Sample records for pressure control experiment

  1. Tank Pressure Control Experiment (TPCE)

    NASA Technical Reports Server (NTRS)

    Bentz, Mike

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is a small self-contained STS payload designed to test a jet mixer for cryogenic fluid pressure control. Viewgraphs are presented that describe project organization, experiment objectives and approach, risk management, payload concept and mission plan, and initial test data.

  2. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  3. The interaction between practice and performance pressure on the planning and control of fast target directed movement.

    PubMed

    Allsop, Jonathan E; Lawrence, Gavin P; Gray, Robert; Khan, Michael A

    2017-09-01

    Pressure to perform often results in decrements to both outcome accuracy and the kinematics of motor skills. Furthermore, this pressure-performance relationship is moderated by the amount of accumulated practice or the experience of the performer. However, the interactive effects of performance pressure and practice on the underlying processes of motor skills are far from clear. Movement execution involves both an offline pre-planning process and an online control process. The present experiment aimed to investigate the interaction between pressure and practice on these two motor control processes. Two groups of participants (control and pressure; N = 12 and 12, respectively) practiced a video aiming amplitude task and were transferred to either a non-pressure (control group) or a pressure condition (pressure group) both early and late in practice. Results revealed similar accuracy and movement kinematics between the control and pressure groups at early transfer. However, at late transfer, the introduction of pressure was associated with increased performance compared to control conditions. Analysis of kinematic variability throughout the movement suggested that the performance increase was due to participants adopting strategies to improve movement planning in response to pressure reducing the effectiveness of the online control system.

  4. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  5. Low-g fluid mixing - Further results from the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Knoll, R. H.; Hasan, M. M.; Lin, C. S.

    1993-01-01

    The Tank Pressure Control Experiment (TPCE) made its first space flight on STS-43 in 1991. Its objective was to test the effectiveness of low-energy axial jet mixing at controlling pressures in low gravity. The experiment used refrigerant 113 at near-saturation conditions, at an 83 percent fill level, to simulate the fluid dynamics and thermodynamics of cryogenic fluids in future space applications. Results from this flight were reported previously. TPCE was again flown in space on STS-52 in 1992, this time primarily to study boiling and related thermal phenomena which will be reported elsewhere. However additional mixing and pressure control data were obtained from the reflight that supplement the data from the first flight.

  6. Crystal-liquid-vapor equilibrium experiments at high temperature (less than or equal to 1800 C) and low, controlled oxygen and hydrogen pressure (10(-1) to 10(-9) PA)

    NASA Technical Reports Server (NTRS)

    Mysen, B. O.

    1987-01-01

    Evidence from carbonaceous chrondrites points to refractory oxides in the system CaO-MgO-Al2O3-TiO2-SiO2-Fe-O as being among the earliest phases to condense from the solar nebula. It is necessary to establish the equilibrium relationships between the relevant crystalline and amorphous phases before the chemical constraints can be meaningfully applied to models of solar system history. Preliminary experiments on earth show that such experiments are feasible. Earth-based experiments suffer from several unavoidable problems. These problems can be overcome by experimentation in the Space Station where the experiments can be conducted under near static pressure conditions and where total pressure equals the sum of controlled hydrogen and oxygen pressures and can be controlled for periods exceeding several hours.

  7. N2 and CO2 capillary breakthrough experiments on Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.

    2013-04-01

    The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.

  8. Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren

    2017-11-01

    The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.

  9. Zero-Boil-Off Tank (ZBOT) Experiment: Ground-Based Validation of Self-Pressurization and Pressure Control Two-Phase CFD Model

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga

    2017-01-01

    Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.

  10. Research on equipment of micro-pressure measure and control in loading experiment of plant cell mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Lian; Yu, Chengbo; Tao, Hongyan; Chen, Xuejun; Zhai, Feng

    2005-12-01

    The equipment is developed to measure and control micro-pressure in loading experiment of plant cell mechanics. The motivation for the development of this equipment was to maintain a stationary micro-pressure on the agar of culturing cells to keep cytoactive in biology experiments. A singlechip controls the stepping motor of this equipment to drive loading equipment in the system, in order to load between 50mN and 250mN under a constant voltage. The accuracy is estimated to be +/-0.4 mN. The structure and control system of this equipment is introduced and described in detail. The experimental results show that the equipment is capable of maintaining a constant, stationary micropressure in cell culturing application and is worth of extending and applying.

  11. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 3 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 3 of 4.

  12. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 4 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 4 of 4.

  13. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 1 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 1 of 4.

  14. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 2 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 2 of 4.

  15. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  16. Effect of Processing Pressure on Isolated Pore Formation during Controlled Directional Solidification in Small Channels

    NASA Technical Reports Server (NTRS)

    Cox, Matthew C.; Anilkumar, Amrutur V.; Grugel, RIchard N.; Lee, Chun P.

    2008-01-01

    Directional solidification experiments were performed, using succinonitrile saturated with nitrogen gas, to examine the effects of in-situ processing pressure changes on the formation growth, and evolution of an isolated, cylindrical gaseous pore. A novel solidification facility, capable of processing thin cylindrical samples (I.D. < 1.0 mm), under controlled pressure conditions, was used for the experiments. A new experimental method for growing the isolated pore from a seed bubble is introduced. The experimental results indicate that an in-situ processing pressure change will result in either a transient change in pore diameter or a complete termination of pore growth, indicating that pressure changes can be used as a control parameter to terminate bubble growth. A simple analytical model has been introduced to explain the experimental observations.

  17. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    NASA Technical Reports Server (NTRS)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  18. S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; He, Chuan; Corke, Thomas

    2009-11-01

    The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.

  19. Churches as High Blood Pressure Control Centers

    PubMed Central

    Kong, B. Wayne; Miller, Joseph M.; Smoot, Roland T.

    1982-01-01

    High blood pressure, a severe medical problem in the black community, can be controlled to a significant degree by proper medication. Discovery of hypertension and continuing thereapy, however, are difficult. The establishment of churches as high blood pressure control centers is a promising approach to overcome these deficits. The initial experiences with the creation of such a program are presented.

  20. Microbial control of the gypsy moth in recently infested states: experiences and expectations

    Treesearch

    Timothy C. Tigner

    1985-01-01

    Experiences and expectations concerning microbial control of the gypsy moth in recently infested states are summarized. Initial experience included mixed results, but expectations remain optimistic. Public sentiment assures continued pressure for improvement in microbial control technology.

  1. Congestion of mastoid mucosa and influence on middle ear pressure - Effect of retroauricular injection of adrenaline.

    PubMed

    Fooken Jensen, Pernille Vita; Gaihede, Michael

    2016-10-01

    Micro-CT scanning of temporal bones has revealed numerous retroauricular microchannels, which connect the outer bone surface directly to the underlying mastoid air cells. Their structure and dimensions have suggested a separate vascular supply to the mastoid mucosa, which may play a role in middle ear (ME) pressure regulation. This role may be accomplished by changes in the mucosa congestion resulting in volumetric changes, which ultimately affect the pressure of the enclosed ME gas pocket (Boyle's law). Further, such mucosa congestion may be susceptible to α-adrenergic stimulation similar to the mucosa of the nose. The purpose of our study was to investigate these hypotheses by recording the ME pressure in response to adrenergic stimulation administered by retroauricular injections at the surface of the microchannels. In a group of 20 healthy adults we measured the ME pressure by tympanometry initially in the sitting position, and then in the supine position over a 5 min period with 30 s intervals. In each subject, the study included 1) a control reference experiment with no intervention, 2) a control experiment with subcutaneously retroauricular injection of 1 ml isotonic NaCl solution, and 3) a test experiment with subcutaneously retroauricular injection of 1 ml NaCl-adrenaline solution. In both control experiments the ME pressure displayed an immediate increase in response to changing body position; this pressure increase remained stable for the entire period up to five minutes. In the test experiments the ME pressure also showed an initial pressure increase, but it was followed by a distinct significant pressure decrease with a maximum after 90 s. The test group was injected with both a 5 and 10% adrenaline solution, but the responses appeared similar for the two concentrations. Subcutaneous retroauricular injection of adrenaline caused a significant pressure decrease in ME pressure compared with control ears. This may be explained by the microchannels conveying the adrenaline to the underlying mastoid mucosa, where it may result in a vascular constriction and decongestion, ultimately resulting in a ME pressure decrease. These findings suggest that the microchannels contain vascular connections to the mastoid mucosa, and that the mastoid mucosa is susceptible to vasoactive mediators, which may play a role in ME pressure regulation. Further anatomical and physiological experiments should be carried out to confirm these suggestions including pharmacological interactions with the mastoid mucosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Rushed, unhappy, and drained: an experience sampling study of relations between time pressure, perceived control, mood, and emotional exhaustion in a group of accountants.

    PubMed

    Teuchmann, K; Totterdell, P; Parker, S K

    1999-01-01

    Experience sampling methodology was used to examine how work demands translate into acute changes in affective response and thence into chronic response. Seven accountants reported their reactions 3 times a day for 4 weeks on pocket computers. Aggregated analysis showed that mood and emotional exhaustion fluctuated in parallel with time pressure over time. Disaggregated time-series analysis confirmed the direct impact of high-demand periods on the perception of control, time pressure, and mood and the indirect impact on emotional exhaustion. A curvilinear relationship between time pressure and emotional exhaustion was shown. The relationships between work demands and emotional exhaustion changed between high-demand periods and normal working periods. The results suggest that enhancing perceived control may alleviate the negative effects of time pressure.

  3. Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system.

    PubMed

    Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi

    2007-05-01

    Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.

  4. Modeling Ullage Dynamics of Tank Pressure Control Experiment during Jet Mixing in Microgravity

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating the fluid dynamics of the jet induced mixing process is utilized in this paper to model the pressure control portion of the Tank Pressure Control Experiment (TPCE) in microgravity1. The Volume of Fluid (VOF) method is used for modeling the dynamics of the interface during mixing. The simulations were performed at a range of jet Weber numbers from non-penetrating to fully penetrating. Two different initial ullage positions were considered. The computational results for the jet-ullage interaction are compared with still images from the video of the experiment. A qualitative comparison shows that the CFD model was able to capture the main features of the interfacial dynamics, as well as the jet penetration of the ullage.

  5. Tank Pressure Control Experiment on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  6. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  7. Jet mixing in low gravity - Results of the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Meserole, J. S.; Knoll, R. H.

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinogeikin, Stanislav V., E-mail: ssinogeikin@carnegiescience.edu; Smith, Jesse S.; Rod, Eric

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperaturemore » conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.« less

  9. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  10. Effect of Stepwise Pressure Change on Porosity Evolution during Directional Solidification in Small Cylindrical Channels

    NASA Technical Reports Server (NTRS)

    Grugel, R.N.; Lee, C.P.; Cox, M.C.; Blandford, B.T.; Anilkumar, A.V.

    2008-01-01

    Controlled directional solidification experiments were performed in capillary channels, using nitrogen-saturated succinonitrile, to examine the effect of an in-situ stepwise processing pressure increase on an isolated pore evolution. Two experiments were performed using different processing pressure input profiles. The results indicate that a processing pressure increase has a transient effect on pore growth geometry characterized by an initial phase of decreasing pore diameter, followed by a recovery phase of increasing pore diameter. The experimental results also show that processing pressure can be used as a control parameter to either increase or terminate porosity formation. A theoretical model is introduced which indicates that the pore formation process is limited by the diffusion of solute-gas through the melt, and that the observed response toa pressure increase is attributed to the re-equilibration of solute concentration in the melt associated with the increased melt pressure.

  11. Experimenting With Baroreceptor Reflexes

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.; Goble, Ross L.

    1988-01-01

    Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.

  12. High-velocity frictional experiments on dolerite and quartzite under controlled pore pressure

    NASA Astrophysics Data System (ADS)

    Togo, T.; Shimamoto, T.; Ma, S.

    2013-12-01

    High-velocity friction experiments on rocks with or without gouge have been conducted mostly under dry conditions and demonstrated dramatic weakening of faults at high velocities (e.g., Di Toro et al., 2011, Nature). Recent experiments under wet conditions (e.g., Ujiie and Tsutsumi, 2010, GRL; Faulkner et al., 2011, GRL) revealed very different behaviors from those of dry faults, but those experiments were done under drained conditions. Experiments with controlled pore pressure Pp are definitely needed to determine mechanical properties of faults under fluid-rich environments such as those in subduction zones. Thus we have developed a pressure vessel that can be attached to our rotary-shear low to high-velocity friction apparatus (Marui Co Ltd., MIS-233-1-76). With a current specimen holder, friction experiments can be done on hollow-cylindrical specimens of 15 and 40 mm in inner and outer diameters, respectively, at controlled Pp to 35 MPa, at effective normal stresses of 3~9 MPa, and at slip rates of 60 mm/year to 2 m/s. An effective normal stress can be applied with a 100 kN hydraulic actuator. We report an outline of the experimental system and preliminary high-velocity experiments on Shanxi dolerite and a quartzite from China that are composed of pyroxene and plagioclase and of almost pure quartz, respectively. High-velocity friction experiments were performed on hollow-cylindrical specimens of Shanxi dolerite at effective normal stresses of 0.13~1.07 MPa and at slip rates of 1, 10, 100 and 1000 mm/sec. All experiments were conducted first with the nitrogen gas filling the pressure vessel (dry tests) and then with a controlled pore-water pressure (wet tests). In the dry tests an axial force was kept at 1 kN and the nitrogen gas pressure was increased in steps to 5 MPa to change an effective normal stress. In the wet tests the specimens were soaked in distilled water in the vessel and Pp was applied by nitrogen gas in a similar manner as in the dry tests. Nitrogen gas acted as buffer to prevent an abrupt changes in the pore-water pressure during experiments. The steady-state friction coefficient (μss) of dry dolerite increased from 0.3~0.35 at 10 mm/s to 0.55~0.8 at 100 mm/s and then decreased down to 0.2~0.6 at 1000 mm/s. The results are quite similar to those of dry granite tested under similar conditions (Reches and Lockner, 2010, Nature). However, the μss of dolerite under a pore-water pressure decreased monotonically from 0.4~0.8 at 1 mm/s to 0.3~0.5 at 1000 mm/s, and the strengthening from 10 to 100 mm/s disappeared with a pore-water pressure. Two experiments were conducted on solid-cylindrical specimens of quartzite at effective normal stresses of 1.39 MPa (a dry test with CO2 gas pressure of 6.22 MPa) and of 0.99 MPa (a wet test with pore-water pressure of 6.1 MPa, also applied with pressurized CO2 gas). In dry and wet tests, the friction coefficient decreases nearly exponentially from about 0.35 at the peak friction to around 0.05 (dry) and 0.03 (wet) at the steady state. A notable difference was that wet quartzite exhibit much more rapid slip weakening with the slip weakening distance Dc of several meters than the dry specimen with Dc of about 15 m. We plan to conduct more experiments with controlled pore-water pressure and to do textural and material analysis of specimens to gain insight on the weakening mechanisms.

  13. Decision making under time pressure, modeled in a prospect theory framework.

    PubMed

    Young, Diana L; Goodie, Adam S; Hall, Daniel B; Wu, Eric

    2012-07-01

    The current research examines the effects of time pressure on decision behavior based on a prospect theory framework. In Experiments 1 and 2, participants estimated certainty equivalents for binary gains-only bets in the presence or absence of time pressure. In Experiment 3, participants assessed comparable bets that were framed as losses. Data were modeled to establish psychological mechanisms underlying decision behavior. In Experiments 1 and 2, time pressure led to increased risk attractiveness, but no significant differences emerged in either probability discriminability or outcome utility. In Experiment 3, time pressure reduced probability discriminability, which was coupled with severe risk-seeking behavior for both conditions in the domain of losses. No significant effects of control over outcomes were observed. Results provide qualified support for theories that suggest increased risk-seeking for gains under time pressure.

  14. Decision making under time pressure, modeled in a prospect theory framework

    PubMed Central

    Young, Diana L.; Goodie, Adam S.; Hall, Daniel B.; Wu, Eric

    2012-01-01

    The current research examines the effects of time pressure on decision behavior based on a prospect theory framework. In Experiments 1 and 2, participants estimated certainty equivalents for binary gains-only bets in the presence or absence of time pressure. In Experiment 3, participants assessed comparable bets that were framed as losses. Data were modeled to establish psychological mechanisms underlying decision behavior. In Experiments 1 and 2, time pressure led to increased risk attractiveness, but no significant differences emerged in either probability discriminability or outcome utility. In Experiment 3, time pressure reduced probability discriminability, which was coupled with severe risk-seeking behavior for both conditions in the domain of losses. No significant effects of control over outcomes were observed. Results provide qualified support for theories that suggest increased risk-seeking for gains under time pressure. PMID:22711977

  15. Status of Japanese Experiment Module (JEM) activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The current status of the JEM activities are presented in graphic form. The JEM spacecraft configuration is presented. The JEM configuration consist of the Pressurized Module, the Exposed Facility, the Experiment Logistics Module which consist of a pressurized section and an exposed section; and the Remote Manipulator System. The master schedule of the space station is given. Also the development tests of the structure and mechanism, the electrical power system, the data management system, the thermal control system, the environment control system, the experiment support system, and the remote manipulator system are listed.

  16. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  17. Pressure Response of Various Gases in a Pneumatic Resistance Capacitance System and Pipe

    NASA Astrophysics Data System (ADS)

    Peng, J.; Youn, C.; Tadano, K.; Kagawa, T.

    2017-10-01

    City gas, such as propane and methane, is widely used as a fuel in households and factories. Recently, hydrogen as a clean and efficient fuel has been proposed for fuel cell vehicles. However, few studies have investigated pressure control and response of gases considering their properties. This study investigated the static flow rate characteristics in an orifice with four gases—air, propane, methane, and hydrogen. Then, a pressure response experiment was performed using a pneumatic resistance capacitance system comprising an isothermal chamber and a nozzle flapper, and the time constant of the pressure response with various gases was analysed with a mathematical model. The simulation results agreed with the experimental data. Finally, the differences in pressure propagation in a pipe with various gases were explicated by a pressure response experiment. The results showed that the pressure response speed of hydrogen is faster than that of the other three gases because of its small molecular weight. Therefore, the pressure control equipment of hydrogen needs a high response speed.

  18. Control of Acoustics and Store Separation in a Cavity in Supersonic Flow

    DTIC Science & Technology

    2005-02-01

    laser -based flow visualization experiments on the FSU cavity for different microjet pressures. The details of the experiments are given in Zhuang, et. al...developed that rigorously explains the role of leading edge microjets in cavity noise suppression and predicts the magnitude of noise reduction for a...given control input (that is the steady pressure at which the microjets are fired). The model is validated through comparison of its noise reduction

  19. A temperature and pressure controlled calibration system for pressure sensors

    NASA Technical Reports Server (NTRS)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  20. Hydrostatic pressure affects in vitro maturation of oocytes and follicles and increases granulosa cell death.

    PubMed

    Rashidi, Zahra; Azadbakht, Mehri; Amini, Ali; Karimi, Isac

    2014-01-01

    This study examines the effects of hydrostatic pressure on in vitro maturation (IVM) of oocytes derived from in vitro grown follicles. In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM) under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student's t test. The percentage of metaphase II oocytes (MII) increased in hydrostatic pressuretreated follicles compared to controls (p<0.05). Cumulus cell viability reduced in hydrostatic pressure-treated follicles compared to controls (p<0.05). Exposure of follicles to pressure increased apoptosis in cumulus cells compared to controls (p<0.05). Hydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.

  1. Containerless high-pressure petrology experiments in the microgravity environment of the Space Station

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The genesis of igneous rocks on terrestrial planets can only be understood through experiments at pressures corresponding to those in planetary mantles (10 to 50 kbar). Such experiments typically require a piston-cylinder apparatus, and an apparatus that has the advantage of controllable pressure and temperature, adequate sample volume, rapid sample quench, and minimal danger of catastrophic failure. It is proposed to perform high-pressure and high-temperature piston-cylinder experiments aboard the Space Station. The microgravity environment in the Space Station will minimize settling due to density contrasts and may, thus, allow experiments of moderate duration to be performed without a platinoid capsule and without the sample having to touch the container walls. The ideal pressure medium would have the same temperatures. It is emphasized, however, that this proposed experimental capability requires technological advances and innovations not currently available.

  2. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin S.; Knoll, Richard H.; Bentz, Michael D.

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number.

  3. The impact of personality traits and professional experience on police officers' shooting performance under pressure.

    PubMed

    Landman, Annemarie; Nieuwenhuys, Arne; Oudejans, Raôul R D

    2016-07-01

    We explored the impact of professional experience and personality on police officers' shooting performance under pressure. We recruited: (1) regular officers, (2) officers wanting to join a specialised arrest unit (AU) (expected to possess more stress-resistant traits; pre-AU) and (3) officers from this unit (expected to also possess more professional experience; AU) (all male). In Phase 1, we determined personality traits and experience. In Phase 2, state anxiety, shot accuracy, decision-making (shoot/don't shoot), movement speed and gaze behaviour were measured while officers performed a shooting test under low and high pressure. Results indicate minimal differences in personality among groups and superior performance of AU officers. Regression analyses showed that state anxiety and shooting performance under high pressure were first predicted by AU experience and second by certain personality traits. Results suggest that although personality traits attenuate the impact of high pressure, it is relevant experience that secures effective performance under pressure. Practitioner Summary: To obtain information for police selection and training purposes, we let officers who differed in personality and experience execute a shooting test under low and high pressure. Outcomes indicate that experience affected anxiety and performance most strongly, while personality traits of thrill- and adventure-seeking and self-control also had an effect.

  4. Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2018-01-01

    This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.

  5. Modifications to the Langley 8-foot transonic pressure tunnel for the laminar flow control experiment

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.

    1988-01-01

    Modifications to the NASA Langley 8 Foot Transonic Pressure Tunnel in support of the Lamina Flow Control (LFC) Experiment included the installation of a honeymoon and five screens in the settling chamber upstream of the test section 41-long test section liner that extended from the upstream end of the test section contraction region, through the best section, and into the diffuser. The honeycomb and screens were installed as permanent additions to the facility, and the liner was a temporary addition to be removed at the conclusion of the LFC Experiment. These modifications are briefly described.

  6. Preliminary experience with a hospital blood pressure follow up clinic with nurse practitioner assessment and microprocessor based data retrieval.

    PubMed Central

    Rubin, P C; Curzio, J L; Kelman, A; Elliott, H L; Reid, J L

    1984-01-01

    Experience over two years with 376 hypertensive patients managed at a clinic where the primary observations are made by a trained nurse, clinical information is held on a microprocessor, and treatment follows a standard stepped care approach has been assessed. Blood pressure control after both one and two years was appreciably improved, with over 70% of patients having diastolic pressure below 90 mm Hg compared with 22% of patients when they first attended the new clinic. The non-attendance rate was half that of the conventional hospital outpatient clinic. A computer based record system with a nurse run hypertension clinic is acceptable to patients and offers the possibility of more effective long term control of blood pressure in large numbers of patients. PMID:6432180

  7. Supersonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1976-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 1.54 to 2.50 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using a state-of-the-art inviscid flow, constant-pressure-panel method. Emphasis was on conditions under which this theory is valid for both flat and twisted wings.

  8. Development of a Facility for Combustion Stability Experiments at Supercritical Pressure

    DTIC Science & Technology

    2013-12-01

    by the exhaust orifice. This technique adds freedom for designing a large array experimental conditions, because chamber pressure is controlled...analytical examination reveals a broad array of frequencies. The analytical relationship between chamber length L, acoustic frequency fF, and the speed...the pressure amplitude is directly controlled by altering the voltage input to the sirens, similar to a traditional loudspeaker . Last, both a PN and

  9. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.

  10. Exploring Heart and Lung Function in Space: ARMS Experiments

    NASA Technical Reports Server (NTRS)

    Kuipers, Andre; Cork, Michael; LeGouic, Marine

    2002-01-01

    The Advanced Respiratory Monitoring System (ARMS) is a suite of monitoring instruments and supplies used to study the heart, lungs, and metabolism. Many experiments sponsored by the European Space Agency (ESA) will be conducted using ARMS during STS-107. The near-weightless environment of space causes the body to undergo many physiological adaptations, and the regulation of blood pressure is no exception. Astronauts also experience a decrease in blood volume as an adaptation to microgravity. Reduced blood volume may not provide enough blood pressure to the head during entry or landing. As a result, astronauts often experience light-headedness, and sometimes even fainting, when they stand shortly after returning to Earth. To help regulate blood pressure and heart rate, baroreceptors, sensors located in artery walls in the neck and near the heart, control blood pressure by sending information to the brain and ensuring blood flow to organs. These mechanisms work properly in Earth's gravity but must adapt in the microgravity environment of space. However, upon return to Earth during entry and landing, the cardiovascular system must readjust itself to gravity, which can cause fluctuation in the control of blood pressure and heart rate. Although the system recovers in hours or days, these occurrences are not easily predicted or understood - a puzzle investigators will study with the ARMS equipment. In space, researchers can focus on aspects of the cardiovascular system normally masked by gravity. The STS-107 experiments using ARMS will provide data on how the heart and lungs function in space, as well as how the nervous system controls them. Exercise will also be combined with breath holding and straining (the Valsalva maneuver) to test how heart rate and blood pressure react to different stresses. This understanding will improve astronauts' cardiopulmonary function after return to Earth, and may well help Earthbound patients who experience similar effects after long-term bed rest.

  11. The impact of the improvement of insomnia on blood pressure in hypertensive patients.

    PubMed

    Li, Yuan; Yang, Yiling; Li, Qiubing; Yang, Xueqing; Wang, Yan; Ku, Wai Lim; Li, Haicong

    2017-02-01

    This study investigated the impact of the improvement of insomnia on the blood pressure levels of hypertensive patients. A total of 402 patients with a diagnosis of insomnia and hypertension were selected and randomly divided into two groups. The treatment group (202 cases) received standard anti-hypertensive treatment with Estazolam, and the control group (200 cases) received standard anti-hypertensive treatment with placebo. The sedentary diastolic and systolic blood pressures were measured before the treatment and every 7 days during the experiment. To assess the sleep quality and anxiety and depression levels of patients, the scores of the Pittsburgh Sleep Quality Index, the Hamilton Anxiety Rating Scale and the Hamilton Depression Scale-17 were reported at the same time points. At the conclusion of the experiment, the Pittsburgh Sleep Quality Index, Hamilton Anxiety Rating Scale and Hamilton Depression Scale-17 scores of the treatment group were significantly lower than those of the control group (P < 0.001). The insomnia treatment efficacy of Estazolam in the treatment group was 67.3%, significantly higher than that (14.0%) of the control (P < 0.001). The blood pressure of the treatment group showed significant improvement throughout the experiment. By Day 28, the decrease of sedentary diastolic and systolic blood pressures in the treatment group was significantly greater than that of the control (sedentary systolic blood pressure: 10.5 ± 3.9 versus 3.4 ± 2.5 mmHg; sedentary diastolic blood pressure: 8.1 ± 3.6 versus 2.7 ± 2.1 mmHg, P < 0.001), and the compliance rate of goal blood pressure (< 140/90 mmHg) was 74.8% with Estazolam, compared with 50.5% with placebo (P < 0.001). Thus, the current findings indicated that the improvement of insomnia can significantly help lower blood pressure in hypertensive patients. © 2016 European Sleep Research Society.

  12. New pressure control method of mixed gas in a combined cycle power plant of a steel mill

    NASA Astrophysics Data System (ADS)

    Xie, Yudong; Wang, Yong

    2017-08-01

    The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.

  13. A regulator for pressure-controlled total-liquid ventilation.

    PubMed

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  14. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  15. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  17. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (right) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (right) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  18. The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1989-01-01

    The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number.

  19. Separation Control in a Centrifugal Bend Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Arthur, Michael; Corke, Thomas

    2011-11-01

    An experiment and CFD simulation are presented to examine the use of plasma actuators to control flow separation in a 2-D channel with a 135° inside-bend that is intended to represent a centrifugal bend in a gas turbine engine. The design inlet conditions are P = 330 psia., T =1100° F, and M = 0 . 24 . For these conditions, the flow separates on the inside radius of the bend. A CFD simulation was used to determine the location of the flow separation, and the conditions (location and voltage) of a plasma actuator that was needed to keep the flow attached. The plasma actuator body force model used in the simulation was updated to include the effect of high-pressure operation. An experiment was used to validate the simulation and to further investigate the effect of inlet pressure and Mach number on the flow separation control. This involved a transient high-pressure blow-down facility. The flow field is documented using an array of static pressure taps in the channel outside-radius side wall, and a rake of total pressure probes at the exit of the bend. The results as well as the pressure effect on the plasma actuators are presented.

  20. Splanchnic vasoconstriction in hyperthermic man - Role of falling blood pressure.

    NASA Technical Reports Server (NTRS)

    Rowell, L. B.; Profant, G. R.; Wyss, C.; Detry, J.-M. R.

    1971-01-01

    Results of a study in which six supine resting subjects, wearing water-perfused suits, had body skin temperature controlled at 35 C for 30 min (control period), then rapidly increased to 40.5 C for 43 to 50 min (heating period) in a two-part experiment. In the first part of the experiment arterial mean pressure (MP) in three men was increased back to, or above control levels at the 30 to 35th min of heating by total occlusion of both legs for 8 to 10 min. Splanchnic blood flow (SBF), which had fallen from 1.4 to 0.9 L/min at occlusion, rose only 0.05 L/min during occlusion. Splanchnic vascular resistance (SVR) rose throughout heating and occlusion. In the second part of the experiment (three men) SBF fell despite a spontaneous rise in MP and aortic pulse pressure prior to leg occlusion. Cardiac output (CO) was measured just before, during and after occlusion. Occlusion raised MP 10 to 15 mm Hg and reduced CO only slightly. It is concluded that falling MP or aortic pulse pressure are not major causes of the splanchnic vasoconstriction in response to heating man.

  1. Experimental feasibility of investigating acoustic waves in Couette flow with entropy and pressure gradients

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.

    1990-01-01

    The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.

  2. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1992-01-01

    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.

  3. Decompression experiments identify kinetic controls on explosive silicic eruptions

    USGS Publications Warehouse

    Mangan, M.T.; Sisson, T.W.; Hankins, W.B.

    2004-01-01

    Eruption intensity is largely controlled by decompression-induced release of water-rich gas dissolved in magma. It is not simply the amount of gas that dictates how forcefully magma is propelled upwards during an eruption, but also the rate of degassing, which is partly a function of the supersaturation pressure (??Pcritical) triggering gas bubble nucleation. High temperature and pressure decompression experiments using rhyolite and dacite melt reveal compositionally-dependent differences in the ??Pcritical of degassing that may explain why rhyolites have fueled some of the most explosive eruptions on record.

