTIC Science & Technology

    1988-06-07

    Hatala of September 1985. Prepared for NAVSEA 05N under contract number N00024-33-C-2111. 13. General Dynamics Corporation, High Pressure Air Filtration...Cooling Water Pump Gear Ratio ............... 4:1 Cooling Water Pump Full Load Speed .......... 3500 rpm Water Pump TDH @ 3400 RPM & 15 GPM...Temperature Monitor Thomas A. Edison, Inc. 12-1/2" x 7-1/4" x 9" 25 lbs. Motor Electro Dynamic 2𔄁-1/16" x 2𔃾-1/4" x 2𔃻-1/4" 1150 lbs. S Pressure

  13. Spiroperidol, but not eticlopride or aripiprazole, produces gradual increases in descent latencies in the bar test in rats.

    PubMed

    Rocca, Jeffery F; Lister, Joshua G; Beninger, Richard J

    2017-02-01

    Rats repeatedly exposed to the bar test following injections with a dopamine D2-like receptor antagonist such as haloperidol show increased descent latencies, suggesting that contextual stimuli may lose their ability to elicit approach and other responses. Here, we showed that rats took progressively longer to initiate descent from a horizontal bar across sessions following daily intraperitoneal treatment (paired group) with the D2-like receptor antagonist, spiroperidol (0.125 and 0.25 mg/kg), but not in the control group that received 0.25 mg/kg in their home cage and testing following saline. When both groups were tested following an injection of spiroperidol or following saline, a sensitized and a conditioned increase in descent latency, respectively, were observed in the paired but not in the unpaired group. No evidence of sensitization or conditioning was found with the substituted benzamide compound, eticlopride (0.15-0.5 mg/kg), or the D2-like receptor partial agonist, aripiprazole (0.25-0.5 mg/kg). The different effects of these agents on learning may be related to different region-specific affinities for dopamine receptors or differences in receptor dissociation profiles. We suggest that the behavioural changes observed in spiroperidol-treated rats may reflect inverse incentive learning.

  14. Pressure-testing method permits line-segment isolation

    SciTech Connect

    Lowes, J.M. )

    1990-12-01

    This paper reports that pressure or leak testing a segment of a pipeline is now possible by use of a pressure-testing tool that isolates a locally disturbed area of the line. The system avoids the potentially expensive alternative of decommissioning an entire length of line for pressure testing. High-pressure pipes and pipelines are essential for hydrocarbon production, processing, and transportation. For safety reasons, procedures need to be established and implemented during construction and maintenance which ensure the continued operation of a plant or pipeline. These procedures often call for high-pressure hydrostatic or leak testing. Although only small elements of a pressure system may be disturbed, it has been necessary on occasion to carry out extensive pressure testing for an entire system. This can, for example, involve the testing of many miles of pipe in a pipeline system or the total flooding of pipework which has previously been maintained dry. The new system can be used to test only a locally disturbed area and provides an efficient and cost-effective means of either hydrostatic or leak testing welds, spurs, flanges, and valves. The pressure-test media can include any of the following: water, glycol, nitrogen, or nitrogen/helium mix.

  15. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Peralta, Stephen; Rosales, Keisa; Smith, Sarah R.; Stoltzfus, Joel M.

    2007-01-01

    To determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS), NASA Johnson Space Center requested White Sands Test Facility (WSTF) to perform particle impact testing. Testing was performed from November 2006 through May 2007 and included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This report summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs.

  16. One Reading Specialist's Response to High-Stakes Testing Pressures

    ERIC Educational Resources Information Center

    Assaf, Lori

    2006-01-01

    Pressures to help students pass high-stakes tests affect teachers' reading instruction, their responsiveness to students' learning needs, and their professional effectiveness. This article reports on how one reading specialist responded to testing pressures in her urban elementary school. She believed that what was "right" for her…

  17. Combined Pressure-Shear Ignition Sensitivity Test

    DTIC Science & Technology

    1988-07-01

    anrCIDB* propellant showing that sensitivity increase ( from TNT to Comp B to CMDB . The maximum pressure an~d shear velocity were around 1.0 GPa and 60...shear velocity required for ignition. * CMDB is an acronyin for Composite Modified Double Base. S IA I S i-A2 TABLE OF CONTENTS Page LIST OF FIGURES...Reaction ...................... 15 IOA.CMDB slid against CKDB. No reaction ....................... 17 10B.CMDB slid againbt CMDB . Reaction

  18. Low-Cost, Lightweight Pressure Vessel Proof Test

    NASA Astrophysics Data System (ADS)

    Chanez, Eric

    This experiment seeks to determine the burst strength of the low-cost, lightweight pressure vessel fabricated by the Suborbital Center of Excellence (SCE). Moreover, the test explores the effects of relatively large gage pressures on material strain for ‘pumpkin-shaped' pressure vessels. The SCE team used pressure transducers and analog gauges to measure the gage pressure while a video camera assembly recorded several gores in the shell for strain analysis. The team loaded the vessel in small intervals of pressure until the structure failed. Upon test completion, the pressure readings and video recordings were analyzed to determine the burst strength and material strain in the shell. The analysis yielded a burst pressure of 13.5 psi while the strain analysis reported in the shell. While the results of this proof test are encouraging, the structure's factor of safety must be increased for actual balloon flights. Furthermore, the pressure vessel prototype must be subjected to reliability tests to show the design can sustain gage pressures for the length of a balloon flight.

  19. Short-core acoustic resonant bar test and x-ray CT imaging on sandstone samples during super-critical CO2 flooding and dissolution

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.

    2010-12-01

    Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper

  20. Pressure transient testing at Cerro Prieto Geothermal Field

    SciTech Connect

    Rivera, J.R.; Samaniego, F.V.; Schroeder, R.C.

    1980-01-01

    Because of the inherent problems in applying pressure build-up tests to wells producing two-phase fluids, it was decided to use variable flow tests of short duration known as two-rates tests. In these tests of variation in the well flow rates can be used to intepret the transient pressure response in order to determine reservoir parameters such as permeability, well-bore damage and mean reservoir pressure in the well drainage area. Some examples will illustrate the application of this technique. 11 refs.

  1. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  2. Centaur space vehicle pressurized propellant feed system tests

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Engine firing tests, using a full-scale flight-weight vehicle, were performed to evaluate a pressurized propellant feed system for the Centaur. The pressurant gases used were helium and hydrogen. The system was designed to replace the boost pumps currently used on Centaur. Two liquid oxygen tank pressurization modes were studied: (1) directly into the ullage and (2) below the propellant surface. Test results showed the two Centaur RL10 engines could be started and run over the range of expected flight variables. No system instabilities were encountered. Measured pressurization gas quantities agreed well with analytically predicted values.

  3. Advanced water alkaline electrolysis - A two years running of a test plant: 120 C - 160 C, 20 bars /about 300 p.s.i./

    NASA Astrophysics Data System (ADS)

    Bailleux, C.

    Results acquired in the two-year operation of an advanced pressurized forced-flow alkaline water electrolysis test plant are reported. The test loop consists of eight monopolar cells, circulator, filter units and heat exchangers designed to operate with a 40 wt percent KOH electrolyte at a temperature between 120 and 160 C, a pressure of 20 bars, a current density of 10 kA/sq M and input electric power of 1.75 W. Each cell is made up of two shells of 290 mm external diameter and thickness 40 mm on either side of an FEP-coated diaphragm with a working area of 120 x 120 mm. During the two years of operation, the duty factor for temperature operation has increased from 44 percent to more than 80 percent and that for electrolysis operation has increased from 27 percent to 60 percent, with continuous steady state operation for as long as 35 days. Tests have confirmed the stability of a chrysotile asbestos diaphragm when the electrolyte is doped with silica ions, and revealed deteriorations in materials stability due to gasket creep and metal corrosion. The behavior of the nickel electrodes was observed to be influenced by operating temperatures, cathodic deposits, electrode structure and thermal treatment. In spite of the careful design of the gravity separating tanks, purity of the produced O2 was found unsatifactory, although no trouble arose on the hydrogen side. Results of the operation of the test loop have been scaled up in order to predict the performance of a large-scale pilot plant.

  4. Acoustic emission testing of 12-nickel maraging steel pressure vessels

    NASA Technical Reports Server (NTRS)

    Dunegan, H. L.

    1973-01-01

    Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).

  5. Test for pressure control capacity of the Eustachian tube.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Izukura, H; Inoue, S

    1994-01-01

    Because of Eustachian tube controls middle ear pressure to maintain the best hearing level, we tested the equilibration capacity of the Eustachian tube by measuring hearing levels in a soundproof pressure chamber. The number of swallows to recover normal hearing after the chamber pressure reached -200 mm H2O (an index of equilibration capacity for the static pressure differences across the eardrum) was less than 9 in normal subjects. The worst level of hearing and the time required to recover normal hearing from the beginning of alteration in the chamber pressure to -700 mm H2O (indexes of equilibration capacity for dynamic pressure differences across the eardrum) were 0-17 dB and within 120s in normal subjects. It was difficult to determine definitive normal ranges of the equilibrium capacity of the Eustachian tube when positive pressure was applied.

  6. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  7. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

  8. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  9. Expandable rubber plug seals openings for pressure testing

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Plug assembly seals openings in piping systems, vessels, and chambers for low pressure leak testing. The assembly, which consists of a rubber sealing plug and the mechanism for expanding it into a pressure-tight configuration, adequately seals irregular diameters without damage to mating surfaces.

  10. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  11. Description of an oscillating flow pressure drop test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary; Miller, Eric L.; Gedeon, David R.; Koester, Gary E.

    1988-01-01

    A test rig designed to generate heat exchanger pressure drop information under oscillating flow conditions is described. This oscillating flow rig is based on a variable stroke and variable frequency linear drive motor. A frequency capability of 120 hertz and a mean test pressure up to 15 mPA (2200 psi) allows for testing at flow conditions found in modern high specific power Stirling engines. An important design feature of this rig is that it utilizes a single close coupled dynamic pressure transducer to measure the pressure drop across the test sample. This eliminates instrumentation difficulties associated with the pressure sensing lines common to differential pressure transducers. Another feature of the rig is that it utilizes a single displacement piston. This allows for testing of different sample lengths and configurations without hardware modifications. All data acquisition and reduction for the rig is performed with a dedicated personal computer. Thus the overall system design efficiently integrates the testing and data reduction procedures. The design methodology and details of the test rig is described.

  12. Pressure Balanced, Low Hysteresis Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Arora, Gul K.; Proctor, Margaret; Steinetz, Bruce M.; Delgado, Irebert R.

    2000-01-01

    The purpose of this presentation is to demonstrate: low cost photoetching fabrication technique; pressure balanced finger seal design; and finger seal operation. The tests and analyses includes: finger seal air leakage analysis; rotor-run out and endurance tests; and extensive analytical work and rig testing.

  13. 14 CFR 25.843 - Tests for pressurized cabins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... release valve, to stimulate the effects of closed regulator valves. (2) Tests of the pressurization system... to the maximum altitude for which certification is requested. (3) Flight tests, to show the... limitations of the airplane, up to the maximum altitude for which certification is requested. (4) Tests...

  14. 14 CFR 25.843 - Tests for pressurized cabins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... release valve, to stimulate the effects of closed regulator valves. (2) Tests of the pressurization system... to the maximum altitude for which certification is requested. (3) Flight tests, to show the... limitations of the airplane, up to the maximum altitude for which certification is requested. (4) Tests...

  15. 14 CFR 25.843 - Tests for pressurized cabins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... release valve, to stimulate the effects of closed regulator valves. (2) Tests of the pressurization system... to the maximum altitude for which certification is requested. (3) Flight tests, to show the... limitations of the airplane, up to the maximum altitude for which certification is requested. (4) Tests...

  16. 14 CFR 25.843 - Tests for pressurized cabins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... release valve, to stimulate the effects of closed regulator valves. (2) Tests of the pressurization system... to the maximum altitude for which certification is requested. (3) Flight tests, to show the... limitations of the airplane, up to the maximum altitude for which certification is requested. (4) Tests...

  17. 14 CFR 25.843 - Tests for pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... release valve, to stimulate the effects of closed regulator valves. (2) Tests of the pressurization system... to the maximum altitude for which certification is requested. (3) Flight tests, to show the... limitations of the airplane, up to the maximum altitude for which certification is requested. (4) Tests...

  18. Pressure Testing of a Minimum Gauge PRSEUS Panel

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew J.; Rouse, Marshall; Linton, Kim A.; Li, Victor P.

    2011-01-01

    Advanced aircraft configurations that have been developed to increase fuel efficiency require advanced, novel structural concepts capable of handling the unique load conditions that arise. One such concept is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) developed by the Boeing Company. The PRSEUS concept is being investigated by NASA s Environmentally Responsible Aviation (ERA) Program for use in a hybrid-wing body (HWB) aircraft. This paper summarizes the analysis and test of a PRSEUS panel subjected to internal pressure, the first such pressure test for this structural concept. The pressure panel used minimum gauge skin, with stringer and frame configurations consistent with previous PRSEUS tests. Analysis indicated that for the minimum gauge skin panel, the stringer locations exhibit fairly linear response, but the skin bays between the stringers exhibit nonlinear response. Excellent agreement was seen between nonlinear analysis and test results in the critical portion at the center of the panel. The pristine panel was capable of withstanding the required 18.4 psi pressure load condition without exhibiting any damage. The impacted panel was capable of withstanding a pressure load in excess of 28 psi before initial failure occurred at the center stringer, and the panel was capable of sustaining increased pressure load after the initial failure. This successful PRSEUS panel pressure panel test was a critical step in the building block approach for enabling the use of this advanced structural concept on future aircraft, such as the HWB.

  19. 30 CFR 250.448 - What are the BOP pressure tests requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What are the BOP pressure tests requirements... pressure tests requirements? When you pressure test the BOP system, you must conduct a low-pressure and a high-pressure test for each BOP component. You must conduct the low-pressure test before the...

  20. 30 CFR 250.448 - What are the BOP pressure tests requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What are the BOP pressure tests requirements... pressure tests requirements? When you pressure test the BOP system, you must conduct a low-pressure and a high-pressure test for each BOP component. You must conduct the low-pressure test before the...

  1. 30 CFR 250.448 - What are the BOP pressure tests requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What are the BOP pressure tests requirements... pressure tests requirements? When you pressure test the BOP system, you must conduct a low-pressure and a high-pressure test for each BOP component. You must conduct the low-pressure test before the...

  2. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  3. Normal-pressure Tests of Circular Plates with Clamped Edges

    NASA Technical Reports Server (NTRS)

    Mcpherson, Albert E; Ramberg, Walter; Levy, Samuel

    1942-01-01

    A fixture is described for making normal-pressure tests of flat plates 5 inches in diameter in which particular care was taken to obtain rigid clamping at the edges. Results are given for 19 plates, ranging in thickness from 0.015 to 0.072 inch. The center deflections and the extreme-fiber stresses at low pressures were found to agree with theoretical values; the center deflections at high pressures were 4 to 12 percent greater than the theoretical values. Empirical curves are derived of the pressure for the beginning of permanent set as a function of the dimensions of the plate and the tensile properties of the material.

  4. Normal-Pressure Tests of Circular Plates with Clamped Edges

    NASA Technical Reports Server (NTRS)

    Mcpherson, Albert E; Ramberg, Walter; Levy, Samuel

    1942-01-01

    A fixture is described for making normal-pressure tests of flat plates 5 inches in diameter in which particular care was taken to obtain rigid clamping at the edges. Results are given for 19 plates, ranging in thickness form 0.015 to 0.072 inch. The center deflections and the extreme-fiber stresses at low pressures were found to agree with theoretical values; the center deflections at high pressures were 4 to 12 percent greater than the theoretical values. Empirical curves are derived of the pressure for the beginning of the permanent set as a function of the dimensions of the plate and the tensile properties of the material.

  5. Constant pressure high throughput membrane permeation testing system

    DOEpatents

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  6. Evaluation of the concept of pressure proof testing fuselage structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Orringer, Oscar

    1991-01-01

    The FAA and NASA have recently completed independent technical evaluations of the concept of pressure proof testing the fuselage of commercial transport airplanes. The results of these evaluations are summarized. The objectives of the evaluations were to establish the potential benefit of the pressure proof test, to quantify the most desirable proof test pressure, and to quantify the required proof test interval. The focus of the evaluations was on multiple-site cracks extending from adjacent rivet holes of a typical fuselage longitudinal lap splice joint. The FAA and NASA do not support pressure proof testing the fuselage of aging commercial transport aircraft. The argument against proof testing is as follows: (1) a single proof test does not insure an indefinite life; therefore, the proof test must be repeated at regular intervals; (2) for a proof factor of 1.33, the required proof test interval must be below 300 flights to account for uncertainties in the evaluation; (3) conducting the proof test at a proof factor of 1.5 would considerably exceed the fuselage design limit load; therefore, it is not consistent with accepted safe practices; and (4) better safety can be assured by implementing enhanced nondestructive inspection requirements, and adequate reliability can be achieved by an inspection interval several times longer than the proof test interval.