  4. Stepping Up the Pressure: Arousal Can Be Associated with a Reduction in Male Aggression

    PubMed Central

    Ward, Andrew; Mann, Traci; Westling, Erika H.; Creswell, J. David; Ebert, Jeffrey P.; Wallaert, Matthew

    2009-01-01

    The attentional myopia model of behavioral control (Mann & Ward, 2007) was tested in an experiment investigating the relationship between physiological arousal and aggression. Drawing on previous work linking arousal and narrowed attentional focus, the model predicts that arousal will lead to behavior that is relatively disinhibited in situations in which promoting pressures to aggress are highly salient. In situations in which inhibitory pressures are more salient, the model predicts behavior that is relatively restrained. In the experiment, 81 male undergraduates delivered noise-blasts against a provoking confederate while experiencing either high or low levels of physiological arousal and, at the same time, being exposed to cues that served either to promote or inhibit aggression. In addition to supporting the predictions of the model, this experiment provided some of the first evidence for enhanced control of aggression under conditions of heightened physiological arousal. Implications for interventions designed to reduce aggression are discussed. PMID:18561301

  5. Hyperbaric pressure effects measured by growth of a transplantable tumor in the C3H/HeN mouse.

    PubMed

    Herndon, B L; Lally, J J

    1984-09-01

    Both hypobaric exposure at 0.5 atmospheres absolute (ATA) and hyperbaric pressure exposure at 3.5-8 ATA slowed transplantable tumor growth. These experiments detailed the hyperbaric pressure exposure. C3H/HeN-MTV+ mice, bearing the 16/C transplantable murine mammary adenocarcinoma and exposed to 18 days' treatment by a hyperbaric chamber at 3.5-8 ATA, had tumor weights that averaged 50-75% less than the tumor weights in mice caged at ambient ("sea level") pressure. A series of experiments was run to investigate this response to hyperbaric pressure exposure. After mice underwent continuous exposure to 3.5-8 ATA normoxic (normal oxygen) hyperbaric pressure with use of either argon or nitrogen inert gas, which began 3 days after tumor inoculation, tumors were removed at about 3 weeks' growth from these pressure-exposed mice and measured for growth by weighing. Final tumor weight in pressure-exposed experimental mice was significantly less than tumor weight in paired groups of tumor-bearing controls that received no hyperbaric pressure. Tumor weight was inversely related to pressure "dose," although the small pressure range produced an effect at all pressures used. The number of compression-decompression cycles to which the animals were subjected, however, was related positively to tumor weight at necropsy. Continued tumor growth in mice subjected to frequent pressure change (in conjunction with pressure exposure that otherwise limited tumor size) was unexplained by these experiments. The greatest difference between tumor weights in controls and pressure-exposed animals was seen with 2 weeks' continuous pressure exposure. A limited profile of blood tests was performed, and these reflected only minor, expected change in the pressure-exposed experimental animals. The data at hand did not suggest a mechanism by which chronic normoxic hyperbaric pressure limited tumor size.

  6. Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Scuderi, Marco; Marone, Chris

    2017-04-01

    Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.

  7. Preliminary Simulations of the Ullage Dynamics in Microgravity During the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  8. Preliminary Simulations of the Ullage Dynamics in Microgravity during the Jet Mixing Portion of Tank Pressure Control Experiments

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2015-01-01

    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage.

  9. Biodegradation of Emiliania huxleyi Aggregates by natural Prokaryotic Communities under Increasing Hydrostatic Pressure.

    NASA Astrophysics Data System (ADS)

    Riou, V.; Para, J.; Garel, M.; Guigue, C.; Al Ali, B.; Santinelli, C.; Lefèvre, D.; Gattuso, J. P.; Goutx, M.; Panagiotopoulos, C.; Beaufort, L.; Jacquet, S.; Le Moigne, F. A. C.; Tachikawa, K.; Tamburini, C.

    2016-02-01

    Fluxes of particulate organic carbon (POC) and minerals are positively correlated, suggesting that minerals could enhance the flux of POC into the deep ocean. The so called "ballast effect" posits that minerals could increase sinking particle densities and/or protect the organic matter from heterotrophic degradation. Laboratory controlled experiments on coccolithophorid aggregates under atmospheric pressure show that biogenic calcite both increases particle settling velocities and preserves the organic matter. However, such experiments have yet to include genuine prokaryote rates indicators as well as the effect of increasing pressure. Here, we used the PArticle Sinking Simulator (PASS) to investigate the effect of the increasing pressure on the degradation of Emiliania huxleyi (calcifiers) aggregates. Extra care was taken to obtain culture aggregates with low prokaryotic abundance prior to exposure to natural mesopelagic prokaryotic communities. Particulate organic and inorganic carbon and dissolved organic carbon concentrations were monitored along with the lipid and carbohydrate compositions, as well as prokaryotic community abundance and specific diversity. A control experiment, without natural prokaryotic community addition, indicates that the pressure increase did not have any effect on calcite dissolution observed after ten days. In contrast, the addition of natural prokaryotic community accelerates calcite dissolution under conditions of increasing pressure. Prokaryotic community development and the lipid fraction of E. huxleyi particulate organic carbon are enhanced under increasing pressure. These results suggest that hydrostatic pressure denatures the structural integrity of the carbonate skeleton that protects the cellular organic matter.

  10. Comparative thermal analysis of alternate Cryogenic Fluid Management Experiment (CFME) configurations

    NASA Technical Reports Server (NTRS)

    Merino, F.; Oneill, R. F.

    1980-01-01

    The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS.

  11. Influence of Air Discontinuity and Wall Effects on the Measurements of Hydraulic Parameters Under Dynamic Conditions

    NASA Astrophysics Data System (ADS)

    Looms, M. C.; Jensen, K. H.; Wildenschild, D.; Christensen, B. S.; Gudbjerg, J.

    2003-12-01

    Both dynamic (one-step) and semi-static (syringe pump) outflow experiments were carried out in the lab to test whether the resulting retention characteristics differed according to experiment type. Three sands of varying uniformity and coarseness were packed in a cylindrical sample holder. Compressed air was used to control the air phase pressure, while water was allowed to drain at atmospheric pressure from the outlet at the bottom of the sample. During the outflow experiments the capillary pressure was measured within the sample holder using a tensiometer connected to a pressure transducer. A medical CT-scanner was used to visualize and quantify the outflow patterns within the sand matrix during selected outflow experiments. Positive vertical shifts in capillary pressure during dynamic experiments were found in all three sand types at saturations close to porosity. The size and shape of the shifts corresponded with the dynamic effects found in previous work on the topic. Furthermore, the shifts were slightly greater in the coarsest and most uniform sand type. Numerical simulations of the one-step experiments using HYDRUS1D and T2VOC showed, however, that one of the basic assumptions when calculating the capillary pressure was most likely violated. The air phase could not be considered to be continuous at all times, and assuming this to be the case would result in positive shifts of the retention curves when running T2VOC. The results of using the CT-scanner showed the importance of achieving a homogeneous packing, since the investigated sand packing turned out to have an area at the edge of the sample holder with a higher porosity. This caused the edge to control the initial drainage. Therefore, the data collected at high saturations could not be expected to adequately describe the hydraulic properties of the inner sand. We also found that the time at which the inner sand commenced drainage coincided with a jump in capillary pressure for the resulting measured retention curve.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  14. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.

  15. Measurement of central venous pressure and determination of hormones in blood serum during weightlessness

    NASA Technical Reports Server (NTRS)

    Kirsch, K.

    1981-01-01

    A Spacelab experiment is described which proposes to obtain data on the degree of engorgement of the cephalad circulation during weightlessness by recording central venous pressure. Of practical importance is the question of how close the astronauts are to pulmonary edema and whether the pressure falls toward normal during the time of the mission. Another experiment to investigate deviations from normal fluid and mineral metabolism, possibly initiated by the central engorgement of the low pressure system, is discussed. Hormones responsible for the control of water and mineral balance (vasopressin, catecholamines, renin, aldosterone, corticosteroids, and prostaglandin E1) will be analyzed from blood samples.

  16. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    In this paper, a computational model that describes pressure control phase of a typical MHTB experiment will be presented. The fidelity of the model will be assessed by comparing the models predictions with MHTB experimental data. In this paper CFD results for MHTB spray bar cooling case with 50 tank fill ratio will be presented and analyzed. Effect of accommodation coefficient for calculating droplet-ullage mass transfer will be evaluated.

  17. Transonic pressure measurements and comparison of theory to experiment for three arrow-wing configurations

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1982-01-01

    Wind tunnel tests of arrow-wing body configurations consisting of flat, twisted, and cambered twisted wings, as well as a variety of leading and trailing edge control surface deflections, were conducted at Mach numbers from 0.4 to 1.05 to provide an experimental pressure data base for comparison with theoretical methods. Theory to experiment comparisons of detailed pressure distributions were made using state of the art attached flow methods. Conditions under which these theories are valid for these wings are presented.

  18. Air Circulation and Heat Exchange under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  19. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  20. Special report: Occlusive cuff controller

    NASA Technical Reports Server (NTRS)

    Baker, J. T.

    1975-01-01

    A mechanical occlusive cuff controller suitable for blood flow experiments in space shuttle flights is described. The device requires 115 volt ac power and a pressurized gas source. Two occluding cuff pressures (30 and 50 mmHg) are selectable by a switch on the front panel. A screw driver adjustment allows accurate cuff pressurization levels for under or oversized limbs. Two pressurization cycles (20 second and 2 minutes) can be selected by a front panel switch. Adjustment of the timing cycles is also available through the front panel. A pushbutton hand switch allows remote start of the cuff inflation cycle. A stop/reset switch permits early termination of the cycle and disabling of the controller to prevent inadvertent reactivation. Pressure in the cuff is monitored by a differential aneroid barometer. In addition, an electrocardiogram trigger circuit permits the initiation of the pressurization cycle by an externally supplied ECG cycle.

  1. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  2. Control of osmotic pressure of culture solutions with polyethylene glycol.

    PubMed

    LAGERWERFF, J V; OGATA, G; EAGLE, H E

    1961-05-12

    Experiments with kidney beans indicate that Carbowax polyethylene glycol, molecular weight 20,000, upon purification, may be used as an agent to control the osmotic pressure of plant nutrient solutions without the hazard of interference with normal metabolic processes. With the sodium electrode and the thermocouple psychrometer, interaction between ions and Carbowax is shown to lead to a slight dissociation of the latter.

  3. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  4. Investigation of contact pressure and influence function model for soft wheel polishing.

    PubMed

    Rao, Zhimin; Guo, Bing; Zhao, Qingliang

    2015-09-20

    The tool influence function (TIF) is critical for calculating the dwell-time map to improve form accuracy. We present the TIF for the process of computer-controlled polishing with a soft polishing wheel. In this paper, the static TIF was developed based on the Preston equation. The pressure distribution was verified by the real removal spot section profiles. According to the experiment measurements, the pressure distribution simulated by Hertz contact theory was much larger than the real contact pressure. The simulated pressure distribution, which was modeled by the Winkler elastic foundation for a soft polishing wheel, matched the real contact pressure. A series of experiments was conducted to obtain the removal spot statistical properties for validating the relationship between material removal and processing time and contact pressure and relative velocity, along with calculating the fitted parameters to establish the TIF. The developed TIF predicted the removal character for the studied soft wheel polishing.

  5. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh, K.

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less

  6. Montreal electronic artificial urinary sphincters: Our futuristic alternatives to the AMS800™.

    PubMed

    Biardeau, Xavier; Hached, Sami; Loutochin, Oleg; Campeau, Lysanne; Sawan, Mohamad; Corcos, Jacques

    2017-10-01

    We aimed to present three novel remotely controlled hydromechanical artificial urinary sphincters (AUSs) and report their in-vitro and ex-vivo results. We successively developed three distinct hydromechanical AUSs on the basis of the existing AMS800 ™ device by incorporating an electronic pump. No changes were made to the cuff and balloon. The AUS#1 was designed as an electromagnetically controlled device. The AUS#2 and AUS#3 were conceived as Bluetooth 2.1 remotely controlled and Bluetooth 4.0 remotely-controlled, adaptive devices, respectively. In-vitro experiments profiled occlusive cuff pressure (OCP) during a complete device cycle, with different predetermined OCP. Ex-vivo experiments were performed on a fresh pig bladder with 4 cm cuff placed around the urethra. Leak point pressure with different predetermined OCP values was successively measured during cystometry via a catheter at the bladder dome. Our in-vitro and ex-vivo experiments demonstrated that these three novel AUSs provided stable and predetermined OCP - within the physiological range - and completely deflated the cuff, when required, in a limited time compatible with physiological voiding cycles. Our three novel, remotely controlled AUSs showed promising results that should be confirmed by in-vivo experiments focusing on efficacy and safety.

  7. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source.

    PubMed

    Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T

    2012-02-01

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  8. Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes.

    PubMed

    Kuo, Chung-Hsien; Wu, Chun-Ju; Chou, Hung-Chyun; Chen, Guan-Ting; Kuo, Yu-Cheng

    2017-01-01

    This paper presents an oscillometric blood pressure (BP) measurement approach based on the active control schemes of cuff pressure. Compared with conventional electronic BP instruments, the novelty of the proposed BP measurement approach is to utilize a variable volume chamber which actively and stably alters the cuff pressure during inflating or deflating cycles. The variable volume chamber is operated with a closed-loop pressure control scheme, and it is activated by controlling the piston position of a single-acting cylinder driven by a screw motor. Therefore, the variable volume chamber could significantly eliminate the air turbulence disturbance during the air injection stage when compared to an air pump mechanism. Furthermore, the proposed active BP measurement approach is capable of measuring BP characteristics, including systolic blood pressure (SBP) and diastolic blood pressure (DBP), during the inflating cycle. Two modes of air injection measurement (AIM) and accurate dual-way measurement (ADM) were proposed. According to the healthy subject experiment results, AIM reduced 34.21% and ADM reduced 15.78% of the measurement time when compared to a commercial BP monitor. Furthermore, the ADM performed much consistently (i.e., less standard deviation) in the measurements when compared to a commercial BP monitor.

  9. MGBX - PS Crouch with experiment module

    NASA Image and Video Library

    2016-08-12

    STS083-346-024 (4-8 April 1997) --- Payload specialist Roger K. Crouch performs the activation for the Mid Deck Glove Box (MGBX). Made to accommodate a variety of hardware and materials testing, the facility offers physical isolation and a negative air pressure environment so that items that are not suitable for handling in the open Spacelab can be protected. One experiment that was performed on STS-83 is the Internal Flows in a Free Drop (IFFD), an experiment that investigates rotation and position control of drops by varying acoustic pressures.

  10. Role of the autonomic nervous system in the control of heart rate and blood pressure in the defence reaction in conscious dogs.

    PubMed

    Federici, A; Rizzo, A; Cevese, A

    1985-04-01

    The present study was performed on conscious, chronically instrumented dogs, which underwent selective blockade of sympathetic adrenergic and vagal outflows. Excitements were performed on these animals in normal states (N), after chronic treatment with guanethidine, for sympathetic blockade (SB), after cold vagal blockade (VB), and after combined sympathetic and vagal blockade (SB + VB). Heart rate and arterial blood pressure were monitored in all the experiments, while a group of dogs was also tested with an electromagnetic flowmeter on the superior mesenteric artery. The role of the sympathetic and parasympathetic controls in the defence reaction was assumed from comparison of experiments performed in the presence or in the absence of each (or both) autonomic component(s). In the SB + VB condition, excitement was followed by sudden hypotension, without changes in heart rate. In VB experiments, a brief and transient hypotension appeared, followed by gradually developed hypertension, while heart rate progressively rose in about 5 s; there was no sudden increase in mesenteric vascular resistance, which contrasted with the very marked reaction in N experiments. Under vagal control alone (SB), the stimulus elicited prompt tachycardia and hypertension, followed by a period of moderately reduced blood pressure. We conclude that, while the defence reaction leads to a sudden fall of arterial blood pressure, in the absence of compensatory mechanisms, both branches of the autonomic nervous system play a protective role against hypotension. In addition, the modulation of the vagal outflow, leading to sudden changes in the heart performance, seems to be responsible for the initiation of the overall haemodynamic adjustments following excitements. The possibility that withdrawal of the parasympathetic outflow to the heart may raise arterial blood pressure was verified in a special experiment in which artificial vagal stimulation in a conscious (vagal blocked) dog, was turned off for brief periods, before and after guanethidine. This led to changes in blood pressure and heart rate very similar to those seen at the onset of the defence reaction, both in N and SB conditions.

  11. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  12. Oxygen Fugacity at High Pressure: Equations of State of Metal-Oxide Pairs

    NASA Technical Reports Server (NTRS)

    Campbell A. J.; Danielson, L.; Righter, K.; Wang, Y.; Davidson, G.; Wang, Y.

    2006-01-01

    Oxygen fugacity (fO2) varies by orders of magnitude in nature, and can induce profound changes in the chemical state of a substance, and also in the chemical equilibrium of multicomponent systems. One prominent area in high pressure geochemistry, in which fO2 is widely recognized as a principal controlling factor, is that of metal-silicate partitioning of siderophile trace elements (e.g., [1]). Numerous experiments have shown that high pressures and temperatures can significantly affect metal/silicate partitioning of siderophile and moderately siderophile elements. Parameterization of these experimental results over P, T, X, and fO2 can allow the observed siderophile element composition of the mantle to be associated with particular thermodynamic conditions [2]. However, this is best done only if quantitative control exists over each thermodynamic variable relevant to the experiments. The fO2 values for many of these partitioning experiments were determined relative to a particular metal-oxide buffer (e.g., Fe-FeO (IW), Ni-NiO (NNO), Co-CoO, Re-ReO2 (RRO)), but the parameterization of all experimental results is weakened by the fact that the pressure-induced relative changes between these buffer systems are imprecisely known.

  13. Relationship between osmotic pressure of the blood and secretion of sweat

    NASA Technical Reports Server (NTRS)

    Montuori, A.

    1978-01-01

    Experiments with cats show that the thermic secretion of sweat represents a specific case of a general law: The central nervous apparatus that controls the secretion of sweat begins to function when the osmotic pressure of the blood drops below normal.

  14. [Gastric dynamics analysis of TEAS combined SNP induced general anesthesia when controlled hypotension dropped to 60% of the MAP baseline].

    PubMed

    Zhang, Le-Le; Fang, Jian-Qiao; Shao, Xiao; Lian, Lin-Li; Yu, Xiao-Jing; Dong, Zhen-Hua; Mo, Ya-Di

    2015-01-01

    To observe the effect of gastric dynamics by transcutaneous electrical acupoint stimulation (TEAS) combined general anesthesia when controlled hypotension dropped to 60% of the mean arterial prenssure (MAP) baseline, and to provide experimental evidence for organ protection in clinical controlled hypotension. Eighteen male beagles were randomly divided into three groups, the general anesthesia group (blank), the general anesthesia induced controlled hypotension group (control), and the general anesthesia combined TEAS induced controlled hypotension group (experiment), 6 in each group. Controlled hypotension was performed in the latter two groups with isoflurane inhalation and intravenous injection of sodium nitroprusside (SNP). The mean arterial pressure (MAP) was lowered to 60% of the MAP baseline and kept for 60 min. Controlled hypotension was not performed in Beagles of the control group. For Beagles in the experiment group, TEAS [2/100 Hz, (4 ± 1) mA] was applied to bilateral Hegu (LI4), Quchi (LI11), Zusanli (ST36), and Sanyinjiao (SP6) from stable physiological conditions to the end of maintaining stages. Changes of EGG frequencies and EGG amplitudes were monitored. Serum levels of gastrin (GAS) and motilin (MTL) were also detected at corresponding time points during and after experiment. As for the pressure control effect of TEAS combined general anesthesia in the controlled hypotension, during the process of controlled hypotension (T1-T4), MAP levels of two controlled pressure groups remained relatively stable, and were kept at 60% of the MAP baseline. When the blood pressure dropped to the target low MAP and maintained at 60 min (T1-T4), EGG amplitudes of Beagles in all the three groups showed decreasing tendency. But it was more obviously lower than its basic level in the control group (P <0.05), while it was not obviously decreased in the experiment group (P < 0.05). EGG frequencies of Beagles in all the three groups showed no obvious change during this stage. By the end of the MAP rising stage (T8), the EGG amplitude of the experimental group was significantly higher than that of the control group and the blank group (P < 0.05), while it didn' t show any obvious increase in the control group. During this period, EGG frequencies of the two controlled hypotension groups decreased more than those of the blank group. Two h after rising blood pressure (at T9), EGG amplitudes and frequencies in the two controlled hypotension groups basically restored to their respective baselines and levels of the blank group at T9. At 2 h (T9) after controlled hypotension, serum levels of GAS and MTL were lower than those of basic levels in the two controlled hypotension groups (P <0.05). However, serum levels of GAS and MTL had an increasing trend in the two controlled hypotension groups at 24-72 h (T10-T12). Besides, the increasing speed and amplitude was better in experiment group than in the control group at T10-T12. However, there was no statistical difference between the two groups (P > 0.05). At 72 h (T12) serum levels of GAS and MTL had basically restored to their basic levels in the two controlled hypotension groups and that of the blank control group. EGG amplitudes could be effectively improved in TEAS combined general anesthesia for controlled hypotension at 60% of the MAP baseline, the recovery of the serum GAS level accelerated, gastric power improved and stomach protected.

  15. ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon

    NASA Astrophysics Data System (ADS)

    Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro

    2015-09-01

    This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.

  16. A study of the blood flow restriction pressure of a tourniquet system to facilitate development of a system that can prevent musculoskeletal complications.

    PubMed

    Maeda, Hiroyuki; Iwase, Hideaki; Kanda, Akio; Morohashi, Itaru; Kaneko, Kazuo; Maeda, Mutsuhiro; Kakinuma, Yuki; Takei, Yusuke; Amemiya, Shota; Mitsui, Kazuyuki

    2017-01-01

    After an emergency or disaster, subsequent trauma can cause severe bleeding and this can often prove fatal, so promptly stopping that bleeding is crucial to preventing avoidable trauma deaths. A tourniquet is often used to restrict blood flow to an extremity. In operation and hospital, the tourniquet systems currently in use are pneumatically actuated by an air compressor, so they must have a steady power supply. These devices have several drawbacks: they vibrate and are noisy since they are pneumatically actuated and they are far from portable since they are large and heavy. Presumably, the drawbacks of pneumatic tourniquets could be overcome by developing a small, lightweight, vibration-free, quiet, and battery-powered tourniquet system. The current study built a small, vibration-free electrohydrodynamic (EHD) pump and then used that pump to restrict blood flow to the leg of rats in an experiment. This study explored the optimal conditions for effective restriction of blood flow by assessing biochemical and musculoskeletal complications following the restriction of blood flow, and this study also examined whether or not an EHD pump could be used to actuate a tourniquet system. A tourniquet cuff (width 12 mm × length 150 mm, material: polyolefin) was placed on the thigh of Wistar rats and pressure was applied for 2 hours by a device that uses EHD phenomena to generate pressure (an EHD pump). Animals were divided into four groups based on how much compressive pressure was applied with a tourniquet: 40 kPa (300 mm Hg, n = 13), 30 kPa (225 mm Hg, n = 12), 20 kPa (150 mm Hg, n = 15), or 0 kPa (controls, n = 25). Tissue oxygen saturation (regional oxygen saturation, denoted here as rSO 2 ) was measured to assess the restriction of blood flow. To assess behavior once blood flow resumed, animal activity was monitored for third day and the amount of movement was counted with digital counters. Body weight was measured before and after the behavioral experiment, and changes in body weight were determined. Blood was sampled after a behavioral experiment and biochemically assessed and creatine kinase (CK) levels were measured. Tissue oxygen saturation decreased significantly in each group. When a tourniquet was applied at a pressure of 30 kPa or more, tissue oxygen saturation decreased significantly. The amount of movement (the count) over third day decreased more when a tourniquet was applied at a higher pressure. The control group resumed the same amount of movement per day second after blood flow resumed. Animals to which a tourniquet was applied at a pressure of 20 or 30 kPa resumed the same amount of movement third day after blood flow resumed. In contrast, animals to which a tourniquet was applied at a pressure of 40 kPa did not resume the same amount of movement third day after blood flow resumed. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had a significantly lower body weight in comparison to the control group. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had significantly elevated CK levels in comparison to the control group. A relationship between blood flow restriction pressure and tissue oxygen saturation was noted. rSO 2 measurement can be used to assess the restriction of blood flow during surgery. On the basis of the decrease in rSO 2 , blood flow was effectively restricted at a pressure of 30 kPa or more. When, however, blood flow was restricted at a pressure of 40 kPa, weight loss and decreased movement were noted and CK levels increased after the behavioral experiment. Thus, complications had presumably developed due to damage to muscle tissue. These findings indicate that blood flow was effectively restricted in this experiment and they also indicate the existence of an optimal blood flow restriction pressure that does not cause musculoskeletal complications. The pressure in question was around 30 kPa. The tourniquet system that was developed here is actuated with an EHD pump that is still in the trial stages. That said, its pressure can readily be controlled and this pump could be used in a tourniquet system since it is quiet, vibration-free, and small. The pressure of this pump can be finely adjusted to prevent musculoskeletal complications.

  17. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  18. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  19. A study on new method of noninvasive esophageal venous pressure measurement based on the airflow and laser detection technology.

    PubMed

    Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng

    2015-01-01

    Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.

  20. High-pressure differential thermal analysis/dilatometric apparatus based on an Instron capillary rheometer

    NASA Astrophysics Data System (ADS)

    Hsiao, B. S.; Shaw, M. T.; Samulski, E. T.

    1987-06-01

    A high-pressure apparatus in the form of a modified Instron capillary rheometer capable of measuring differential thermal analysis (DTA) data and pressure-volume-temperature (P-V-T) relations was constructed in our laboratory. Temperatures from 20 to 370 °C and pressures from 1 to 6000 bar are achievable with a data-acquisition and control system based on an APPLE II+ microcomputer. Measurements of pressure to an accuracy of 1%, temperature of 0.5%, and volume change of 0.1% have been obtained. Software was developed to operate the experiments at fixed heating or cooling rates as well as at a constant pressure or with isothermal pressure sweeps. Polymer samples were compressed into rods preceding the experiment by a vacuum molder to eliminate voids. Low-density polyethylene (LDPE) was run as an example to demonstrate the performance of this pressure apparatus. The results revealed an excellent match between our experimental data and the published data.

  1. Social adversity experience and blood pressure control following antihypertensive medication use in a community sample of older adults.

    PubMed

    Wainwright, Nicholas W J; Levy, Sheldon; Pico, Jose; Luben, Robert N; Surtees, Paul G; Khaw, Kay-Tee

    2014-06-01

    Psychosocial stress is a risk factor for hypertension and has been shown to affect response to treatment for psychiatric illnesses. We investigate the relationship between a history of social adversity experience and blood pressure control following antihypertensive medication use. A total of 1,186 participants selected from the European Prospective Investigation into Cancer-Norfolk study (531 men and 655 women, aged 42 to 80 years) had attended two health checks at which blood pressure measurements were taken; were taking antihypertensive medication at the second, but not the first health check; and had completed a questionnaire assessment of their social and psychological circumstances which included details of traumatic experiences in childhood and of adverse life events, long-term difficulties, and perceived stress in adulthood. Experience of recent loss events in adulthood was associated with a smaller reduction in systolic blood pressure after starting hypertension treatment (β = 1.78, 95 % confidence interval 0.15-3.40, per life event), independently of age, sex, preexisting health conditions, cigarette smoking history, alcohol consumption, physical activity, and obesity. Results from this study suggest that stress caused by recent losses may be associated with reduced effectiveness of treatment for hypertension. Subject to replication, these findings may help determine the specific physiological mechanisms by which medication treatment effectiveness is affected by stress.

  2. On the feasibility of closed-loop control of intra-aortic balloon pumping

    NASA Technical Reports Server (NTRS)

    Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.

    1973-01-01

    A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.

  3. Preliminary Studies on Aerodynamic Control with Direct Current Discharge at Hypersonic Speed

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasumasa; Takama, Yoshiki; Imamura, Osamu; Watanuki, Tadaharu; Suzuki, Kojiro

    A new idea of an aerodynamic control device for hypersonic vehicles using plasma discharges is presented. The effect of DC plasma discharge on a hypersonic flow is examined with both experiments and CFD analyses. It is revealed that the surface pressure upstream of plasma area significantly increases, which would be preferable in realizing a new aerodynamic control devices. Such pressure rise is also observed in the result of analyses of the Navier-Stokes equations with energy addition that simulates the Joule heating of a plasma discharge. It is revealed that the pressure rise due to the existence of the plasma discharge can be qualitatively explained as an effect of Joule heating.

  4. Plasma-Assisted Control of Mach-2 Flowfield over Ramp Geometry

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasumasa; Leonov, Sergey B.; Houpt, Alec; Hedlund, Brock E.; Elliott, Skye

    2017-10-01

    This study examined the effect of Reynolds number on plasma-assisted flow control ahead of a compression ramp geometry in Mach-2 supersonic flow. The experiments were conducted in the supersonic wind tunnel SBR-50 at the University of Notre Dame. Stagnation temperature and pressure were varied as T0=294-500K and P0=1-3bar to attain Reynolds number ranging from 3.4×105-2.2×106. Ramp pressure measurements, schlieren visualization, and high-speed camera imaging were used for the evaluation of plasma-assisted flow control effects. A linear dependency was found between the ramp pressure change per averaged plasma power and Reynolds number.

  5. Controlling autonomous underwater floating platforms using bacterial fermentation.

    PubMed

    Biffinger, Justin C; Fitzgerald, Lisa A; Howard, Erinn C; Petersen, Emily R; Fulmer, Preston A; Wu, Peter K; Ringeisen, Bradley R

    2013-01-01

    Biogenic gas has a wide range of energy applications from being used as a source for crude bio-oil components to direct ignition for heating. The current study describes the use of biogenic gases from Clostridium acetobutylicum for a new application-renewable ballast regeneration for autonomous underwater devices. Uninterrupted (continuous) and blocked flow (pressurization) experiments were performed to determine the overall biogas composition and total volume generated from a semirigid gelatinous matrix. For stopped flow experiments, C. acetobutylicum generated a maximum pressure of 55 psi over 48 h composed of 60 % hydrogen gas when inoculated in a 5 % agar (w/v) support with 5 % glucose (w/v) in the matrix. Typical pressures over 24 h at 318 K ranged from 10 to 33 psi. These blocked flow experiments show for the first time the use of microbial gas production as a way to repressurize gas cylinders. Continuous flow experiments successfully demonstrated how to deliver biogas to an open ballast control configuration for deployable underwater platforms. This study is a starting point for engineering and microbiology investigations of biogas which will advance the integration of biology within autonomous systems.