  7. [Experimental research of gaits based on young plantar pressure test].

    PubMed

    Meng, Qingyun; Tan, Shili; Yu, Hongliu; Shen, Lixing; Zhuang, Jianhai; Wang, Jinwu

    2014-10-01

    The present paper is to study the center line of the plantar pressure of normal young people, and to find the relation between center line of the plantar pressure and gait stability and balance. The paper gives the testing principle and calculating methods for geometric center of plantar pressure distribution and the center of pressure due to the techniques of footprint frame. The calculating formulas in both x direction and y direction are also deduced in the paper. In the experiments carried out in our laboratory, the gait parameters of 131 young subjects walking as usual speed were acquired, and 14 young subjects of the total were specially analyzed. We then provided reference data for the walking gait database of young people, including time parameters, space parameters and plantar pressure parameters. We also obtained the line of geometry center and pressure center under the foot. We found that the differences existed in normal people's geometric center line and the pressure center line. The center of pressure trajectory revealed foot movement stability. The length and lateral changes of the center line of the plantar pressure could be applied to analysis of the plantar pressure of all kinds of people. The results in this paper are useful in clinical foot disease diagnosis and evaluation of surgical effect.

  8. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  9. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  10. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Nelson, S.L.; Hastings, L.J.; Flachbart, R.H.; Vermillion, D.J.; Tucker, S.P.

    2007-01-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or to prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. During low gravity operations, a Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Therefore, a series of tests were conducted in the Multi-purpose Hydrogen Test Bed (MHTB) of Marshall Space Flight Center (MSFC) in order to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) as the test liquids. The TVS used in these test series consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted from the tank recirculation line, passing it through the J-T valve, and then through the heat exchanger, thermal energy is extracted from the bulk liquid and ullage thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25% and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions and comparisons with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  11. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    NASA Technical Reports Server (NTRS)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  12. Orion ECLSS/Suit System Intermediate Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2014-01-01

    The Intermediate Pressure Integrated Suit Test (IPIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. This test was performed in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center by the Crew and Thermal Systems Division. This testing is the second phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. The IPIST configuration consisted of development hardware that included the CAMRAS, air revitalization loop fan and suit loop regulator. Two test subjects were in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2014, will utilize the same hardware with human test subjects in pressure suits at vacuum. This paper will discuss the results and findings of IPIST and will also discuss future testing.

  13. Laboratory tests to assess water-level fluctuations at Vernita Bar, Washington, USA. [Effects on chinook salmon redd

    SciTech Connect

    Neitzel, D.A.; Becker, C.D.; Abernethy, C.S.

    1985-02-01

    Vernita Bar chinook salmon redd dewatering was simulated in gravel-filled aquaria. Dewatering before hatching did not affect survival; after hatching a few hours of dewatering was fatal. Weather conditions at Vernita Bar was not a factor in assessing dewatering effects. Above-ground watering of dewatered redds may protect alevins and eleutheroembryos.

  14. Fan Noise Source Diagnostic Test: Vane Unsteady Pressure Results

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2002-01-01

    To investigate the nature of fan outlet guide vane pressure fluctuations and their link to rotor-stator interaction noise, time histories of vane fluctuating pressures were digitally acquired as part of the Fan Noise Source Diagnostic Test. Vane unsteady pressures were measured at seven fan tip speeds for both a radial and a swept vane configuration. Using time-domain averaging and spectral analysis, the blade passing frequency (BPF) harmonic and broadband contents of the vane pressures were individually analyzed. Significant Sound Pressure Level (SPL) reductions were observed for the swept vane relative to the radial vane for the BPF harmonics of vane pressure, but vane broadband reductions due to sweep turned out to be much smaller especially on an average basis. Cross-correlation analysis was used to establish the level of spatial coherence of broadband pressures between different locations on the vane and integral length scales of pressure fluctuations were estimated from these correlations. Two main results of this work are: (1) the average broadband level on the vane (in dB) increases linearly with the fan tip speed for both the radial and swept vanes, and (2) the broadband pressure distribution on the vane is nearly homogeneous and its integral length scale is a monotonically decreasing function of fan tip speed.

  15. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  16. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  17. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  18. Astronaut Joseph Kerwin test subject Lower Body Negative Pressure experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot, serves as test subject for the Lower Body Negative Pressure Experiment. Astronaut Paul J. Weitz, Skylab 2 pilot, assists Kerwin with the blood pressure cuff. They are in the experiment and work area of the Orbital Workshop crew quarters of the Skylab 1 and 2 space station cluster in Earth orbit. Kerwin is lying in the lower body negative pressure device. The purpose of the M092 experiment is to provide information concerning the time course of cardiovascular adaptation during flight, and to provide inflight data for predicting the degree of orthostatic intolerance and impairment of physical capacity to be expected upon return to Earth environment. The data collected in support of M092 are blood pressure, heart rate, body temperature, vectorcardiogram, LBNPD pressure, leg volume changes, and body weight.

  19. Leaky guided waves in generic bars: Numerical prediction and experimental validation by means of ultrasonic underwater testing

    SciTech Connect

    Mazzotti, Matteo; Bartoli, Ivan; Marzani, Alessandro

    2014-02-18

    Guided Ultrasonic Waves (GUWs) are used in several industrial and civil applications for the non-destructive tests and inspection of mechanical waveguides immersed in fluids. As well known, the impedance mismatch at the fluid-structure interface causes the bulk waves traveling inside the waveguide to be partially refracted in the surrounding fluid. The leakage of bulk waves involves continuous energy radiation along the propagation direction, resulting in high attenuation rates and, consequently, reduced inspection ranges. In this work, the dispersion behaviour of leaky guided waves that propagate in immersed waveguides of general cross-section is investigated. To this end, a Semi-Analytical Finite Element (SAFE) method coupled with a 2.5D Boundary Element method (BEM) is used to extract the wave dispersion equation. The proposed formulation avoids the well known limitations of analytical methods in treating complex geometries as well as those of Finite Element-based methods in representing propagation processes in unbounded domains. Numerical and experimental results are presented, in which the dispersion curves are extracted for different bars of arbitrary shape immersed in water. The results obtained in this paper can be useful for the design of testing conditions in practical applications and to tune experimental set up.

  20. High Speed Pressure Sensitive Paint for Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Pena, Carolina; Chism, Kyle; Hubner, Paul

    2016-11-01

    Pressure sensitive paint (PSP) allows engineers to obtain accurate, high-spatial-resolution measurements of pressure fields over a structure. The pressure is directly related to the luminescence emitted by the paint due to oxygen quenching. Fast PSP has a higher surface area due to its porosity compared to conventional PSP, which enables faster diffusion and measurements to be acquired three orders of magnitude faster than with conventional PSP. A fast time response is needed when testing vibrating structures due to fluid-structure interaction. The goal of this summer project was to set-up, test and analyze the pressure field of an impinging air jet on a vibrating cantilever beam using Fast PSP. Software routines were developed for the processing of the emission images, videos of a static beam coated with Fast PSP were acquired with the air jet on and off, and the intensities of these two cases were ratioed and calibrated to pressure. Going forward, unsteady pressures on a vibrating beam will be measured and presented. Eventually, the long-term goal is to integrate luminescent pressure and strain measurement techniques, simultaneously using Fast PSP and a luminescent photoelastic coating on vibrating structures. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  1. Composite Overwrapped Pressure Vessel(COPV) Stress Rupture Testing

    NASA Astrophysics Data System (ADS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark, R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-09-01

    This paper reports stress rupture testing of Kevlar® composite overwrapped pressure vessels(COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm(40-in.) diameter Kevlar® COPV was tested to failure(burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  2. Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-01-01

    This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  3. Noninvasive, quantitative respirator fit testing through dynamic pressure measurement.

    PubMed

    Carpenter, D R; Willeke, K

    1988-10-01

    A new method has been invented for the noninvasive and quantitative determination of fit for a respirator. The test takes a few seconds and requires less expensive instrumentation than presently used for invasive testing. In this test, the breath is held at a negative pressure for a few seconds, and the leak-induced pressure decay inside the respirator cavity is monitored. A dynamic pressure sensor is attached to a modified cartridge of an air-purifying respirator or built into the respirator body or into the air supply line of an air-supplied respirator. The method is noninvasive in that the modified cartridge can be mounted onto any air-purifying respirator. The pressure decay during testing quantifies the airflow entered through the leak site. An equation has been determined which gives the air leakage as a function of pressure decay slope, respirator volume and the pressure differential during actual wear--all of which are determined by the dynamic pressure sensor. Thus, the ratio of air inhaled through the filters or via the air supply line to the leak rate is a measure of respirator fit, independent of aerosol deposition in the lung and aerosol distribution in the respirator cavity as found for quantitative fit testing with aerosols. The new method is shown to be independent of leak and sensor locations. The concentration and distribution of aerosols entered through the leak site is dependent only on the physical dimensions of the leak site and the air velocity in it, which can be determined independently.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Dark matter trapping by stellar bars: the shadow bar

    NASA Astrophysics Data System (ADS)

    Petersen, Michael S.; Weinberg, Martin D.; Katz, Neal

    2016-12-01

    We investigate the complex interactions between the stellar disc and the dark-matter halo during bar formation and evolution using N-body simulations with fine temporal resolution and optimally chosen spatial resolution. We find that the forming stellar bar traps dark matter in the vicinity of the stellar bar into bar-supporting orbits. We call this feature the shadow bar. The shadow bar modifies both the location and magnitude of the angular momentum transfer between the disc and dark matter halo and adds 10 per cent to the mass of the stellar bar over 4 Gyr. The shadow bar is potentially observable by its density and velocity signature in spheroid stars and by direct dark matter detection experiments. Numerical tests demonstrate that the shadow bar can diminish the rate of angular momentum transport from the bar to the dark matter halo by more than a factor of 3 over the rate predicted by dynamical friction with an untrapped dark halo, and thus provides a possible physical explanation for the observed prevalence of fast bars in nature.

  5. Lepton Universality Test in Upsilon(1S) Decays at BaBar

    SciTech Connect

    Guido, Elisa; /Genoa U. /INFN, Genoa

    2012-04-10

    Using a sample of 122 million {Upsilon}(3S) decays collected with the BABAR detector at the PEP-II asymmetric energy collider at the SLAC National Accelerator Laboratory, we measure the ratio R{sub {tau}{mu}} = BR({Upsilon}(1S) {yields} {tau}{sup +}{tau}{sup -})/BR({Upsilon}(1S) {yields} {mu}{sup +}{mu}{sup -}); the measurement is intended as a test of lepton universality and as a possible search for a light pseudoscalar Higgs boson in Next to Minimal Supersymmetric Standard Model (NMSSM) scenarios. Such a boson could appear in a deviation of the ratio R{sub {tau}{mu}} from the Standard Model expectation, that is 1, except for small lepton mass corrections. The analysis exploits the decays {Upsilon}(3S) {yields} {Upsilon}(1S){pi}{sup +}{pi}{sup -}, {Upsilon}(1S) {yields} l{sup +}l{sup -}, where l = {mu},{tau}.

  6. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  7. Test of Lepton Universality in Upsilon(1S) Decays at BaBar

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, David Nathan; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /more authors..

    2010-06-07

    The ratio R{sub {tau}{mu}}({Upsilon}(1S))={Lambda}{sub {Upsilon}(1S){yields}{tau}{sup +}{tau}{sup -}}/{Lambda}{sub {Upsilon}(1S){yields}{mu}{sup +}{mu}{sup -}} is measured using a sample of (121.8 {+-} 1.2) x 10{sup 6}{Upsilon}(3S) events recorded by the BABAR detector. This measurement is intended as a test of lepton universality and as a search for a possible light pseudoscalar Higgs boson. In the standard model (SM) this ratio is expected to be close to 1. Any significant deviations would violate lepton universality and could be introduced by the coupling to a light pseudoscalar Higgs boson. The analysis studies the decays {Upsilon}(3S) {yields} {Upsilon}(1S){sub {pi}{sup +}{pi}{sup -}}, {Upsilon}(1S) {yields} {ell}{sup +}{ell}{sup -}, where l = {mu}, {tau}. The result, R{sub {tau}{mu}}({Upsilon}(1S))=1.005 {+-} 0.013(stat) {+-} 0.022(syst), shows no deviation from the expected SM value, while improving the precision with respect to previous measurements.

  8. Terahertz NDE of Stressed Composite Overwrapped Pressure Vessels - Initial Testing

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Seebo, Jeffrey P.; Anatasi, Robert F.

    2009-01-01

    Terahertz radiation nondestructive evaluation was applied to a set of Kevlar composite overwrapped pressure vessel bottles that had undergone a series of thermal and pressure tests to simulate stress rupture effects. The bottles in these nondestructive evaluation tests were bottles that had not ruptured but had survived various times at the elevated load and temperature levels. Some of the bottles showed evidence of minor composite failures. The terahertz radiation did detect visible surface flaws, but did not detect any internal chemical or material degradation of the thin overwraps.

  9. Temperature effect compensation for fast differential pressure decay testing

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Tong, Xiaomeng; Cai, Maolin

    2014-06-01

    To avoid the long temperature recovery period with differential pressure decay for leak detection, a novel method with temperature effect compensation is proposed to improve the testing efficiency without full stabilization of temperature. The mathematical model of conventional differential pressure decay testing is established to analyze the changes of temperature and pressure during the measuring period. Then the differential pressure is divided into two parts: the exponential part caused by temperature recovery and the linear part caused by leak. With prior information obtained from samples, parameters of the exponential part can be identified precisely, and the temperature effect will be compensated before it fully recovers. To verify the effect of the temperature compensated method, chambers with different volumes are tested under various pressures and the experiments show that the improved method is faster with satisfactory precision, and an accuracy less than 0.25 cc min-1 can be achieved when the compensation time is proportional to four times the theoretical thermal-time constant.

  10. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2014-10-01 2014-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  11. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2011-10-01 2011-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  12. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2013-10-01 2013-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  13. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2012-10-01 2012-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  14. 46 CFR 56.97-5 - Pressure testing of nonstandard piping system components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-5 Pressure testing of nonstandard piping... 46 Shipping 2 2010-10-01 2010-10-01 false Pressure testing of nonstandard piping system components... rated pressure stamped thereon, except that no component should be tested at a pressure causing...

  15. Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and TMAO solutions at 10 kbar versus 1 bar.

    PubMed

    Imoto, Sho; Forbert, Harald; Marx, Dominik

    2015-10-07

    Trimethylamine N-oxide (TMAO) is a protecting osmolyte that stabilizes proteins against both temperature and pressure denaturation. Yet, even the solvation of TMAO itself is not well understood beyond ambient conditions. Here, using ab initio molecular dynamics, we analyze how its solvation structure changes upon compressing its ≈0.5 M aqueous solution from 1 bar to 10 kbar. The neat solvent, liquid water compressed to 10 kbar, is analyzed in detail to provide a meaningful gauge for the pressure-induced solvation changes of the solute. Pure water is shown to prefer to keep four H-bonded water molecules in a locally tetrahedral arrangement up to 10 kbar. The eye-catching shape changes of its oxygen-oxygen radial distribution function, where apparently the entire second peak is shifted into the first one, are traced back to about two more water molecules which are squeezed into the tetrahedral voids that are formed in the first shell by the H-bonded water molecules. These additional molecules increase the coordination number of pure water at 10 kbar significantly, but they are definitely not H-bonded to the central water molecule; rather they are its topological second to fourth H-bonded neighbors. The pressure response of TMAO(aq) is distinctly different, although its radial distribution functions do not change much. Under ambient conditions, the negatively charged oxygen site of the solute, which is strongly hydrophilic, predominantly accepts three H-bonds, whereas a roughly equal population of threefold and square-planar fourfold H-bonding is observed at 10 kbar. Moreover, only a negligible contribution of non-H-bonded water molecules is found in the first-shell region of TMAO even at 10 kbar, in contrast to the pressure response of water itself. In the hydrophobic region of TMAO, the solvating water molecules are found to straddle the three methyl groups at ambient pressure, which remains virtually unchanged upon compressing the solution to 10 kbar. Here, the

  16. Testing of heat exchangers in membrane oxygenators using air pressure.

    PubMed

    Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg

    2006-03-01

    All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.

  17. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure

  18. 30 CFR 250.1609 - Pressure testing of casing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing of casing. (a) Prior to drilling the plug after cementing, all casing strings, except the drive or.... (When oil or gas is not present in the cap rock, the production liner need not be cemented in place..., drilling shall not be resumed until there has been a timelapse of at least 8 hours under pressure for...

  19. One Teacher's Resistance to the Pressures of Test Mentality

    ERIC Educational Resources Information Center

    Dooley, Caitlin McMunn

    2005-01-01

    The strategies adopted and the efforts taken by Jacqueline, who is a teacher, to combat the pressures of testing and at the same time develop the love of literature amongst her students, is described. Jacqueline develops and practices her own beliefs regarding the methods for learning literature, which she has gained from her experience, reading…

  20. Design and Test Requirements for Space Flight Pressurized Systems

    DTIC Science & Technology

    2014-11-26

    establishes the baseline requirements for the design, fabrication, assembly, installation, test, inspection, operation, and maintenance of pressure systems...18 4.8 Operation and Maintenance Requirements ..................................................................... 18 4.8.1 Operating Procedure...18 4.8.2 Inspection and Maintenance

  1. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  2. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  3. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  4. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure (pressure in the IBC above ambient atmospheric pressure) measured in the IBC at 55 °C (131 °F... pressure of the hazardous material plus atmospheric pressure) is used, 1.5 multiplied by the vapor pressure... pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used, 1.75......

  5. 49 CFR 173.302b - Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prescribed in this section, the working pressure of a UN pressure receptacle may not exceed 2/3 of the test... may the internal pressure at 65 °C (149 °F) exceed the test pressure. (c) Fluorine, compressed, UN... must be packaged in a UN pressure receptacle with a minimum test pressure of 200 bar and a...

  6. 49 CFR 173.302b - Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prescribed in this section, the working pressure of a UN pressure receptacle may not exceed 2/3 of the test... may the internal pressure at 65 °C (149 °F) exceed the test pressure. (c) Fluorine, compressed, UN... must be packaged in a UN pressure receptacle with a minimum test pressure of 200 bar and a...

  7. High Pressure Composite Overwrapped Pressure Vessel (COPV) Development Tests at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Greene, Nathanael J.; Revilock, Duane; Sneddon, Kirk; Anselmo, Estelle

    2008-01-01

    Development tests were conducted to evaluate the performance of 2 COPV designs at cryogenic temperatures. This allows for risk reductions for critical components for a Gaseous Helium (GHe) Pressurization Subsystem for an Advanced Propulsion System (APS) which is being proposed for NASA s Constellation project and future exploration missions. It is considered an advanced system since it uses Liquid Methane (LCH4) as the fuel and Liquid Oxygen (LO2) as the oxidizer for the propellant combination mixture. To avoid heating of the propellants to prevent boil-off, the GHe will be stored at subcooled temperatures equivalent to the LO2 temperature. Another advantage of storing GHe at cryogenic temperatures is that more mass of the pressurized GHe can be charged in to a vessel with a smaller volume, hence a smaller COPV, and this creates a significant weight savings versus gases at ambient temperatures. The major challenge of this test plan is to verify that a COPV can safely be used for spacecraft applications to store GHe at a Maximum Operating Pressure (MOP) of 4,500 psig at 140R to 160R (-320 F to -300 F). The COPVs for these tests were provided by ARDE , Inc. who developed a resin system to use at cryogenic conditions and has the capabilities to perform high pressure testing with LN2.

  8. Pressure-interference testing of the Sumikawa geothermal field

    SciTech Connect

    Garg, S.K.; Pritchett, J.W.; Ariki, K.; Kawano, Y.

    1991-01-01

    Pressure interference tests have been used to determine the permeability structure of the Sumikawa reservoir. Interference tests between wells S-4 and KY-1 have indicated the presence of a very high permeability (140 md) north-south channel in the altered andesite layer. Pressure buildup data from well SN-7D have provided indications of a high transmissivity (kh {approx} 18 darcy-meters) reservoir located in the granodiorite layer, lack of pressure response in nearby shutin Sumikawa wells implies that the reservoir penetrated by SN-7D is isolated from the shallower reservoir in the altered andesites. The ''altered andesite'' and the ''granodiorite'' formations constitute the principal geothermal aquifers at Sumikawa. Pressure interference tests (wells KY-1 and SB-2, and wells KY-2 and SB-3) have also confirmed the presence of moderately high transmissivity ({approx} 2 darcy-meters) dacitic layers in the ''marine-volcanic complex'' formation. Because of its low vertical permeability, the ''marine volcanic complex'' formation constitutes an attractive target for the reinjection of waste geothermal fluids.

  9. Techniques for Embedding Instrumentation in Pressure Vessel Test Articles

    NASA Technical Reports Server (NTRS)

    Cornelius, Michael

    2006-01-01

    Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.

  10. Techniques for embedding instrumentation in pressure vessel test articles

    NASA Astrophysics Data System (ADS)

    Cornelius, Michael

    2006-05-01

    Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.

  11. Hydrogen gas embrittlement and the disc pressure test

    NASA Technical Reports Server (NTRS)

    Bachelet, E. J.; Troiano, A. R.

    1973-01-01

    A disc pressure test has been used to study the influenced of a hydrogen gas environment on the mechanical properties of three high strength superalloys, Inconel 718, L-605 and A-286, in static and dynamic conditions. The influence of the hydrogen pressure, loading rate, temperature, mechanical and thermal fatigue has investigated. The permeation characteristics of Inconel 718 have been determined in collaboration with the French AEC. The results complemented by a fractographic study are consistent either with a stress-sorption or with an internal embrittlement type of mechanism.

  12. Atmospheric pressure gas chromatography-time-of-flight-mass spectrometry (APGC-ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE).

    PubMed

    Pintado-Herrera, Marina G; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2014-12-03

    This work presents the development, optimization and validation of a multi-residue method for the simultaneous determination of 102 contaminants, including fragrances, UV filters, repellents, endocrine disruptors, biocides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and several types of pesticides in aqueous matrices. Water samples were processed using stir bar sorptive extraction (SBSE) after the optimization of several parameters: agitation time, ionic strength, presence of organic modifiers, pH, and volume of the derivatizing agent. Target compounds were extracted from the bars by liquid desorption (LD). Separation, identification and quantification of analytes were carried out by gas chromatography (GC) coupled to time-of-flight (ToF-MS) mass spectrometry. A new ionization source, atmospheric pressure gas chromatography (APGC), was tested. The optimized protocol showed acceptable recovery percentages (50-100%) and limits of detection below 1ngL(-1) for most of the compounds. Occurrence of 21 out of 102 analytes was confirmed in several environmental aquatic matrices, including seawater, sewage effluent, river water and groundwater. Non-target compounds such as organophosphorus flame retardants were also identified in real samples by accurate mass measurement of their molecular ions using GC-APGC-ToF-MS. To the best of our knowledge, this is the first time that this technique has been applied for the analysis of contaminants in aquatic systems. By employing lower energy than the more widely used electron impact ionization (EI), AGPC provides significant advantages over EI for those substances very susceptible to high fragmentation (e.g., fragrances, pyrethroids).

  13. Method - Pressure drop tests for fuel system components

    NASA Astrophysics Data System (ADS)

    1990-12-01

    Techniques are presented for testing components and improving the accuracy of such tests to meet the requirements of MIL-F-8615 or equivalent specifications. Pressure-drop tests for individual components are described generally including the single and double piezometer-tube methods, and many of the suggested improvements apply to these techniques. The test setup is presented graphically, and the procedural conditions are described. The suggestions for improving the test results include notes regarding air bubbles, pumping-source pulsations, attachment fittings, overshooting the flow rate, and the importance of precise calibration. Diagrams are given for the double piezometer-tube, the mercury-manometer, and the fuel-manometer tests, and the arithmetic computation is described for the data-reduction equation.

  14. 49 CFR 178.814 - Hydrostatic pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following methods: (A) The gauge pressure (pressure in the IBC above ambient atmospheric pressure) measured...); (B) If absolute pressure (vapor pressure of the hazardous material plus atmospheric pressure) is used... atmospheric pressure) is used, 1.75 multiplied by the vapor pressure of the hazardous material at 50......

  15. Surface fatigue life of carburized and hardened M50NiL and AISI 9310 spur gears and rolling-contact test bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1989-01-01

    Spur gear endurance tests and rolling-element surface tests were conducted to investigate vacuum-induction-melted, vacuum-arc-melted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling-contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm (3.5 in.). Gear test conditions were an inlet oil temperature of 320 K (116 F), and outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench rolling-element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPA (700 ksi). The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling-contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and to have fatigue life far superior to that of both VIM-VAR and VAR AISI 9310 gears and rolling-contact bars.

  16. The sticking probability for H 2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lytken, O.; Chorkendorff, I.

    2008-05-01

    The sticking probability for H2 on Ni, Co, Cu, Rh, Ru, Pd, Ir and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 °C. Carbon monoxide inhibits the sticking probability significantly for all the metals, even at 200 °C. In the presence of 10 ppm CO, the sticking probability increases in the order Ir, Pt, Ni, Co, Pd, Rh, Ru, whereas for Cu, it is below the detection limit of the measurement, even in pure H2. The sticking probability for H2 in presence of CO relative to its value in pure hydrogen is largest for Pd and smallest for Pt and Ir. The high sensitivity to CO seen for Ir and Pt is explained by the fact that the difference in desorption energy for H and CO is largest for those metals.

  17. 49 CFR 179.500-16 - Tests of pressure relief devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 107A) § 179.500-16 Tests of pressure relief devices. (a) Pressure relief valves shall be tested by air... devices that incorporate a rupture disc, samples of the discs used shall burst at a pressure not...

  18. 49 CFR 179.500-16 - Tests of pressure relief devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 107A) § 179.500-16 Tests of pressure relief devices. (a) Pressure relief valves shall be tested by air... devices that incorporate a rupture disc, samples of the discs used shall burst at a pressure not...

  19. 49 CFR 179.500-16 - Tests of pressure relief devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 107A) § 179.500-16 Tests of pressure relief devices. (a) Pressure relief valves shall be tested by air... devices that incorporate a rupture disc, samples of the discs used shall burst at a pressure not...

  20. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    SciTech Connect

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)

  1. Energy Efficient Engine high pressure turbine component test performance report

    NASA Technical Reports Server (NTRS)

    Timko, L. P.

    1984-01-01

    The high pressure turbine for the General Electric Energy Efficient Engine is a two stage design of moderate loading. Results of detailed system studies led to selection of this configuration as the most appropriate in meeting the efficiency goals of the component development program. To verify the design features of the high pressure turbine, a full scale warm air turbine test rig with cooling flows simulated was run. Prior to this testing, an annular cascade test was run to select vane unguided turn for the first stage nozzle. Results of this test showed that the base configuration exceeded the lower unguided turning configuration by 0.48 percent in vane kinetic energy efficiency. The air turbine test program, consisting of extensive mapping and cooling flow variation as well as design point evaluation, demonstrated a design point efficiency level of 90.0 percent based on the thermodynamic definition. In terms of General Electric cycle definition, this efficiency was 92.5 percent. Based on this test, it is concluded that efficiency goals for the Flight Propulsion System were met.

  2. MECHANICAL TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect

    Duncan, A

    2006-05-11

    The methods and interim results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. The scope is carbon steels commonly used for natural gas pipelines in the United States that are candidates for hydrogen service in the hydrogen economy. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in 1500 psig hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test program will continue with tests to quantify the fracture behavior in terms of J-R curves for these materials at air and hydrogen pressure conditions.

  3. Testing of fuel/oxidizer-rich, high-pressure preburners

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.

    1982-01-01

    Results of an evaluation of high pressure combustion of fuel rich and oxidizer rich LOX/RP-1 propellants using 4.0 inch diameter prototype preburner injectors and chambers are presented. Testing covered a pressure range from 8.9 to 17.5 MN/square meters (1292 to 2540 psia). Fuel rich mixture ratios ranged from 0.238 to 0.367; oxidizer rich mixture ratios ranged from 27.2 to 47.5. Performance, gas temperature uniformity, and stability data for two fuel rich and two ozidizer rich preburner injectors are presented for a conventional like-on-like (LOL) design and a platelet design injector. Kinetically limited combustion is shown by the excellent agreement of measured fuel rich gas composition and C performance data with kinetic model predictions. The oxidizer rich test results support previous equilibrium combustion predictions.

  4. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    NASA Technical Reports Server (NTRS)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  5. Creep-rupture tests of internally pressurized Inconel 702 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.

    1973-01-01

    Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  6. Improvement in Mechanical Properties of A356 Tensile Test Bars Cast in a Permanent Mold by Application of a Knife Ingate

    NASA Astrophysics Data System (ADS)

    Wang, Yaou; Schwam, David; Neff, David V.; Chen, Chai-Jung; Zhu, Xuejun

    2012-03-01

    As a standard test-bar permanent mold, the "Stahl" Mold has been widely used in foundries to assess the properties of cast alloys. However, inferior mechanical properties are often obtained with this mold due to shrinkage-induced microporosity in the gage section. In order to improve the mechanical properties, a design modification comprising a thin knife ingate between the feeder and test-bar cavity was evaluated in this work. The new design was studied by computer-aided simulation. Simulations predicted that the knife ingate improved the metal feeding capability and reduced the shrinkage microporosity at the gage section from 3 to 1 pct. Experimental verification work has been undertaken with aluminum alloy A356, and the results were analyzed by a statistics theory-based factorial analysis method. The new design resulted in main effects with ultimate tensile strength (UTS) improvement of 20 MPa (relative 12 pct) and elongation increment of 2 pct (relative 45 pct) for the as-cast test bars.

  7. SRS supplemental safety system injection (gas pressurizer) test

    SciTech Connect

    Howarth, W.L.; Dimenna, R.A.

    1992-01-01

    An evaluation and validation of an existing version of the RELAP5 thermal hydraulics computer code was undertaken for the purpose of certification for use in the new production reactor - heavy water reactor (NPR-HWR) program. This version of the code was RELAP5/MOD3 Version 5q, designated for the purposes of the NPR-HWR program as RELAP5/NPR Version 0. As part of the evaluation and assessment, test data from theSRS Supplemental Safety System Injection (Gas Pressurizer) was used to verify and assess the ability of RELAP5/NPR Version 0 to perform thermal-hydraulic model analysis using the test data. Specifically, the assessment determines RELAP5/NPR Version 0 capability in modeling sudden depressurization phenomena. Two RELAP5/NPR Version 0 components (pipe and accumulator) were used to compare calculated pressure and temperature against test data. The code deficiencies are a temperature clamp in the accumulator component prevents the gas temperature from going below [minus]9[degrees]F, and RELAP5 accumulator and pipe components wall-to-fluid heat transfer correlation and interfacial vapor heat transfer correlation need substantial improvement. Only the code pipe component calculated pressures and temperatures within the specified 10 percent accuracy.

  8. SRS supplemental safety system injection (gas pressurizer) test

    SciTech Connect

    Howarth, W.L.; Dimenna, R.A.

    1992-12-31

    An evaluation and validation of an existing version of the RELAP5 thermal hydraulics computer code was undertaken for the purpose of certification for use in the new production reactor - heavy water reactor (NPR-HWR) program. This version of the code was RELAP5/MOD3 Version 5q, designated for the purposes of the NPR-HWR program as RELAP5/NPR Version 0. As part of the evaluation and assessment, test data from theSRS Supplemental Safety System Injection (Gas Pressurizer) was used to verify and assess the ability of RELAP5/NPR Version 0 to perform thermal-hydraulic model analysis using the test data. Specifically, the assessment determines RELAP5/NPR Version 0 capability in modeling sudden depressurization phenomena. Two RELAP5/NPR Version 0 components (pipe and accumulator) were used to compare calculated pressure and temperature against test data. The code deficiencies are a temperature clamp in the accumulator component prevents the gas temperature from going below {minus}9{degrees}F, and RELAP5 accumulator and pipe components wall-to-fluid heat transfer correlation and interfacial vapor heat transfer correlation need substantial improvement. Only the code pipe component calculated pressures and temperatures within the specified 10 percent accuracy.

  9. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    SciTech Connect

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.

    1993-12-01

    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality.

  10. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  11. Proposal for high pressure RF cavity test in the MTA

    SciTech Connect

    Yonehara, K.; /Fermilab

    2010-09-01

    In order to demonstrate the feasibility of high pressure hydrogen gas filled RF (HPRF) cavities for muon ionization cooling, an HPRF cavity must be tested with a high intensity charged beam. When an HPRF cavity is irradiated with an intense beam each incident particle generates about 1000 electrons and ions per cubic centimeter in a high pressure cavity via ionization. These ionization electrons are influenced by the RF field and the RF quality factor goes down. This Q factor reduction will be a problem with a multi bunch beam, e.g., a muon beam for a muon collider consists of a 12 to 20 bunch train beam with 5 ns timing gap. Thus, the RF field must recover in few nano seconds. We propose to use a 400 MeV proton beam in the MTA and measure a beam loading effect in the HPRF cavity and study the recovery mechanism of the RF field.