  6. Anticipatory balance control is affected by loadless training experiences.

    PubMed

    Robert, G; Gueguen, N; Avogadro, P; Mouchnino, L

    2004-09-01

    The main purpose of this study was to identify whether a lot of sports training had any effect on the balance control associated with a leg movement. The nature of the training experience was also an important concern and we chose subject who had undergone specific training experience in absence of equilibrium constraints. To this end a comparison between control (untrained) subjects, triathletes and swimmers was designed to establish whether a general training in sports (triathletes) or a specific loadless training (swimmers), leads to differences in the balance control. A leg movement is preceded by a shift of the center of mass (CM) towards the supporting side to maintain equilibrium and forward to create the condition for progression. To provide an acceleration of the CM sideward and forward, an initial displacement of the center of pressure (CP) towards the moving limb and in posterior direction was performed. Interestingly, the lateral pressure onto the ground was greater increased in swimmers in both leg raising and obstacle avoidance tasks compared to the control group and/or triathletes whereas the backward CP shift in all group was the same. The initial control of the CM shift is very different in swimmers compared to triathletes and controls. The increased lateral pressure onto the ground in swimmers may be a result of a prolonged training in water. This suggests that prolonged training in the absence of equilibrium constraints has more of an effect on balance control than a prolonged general training. In addition, the lack of differences in the backward CP shift suggests that M/L and A/P controls support two functional goals: equilibrium maintenance and movement initiation.

  7. Self-blood pressure monitoring in an urban, ethnically diverse population: a randomized clinical trial utilizing the electronic health record.

    PubMed

    Yi, Stella S; Tabaei, Bahman P; Angell, Sonia Y; Rapin, Anne; Buck, Michael D; Pagano, William G; Maselli, Frank J; Simmons, Alvaro; Chamany, Shadi

    2015-03-01

    Hypertension is a leading risk factor for cardiovascular disease. Although control rates have improved over time, racial/ethnic disparities in hypertension control persist. Self-blood pressure monitoring, by itself, has been shown to be an effective tool in predominantly white populations, but less studied in minority, urban communities. These types of minimally intensive approaches are important to test in all populations, especially those experiencing related health disparities, for broad implementation with limited resources. The New York City Health Department in partnership with community clinic networks implemented a randomized clinical trial (n=900, 450 per arm) to investigate the effectiveness of self-blood pressure monitoring in medically underserved and largely black and Hispanic participants. Intervention participants received a home blood pressure monitor and training on use, whereas control participants received usual care. After 9 months, systolic blood pressure decreased (intervention, 14.7 mm Hg; control, 14.1 mm Hg; P=0.70). Similar results were observed when incorporating longitudinal data and calculating a mean slope over time. Control was achieved in 38.9% of intervention and 39.1% of control participants at the end of follow-up; the time-to-event experience of achieving blood pressure control in the intervention versus control groups were not different from each other (logrank P value =0.91). Self-blood pressure monitoring was not shown to improve control over usual care in this largely minority, urban population. The patient population in this study, which included a high proportion of Hispanics and uninsured persons, is understudied. Results indicate these groups may have additional meaningful barriers to achieving blood pressure control beyond access to the monitor itself. http://clinicaltrials.gov. Unique Identifier: NCT01123577. © 2015 American Heart Association, Inc.

  8. What happens at work stays at work? Workplace supervisory social interactions and blood pressure outcomes.

    PubMed

    Wong, Jennifer H K; Kelloway, E Kevin

    2016-04-01

    We investigated the relationship between workplace supervisory social interactions and blood pressure outcomes using hourly diary entries and ambulatory blood pressure data from an experience sampling study of 55 long-term care employees. After accounting for relevant cardiovascular controls, significant effects of supervisory interactions on cardiovascular reactivity and recovery were found. Multilevel analyses revealed that negatively perceived supervisory interactions predicted higher systolic blood pressure at work (B = -1.59, p < .05, N observations = 422). Using time-lagged hierarchical regression analyses, the average perceived valence of supervisory interactions at work predicted average systolic blood pressure recovery after work (B = -14.52, p < .05, N = 33). Specifically, negatively perceived supervisory interactions at work predicted poorer cardiovascular recovery after work. Suggestions for improving practices in organizations and in experience sampling research are discussed. (c) 2016 APA, all rights reserved).

  9. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  10. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  11. Chemo-mechanics of salt damage in stone.

    PubMed

    Flatt, Robert J; Caruso, Francesco; Sanchez, Asel Maria Aguilar; Scherer, George W

    2014-09-11

    Many porous materials are damaged by pressure exerted by salt crystals growing in their pores. This is a serious issue in conservation science, geomorphology, geotechnical engineering and concrete materials science. In all cases, a central question is whether crystallization pressure will cause damage. Here we present an experiment in which the crystallization pressure and the pore saturation are varied in a controlled way. We demonstrate that a strain energy failure criterion can be used to predict when damage will occur. The experiment considered is the most widely used means to study the susceptibility to salt crystallization, so quantification of this test has far-reaching implications.

  12. Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system: Application to the characterization of gas hydrates

    NASA Astrophysics Data System (ADS)

    Plantier, F.; Marlin, L.; Missima, D.; Torré, J.-P.

    2013-12-01

    A novel prototype of calorimetric cell has been developed allowing experiments under pressure with an in situ agitation system and a dynamic control of the pressure inside the cell. The use of such a system opens a wide range of potential practical applications for determining properties of complex fluids in both pressurized and agitated conditions. The technical details of this prototype and its calibration procedure are described, and an application devoted to the determination of phase equilibrium and phase change enthalpy of gas hydrates is presented. Our results, obtained with a good precision and reproducibility, were found in fairly good agreement with those found in literature, illustrate the various interests to use this novel apparatus.

  13. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    PubMed

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  14. Telemetric signal-driven servocontrol of renal perfusion pressure in acute and chronic rat experiments

    PubMed Central

    Xia, Min; Li, Pin-Lan; Li, Ningjun

    2008-01-01

    The present study was designed to take advantage of telemetry data acquisition and develop an easy and reliable system to servocontrol renal perfusion pressure (RPP). Digitized pressure signals from lower abdominal aorta in rats, reflecting RPP, was obtained by a telemetry device and dynamically exported into an Excel worksheet. A computer program (LabVIEW) compared the RPP data with a preselected pressure range and drove a bidirectional syringe pump to control the inflation of a vascular occluder around the aorta above renal arteries. When RPP was higher than the preselected range, the syringe pump inflated the occluder and decreased RPP, and vice versa. If RPP was within range, there was no action. In this way, RPP was servocontrolled within the desired range. In experiments with norepinephrine- or ANG II-induced acute increases in systemic arterial pressure (120–145 mmHg), the system controlled RPP at a constant range of 100–105 mmHg within 30–50 s and differentiated the pressure-dependent and -independent effects on renal functions. In Dahl S rats with high-salt-induced hypertension, this system maintained RPP at 100–120 mmHg over 10 days, while systemic arterial pressures were 150 ± 5.9 mmHg in uncontrolled animals. This system also has the ability of simultaneity and multiplexing to control multiple animals. Our results suggest that this is an effective and reliable system to servocontrol RPP, which can be easily established with general computer knowledge. This system provides a powerful tool and may greatly facilitate the studies in pressure-dependent/-independent effects of a variety of cardiovascular factors. PMID:18815205

  15. Control and monitoring of oxygen fugacity in piston cylinder experiments

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Brooker, Richard A.; Tattitch, Brian; Blundy, Jon D.; Stamper, Charlotte C.

    2015-01-01

    We present a newly developed capsule design that resolves some common problems associated with the monitoring and control of oxygen fugacity ( fO2) in high-pressure piston cylinder experiments. The new fO2 control assembly consists of an AuPd outer capsule enclosing two inner capsules: one of AuPd capsule containing the experimental charge (including some water), and the other of Pt containing a solid oxygen buffer plus water. The inner capsules are separated by crushable alumina. The outer capsule is surrounded by a Pyrex sleeve to simultaneously minimise hydrogen loss from the cell and carbon infiltration from the graphite furnace. Controlled fO2 experiments using this cell design were carried out at 1.0 GPa and 1,000 °C. We used NiPd, CoPd and (Ni, Mg)O fO2 sensors, whose pressure sensitivity is well calibrated, to monitor the redox states achieved in experiments buffered by Re-ReO2, Ni-NiO and Co-CoO, respectively. Results for the fO2 sensors are in good agreement with the intended fO2 established by the buffer, demonstrating excellent control for durations of 24-48 h, with uncertainties less than ± 0.3 log bar units of fO2.

  16. Application of Sweeping Jet Actuators on the NASA Hump Model and Comparison with CFDVAL2004 Experiments

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2017-01-01

    Flow separation control over a wall-mounted hump model was studied experimentally to assess the performance of sweeping jet actuators. Results were compared to that of the 2004 CFD validation experiment (CFDVAL2004), which examined flow separation control with steady suction and unsteady zero-net-mass-flow actuators. Comparisons were carried out at low and high amplitude excitations. In addition to the active flow control methods, a passive flow control method (i.e., vortex generator) was used to complement the dataset. Steady/unsteady surface pressure measurements and surface oilflow visualization were used in the performance assessment of the actuators. The results indicated that the sweeping jet actuators are more effective than the steady suction and unsteady zero-net-mass-flow actuators. For the same momentum coefficient, the sweeping jet actuators produced more flow acceleration upstream of separation, more pressure recovery downstream, and consistently a smaller separation bubble.

  17. Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team

    2018-05-01

    In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.

  18. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. Report 4; Suction System Design and Manufacture

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design of the leading edge suction system for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane. The exterior pressures on the wing surface and the required suction quantity and distribution were determined in previous work. A system consisting of porous skin, sub-surface spanwise passages ("flutes"), pressure regulating screens and valves, collection fittings, ducts and a turbocompressor was defined to provide the required suction flow. Provisions were also made for flexible control of suction distribution and quantity for HLFC research purposes. Analysis methods for determining pressure drops and flow for transpiration heating for thermal anti-icing are defined. The control scheme used to observe and modulate suction distribution in flight is described.

  19. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools.

    PubMed

    Licht, Stephen; Collins, Everett; Mendes, Manuel Lopes; Baxter, Christopher

    2017-12-01

    In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be operated in the deep sea in ambient pressures exceeding one hundred atmospheres, where such high jamming pressures can be readily achieved. Laboratory experiments in a pressurized, water-filled test cell are used to measure the holding force of a "universal" style jamming gripper as a function of the pressure difference between internal membrane pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, and operated from, remotely operated vehicles at depths in excess of 1200 m. In both experiments, the jamming gripper consists of a latex balloon filled with a mixture of fresh water and ∼200 μm glass beads, which are cheaply available in large quantities as sand blasting media. The use of a liquid, rather than a gas, as the fluid media allows operation of the gripper with a closed-loop fluid system; jamming pressure is controlled with an electrically driven water hydraulic cylinder in the laboratory and with an oil hydraulic-driven large-bore water hydraulic cylinder at sea.

  20. Pressure-controlled drainage of cerebrospinal fluid: clinical experience with a new type of ventricular catheter (Ventcontrol MTC)and an integrated Piezo-resistive sensor at its tip: technical note.

    PubMed

    Piek, J; Raes, P

    1996-01-01

    We described a new ventricular catheter that is the combination of a "classic" ventricular catheter with a piezo-resistive transducer at its tip. The device allows parallel recordings of intraventricular fluid pressure via a chip and a fluid-filled external transducer, drainage of cerebrospinal fluid from the ventricle or injection of fluid into the ventricle with simultaneous monitoring of intracranial pressure, and recording of brain tissue pressure in cases of misplacement or dislocation of the ventricular catheter or in cases of progressively narrowing ventricles caused by brain edema. Clinical tests in various situations at different pressure ranges (total recording time, 1356 h in 13 patients) gave excellent correlations of both pressures. Application of the device is especially indicated in clinical situations in which pressure-controlled drainage is desirable, occlusion of ventricular bolts is likely, or pressure-volume tests are needed.

  1. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  2. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  3. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia.

    PubMed

    Nilius, Georg; Katamadze, Nato; Domanski, Ulrike; Schroeder, Maik; Franke, Karl-Josef

    2017-01-01

    COPD patients who develop chronic hypercapnic respiratory failure have a poor prognosis. Treatment of choice, especially the best form of ventilation, is not well known. This study compared the effects of pressure-controlled (spontaneous timed [ST]) non-invasive ventilation (NIV) and NIV with intelligent volume-assured pressure support (IVAPS) in chronic hypercapnic COPD patients regarding the effects on alveolar ventilation, adverse patient/ventilator interactions and sleep quality. This prospective, single-center, crossover study randomized patients to one night of NIV using ST then one night with the IVAPS function activated, or vice versa. Patients were monitored using polysomnography (PSG) and transcutaneous carbon dioxide pressure (PtcCO 2 ) measurement. Patients rated their subjective experience (total score, 0-45; lower scores indicate better acceptability). Fourteen patients were included (4 females, age 59.4±8.9 years). The total number of respiratory events was low, and similar under pressure-controlled (5.4±6.7) and IVAPS (8.3±10.2) conditions ( P =0.064). There were also no clinically relevant differences in PtcCO 2 between pressure-controlled and IVAPS NIV (52.9±6.2 versus 49.1±6.4 mmHg). Respiratory rate was lower under IVAPS overall; between-group differences reached statistical significance during wakefulness and non-rapid eye movement sleep. Ventilation pressures were 2.6 cmH 2 O higher under IVAPS versus pressure-controlled ventilation, resulting in a 20.1 mL increase in breathing volume. Sleep efficiency was slightly higher under pressure-controlled ventilation versus IVAPS. Respiratory arousals were uncommon (24.4/h [pressure-controlled] versus 25.4/h [IVAPS]). Overall patient assessment scores were similar, although there was a trend toward less discomfort during IVAPS. Our results show that IVAPS NIV allows application of higher nocturnal ventilation pressures versus ST without affecting sleep quality or inducing ventilation- associated events.

  4. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.

    2003-01-01

    Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.

  5. Fracture propagation during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Mecklenburgh, Julian; Rutter, Ernest; Fauchille, Anne-Laure; Taylor, Rochelle; Lee, Peter

    2017-04-01

    The use of hydraulic fracturing to recover shale-gas has focused attention upon the fundamental fracture properties of gas-bearing shales. Fracture propagation trajectories in these materials depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. Here we report the results of laboratory-scale fluid injection experiments, for Whitby mudstone and Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone (a tight sandstone with permeability similar to shales), which is used an isotropic baseline and tight-gas sandstone analogue. Our injection experiments involved the pressurisation of a blind-ending central hole in an initially dry cylindrical sample. Pressurisation was conducted under constant volume-rate control, using silicone oils of various viscosities. The dependence of breakdown pressure on confining pressure was seen to be dependent on the rock strength, with the significantly stronger Pennant sandstone exhibiting much lower confining-pressure dependence of breakdown pressure than the weaker shales. In most experiments, a small drop in the injection pressure record was observed at what is taken to be fracture initiation, and in the Pennant sandstone this was accompanied by a small burst of acoustic energy. Breakdown was found to be rapid and uncontrollable after initiation if injection is continued, but can be limited to a slower (but still uncontrolled) rate by ceasing the injection of fluid after the breakdown initiation in experiments where it could be identified. A simplified 2-dimensional model for explaining these observations is presented in terms of the stress intensities at the tip of a pressurised crack. Additionally, we present a suite of supporting mechanical, flow and elastic measurements. Mechanical experiments include standard triaxial tests, pressure-dependent permeability experiments and fracture toughness determined using the double-torsion test. Elastic characterisation was determined through ultrasonic velocities determined using a cross-correlation method.

  6. Training Attentional Control Improves Cognitive and Motor Task Performance.

    PubMed

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  7. Hydrologic Triggering of Shallow Landslides in a Field-scale Flume

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Iverson, N. R.; Brien, D. L.; Lahusen, R. G.; Logan, M.

    2006-12-01

    Hydrologic Triggering of Shallow Landslides in a Field-scale Flume Mark E. Reid, Richard M. Iverson, Neal R. Iverson, Dianne L. Brien, Richard G. LaHusen, and Mathew Logan Shallow landslides are often triggered by pore-water pressure increases driven by 1) groundwater inflow from underlying bedrock or soil, 2) prolonged moderate-intensity rainfall or snowmelt, or 3) bursts of high-intensity rainfall. These shallow failures are difficult to capture in the field, limiting our understanding of how different water pathways control failure style or timing. We used the field-scale, USGS debris-flow flume for 7 controlled landslide initiation experiments designed to examine the influence of different hydrologic triggers and the role of soil density, relative to critical state, on failure style and timing. Using sprinklers and/or groundwater injectors, we induced failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand on a 31° slope, placed behind a retaining wall. We monitored ~50 sensors to measure soil deformation (tiltmeters & extensometers), pore pressure (tensiometers and transducers), and soil moisture (TDR probes). We also extracted soil samples for laboratory estimates of porosity, shear strength, saturated hydraulic conductivity at differing porosities, unsaturated moisture retention characteristics, and compressibility. Experiments with loose soil all resulted in abrupt failure along the concrete flume bed with rapid mobilization into a debris flow. Each of the 3 water pathways, however, resulted in slightly different pore-pressure fields at failure and different times to failure. For example, groundwater injection at the flume bed led to a saturated zone that advanced upward, wetting over half the soil prism before pressures at the bed were sufficient to provoke collapse. With moderate-intensity surface sprinkling, an unsaturated wetting front propagated downward until reaching the bed, then a saturated zone built upward, with the highest pressures at the bed. With the third trigger, soils were initially wetted (but not saturated) with moderate-intensity sprinkling and then subjected to a high-intensity burst, causing failure without widespread positive pressures. It appears that a small pressure perturbation from the burst traveled rapidly downward through tension-saturated soil and led to positive pressure development at the flume bed resulting in failure. In contrast, failures in experiments with stronger, denser soil were gradual and episodic, requiring both sprinkling and groundwater injection. Numerical simulations of variably saturated groundwater flow mimic the behaviors described above. Simulated rainfall with an intensity greater than soil hydraulic conductivity generates rapid pressure perturbations, whereas lower intensity rainfall leads to wetting front propagation and water table buildup. Our results suggest that transient responses induced by high intensity bursts require relatively high frequency monitoring of unsaturated zone changes; in this case conventional piezometers would be unlikely to detect failure-inducing pore pressure changes. These experiments also indicate that although different water pathways control the timing of failure, initial soil density controls the style of failure.

  8. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated in the borehole wall.

  9. Sweeping Jet Optimization Studies

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  10. A System for Incubations at High Gas Partial Pressure

    PubMed Central

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample. PMID:22347218

  11. CFD validation experiments at the Lockheed-Georgia Company

    NASA Technical Reports Server (NTRS)

    Malone, John B.; Thomas, Andrew S. W.

    1987-01-01

    Information is given in viewgraph form on computational fluid dynamics (CFD) validation experiments at the Lockheed-Georgia Company. Topics covered include validation experiments on a generic fighter configuration, a transport configuration, and a generic hypersonic vehicle configuration; computational procedures; surface and pressure measurements on wings; laser velocimeter measurements of a multi-element airfoil system; the flowfield around a stiffened airfoil; laser velocimeter surveys of a circulation control wing; circulation control for high lift; and high angle of attack aerodynamic evaluations.

  12. Mineback Stimulation Research Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    The objective of the Mineback Stimulation Research Experiments is to improve hydraulic fracture stimulation technology by providing an in situ laboratory where basic processes and mechanisms that control and influence fracture propagation can be observed, measured and understood. While previous tests have been instrumental in providing an understanding of the mechanisms controlling fracture height, current experiments are focused on fluid flow through the created fracture and the associated pressure drops and crack widths. Work performed, accomplishments and future plans are presented. 7 refs., 2 figs.

  13. The Benefits of Working Memory Capacity on Attentional Control under Pressure.

    PubMed

    Luo, Xiaoxiao; Zhang, Liwei; Wang, Jin

    2017-01-01

    The present study aimed to examine the effects of working memory capacity (WMC) and state anxiety (SA) on attentional control. WMC was manipulated by (a) dividing participants into low- and high-WMC groups (Experiment 1), and (b) using working memory training to improve WMC (Experiment 2). SA was manipulated by creating low- and high-SA conditions. Attentional control was evaluated by using antisaccade task. Results demonstrated that (a) higher WMC indicated better attentional control (Experiments 1 and 2); (b) the effects of SA on attentional control were inconsistent because SA impaired attentional control in Experiment 1, but favored attentional control in Experiment 2; and (c) the interaction of SA and WMC was not significant (Experiments 1 and 2). This study directly manipulated WMC by working memory training, which provided more reliable evidence for controlled attention view of WMC and new supportive evidence for working memory training (i.e., far transfer effect on attentional control). And the refinement of the relationship between anxiety and attentional control proposed by Attentional Control Theory was also discussed.

  14. The Benefits of Working Memory Capacity on Attentional Control under Pressure

    PubMed Central

    Luo, Xiaoxiao; Zhang, Liwei; Wang, Jin

    2017-01-01

    The present study aimed to examine the effects of working memory capacity (WMC) and state anxiety (SA) on attentional control. WMC was manipulated by (a) dividing participants into low- and high-WMC groups (Experiment 1), and (b) using working memory training to improve WMC (Experiment 2). SA was manipulated by creating low- and high-SA conditions. Attentional control was evaluated by using antisaccade task. Results demonstrated that (a) higher WMC indicated better attentional control (Experiments 1 and 2); (b) the effects of SA on attentional control were inconsistent because SA impaired attentional control in Experiment 1, but favored attentional control in Experiment 2; and (c) the interaction of SA and WMC was not significant (Experiments 1 and 2). This study directly manipulated WMC by working memory training, which provided more reliable evidence for controlled attention view of WMC and new supportive evidence for working memory training (i.e., far transfer effect on attentional control). And the refinement of the relationship between anxiety and attentional control proposed by Attentional Control Theory was also discussed. PMID:28740472

  15. Multiple pathways in pressure-induced phase transition of coesite

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wu, Xuebang; Liang, Yunfeng; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-12-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture.

  16. Liquid Bismuth Propellant Management System for the Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Markusic, T. E.; Stanojev, B. J.

    2007-01-01

    Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  17. Active noise control using a steerable parametric array loudspeaker.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2010-06-01

    Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.

  18. Modeling and experiments on the drive characteristics of high-strength water hydraulic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun

    2017-05-01

    Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.

  19. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  20. Pressure mapping to prevent pressure ulcers in a hospital setting: A pragmatic randomised controlled trial.

    PubMed

    Gunningberg, Lena; Sedin, Inga-Maj; Andersson, Sara; Pingel, Ronnie

    2017-07-01

    Pressure ulcers cause suffering to patients and costs to society. Reducing pressure at the interface between the patient's body and the support surface is a valid clinical intervention for reducing the risk of pressure ulcers. However, studies have shown that knowledge of how to reduce pressure and shear and to prevent pressure ulcers is lacking. To evaluate the effect of a pressure mapping system on pressure ulcer prevalence and incidence in a hospital setting. Pragmatic randomised controlled trial. A geriatric/internal medical ward with 26 beds in a Swedish university hospital. 190 patients were recruited (intervention: n=91; control: n=99) over a period of 9 months. Patients were eligible if they were over 50 years old, admitted to the ward between Sunday 4pm and Friday 4pm, and expected to stay in the ward ≥3 days. The continuous bedside pressure mapping system displays the patient's pressure points in real-time colour imagery showing how pressure is distributed at the body-mat interface. The system gives immediate feedback to staff about the patient's pressure points, facilitating preventive interventions related to repositioning. It was used from admittance to discharge from the ward (or 14 days at most). Both intervention and control groups received standard pressure ulcer prevention care. No significant difference in the prevalence and incidence of pressure ulcers was shown between intervention and control groups. The prevalence of pressure ulcers in the intervention group was 24.2% on day 1 and 28.2% on day 14. In the control group the corresponding numbers were 18.2% and 23.8%. Seven of 69 patients (10.1%) in the intervention group and seven of 81 patients (8.6%) in the control group who had no pressure ulcers on admission developed category 1 and category 2 ulcers during their hospital stay. The incidence rate ratio between the intervention and control groups was 1.13 (95% CI: 0.34-3.79). This study failed to demonstrate a beneficial effect of a pressure mapping system on pressure ulcer prevalence and incidence. However, the study could have increased staff awareness and focus on pressure ulcer prevention, thus affecting the prevalence and incidence of pressure ulcers in a positive way in both study groups. It is important to further investigate the experience of the multidisciplinary team and the patients regarding their use of the pressure mapping system, as well as strengths and weaknesses of the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.

    2006-01-01

    A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  2. Initial Experience with IV Ketamine Infusion for Treatment of Post Sternotomy Pain in a Patient with a Total Artificial Heart.

    PubMed

    Maher, Dermot P; Loyferman, Rusty; Yumul, Roya; Louy, Charles

    2015-01-01

    The implantation of total artificial hearts (TAH) via midline sternotomy for the treatment of severe biventricular cardiac dysfunction is associated with complex postoperative pain management. Ketamaine increases blood pressure by raising sympathetic outflow and cardiac output; however, ketamine is a direct vasodilator on isolated arterial tissues. In the setting of a TAH with a mechanically fixed cardiac output, a ketamine infusion for postoperative pain control has the potential to decrease blood pressure due to direct arterial vasodilation. We present the initial experience with a ketamine infusion in a patient with a TAH with minimal observed decreases in blood pressure and significantly improved postoperative pain.

  3. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    PubMed

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  4. Pressure demagnetization of the Martian crust: Ground truth from SNC meteorites

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Rochette, Pierre; Gattacceca, Jérôme; Sadykov, Ravil A.; Trukhin, Vladimir I.

    2007-12-01

    We performed hydrostatic pressure demagnetization experiments up to 1.3 GPa on Martian meteorites: nakhlite NWA998 (magnetite-bearing), basaltic shergottites NWA1068 (pyrrhotite-bearing) and Los Angeles (titanomagnetite-bearing) as well as terrestrial rocks: rhyolite (hematite-bearing) and basalt (titanomagnetite-bearing), using a new non-magnetic high-pressure cell. The detailed description of measuring techniques and experimental set-up is presented. We found that under 1.3 GPa the samples lost up to 54% of their initial saturation isothermal remanent magnetization (IRM). Repeated loading resulted in a further decrease of magnetization of the samples. Our experiments show that the resistance of IRM to hydrostatic pressure is not exclusively controlled by the remanent coercivity of the sample, but is strongly dependant on its magnetic mineralogy. There is no simple equivalence between pressure demagnetization and alternating field demagnetization. The extrapolation of these results of pressure demagnetization of IRM of Martian meteorites to the demagnetization of the Martian crust by impacts is discussed.

  5. Feasibility study for a Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) satellite

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.

    1990-01-01

    This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.

  6. Time-resolved x-ray diffraction and electrical resistance measurements of structural phase transitions in zirconium

    DOE PAGES

    Velisavljevic, N.; Sinogeikin, S.; Saavedra, R.; ...

    2014-05-07

    Here, we have designed a portable pressure controller module to tune compression rates and maximum pressures attainable in a standard gas-membrane diamond anvil cell (DAC). During preliminary experiments, performed on zirconium (Zr) metal sample, pressure jumps of up to 80 GPa were systematically obtained in less than 0.2s (resulting in compression rate of few GPa/s up to more than 400 GPa/s). In-situ x-ray diffraction and electrical resistance measurements were performed simultaneously during this rapid pressure increase to provide the first time resolved data on α → ω → β structural evolution in Zr at high pressures. Direct control of compressionmore » rates and peak pressures, which can be held for prolonged time, allows for investigation of structural evolution and kinetics of structural phase transitions of materials under previously unexplored compression rate-pressure conditions that bridge traditional static and shock/dynamic experimental platforms.« less

  7. A liquid-delivery device that provides precise reward control for neurophysiological and behavioral experiments.

    PubMed

    Mitz, Andrew R

    2005-10-15

    Behavioral neurophysiology and other kinds of behavioral research often involve the delivery of liquid rewards to experimental subjects performing some kind of operant task. Available systems use gravity or pumps to deliver these fluids, but such methods are poorly suited to moment-to-moment control of the volume, timing, and type of fluid delivered. The design described here overcomes these limitations using an electronic control unit, a pressurized reservoir unit, and an electronically controlled solenoid. The control unit monitors reservoir pressure and provides precisely timed solenoid activation signals. It also stores calibration tables and does on-the-fly interpolation to support computer-controlled delivery calibrated directly in milliliters. The reservoir provides pressurized liquid to a solenoid mounted near the subject. Multiple solenoids, each supplied by a separate reservoir unit and control unit, can be stacked in close proximity to allow instantaneous selection of which liquid reward is delivered. The precision of droplet delivery was verified by weighing discharged droplets on a commercial analytical balance.

  8. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  9. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide.

    PubMed

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  10. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2017-06-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  11. Robert Boyle's landmark book of 1660 with the first experiments on rarified air.

    PubMed

    West, John B

    2005-01-01

    In 1660, Robert Boyle (1627-1691) published his landmark book New Experiments Physico-Mechanicall, Touching the Spring of the Air, and its Effects... in which he described the first controlled experiments of the effects of reducing the pressure of the air. Critical to this work was the development of an air pump by Boyle with Robert Hooke (1635-1703). For the first time, it was possible to observe physical and physiological processes at both normal and reduced barometric pressures. The air pump was described in detail, although the exact design of the critical piston is unclear. Boyle reported 43 separate experiments, which can conveniently be divided into 7 groups. The first experiments were on the "spring of the air," that is the pressure developed by the air when its volume was changed. Several experiments described the behavior of the barometer invented by Torricelli just 16 years before when it was introduced into the low-pressure chamber. The behavior of burning candles was discussed, although this emphasized early misunderstandings of the nature of combustion. There were some physiological observations, although these were later extended by Boyle and Hooke. The effects of the low pressure on such diverse physical phenomena as magnetism, sound propagation, behavior of a pendulum, evolution of gases from liquids, and the behavior of smoke were described. This classic book is brimming with enthusiasm and fresh ideas even for today and deserves to be better known.

  12. Reducing Bolt Preload Variation with Angle-of-Twist Bolt Loading

    NASA Technical Reports Server (NTRS)

    Thompson, Bryce; Nayate, Pramod; Smith, Doug; McCool, Alex (Technical Monitor)

    2001-01-01

    Critical high-pressure sealing joints on the Space Shuttle reusable solid rocket motor require precise control of bolt preload to ensure proper joint function. As the reusable solid rocket motor experiences rapid internal pressurization, correct bolt preloads maintain the sealing capability and structural integrity of the hardware. The angle-of-twist process provides the right combination of preload accuracy, reliability, process control, and assembly-friendly design. It improves significantly over previous methods. The sophisticated angle-of-twist process controls have yielded answers to all discrepancies encountered while the simplicity of the root process has assured joint preload reliability.