  12. On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian

    2017-04-01

    There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the

  13. Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization System

    NASA Technical Reports Server (NTRS)

    Holt, Kimberly; Majumdar, Alok; Steadman, Todd; Hedayat, Ali; Fogle, Frank R. (Technical Monitor)

    2000-01-01

    A transient model of the propulsion test article (PTA) helium pressurization system was developed using the generalized fluid system simulation program (GFSSP). The model included pressurization lines from the facility interface to the engine purge interface and liquid oxygen (lox) and rocket propellant-1 (RP-1) tanks, the propellant tanks themselves including ullage space, and propellant feed lines to their respective pump interfaces. GFSSP's capability was extended to model a control valve to maintain ullage pressure within a specified limit and pressurization processes such as heat transfer between ullage gas, propellant, and the tank wall as well as conduction in the tank wall. The purpose of the model is to predict the flow system characteristics in the entire pressurization system during 80 sec of lower feed system priming, 420 sec of fuel and lox pump priming, and 150 sec of engine firing.

  14. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    SciTech Connect

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  15. 49 CFR 179.500-16 - Tests of pressure relief devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tests of pressure relief devices. 179.500-16... 107A) § 179.500-16 Tests of pressure relief devices. (a) Pressure relief valves shall be tested by air or gas before being put into service. Valve shall open at pressure not exceeding the marked...

  16. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    SciTech Connect

    Steeper, T.

    2010-09-15

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that

  17. Evaluation of fracture models through pressurized-thermal-shock testing

    SciTech Connect

    Pugh, C.E.; Bryan, R.H.; Bass, B.R.; Nanstad, R.K.

    1988-01-01

    Two multiple-transient pressurized-thermal-shock experiments (PTSEs) have been conducted under the NRC-sponsored Heavy-Section Steel Technology (HSST) program. The first test (PTSE-1) employed an SA-508 class 2 steel with high Charpy upper-shelf energy level and a relatively high brittle-to-ductile transition temperature. The second test (PTSE-2) used a 2 1/4 Cr-1 Mo steel (SA-387 grade 22) that had been given a special heat treatment to yield a low Charpy upper-shelf energy level and attendant low tearing resistance. Each experiment included two combined thermal and pressure transients that give rise to propagation and arrest of an initial long flaw that extended about 10% through the thick wall of the test cylinder. Both materials exhibited the ability to inhibit crack propagation by warm prestressing, high initiation toughness values and high crack-arrest toughness values. Cleavage initiation and arrest are modeled well by available fracture theories. However, calculations of ductile tearing based on resistance curves did not consistently predict the observed tearing.

  18. Blood Pressure Response to Submaximal Exercise Test in Adults

    PubMed Central

    Szmigielska, Katarzyna; Leszczynska, Joanna; Jegier, Anna

    2016-01-01

    Background. The assessment of blood pressure (BP) response during exercise test is an important diagnostic instrument in cardiovascular system evaluation. The study aim was to determine normal values of BP response to submaximal, multistage exercise test in healthy adults with regard to their age, gender, and workload. Materials and Methods. The study was conducted in randomly selected normotensive subjects (n = 1015), 512 females and 498 males, aged 18–64 years (mean age 42.1 ± 12.7 years) divided into five age groups. All subjects were clinically healthy with no chronic diseases diagnosed. Exercise stress tests were performed using Monark bicycle ergometer until a minimum of 85% of physical capacity was reached. BP was measured at rest and at peak of each exercise test stage. Results. The relations between BP, age, and workload during exercise test were determined by linear regression analysis and can be illustrated by the equations: systolic BP (mmHg) = 0.346 × load (W) + 135.76 for males and systolic BP (mmHg) = 0.103 × load (W) + 155.72 for females. Conclusions. Systolic BP increases significantly and proportionally to workload increase during exercise test in healthy adults. The relation can be described by linear equation which can be useful in diagnostics of cardiovascular diseases. PMID:27703976

  19. External Pressure Testing of the 60-Watt Isotopic Heat Source

    SciTech Connect

    Frazier, T. A.; Christenbury, S. T.

    1995-03-15

    The purpose of this manual is to establish the capability of the IHS generator system to contain its radioisotopic source under an accident scenario in which the generator is deposited in the ocean at great depth. This procedure is to be used on assemblies designated to demonstrate the capability of the 60-watt IHS in external pressure environments. A qualified helium leak technician (NDE) performs evaluations during post test activities. Quality Engineering (QE) is present during testing to monitor activities. Testing involves a 60-watt IHS/Heater Head Assembly with the simulant yttria in place of the isotopic fuel. The standard length 0.094 inch diameter SST dowel pin is replaced with a longer pin to facilitate disassembly. The assembly is tested to 1000 atmospheres (-15,000 psi). It is then evaluated. If it shows no evidence of collapse, an additional test is conducted for information only. The Source Document is "Safety Test Program Plan for the 60-Watt Isotopic Heat Source (IHS)", TBE-32156-IHS-008 Issue

  20. Creep-rupture tests of internally pressurized Rene 41 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.; Weiss, B.

    1972-01-01

    Weld-drawn tubes of Rene 41 with 0.935 centimeter outside diameter and 0.064 centimeter wall thickness were tested to failure at temperatures from 1117 to 1233 K and internal helium pressures from 5.5 to 12.4 meganewtons per square meter. Lifetimes ranged from 5 to 2065 hours. The creep-rupture strength of the tubes was 50 percent lower than that of unwelded, thick sheet specimens, and 20 percent lower than that of unwelded, thin sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  1. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  2. Self-Pressurization and Spray Cooling Simulations of the Multipurpose Hydrogen Test Bed (MHTB) Ground-Based Experiment

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.

    2014-01-01

    This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.

  3. Fluidised-bed combustion. IEA Grimethorpe Pressurized Fluidised-Bed Test Facility back-end valves: history and modification

    SciTech Connect

    Not Available

    1982-01-01

    The pressure of the combustor freeboard is controlled by one of three back-end pressure control valves. The back-end valves are so called as they are situated at the back end of the exhaust gas system at the outlet of the main exhaust gas heat exchanger. In normal operation one of the valves is on pressure control duty, another on pressure relief duty, and the third is shut and available for operation on control or relief duty. These valves are subjected to a very arduous duty: temperatures of up to 350/sup 0/C to 375/sup 0/C with pressure drops of approximately 8 bar, and an estimated solids content of up to 400 ppM in the exhaust gases. Severe erosion on the valves seats, shafts, seals and upstream and downstream pipework has occurred and a large amount of remedial work has been carried out on the valves and adjacent pipework. This report describes the history of the valve erosion, the maintenance/remedial work carried out, and the steps being taken to attempt to solve the problem for future tests.

  4. Evaluation of automated blood pressure measurements during exercise testing.

    PubMed

    Hossack, K F; Gross, B W; Ritterman, J B; Kusumi, F; Bruce, R A

    1982-11-01

    Measurements of systolic (SBP) and diastolic (DBP) blood pressure were made at rest and during symptom-limited exercise with an automated blood pressure measuring device (EBPM). Comparisons were made between the EBPM readings and those made with mercury manometer. Correlations were high (SBP r = 0.92, DBP r = 0.80) when readings were made in the same arm, but were less satisfactory when the cuffs were on different arms (SBP r = 0.80, DBP r = 0.46). The correlation between two mercury manometer readings was SBP r = 0.90, and DBP r = 0.75. Comparison between EBPM and intra-arterial measurements were similar (SBP r = 0.74, DBP r = 0.79) to comparison between mercury manometer and intra-arterial measurements (SBP r = 0.81, DBP r = 0.61). The EBPM detected SBP at consistently higher levels than did physicians, which may be an advantage in the noisy environment of an exercise test. There was a definite tendency for physicians to record blood pressure to the nearest 10 mm Hg, whereas the frequency distribution curve for EBPM measurements was smoother. The EBPM operated satisfactorily at rest and during maximal exercise and gave as reliable measurements as a physician using a mercury manometer and, in the small number of available cases, detected exertional hypotension more often than the physician.

  5. Space Shuttle Main Engine instrumented High Pressure Oxidizer Turbopump technology test bed testing results summary

    NASA Technical Reports Server (NTRS)

    Koelbl, Mary E.

    1993-01-01

    This paper presents the test results from the Space Shuttle Main Engine (SSME) instrumented High Pressure Oxidizer Turbopump (HPOTP). The turbopump was tested on Engine 3001, a highly instrumented engine, in an effort to characterize the turbopump and the engine system. Seven tests, for a total duration of 766 seconds, were performed over a five month time period. The testing was performed at a wide variety of engine conditions. Changes in engine mixture ratio, power level, engine inlet oxidizer pressure, engine inlet fuel pressure, and engine start sequence were made. A discussion of all the HPOTP pressure and temperature data obtained are presented with comparisons to supporting analyses made where applicable. The effect of the various engine conditions on the measured data is addressed. This paper also discusses the challenges that were overcome to obtain the data. The significant instrumentation related problems encountered during the design, fabrication, and testing of this turbopump are summarized. Only those issues that affected the data obtained or the instrumentation itself are discussed. The relevance of the data to other noninstrumented turbomachinery is outlined. Conclusions and recommendations resulting from the test series will be presented.

  6. Overview of NASA White Sands Test Facility Composite Overwrapped Pressure Vessel Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Thesken, John; Phoenix, Leigh

    2006-01-01

    This viewgraph presentation examines the White Sands Test Facility testing of Composite overwrapped pressure vessel (COPV). A COPV is typically a metallic liner overwrapped with a fiber epoxy matrix. There is a weight advantage over the traditional all metal design. The presentation shows pictures of the facilities at White Sands, and then examines some of the testing performed. The tests include fluids compatibility, and Kevlar COPV. Data for the Kevlar tests are given, and an analysis is reviewed. There is also a comparison between Carbon COPVs and the Kevlar COPVs.

  7. Quiz: Does Your Blood Pressure Pass the Test? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Special Section: Healthy Blood Pressure Quiz: Does Your Blood Pressure Pass the Test? Past Issues / Winter 2010 Table of Contents Blood pressure changes throughout the day. It is highest while ...

  8. [Infusion test in the normal pressure hydrocephalus (author's transl)].

    PubMed

    Kondo, T; Tsubokawa, T; Doi, N; Sugawara, T; Moriyasu, N

    1981-02-01

    Continuous monitoring of the intracranial pressure and ventricular infusion test were carried out in 13 cases in which normal pressure hydrocephalus (NPH) was suspected. The infusion test was performed by intraventricular bolus injection of 8 ml of saline. The result was collated with the effect of shunting operation, which was judged by means of the improvement in the clinical symptoms and the amplitude of contingent negative variation. The excellent effect of shunting operation was obtained in the patients who showed the T of more than 200 sec, the compliance of less than 1.0 ml/mmHg, the conductance to outflow of less than 0.8 ml/mmHg/min and CSF outflow resistance of more than 15 mmHg/ml/min. In 3 cases out of the 5 effective cases, A or B wave was seen. However, appreciable variation of the values was shown among the cases so that it was concluded that the all-round-consideration must be done to select the case for the shunting operation with the findings in RI-cisternography, pneumoencephalography, computerized tomography and so on. This fact might indicate the existence of the complicated pathophysiology in NPH resulted from not only the impairment of cerebrospinal fluid circulation but also the disturbance of cerebral blood flow, changes in plasticity of the brain and so on.

  9. Ares I Upper Stage Pressure Tests in Wind Tunnel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)

  10. Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.

    2017-01-01

    Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.

  11. Do alcohol expectancies become intoxicated outcomes? A test of social-learning theory in a naturalistic bar setting.

    PubMed

    Wall, Anne-Marie; Thrussell, Christine; Lalonde, Richard N

    2003-09-01

    According to social-learning theory, alcohol outcome expectancies (AOEs) are important motivators of drinking behavior that are reinforced, in part, as a result of one's direct experience with alcohol's intoxicating effects. To date, limited research has been conducted in naturalistic bar settings to examine the congruency between AOEs held prior to drinking and individuals' subjective perceptions of post-drinking outcomes. The present study was designed to fill this void. Fifty regular bar patrons (30 males and 20 females) participated. Prior to the initiation of the drinking episode, expected alcohol effects and associated valences were assessed using the Comprehensive Effects of Alcohol (CEOA) questionnaire [Fromme, Stroot, and Kaplan, (1993) 19]. At the conclusion of the drinking episode, all individuals completed the CEOA that was modified in order to assess their subjective alcohol-related outcomes. Overall, while individuals' intoxicated outcomes generally mirrored their pre-drinking AOEs, a lack of congruency was observed with respect to alcohol-related risk and aggression, such that participants reported feeling less aggressive and more disinclined to engage in risky behavior than they had expected as a result of consuming alcohol. As well, two presumably negative (i.e., behavioral impairment and self-perception) and one positive (i.e., liquid courage) alcohol-related outcomes were rated more favorably at the end of the drinking episode. Finally, a main effect for gender was found for specific AOEs. The implications of these findings for social-learning explanations of drinking behavior are discussed.

  12. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  13. Development of a new testing equipment that combines the working principles of both the split Hopkinson bar and the drop weight testers.

    PubMed

    Adas, Rateb; Haiba, Majed

    2016-01-01

    In the current work, a new high strain rate tensile testing equipment is proposed. The equipment uses a pendulum device to generate an impact load and a three-bar mechanism to bring that load to act upon a specially designed specimen. As the standard impact testing apparatus uses pendulum device and the well-known SHB high strain rate tester adopts the above-mentioned mechanism, the introduced equipment can be dealt with as an impact apparatus in which the base that supports the V-shape specimen is replaced with the three-bar configuration that the traditional SHB uses. In order to demonstrate the applicability of the new tester, virtual design tools were used to determine the most appropriate configuration for it. Then, a detailed design was created, and a full-scale prototype was produced, calibrated, instrumented and tested. The obtained results demonstrate that the new tester is capable of axially straining steel specimens up to failure at a maximum rate of about 250 s(-1), which is reasonable when compared with a more established high strain rate testers.

  14. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance...

  15. Miniaturized Charpy test for reactor pressure vessel embrittlement characterization

    SciTech Connect

    Manahan, M.P. Sr.

    1999-10-01

    Modifications were made to a conventional Charpy machine to accommodate the miniaturized Charpy V-Notch (MCVN) specimens which were fabricated from an archived reactor pressure vessel (RPV) steel. Over 100 dynamic MCVN tests were performed and compared to the results from conventional Charpy V-Notch (CVN) tests to demonstrate the efficacy of the miniature specimen test. The optimized sidegrooved MCVN specimens exhibit transitional fracture behavior over essentially the same temperature range as the CVN specimens which indicates that the stress fields in the MCVN specimens reasonably simulate those of the CVN specimens and this fact has been observed in finite element calculations. This result demonstrates a significant breakthrough since it is now possible to measure the ductile-brittle transition temperature (DBTT) using miniature specimens with only small correction factors, and for some materials as in the present study, without the need for any correction factor at all. This development simplifies data interpretation and will facilitate future regulatory acceptance. The non-sidegrooved specimens yield energy-temperature data which is significantly shifted downward in temperature (non-conservative) as a result of the loss of constraint which accompanies size reduction.

  16. Pressure test data reveal reservoir barriers/faults

    SciTech Connect

    Hurd, J.D.

    1984-07-30

    A review of transient pressure test data from an oil reservoir in Libya indicated not only the suspected fault barriers, but also the non-sealing portions of the faults. Extensive seismic data indicated much faulting, and directional trends had been interpreted to be generally northwest-southeast. The reservoir is a heterogeneous dolomite with average permeability of 40 to 50 md and contains neither natural fractures not stratification. Vertical displacement (throw) of each fault block is indicated to be within the range of the dolomite thickness, i.e., 40 to 180 ft. Therefore, when the fault throw is greater than reservoir thickness there is sealing, and when the throw is less than reservoir thickness the faults are non-sealing.

  17. X-33 Metal Model Testing In Low Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The countrys next generation of space transportation, a reusable launch vehicle (RLV), continues to undergo wind tunnel testing at NASA Langley Research Center, Hampton, Va. All four photos are a metal model of the X-33 reusable launch vehicle (about 15 inches long by 15 inches wide) being tested for Lockheed Martin Skunk Works in the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley Research Center. Tests are being conducted by members of the Aerothermodynamics Branch. According to Kelly Murphy of Langleys Aerothermodynamics Branch, the aluminum and stainless steel model of the X-33 underwent aerodynamic testing in the tunnel. *The subsonic tests were conducted at the speed of Mach 25,* she said. *Force and moment testing and measurement in this tunnel lasted about one week.* Future testing of the metal model is scheduled for Langleys 16-Foot Transonic Tunnel, from the end of March to mid-April 1997, and the Unitary Wind Tunnel, from mid-April to the beginning of May. Other tunnel testing for X-33 models are scheduled from the present through June in the hypersonic tunnels, and the 14- by 22-Foot Tunnel from about mid-June to mid-July. Since 1991 Marshall Space Flight Center in Huntsville, Ala. has been the lead center for coordinating the Agencys X-33 Reusable Launch Vehicle (RLV) Program, an industry-led effort, which NASA Administrator Daniel S. Goldin has declared the agency's highest priority new program. The RLV Technology Program is a partnership among NASA, the United States Air Force and private industry to develop world leadership in low-cost space transportation. The goal of the program is to develop technologies and new operational concepts that can radically reduce the cost of access to space. The RLV program also hopes to speed the commercialization of space and improve U.S. economic competitiveness by making access to space as routine and reliable as today's airline industry, while reducing costs and enhancing safety and reliability. The RLV

  18. X-33 Metal Model Testing In Low Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The countrys next generation of space transportation, a reusable launch vehicle (RLV), continues to undergo wind tunnel testing at NASA Langley Research Center, Hampton, Va. All four photos are a metal model of the X-33 reusable launch vehicle (about 15 inches long by 15 inches wide) being tested for Lockheed Martin Skunk Works in the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley Research Center. Tests are being conducted by members of the Aerothermodynamics Branch. According to Kelly Murphy of Langleys Aerothermodynamics Branch, the aluminum and stainless steel model of the X-33 underwent aerodynamic testing in the tunnel. *The subsonic tests were conducted at the speed of Mach .25,* she said. *Force and moment testing and measurement in this tunnel lasted about one week.* Future testing of the metal model is scheduled for Langleys 16-Foot Transonic Tunnel, from the end of March to mid-April 1997, and the Unitary Wind Tunnel, from mid-April to the beginning of May. Other tunnel testing for X-33 models are scheduled from the present through June in the hypersonic tunnels, and the 14- by 22-Foot Tunnel from about mid-June to mid-July. Since 1991 Marshall Space Flight Center in Huntsville, Ala. has been the lead center for coordinating the Agencys X-33 Reusable Launch Vehicle (RLV) Program, an industry-led effort, which NASA Administrator Daniel S. Goldin has declared the agency's highest priority new program. The RLV Technology Program is a partnership among NASA, the United States Air Force and private industry to develop world leadership in low-cost space transportation. The goal of the program is to develop technologies and new operational concepts that can radically reduce the cost of access to space. The RLV program also hopes to speed the commercialization of space and improve U.S. economic competitiveness by making access to space as routine and reliable as today's airline industry, while reducing costs and enhancing safety and reliability. The RLV

  19. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tests of pressure relief valves. 179.220-24... FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas...

  20. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... the pressure vessel and heated to a temperature of 150 °F. The temperature shall be maintained at...

  1. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... the pressure vessel and heated to a temperature of 150 °F. The temperature shall be maintained at...

  2. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tests of pressure relief valves. 179.220-24... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  3. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tests of pressure relief valves. 179.200-23... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  4. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... described in paragraph (b)(4) of this section. (b) Description of apparatus. (1) A 3-quart pressure...

  5. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... described in paragraph (b)(4) of this section. (b) Description of apparatus. (1) A 3-quart pressure...

  6. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... described in paragraph (b)(4) of this section. (b) Description of apparatus. (1) A 3-quart pressure...

  7. Test description and preliminary pitot-pressure surveys for Langley Test Technique Demonstrator at Mach 6

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.

    1992-01-01

    A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.

  8. Monitoring Changes of Tropical Extreme Rainfall Events Using Differential Absorption Barometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, R. Wes; Hu, Yongxiang; Min, Qilong

    2015-01-01

    This work studies the potential of monitoring changes in tropical extreme rainfall events such as tropical storms from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 gigahertz O2 absorption band to remotely measure sea surface air pressure. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 5 millibars (approximately 1 millibar) under all weather conditions. With these sea level pressure measurements, the forecasts, analyses and understanding of these extreme events in both short and long time scales can be improved. Severe weathers, especially hurricanes, are listed as one of core areas that need improved observations and predictions in WCRP (World Climate Research Program) and NASA Decadal Survey (DS) and have major impacts on public safety and national security through disaster mitigation. Since the development of the DiBAR concept about a decade ago, our team has made substantial progress in advancing the concept. Our feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. We have developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with our instrumentation goals. Observational system simulation experiments for space DiBAR performance show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on tropical extreme rainfall weather and climate conditions.

  9. Cryogenic Autogenous Pressurization Testing for Robotic Refueling Mission 3

    NASA Technical Reports Server (NTRS)

    Boyle, R.; DiPirro, M.; Tuttle, J.; Francis, J.; Mustafi, S.; Li, X.; Barfknecht, P.; DeLee, C. H.; McGuire, J.

    2015-01-01

    A wick-heater system has been selected for use to pressurize the Source Dewar of the Robotic Refueling Mission Phase 3 on-orbit cryogen transfer experiment payload for the International Space Station. Experimental results of autogenous pressurization of liquid argon and liquid nitrogen using a prototype wick-heater system are presented. The wick-heater generates gas to increase the pressure in the tank while maintaining a low bulk fluid temperature. Pressurization experiments were performed in 2013 to characterize the performance of the wick heater. This paper describes the experimental setup, pressurization results, and analytical model correlations.

  10. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  11. 49 CFR 179.300-17 - Tests of pressure relief devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tests of pressure relief devices. 179.300-17... pressure relief devices. (a) Each valve shall be tested by air or gas before being put into service. The valve shall open and be vapor-tight at the pressure prescribed in § 179.301. (b) Rupture disks of...

  12. Acceptance Test Report for the high pressure water jet system canister cleaning fixture

    SciTech Connect

    Burdin, J.R.

    1995-10-25

    This Acceptance Test confirmed the test results and recommendations, documented in WHC-SD-SNF-DTR-001, Rev. 0 Development Test Report for the High Pressure Water Jet System Nozzles, for decontaminating empty fuel canisters in KE-Basin. Optimum water pressure, water flow rate, nozzle size and overall configuration were tested

  13. Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure

    SciTech Connect

    Steimke, J

    2005-07-29

    This document reports work performed at the Savannah River National Laboratory (SRNL) that resulted in a major accomplishment by demonstrating the proof-of-concept of the use of a proton exchange membrane or PEM-type electrochemical cell to produce hydrogen via SO{sub 2}-depolarized water electrolysis. For the first time sulfur dioxide dissolved in liquid sulfuric acid was used to depolarize water electrolysis in a modern PEM cell. The use of such a cell represents a major step in achieving the ultimate goal of an economical hydrogen production process based on the Hybrid Sulfur (HyS) Cycle. The HyS Process is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by water-splitting. Like all other sulfur-based cycles, HyS utilizes the high temperature thermal decomposition of sulfuric acid to produce oxygen. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Sulfur dioxide is oxidized at the anode, producing sulfuric acid, that is sent to the acid decomposition portion of the cycle. The focus of this work was to conduct single cell electrolyzer tests in order to prove the concept of SO{sub 2}-depolarization and to determine how the results can be used to evaluate the performance of key components of the HyS Process. A test facility for conducting SO{sub 2}-depolarized electrolyzer (SDE) testing was designed, constructed and commissioned. The maximum cell current is 50 amperes, which is equivalent to a hydrogen production rate of approximately 20 liters per hour. The test facility was designed for operation at room temperature with pressures up to 2 bar. Feed to the anode of the electrolyzer can be water, sulfuric acid of various concentrations, or sulfuric acid containing dissolved sulfur dioxide. Provisions

  14. 49 CFR 179.500-16 - Tests of pressure relief devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tested by air or gas before being put into service. Valve shall open at pressure not exceeding the marked... relief devices that incorporate a rupture disc, samples of the discs used shall burst at a pressure...

  15. 30 CFR 18.98 - Enclosures, joints, and fastenings; pressure testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; pressure testing. (a) Cast or welded enclosures shall be designed to withstand a minimum internal pressure of 150 pounds per square inch (gage). Castings shall be free from blowholes. (b) Pneumatic...

  16. 30 CFR 18.98 - Enclosures, joints, and fastenings; pressure testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; pressure testing. (a) Cast or welded enclosures shall be designed to withstand a minimum internal pressure of 150 pounds per square inch (gage). Castings shall be free from blowholes. (b) Pneumatic...

  17. Test Structures for Rapid Prototyping of Gas and Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Cheng, L. J.; Martin, D.

    1996-01-01

    A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.

  18. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  19. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    SciTech Connect

    Hanson, J.M.

    1985-12-01

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented.

  20. Development and Validation of a Pressurization System Model for a Crossfeed Subscale Water Test Article

    NASA Technical Reports Server (NTRS)

    Nguyen, Han; Mazurkivich, Pete

    2006-01-01

    A pressurization system model was developed for a crossfeed subscale water test article using the EASY5 modeling software. The model consisted of an integrated tank pressurization and pressurization line model. The tank model was developed using the general purpose library, while the line model was assembled from the gas dynamic library. The pressurization system model was correlated to water test data obtained from nine test runs conducted on the crossfeed subscale test article. The model was first correlated to a representative test run and frozen. The correlated model was then used to predict the tank pressures and compared with the test data for eight other runs. The model prediction showed excellent agreement with the test data, allowing it to be used in a later study to analyze the pressurization system performance of a full-scale bimese vehicle with cryogenic propellants.

  1. Relationship between propagule pressure and colonization pressure in invasion ecology: a test with ships' ballast.

    PubMed

    Briski, Elizabeta; Bailey, Sarah A; Casas-Monroy, Oscar; DiBacco, Claudio; Kaczmarska, Irena; Levings, Colin; MacGillivary, Michael L; McKindsey, Christopher W; Nasmith, Leslie E; Parenteau, Marie; Piercey, Grace E; Rochon, André; Roy, Suzanne; Simard, Nathalie; Villac, Maria C; Weise, Andréa M; MacIsaac, Hugh J

    2012-08-07

    Increasing empirical evidence indicates the number of released individuals (i.e. propagule pressure) and number of released species (i.e. colonization pressure) are key determinants of the number of species that successfully invade new habitats. In view of these relationships, and the possibility that ships transport whole communities of organisms, we collected 333 ballast water and sediment samples to investigate the relationship between propagule and colonization pressure for a variety of diverse taxonomic groups (diatoms, dinoflagellates and invertebrates). We also reviewed the scientific literature to compare the number of species transported by ships to those reported in nature. Here, we show that even though ships transport nearly entire local communities, a strong relationship between propagule and colonization pressure exists only for dinoflagellates. Our study provides evidence that colonization pressure of invertebrates and diatoms may fluctuate widely irrespective of propagule pressure. We suggest that the lack of correspondence is explained by reduced uptake of invertebrates into the transport vector and the sensitivity of invertebrates and diatoms to selective pressures during transportation. Selection during transportation is initially evident through decreases in propagule pressure, followed by decreased colonization pressure in the most sensitive taxa.

  2. New design of high performance ionizing bar

    NASA Astrophysics Data System (ADS)

    Wang, Ronggang; Sun, Yurong

    2013-03-01

    This paper introduces a new design of DC-pulse ionizing bar to solve the problem of imbalance offset voltage for the AC ionizing bar, which is easily affected by the environment, as well as indicate the final tests. The new design mainly includes five parts: power supply circuit, main control unit, logic circuit, high frequency transformer unit, and feedback unit. The ionizing bar can automatically adjust the discharge voltage, pulse frequency and pulse width to balance the positive and negative ions. The final test results indicate that the DC ionizing bar owns good effect in electrostatic elimination.

  3. Improved Coating System for High Strength Torsion Bars

    DTIC Science & Technology

    1981-04-23

    SwW IMPROVED COATING SYSTEM FOR HIGH S- TYPE Of REPORT & PEROo CovERED STRENGTH TORSION BAR Final Report Plastisol Coating System Provides a Cost...8217 mumber) Torsion Bar Plastisol Coating Inorganic Coating Protective Coating Polyvinyl Chloride Coating Polyurethane Coating Corrosion Protection Tape...Bars E. Endurance Test Results for One-third Length Torsion E-1 Bar F. Specification for Application of Plastisol to High F-1 Strength Torsion Bar

  4. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Test of pressure relief valves. 179.400-21 Section 179.400-21 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  5. Development test report for the high pressure water jet system nozzles

    SciTech Connect

    Takasumi, D.S.

    1995-09-28

    The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

  6. Device for quick changeover between wind tunnel force and pressure testing

    NASA Technical Reports Server (NTRS)

    Wood, Richard M. (Inventor)

    1987-01-01

    This device allows for expeditious and repeated changeovers between pressure and force testing and which uses a minimum internal volume of a wind tunnel test structure. A matrix configuration of holes is located on the outer surface of the structure. Pressure tubes lead through the internal cavity of the structure from test sites to this outer surface matrix configuration. A pressure tube connector with a corresponding matrix of holes is connected to the surface of the structure. Pressure tubes leading from remotely located transducers are joined to the connector, thus forming pressure passageways from the test sites to the transducers to allow for pressure testing. When force testing is required, the pressure tube connector is disconnected and a cover plate is connected. The cover plate seals the exposed internal pressure tubes. Also, the outer surface of the cover plate conforms to the exterior of the structure, providing the necessary smooth surface for force testing. If further pressure testing is required, the cover plate can be disconnected and the pressure tube connector reconnected.

  7. Cryogenic & Gas System Piping Pressure Tests (A Collection of PT Permits)

    SciTech Connect

    Rucinski, Russell A.; /Fermilab

    2002-08-22

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  8. Payload and Components Real-Time Automated Test System (PACRATS), Data Acquisition of Leak Rate and Pressure Data Test Procedure

    NASA Technical Reports Server (NTRS)

    Rinehart, Maegan L.

    2011-01-01

    The purpose of this activity is to provide the Mechanical Components Test Facility (MCTF) with the capability to obtain electronic leak test and proof pressure data, Payload and Components Real-time Automated Test System (PACRATS) data acquisition software will be utilized to display real-time data. It will record leak rates and pressure/vacuum level(s) simultaneously. This added functionality will provide electronic leak test and pressure data at specified sampling frequencies. Electronically stored data will provide ES61 with increased data security, analysis, and accuracy. The tasks performed in this procedure are to verify PACRATS only, and are not intended to provide verifications for MCTF equipment.

  9. Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2013-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.

  10. Intraoperative testing of opening and closing pressure predicts risk of low intraocular pressure after Ahmed glaucoma valve implantation

    PubMed Central

    Bochmann, F; Kipfer, A; Tarantino, J; Kaufmann, C; Bachmann, L; Thiel, M

    2014-01-01

    Purpose The aim of this study was to assess whether intraoperative testing of silicone Ahmed glaucoma valves (AGVs) would identify valves with an increased risk of low postoperative intraocular pressure (IOP). Methods In 30 consecutive cases of glaucoma surgery with AGV implantation, after priming the AGV, we intraoperatively measured the opening pressure A, closing pressure B, and re-opening pressure C using the active infusion pump of a phako-machine. IOP was checked postoperatively on the same day. Low IOP was defined as <5 mm Hg. Intraoperatively measured pressure characteristics of the valve function were analysed for their ability to predict postoperative IOP outcomes. Results Opening A, closing B, and re-opening C pressures (mean, (SD)) were 18.4 (5.1), 8.3 (4.7), and 11.7 (4.8)mm Hg, respectively. Ten patients (33.3%) had low IOP. An opening pressure of ≤18 mm Hg predicted low postoperative IOP with a sensitivity (10/10) of 100% (95% CI, 69.2–100) and a specificity (13/20) of 65.0% (95% CI, 40.8–84.6). Conclusions AGVs have a high variability of opening, closing, and re-opening pressures. An opening pressure of ≤18 mm Hg, a closing pressure of ≤10 mm Hg, or a re-opening pressure of ≤11 mm Hg identified all patients with low postoperative IOP. PMID:25060848

  11. Force and pressure tests of the GA(W)-1 airfoil with a 20% aileron and pressure tests with a 30% Fowler flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Seetharam, H. C.; Fiscko, K. A.

    1977-01-01

    Wind tunnel force and pressure tests were conducted for the GA(W)-1 airfoil equipped with a 20% aileron, and pressure tests were conducted with a 30% Fowler flap. All tests were conducted at a Reynolds number of 2.2 and a Mach number of 0.13. The aileron provides control effectiveness similar to ailerons applied to more conventional airfoils. Effects of aileron gaps from 0% to 2% chord were evaluated, as well as hinge moment characteristics. The aft camber of the GA(W)-1 section results in a substantial up-aileron moment, but the hinge moments associated with aileron deflection are similar to other configurations. Fowler flap pressure distributions indicate that unseparated flow is achieved for flap settings up to 40 deg., over a limited angle of attack range. Theoretical pressure distributions compare favorably with experiments for low flap deflections, but show substantial errors at large deflections.