  13. Nickel-hydrogen capacity loss on storage

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1989-01-01

    A controlled experiment evaluating the capacity loss experienced by nickel electrodes stored under various conditions of temperature, hydrogen pressure, and electrolyte concentration was conducted using nickel electrodes from four different manufacturers. It was found that capacity loss varied with respect to hydrogen pressure, and storage temperature as well as with respect to electrode manufacturing processes. Impedance characteristics were monitored and found to be indicative of electrode manufacturing processes and capacity loss. Cell testing to evaluate state-of-charge effects on capacity loss were inconclusive as no loss was sustained by the cells tested in this experiment.

  14. Chemistry experience in the primary heat transport circuits of Kraftwerk Union pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, R.

    Chosen for this description of the selected Kraftwerk Union (KWU) pressurized water reactor units were Obrigheim (KWO, 345 MW(e)), Stade (KKS, 662 (MW(e)), Borselle (KCB, 477 MW(e)), and Biblis (KWB-A, 1204 MW(e)). The experience at these plants shows that with a special startup procedure and a proper chemical control of the primary heat transport system that influences general corrosion, selective types of corrosion, corrosion product activity transport and resulting contamination, and radiation-induced decomposition, KWU units have no basic problems.

  15. Evaluative threat and ambulatory blood pressure: cardiovascular effects of social stress in daily experience.

    PubMed

    Smith, Timothy W; Birmingham, Wendy; Uchino, Bert N

    2012-11-01

    Physiological effects of social evaluation are central in models of psychosocial influences on physical health. Experimental manipulations of evaluative threat evoke substantial cardiovascular and neuroendocrine responses in laboratory studies, but only preliminary evidence is available regarding naturally occurring evaluative threats in daily life. In such nonexperimental ambulatory studies, it is essential to distinguish effects of evaluative threat from related constructs known to alter stress, such as ability perceptions and concerns about appearance. 94 married, working couples (mean age 29.2 years) completed a 1-day (8 a.m. to 10 p.m.) ambulatory blood pressure protocol with random interval-contingent measurements using a Suntech monitor and Palm Pilot-based measures of control variables and momentary experiences of social-evaluative threat, concerns about appearance, and perceived ability. In hierarchical analyses for couples and multiple measurement occasions (Proc Mixed; SAS) and controlling individual differences (BMI, age, income) and potential confounds (e.g., posture, activity), higher reports of social-evaluative threat were associated with higher concurrent systolic (estimate = .87, SE = .34) and diastolic blood pressure (estimate = 1.06; SE = .26), both p < .02. Effects of social-evaluative threat remained significant when perceived ability and appearance concerns were controlled. Naturally occurring social-evaluative threat during daily activity is associated with increased systolic and diastolic blood pressure. Given associations between ambulatory blood pressure and risk of cardiovascular disease, the findings support conceptual models of threats to the social self as a potentially important influence on physical health.

  16. Fault gouge rheology under confined, high-velocity conditions

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Madden, A. S.; Chen, X.

    2012-12-01

    We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was pressurized through a porous metal (Mott) plug. Comparison with effective stress calculations indicates the same friction coefficient of ~ 1.0 for the sand layer under dry and pressurized conditions. Both kaolinite and quartz sand experiments developed localized shear zones that were examined at the nano- and micro- scales with AFM, SEM and TEM. These zones displayed reduced grain sizes and cementation by local agglomeration. Kaolinite grains sheared in CROC experiment; scale bar = 1 micron.

  17. A new confined high pressure rotary shear apparatus: preliminary results

    NASA Astrophysics Data System (ADS)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  18. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  19. [The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure].

    PubMed

    Robles-Cabrera, Adriana; Michel-Chávez, Anaclara; Callejas-Rojas, Rodolfo C; Malamud-Kessler, Caroline; Delgado, Guillermo; Estañol-Vidal, Bruno

    2014-12-01

    The factors that control the blood pressure are punctually regulated to keep it in reference values. These are maintained through autoregulatory mechanisms, humoral, nervous and endothelial-related. The humoral mechanisms are complex and modify the long-term blood pressure, in the other hand, the neurogenic mechanisms, are reflexive and can be observed in beat-to-beat changes of blood pressure. The nervous cardiovascular reflexes are mediated by high-pressure and low-pressure baroreceptors, as cardiovagal, cardiosympathetic and vasosympathetic. The arterial baroreceptor are stimulated when the blood volume-ejected by the ventricle distend the arterial walls. The neural discharge travels to the autonomic centers in the brain stem and the result is the modification of the heart rate and the vascular smooth muscle tone. This sudden modification is the responsible of the beat-to-beat (short-term) blood pressure variability. A review was made on the history of the physiology and experiments of the cardiovagal, cardiosympathetic and vasosympathetic baroreflexes and its influence in the short-term blood pressure variability.

  20. Relationship between pressure and reaction violence in thermal explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Rodriguez, G.; Remelius, D.; Baca, E.; Oschwald, D.; Suvorova, N.

    2017-01-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX 9502 thermal explosions, and fiber Bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  1. Autocracy bias in informal groups under need for closure.

    PubMed

    Pierro, Antonio; Mannetti, Lucia; De Grada, Eraldo; Livi, Stefano; Kruglanski, Arie W

    2003-03-01

    Two experiments investigated the tendency of groups with members under high (vs. low) need for cognitive closure to develop an autocratic leadership structure in which some members dominate the discussion, constitute the "hubs" of communication, and influence the group more than other members. The first experiment found that high (vs. low) need for closure groups, as assessed via dispositional measure of the need for closure, manifested greater asymmetry of conversational floor control, such that members with autocratic interactional style were more conversationally dominant and influential than less autocratic members. The second experiment manipulated the need for closure via time pressure and utilized a social network analysis. Consistent with expectation, groups under time pressure (vs. no pressure) showed a greater asymmetry of participation, of centrality, and of prestige among the group members, such that the more focal members were perceived to exert the greater influence over the groups' decisions.

  2. Advances in the Remote Glow Discharge Experiment

    NASA Astrophysics Data System (ADS)

    Dominguez, Arturo; Zwicker, A.; Rusaits, L.; McNulty, M.; Sosa, Carl

    2014-10-01

    The Remote Glow Discharge Experiment (RGDX) is a DC discharge plasma with variable pressure, end-plate voltage and externally applied axial magnetic field. While the experiment is located at PPPL, a webcam displays the live video online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The RGDX is designed as an outreach tool that uses the attractive nature of a plasma in order to reach a wide audience and extend the presence of plasma physics and fusion around the world. In March 2014, the RGDX was made publically available and, as of early July, it has had approximately 3500 unique visits from 107 countries and almost all 50 US states. We present recent upgrades, including the ability to remotely control the distance between the electrodes. These changes give users the capability of measuring Paschen's Law remotely and provides a comprehensive introduction to plasma physics to those that do not have access to the necessary equipment.

  3. Flow-rate independent gas-mixing system for drift chambers, using solenoid valves

    NASA Astrophysics Data System (ADS)

    Sugano, K.

    1991-03-01

    We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.

  4. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    PubMed

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  5. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport

    PubMed Central

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-01-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores’ deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles. PMID:29487906

  6. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    USGS Publications Warehouse

    Beeler, Nicholas M.; Hickman, Stephen H.

    2015-01-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  7. Response of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) to metabolic stress disinfection and disinfestation treatment.

    PubMed

    Arévalo-Galarza, Lourdes; Follett, Peter A

    2011-02-01

    Metabolic stress disinfection and disinfestation (MSDD) is a postharvest treatment designed to control pathogens and arthropod pests on commodities that combines short cycles of low pressure/vacuum and high CO2 with ethanol vapor. Experiments were conducted to evaluate the effect of MSDD treatment on various life stages of Ceratitis capitata (Wiedemann), Mediterranean fruit fly; Bactrocera dorsalis Hendel, oriental fruit fly; and Bactrocera cucurbitae Coquillett, melon fly, in petri dishes and in papaya, Carica papaya L., fruit. In some experiments, the ethanol vapor phase was withheld to separate the effects of the physical (low pressure/ambient pressure cycles) and chemical (ethanol vapor plus low pressure) phases of treatment. In the experiments with tephritid fruit fly larvae and adults in petri dishes, mortality was generally high when insects were exposed to ethanol and low when ethanol was withheld during MSDD treatment, suggesting that ethanol vapor is highly lethal but that fruit flies are quite tolerant of short periods of low pressure treatment alone. When papaya fruit infested with fruit fly eggs or larvae were treated by MSDD, they produced fewer pupae than untreated control fruit, but a substantial number of individuals developed nonetheless. This suggests that internally feeding insects in fruit may be partially protected from the toxic effects of the ethanol because the vapor does not easily penetrate the fruit pericarp and pulp. MSDD treatment using the atmospheric conditions tested has limited potential as a disinfestation treatment for internal-feeding quarantine pests such as fruit flies infesting perishable commodities.

  8. Individual characteristics of behavior, blood pressure, and adrenal hormones in colony rats.

    PubMed

    Fokkema, D S; Koolhaas, J M; van der Gugten, J

    1995-05-01

    Previous experiments suggested that rats with an active behavioral strategy and high endocrine and blood pressure responses to social interactions would be at risk to get a high blood pressure. To test this hypothesis, a long-term study of social behavior was performed in laboratory colonies of rats. The more aggressive rats, as indicated by individual precolony resident-intruder tests, are more aggressive in the colony also. After colony aggregation, the aggressive rats appeared to have higher resting blood pressures. The dominant rat (although aggressive, too) and the nonaggressive rats have lower blood pressures. Plasma levels of catecholamines and corticosterone after colony experience do not show a relation with blood pressure but reflect the rat's original precolony aggressive characteristic. We conclude that the individual characteristic of an active social strategy is a risk factor that indeed predicts the development of high blood pressure, possibly by way of the associated higher physiological reactivity we found earlier. Chronic environmental factors that are hard to control for the animal, like involvement in social processes or possibly other continuous challenges, may stimulate the prone physiology to develop an elevation of blood pressure.

  9. Multiple pathways in pressure-induced phase transition of coesite

    PubMed Central

    Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-01-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690

  10. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    DOE PAGES

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less

  11. The Nike Laser Facility and its Capabilities

    NASA Astrophysics Data System (ADS)

    Serlin, V.; Aglitskiy, Y.; Chan, L. Y.; Karasik, M.; Kehne, D. M.; Oh, J.; Obenschain, S. P.; Weaver, J. L.

    2013-10-01

    The Nike laser is a 56-beam krypton fluoride (KrF) system that provides 3 to 4 kJ of laser energy on target. The laser uses induced spatial incoherence to achieve highly uniform focal distributions. 44 beams are overlapped onto target with peak intensities up to 1016 W/cm2. The effective time-averaged illumination nonuniformity is < 0 . 2 %. Nike produces highly uniform ablation pressures on target allowing well-controlled experiments at pressures up to 20 Mbar. The other 12 laser beams are used to generate diagnostic x-rays radiographing the primary laser-illuminated target. The facility includes a front end that generates the desired temporal and spatial laser profiles, two electron-beam pumped KrF amplifiers, a computer-controlled optical system, and a vacuum target chamber for experiments. Nike is used to study the physics and technology issues of direct-drive laser fusion, such as, hydrodynamic and laser-plasma instabilities, studies of the response of materials to extreme pressures, and generation of X rays from laser-heated targets. Nike features a computer-controlled data acquisition system, high-speed, high-resolution x-ray and visible imaging systems, x-ray and visible spectrometers, and cryogenic target capability. Work supported by DOE/NNSA.

  12. Experiments on the Effects of Confining Pressure During Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Skarbek, R. M.; Savage, H. M.; Kelemen, P. B.; Lambart, S.; Robinson, B.

    2016-12-01

    Cracking caused by reaction-driven volume increase is an important process in many geological settings. In particular, the interaction of brittle rocks with reactive fluids can create fractures that modify the permeability and reactive surface area, leading to a large variety of feedbacks. The conditions controlling reaction-driven cracking are poorly understood, especially at geologically relevant confining pressures. We conducted two sets of experiments to study the effects of confining pressure on cracking during the formation of gypsum from anhydrite CaSO4 + 2H2O = CaSO4•2H2O, and portlandite from calcium oxide CaO + H2O = Ca(OH)2. In the first set of experiments, we cold-pressed CaSO4, or CaO powder to form cylinders. Samples were confined in steel, and compressed with an axial load of 0.1 to 4 MPa. Water was allowed to infiltrate the initially unsaturated samples through the bottom face via capillary and Darcian flow across a micro-porous frit. The height of the sample was recorded during the experiment, and serves as a measure of volume change due to the hydration reaction. We also recorded acoustic emissions (AEs) using piezoelectric transducers (PZTs), to serve as a measure of cracking during an experiment. Experiments were stopped when the recorded volume change reached 80% - 100% of the stoichiometrically calculated volume change of the reaction. In a second set of experiments, we pressed CaSO4 powder to form cylinders 8.9 cm in length and 3.5 cm in diameter for testing in a tri-axial press with ports for fluid input and output, across the top and bottom faces of the sample. The tri-axial experiments were set up to investigate the reaction-driven cracking process for a range of confining pressures. Cracking during experiments was monitored using strain gauges and PZTs attached to the sample. We measured permeability during experiments by imposing a fluid pressure gradient across the sample. These experiments elucidate the role of cracking caused by crystallization pressure in many important hydration reactions.

  13. Closed-loop regulation of arterial pressure after acute brain death.

    PubMed

    Soltesz, Kristian; Sjöberg, Trygve; Jansson, Tomas; Johansson, Rolf; Robertsson, Anders; Paskevicius, Audrius; Liao, Quiming; Qin, Guangqi; Steen, Stig

    2018-06-01

    The purpose of this concept study was to investigate the possibility of automatic mean arterial pressure (MAP) regulation in a porcine heart-beating brain death (BD) model. Hemodynamic stability of BD donors is necessary for maintaining acceptable quality of donated organs for transplantation. Manual stabilization is challenging, due to the lack of vasomotor function in BD donors. Closed-loop stabilization therefore has the potential of increasing availability of acceptable donor organs, and serves to indicate feasibility within less demanding patient groups. A dynamic model of nitroglycerine pharmacology, suitable for controller synthesis, was identified from an experiment involving an anesthetized pig, using a gradient-based output error method. The model was used to synthesize a robust PID controller for hypertension prevention, evaluated in a second experiment, on a second, brain dead, pig. Hypotension was simultaneously prevented using closed-loop controlled infusion of noradrenaline, by means of a previously published controller. A linear model of low order, with variable (uncertain) gain, was sufficient to describe the dynamics to be controlled. The robustly tuned PID controller utilized in the second experiment kept the MAP within a user-defined range. The system was able to prevent hypertension, exceeding a reference of 100 mmHg by more than 10%, during 98% of a 12 h experiment. This early work demonstrates feasibility of the investigated modelling and control synthesis approach, for the purpose of maintaining normotension in a porcine BD model. There remains a need to characterize individual variability, in order to ensure robust performance over the expected population.

  14. NASA's In-Space Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Levine, J.; Prusha, S. L.

    1992-01-01

    The objective of the In-Space Technology Experiments Program is to evaluate and validate innovative space technologies and to provide better knowledge of the effects of microgravity and the space environment. The history, organization, methodology, and current program characteristics are presented. Results of the tank pressure control experiment and the middeck zero-gravity dynamics experiment are described to demonstrate the types of technologies that have flown and the experimental results obtained from these low-cost space flight experiments.

  15. Deformation of volcanic materials by pore pressurization: analog experiments with simplified geometry

    NASA Astrophysics Data System (ADS)

    Hyman, David; Bursik, Marcus

    2018-03-01

    The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ <10, deformation was accommodated by high-angle, reversed-mechanism shearing along which fluid preferentially flowed, leading to a continuous feedback between deformation and pressurization wherein higher pressure ratios yielded larger deformations. For λ >10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.

  16. A preliminary investigation into the effect of pressure on flotation performance

    NASA Astrophysics Data System (ADS)

    Young, Courtney A.

    2007-10-01

    In a previous study, various pyrite depressants were examined to improve the flotation performance of a copper-sulfide ore containing tetrahedrite (Cu12Sb4S13). Optimal results from this study were used to examine the effect of elevation on recovery and grade. Tests were conducted at elevations of 3,350 meters, 1,735 meters, 610 meters, and-760 meters, consisting of five repetitive experiments for statistical analysis. The experiments were performed both with and without airflow control. Tests were also performed in a glove box at Montana Tech of The University of Montana to mimic the pressure conditions. Results indicate that both recovery and grade are dependent on pressure via bubble size and airflow, suggesting that pressurized fl otation cells should be considered for operations, particularly those at high elevation. Economics are extremely favorable for implementation because ensuing capital expenses are inconsequential with minimal time for return-on-investment.

  17. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    PubMed

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years.

  18. UAV Flight Control Using Distributed Actuation and Sensing

    NASA Technical Reports Server (NTRS)

    Barnwell, William G.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona; Raney, David L. (Technical Monitor)

    2003-01-01

    An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). This UAV is modified to serve as a flying, controls research, testbed. This effectorhensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.

  19. Pore fluid pressure and the seismic cycle

    NASA Astrophysics Data System (ADS)

    French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.

    2017-12-01

    In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes seismogenesis in the brittle shallow crust where fluid pressures are elevated but sub-lithostatic and promote slow, stable failure near seismic to aseismic transitions and under near-lithostatic fluid pressures.

  20. The central action of the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on cardiac inotropy and vascular resistance in the anaesthetized cat

    PubMed Central

    Ramage, Andrew G; de Burgh Daly, M

    1998-01-01

    Experiments were carried out to determine the effects of the application of the selective 5-HT2 receptor agonist DOI intravenously (in the presence of the peripherally acting 5-HT2 receptor antagonist, BW501C67, 1 mg kg−1, i.v.) or to the `glycine sensitive area' of the ventral surface (30 μg each side) on the left ventricular inotropic (left ventricular dP/dt max) and vascularly isolated hindlimb responses in anaesthetized cats. For the ventral surface experiments, NMDA (10 μg each side) was applied to act as a positive control. In all experiments heart rate and mean arterial blood pressure were held constant to exclude any secondary effects caused by changes in these variables.DOI (n=6) i.v or on the ventral surface had no effect on left ventricular dP/dt max but caused a significant increase in hindlimb perfusion pressure of 40±9 and 50±14 mmHg, respectively. Respiration was unaffected. NMDA (n=6), applied to the ventral surface, caused significant increases in both left ventricular dP/dt max and hindlimb perfusion pressure of 1950±349 mmHg s−1 and 69±17 mmHg respectively, with no associated change in left ventricular end-diastolic pressure. The amplitude of respiratory movements increased.It is concluded that activation of 5-HT2 receptors at the level of the rostral ventrolateral medulla (RVLM) excites sympathetic premotor neurons and/or their antecedents controlling hindlimb vascular resistance but not those controlling the inotropic effects on the left ventricle. PMID:9863644

  1. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  2. Mixing-induced fluid destratification and ullage condensation

    NASA Technical Reports Server (NTRS)

    Meserole, Jere S.; Jones, Ogden S.; Fortini, Anthony F.

    1987-01-01

    In many applications, on-orbit storage and transfer of cryogens will require forced mixing to control tank pressure without direct venting to space. During a no-vent transfer or during operation of a thermodynamic vent system in a cryogen storage tank, pressure control is achieved by circulating cool liquid to the liquid-vapor interface to condense some of the ullage vapor. To measure the pressure and temperature response rates in mixing-induced condensation, an experiment has been developed using Freon 11 to simulate the two-phase behavior of a cryogen. A thin layer at the liquid surface is heated to raise the tank pressure, and then a jet mixer is turned on to circulate the liquid, cool the surface, and reduce the pressure. Many nozzle configurations and flow rates are used. Tank pressure and the temperature profiles in the ullage and the liquid are measured. Initial data from this ground test are shown correlated with normal-gravity and drop-tower dye-mixing data. Pressure collapse times are comparable to the dye-mixing times, whereas the times needed for complete thermal mixing are much longer than the dye-mixing times.

  3. An experimental and computational investigation of film cooling effects on an interceptor forebody at Mach 10

    NASA Astrophysics Data System (ADS)

    Majeski, J. A.; Morris, H. W.

    1990-01-01

    An experiment using a full-scale model of an interceptor forebody configuration was conducted to determine the effectiveness of transpiration and film cooling on temperature control of an IR window during hypersonic flight. This experiment was conducted at a freestream Mach number of 10. The test total temperature was nominally 1100 K, and the test total pressure was nominally 50,000 KPa. The Reynolds number associated with these test conditions was 34.1 million/m. Results encompass pressure data, heat-transfer data, effect of upstream transpiration cooling, and film cooling effectiveness.

  4. Live Music Therapy as an Active Focus of Attention for Pain and Behavioral Symptoms of Distress During Pediatric Immunization.

    PubMed

    Sundar, Sumathy; Ramesh, Bhuvaneswari; Dixit, Priyanka B; Venkatesh, Soma; Das, Prarthana; Gunasekaran, Dhandapany

    2016-07-01

    A total of 100 children coming for routine immunization to pediatric outpatient department were included and were divided into experiment (n = 50) and control (n = 50) groups. Experiment group received live music therapy during immunization procedure. Control group received no intervention. The Modified Behavior Pain Scale (MBPS), 10-point pain levels, and 10-point distress levels were documented by parents. Duration of crying was recorded by investigators. Pre- and postimmunization blood pressures and heart rates of parents holding the children were also measured and recorded by investigators. Independent and paired t tests were used for analysis. All 3 domains of the Modified Behavior Pain Scale and duration of crying showed significant improvement (P < .05) in the experiment group. Pain and distress levels also showed statistically nonsignificant improvement in experiment group. Blood pressure and heart rate of parents showed no difference. Music therapy could be helpful to children, parents, and health care providers by reducing discomfort of the child during pediatric immunization. © The Author(s) 2015.

  5. Dynamics of flow control in an emulated boundary layer-ingesting offset diffuser

    NASA Astrophysics Data System (ADS)

    Gissen, A. N.; Vukasinovic, B.; Glezer, A.

    2014-08-01

    Dynamics of flow control comprised of arrays of active (synthetic jets) and passive (vanes) control elements , and its effectiveness for suppression of total-pressure distortion is investigated experimentally in an offset diffuser, in the absence of internal flow separation. The experiments are conducted in a wind tunnel inlet model at speeds up to M = 0.55 using approach flow conditioning that mimics boundary layer ingestion on a Blended-Wing-Body platform. Time-dependent distortion of the dynamic total-pressure field at the `engine face' is measured using an array of forty total-pressure probes, and the control-induced distortion changes are analyzed using triple decomposition and proper orthogonal decomposition (POD). These data indicate that an array of the flow control small-scale synthetic jet vortices merge into two large-scale, counter-rotating streamwise vortices that exert significant changes in the flow distortion. The two most energetic POD modes appear to govern the distortion dynamics in either active or hybrid flow control approaches. Finally, it is shown that the present control approach is sufficiently robust to reduce distortion with different inlet conditions of the baseline flow.

  6. Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.

    PubMed

    Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi

    2011-01-01

    Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.

  7. Effects of Chamber Pressure and Partial Pressure of Water Vapor on Secondary Drying in Lyophilization.

    PubMed

    Searles, James A; Aravapalli, Sridhar; Hodge, Cody

    2017-10-01

    Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.

  8. Goat Meat Does Not Cause Increased Blood Pressure

    PubMed Central

    Sunagawa, Katsunori; Kishi, Tetsuya; Nagai, Ayako; Matsumura, Yuka; Nagamine, Itsuki; Uechi, Shuntoku

    2014-01-01

    While there are persistent rumors that the consumption of goat meat dishes increases blood pressure, there is no scientific evidence to support this. Two experiments were conducted to clarify whether or not blood pressure increases in conjunction with the consumption of goat meat dishes. In experiment 1, 24 Dahl/Iwai rats (15 weeks old, body weight 309.3±11.1 g) were evenly separated into 4 groups. The control group (CP) was fed a diet containing 20% chicken and 0.3% salt on a dry matter basis. The goat meat group (GM) was fed a diet containing 20% goat meat and 0.3% salt. The goat meat/salt group (GS) was fed a diet containing 20% goat meant and 3% to 4% salt. The Okinawan mugwort (Artemisia Princeps Pampan)/salt group (GY) was fed a diet containing 20% goat meat, 3% to 4% salt and 5% of freeze-dried mugwort powder. The experiment 1 ran for a period of 14 weeks during which time the blood pressure of the animals was recorded. The GS, and GY groups consumed significantly more water (p<0.01) than the CP and GM groups despite the fact that their diet consumption levels were similar. The body weight of animals in the CP, GM, and GS groups was similar while the animals in the GY group were significantly smaller (p<0.01). The blood pressure in the GM group was virtually the same as the CP group throughout the course of the experiment. In contrast, while the blood pressure of the animals in the GS and GY group from 15 to 19 weeks old was the same as the CP group, their blood pressures were significantly higher (p<0.01) after 20 weeks of age. The GY group tended to have lower blood pressure than the GS group. In experiment 2, in order to clarify whether or not the increase in blood pressure in the GS group and the GY group in experiment 1 was caused by an excessive intake of salt, the effects on blood pressure of a reduction of salt in diet were investigated. When amount of salt in the diet of the GS and GY group was reduced from 4% to 0.3%, the animal’s blood pressure returned to normotensive. These results indicate that, as in the case of chicken consumption, prolonged consumption of goat meat does not cause increased blood pressure, rather the large amount of salt used in the preparation of goat meat dishes is responsible for the increase in blood pressure. PMID:25049932

  9. Goat meat does not cause increased blood pressure.

    PubMed

    Sunagawa, Katsunori; Kishi, Tetsuya; Nagai, Ayako; Matsumura, Yuka; Nagamine, Itsuki; Uechi, Shuntoku

    2014-01-01

    While there are persistent rumors that the consumption of goat meat dishes increases blood pressure, there is no scientific evidence to support this. Two experiments were conducted to clarify whether or not blood pressure increases in conjunction with the consumption of goat meat dishes. In experiment 1, 24 Dahl/Iwai rats (15 weeks old, body weight 309.3±11.1 g) were evenly separated into 4 groups. The control group (CP) was fed a diet containing 20% chicken and 0.3% salt on a dry matter basis. The goat meat group (GM) was fed a diet containing 20% goat meat and 0.3% salt. The goat meat/salt group (GS) was fed a diet containing 20% goat meant and 3% to 4% salt. The Okinawan mugwort (Artemisia Princeps Pampan)/salt group (GY) was fed a diet containing 20% goat meat, 3% to 4% salt and 5% of freeze-dried mugwort powder. The experiment 1 ran for a period of 14 weeks during which time the blood pressure of the animals was recorded. The GS, and GY groups consumed significantly more water (p<0.01) than the CP and GM groups despite the fact that their diet consumption levels were similar. The body weight of animals in the CP, GM, and GS groups was similar while the animals in the GY group were significantly smaller (p<0.01). The blood pressure in the GM group was virtually the same as the CP group throughout the course of the experiment. In contrast, while the blood pressure of the animals in the GS and GY group from 15 to 19 weeks old was the same as the CP group, their blood pressures were significantly higher (p<0.01) after 20 weeks of age. The GY group tended to have lower blood pressure than the GS group. In experiment 2, in order to clarify whether or not the increase in blood pressure in the GS group and the GY group in experiment 1 was caused by an excessive intake of salt, the effects on blood pressure of a reduction of salt in diet were investigated. When amount of salt in the diet of the GS and GY group was reduced from 4% to 0.3%, the animal's blood pressure returned to normotensive. These results indicate that, as in the case of chicken consumption, prolonged consumption of goat meat does not cause increased blood pressure, rather the large amount of salt used in the preparation of goat meat dishes is responsible for the increase in blood pressure.

  10. Hand preference and skilled hand performance among individuals with successful rightward conversions of the writing hand.

    PubMed

    Porac, Clare

    2009-03-01

    Searleman and Porac (2001) studied lateral preference patterns among successfully switched left-hand writers, left-hand writers with no switch pressure history, and left-hand writers who did not switch when pressured. They concluded that left-handers who successfully shift to right-hand writing are following an inherent right-sided lateralisation pattern that they already possess. Searleman and Porac suggested that the neural mechanisms that control lateralisation in the successfully switched individuals are systematically different from those of other groups of left-handers. I examined patterns of skilled and less-skilled hand preference and skilled hand performance in a sample of 394 adults (ages 18-94 years). The sample contained successfully switched left-hand writers, left-handers pressured to shift who remained left-hand writers, left-handers who did not experience shift pressures, and right-handers. Both skilled hand preference and skilled hand performance were shifted towards the right side in successfully switched left-hand writers. This group also displayed mixed patterns of hand preference and skilled hand performance in that they were not as right-sided as "natural" right-handers nor were they as left-sided as the two left-hand writing groups, which did not differ from each other. The experience of being pressured to switch to right-hand writing was not sufficient to shift lateralisation patterns; the pressures must be experienced in the context of an underlying neural control mechanism that is amenable to change as a result of these external influences.

  11. Neonatal nociception elevated baseline blood pressure and attenuated cardiovascular responsiveness to noxious stress in adult rats.

    PubMed

    Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J

    2012-10-01

    Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Langrand, C.; Hilairet, N.; Konopkova, Z.; Andrault, D.

    2016-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  13. Measurements of decreasing lattice thermal conductivity of ferropericlase across the high-spin to mixed-spin state.

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Sawchuk, K. L. S.; Kavner, A.

    2017-12-01

    The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.

  14. The Zero Boil-Off Tank Experiment Ground Testing and Verification of Fluid and Thermal Performance

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad; Kahwaji, Michel; Kieckhafer, Alexander

    2016-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale International Space Station (ISS) experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the work that has been done to demonstrate that the ZBOT experiment is capable of performing the functions required to produce a meaningful and accurate results, prior to its launch to the International Space Station. Main systems discussed are expected to include the thermal control system, the optical imaging system, and the tank filling system.This work is sponsored by NASAs Human Exploration Mission Directorates Physical Sciences Research program.

  15. Control of External Kink Instability

    NASA Astrophysics Data System (ADS)

    Navratil, Gerald

    2004-11-01

    A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.

  16. Astronauts Gemar and Allen work with lower body negative pressure experiment

    NASA Image and Video Library

    1994-03-05

    STS062-01-032 (4-14 March 1994) --- Astronaut Charles D. (Sam) Gemar, mission specialist, talks to ground controllers while assisting astronaut Andrew M. Allen with a "soak" in the Lower Body Negative Pressure (LBNP) apparatus on Columbia's middeck. The pair was joined by three other veteran NASA astronauts for 14-days of scientific research aboard the Space Shuttle Columbia in earth orbit.

  17. Characterization of an air jet haptic lump display.

    PubMed

    Bianchi, Matteo; Gwilliam, James C; Degirmenci, Alperen; Okamura, Allison M

    2011-01-01

    During manual palpation, clinicians rely on distributed tactile information to identify and localize hard lumps embedded in soft tissue. The development of tactile feedback systems to enhance palpation using robot-assisted minimally invasive surgery (RMIS) systems is challenging due to size and weight constraints, motivating a pneumatic actuation strategy. Recently, an air jet approach has been proposed for generating a lump percept. We use this technique to direct a thin stream of air through an aperture directly on the finger pad, which indents the skin in a hemispherical manner, producing a compelling lump percept. We hypothesize that the perceived parameters of the lump (e.g. size and stiffness) can be controlled by jointly adjusting air pressure and the aperture size through which air escapes. In this work, we investigate how these control variables interact to affect perceived pressure on the finger pad. First, we used a capacitive tactile sensor array to measure the effect of aperture size on output pressure, and found that peak output pressure increases with aperture size. Second, we performed a psychophysical experiment for each aperture size to determine the just noticeable difference (JND) of air pressure on the finger pad. Subject-averaged pressure JND values ranged from 19.4-24.7 kPa, with no statistical differences observed between aperture sizes. The aperture-pressure relationship and the pressure JND values will be fundamental for future display control.

  18. D-DIA High Pressure Facility at the Australian Synchrotron: First Results

    NASA Astrophysics Data System (ADS)

    Rushmer, T. A.; Wykes, J.

    2016-12-01

    The recent acquisition of a D-DIA type cubic multi-anvil apparatus for use at the Australian Synchrotron provides exciting opportunities for conducting a wide range of in situ experiments at high pressure and temperature. The MQ-AS D-DIA apparatus was designed as a mobile system capable of moving between beamlines. The apparatus was installed at the XAS beamline in May, 2016 and experiments performed since then include 1) a proof-of-concept in situ U and Th L3-edge XANES study of MORB liquid; 2) a proof-of-concept falling sphere viscometry of silicate liquid; and 3) room temperature transmission XANES in the high pressure assembly at energies as low as the Ga K-edge and as high as Sb K-edge. The MQ-AS D-DIA apparatus comprises a 350 ton ram in a four post press frame. The press is installed on a positioning table with motorised X-Y-Z-θ axes capable of positioning accuracy of <10 microns. The Rockland Research D-DIA module is equipped with 4 mm and 6 mm TEL anvils, capable of producing maximum sample pressure of 6 GPa. Stepper motors drive the main and differential ram hydraulic pressure generators in a control loop closed by pressure transducers. Samples are heated by graphite resistance furnaces driven by a Eurotherm 3504 PID controller driving a 5 V 200 A step down transformer via a phase angle power controller. Temperature is monitored via a thermocouple and power by true RMS voltage and current transducers. The XAS beamline at the Australian Synchrotron comprises a 1.9 T 40 pole wiggler, a bendable collimating mirror, a Si(111) / Si(311) DCM and a toroidal focussing mirror. Accessible energies are 5-34 keV with photon fluxes of 108-1012 photons/sec at the sample. Here we present an overview of our recent results. More detailed results of the in situ U and Th L3-edge XANES study are presented by Mallmann et al. (this meeting). In situ imaging and XRD experiments with the D-DIA apparatus on the AS Imaging and Medical Beamline are planned for the coming year.

  19. Preliminary design of the Space Station internal thermal control system

    NASA Technical Reports Server (NTRS)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.

    1987-01-01

    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  20. Plasma Streamwise Vortex Generators in an Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; Corke, Thomas; Thomas, Flint

    2013-11-01

    A wind tunnel experiment was conducted to compare plasma streamwise vortex generators (PSVGs) and passive vortex generators (VGs). These devices were installed on a wing section by which the angle of attack could be used to vary the streamwise pressure gradient. The experiment was performed for freestream Mach numbers 0.1-0.2. Three-dimensional velocity components were measured using a 5-hole Pitot probe in the boundary layer. These measurements were used to quantify the production of streamwise vorticity and the magnitude of the reorientation term from the vorticity transport equation. The effect of Mach number, pressure gradient, operating voltage, and electrode length was then investigated for the PSVGs. The results indicate that the PSVGs could easily outperform the passive VGs and provide a suitable alternative for flow control.

  1. Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)

    NASA Technical Reports Server (NTRS)

    Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.

    1991-01-01

    An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.

  2. Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve

    NASA Astrophysics Data System (ADS)

    Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu

    2017-12-01

    Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.

  3. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    PubMed

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.

  5. KSC-03pd2710

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata is dressed in protective clothing before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  6. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    PubMed

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantitative degassing of gas hydrate-bearing pressure cores from Green Canyon 955, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Phillips, S. C.; Holland, M. E.; Flemings, P. B.; Schultheiss, P. J.; Waite, W. F.; Petrou, E. G.; Jang, J.; Polito, P. J.; O'Connell, J.; Dong, T.; Meazell, K.

    2017-12-01

    We present results from 20 quantitative degassing experiments of pressure-core sections collected during Expedition UT-GOM2-1 from Green Canyon 955 in the northern Gulf of Mexico. These experiments highlight an average pore-space methane hydrate saturation, Sh, of 59% (min: 12%; max 87%) in sediments between 413 and 440 mbsf in 2032 m water depth. There is a strong lithofacies control of hydrate saturation within the reservoir, with a high saturation sandy silt facies (Sh of 65 to 87%) interbedded with a low saturation clayey silt facies (Sh of 12 to 30%). Bedding occurs on the scale of tens of centimeters. Outside of the main hydrate reservoir, methane hydrate occurs in low saturations (Sh of 0.8 to 3%). Hydrate saturations exhibit a strong correlation (R2=0.89) with the average P-wave velocity measured through the degassed sections. These preliminary hydrate saturations were calculated assuming a porosity of 40% with core filling the full internal diameter of the core liner. Gas recovered during these experiments is composed of almost entirely methane, with an average of 94 ppm ethane and detectable, but not quantifiable, propane. Degassed pressure cores were depressurized through a manifold by the stepwise release of fluid, and the volumes of produced gas and water were monitored. The core's hydrostatic pressure was measured and recorded continuously at the manifold. Pressure and temperature were also measured by data storage tags within the sample chambers. Two slow, multi-day degassing experiments were performed to estimate the in situ salinity within core sections. Based on temperature and pressure observations at the point of the initial pressure rebound due to hydrate dissociation, we estimate the salinity within these samples to be between 33 and 42 g kg-1.

  8. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    PubMed

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  9. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  10. Experimental Study of Unsteady Separation in a Laminar Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leo

    2016-11-01

    Separation, caused by an adverse pressure gradient, can be a major problem to aircraft. Reversing flow occurs in separated regions and an investigation of how this backflow forms is of interest due to the fact that this could be used as a means of initiating flow control. Specifically, backflow can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An experiment was conducted in a water tunnel to replicate separation, with a focus on the reversing flow development near the wall within a laminar boundary layer. Using a rotating cylinder, an adverse pressure gradient was induced creating a separated region over a flat plate. In this experiment the boundary layer grows to sizes great enough that the scale of the flow is increased, making it more measurable to DPIV. In the future, this research can be utilized to better understand flow control mechanisms such as those enabled by shark skin. Funding from Army Research Office and NSF REU site Grant EEC 1358991 is greatly appreciated.

  11. Design of a Soft Robot with Multiple Motion Patterns Using Soft Pneumatic Actuators

    NASA Astrophysics Data System (ADS)

    Miao, Yu; Dong, Wei; Du, Zhijiang

    2017-11-01

    Soft robots are made of soft materials and have good flexibility and infinite degrees of freedom in theory. These properties enable soft robots to work in narrow space and adapt to external environment. In this paper, a 2-DOF soft pneumatic actuator is introduced, with two chambers symmetrically distributed on both sides and a jamming cylinder along the axis. Fibers are used to constrain the expansion of the soft actuator. Experiments are carried out to test the performance of the soft actuator, including bending and elongation characteristics. A soft robot is designed and fabricated by connecting four soft pneumatic actuators to a 3D-printed board. The soft robotic system is then established. The pneumatic circuit is built by pumps and solenoid valves. The control system is based on the control board Arduino Mega 2560. Relay modules are used to control valves and pressure sensors are used to measure pressure in the pneumatic circuit. Experiments are conducted to test the performance of the proposed soft robot.

  12. An architecture for rapid prototyping of control schemes for artificial ventricles.

    PubMed

    Ficola, Antonio; Pagnottelli, Stefano; Valigi, Paolo; Zoppitelli, Maurizio

    2004-01-01

    This paper presents an experimental system aimed at rapid prototyping of feedback control schemes for ventricular assist devices, and artificial ventricles in general. The system comprises a classical mock circulatory system, an actuated bellow-based ventricle chamber, and a software architecture for control schemes implementation and experimental data acquisition, visualization and storing. Several experiments have been carried out, showing good performance of ventricular pressure tracking control schemes.

  13. Using Omega and NIF to Advance Theories of High-Pressure, High-Strain-Rate Tantalum Plastic Flow

    NASA Astrophysics Data System (ADS)

    Rudd, R. E.; Arsenlis, A.; Barton, N. R.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Orlikowski, D. A.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Wehrenberg, C. E.

    2015-11-01

    Precisely controlled plasmas are playing an important role as both pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theory, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum and vanadium starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on up to full scale. High-energy laser platforms such as the NIF and the Omega laser probe ramp-compressed strength to 1-5 Mbar. The predictions of the multiscale model agree well with the 1 Mbar experiments without tuning. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions; for example, the familiar strengthening of metals as the grain size is reduced has been shown not to occur in the high pressure experiments. Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Lab under contract DE-AC52-07NA273.

  14. Cardiac Structure and Function in Humans: A New Cardiovascular Physiology Laboratory

    ERIC Educational Resources Information Center

    Song, Su; Burleson, Paul D.; Passo, Stanley; Messina, Edward J.; Levine, Norman; Thompson, Carl I.; Belloni, Francis L.; Recchia, Fabio A.; Ojaimi, Caroline; Kaley, Gabor; Hintze, Thomas H.

    2009-01-01

    As the traditional cardiovascular control laboratory has disappeared from the first-year medical school curriculum, we have recognized the need to develop another "hands-on" experience as a vehicle for wide-ranging discussions of cardiovascular control mechanisms. Using an echocardiograph, an automatic blood pressure cuff, and a reclining bicycle,…

  15. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  16. Near Space Lab-Rat Experimentation using Stratospheric Balloon

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter

    2016-07-01

    First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.

  17. GEECS (Generalized Equipment and Experiment Control System)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GONSALVES, ANTHONY; DESHMUKH, AALHAD

    2017-01-12

    GEECS (Generalized Equipment and Experiment Control System) monitors and controls equipment distributed across a network, performs experiments by scanning input variables, and collects and stores various types of data synchronously from devices. Examples of devices include cameras, motors and pressure gauges. GEEKS is based upon LabView graphical object oriented programming (GOOP), allowing for a modular and scalable framework. Data is published for subscription of an arbitrary number of variables over TCP. A secondary framework allows easy development of graphical user interfaces for a combined control of any available devices on the control system without the need of programming knowledge. Thismore » allows for rapid integration of GEECS into a wide variety of systems. A database interface provides for devise and process configuration while allowing the user to save large quantities of data to local or network drives.« less

  18. NASA supercritical laminar flow control airfoil experiment

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1982-01-01

    The design and goals of experimental investigations of supercritical LFC airfoils conducted in the NASA Langley 8-ft Transonic Pressure Tunnel beginning in March 1982 are reviewed. Topics addressed include laminarization aspects; flow-quality requirements; simulation of flight parameters; the setup of screens, honeycomb, and sonic throat; the design cycle; theoretical pressure distributions and shock-free limits; drag divergence and stability analysis; and the LFC suction system. Consideration is given to the LFC airfoil model, the air-flow control system, airfoil-surface instrumentation, liner design and hardware, and test options. Extensive diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  19. Experiments with an Airfoil Model on which the Boundary Layers are Controlled Without the Use of Supplementary Equipment

    NASA Technical Reports Server (NTRS)

    Abbott, I H

    1931-01-01

    This report describes test made in the Variable Density Wind Tunnel of the NACA to determine the possibility of controlling the boundary layer on the upper surface of an airfoil by use of the low pressure existing near the leading edge. The low pressure was used to induce flow through slots in the upper surface of the wing. The tests showed that the angle of attack for maximum lift was increased at the expense of a reduction in the maximum lift coefficient and an increase in the drag coefficient.

  20. Distributed Actuation and Sensing on an Uninhabited Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Barnwell, William Garrard

    2003-01-01

    An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). The UAV is modified to serve as a flying, controls research, testbed. This effector/sensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.

  1. Flow Analysis of a Rising Crude Oil Micro-Droplet Affected by Attached Microbial Streamers

    NASA Astrophysics Data System (ADS)

    Amaro, Matthew; White, Andrew; Jalali, Maryam; Sheng, Jian

    2017-11-01

    Microfluidic experiments show bacteria flowing past a pinned crude oil droplet produce microbial aggregates and streamers on the oil-water interface. High speed DIC microscopy at 1000 fps for 1 sec with a sampling interval of 10 min captures the evolving flow and bacterial motility as well as adhesion, aggregation and streamer events. With bacteria as tracers, velocity measurements are acquired with in-house PIV-assisted PTV software. Flow fields with spatial resolution 2.5 μm are measured around an O(100) μm drop in a 700 ×700 μm window. Full budgets of the 2D Navier-Stokes equation are faithfully resolved to determine pressure gradients by performing the balance over a control volume enclosing the droplet. Pressure gradients are integrated over the border of the control region to obtain pressure profiles at the leading and trailing edges. A momentum balance can be used to determine the drag induced by the drop and any attached streamers. Cases with and without streamers and their differing flow features are presented. Additionally streamers produce nonzero curl in the pressure gradient field providing a tool for identifying the position of otherwise invisible streamers. Ongoing experiments and future applications of the tools presented here will be discussed. Funded by GoMRI, NSF, ARO.

  2. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)

    NASA Technical Reports Server (NTRS)

    Schuster, John R.; Russ, Edwin J.; Wachter, Joseph P.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill/refill. The nine Class 2 enhancing experiments are tanker thermal performance, pressurization, low-gravity setting and outflow, liquid acquisition device performance, transfer line chilldown, outflow subcooling, low-gravity vented fill, fluid dumping, and advanced instrumentation. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 1300 km circular orbit by an Atlas commercial launch vehicle, and will perform experiments in a semi-autonomous mode for a period of up to six months. The three-axis controlled spacecraft bus provides electric power, control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(exp -6) to 10(exp -4) g. It is desired to understand the effects that low acceleration levels might have on the heat and mass transfer processes involved in some of the experiments. The experiment module contains the three liquid hydrogen tanks, valves, pressurization and pumping equipment, and instrumentation. Within the highly insulated tanks are specialized fluid management equipment that might be used in future space transportation systems. At launch all the liquid hydrogen for the experiments is contained in the largest tank, which has helium-purged insulation to prevent cryo-pumping of air on the launch pad. The tank is loaded by the hydrogen tanking system used for the Centaur upper stage of the Atlas. After reaching orbit the two smaller tanks become receivers for fluid transfers, and when tanked, become the vessels for performing many of the experiments.

  3. Shock recovery of a magnesium-silicate spinelloid

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.; Asimow, P. D.; Ahrens, T. J.; Kostandova, N.

    2009-12-01

    Previously it was believed that some high pressure polymorphs (e.g. of framework silicates) form under shock via growth from shock-induced precursor microscopic melt zones. Since diffusion in the melt was assumed to control crystallization rates, absence of shock recovery of any of those minerals was attributed to the short duration of laboratory shock (0.1 to 1 microsecond) experiments. In contrast to laboratory experiments, grains of high pressure polymorphs of 1 - 100 micrometer diameter have been found in melt veins of shocked meteorites and were widely believed to have formed via diffusion-controlled growth that occurred over seconds to minute time scales. Recently we reported formation of wadsleyite from a shock-generated melt in a laboratory shock experiment by analysis of the recovery products [1]. The growth rate of wadsleyite crystals at the experimental temperature of 2000 to 3000 K was estimated to be several m/s suggesting that diffusion was not the dominant factor in this ultra-rapid crystal growth. Consequently, S6 shock events in chondrites may not always be related to long shock duration and large impactors. Here we report formation of another high-pressure magnesium silicate polymorph in a shock experiment. The starting materials for this 30 GPa shot was single-crystal synthetic forsterite in a NIST 1157 tool-steel chamber. The recovered material was analyzed by micro-Raman spectroscopy and by synchrotron-based micro-X ray diffraction. Diffraction experiments were conducted in Gandolfi-geometry at station B2, CHESS, using a MAR345 image plate detector and a primary beam of 25 keV energy. Melted regions of the sample contained a spinelloid isotypic to a magnesium-gallium germanate spinelloid synthesized at ambient pressure [2]. As in the previous study [1] we observe oxidation of iron from melted metal of the recovery chamber wall entrained by the silicate melt while silicon is partially reduced. The new high-pressure silicate may have formed at less than the peak pressure experienced by the sample. [1]: O.Tschauner, P.D. Asimow, N. Kostandova,T.J. Ahrens, C. Ma, S. Sinogeikin, Z. Liu, S. Fakra, N. Tamura, Proc. Nat. Acad. Sci. USA 106, 13691-5 (2009) , [2]: Barbier, J., Hyde, B.G.,Acta Cryst. B 43, 34-40 (1987).

  4. Hydromagmatic and peperitic interactions: A new experimental approach.

    NASA Astrophysics Data System (ADS)

    Downey, W. S.; Spieler, O.; Kunzmann, T.; Mastin, L.; Dingwell, D. B.; Shaw, C. J.

    2007-12-01

    Hydromagmatic interactions in general and the formation of peperites in particular, are poorly understood. We have designed and tested a new series of experiments to analyze the formation of fine hydromagmatic basaltic ash, and the processes occurring during magma/wet-sediment interaction. This study evaluates the mechanism of "turbulent shedding", (Mastin, 2007) where fine hydromagmatic ash is produced by the removal of quenched glassy rinds on clast surfaces that are rapidly deforming within turbulent transport. During magma/wet-sediment interactions the rapid heat transfer rate can lead to oscillations in the vapor film, and its possible collapse to generate a vapor explosion, between the two media producing either fluidal or brecciated textures of the silicate. In these experiment 0.5 kg of basaltic melt is generated in an internally heated autoclave at temperatures of up to 1300 (º)C and ejected via gas pressure into a low pressure tank. The autoclave can be pressurized to 50 MPa and is designed to eject the melt directly into water, wet sediments or water spray. The later technique is commonly used by powder metallurgists to produce micron-sized fragments of metallic glass, and is the desired technique to aid in the production of fine-ash via "turbulent shedding". Two molybdenum wound furnaces are used to produce the melt while a third Kanthal-wound furnace is used to control the temperature at the ejection orifice. Six thermocouples are used to control the furnaces and to record the thermal gradient throughout the setup. Pressure transducers in the high and low pressure section record the expansion volume due thermal interaction. The autoclave is separated from the low pressure tank with a diaphragm to prevent water from entering the high temperature zone. The goal of these experiments is to give insight into the role of hydrodynamic process during magma/water interaction and in the generation of peperites. The first experiments have resulted in the formation of Pelee's hairs and tears reflecting the high strain rates accompanying melt ejection. Post-experiment, grain size and surface area analysis of the hydromagmatic clasts is in progress to quantify the thermal interaction area, the influence of the turbulence and the heat transfer rate on magma-water mixing. The sediments will be impregnated with epoxy to yield textural insights for comparison with field descriptions of peperites.

  5. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    NASA Astrophysics Data System (ADS)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was influenced considerably, the area-integrated pressure was only slightly affected. Normalized RMS levels indicate that base pressure fluctuations were significantly reduced with the addition of the splitter plates. Power-spectral-density estimates revealed a spectral broadening of fluctuating energy for the 1/2 cylinder configuration and a bimodal distribution for the 1/3 and 1/4 cylinder configurations. It was concluded that the recirculation region is not the most sensitive location to apply flow control; rather, the shear layer may be a more influential site for implementing flow control methodologies. For active flow control, pulsed plasma-driven fluidic actuators were investigated. Initially, the performance of two plasma actuator designs was characterized to determine their potential as supersonic flow control devices. For the first actuator considered, the pulsed plasma jet, electro-thermal heating from an electric discharge heats and pressurizes gas in a small cavity which is exhausted through a circular orifice forming a synthetic jet. Depending on the electrical energy addition, peak jet velocities ranged between 130 to nearly 500 m/s when exhausted to quiescent, ambient conditions. The second plasma actuator investigated is the localized arc filament plasma actuator (LAFPA), which created fluidic perturbations through the rapid, local thermal heating, generated from an electric arc discharge between two electrodes within a shallow open cavity. Electrical and emission properties of the LAFPA were first documented as a function of pressure in a quiescent, no-flow environment. Rotational and vibrational temperatures from N2 spectra were obtained for select plasma conditions and ambient pressures. Results further validate that the assumption of optically thin conditions for these electric arc plasmas is not necessary valid, even at low ambient pressure. Breakdown voltage, sustained plasma voltage, power, and energy per pulse were demonstrated to decrease with decreasing pressure. Implementing an array of eight electric arcs circumferentially around the base near the corner expansion, the LAFPA actuators were shown to produce significant disturbances to the separating shear layer of the base flow and cause modest influences on the base pressure when actuated over a range of high frequencies (O(kHz)), forcing modes, duty cycles, and electrical currents. To tailor the plasma actuator toward the specific flow control application of the separated base flow, several actuator geometries and energy additions were evaluated. Displaying the ability to produce disturbances in the shear layer, an open cavity actuator design outperformed the other geometries consisting of a confined cavity with an exhaust orifice. Increases in duty cycle (between 2% and 6%) and in plasma current (1/4 to 4 amps) were shown to produce large velocity disturbances causing a decrease in average base pressure. At 4 amps and a maximum duty cycle of 6%, the largest measured change in area-weighted base pressure, near -1.5%, was observed for the axisymmetric forcing mode. Positive changes in base pressure were experienced (as much as 1% increase from the no-control) for the vertical and horizontal flapping modes.

  6. The effect of Camphor-Crataegus berry extract combination on blood pressure and mental functions in chronic hypotension--a randomized placebo controlled double blind design.

    PubMed

    Schandry, Rainer; Duschek, Stefan

    2008-11-01

    A number of studies have provided evidence for reduced cognitive performance due to chronically low blood pressure. The present studies explored whether these deficits can be reduced by pharmacological blood pressure elevation. Effects of the Camphor-Crataegus berry extract combination (Korodin(®)) were investigated in two studies with 40 and 48 hypotensive women based on a randomized, placebo controlled double blind design. The participants were presented with different tasks assessing performance in attention and cognition. Blood pressure was measured repeatedly during the experiment. The administration of the drug led to positive and differential effects on blood pressure and cognitive performance as compared to placebo. These effects were already visible within the time range of 2-5 min. A positive correlation between blood pressure increase and performance enhancement could be demonstrated for two of the four tasks. The results show that the application of Korodin(®) results in beneficial effects on resting blood pressure and cognitive performance. The positive association between the increase in blood pressure and cognitive enhancement suggests that blood pressure plays a causal role in the cognitive deficits in hypotension and underlines that they can be reduced through antihypotensive treatment.

  7. Testing Plant Responses to Rarified Atmospheres for Inflatable Greenhouses

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2000-01-01

    Reduced atmospheric pressures will likely be used to minimize mass and engineering requirements for plant growth habitats used in extraterrestrial applications. A chamber with high vacuum capability was used to design and begin construction of a system for testing plant responses to reduced pressure atmospheres. Several preliminary tests were conducted to evaluate chamber suitability for plant tests and to determine performance of thermal and vacuum systems at ambient and reduced pressure atmospheres down to 0.1 atm. The first tests consisted of measurements of internal gas volume and leakage rate. The method for volume determination was quite sensitive and will be needed for plant gas exchange measurements and calculations. This information will also be used in conjunction with the leak rate. Measured leak rates on the order of 0.46 mm Hg/min at 76 mm Hg pressure are low enough to conduct sensitive carbon dioxide exchange rate measurements at reduced pressure given an adequate plant sample (0.5 to 1.0 sq m area). A test rack with lighting provided by three high-pressure sodium vapor lamps was built to accommodate both short-term and long-term plant responses. Initial short-term experiments with lettuce showed that a pressure of 77 mm Hg resulted in a 6.1-fold increase in the rate of water loss compared to water loss at ambient pressure. Plants were severely wilted after 30 minutes exposure to 77 mm Hg. Water loss was found to be inversely correlated with atmospheric pressure over the range of pressures from 0.2 to 1.0 atm; the rate of water loss at 0.2 atm was 4.3 times higher than water loss at ambient pressure. Older leaves showed moderate wilting during exposure to 156 mm Hg, but those exposed to 345 mm, Hg remained turgid. Results suggest a reduced atmospheric pressure limit of 0.2 to 0.3 atm for lettuce grown in a solid medium. Follow-up experiments with carbon dioxide control and control at high relative humidity (> 90 %) will be needed to further confirm and define safe reduced pressure limits that are feasible for plant tolerance and growth.

  8. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept at a system level as a first step toward actual flight vehicle demonstrations. More specific objectives included testing the pressure and feed control system concept hardware for functionality, operability, and performance. Valuable LH2 thermodynamic and fluid dynamics data were obtained for application to both the SRS concept and to future missions requiring space-based cryogen propellant management.

  9. KSC-03pd2711

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in protective clothing, talks with workers before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  10. Development of a Rotation Drickamer Apparatus for Deformation Studies Under High Pressure and High Temperature: Applications to magnesiowustite and Wadsleyite

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Karato, S.

    2002-12-01

    Well-controlled high-pressure deformation experiments are critical for understanding the dynamics of Earth's interior. Most of the previous works on ultrahigh-pressure (P>10 GPa) deformation experiments have two limitations. (1) The mode of deformation is "stress-relaxation", in which stress changes with time in a given experiment, and (2) the magnitude of stress is limited (<1). To overcome these limitations and to perform large-strain plastic deformation under the upper mantle and top of lower mantle conditions, we have constructed a new apparatus by modifying the Drickamer-type high-pressure press combined with a rotation actuator involving an ac servo-motor. After the desired pressure and temperature are reached, torsional stress can be applied to a sample with a constant rotation rate. The advantage of this design is that the direction of shear deformation is normal to that of compression and therefore compression and deformation can be separated. A sample (typically ~1.8 mm diameter and ~0.2 mm thickness) is sandwiched between two zirconia plates and two heater plates made of TiC + diamond. Thin foils of W3%Re and W25%Re are inserted between two halves of samples which act as a thermocouple as well as strain markers. We have conducted a preliminary test on MgO at ~12 GPa and ~1470 K to the strain up to ~3. Deformation experiments on wadsleyite are underway to investigate the fabric development and rheology in this mineral.

  11. Obese children experience higher plantar pressure and lower foot sensitivity than non-obese.

    PubMed

    da Rocha, Emmanuel Souza; Bratz, Denise Tiane Klein; Gubert, Larissa Colaço; de David, Ana; Carpes, Felipe P

    2014-08-01

    Children obesity is a risk factor for several dysfunctions and diseases, with negative effects on the morphology of the locomotor system, plantar pressure and body stability. A relationship between postural control and sensorimotor information has been assumed. However, there is few data on the effects of children obesity on the availability of sensorial information from the foot during standing. Twenty obese and twenty non-obese children were evaluated for foot sensitivity and plantar pressure during unipedal and bipedal stance. Data were compared between obese and non-obese participants, between foot regions and between legs. Obese children experiences higher plantar pressure and have lower foot sensitivity than non-obese. Additionally, obese children had similar sensitivity for different foot regions, as compared to the non-obese. Children obesity negatively influences foot sensitivity. Bipedal stance seemed more sensitive to differentiate between obese and non-obese. Higher plantar pressure and lower foot sensitivity in obese children may affect performance of weight bearing activities, contribute to higher risk of foot injuries and have potential implication for children footwear design and clinical physical examination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Vectorcardiographic results from Skylab medical experiment M092: Lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Hoffler, G. W.; Johnson, R. L.; Nicogossian, A. E.; Bergman, S. A., Jr.; Jackson, M. M.

    1974-01-01

    Vectorcardiograms were recorded via a modified Frank lead system from all crewmen of the three Skylab missions in conjuction with the Lower Body Negative Pressure - M092 Experiment. Data were analyzed by a specially developed computer program (VECTAN). Design of the test sequences allowed direct comparisons of supine resting, Earth based (reference) vectorcardiograms with those taken during lower body negative pressure stress and those obtained at rest in orbit, as well as combinations of these conditions. Results revealed several statistically significant space flight related changes; namely, increased testing and lower body negative pressure stressed heart rates, modestly increased PR interval and corrected QTC interval, and greatly increased P and QPS loop maximal amplitudes. In addition, orientation changes in the QRS maximum vector and the J-vector at rest in space seem quite consistent among crewmen and different from those caused by the application of lower body negative pressure. No clinical abnormalities were observed. Etiology of these findings is conjectured to be, at least in part, related to fluid mass shifts occurring in weightlessness and attendant alterations in cardiovascular dynamics and myocardial autonomic control mechanisms.

  13. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  14. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  15. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

    PubMed

    Guler, Hasan; Ata, Fikret

    2014-09-01

    The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully. © IMechE 2014.

  16. Low Gravity Issues of Deep Space Refueling

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2005-01-01

    This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.

  17. Transonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration. Volume 1: Experimental data report, base configuration and effects of wing twist and leading-edge configuration. [wind tunnel tests, aircraft models

    NASA Technical Reports Server (NTRS)

    Manro, M. E.; Manning, K. J. R.; Hallstaff, T. H.; Rogers, J. T.

    1975-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

  18. Towards improved estimation of the unsaturated soil hydraulic conductivity in the near saturated range by a fully automated, pressure controlled unit gradient experiment.

    NASA Astrophysics Data System (ADS)

    Werisch, Stefan; Müller, Marius

    2017-04-01

    Determination of soil hydraulic properties has always been an important part of soil physical research and model applications. While several experiments are available to measure the water retention of soil samples, the determination of the unsaturated hydraulic conductivity is often more complicated, bound to strong assumption and time consuming. Although, the application of unit gradient experiments is recommended since the middle of the last century, as one method towards a (assumption free) direct measurement of the unsaturated hydraulic conductivity, data from unit gradient experiments is seldom to never reported in literature. We developed and build a fully automated, pressure controlled, unit gradient experiment, which allows a precise determination of the unsaturated soil hydraulic conductivity K(h) and water retention VWC(h), especially in the highly dynamic near saturated range. The measurement apparatus applies the concept of hanging water columns and imposes the required soil water pressure by dual porous plates. This concepts allows the simultaneous and direct measurement of water retention and hydraulic conductivity. Moreover, this approach results in a technically less demanding experiment than related flux controlled experiments, and virtually any flux can be measured. Thus, both soil properties can be measured in mm resolution, for wetting and drying processes, between saturation and field capacity for all soil types. Our results show, that it is important to establish separate measurements of the unsaturated hydraulic conductivity in the near saturated range, as the shape of the retention function and hydraulic conductivity curve do not necessarily match. Consequently, the prediction of the hydraulic conductivity curve from measurements of the water retention behavior in combination with a value for the saturated hydraulic conductivity can be misleading. Thus, separate parameterizations of the individual functions might be necessary and are possible with this approach. Furthermore, the apparatus allows a convenient quantification of temperature effects on both hydraulic properties and first results demonstrate impressively the important role of temperature on hydraulic conductivity, which is notoriously underestimated.