  12. Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers

    SciTech Connect

    Loss, W.M.; Dietz, R.N.

    1991-09-01

    Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called hi-pot'' (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven's Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the double source'' method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

  13. Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers

    SciTech Connect

    Loss, W.M.; Dietz, R.N.

    1991-09-01

    Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called ``hi-pot`` (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven`s Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the ``double source`` method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

  14. Model based optimization of some growth process parameters of a Nd:YVO 4 cylindrical bar grown by edge-defined film-fed growth (EFG) method in the presence of the pressure

    NASA Astrophysics Data System (ADS)

    Braescu, L.; Balint, A. M.; Szabo, R.; Balint, St.

    2006-05-01

    The purpose of this paper is to find those values of the radius r0e of the outer edge of the die, pulling rate v, melt temperature T0 at the meniscus basis and pressure p in the furnace, which assure the growth of a Nd:YVO 4 monocrystal cylindrical bar with prescribed radius rf and for which the surface non-uniformity of the bar, due to small uncontrollable oscillations of v and T0, is minimum. Numerical results are given for a Nd:YVO 4 cylindrical bar of 2.5 (mm) radius, grown in a furnace in which the vertical temperature gradient is k = 33 (K/mm) for four type of uncontrollable oscillations: O1 = (Δ v = ±0.001 (mm/s) and Δ T = ±1 (K)), O2 = (Δ v = ±0.01 (mm/s) and Δ T = ±10 (K)), O3 = (Δ v = ±0.02 (mm/s) and Δ T = ±20 (K)), O4 = (Δ v = ±0.001 (mm/s) and Δ T = ±30 (K)), respectively. For a smooth surface, the parameters r0e, v and T0 has to be chosen as follows: r0e = 2.6 (mm), p = 0.002 (atm), v = 0.0011 (mm/s), T0 = 2102 (K) in the case O1; r0e = 2.6 (mm), p = 0.002 (atm), v = 0.0101 (mm/s), T0 = 2100 (K) in the case O2; r0e = 2.7 (mm), p = 0.002 (atm), v = 0.0201 (mm/s), T0 = 2111 (K) in the case O3; r0e = 2.7 (mm), p = 0.002 (atm), v = 0.0011 (mm/s), T0 = 2118 (K) in the case O4.

  15. Reducing uncertainty in geostatistical description with well testing pressure data

    SciTech Connect

    Reynolds, A.C.; He, Nanqun; Oliver, D.S.

    1997-08-01

    Geostatistics has proven to be an effective tool for generating realizations of reservoir properties conditioned to static data, e.g., core and log data and geologic knowledge. Due to the lack of closely spaced data in the lateral directions, there will be significant variability in reservoir descriptions generated by geostatistical simulation, i.e., significant uncertainty in the reservoir descriptions. In past work, we have presented procedures based on inverse problem theory for generating reservoir descriptions (rock property fields) conditioned to pressure data and geostatistical information represented as prior means for log-permeability and porosity and variograms. Although we have shown that the incorporation of pressure data reduces the uncertainty below the level contained in the geostatistical model based only on static information (the prior model), our previous results assumed did not explicitly account for uncertainties in the prior means and the parameters defining the variogram model. In this work, we investigate how pressure data can help detect errors in the prior means. If errors in the prior means are large and are not taken into account, realizations conditioned to pressure data represent incorrect samples of the a posteriori probability density function for the rock property fields, whereas, if the uncertainty in the prior mean is incorporated properly into the model, one obtains realistic realizations of the rock property fields.

  16. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535ÀC. Currently available flow and pressure instrumentation for molten salt is limited to 535ÀC and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice wont be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  17. Archaeological Test Excavation and Evaluation of Three Prehistoric Sites at Swift Bar, on the Lower Snake River, Southeastern Washington.

    DTIC Science & Technology

    1984-01-01

    1010a (ANSI and ISO TEST CHART No. 2) Cö-w\\’- ;^- Deutsche Forschungsanstalt - für Luft- und Raumfahrt AKWY/NAVY/AIR FORCE LIBRAtfV *- EDISON...WNA^- Deutsche Forschungsanstalt für Luft- und Raumfahrt rDLR Forschungsbericht Das Arbeitsplatzsystem APS der DLR ein wirtschaftliches System...Zentrale Datenverarbeitung Oberpfaffenhofen 44 Seiten 1 Bild 1 Tabelle DLR-FB 90-08 Accession For NTT.S GRA&I DTIC TAB Unannounced

  18. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  19. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  20. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or...

  1. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  2. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing.

    PubMed

    Eide, Per Kristian

    2016-12-01

    OBJECTIVE The objective of this study was to examine how pulsatile and static intracranial pressure (ICP) scores correlate with indices of intracranial pressure-volume reserve capacity, i.e., intracranial elastance (ICE) and intracranial compliance (ICC), as determined during ventricular infusion testing. METHODS All patients undergoing ventricular infusion testing and overnight ICP monitoring during the 6-year period from 2007 to 2012 were included in the study. Clinical data were retrieved from a quality registry, and the ventricular infusion pressure data and ICP scores were retrieved from a pressure database. The ICE and ICC (= 1/ICE) were computed during the infusion phase of the infusion test. RESULTS During the period from 2007 to 2012, 82 patients with possible treatment-dependent hydrocephalus underwent ventricular infusion testing within the department of neurosurgery. The infusion tests revealed a highly significant positive correlation between ICE and the pulsatile ICP scores mean wave amplitude (MWA) and rise-time coefficient (RTC), and the static ICP score mean ICP. The ICE was negatively associated with linear measures of ventricular size. The overnight ICP recordings revealed significantly increased MWA (> 4 mm Hg) and RTC (> 20 mm Hg/sec) values in patients with impaired ICC (< 0.5 ml/mm Hg). CONCLUSIONS In this study cohort, there was a significant positive correlation between pulsatile ICP and ICE measured during ventricular infusion testing. In patients with impaired ICC during infusion testing (ICC < 0.5 ml/mm Hg), overnight ICP recordings showed increased pulsatile ICP (MWA > 4 mm Hg, RTC > 20 mm Hg/sec), but not increased mean ICP (< 10-15 mm Hg). The present data support the assumption that pulsatile ICP (MWA and RTC) may serve as substitute markers of pressure-volume reserve capacity, i.e., ICE and ICC.

  3. Ultrasonic Nondestructive Evaluation of PRSEUS Pressure Cube Article in Support of Load Test to Failure

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    2013-01-01

    The PRSEUS Pressure Cube Test was a joint development effort between the Boeing Company and NASA Langley Research Center, sponsored in part by the Environmentally Responsible Aviation Project and Boeing internal R&D. This Technical Memorandum presents the results of ultrasonic inspections in support of the PRSEUS Pressure Cube Test, and is a companion document with the NASA test report and a report on the acoustic emission measurements made during the test.

  4. 49 CFR 179.300-17 - Tests of pressure relief devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-17 Tests of pressure relief devices. (a) Each valve shall be tested by air or gas before being put into service. The... Cars (IBR, see § 171.7 of this subchapter). (c) For pressure relief devices of the fusible plug type,...

  5. 49 CFR 179.300-17 - Tests of pressure relief devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-17 Tests of pressure relief devices. (a) Each valve shall be tested by air or gas before being put into... Specifications for Tank Cars (IBR, see § 171.7 of this subchapter). (c) For pressure relief devices of...

  6. 49 CFR 179.300-17 - Tests of pressure relief devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-17 Tests of pressure relief devices. (a) Each valve shall be tested by air or gas before being put into service. The... Cars (IBR, see § 171.7 of this subchapter). (c) For pressure relief devices of the fusible plug type,...

  7. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  8. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  9. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  10. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  11. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  12. 49 CFR 179.300-17 - Tests of pressure relief devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-17 Tests of pressure relief devices. (a) Each valve shall be tested by air or gas before being put into service. The... Cars (IBR, see § 171.7 of this subchapter). (c) For pressure relief devices of the fusible plug type,...

  13. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  14. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.425 What are the requirements for pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least...

  15. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.425 What are the requirements for pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least...

  16. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.425 What are the requirements for pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least...

  17. 30 CFR 250.427 - What are the requirements for pressure integrity tests?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... conduct each pressure integrity test after drilling at least 10 feet but no more than 50 feet of new hole... drilling fluid weight if identified in an approved APD. (a) You must use the pressure integrity test...

  18. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the...

  19. Quartz technology allows for wider downhole pressure testing range

    SciTech Connect

    Dennis, J.R. ); Zeller, V.P. )

    1991-03-01

    This paper presents a quartz-thickness shear-mode transducer for use in a borehole environment. The pressure sensor is a direct-conversion device that uses a noncylindrical shell to convert and to transmit forces to the quartz-crystal resonator. A brief conceptual description of the transducer is given. Laboratory and field examples illustrate the exceptional performance of the quartz-thickness shear-mode transducer.

  20. Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect

    J. E. O'Brien; X. Zhang; G. K. Housley; K. DeWall; L. Moore-McAteer; G. Tao

    2012-06-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.

  1. The pressure hold/drop integrity test; its correlation to diffusive flow.

    PubMed

    Trotter, A M; Meltzer, T H

    1998-01-01

    The pressure-drop/hold procedure enables the diffusive flow integrity testing of filters to be performed without breaching the system downstream of the filter. It is not necessary to measure volumetrically the diffused gas on the downstream side of the filter. By means of pressure transducers the pressure loss is determined upstream; thus eliminating the threat of sepsis due to down-stream invasions. The pressure decay exercise can be used to characterize the various filter types. A constancy of filter manufacture is required for a given filter type. Unless the pressure drop exceeds the value established as the maximum allowable decay, the filter is judged to be integral. It qualifies as a sterilizing grade filter. Excessive pressure decays will also eventuate from leaks, as from improperly sealed housings. Performed prior to the filtration, the procedure serves to eliminate the wasteful use of an imperfect system, whether caused by faulty sealing, incorrect filter type or flawed filters. Where leaks are detected, the filter can be reexamined for its integrity. To enable the pressure-drop procedure to serve as an integrity test, the measured pressure decays require being correlated with organism retention data. This is made possible by the arithmetic conversion of the pressure decay curve into the conventional diffusive airflow curve established to have such a correlation. The transformation of the pressure-drop curve into the differential airflow plot is automatically performed by certain of the automated integrity test machines. These devices, utilizing pressure transducers, are capable of measuring small pressure drops with requisite sensitivity; gauges commonly are not. Moreover, as previously stated, the measurements are advantageously made on the upside of the filter. The use of automated test machines is, therefore, recommended for the performance of the pressure hold/drop integrity test in furtherance of the practice of filter integrity testing.

  2. An experimental method to dynamically test pressure sensors using a rupture disk

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph W.

    2002-02-01

    The response time of a pressure sensor is required when it is used in control systems and in some measurement applications. It is often difficult to measure the response time of a pressure sensor since it is difficult to obtain changes in fluid pressure sufficient to characterize the sensor dynamic response. In this article we describe a relatively simple system for measuring or validating the response time of pressure sensors with fast dynamic response. The system consists of two chambers isolated by a graphite rupture disk, a device that fully and rapidly opens at a known rupture or break pressure. A pressure transient in the second chamber is initiated by slowly increasing the pressure in the first chamber until reaching the nominal break pressure of the rupture disk. Performance of the system was validated by comparing the rise time predicted by a theoretical model with the rise time of the pressure transient measured by a piezoelectric pressure transducer. The method was evaluated by comparing the response to the pressure transient of an optical based pressure transducer with the response of the reference piezoelectric pressure transducer. The time constant of the tested fiber optic pressure sensor was found using the method presented in this article to be 0.488 ms, which is close to the time constant of 0.455 ms measured by a comparison method.

  3. Single-trip tubing-conveyed perforating, production testing, and pressure-buildup testing in nonflowing wells

    SciTech Connect

    Barnes, J.A.; Snider, P.M. ); Swafford, C.V. )

    1991-05-01

    This paper describes tools and procedures for tubing-conveyed perforating (TCP) and subsequent production testing of a well with a reverse-flow jet pump with a specially designed blanking sleeve. A downhole shut-in pressure buildup is also obtained and all equipment is pressure-actuated, eliminating the use of wireline.

  4. Evaluation of high pressure water blast with rotating spray bar for removing paint and rubber deposits from airport runways, and review of runway slipperiness problems created by rubber contamination

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Griswold, G. D.

    1975-01-01

    A high pressure water blast with rotating spray bar treatment for removing paint and rubber deposits from airport runways is studied. The results of the evaluation suggest that the treatment is very effective in removing above surface paint and rubber deposits to the point that pavement skid resistance is restored to trafficked but uncontaminated runway surface skid resistance levels. Aircraft operating problems created by runway slipperiness are reviewed along with an assessment of the contributions that pavement surface treatments, surface weathering, traffic polishing, and rubber deposits make in creating or alleviating runway slipperiness. The results suggest that conventional surface treatments for both portland cement and asphaltic concrete runways are extremely vulnerable to rubber deposit accretions which can produce runway slipperiness conditions for aircraft operations as or more slippery than many snow and ice-covered runway conditions. Pavement grooving surface treatments are shown to be the least vulnerable to rubber deposits accretion and traffic polishing of the surface treatments examined.

  5. The Application of Magneto Inductive Sensors for Non-Destructive Testing of Steel Reinforcing Bars Embedded Within Pre-Stressed and Reinforced Concrete

    SciTech Connect

    Benitez, D. S.; Quek, S.; Gaydecki, P.; Torres, V.; Fernandes, B.

    2006-03-06

    This paper demonstrates the feasibility of using solid-state magneto-inductive probes for detecting and imaging of steel reinforcing bars embedded within pre-stressed and reinforced concrete. Changes in the inductance of the sensor material are directly proportional to the strength of the measured magnetic field parallel to the sensor. Experimental results obtained by scanning steel bars specimens are presented. General performance characteristics and sensor output limitations are investigated by using different orientations, sensing distance, excitation intensity, bar sizes and geometries.

  6. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing.

    PubMed

    Belanger, Anthony P; Byrne, John F; Paolino, Justin M; DeGrado, Timothy R

    2009-11-01

    The bubble point test is the de facto standard for postproduction filter membrane integrity test in the radiopharmaceutical community. However, the bubble point test depends on a subjective visual assessment of bubbling rate that can be obscured by significant diffusive gas flows below the manufacturer's prescribed bubble point. To provide a more objective means to assess filter membrane integrity, this study evaluates the pressure-hold test as an alternative to the bubble point test. In our application of the pressure-hold test, the nonsterile side of the sterilizing filter is pressurized to 85% of the predetermined bubble point with nitrogen, the filter system is closed off from the pressurizing gas and the pressure is monitored over a prescribed time interval. The drop in pressure, which has a known relationship with diffusive gas flow, is used as a quantitative measure of membrane integrity. Characterization of the gas flow vs. pressure relationship of each filter/solution combination provides an objective and quantitative means for defining a critical value of pressure drop over which the membrane is indicated to be nonintegral. The method is applied to sterilizing filter integrity testing associated with the commonly produced radiopharmaceuticals, [(18)F]FDG and [(11)C]PIB. The method is shown to be robust, practical and amenable to automation in radiopharmaceutical manufacturing environments (e.g., hot cells).

  7. Teledyne Taber 206-1000 and 2210-3000 pressure transducer proof test and burst test

    NASA Technical Reports Server (NTRS)

    Ricks, G. A.

    1989-01-01

    The range accuracy and structural integrity of the Teledyne Taber 206-1000 and 2210-3000 pressure transducers are verified and multiple uses are studied to determine is they have a significant effect on the transducers. Burst pressure for these transducers was also established. The Teledyne Taber 206-1000 pressure transducer is used to measure chamber pressure on full-scale space shuttle rocket motors. The Teledyne Taber 2210-3000 pressure transducer is used to measure igniter pressure. The Teledyne Taber transducer has very good temperature stability and was used on all full-scale solid rocket motors, so there is a large data base established using this transducer.

  8. Analysis, design and testing of high pressure waterjet nozzles

    NASA Technical Reports Server (NTRS)

    Mazzoleni, Andre P.