  19. The effects of pulse pressure from seismic water gun technology on Northern Pike

    USGS Publications Warehouse

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  20. [Evaluation of super dwarf wheat growth and development in greenhouse "Svet" during cultivation in inhabited pressurized chamber

    NASA Technical Reports Server (NTRS)

    Sychev, V. N.; Levinskikh, M. A.; Podol'skii, I. G.; Ivanova, I. E.; Nefedova, E. L.; Livanskaia, O. G.; Derendiaeva, T. A.; Mikhailov, N. I.; Salisbury, F. B.; Bingham, G. E.; hide

    1998-01-01

    Goals of the 3-month experiment GREENHOUSE using the equipment of greenhouse SVET (ECO-PSY-95) were to feature growth and development of wheat through the entire cycle of ontogeny under the maximally mimicked MIR environment, and to try out the procedures and timeline of space experiment GREENHOUSE-2 as a part of the fundamental biology investigations within the MIR/NASA space science program. Irradiation intensity (PAR) was 65 W/m2 and 38 W/m2 in the experiment and laboratory control, respectively. Values of other environmental parameters were MIR average (18-25 degrees C, relative air humidity in the interval between 40% and 75%, total gas pressure of about 660 to 860 mm Hg, partial oxygen pressure within the range from 140 to 200 mm Hg, partial carbon dioxide pressure up to 7 mm Hg). Experimental results showed that wheat cultivation in inhabited chamber under a modified lighting unit providing greater irradiation of the crop area produced more plant mass although seed production dropped. Low grain content in ears could be the aftermath of the gaseous trace contaminants in the chamber atmosphere.

  1. Influence of the solar wind/interplanetary medium on Saturnian kilometric radiation

    NASA Technical Reports Server (NTRS)

    Rucker, Helmut O.; Desch, M. D.

    1990-01-01

    Previous studies on the periodicities of the Saturnian kilometric radiation (SKR) suggested a considerable solar wind influence on the occurrence of SKR, so it was obvious to investigate the relationship between parameters of the solar wind/interplanetary medium and this Saturnian radio component. Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the external control of SKR. Out of the examined quantities known to be important in controlling magnetospheric processes this investigation yielded a dominance of the solar wind momentum, ram pressure and kinetic energy flux, in stimulating SKR and controlling its activity and emitted energy, and confirmed the results of the Voyager 1 analysis.

  2. Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo

    2017-11-01

    Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.

  3. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  4. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    PubMed Central

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years. Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. Conclusions While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years. PMID:29201261

  5. Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian

    2018-06-01

    In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.

  6. Survey and bibliography on attainment of laminar flow control in air using pressure gradient and suction, volume 1

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Tuttle, M. H.

    1979-01-01

    A survey was conducted and a bibliography compiled on attainment of laminar flow in air through the use of favorable pressure gradient and suction. This report contains the survey, summaries of data for both ground and flight experiments, and abstracts of referenced reports. Much early information is also included which may be of some immediate use as background material for LFC applications.

  7. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    NASA Astrophysics Data System (ADS)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  8. Pressure effect on dissimilatory sulfate reduction

    NASA Astrophysics Data System (ADS)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of deep subsurface microbiology and oil reservoir biosouring. Overall, this work furthers our understanding of oil reservoir biogeochemistry and highlights the impact of pressure on biofilm formation and biosouring strategies.

  9. A reliable data collection/control system

    NASA Technical Reports Server (NTRS)

    Maughan, Thom

    1988-01-01

    The Cal Poly Space Project requires a data collection/control system which must be able to reliably record temperature, pressure and vibration data. It must also schedule the 16 electroplating and 2 immiscible alloy experiments so as to optimize use of the batteries, maintain a safe package temperature profile, and run the experiment during conditions of microgravity (and minimum vibration). This system must operate unattended in the harsh environment of space and consume very little power due to limited battery supply. The design of a system which meets these requirements is addressed.

  10. Zero Boil-OFF Tank Hardware Setup

    NASA Image and Video Library

    2017-09-19

    iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.

  11. Terrain Characterization for Trafficability

    DTIC Science & Technology

    1993-06-01

    pensive and less time-consuming. Although carefully raphy, on vehicle operation. This report focuses on the controlled laboratory tests may be more...relating indentation to soil strength. on a portable test rig or on an off-road vehicle where it A series of controlled experiments to determine the is... Controls and setting values for hydraulic pressures and flow Figure 10. Wheel are test rig (after Wasterhund 1990). 7 Vertical Proximity L ock-Oit~u

  12. Plant Habitat Facility in the JPM

    NASA Image and Video Library

    2017-11-21

    iss053e234714 (Nov. 21, 2017) --- Advanced Plant Habitat (APH) Facility in the Japanese Experiment Module (JEM) Pressurized Module (JPM). The Plant Habitat is a fully automated facility that provides a large, enclosed, environmentally-controlled chamber for plant bioscience research.

  13. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. Themore » result of measurements can be altered by varying brake fluid pressure.« less

  14. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    NASA Astrophysics Data System (ADS)

    Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul

    2016-03-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  15. Wavelet pressure reactivity index: A validation study.

    PubMed

    Liu, Xiuyun; Czosnyka, Marek; Donnelly, Joseph; Cardim, Danilo; Cabeleira, Manuel; Hutchinson, Peter J; Hu, Xiao; Smielewski, Peter; Brady, Ken

    2018-04-17

    The brain is vulnerable to damage from too little or too much blood flow. A physiological mechanism called cerebral autoregulation (CA) exists to maintain stable blood flow even if cerebral perfusion pressure (CPP) is changing. A robust method for assessing CA is not yet available. There are still some problems with the traditional measure, the pressure reactivity index (PRx). We introduced a new method, wavelet transform method (wPRx) to assess CA using data from two sets of controlled hypotension experiments in piglets: One set with artificially manipulated ABP oscillations; the other group were spontaneous ABP waves. A significant linear relationship was found between wPRx and PRx in both groups, with wPRx rendering a more stable result for the spontaneous waves. Although both methods showed similar accuracy in distinguishing intact and impaired CA, it seems that wPRx tend to perform better than PRx, though not significantly. We present a novel method to monitor cerebral autoregulation (CA) using the wavelet transform (WT). The new method is validated against the pressure reactivity index (PRx) in two piglet experiments with controlled hypotension. The first experiment (n = 12) had controlled haemorrhage with artificial stationary arterial blood pressure (ABP) and intracranial pressure (ICP) oscillations induced by sinusoidal slow changes in positive end-expiratory pressure ('PEEP group') . The second experiment (n = 17) had venous balloon inflation during spontaneous, non-stationary ABP and ICP oscillations ('non-PEEP group'). Wavelet transform phase shift (WTP) between ABP and ICP was calculated in the frequency 0.0067-0.05 Hz. Wavelet semblance, the cosine of WTP was used to make the values comparable to PRx, and the new index was termed wavelet pressure reactivity index (wPRx). The traditional PRx, the running correlation coefficient between ABP and ICP, was calculated. The result showed a significant linear relationship between wPRx and PRx in the PEEP group (R = 0.88) and non-PEEP group (R = 0.56). In non-PEEP group, wPRx showed better performance than PRx in distinguishing CPP above and below lower limit of autoregulation (LLA). When CPP was decreased below LLA, wPRx increased from 0.43 ± 0.28 to 0.69 ± 0.12 (p = 0.003) while PRx increased from 0.07 ± 0.21 to 0.27 ± 0.37 (p = 0.04). Moreover, wPRx rendered a more stable result than PRx (SD of PRx was 0.40 ± 0.07, and SD of wPRx was 0.28 ± 0.11, p = 0.001). Assessment of CA using wavelet derived phase shift between ABP and ICP is feasible. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Evaluating Experimental Artifacts in Hydrothermal Prebiotic Synthesis Experiments

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander; Schoonen, Martin A. A.

    2003-04-01

    Control experiments with ultra pure deionized water were conducted to evaluate the organic contamination in hydrothermal prebiotic experiments. Different combinations of reaction vessel material, sampling tubing and stirring were tested and the amounts of organic contaminants determined. All tested types of polymer tubing were proven to introduce organic contaminants (formate, acetate and propionate ions) into the reacting solution. Stainless steel has a catalytic effect on the decomposition of formate, consistent with earlier work at high temperatures and pressures.

  17. Influence of Temperature on Frictional Strength and Healing Properties of Water Saturated Granular Fault Gouges During Dynamic Slip Instabilities

    NASA Astrophysics Data System (ADS)

    Scuderi, M.; Marone, C.

    2012-12-01

    The seismic potential of faults, as well as mechanical strength and frictional instability are controlled by the evolution of the real contact area within the fault gouge. Fault gouge is characterized by granular and clay rich material, as the result of continuous wear produced by dynamic or quasi-static slip along the fault plane. In this context, water and thermally-activated physicochemical reactions play a fundamental role in controlling the evolution of friction, via asperity contact properties and processes including hydrolytic weakening, adsorption/desorption, and/or intergranular pressure-solution (IPS). To investigate the role of granular processes and temperature in faulting, we performed shear experiments in water-saturated simulated gouges. We sheared layers of synthetic fault gouge composed of soda-lime glass beads (dia. 105-149 mm) in a double direct shear configuration within a true-triaxial pressure vessel under controlled fluid pressure using DI water. Effective normal stress (σn) was kept constant during shear at 5 MPa, and layer thickness was constantly monitored via a DCDT attached to the ram. Shear stress (τ) was applied via a constant shear displacement rate at layers boundaries. We performed velocity step experiments, during which shearing velocity was increased stepwise from 0.3 to 300 μm/s, and slide-hold-slide tests, with hold times from 1 to 1000 s. During each experiment temperature was kept constant at values of 25, 50 and 75C. Our experiments were conducted in a stick-slip sliding regime. At the end of each run, simulated gouge layers were carefully collected and impregnated with epoxy resin for SEM analysis. For all experiments, stress drop (Δτ) decreases roughly linearly with the log of velocity. With increasing temperature Δτ increases and the velocity dependence varies. Frictional healing is characterized by β = 0.023 change in friction per decade at T = 25C, increasing to β = 0.037 at T = 50C. We find that maximum friction (μmax) increases with increasing temperature, as well as the amount of pre-seismic slip and the corresponding layers dilation. In agreement with previous studies, our data suggest that in water saturated simulated gouges, solid-fluid chemical reactions are enhanced by increasing temperature, which may induce plastic flow and/or intergranular pressure solution at grain junction, controlling μmax, stress drop magnitude and frictional healing. Future work will consider the connection between the observed mechanical behavior and the evolution of grain contact properties.

  18. Rapid Quench Cold-Seal Apparatus with Computer-Controlled Pressure and Temperature Cycling

    NASA Astrophysics Data System (ADS)

    Johnston, A.; Senkovich, D.

    2007-12-01

    We have constructed two computer-controlled, rapid quench, hydrothermal apparatuses that are ideal for experimentation on volcanological, geothermal, and ore deposit research problems. The devices can achieve maximum pressures of about 2 kbar and temperatures to 1100C, have the ability for experiments to be quenched very rapidly in a water-cooled environment, and are interfaced with computers which can control any regimen of pressure and/or temperature cycling that may be desired, accomplished via Lab-View software and data acquisition and motion control boards from National Instruments. The rapid quench aspects of the design were developed originally by Dr. Phil Ihinger and have subsequently been adopted by many labs around the world; a good summary description of these aspects of the equipment, and the use of filler-rods for controlling redox conditions in such equipment, are provided by Matthews et al. (2004, Am. Mineral., 88: 701-707). Our design has fixed Rene 41 pressure vessels, furnaces that are raised and lowered by computer controlled pneumatic cylinders and water cooling systems that are controlled by computer operated solenoid valves. The novel feature of our design is the pressure generation and control systems. We coupled the seal-ends of commercially available (HIP) pressure generators to shop-built linear actuators consisting of nearly frictionless ball lead screws within thick walled stainless steel housings. These in turn are driven by NEMA size 23 stepper motors coupled to 100:1 gear reduction units. The actuators require 21 revolutions to achieve their full stroke of 12.7 cm which displaces about 10 cc of fluid. Operating the motors at the relatively low resolution of 800 steps per revolution leads to about 132,000 steps per cm of travel of the pressure-generating piston, providing exceptionally high precision and excellent pressure control. Instantaneous decompression can be achieved by simply opening a valve while motor-controlled decompression from 2 kbar to 1 bar can occur over time spans ranging from about one minute to months. This equipment will find immediate use in studies of decompression- induced magmatic vesiculation and crystallization in sub-volcanic and volcanic conduit environments and decompression-induced precipitation of fracture-filling ore and silicate minerals in crustal hydrothermal environments.

  19. Yoga – a laborious way to well-being: patients’ experiences of yoga as a treatment for hypertension in primary care

    PubMed Central

    Wolff, Moa; Brorsson, Annika; Midlöv, Patrik; Sundquist, Kristina; Strandberg, Eva Lena

    2017-01-01

    Objective The aim of the study was to describe patients’ experience of yoga as a treatment for hypertension, as well as their experience of living with hypertension. Design Qualitative interview study Method and materials In 2013–2014, in southern Sweden, patients with hypertension from three health care centres were invited to participate in a randomised controlled trial on yoga for hypertension. After completion of the study, eight women and five men (aged 35–79), who had practiced the yoga intervention, were interviewed about their experiences. We used a semi-structured interview guide according to Kvale. Qualitative analysis was conducted by systematic text condensation inspired by Malterud. Results Two main themes emerged during the analysis process: Yoga – a laborious way to well-being and hypertension – a silent disease. The positive experiences of doing yoga were described in terms of tranquillity and increased agility. The drawbacks were mainly linked to the time required to perform the exercises. Living with high blood pressure and having to take medication can imply a stigma and cause concerns for future cardiovascular events. Most patients that we interviewed expressed a wish to find alternative ways to treat their high blood pressure. Participating in the yoga study was seen as a good possibility to try such an alternative way. Conclusions Many patients with hypertension in Swedish primary care seem to be interested in trying alternative treatments to control blood pressure. The patients in our study experienced several benefits from doing yoga, but they also pointed out difficulties in implementing yoga as a regular and permanent lifestyle change. PMID:29124990

  20. Effects of high-pressure extruding pretreatment on MSW upgrading and hydrolysis enhancement.

    PubMed

    Xu, Shuang; Kong, Xin; Liu, Jianguo; Zhao, Ke; Zhao, Guangqi; Bahdolla, Amanjol

    2016-12-01

    High-pressure extruding (HPE) is an efficient technology used to separate municipal solid waste (MSW) into wet (biodegradable) and dry (combustible) fractions. Effects of pressure, 10, 20, 30, and 40MPa on quality upgrading of the MSW and hydrolysis of the wet fraction were examined. TS of the dry fraction increased from 48.5% to 59.4% when the extruding pressure increased from 10 to 40MPa, meanwhile the biochemical methane potential (BMP) of the wet fraction extruded under 40MPa was 674mL CH 4 /g·VS, 33% higher than that of the organic fraction of the MSW (OFMSW) control. Furthermore, in the initial stage of hydrolysis experiment, the extruded wet fractions had lower pH and higher COD, volatile fatty acids (VFAs) and COD/VFA than those of the OFMSW control. The results confirmed that HPE upgraded the MSW and enhanced hydrolysis of the wet fractions. However, high extruding pressure as 40MPa aggravated the excessive acidification of the wet fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A sealable ultrathin window sample cell for the study of liquids by means of soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Grötzsch, D.; Streeck, C.; Nietzold, C.; Malzer, W.; Mantouvalou, I.; Nutsch, A.; Dietrich, P.; Unger, W.; Beckhoff, B.; Kanngießer, B.

    2017-12-01

    A new sample cell concept for the analysis of liquids or solid-liquid interfaces using soft X-ray spectroscopy is presented, which enables the complete sealing of the cell as well as the transport into vacuum via, for example, a load-lock system. The cell uses pressure monitoring and active as well as passive pressure regulation systems, thereby facilitating the full control over the pressure during filling, sealing, evacuation, and measurement. The cell design and sample preparation as well as the crucial sealing procedure are explained in detail. As a first proof-of-principle experiment, successful nitrogen K-edge fluorescence yield near-edge X-ray absorption fine structure experiments of a biomolecular solution are presented. For this purpose, it is shown that the careful evaluation of all involved parameters, such as window type or photon flux, is desirable for optimizing the experimental result.

  3. Mobile health platform for pressure ulcer monitoring with electronic health record integration.

    PubMed

    Rodrigues, Joel J P C; Pedro, Luís M C C; Vardasca, Tomé; de la Torre-Díez, Isabel; Martins, Henrique M G

    2013-12-01

    Pressure ulcers frequently occur in patients with limited mobility, for example, people with advanced age and patients wearing casts or prostheses. Mobile information communication technologies can help implement ulcer care protocols and the monitoring of patients with high risk, thus preventing or improving these conditions. This article presents a mobile pressure ulcer monitoring platform (mULCER), which helps control a patient's ulcer status during all stages of treatment. Beside its stand-alone version, it can be integrated with electronic health record systems as mULCER synchronizes ulcer data with any electronic health record system using HL7 standards. It serves as a tool to integrate nursing care among hospital departments and institutions. mULCER was experimented with in different mobile devices such as LG Optimus One P500, Samsung Galaxy Tab, HTC Magic, Samsung Galaxy S, and Samsung Galaxy i5700, taking into account the user's experience of different screen sizes and processing characteristics.

  4. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    PubMed

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  5. Towards an understanding of flows in avalanche transport phenomena

    NASA Astrophysics Data System (ADS)

    Jin, Suying; Ramadan, Nikolas; van Compernolle, Bart; Poulos, Matt J.; Morales, George J.

    2017-10-01

    Recent heat transport experiments conducted in the Large Plasma Device (LAPD) at UCLA, studying avalanche phenomena at steep cross-magnetic field pressure gradients, suggest that flows play a critical role in the evolution of transport phenomena, motivating further characterization. A ring shaped electron beam source injects sub-ionization energy electrons along the strong background magnetic field within a larger quiescent plasma, creating a hollow, high pressure filament. Two distinct regimes are observed as the density decays; the first characterized by multiple small avalanches producing sudden relaxations of the pressure profile which then recovers under continued heating, and the second signaled by a permanent collapse of the density profile after a global avalanche event, then dominated by drift-Alfven waves. The source is modified from previous experiments to gain active control of the flows by controlling the bias between the emitting ring and surrounding carbon masks. The results of flow measurements obtained using a Mach probe and Langmuir/emissive probe are here presented and compared. An analytical model for the behavior of the electron beam source is also in development. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  6. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  7. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    PubMed

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  8. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Agostini, C.; Landi, P.; Fortunati, A.; Mancini, L.; Carroll, M. R.

    2015-12-01

    Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as a function of pressure, effective undercooling (Δ T eff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (Δ T eff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities ( N a) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5-10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density ( N a) and crystal fraction ( ϕ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.

  9. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    NASA Astrophysics Data System (ADS)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  10. Pressure gradient induced generation of microbubbles

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2015-11-01

    It is well known that the controlled production of monodisperse bubbles possesses uncountable applications in medicine, pharmacy and industry. Here we provide with a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. In our experiments, a gas flow rate discharges through a cylindrical needle into a pressurized chamber. The pressure gradient created from the exit of the injection needle towards the entrance of a extraction duct promotes the stretching of the gas ligament downstream. In our analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, different regimes can be distinguished depending mainly on the Reynolds number. Through our physical modeling, we provide closed expressions for both the bubbling frequencies and for the bubble diameters as well as the conditions under which a monodisperse generation is obtained in all regimes found. The excellent agreement between our expressions and the experimental data fully validates our physical modeling.

  11. Feasibility of controlling speed-dependent low-frequency brake vibration amplification by modulating actuation pressure

    NASA Astrophysics Data System (ADS)

    Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.

  12. Fabrication of self-enclosed nanochannels based on capillary-pressure balance mechanism

    NASA Astrophysics Data System (ADS)

    Kou, Yu; Sang, Aixia; Li, Xin; Wang, Xudi

    2017-10-01

    Polymer-based micro/nano fluidic devices are becoming increasingly important to biological applications and fluidic control. In this paper, we propose a self-enclosure method for the fabrication of large-area nanochannels without external force by using a capillary-pressure balance mechanism. The melt polymer coated on the nanogrooves fills into the trenches inevitably and the air in the trenches is not excluded but compressed, which leads to an equilibrium state between pressure of the trapped air and capillary force of melt polymer eventually, resulting in the channels’ formation. A pressure balance model was proposed to elucidate the unique self-sealing phenomenon and the criteria for the design and construction of sealed channels was discussed. According to the bonding mechanism investigated using the volume of fluid (VOF) simulation and experiments, we can control the dimension of sealed channels by varying the baking condition. This fabrication technique has great potential for low-cost and mass production of polymeric-based micro/nano fluidic devices.

  13. Repair of pig dura in vivo using temperature controlled CO(2) laser soldering.

    PubMed

    Forer, Boaz; Vasilyev, Tamar; Brosh, Tamar; Kariv, Noam; Gil, Ziv; Fliss, Dan M; Katzir, Abraham

    2005-10-01

    The purpose of this study was to demonstrate that laser soldering might be successfully used for closing holes or cuts in the dura layer, which encapsulates the brain. A temperature controlled fiberoptic CO(2) laser system and albumin solder were used for spot soldering of fascia patches to holes in the dura of farm pigs, in vitro and in vivo. The mean burst pressure of the soldered patches in the in vitro experiments was 190 +/- 88 mm Hg-significantly higher than typical maximum CSF pressure of 15 mm Hg. In the in vivo experiments the pigs showed no postoperative complications. Histopathological studies exhibited an accepted level of inflammatory reaction and showed no thermal damage to the underlying brain tissue. It has been clearly demonstrated that temperature controlled laser soldering is a very useful technique for the repair of the dura. It provides significant advantages over standard closure techniques: it is easy to apply, the bond is strong and watertight and the procedure is likely to be much faster than suturing. This research work will lead to clinical trials.

  14. Simulated airplane headache: a proxy towards identification of underlying mechanisms.

    PubMed

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa

    2017-12-01

    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.

  15. First results of eclipse induced pressure and turbulence changes in South Carolina

    NASA Astrophysics Data System (ADS)

    Hiscox, A.; McCombs, A. G.; Stewart, M. J.

    2017-12-01

    Total solar eclipses supply both visual captivation and a controlled meteorological experiment by reason of a sudden decrease in radiation from the Sun. This presentation will provide first results from a field experiment focused on the atmospheric surface layer changes before, during, and after a total solar eclipse. A suite of instruments including radiosondes, aerosol lidar, sonic anemometers, and microbarographs will be deployed one mile from the total eclipse centerline outside Columbia, South Carolina. The results should not only confirm the commonly expected changes in sensible weather, but also provide insight into the generation and propagation of internal gravity waves. These waves propagate and transfer both energy and momentum vertically to and from the upper levels of the atmosphere. Early scientific results are expected to provide IGW vertical propagation speeds from succesive radiosonde measurements, while triangulated surface pressure measurements will provide timing of wave activity. Other anticipated results to be presented are changes in turbulence turbulence stationarity and pressure pertubations. Finally, the sucess of a major outreach event held in tandem with the scientific experiement will be discussed.

  16. The use of pressure controlled Fabry-Pérot interferometer with linear scanning of data for Brillouin-type experiments

    NASA Astrophysics Data System (ADS)

    Błachowicz, Tomasz

    2000-08-01

    The article presents results from work with Fabry-Pérot interferometers in Brillouin laser light scattering experiments, where optical signals of very low level intensity are observed. The information presented here can be useful in other types of optical experiments where scanning in the Fabry-Pérot interferometer spectral range has to be used. In such situations the shape of spectral lines as well as their relative distances can be detected. The key to the solution presented here is the use of a silicon-membrane pressure sensor coupled to a pressure chamber. It makes it possible to view spectral lines equally spaced after nonlinear flow of air from a chamber where the Fabry-Pérot interferometer is placed. Linear scanning in the spectral range equal to a frequency of about 150 GHz is possible. The method can be applied to Fabry-Pérot's etalons, very frequently produced some years ago. Now it should find new fields of application, in a simple and cost effective way, in student laboratories as well as in other research institutions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Simon A., E-mail: simon.hunt@ucl.ac.uk; McCormack, Richard J.; Bailey, Edward

    A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18 GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to highmore » strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 1–2 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8 GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10 GPa at 800 °C.« less

  18. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.

    PubMed

    Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F

    2014-12-21

    Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.

  19. Microfluidic valve array control system integrating a fluid demultiplexer circuit

    NASA Astrophysics Data System (ADS)

    Kawai, Kentaro; Arima, Kenta; Morita, Mizuho; Shoji, Shuichi

    2015-06-01

    This paper proposes an efficient control method for the large-scale integration of microvalves in microfluidic systems. The proposed method can control 2n individual microvalves with 2n + 2 control lines (where n is an integer). The on-chip valves are closed by applying pressure to a control line, similar to conventional pneumatic microvalves. Another control line closes gate valves between the control line to the on-chip valves and the on-chip valves themselves, to preserve the state of the on-chip valves. The remaining control lines select an activated gate valve. While the addressed gate valve is selected by the other control lines, the corresponding on-chip valve is actuated by applying input pressure to the control line to the on-chip valves. Using this method would substantially reduce the number of world-to-chip connectors and off-chip valve controllers. Experiments conducted using a fabricated 28 microvalve array device, comprising 256 individual on-chip valves controlled with 18 (2   ×   8 + 2) control lines, yielded switching speeds for the selected on-chip valve under 90 ms.

  20. Understanding the association between maltreatment history and adolescent risk behavior by examining popularity motivations and peer group control.

    PubMed

    Ellis, Wendy E; Wolfe, David A

    2009-10-01

    The purpose of the present study was to examine how peer group processes of pressure and control and individual motivations for popularity would add to, and moderate the relationship between, childhood maltreatment and risky behavior in adolescence. A total of 1558 youth (804 girls) from three high schools in Ontario, Canada (M age = 15.02 years, SD = .86) reported on their alcohol use, delinquent behavior, childhood experiences of physical and emotional maltreatment and neglect, peer group processes involving control and individual popularity motivations. Regression analyses showed that, beyond the significant contributions of childhood maltreatment, peer group control predicted risky alcohol use and delinquent behavior. Peer group control and popularity motivations exacerbated the negative effect of physical maltreatment on delinquent behavior. Boys' experiences of peer group control were more strongly linked to alcohol use and delinquent behavior than girls'. These results suggest that there is a significant window of opportunity during adolescence where the peer group context can exacerbate or buffer childhood experiences.

  1. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sreyashi; Vlachos, Pavlos

    2016-11-01

    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  2. Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.

    The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the recent DebrisLV and DebriSat hypervelocity impact experiments, while ablations in high-vacuum provide critical distinctions.

  3. Using NIF to Test Theories of High-Pressure, High-Rate Plastic Flow in Metals

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Arsenlis, A.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Park, H. S.; Powell, P.; Prisbrey, S. T.; Remington, B. A.; Swift, D.; Wehrenberg, C. E.; Yang, L.

    2017-10-01

    Precisely controlled plasmas are playing key roles both as pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theoretical advances, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on until the ultimate material response at the scale of an experiment. Experiments at the National Ignition Facility (NIF) probe strength in metals ramp compressed to 1-8 Mbar. The model is able to predict 1 Mbar experiments without adjustable parameters. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions. We also describe recent studies of lead compressed to 3-5 Mbar. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  4. A novel method for high-pressure annealing experiments in a water-rich environment: hydrogen solubility and speciation in natural, gem-quality diopside

    NASA Astrophysics Data System (ADS)

    Bromiley, G. D.; Keppler, H.; Bromiley, F. A.; Jacobsen, S. D.

    2003-04-01

    Previous experimental invesitgations on the incorporation of structurally-bound hydrogen in nominally anhydrous minerals have either involved synthesis experiments or annealing of natural samples under hydrothermal conditions. For investigation of hydrogen incorporation using FTIR, large, good quality crystals are required. Because of experimental difficulties, synthesis experiments are limited to the investigation of end-member systems. Annealing experiments may be used to investigate chemically more complex systems. However, in previous investigations problems have arisen due to reaction of samples with chemical buffers and fluids at elevated pressures and temperatures, and run times have been limited to less than 48 hours, raising questions regarding attainment of equilbrium. In the present study, a novel method for conducting long duration (100 s of hours) annealing experiments to investigate hydrogen incorporation in samples at high-pressure has been developed. The method relies on the use of a semi-permeable platinum membrane, which protects the sample during the experiment. Samples, cut into 1×2×3 mm blocks, are surrounded by a thin platinum jacket, which is "shrink-wrapped" around the samples. The samples are then loaded into larger Pt10%Rh capsules with a buffer mixture of the same composition as the Cr-diopside, a large amount of excess water, excess silica and a Ni-NiO buffer to control oxygen fugacity. At elevated pressures and temperatures, hydrogen can diffuse freely through the platinum membrane, but the samples are protected from reaction with the surrounding buffer material and fluid. Capsules are loaded into a specially designed low-friction NaCl cells for use in piston-cylinder apparatus. Samples are recovered completely intact and crack-free. Several experiments have been performed at 1.5 GPa, with increasing run duration, to demonstrate the attainment of equilibrium hydrogen contents in the sample. Experiments have been performed at pressures from 0.5 to 4.0 GPa, 1000 to 1100^oC, with run times of several hundred hours. The effects of increasing pressure and oxygen fugacity on hydeogen solubility, and hydrogen speciation in the diopside have been fully characterised using polarised FTIR spectoscopy. The high-quality of recovered samples means that further investigations on the effects of increasing water contents on other physical properties in the samples should be possible.

  5. Design criteria monograph for actuators and operators

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Instrumentation for actuators and operators includes electrical position-indicating switches, potentiometers, and transducers and pressure-indicating switches and transducers. Monograph is based on critical evaluation of experiences and practices in design, test, and use of these control devices and instruments in operational space vehicles.

  6. Adverse effects of social pressure to be thin on young women: an experimental investigation of the effects of "fat talk".

    PubMed

    Stice, Eric; Maxfield, Jennifer; Wells, Tony

    2003-07-01

    Experiments have found that pressure to be thin from the media promotes body dissatisfaction and negative affect, but the effects of social pressure to be thin have not been examined experimentally. Thus, this study tested whether social pressure to be thin fosters body dissatisfaction and negative affect. Young women (N = 120) were randomly assigned to a condition wherein an ultra-thin confederate complained about how fat she felt and voiced intentions to lose weight or a control condition wherein she discussed a neutral topic. Exposure to social pressure to be thin resulted in increased body dissatisfaction but not negative affect. The effects were not moderated by initial thin-ideal internalization, body dissatisfaction, or social support. Results support the assertion that peer pressure to be thin promotes body dissatisfaction but suggest that this factor may not contribute to negative affect. Copyright 2003 by Wiley Periodicals, Inc.

  7. Zeeman Effect in Ruby at High Pressures

    NASA Astrophysics Data System (ADS)

    Dan, Ioana

    2012-02-01

    We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.

  8. Crystal-rich lava dome extrusion during vesiculation: an experimental study

    NASA Astrophysics Data System (ADS)

    Pistone, M.; Whittington, A. G.; Andrews, B. J.; Cottrell, E.

    2016-12-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard on numerous active volcanoes worldwide. The influence of volatiles on the rheological mechanics of lava dome extrusion remains unclear. Here we present new experimental results on the rheology of synthesized, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacites, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (483 to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.64 MPa, and variable strain-rates ranging from 8.32•10-8 to 3.58•10-5 s-1). The experiments replicated lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution we find that the rheological lubrication of the system during deformation is strongly dictated by the imposed initial crystallinity. At low crystal content (< 60 vol%) strain localization within shear bands, composed of melt and gas bubbles that likely interconnect, controls the overall sample rheology. At high crystallinity (60 to 70 vol%) gas pressurization (i.e. pore pressure increase) within crystal clusters and embryonic formation of microscopic fractures drive the system to a brittle behavior. At higher crystallinity (80 vol%) gas pressurization triggers brittle fragmentation through macroscopic fractures, which sustain outgassing and determines the viscous death of the system. The contrasting behaviors at different crystallinities have direct impact on the style of volcanic eruptions. Outgassing induced by deformation and bubble coalescence reduces the system pressurization and the potential for an explosive eruption. Conversely, high crystallinity lava domes experience limited loss of exsolved gas during deformation, permitting the achievement of large overpressures prior to fragmentation, favoring likely explosive eruptions. These findings provide a dataset that might be used to constrain the physical properties of natural lava domes at active volcanoes and show how crystallinity and corresponding gas pressurization control dome growth rate and consequent eruption style.

  9. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics.

    PubMed

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we found that ventilating the normal lung with high peak pressure (45 cmH(2)0) and low positive end-expiratory pressure (PEEP of 3 cmH(2)O) did not initially result in altered alveolar mechanics, but alveolar instability developed over time. Anesthetized rats underwent tracheostomy, were placed on pressure control ventilation, and underwent sternotomy. Rats were then assigned to one of three ventilation strategies: control group (n = 3, P control = 14 cmH(2)O, PEEP = 3 cmH(2)O), high pressure/low PEEP group (n = 6, P control = 45 cmH(2)O, PEEP = 3 cmH(2)O), and high pressure/high PEEP group (n = 5, P control = 45 cmH(2)O, PEEP = 10 cmH(2)O). In vivo microscopic footage of subpleural alveolar stability (that is, recruitment/derecruitment) was taken at baseline and than every 15 minutes for 90 minutes following ventilator adjustments. Alveolar recruitment/derecruitment was determined by measuring the area of individual alveoli at peak inspiration (I) and end expiration (E) by computer image analysis. Alveolar recruitment/derecruitment was quantified by the percentage change in alveolar area during tidal ventilation (%I - E Delta). Alveoli were stable in the control group for the entire experiment (low %I - E Delta). Alveoli in the high pressure/low PEEP group were initially stable (low %I - E Delta), but with time alveolar recruitment/derecruitment developed. The development of alveolar instability in the high pressure/low PEEP group was associated with histologic lung injury. A large change in lung volume with each breath will, in time, lead to unstable alveoli and pulmonary damage. Reducing the change in lung volume by increasing the PEEP, even with high inflation pressure, prevents alveolar instability and reduces injury. We speculate that ventilation with large changes in lung volume over time results in surfactant deactivation, which leads to alveolar instability.

  10. Development of a Pressure Switched Microfluidic Cell Sorter

    NASA Astrophysics Data System (ADS)

    Ozbay, Baris; Jones, Alex; Gibson, Emily

    2009-10-01

    Lab on a chip technology allows for the replacement of traditional cell sorters with microfluidic devices which can be produced less expensively and are more compact. Additionally, the compact nature of microfluidic cell sorters may lead to the realization of their application in point-of-care medical devices. Though techniques have been demonstrated previously for sorting in microfluidic devices with optical or electro-osmotic switching, both of these techniques are expensive and more difficult to implement than pressure switching. This microfluidic cell sorter design also allows for easy integration with optical spectroscopy for identification of cell type. Our current microfluidic device was fabricated with polydimethylsiloxane (PDMS), a polymer that houses the channels, which is then chemically bonded to a glass slide. The flow of fluid through the device is controlled by pressure controllers, and the switching of the cells is accomplished with the use of a high performance pressure controller interfaced with a computer. The cells are fed through the channels with the use of hydrodynamic focusing techniques. Once the experimental setup is fully functional the objective will be to determine switching rates, explore techniques to optimize these rates, and experiment with sorting of other biomolecules including DNA.

  11. The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.

  12. Suction and Blowing Flow Control on Airfoil for Drag Reduction in Subsonic Flow

    NASA Astrophysics Data System (ADS)

    Baljit, S. S.; Saad, M. R.; Nasib, A. Z.; Sani, A.; Rahman, M. R. A.; Idris, A. C.

    2017-10-01

    Lift force is produced from a pressure difference between the pressures acting in upper and lower surfaces. Therefore, flow becomes detached from the surface of the airfoil at separation point and form vortices. These vortices affect the aerodynamic performance of the airfoil in term of lift and drag coefficient. Therefore, this study is investigating the effect of suction and jet blowing in boundary layer separation control on NACA 0012 airfoil in a subsonic wind tunnel. The experiment examined both methods at the position of 25% of the chord-length of the airfoil at Reynolds number 1.2 × 105. The findings show that suction and jet blowing affect the aerodynamic performance of NACA 0012 airfoil and can be an effective means for boundary layer separation control in subsonic flow.

  13. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop growouts. Schedules of experimental events for lettuce and wheat are outlined and include replications in time of diurnal routines, pressure transients, variable pO2, pO2/pCO2 ratio, and light intensity responses.

  14. [Glaucoma and sleep apnea syndrome].

    PubMed

    Blumen-Ohana, E; Blumen, M; Aptel, F; Nordmann, J P

    2011-06-01

    Glaucomatous optic neuropathy is multifactorial, with currently one known and modifiable risk factor, with good results on the prognosis and intraocular pressure. Nevertheless, some patients may experience progression of their neuropathy even though their intraocular pressure seems appropriately controlled. Vascular risk factors are hypothesized and researched. Obstructive sleep apnea syndrome (OSAS) could be considered one of these risk factors. Screening for this cardiovascular risk factor in glaucomatous patients presenting evocative signs, should be proposed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. An Application Of High-Speed Photography To The Real Ignition Course Of Composite Propellants

    NASA Astrophysics Data System (ADS)

    Fusheng, Zhang; Gongshan, Cheng; Yong, Zhang; Fengchun, Li; Fanpei, Lei

    1989-06-01

    That the actual solid rocket motor behavior and delay time of the ignition of Ap/HTPB composite propellant ignited by high energy pyrotechics contained condensed particles have been investigated is the key of this paper. In experiments, using high speed camera, the pressure transducer, the photodiode and synchro circuit control system designed by us synchronistically observe and record all course and details of the ignition. And pressure signal, photodiode signal and high speed photography frame are corresponded one by one.

  16. First experimental assessment of RCS plume-flow field interaction on Hermes leading edge thruster configuration

    NASA Astrophysics Data System (ADS)

    Poertner, T.

    1993-11-01

    Glow discharge flow visualization experiments are demonstrated which have been performed to enable a first assessment of the HERMES 1.0 leading edge thruster configuration concerning interference between the thruster plumes of the reaction control system (RCS) and the surrounding flow field. The results of the flow visualization tests are presented in exemplary selected photographs. Additional Pitot pressure measurements support assumptions concerning interference induced pressure changes that may result from the observed significant flow field disturbances.

  17. Outflow monitoring of a pneumatic ventricular assist device using external pressure sensors.

    PubMed

    Kang, Seong Min; Her, Keun; Choi, Seong Wook

    2016-08-25

    In this study, a new algorithm was developed for estimating the pump outflow of a pneumatic ventricular assist device (p-VAD). The pump outflow estimation algorithm was derived from the ideal gas equation and determined the change in blood-sac volume of a p-VAD using two external pressure sensors. Based on in vitro experiments, the algorithm was revised to consider the effects of structural compliance caused by volume changes in an implanted unit, an air driveline, and the pressure difference between the sensors and the implanted unit. In animal experiments, p-VADs were connected to the left ventricles and the descending aorta of three calves (70-100 kg). Their outflows were estimated using the new algorithm and compared to the results obtained using an ultrasonic blood flow meter (UBF) (TS-410, Transonic Systems Inc., Ithaca, NY, USA). The estimated and measured values had a Pearson's correlation coefficient of 0.864. The pressure sensors were installed at the external controller and connected to the air driveline on the same side as the external actuator, which made the sensors easy to manage.

  18. Effects of stress paths on physical properties of sediments at the Nankai Trough subduction zone

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Saffer, D. M.

    2011-12-01

    Stress states are one of the most important factors governing deformation modes and fault strength. In subduction systems where tectonic stress is large, sediments are subjected to complicated stress conditions in time and space. Because direct measurements of stress are very limited, stress conditions at depths have been estimated by combining seismic reflection data with empirical relations between compressional-wave, porosity, and effective stress [Tsuji et al., 2008; Tobin and Saffer, 2009]. However, most of the empirical relations are derived from experiments conducted under isotropic conditions, and do not account for the more complicated stress states expected in active subduction-accretion complexes. In this study, we aim to derive relations between physical properties and stress states from triaxial deformation experiments on sediments. During the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expeditions 314, 315, 319, 322, and 333, core samples were recovered from shallow boreholes into the accretionary prism and two sites seaward of the deformation front (reference sites). We used core samples from reference sites (Sites C0011 and C0012) for this study because they represent input material for the subduction system, and have not been subjected to tectonic compression in the accretionary wedge. In our deformation tests, samples are loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension by controlling axial stress (up to 100 MPa), confining pressure (up to 100 MPa), and pore pressure (0.5-28 MPa). During tests, all pressures, axial displacement, and pore volume change were monitored. Permeability, and ultrasonic velocity were also measured during the tests. Two experiments have been conducted on samples taken from the core 322-C0011B-19R-5 (Lower Shikoku Basin hemipelagic mudstone, initial porosity of 43 %). The first test was conducted under istotropic loading and unloading by (1) increase and decrease in confining pressure, and (2) decrease and increase in pore pressure. The evolution of physical properties depends on effective pressure regardless of whether confining pressure or pore pressure is controlled. As effective pressure increases from 0.2 to 30 MPa, porosity decreases from 43 to 18 %, permeability decreases from 1.1×10-18 to 4.1×10-20 m2, and compressional-wave velocity increases from 1.76 to 2.5 km/s, respectively. The same physical properties do not fully recover during unloading, which corresponds to overconsolidated or overpressured condition. The second test included various loading paths including triaxial compression and extension, and drained and undrained condition of pore pressure. The results indicate that the evolution of physical properties be dependent on both effective mean stress and differential stress. The experimental results suggest that it is important to consider consolidation state and loading paths. We will present more experimental results and derive relations between physical properties and stress states.

  19. Who Chokes Under Pressure? The Big Five Personality Traits and Decision-Making under Pressure.

    PubMed

    Byrne, Kaileigh A; Silasi-Mansat, Crina D; Worthy, Darrell A

    2015-02-01

    The purpose of the present study was to examine whether the Big Five personality factors could predict who thrives or chokes under pressure during decision-making. The effects of the Big Five personality factors on decision-making ability and performance under social (Experiment 1) and combined social and time pressure (Experiment 2) were examined using the Big Five Personality Inventory and a dynamic decision-making task that required participants to learn an optimal strategy. In Experiment 1, a hierarchical multiple regression analysis showed an interaction between neuroticism and pressure condition. Neuroticism negatively predicted performance under social pressure, but did not affect decision-making under low pressure. Additionally, the negative effect of neuroticism under pressure was replicated using a combined social and time pressure manipulation in Experiment 2. These results support distraction theory whereby pressure taxes highly neurotic individuals' cognitive resources, leading to sub-optimal performance. Agreeableness also negatively predicted performance in both experiments.

  20. Pressure hyperalgesia in hind limb suspended rats.

    PubMed

    Chowdhury, Parimal; Soulsby, Michael E; Jayroe, John; Akel, Nisreen S; Gaddy, Dana; Dobretsov, Maxim

    2011-10-01

    Spaceflight and simulated microgravity often associate with pain and prediabetes. Streptozotocin (STZ)-induced moderate insulinopenia rat models of prediabetes result in pressure hyperalgesia. The current study was designed to determine whether or not simulated microgravity induced by hind limb suspension (HLS) in rats lead to insulinopenia and pressure hyperalgesia. Adult male rats were divided into HLS (N = 20) and control, non-suspended (N = 16) groups, respectively. Bodyweight and hind limb pressure-pain withdrawal threshold (PPT) were measured at regular 2-5 d intervals for 7 d before and 12-13 d after HLS. Bodyweights and PPT of control and HLS animals measured on the day of suspension were not different. During the experiment, control rats gained 61 +/- 5 g, but maintained their PPT at the baseline level. Suspended rats gained 26 +/- 3 g of weight during the same time period and their PPT declined from 105 +/- 6 g to 84 +/- 6 g. Neither blood glucose nor pancreatic islet density and area were affected by HLS. However, the random plasma insulin of HLS rats was significantly lower than that of control animals (1.6 +/- 0.2 vs. 2.7 +/- 0.2 ng ml(-1)). The observed relationship between insulin and PPT levels in the HLS rats was similar to that observed in rats with STZ-induced insulinopenia. These data suggest that moderate insulinopenia may affect the rat's sensitivity to deep pressure directly, without affecting glucose homeostasis. In addition, our data suggest that HLS rats may develop peripheral neuropathy.

  1. Regulatory Mechanism of Muscle Disuse Atrophy in Adult Rats

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During the last phase of NAG 2-386 we completed three studies. The effects of 14 days of weightlessness; the vastus medialis (VM) from flight rats in COSMOS 2044 was compared with the VM from tail suspended rats and other controls. The type I and II fibers in the mixed fiber portion of the VM were significantly reduced in flight rats and capillary densities paralleled the fiber density changes. The results of this project compared favorably with those in the extensor digitorum longus following seven days of flight in SL 3. The cardiovascular projects focused on the blood pressure changes in head down tilted rats (HDT) and non-head down tilted (N-HDT) rats. Blood pressures (MAP, SP and DP) were significantly elevated through seven days of HDT and rapidly returned to control levels within one day after removal from the HDT position. The N-HDT showed some slight rise in blood pressure but these were not as great and they were not as rapid. The HDT rats were characterized as exhibiting transient hypertension. These results led to some of the microvascular and vascular graduate student projects of Dr. Bernhard Stepke. Also our results refute or, at least, do not agree with previous reports from other laboratories. Each animal, in our blood pressure projects, served as its own control thereby providing more accurate results. Also, our experiments focused on recovery studies which can, in and of themselves, provide guidelines for flight experiments concerned with blood pressure changes. Another experiment was conducted to examine the role of testicular atrophy in whole body suspended (WBS) and tail suspended (TS) rats. We worked in conjunction with Dr. D.R. Deaver's laboratory at Pennsylvania State University and Dr. R. P. Amann at Colorado State University. In the TS rats the testes are retracted into the abdominal cavity, unless a ligature is placed to maintain them in the external scrotal sac. The cryptorchid condition in TS rats results in atrophy of the testes and lowered levels of spermatid formation. Hormonal changes due to testes atrophy must be considered in future experiments where related effects may modify muscle, bone or other tissue changes. Also, some new assessments of past results (published by many researchers) may warrant revised interpretations. The blood pressure studies and the testicular function results were presented and reviewed during an invited lecture at the University of Bordeaux II during the Animals in Space Symposium in March 1993. In summary, each of these three projects complied with the objectives of the proposal and serve to demonstrate the utility of animal models in preparations and interpretations of space flight results. All funding has been expended in accordance with the approved budget.

  2. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    NASA Astrophysics Data System (ADS)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  3. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  4. Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis

    USGS Publications Warehouse

    Shaw, H.R.

    1963-01-01

    Experiments at 700??C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H2O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H 2O and oxygen.

  5. Investigating the dynamics of Vulcanian explosions using scaled laboratory experiments

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Phillips, J. C.; Chojnicki, K. N.

    2005-12-01

    Laboratory experiments were conducted to investigate the dynamics of Vulcanian eruptions. A reservoir containing a mixture of water and methanol plus solid particles was pressurized and suddenly released via a rapid-release valve into a 2 ft by 2 ft by 4 ft plexiglass tank containing fresh water. Water and methanol created a light interstitial fluid to simulate buoyant volcanic gases in erupted mixtures. The duration of the subsequent experiments was not pre-determined, but instead was limited by the potential energy associated with the pressurized fluid, rather than by the volume of available fluid. Suspending liquid density was varied between 960 and 1000 kg m-3 by changing methanol concentrations from 5 to 20%. Particle size (4 & 45 microns) and concentration (1 to 5 vol%) were varied in order to change particle settling characteristics and control bulk mixture density. Variations in reservoir pressure and vent size allowed exploration of the controlling source parameters, buoyancy flux (Bo) and momentum flux (Mo). The velocity-height relationship of each experiment was documented by high-speed video, permitting classification of the laboratory flows, which ranged from long continuously accelerating jets, to starting plumes, to low-energy thermals, to collapsing fountains generating density currents. Field-documented Vulcanian explosions exhibit this same wide range of behavior (Self et al. 1979, Nature 277; Sparks & Wilson 1982, Geophys. J. R. astr. Soc. 69; Druitt et al. 2002, Geol. Soc. London, 21), demonstrating that flows obtained in the laboratory are relevant to natural systems. A generalized framework of results was defined as follows. Increasing Mo/Bo for small particles (4 microns; settling time > experiment duration) pushes the system from low-energy thermals toward high-energy, continuously accelerating jets; increasing Mo/Bo for large particles (>45 microns; settling time < experiment duration) pushes the system from a low collapsing fountain to a high collapsing fountain; and increasing particle size for collapsing fountains decreases runout distance of gravity currents and increases production of current-generated rising plumes.

  6. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    PubMed Central

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  7. Tongue pressure profile training for dysphagia post stroke (TPPT): study protocol for an exploratory randomized controlled trial.

    PubMed

    Steele, Catriona M; Bayley, Mark A; Péladeau-Pigeon, Melanie; Stokely, Shauna L

    2013-05-07

    It is estimated that approximately 50% of stroke survivors will experience swallowing difficulty, or dysphagia. The associated sequelae of dysphagia include dehydration, malnutrition, and aspiration pneumonia, all of which have can have serious medical consequences. To improve swallowing safety and efficiency, alternative nutritional intake methods (for example, a feeding tube) or a modified diet texture (such as pureed foods or thickened liquids) may be recommended but these modifications may negatively affect quality of life. An alternative approach to treating dysphagia has emerged over the past few years, targeting stronger lingual muscles through maximal isometric pressure tasks. Although these studies have shown promising results, thin-liquid bolus control continues to be challenging for patients with dysphagia. Previous work investigating lingual pressures when healthy participants swallow has suggested that greater task specificity in lingual exercises may yield improved results with thin liquids. This is a small, exploratory randomized clinical trial being conducted with post-stroke patients 4 to 20 weeks after onset of dysphagia secondary to impaired lingual control. At enrollment, participants are randomly assigned to one of two treatment protocols, either tongue pressure profile training (TPPT) or the control treatment, tongue pressure strength-and-accuracy training (TPSAT). Each treatment protocol consists of 24 sessions of treatment over 8 to 12 weeks with monitoring of tongue pressure as well as a baseline and outcome videofluoroscopic swallowing study. Tongue pressure measures, videofluoroscopic measures, and functional outcome measures will be obtained following training of 60 participants (30 in each condition), to determine whether TPPT yields better outcomes. This study will continue to explore options beyond tube feeding and modified diets for people with neurogenic dysphagia following stroke. Should the novel protocol, TPPT, prove to be more effective than the TPSAT protocol, this may influence standards of care and best practices for patients with dysphagia involving impaired thin-liquid control as a result of stroke. Clinicaltrials.gov http://NCT01370083.

  8. Experimental petrology and origin of rocks from the Descartes Highlands

    NASA Technical Reports Server (NTRS)

    Walker, D.; Longhi, J.; Grove, T. L.; Stolper, E.; Hays, J. F.

    1973-01-01

    Petrographic studies of Apollo 16 samples indicate that rocks 62295 and 68415 are crystallization products of highly aluminous melts. 60025 is a shocked, crushed and partially annealed plagioclase cumulate. 60315 is a recrystallized noritic breccia of disputed origin. 60335 is a feldspathic basalt filled with xenoliths and xenocrysts of anorthosite, breccia, and anorthite. The Fe/(Fe+Mg) of plagioclase appears to be a relative crystallization index. Low pressure melting experiments with controlled Po2 indicate that the igneous samples crystallized at oxygen fugacities well below the Fe/FeO buffer. Crystallization experiments at various pressures suggest that the 62295 and 68415 compositions were produced by partial or complete melting of lunar crustal materials, and not by partial melting of the deep lunar interior.

  9. Influence of Flow Gradients on Mach Stem Initiation of PBX-9502

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence; Miller, Phillip; Mas, Eric; Focused Experiments Team

    2017-06-01

    Recent experiments and theory explore the effect of flow gradients on reaction acceleration and stability in the pressure-enhanced region between colliding sub-detonative shock waves in PBX-9502. The experiments are designed to produce divergent curved incident shock waves that interact in a convergent irregular reflection, or ``Mach stem'', configuration. Although this flow is fundamentally unsteady, such a configuration does feature particle paths having a single shock wave that increases the pressure from zero to the wave-reflected enhanced pressure. Thus, the possibility of pre-shock desensitization is precluded in this interaction region. Diagnostics record arrival wave velocity, shape, and material velocity along the angled free surface face of a large wedge. The wedge is large enough to allow observation of the wave structure for distances much larger than the run-to-detonation derived from classical ``Pop plot'' data. The explosive driver system produces the incident shocks and allows some control of the flow gradients in the collision region. Further, the incident shocks are very weak and do not transition to detonation. The experiments discussed feature incident shock waves that would be expected to cause initiation in the Mach stem, based on the Pop plot. Results show that the introduction of pressure/velocity gradients in the reaction zone strongly influences the ability of the flow to build to a steady ``CJ'' detonation. As expected, the ability of the Mach stem to stabilize or accelerate is strongly influenced by the incident shock pressure.

  10. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochems, P.; Kirk, A. T.; Bunert, E.

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less

  11. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  12. Pressure oscillations occurring in a centrifugal compressor system with and without passive and active surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungowski, W.M.; Weiss, M.H.; Price, G.R.

    1996-01-01

    A study of pressure oscillations occurring in small centrifugal compressor systems without a plenum is presented. Active and passive surge control were investigated theoretically and experimentally for systems with various inlet and discharge piping configurations. The determination of static and dynamic stability criteria was based on Greitzer`s (1981) lumped parameter model modified to accommodate capacitance of the piping. Experimentally, passive control using globe valves closely coupled to the compressor prevented the occurrence of surge even with the flow reduced to zero. Active control with a sleeve valve located at the compressor was effective but involved a significant component of passivemore » throttling which reduced the compressor efficiency. With an oscillator connected to a short side branch at the compressor, effective active control was achieved without throttling. Both methods of active control reduced the flow rate at surge onset by about 30%. In general, the experiments qualitatively confirmed the derived stability criteria.« less

  13. NASA High-Reynolds Number Circulation Control Research - Overview of CFD and Planned Experiments

    NASA Technical Reports Server (NTRS)

    Milholen, W. E., II; Jones, Greg S.; Cagle, Christopher M.

    2010-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. This technique is focused on the use of semi-span models due to their increased model size and relative ease of routing high-pressure air to the model. A new dual flow-path high-pressure air delivery station has been designed, along with a new high performance transonic sem -si pan wing model. The modular wind tunnel model is designed for testing circulation control concepts at both transonic cruise and low-speed high-lift conditions. The ability of the model to test other active flow control techniques will be highlighted. In addition, a new higher capacity semi-span force and moment wind tunnel balance has been completed and calibrated to enable testing at transonic conditions.

  14. Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor.

    PubMed

    Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang

    2013-03-01

    This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

  15. Adaptive plasticity in vestibular influences on cardiovascular control

    NASA Technical Reports Server (NTRS)

    Yates, B. J.; Holmes, M. J.; Jian, B. J.

    2000-01-01

    Data collected in both human subjects and animal models indicate that the vestibular system influences the control of blood pressure. In animals, peripheral vestibular lesions diminish the capacity to rapidly and accurately make cardiovascular adjustments to changes in posture. Thus, one role of vestibulo-cardiovascular influences is to elicit changes in blood distribution in the body so that stable blood pressure is maintained during movement. However, deficits in correcting blood pressure following vestibular lesions diminish over time, and are less severe when non-labyrinthine sensory cues regarding body position in space are provided. These observations show that pathways that mediate vestibulo-sympathetic reflexes can be subject to plastic changes. This review considers the adaptive plasticity in cardiovascular responses elicited by the central vestibular system. Recent data indicate that the posterior cerebellar vermis may play an important role in adaptation of these responses, such that ablation of the posterior vermis impairs recovery of orthostatic tolerance following subsequent vestibular lesions. Furthermore, recent experiments suggest that non-labyrinthine inputs to the central vestibular system may be important in controlling blood pressure during movement, particularly following vestibular dysfunction. A number of sensory inputs appear to be integrated to produce cardiovascular adjustments during changes in posture. Although loss of any one of these inputs does not induce lability in blood pressure, it is likely that maximal blood pressure stability is achieved by the integration of a variety of sensory cues signaling body position in space.

  16. The relationships between air exposure, negative pressure, and hemolysis.

    PubMed

    Pohlmann, Joshua R; Toomasian, John M; Hampton, Claire E; Cook, Keith E; Annich, Gail M; Bartlett, Robert H

    2009-01-01

    The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in vitro static blood model. Samples of fresh ovine or human blood (5 ml) were subjected to a bubbling air interface (0-100 ml/min) or negative pressure (0-600 mm Hg) separately, or in combination, for controlled periods of time and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air before initiating the test, hemolysis was four to five times greater than samples not preexposed to air. When these experiments were repeated using freshly drawn human blood, the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone.

  17. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  18. Metabolic Activity - Skylab Experiment M171

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.

  19. Mammographic compression after breast conserving therapy: Controlling pressure instead of force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groot, J. E. de, E-mail: jerry.degroot@sigmascreening.com; Branderhorst, W.; Grimbergen, C. A.

    Purpose: X-ray mammography is the primary tool for early detection of breast cancer and for follow-up after breast conserving therapy (BCT). BCT-treated breasts are smaller, less elastic, and more sensitive to pain. Instead of the current force-controlled approach of applying the same force to each breast, pressure-controlled protocols aim to improve standardization in terms of physiology by taking breast contact area and inelasticity into account. The purpose of this study is to estimate the potential for pressure protocols to reduce discomfort and pain, particularly the number of severe pain complaints for BCT-treated breasts. Methods: A prospective observational study including 58more » women having one BCT-treated breast and one untreated nonsymptomatic breast, following our hospital's 18 decanewton (daN) compression protocol was performed. Breast thickness, applied force, contact area, mean pressure, breast volume, and inelasticity (mean E-modulus) were statistically compared between the within-women breast pairs, and data were used as predictors for severe pain, i.e., scores 7 and higher on an 11-point Numerical Rating Scale. Curve-fitting models were used to estimate how pressure-controlled protocols affect breast thickness, compression force, and pain experience. Results: BCT-treated breasts had on average 27% smaller contact areas, 30% lower elasticity, and 30% higher pain scores than untreated breasts (allp < 0.001). Contact area was the strongest predictor for severe pain (p < 0.01). Since BCT-treatment is associated with an average 0.36 dm{sup 2} decrease in contact area, as well as increased pain sensitivity, BCT-breasts had on average 5.3 times higher odds for severe pain than untreated breasts. Model estimations for a pressure-controlled protocol with a 10 kPa target pressure, which is below normal arterial pressure, suggest an average 26% (range 10%–36%) reduction in pain score, and an average 77% (range 46%–95%) reduction of the odds for severe pain. The estimated increase in thickness is +6.4% for BCT breasts. Conclusions: After BCT, women have hardly any choice in avoiding an annual follow-up mammogram. Model estimations show that a 10 kPa pressure-controlled protocol has the potential to reduce pain and severe pain particularly for these women. The results highly motivate conducting further research in larger subject groups.« less

  20. The Basis of the Syllable Hierarchy: Articulatory Pressures or Universal Phonological Constraints?

    PubMed

    Zhao, Xu; Berent, Iris

    2018-02-01

    Across languages, certain syllable types are systematically preferred to others (e.g., [Formula: see text] lbif, where [Formula: see text] indicates a preference). Previous research has shown that these preferences are active in the brains of individual speakers, they are evident even when none of these syllable types exists in participants' language, and even when the stimuli are presented in print. These results suggest that the syllable hierarchy cannot be reduced to either lexical or auditory/phonetic pressures. Here, we examine whether the syllable hierarchy is due to articulatory pressures. According to the motor embodiment view, the perception of a linguistic stimulus requires simulating its production; dispreferred syllables (e.g., lbif) are universally disliked because their production is harder to simulate. To address this possibility, we assessed syllable preferences while articulation was mechanically suppressed. Our four experiments each found significant effects of suppression. Remarkably, people remained sensitive to the syllable hierarchy regardless of suppression. Specifically, results with auditory materials (Experiments 1-2) showed strong effects of syllable structure irrespective of suppression. Moreover, syllable structure uniquely accounted for listeners' behavior even when controlling for several phonetic characteristics of our auditory materials. Results with printed stimuli (Experiments 3-4) were more complex, as participants in these experiments relied on both phonological and graphemic information. Nonetheless, readers were sensitive to most of the syllable hierarchy (e.g., [Formula: see text]), and these preferences emerged when articulation was suppressed, and even when the statistical properties of our materials were controlled via a regression analysis. Together, these findings indicate that speakers possess broad grammatical preferences that are irreducible to either sensory or motor factors.