    1996-01-01

    The Hydroblast Research Cell at MSFC is both a research and a processing facility. The cell is used to investigate fundamental phenomena associated with waterjets as well as to clean hardware for various NASA and contractor projects. In the area of research, investigations are made regarding the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current industrial methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents, and high pressure waterjet cleaning has proven to be a viable alternative. Standard methods of waterjet cleaning use hand held or robotically controlled nozzles. The nozzles used can be single-stream or multijet nozzles, and the multijet nozzles may be mounted in a rotating head or arranged in a fan-type shape. We consider in this paper the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage (e.g. the formation of 'islands' of material not cleaned) and damage to the substrate from the waterjet have been observed. In addition, current stripping operations require the nozzle to be placed at a standoff distance of approximately 2 inches in order to achieve adequate performance. This close proximity of the nozzle to the target to be cleaned poses risks to the nozzle and the target in the event of robot error or the striking of unanticipated extrusions on the target surface as the nozzle sweeps past. Two key motivations of this research are to eliminate the formation of 'coating islands' and to increase the allowable standoff distance of the nozzle.

  9. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, C.W. Jr.

    1993-11-09

    A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.

  10. Statistical testing and estimation of uncertainty in pre-post case control experimental designs: are the error bars of physics too large?

    NASA Astrophysics Data System (ADS)

    Ignatius, K.; Henning, S.; Stratmann, F.

    2013-12-01

    We encountered the question of how to do statistical inference and uncertainty estimation for the aerosol particle hygroscopicity (κ) measured up- and downstream of a hilltop in two conditions: during full-cloud events (FCE) where a cap cloud was present on the hilltop, and under cloud-free conditions (non-cloud events, NCE). The aim was to show with statistical testing that particle hygroscopicity is altered by cloud processing. This type of statistical experimental design known as a 'pre-post case control study', 'between-within design' or 'mixed design' is common in medicine and biostatistics but it may not be familiar to all researchers in the atmospheric sciences. Therefore we review the statistical testing methods that can be applied to solve these kind of problems. The key point is that these methods use the pre-measurement as a covariate to the post-measurement, which accounts for the daily variation and reduces variance in the analysis. All the three tests, Change score analysis, Analysis of Covariance (ANCOVA) and multi-way Analysis of Variance (ANOVA) gave similar results and suggested a statistically significant change in κ between FCE and NCE. Quantification of the uncertainty in hygroscopicities derived from cloud condensation nuclei (CCN) measurements implies an uncertainty interval estimation in a nonlinear expression where the uncertainty of one parameter is Gaussian with known mean and variance. We concluded that the commonly used way of estimating and showing the uncertainty intervals in hygroscopicity studies may make the error bars appear too large. Using simple Monte Carlo sampling and plotting the resulting nonlinear distribution and its quantiles may better represent the probability mass in the uncertainty distribution.

  11. The B.A.R. Demonstration Project: A Comparative Evaluation Trial of Computer-Based, Multimedia Simulation Testing and "Hands-on," Actual Equipment Testing.

    ERIC Educational Resources Information Center

    Maher, Thomas G.

    A general evaluation design was developed to examine the effectiveness of a computer-based, multimedia simulation test on California smog check mechanics. The simulation test operated on an Apple Macintosh IIci, with a single touchscreen color monitor controlling a videodisc player; it had three parts: introduction-tutorial-help, data, and test.…

  12. Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah

    USGS Publications Warehouse

    Nelson, P.H.

    2002-01-01

    High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.

  13. Hot Gas Cleanup Test Facility for gasification and pressurized combustion

    SciTech Connect

    Not Available

    1991-01-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The major emphasis during this reporting period was finishing the conceptual design for the test facility and discussions on the potential expansion of the test facility. Results are discussed for the following subtasks of conceptual design: design bases; quasifier/combustor and hot stream design; balance of plant designs; and particulate collection.

  14. Study and application of a high-pressure water jet multi-functional flow test system.

    PubMed

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  15. Performance Evaluation Tests of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Espinoza-Loza, F

    2002-03-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen or ambient-temperature compressed hydrogen. This flexibility results in multiple advantages with respect to compressed hydrogen tanks or low-pressure liquid hydrogen tanks. Our work is directed at verifying that commercially available aluminum-lined, fiber-wrapped pressure vessels can be safely used to store liquid hydrogen. A series of tests have been conducted, and the results indicate that no significant vessel damage has resulted from cryogenic operation. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for certification of insulated pressure vessels.

  16. Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F

    2002-05-22

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen or ambient-temperature compressed hydrogen. This flexibility results in multiple advantages with respect to compressed hydrogen tanks or low-pressure liquid hydrogen tanks. Our work is directed at verifying that commercially available aluminum-lined, fiber-wrapped pressure vessels can be safely used to store liquid hydrogen. A series of tests have been conducted, and the results indicate that no significant vessel damage has resulted from cryogenic operation. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for certification of insulated pressure vessels.

  17. Study and application of a high-pressure water jet multi-functional flow test system

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  18. Sideslip-induced static pressure errors in flight-test measurements

    NASA Technical Reports Server (NTRS)

    Parks, Edwin K.; Bach, Ralph E., Jr.; Tran, Duc

    1990-01-01

    During lateral flight-test maneuvers of a V/STOL research aircraft, large errors in static pressure were observed. An investigation of the data showed a strong correlation of the pressure record with variations in sideslip angle. The sensors for both measurements were located on a standard air-data nose boom. An algorithm based on potential flow over a cylinder that was developed to correct the pressure record for sideslip-induced errors is described. In order to properly apply the correction algorithm, it was necessary to estimate and correct the lag error in the pressure system. The method developed for estimating pressure lag is based on the coupling of sideslip activity into the static ports and can be used as a standard flight-test procedure. The estimation procedure is discussed and the corrected static-pressure record for a typical lateral maneuver is presented. It is shown that application of the correction algorithm effectively attenuates sideslip-induced errors.

  19. Cygnus Pressurized Cargo Module (PCM) Flight Inertial Load Static Tests

    NASA Astrophysics Data System (ADS)

    Murgia, Giovanni; Mancini, Simone; Palmieri, Paolo; Rutigliano, Luigi

    2012-07-01

    Cygnus PCM Flight Inertial Load Static Test campaign has been performed by Thales Alenia Space - Italy (TAS-I) to achieve the Static Qualification of its Primary Structure. A “Proto-flight Approach” has been followed (as per [1] and [2]), thus the first flight unit, the PCM0, has been tested up to qualification level (qualification/acceptance factor equivalent to 1.2 [1]). The PCM0 has been constrained to a dummy Service Module (the second member of Cygnus Spacecraft), representative in terms of interfaces provisions, and flight load conditions have been reproduced with proper forces that have been applied by means of hydraulic jacks at internal PCM secondary structure interfaces. Test load cases have been defined in order to simulate load paths and relevant stress fields associated to the worst flight load conditions by using the FE model analyses. Tests have been monitored by means of gauges and displacement transducers and results have been utilized to correlate the PCM FEM following [3] requirements.

  20. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  1. Data acquisition and interpretation of horizontal well pressure-transient tests

    SciTech Connect

    Lichtenberger, G.J. )

    1994-02-01

    For both vertical and horizontal wells, pressure-transient testing is a powerful tool for evaluating in-situ reservoir and wellbore parameters that describe the production characteristics of a well. Although many operators use horizontal well technology, many engineers consider pressure-transient testing of horizontal wells impractical and too complex. Experience has shown, however, that with adequate test planning, based on the concept of low regimes and focused on optimizing test conditions, horizontal well testing can be as successful as vertical well testing. Using the concept of flow regimes and drawing on analogies with vertical wells, this paper reviews the pressure-transient behavior of horizontal wells. Practical guidelines are given for planning, executing, and interpreting horizontal well tests. The application of various interpretation techniques is illustrated with field examples.

  2. An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames.

    PubMed

    Leschowski, M; Dreier, T; Schulz, C

    2014-04-01

    Studying soot particle morphology in high-pressure flames via thermophoretic sampling critically depends on sampling precision, speed, and reproducibility. This is mainly limited by the challenges of applying pneumatically driven devices for burner chamber pressures higher than the pneumatic pressure. We present a pneumatically driven device for high-pressure applications up to 90 bars. The novelty is to separate the pneumatic driver section from the high-pressure environment in the burner chamber. The device was tested by sampling soot from a laminar high-pressure flame at 20 bars.

  3. Small, high-pressure ratio compressor mechanical acceptance test, volume 2

    NASA Technical Reports Server (NTRS)

    Metty, G. R.; Shoup, W. I.

    1973-01-01

    The fabrication and mechanical testing of the high-pressure-ratio compressor are reported. Mechanical testing was performed to demonstrate overspeed capability, adequate rotor dynamics, electrical isolation of the gas bearing trunnion mounted diffuser and shroud and the effect of operating parameters (speed and pressure ratio) on clearance of the compressor test rig. The speed range covered was 20 to 120 percent of rated speed (80,000 rpm). Following these tests an acceptance test which consisted of a 5 hour run at 80,000 rpm was made with approximately design impeller to shroud clearances. For Vol. 1, see N73-26483.

  4. Fluid dynamics of a pressure measuring system for underground explosive tests

    SciTech Connect

    Dykhuizen, R.C.

    1987-01-01

    Numerical and analytical models are used to optimize a pressure measuring system for underground nuclear tests. This system uses a long pipe filled with gas to communicate the pressure level to a transducer in a pressure chamber remote from the explosion cavity. The pressure chamber and pipe are pressurized above the final pressure expected from the explosion. During the explosion, the high pressure gas blows down, preventing debris from entering and clogging the system. The models were first checked against the Junior Jade test series, which used an undergound non-nuclear explosion to simulate a nuclear test. It was found that the measured pressure oscillated for some time before settling down to a steady value. This is shown to be a result of an organ pipe oscillation that can develop in the short pipes used for this test series. The analytical model provided a simple means to optimize the system design parameters and showed that changing the working fluid from nitrogen to helium would improve the time response of the system significantly. The numerical model is then used to obtain more accurate predictions of the sytem response. 2 refs., 5 figs., 1 tab.

  5. 40 CFR 53.56 - Test for effect of variations in ambient pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (4) Barometer, range 600 mm Hg to 800 mm Hg, certified accurate to 2 mm Hg. Ambient air pressure... meter. (4) The barometer shall be installed in the test chamber such that it will accurately measure the... corresponding ambient (chamber) pressure measured by the barometer specified in paragraph (c)(4) of this...

  6. PROOF OF PRINCIPAL TEST TO FEED AND METER GRANULAR COAL INTO 450 psig GAS PRESSURE

    SciTech Connect

    Derek L. Aldred

    2000-07-01

    This research program is concerned with the development of a new form of feeder, known as the Stamet Posimetric O High Pressure Solids Feeder, to feed dry granular solids continuously and controllably into gas pressure. The device is a rotary mechanical feeder, which utilizes the interlocking and internal friction of the granular solids to drive the solids through into the outlet pressure in a continuous and controllable way, using a continuous solids material seal on the feeder outlet to control gas leakage. Earlier work sponsored under previous SBIR grants has successfully demonstrated the potential benefits of the Stamet machine over pressurized lock hopper or paste feeder methods. The objective of this project was to demonstrate proof of principal to feed and meter specified granular coal into 450 psig gas pressure for use with next generation pressurized fluidized bed combustors. This report encompasses the development of material transport properties testers, methods to predict feeder performance by calculation, and the modification and testing of Stamet feeders to feed the material supplied into pressure. Testers were made to measure material compressibility, bulk density, both internal and wall friction coefficients, and permeability under typical conditions experienced inside a Stamet high pressure feeder. This data is then used in support of ongoing efforts to develop calculations to predict the performance of Stamet pressure feeders with different materials and conditions. Three Stamet pressure feeders were modified to handle the fine granular or pulverized coal, and were tested under various conditions using different outlet arrangements. The initial testing identified difficulties in handling the fine materials, but through a series of calculations and tests, the issues were overcome and the material was successfully fed into pressure. In all cases the performance calculated based on the measured material properties and feeder geometry agreed well with

  7. The BaBar electromagnetic calorimeter

    SciTech Connect

    Stahl, A.

    1997-07-01

    The progress on the design and construction of the BaBar electromagnetic calorimeter including its mechanical structure, the readout system, the mechanical and optical properties of the crystals, and the schedule for the final assembly and testing is summarized.

  8. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.

    PubMed

    Yang, Mingzhi; Du, Juntao; Li, Zhiwei; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton's second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable.

  9. 30 CFR 250.423 - What are the requirements for pressure testing casing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the...

  10. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements

    PubMed Central

    Yang, Mingzhi; Du, Juntao; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable. PMID:28095441

  11. Design certification tests: High Pressure Oxygen Filter (HPOF) program. Summary report

    NASA Technical Reports Server (NTRS)

    Smith, I. D.

    1976-01-01

    Design and acceptance certification test procedures and results are presented for a high pressure oxygen filter developed to protect the sealing surfaces in emergency oxygen systems. Equipment specifications are included.

  12. Space Station Freedom delta pressure leakage rate comparison test data analysis report

    NASA Technical Reports Server (NTRS)

    Sorensen, E. B.

    1992-01-01

    Results are provided of a series of tests performed to identify the relationship between gas leakage rates across a seal at various internal to external pressure ratios. The results complement and provide insight into the analysis technique used to obtain the results presented in MSFC SSF/DEV/EL91-008, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study with Delta Pressure Leak Rate Comparison Test Report.'

  13. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  14. Bar Codes for Libraries.

    ERIC Educational Resources Information Center

    Rahn, Erwin

    1984-01-01

    Discusses the evolution of standards for bar codes (series of printed lines and spaces that represent numbers, symbols, and/or letters of alphabet) and describes the two types most frequently adopted by libraries--Code-A-Bar and CODE 39. Format of the codes is illustrated. Six references and definitions of terminology are appended. (EJS)

  15. Pressure solution for sequential hydraulic tests in low-transmissivity fractured and nonfractured media

    NASA Astrophysics Data System (ADS)

    Johns, R. T.

    1998-04-01

    In the last decade, considerable effort has been applied to the characterization of low-permeability, heterogeneous formations. A primary reason for the increased activity is the importance of estimating formation properties for use in safety assessments at proposed nuclear waste disposal sites, such as those in Switzerland, Germany, Sweden, and the United States. Methods for determining formation properties (e.g., transmissivity, static head, storativity, and flow boundaries) are varied, but hydraulic testing is commonly used. Hydraulic tests in low-permeability media typically consist of a sequence of multiple test events such as slug, constant pressure, and pulse tests. Each single test event can significantly affect the measured pressure response of subsequent test events. The pressure response can also be affected by borehole mud pressures that occur prior to testing (i.e., pretest pressures) and other factors such as well bore storage, well bore skin, and well bore temperature. We present a new analytical solution that accounts for all of the aforementioned complexities. The solution technique treats a sequence of pretest pressures and multiple test events (slugs, pulses, and shut-ins) as one test sequence, thereby accounting for the influence of one test event upon another. The solution is derived so that only a kernel function, the constant-rate pumping test solution, is required for new flow models. Furthermore, the solution is presented for any flow dimension allowing for interpretation in fractured formations where linear, radial, and fractional flow may exist. We demonstrate the use of the solution by inverse modeling to estimate the flow model and parameters for an example hydraulic test conducted in Switzerland.

  16. Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen and Natural Gas Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F; Schaffer, R; Clapper, W

    2002-05-22

    We are working on developing an alternative technology for storage of hydrogen or natural gas on light-duty vehicles. This technology has been titled insulated pressure vessels. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept either liquid fuel or ambient-temperature compressed fuel. Insulated pressure vessels offer the advantages of cryogenic liquid fuel tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for fuel liquefaction and reduced evaporative losses). The work described in this paper is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen or LNG. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining insulated pressure vessel certification.

  17. Performance and Certification Testing of Insulated Pressure Vessels for Vehicular Hydrogen Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Garcia-Villazana, O; Espinosa-Loza, F

    2001-06-03

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH2) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures. Future activities also include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining certification for insulated pressure vessels.

  18. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  19. Triaxial testing system for pressure core analysis using image processing technique

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Tenma, N.; Nagao, J.

    2013-11-01

    In this study, a newly developed innovative triaxial testing system to investigate strength, deformation behavior, and/or permeability of gas hydrate bearing-sediments in deep sea is described. Transport of the pressure core from the storage chamber to the interior of the sealing sleeve of a triaxial cell without depressurization was achieved. An image processing technique was used to capture the motion and local deformation of a specimen in a transparent acrylic triaxial pressure cell and digital photographs were obtained at each strain level during the compression test. The material strength was successfully measured and the failure mode was evaluated under high confining and pore water pressures.

  20. The Role of Channel Bar Influences on Groundwater / Surface Water Interactions

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2010-12-01

    Channel bars are dominant in-stream geomorphic island features present in a large range of river classes throughout the world, particularly in the arid western United States. A quantitative understanding of groundwater and surface water exchange through channel bar features is necessary to understand near-stream hyporheic flow patterns. The Truckee River in northwestern Nevada was used as a research site to quantitatively examine the influence of channel bars on near-stream water fluxes using heat as a tracer. This study provided the near-stream hydraulic physical framework for current and future research on nutrient cycling and biogeochemical impacts of near-stream exchange and can be used for assessing critical water quality impacts. Field activities included the installation and development of monitoring wells and piezometers, instrumentation of the piezometers with pressure transducers and temperature thermistors, and slug tests to estimate hydraulic conductivity. The potentiometric surface throughout the study site was monitored over time and the temperature thermistors were used to estimate transport using heat as a tracer. Horizontal and vertical Darcian water fluxes were estimated from field observations. To increase confidence in the hydraulic conductivity values for water flux estimates, heat-based numerical simulations were completed. Three-dimensional models of the channel bar study area were constructed and hydraulic conductivity was inversely estimated by minimizing the difference between observed and simulated head and temperature measurements. Numerical simulations indicated that lateral water fluxes between the channel bar and the stream were an order of magnitude greater than between the adjacent streambank and the stream. The fluxes at the downstream end of the channel bar were an order of magnitude greater than upstream fluxes. Net groundwater and surface water fluxes at the channel bar and stream interface were at least 2 times greater than

  1. Design, analysis, and fabrication of a pressure box test fixture for tension damage tolerance testing of curved fuselage panels

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Bodine, J. B.; Preuss, C. H.; Koch, W. J.

    1993-01-01

    A pressure box test fixture was designed and fabricated to evaluate the effects of internal pressure, biaxial tension loads, curvature, and damage on the fracture response of composite fuselage structure. Previous work in composite fuselage tension damage tolerance, performed during NASA contract NAS1-17740, evaluated the above effects on unstiffened panels only. This work extends the tension damage tolerance testing to curved stiffened fuselage crown structure that contains longitudinal stringers and circumferential frame elements. The pressure box fixture was designed to apply internal pressure up to 20 psi, and axial tension loads up to 5000 lb/in, either separately or simultaneously. A NASTRAN finite element model of the pressure box fixture and composite stiffened panel was used to help design the test fixture, and was compared to a finite element model of a full composite stiffened fuselage shell. This was done to ensure that the test panel was loaded in a similar way to a panel in the full fuselage shell, and that the fixture and its attachment plates did not adversely affect the panel.

  2. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressure drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.

  3. On testing models for the pressure-strain correlation of turbulence using direct simulations

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Gatski, Thomas B.; Sarkar, Sutanu

    1992-01-01

    Direct simulations of homogeneous turbulence have, in recent years, come into widespread use for the evaluation of models for the pressure-strain correlation of turbulence. While work in this area has been beneficial, the increasingly common practice of testing the slow and rapid parts of these models separately in uniformly strained turbulent flows is shown in this paper to be unsound. For such flows, the decomposition of models for the total pressure-strain correlation into slow and rapid parts is ambiguous. Consequently, when tested in this manner, misleading conclusions can be drawn about the performance of pressure-strain models. This point is amplified by illustrative calculations of homogeneous shear flow where other pitfalls in the evaluation of models are also uncovered. More meaningful measures for testing the performance of pressure-strain models in uniformly strained turbulent flows are proposed and the implications for turbulence modeling are discussed.

  4. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, J. C., Jr.; Harris, C. E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap-splice joints in commercial transport aircraft fuselage. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  5. An evaluation of the pressure proof test concept for thin sheet 2024-T3

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Poe, C. C., Jr.; Newman, James C., Jr.; Harris, Charles E.

    1990-01-01

    The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

  6. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents

  7. 30 CFR 250.523 - How long do I keep records of casing pressure and diagnostic tests?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... records of casing pressure and diagnostic tests? Records of casing pressure and diagnostic tests must be... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How long do I keep records of casing pressure and diagnostic tests? 250.523 Section 250.523 Mineral Resources BUREAU OF SAFETY AND...

  8. 30 CFR 250.524 - How long do I keep records of casing pressure and diagnostic tests?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... records of casing pressure and diagnostic tests? Records of casing pressure and diagnostic tests must be... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How long do I keep records of casing pressure and diagnostic tests? 250.524 Section 250.524 Mineral Resources BUREAU OF SAFETY AND...

  9. 30 CFR 250.524 - How long do I keep records of casing pressure and diagnostic tests?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... records of casing pressure and diagnostic tests? Records of casing pressure and diagnostic tests must be... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How long do I keep records of casing pressure and diagnostic tests? 250.524 Section 250.524 Mineral Resources BUREAU OF SAFETY AND...

  10. Pressure testing of ophthalmic safety lenses: the effects on different materials.

    PubMed

    Dain, S J

    1988-07-01

    The procedure of applying pressure to a lens until fracture occurs and the use of the fracture pressure as a measure of lens strength has been proposed as a quantitative alternative to the drop ball test. The fracture pressure or pressure resistance of untempered, thermally tempered, and chemically tempered glass lenses and CR39 lenses were compared. The results for the glass lenses were consistent with workplace experience and previous studies using the drop ball test. The results for glass and CR39 lenses showed the reverse to what was expected. In order to investigate the basis of this difference, a second procedure was followed in which the annulus supporting the lens and the steel ball applying the pressure to the lens were systematically changed. Glass lenses showed a highly statistically significant change in fracture pressure with decreasing ball size and a small but statistically significant change with annulus size. CR39 lenses showed no statistically significant change in fracture pressure with changing ball size but a highly statistically significant increase in fracture pressure with increasing annulus size. The mechanism of fracture is known to differ in the glass and plastics materials and it is concluded that this method should not be used to compare the performance of different materials.

  11. Low-pressure membrane integrity tests for drinking water treatment: A review.

    PubMed

    Guo, H; Wyart, Y; Perot, J; Nauleau, F; Moulin, P

    2010-01-01

    Low-pressure membrane systems, including microfiltration (MF) and ultrafiltration (UF) membranes, are being increasingly used in drinking water treatments due to their high level of pathogen removal. However, the pathogen will pass through the membrane and contaminate the product if the membrane integrity is compromised. Therefore, an effective on-line integrity monitoring method for MF and UF membrane systems is essential to guarantee the regulatory requirements for pathogen removal. A lot of works on low-pressure membrane integrity tests have been conducted by many researchers. This paper provides a literature review about different low-pressure membrane integrity monitoring methods for the drinking water treatment, including direct methods (pressure-based tests, acoustic sensor test, liquid porosimetry, etc.) and indirect methods (particle counting, particle monitoring, turbidity monitoring, surrogate challenge tests). Additionally, some information about the operation of membrane integrity tests is presented here. It can be realized from this review that it remains urgent to develop an alternative on-line detection technique for a quick, accurate, simple, continuous and relatively inexpensive evaluation of low-pressure membrane integrity. To better satisfy regulatory requirements for drinking water treatments, the characteristic of this ideal membrane integrity test is proposed at the end of this paper.

  12. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  13. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  14. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  15. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  16. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  17. 33 CFR 183.580 - Static pressure test for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.580...

  18. Software Verification and Validation Test Report for the HEPA filter Differential Pressure Fan Interlock System

    SciTech Connect

    ERMI, A.M.

    2000-09-05

    The HEPA Filter Differential Pressure Fan Interlock System PLC ladder logic software was tested using a Software Verification and Validation (V&V) Test Plan as required by the ''Computer Software Quality Assurance Requirements''. The purpose of his document is to report on the results of the software qualification.

  19. Pressure Distribution on a Wing Section with Slotted Flap in Free Flight Tests

    NASA Technical Reports Server (NTRS)

    Kiel, Georg

    1937-01-01

    The pressure distribution was measured in flight on a wing section with a slotted flap for several flap deflections, and the results obtained are presented. The test apparatus and the procedure employed in obtaining the results are also described. A Fieseler type F 5 R airplane was used for the tests.

  20. On Probation and under Pressure: How One Fourth-Grade Class Managed High-Stakes Testing.

    ERIC Educational Resources Information Center

    Terzian, Shelley

    2002-01-01

    Describes personal and professional pressures a first-year teacher faced when confronted with mandated standards in student academic achievement for at-risk students. Focuses on the teacher's efforts to: (1) examine student needs, including addressing test anxiety; (2) adapting classroom methods, including uses of practice testing; and (3)…

  1. Results of pressure locking and thermal binding tests of gate valves

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1998-05-01

    The US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering and Environmental Laboratory (INEEL) in performing research investigating the performance of gate valves subjected to pressure locking and thermal binding conditions. Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most gate valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. Thermal binding can occur when thermal expansion/contraction effects cause the disc to be squeezed between the valve body seats. If the loads associated with pressure locking or thermal binding are very high, the actuator might not have the capacity to open the valve. The authors tested a flexible-wedge gate valve and a double-disc gate valve under pressure locking and thermal binding conditions. The results show that these valves are susceptible to pressure locking; however, they are not significantly affected by thermal binding. For the flexible-wedge gate valve, pressure locking loads (in terms of stem thrust) were higher than corresponding hydrostatic opening loads by a factor of 1.1 to 1.5. For the parallel disc gate valve, pressure locking loads were higher by a factor of 2.05 to 2.4. The results also show that seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  2. Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1

    NASA Technical Reports Server (NTRS)

    Rebells, Clarence A.

    1988-01-01

    This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.

  3. Results From a Pressure Sensitive Paint Test Conducted at the National Transonic Facility on Test 197: The Common Research Model

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.

    2011-01-01

    This report will serve to present results of a test of the pressure sensitive paint (PSP) technique on the Common Research Model (CRM). This test was conducted at the National Transonic Facility (NTF) at NASA Langley Research Center. PSP data was collected on several surfaces with the tunnel operating in both cryogenic mode and standard air mode. This report will also outline lessons learned from the test as well as possible approaches to challenges faced in the test that can be applied to later entries.

  4. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  5. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect

    Alvine, K. J. Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-15

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  6. On-line calibration of high-response pressure transducers during jet-engine testing

    NASA Technical Reports Server (NTRS)

    Armentrout, E. C.

    1974-01-01

    Jet engine testing is reported concerned with the effect of inlet pressure and temperature distortions on engine performance and involves the use of numerous miniature pressure transducers. Despite recent improvements in the manufacture of miniature pressure transducers, they still exhibit sensitivity change and zero-shift with temperature and time. To obtain meaningful data, a calibration system is needed to determine these changes. A system has been developed which provides for computer selection of appropriate reference pressures selected from nine different sources to provide a two- or three-point calibration. Calibrations are made on command, before and sometimes after each data point. A unique no leak matrix valve design is used in the reference pressure system. Zero-shift corrections are measured and the values are automatically inserted into the data reduction program.

  7. Vacuum-type backup bar speeds weld repairs

    NASA Technical Reports Server (NTRS)

    Carmody, R. J.

    1964-01-01

    A backup bar designed to use both vacuum and air pressure provides a method of sealing the weld root of a faulty section of seam weld. With slight redesign, the bar can be made sufficiently flexible to fit any large cylindrical surface.

  8. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.

    2015-01-01

    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  9. The low-cost and precise piston gas pressure regulator

    NASA Astrophysics Data System (ADS)

    Kudasik, Mateusz; Skoczylas, Norbert

    2016-03-01

    The present paper discusses the concept and functioning of an innovative instrument for precise stabilization of gas pressure. The piston gas pressure regulator was constructed at the Strata Mechanics Research Institute of the Polish Academy of Sciences. The tests to which the instrument was subjected involved observing the values of stabilized pressure at the level of 10 bar and 3 bar, for various gas flow rates at the outlet of the instrument. The piston gas pressure regulator operates within the range of 0-10 bar and the gas flow range of 0-240 cm3 min-1. The precision of the process of stabilizing the initial pressure is  ±0.005 bar, regardless of the gas pressure value and the flow rate observed at the outlet of the instrument. Although the pressure transducer’s accuracy is 0.25% of the full range, the conducted tests of the regulator demonstrated that the obtained changeability of the stabilized pressure is at least two times lower. Unlike some other gas pressure regulators available on the market, the instrument constructed by the authors of the present paper is highly precise when it comes to the process of stabilization, and inexpensive to build.

  10. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren

    2010-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  11. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  12. Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Hartwig, Jason W.

    2011-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  13. Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints

    NASA Technical Reports Server (NTRS)

    Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin

    2012-01-01

    Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.

  14. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  15. Short Nuss bar procedure

    PubMed Central

    2016-01-01

    The Nuss procedure is now the preferred operation for surgical correction of pectus excavatum (PE). It is a minimally invasive technique, whereby one to three curved metal bars are inserted behind the sternum in order to push it into a normal position. The bars are left in situ for three years and then removed. This procedure significantly improves quality of life and, in most cases, also improves cardiac performance. Previously, the modified Ravitch procedure was used with resection of cartilage and the use of posterior support. This article details the new modified Nuss procedure, which requires the use of shorter bars than specified by the original technique. This technique facilitates the operation as the bar may be guided manually through the chest wall and no additional stabilizing sutures are necessary. PMID:27747185

  16. Strain measurements using FBG on composite over wrap pressure vessels (COPV) in stress rupture test

    NASA Astrophysics Data System (ADS)

    Grant, Joseph; Banks, Curtis

    2007-04-01

    Thirty six Fiber Optic Braggs Grating sensors were used during an ambient temperature hydrostatic pressurization testing of a Space Transportation System (STS) 40-inch Kevlar Composite Over-wrapped Pressure Vessel (COPV). The 40-inch vessel was of the same design and approximate age as the STS Main Propulsion System (MPS) and Orbiter Maneuvering System (OMS) vessels. The sensors were surfaces mounted to on the vessel to measure strain during a stress rupture event. The Bragg signals were linear with the applied pressure. The results indicated that the vessel was under an uneven force distribution at various locations on the vessel.

  17. Laboratory and workplace assessments of rivet bucking bar vibration emissions.

    PubMed

    McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G

    2015-04-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  18. Laboratory and Workplace Assessments of Rivet Bucking Bar Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Warren, Christopher; Xu, Xueyan S.; Welcome, Daniel E.; Dong, Ren G.

    2016-01-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  19. Automated bar detection in local disk galaxies from the SDSS. The colors of bars

    NASA Astrophysics Data System (ADS)

    Consolandi, G.

    2016-10-01

    This paper describes an automatic isophotal fitting procedure that succeeds, without the support of any visual inspection of either the images or the ellipticity/position-angle radial profiles, to extract a fairly pure sample of barred late-type galaxies (LTGs) among thousands of optical images from the Sloan Digital Sky Survey (SDSS). The procedure relies on previous methods to robustly extract the photometrical properties of a large sample of local SDSS galaxies and is tailored to extract bars on the basis of their well-known peculiarities in their position angle and ellipticity profiles. This procedure was run on a sample of 5853 galaxies in the Coma and Local superclusters. The procedure extracted a color, an ellipticity and a position angle radial profile of the ellipses fitted to the isophotes for each galaxy. Examining the profiles of 922 face-on LTGs (B/A > 0.7) automatically, the procedure found that 36% are barred. The local bar fraction strongly increases with stellar mass. The sample of barred galaxies is used to construct a set of template radial color profiles to test the impact of the barred galaxy population on the average color profiles as previously shown in the literature and to test the bar-quenching scenario. The radial color profile of barred galaxy shows that bars are on average redder than their surrounding disk producing an outside-in gradient toward red in correspondence with their corotation radius. The distribution of the extension of the deprojected length of the bar suggests that bars have strong impact on the gradients of averaged color profiles. The dependence of the profiles on the mass is consistent with the bar-quenching scenario, i.e. more massive barred galaxies have redder colors (hence older stellar population and suppressed star formation) inside their corotation radius with respect to their lower mass counterparts. Tables of the barred and non-barred galaxies are only available at the CDS via anonymous ftp to http

  20. High pressure hypervelocity electrothermal wind tunnel performance study and subscale tests

    NASA Technical Reports Server (NTRS)

    Rizkalla, Oussama F.; Chinitz, Wallace; Witherspoon, F. D.; Burton, Rodney L.

    1992-01-01

    The feasibility of a Mach 10 to 20, high pressure electrothermal wind tunnel was assessed. A heater based on a continuous high power electric arc discharge capable of heating air to temperatures above 10,000 K and pressures of 15,000 atm is the key element of this wind tunnel. Results of analytical study indicate that the facility is capable of simulation conditions suitable for hypervelocity airbreathing propulsion testing up to Mach 16. In this case simulation was limited by pressure containment, high nozzle throat heat flux rates, and chemical freezing in the nozzle. The high total pressure capability improved the recombination chemistry in the facility nozzle as chemical equilibrium prevailed to the freezing point. Steady arc discharges were observed with liquid nitrogen flowing into the arc chamber during tests based on the two millisecond test facility. The measured steady pressure in the arc chamber was 4559 psi, which is two times greater than maximum total pressure obtainable in conventional arc heaters.