  1. Optimization of a pressure control valve for high power automatic transmission considering stability

    NASA Astrophysics Data System (ADS)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  2. [Effects of Self-management Program applying Dongsasub Training on Self-efficacy, Self-esteem, Self-management Behavior and Blood Pressure in Older Adults with Hypertension].

    PubMed

    Kim, Myoungsuk; Song, Misoon

    2015-08-01

    The purpose of this study was to develop a self-management program applying Dongsasub training based on self-efficacy theory, and to verify the program effectiveness on self-esteem as well as self-efficacy, self-management behaviors, and blood pressure. The study design was a non-equivalent, pre-post controlled quasi-experiment study. Thirty-eight patients aged 65 and older from a senior welfare center in Seoul participated in this study (20 patients in the experimental group and 18 patients in the control group). The self-management program applying Dongsasub training consisted of eight sessions. After development was complete the program was used with the experimental group. Outcome variables included self-efficacy, self-esteem, self-management behaviors measured by questionnaires, and blood pressure measured by electronic manometer. Self-efficacy (t=2.42, p=.021), self-esteem (t=2.57, p=.014) and self-management behaviors (t=2.21, p=.034) were significantly higher and systolic blood pressure (t=-2.14, p=.040) was significantly lower in the experimental group compared to the control group. However, diastolic blood pressure (t=-.85, p=.400) was not significantly different between the two groups. The results indicate that the self-management program applying Dongsasub training can be used as a nursing intervention in community settings for improving self-management behaviors for older adults with hypertension.

  3. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren; Kelley, Maxwell; Marshall, John

    2017-08-01

    Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.

  4. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  5. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  6. Pathophysiology of fat embolism: a rabbit model.

    PubMed

    Blankstein, Michael; Byrick, Robert J; Richards, Robin R; Mullen, J Brendan; Zdero, Rad; Schemitsch, Emil H

    2011-11-01

    The objective of this study was to assess the effects of fat embolism on rabbit physiology. After anesthetic administration, both femoral condyles of the right knee only of 23 New Zealand white rabbits were exposed through a medial parapatellar approach to the knee. In the pulmonary fat embolism group (n = 15), the femoral canal was drilled in a retrograde fashion and then reamed and pressurized with a 1- to 1.5-mL cement injection. In the no-pressurization group (n = 4), after reaming, no cement was injected. In the control group (n = 4), the knee incision was immediately closed. Animals were then observed for 5 hours. Hemodynamics and blood gases were recorded at standard intervals. Postmortem, the lungs were removed en bloc and fixed for histologic assessment and quantitative histomorphometry. Four intraoperative deaths occurred in the pulmonary fat embolism group immediately after pressurization and may have been associated with hypotension and cardiac arrest. In the pulmonary fat embolism group, pulmonary artery pressure increased, and both mean arterial pressure and PaO2 decreased after pressurization. Approximately 2% of lung volume was occupied by intravascular fat and there were no signs of perivascular inflammation. Control and no-pressurization animals remained stable throughout the experiment. This model simulates pulmonary fat embolism after long-bone fractures. Despite cardiorespiratory dysfunction, there was no evidence of fat initiating pulmonary inflammation based on histologic data within the timeframe of the investigation.

  7. Hydrodynamic Energy Saving Enhancements for DDG 51 Class Ships

    DTIC Science & Technology

    2012-02-01

    temperature and pressure in the hydraulic pitch control system, expansion and contraction of the pitch control rods, improper pitch calibration procedure ...outdated pitch calibration, etc. Experience during hot pitch calibration procedures conducted by NSWCCD prior to powering trials has indicated that...18% increase in power.10 Sea trials conducted during a long-term evaluation on the USS WHIPPLE (FF 1062), showed that by 800 days out of drydock

  8. Skylab

    NASA Image and Video Library

    1972-01-01

    This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Stimulation experiments conducted in anisotropic, naturally fractured, tight, lenticular gas sandstones have shown the existence of a dual-leakoff phenomenon. Below a threshold pressure, the leakoff coefficient is very low and fluids are very efficient. Above the threshold, leakoff increased by a factor of 50, slurries dehydrate rapidly, and screenouts occur in minutes. The leakoff has been shown to be controllable to some extent with 100-mesh sand. Results of three stimulation experiments are presented, including a treatment that screened out, a minifracture experiment that showed the effectiveness of 100-mesh sand, and a final successful stimulation.

  10. Patient compliance with antihypertensive medication.

    PubMed Central

    Hershey, J C; Morton, B G; Davis, J B; Reichgott, M J

    1980-01-01

    Self-reported medication taking compliance behavior of 132 high blood pressure patients was analyzed using an expanded version of the health belief model. Subjects were selected through random sampling procedures from regular hypertension program sessions at a large urban hospital. A questionnaire was constructed to measure the model components, and interviews were conducted with each patient. Bivariate analysis showed that control over health matters, dependence on providers, perceived barriers, duration of treatment, and others' nonconfirming experience were significantly related to compliance (p < .05). Log-linear multivariate analysis revealed that three of these five variables--control over health matters, perceived barriers, and duration of treatment--contributed independently to patient compliance. Self-reported medication taking was significantly related to blood pressure control (p < .02). These data provide the basis for developing interventions for providers to facilitate the medication taking behavior of clinic patients. PMID:7416325

  11. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  12. Characterization of fluid physics effects on cardiovascular response to microgravity (G-572)

    NASA Technical Reports Server (NTRS)

    Pantalos, George M.; Sharp, M. Keith; Woodruff, Stewart J.; Lorange, Richard D.; Bennett, Thomas E.; Sojka, Jan J.; Lemon, Mark W.

    1993-01-01

    The recognition and understanding of cardiovascular adaptation to spaceflight has experienced substantial advancement in the last several years. In-flight echocardiographic measurements of astronaut cardiac function on the Space Shuttle have documented a 15 percent reduction in both left ventricular volume index and stroke volume with a compensatory increase in heart rate to maintain cardiac output. To date, the reduced cardiac size and stroke volume have been presumed to be the consequence of the reduction in circulating fluid volume following diuresis and other physiological processes to reduce blood volume within a few days after orbital insertion. However, no specific mechanism for the reduced stroke volume has been elucidated. The following investigation proposes the use of a hydraulic model of the cardiovascular system to examine the possibility that the observed reduction in stroke volume may, in part, be related to fluid physics effects on heart function. The automated model is being prepared to fly as a GAS payload. The experimental apparatus consists of a pneumatically actuated, elliptical artificial ventricle connected to a closed-loop, hydraulic circuit with compliance and resistance elements to create physiologic pressure and flow conditions. The ventricle is instrumented with high-fidelity, acceleration-insensitive, catheter-tip pressure transducers (Millar Instruments) in the apex and base to determine the instantaneous ventricular pressures and (delta)P(sub LV) across the left ventricle (LVP(sub apex)-LVP(sub base). The ventricle is also instrumented with a flow probe and pressure transducers immediately upstream of the inflow valve and downstream of the outflow valve. The experiment will be microprocessor controlled with analog signals stored on the FM data tape recorder. By varying the circulating fluid volume, ventricular function can be determined for varying preload pressures with fixed afterload pressure. Pilot experiments on board the NASA KC-135 aircraft have demonstrated proof-of-concept and provided early support for the proposed hypothesis. A review of the pilot experiments and developmental progress on the GAS version of this experiment will be presented.

  13. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  14. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  15. Psychophysiology of arterial baroreceptors and the etiology of hypertension.

    PubMed

    Rau, H; Elbert, T

    2001-01-01

    Arterial baroreceptors are sensitive to blood pressure dependent blood vessel dilation. They play a key role in the short term regulation of blood pressure. Their impact on psychological and psychophysiological aspects is of increasing interest. The review focuses on experimental techniques for the controlled baroreceptor manipulation. Results from the application of these techniques show that baroreceptor activation influences the cardiovascular system as well as central nervous functioning: Behavioral and electrophysiological measures of arousal, low level reflexes and pain responses are modulated through baroreceptor manipulation. The observation of an overall dampening ('barbiturate like') effect of baroreceptor activity led Dworkin et al. formulate the theory of learned hypertension: Subjects might experience blood pressure dependent baroreceptor activation as stress and pain relieving. High blood pressure periods become negatively reinforced. Phasic high blood pressure might develop as a coping strategy. Data from a longitudinal human study supporting this theory are reported.

  16. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This reportmore » serves as a summary of those experiments, and provides a guide to references for detailed information.« less

  17. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  18. Reexamining issues of conceptualization and willing consent: the hidden role of coercion in experiences of sexual acquiescence.

    PubMed

    Conroy, Nicole E; Krishnakumar, Ambika; Leone, Janel M

    2015-07-01

    This study problematizes the literature's conceptualization of sexual compliance, predominantly defined as willing participation in, and consent to, unwanted sexual activity in the absence of immediate partner pressure. Using a feminist theoretical framework, we argue that covert forms of social coercion, including normalized expectations for heterosexual women to participate in sexual activity and maintain relationship satisfaction, ultimately pressure women into participating in unwanted sexual activity. In other words, immediate partner pressure is not necessary for a sexually coercive experience to occur. Results of the current study indicate that relationship control and media influence significantly predict sexual acquiescence, and women acquiesce to unwanted sexual activity in an effort to maintain relationships and partner satisfaction as well as to avoid negative outcomes. Women cite various forms of social coercion, such as fulfilling sexual scripts and relationship obligations, as primary reasons for participating in unwanted sexual activity without resisting their partners. © The Author(s) 2014.

  19. Noise in pressure transducer readings produced by variations in solar radiation.

    PubMed

    Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  20. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  1. Development of a Small Area Sniffer

    NASA Technical Reports Server (NTRS)

    Meade, Laurie A.

    1995-01-01

    The aim of this project is to develop and implement a sniffer that is capable of measuring the mass flow rate of air through a small area of pinholes whose diameters are on the magnitude of thousandths of an inch. The sniffer is used to scan a strip of a leading edge panel, which is being used in a hybrid laminar flow control experiment, in order to survey the variations in the amount of air that passes through the porous surface at different locations. Spanwise scans are taken at different chord locations by increasing the pressure in a control volume that is connected to the sniffer head, and recording the drop in pressure as the air is allowed to flow through the tiny holes. This information is used to obtain the mass flow through the structure. More importantly, the deviations from the mean flow rate are found and used to determine whether there are any significant variations in the flow rate from one area to the next. The preliminary results show little deviation in the spanwise direction. These results are important when dealing with the location and amount of suction that will be applied to the leading edge in the active laminar flow control experiment.

  2. Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome

    2008-01-01

    Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.

  3. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    NASA Technical Reports Server (NTRS)

    Jaminet, J. F.; Kendall, J. S.

    1976-01-01

    Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.

  4. Simulation of the planetary interior differentiation processes in the laboratory.

    PubMed

    Fei, Yingwei

    2013-11-15

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.

  5. Simulation of the Planetary Interior Differentiation Processes in the Laboratory

    PubMed Central

    Fei, Yingwei

    2013-01-01

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245

  6. Pyroclast acceleration and energy partitioning in fake explosive eruptions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Taddeucci, Jacopo; Scheu, Bettina; Valentine, Greg; Capponi, Antonio; Kueppers, Ulrich; Graettiger, Allison; Sonder, Ingo

    2014-05-01

    Explosive eruptions are characterized by the fast release of energy, with gas expansion playing a lead role. An excess of pressure may be generated either by the exsolution and accumulation of volatiles (e.g., vulcanian and strombolian explosions) or by in situ vaporization of water (e.g., phreato-magmatic explosions). The release of pressurized gas ejects magma and country rock pyroclasts at velocities that can reach several hundred of meters per second. The amount and velocity of pyroclasts is determined not only by the total released energy, but also by the system-specific dynamics of the energy transfer from gas to pyroclasts. In this context, analogue experiments are crucial, since the amount of available energy is determined. Here, we analyze three different experiments, designed to reproduce different aspects of explosive volcanism, focusing on the acceleration phase of the pyroclasts, in order to compare how the potential energy is transferred to the pyroclasts in different systems. In the first, shock-tube-type experiment, salt crystals resting in a pressurized Plexiglas cylinder are accelerated when a diaphragm set is suddenly opened, releasing the gas. In the second experiment, a pressurized air bubble is released in a water-filled Plexiglas pipe; diaphragm opening causes sudden expansion and bursting of the bubble and ejection of water droplets. In the last experiment, specifically focusing on phreatomagmatic eruptions, buried explosive charges accelerate the overlying loose material. All experiments were monitored by multiple high speed cameras and a variety of sensors. Despite the largely differing settings and processes, particle ejection velocity above the vent from the three experiments share a non-linear decay over time. Fitting this decay allows to estimate a characteristic depth that is related to the specific acceleration processes. Given that the initial available energy is experimentally controlled a priori, the information on the acceleration processes (and related kinetic energy) can be used to brings new constraints on the energy partition and general pyroclasts ejection mechanisms during eruptions.

  7. Targets and self-management for the control of blood pressure in stroke and at risk groups (TASMIN-SR): protocol for a randomised controlled trial.

    PubMed

    O'Brien, Claire; Bray, Emma P; Bryan, Stirling; Greenfield, Sheila M; Haque, M Sayeed; Hobbs, F D Richard; Jones, Miren I; Jowett, Sue; Kaambwa, Billingsley; Little, Paul; Mant, Jonathan; Penaloza, Cristina; Schwartz, Claire; Shackleford, Helen; Varghese, Jinu; Williams, Bryan; McManus, Richard J

    2013-03-23

    Self-monitoring of hypertension with self-titration of antihypertensives (self-management) results in lower systolic blood pressure for at least one year. However, few people in high risk groups have been evaluated to date and previous work suggests a smaller effect size in these groups. This trial therefore aims to assess the added value of self-management in high risk groups over and above usual care. The targets and self-management for the control of blood pressure in stroke and at risk groups (TASMIN-SR) trial will be a pragmatic primary care based, unblinded, randomised controlled trial of self-management of blood pressure (BP) compared to usual care. Eligible patients will have a history of stroke, coronary heart disease, diabetes or chronic kidney disease and will be recruited from primary care. Participants will be individually randomised to either usual care or self-management. The primary outcome of the trial will be difference in office SBP between intervention and control groups at 12 months adjusted for baseline SBP and covariates. 540 patients will be sufficient to detect a difference in SBP between self-management and usual care of 5 mmHg with 90% power. Secondary outcomes will include self-efficacy, lifestyle behaviours, health-related quality of life and adverse events. An economic analysis will consider both within trial costs and a model extrapolating the results thereafter. A qualitative analysis will gain insights into patients' views, experiences and decision making processes. The results of the trial will be directly applicable to primary care in the UK. If successful, self-management of blood pressure in people with stroke and other high risk conditions would be applicable to many hundreds of thousands of individuals in the UK and beyond. ISRCTN87171227.

  8. Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa.

    PubMed

    Mourre, Vincent; Villa, Paola; Henshilwood, Christopher S

    2010-10-29

    Pressure flaking has been considered to be an Upper Paleolithic innovation dating to ~20,000 years ago (20 ka). Replication experiments show that pressure flaking best explains the morphology of lithic artifacts recovered from the ~75-ka Middle Stone Age levels at Blombos Cave, South Africa. The technique was used during the final shaping of Still Bay bifacial points made on heat-treated silcrete. Application of this innovative technique allowed for a high degree of control during the detachment of individual flakes, resulting in thinner, narrower, and sharper tips on bifacial points. This technology may have been first invented and used sporadically in Africa before its later widespread adoption.

  9. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  10. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  11. Prenatal malnutrition-induced changes in blood pressure: dissociation of stress and nonstress responses using radiotelemetry.

    PubMed

    Tonkiss, J; Trzcińska, M; Galler, J R; Ruiz-Opazo, N; Herrera, V L

    1998-07-01

    A link between prenatal malnutrition and hypertension in human populations has recently been proposed. Rat models of prenatal malnutrition have provided major support for this theory on the basis of tail-cuff measurements. However, this technique requires restraint and elevated temperature, both potential sources of stress. To determine the effect of prenatal protein malnutrition on blood pressure under nonstress conditions, 24-hour radiotelemetric measurements were taken in the home cage. Male rats born to dams fed a 6% casein diet for 5 weeks before mating and throughout pregnancy were studied in early adulthood (from 96 days of age). During the waking phase of their cycle but not the sleep phase, prenatal malnutrition gave rise to small but significant elevations of diastolic blood pressure and heart rate compared with well-nourished controls. Direct effects of stress on blood pressure responses were determined in a second experiment using an olfactory stressor. Prenatally malnourished rats showed a greater increase in both systolic and diastolic pressures compared with well-nourished controls during the first exposure to ammonia. A different pattern of change of cardiovascular responses was also observed during subsequent presentations of the stressor. These findings of a small baseline increase in diastolic pressure consequent to prenatal malnutrition, but an augmented elevation of both systolic and diastolic pressures after first exposure to stress, suggest the need to reevaluate interpretation of the large elevations in blood pressure previously observed in malnourished animals using the stressful tail-cuff procedure.

  12. The "Datafication" of Teaching: Can Teachers Speak Back to the Numbers?

    ERIC Educational Resources Information Center

    Stevenson, Howard

    2017-01-01

    Teachers face considerable and increasing pressure in their working lives. Labor intensification compels teachers to work faster, harder, and longer. However, teachers also experience increasing external control over what they teach and how they teach. These processes are increasingly made possible by the "datafication" of teaching,…

  13. Simultaneous analysis of fourteen endogenous steroid hormones by liquid chromatography tandem mass spectrometry with atmospheric pressure photoionization

    EPA Science Inventory

    Product Description: To understand how some chemicals affect the endocrine system, controlled lab experiments often monitor how chemicals impact natural steroid hormones in fish. Current methods can target only one or two hormones in a single sample, limiting the information that...

  14. Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.

    PubMed

    Lin, Xiaoyou; Seet, Boon-Chong

    2017-04-01

    This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.

  15. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  16. Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.

    2014-12-01

    Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.

  17. Design and Fabrication of a PDMS Microchip Based Immunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less

  18. Direct Measurement of Xylem Pressure in Leaves of Intact Maize Plants. A Test of the Cohesion-Tension Theory Taking Hydraulic Architecture into Consideration1

    PubMed Central

    Wei, Chunfang; Tyree, Melvin T.; Steudle, Ernst

    1999-01-01

    The water relations of maize (Zea mays L. cv Helix) were documented in terms of hydraulic architecture and xylem pressure. A high-pressure flowmeter was used to characterize the hydraulic resistances of the root, stalk, and leaves. Xylem pressure measurements were made with a Scholander-Hammel pressure bomb and with a cell pressure probe. Evaporation rates were measured by gas exchange and by gravimetric measurements. Xylem pressure was altered by changing the light intensity, by controlling irrigation, or by gas pressure applied to the soil mass (using a root pressure bomb). Xylem pressure measured by the cell pressure probe and by the pressure bomb agreed over the entire measured range of 0 to −0.7 MPa. Experiments were consistent with the cohesion-tension theory. Xylem pressure changed rapidly and reversibly with changes in light intensity and root-bomb pressure. Increasing the root-bomb pressure increased the evaporation rate slightly when xylem pressure was negative and increased water flow rate through the shoots dramatically when xylem pressure was positive and guttation was observed. The hydraulic architecture model could predict all observed changes in water flow rate and xylem. We measured the cavitation threshold for oil- and water-filled pressure probes and provide some suggestions for improvement. PMID:10594106

  19. Advanced positive airway pressure modes: adaptive servo ventilation and volume assured pressure support.

    PubMed

    Selim, Bernardo; Ramar, Kannan

    2016-09-01

    Volume assured pressure support (VAPS) and adaptive servo ventilation (ASV) are non-invasive positive airway pressure (PAP) modes with sophisticated negative feedback control systems (servomechanism), having the capability to self-adjust in real time its respiratory controlled variables to patient's respiratory fluctuations. However, the widespread use of VAPS and ASV is limited by scant clinical experience, high costs, and the incomplete understanding of propriety algorithmic differences in devices' response to patient's respiratory changes. Hence, we will review and highlight similarities and differences in technical aspects, control algorithms, and settings of each mode, focusing on the literature search published in this area. One hundred twenty relevant articles were identified by Scopus, PubMed, and Embase databases from January 2010 to 2016, using a combination of MeSH terms and keywords. Articles were further supplemented by pearling. Recommendations were based on the literature review and the authors' expertise in this area. Expert commentary: ASV and VAPS differ in their respiratory targets and response to a respiratory fluctuation. The VAPS mode targets a more consistent minute ventilation, being recommended in the treatment of sleep related hypoventilation disorders, while ASV mode attempts to provide a more steady breathing airflow pattern, treating successfully most central sleep apnea syndromes.

  20. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  1. Renal response to seven days of lower body positive pressure in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Churchill, Susanne; Pollock, David M.; Natale, Mary Ellen; Moore-Ede, Martin C.

    1987-01-01

    As a ground-based model for weightlessness, the response of the chair-trained squirrel monkey to lower body positive pressure (LBPP) was evaluated in a length of study similar to a typical Space Shuttle mission (7 days). Results were compared to time control experiments that included chair-sitting without exposure to LBPP. Chronic exposure to LBPP results in an acute diuretic and natriuretic response independent of changes in plasma aldosterone concentrations and produces a chronic reduction in fluid volume lasting the duration in the stimulus.

  2. An Experimental Study on Characterization of Physical Properties of Ultramafic Rocks and Controls on Evolution of Fracture Permeability During Serpentinization at Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Farough, Aida

    Serpentinization is a complex set of hydration reactions, where olivine and pyroxene are replaced by serpentine, magnetite, brucite, talc and carbonate minerals. Serpentinization reactions alter chemical, mechanical, magnetic, seismic, and hydraulic properties of the crust. To understand the complicated nature of serpentinization and the linkages between physical and chemical changes during the reactions, I performed flow-through laboratory experiments on cylindrically cored samples of ultramafic rocks. Each core had a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at an effective pressure of 30 MPa, and temperature of 260"aC, simulating a depth of 2 km under hydrostatic conditions. Fracture permeability decreased by one to two orders of magnitude during the 200 to 340 hour experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferromagnesian minerals. The rate of transformation of olivine to serpentine in a tensile fracture is calculated using the data on evolution of fracture permeability assuming the fracture permeability could be represented by parallel plates. Assuming the dissolution and precipitation reactions occur simultaneously; the rate of transformation at the beginning of the experiments was 10-8-10-9 (mol/m2s) and decreased monotonically by about an order of magnitude towards the end of the experiment. Results show that dissolution and precipitation is the main mechanism contributing to the reduction in fracture aperture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems may be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses may be required to maintain fluid circulation. Another set of flow through experiments were performed on intact samples of ultramafic rocks at room temperature and effective pressures of 10, 20 and 30 MPa to estimate the pressure dependency of intact permeability. Porosity and density measurements were also performed with the purpose of characterizing these properties of ultramafic rocks. The pressure dependency of the coefficient of matrix permeability of the ultramafic rock samples fell in the range of 0.05-0.14 MPa -1. Using porosity and permeability measurements, the ratio of interconnected porosity to total porosity was estimated to be small and the permeability of the samples was dominantly controlled by microcracks. Using the density and porosity measurements, the degree of alteration of samples was estimated. Samples with high density and pressure dependent permeability had a smaller degree of alteration than those with lower density and pressure dependency.

  3. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  4. Research on grid connection control technology of double fed wind generator

    NASA Astrophysics Data System (ADS)

    Ling, Li

    2017-01-01

    The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.

  5. Small Scale Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.

  6. Force-velocity relation for actin-polymerization-driven motility from Brownian dynamics simulations.

    PubMed

    Lee, Kun-Chun; Liu, Andrea J

    2009-09-02

    We report numerical simulation results for the force-velocity relation for actin-polymerization-driven motility. We use Brownian dynamics to solve a physically consistent formulation of the dendritic nucleation model with semiflexible filaments that self-assemble and push a disk. We find that at small loads, the disk speed is independent of load, whereas at high loads, the speed decreases and vanishes at a characteristic stall pressure. Our results demonstrate that at small loads, the velocity is controlled by the reaction rates, whereas at high loads the stall pressure is determined by the mechanical properties of the branched actin network. The behavior is consistent with experiments and with our recently proposed self-diffusiophoretic mechanism for actin-polymerization-driven motility. New in vitro experiments to measure the force-velocity relation are proposed.

  7. Pressure mapping to assess seated pressure distributions and the potential risk for skin ulceration in a population of sledge hockey players and control subjects.

    PubMed

    Berthold, Justin; Dicianno, Brad E; Cooper, Rory A

    2013-09-01

    Ice sledge (or sled) hockey is a fast-paced sport that enables individuals with physical disabilities to play ice hockey. As the attraction to the sport continues to rise, the need for developing better equipment and installing preventative measures for injury will become increasingly important. One such injury includes skin pressure ulceration. A total of 26 subjects including active controls and those with spinal cord injury, multiple sclerosis, limb amputation and traumatic brain injury were studied using a pressure mapping device at the 2012 National Disabled Veterans Winter Sports Clinic to determine the risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Sledge hockey athletes may be at increased risk for skin pressure ulceration based on seated pressure distribution data. This experiment failed to demonstrate a benefit for specialty cushioning in either group. Interestingly, knee angle positioning, particularly, knee extension significantly lowered the average seated pressures. When considering the risk for skin pressure ulceration, knee angle positioning is of particular clinical importance. More research is warranted, specifically targeting novel cushion and sledge designs and larger groups of individuals with sensory loss and severe spinal deformities. Implications for Rehabilitation Ice sledge (or sled) hockey is a fast-paced and growing adaptive sport played at the Paralympic level. Rehabilitation professionals should consider the potential for skin ulceration in this population of athletes. The effects of cushioning used in the sledge design warrants further investigation. Knee angle positioning; particularly, knee extension significantly lowers seated pressures and may reduce the potential for skin ulceration.

  8. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.

    2016-02-01

    Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.

  9. Automatic control of NASA Langley's 0.3-meter cryogenic test facility

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.; Balakrishna, S.

    1980-01-01

    Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.

  10. Force and pressure tests of the GA(W)-1 airfoil with a 20% aileron and pressure tests with a 30% Fowler flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Seetharam, H. C.; Fiscko, K. A.

    1977-01-01

    Wind tunnel force and pressure tests were conducted for the GA(W)-1 airfoil equipped with a 20% aileron, and pressure tests were conducted with a 30% Fowler flap. All tests were conducted at a Reynolds number of 2.2 and a Mach number of 0.13. The aileron provides control effectiveness similar to ailerons applied to more conventional airfoils. Effects of aileron gaps from 0% to 2% chord were evaluated, as well as hinge moment characteristics. The aft camber of the GA(W)-1 section results in a substantial up-aileron moment, but the hinge moments associated with aileron deflection are similar to other configurations. Fowler flap pressure distributions indicate that unseparated flow is achieved for flap settings up to 40 deg., over a limited angle of attack range. Theoretical pressure distributions compare favorably with experiments for low flap deflections, but show substantial errors at large deflections.

  11. Coexistence pressure for a martensitic transformation from theory and experiment: Revisiting the bcc-hcp transition of iron under pressure

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2015-05-12

    We revisit results from decades of pressure experiments on the bcc ↔ hcp transformations in iron, which are sensitive to non-hydrostatic conditions and sample size. We emphasize the role of martensitic stress in the observed pressure hysteresis and address the large spread in values for onset pressures of the nucleating phase. From electronic-structure calculations, we find a bcc ↔ hcp equilibrium coexistence pressure of 8.4 GPa. Accounting for non-hydrostatic martensitic stress and a stress-dependent transition barrier, we suggest a pressure inequality for better comparison to experiment and observed hysteresis. We construct the equation of state for bcc and hcp phasesmore » under hydrostatic pressure, and compare to experiments and previous calculations.« less

  12. Optimal Control Techniques for ResistiveWall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Clement, Mitchell Dobbs Pearson

    Tokamaks can excite kink modes that can lock or nearly lock to the vacuum vessel wall, and whose rotation frequencies and growth rates vary in time but are generally inversely proportional to the magnetic flux diffusion time of the vacuum vessel wall. This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as fusion reactors will be required to maximize plasma pressure in order to maximize fusion performance. The DIII-D tokamak is equipped with electromagnetic control coils, both inside and outside of its vacuum vessel, which create magnetic fields that are small by comparison to the machine's equilibrium field but are able to dynamically counteract the RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical proportional gain only controller to achieve high plasma pressure. Future advanced tokamak designs will not likely have the luxury of interior control coils and a proportional gain algorithm is not expected to be effective with external control coils. The computer code VALEN was designed to calculate the performance of an MHD feedback control system in an arbitrary geometry. VALEN models the perturbed magnetic field from a single MHD instability and its interaction with surrounding conducting structures using a finite element approach. A linear quadratic gaussian (LQG) control, or H 2 optimal control, algorithm based on the VALEN model for RWM feedback was developed for use with DIII-D's external control coil set. The algorithm is implemented on a platform that combines a graphics processing unit (GPU) for real-time control computation with low latency digital input/output control hardware and operates in parallel with the DIII-D Plasma Control System (PCS). Simulations and experiments showed that modern control techniques performed better, using 77% less current, than classical techniques when using coils external to the vacuum vessel for RWM feedback. RWM feedback based on VALEN outperformed a classical control algorithm using external coils to suppress the normalized plasma response to a rotating n=1 perturbation applied by internal coils over a range of frequencies. This study describes the design, development and testing of the GPU based control hardware and algorithm along with its performance during experiment and simulation.

  13. Polymerization Experiment Of Amino Acids Under High Pressure And Temperature Conditions Simulating The Deep Lithosphere

    NASA Astrophysics Data System (ADS)

    Ohara, S.; Kakegawa, T.; Nakazawa, H.

    2005-12-01

    Chemical evolution in deep sea or deep lithosphere is one of the popular hypotheses for the origin of life on the early Earth. In such hypothesis, effects of pressure and temperature on polymerization (and/or stability) of amino acids needed to be evaluated. In this study, high temperature and pressure experiments were performed using of a test-tube-type autoclave for polymerization of amino acids. Approximately 100 mg of Glycine powder were placed into sterilized gold capsule. Multiple experiments were done at 150 degrees for 1 to 8 days at variable pressures (25MPa, 50MPa, 75MPa and 100MPa). Glycine peptides were identified and quantified by high performance liquid chromatography (HPLC). Each capsule was opened carefully and 1 ml of mobile phase was added to release the amino acids and oligopeptide from the solid phase. Liquid phases were separated by the cetrifugal method. Peptides were identified by retention times of authentic reference substances. The reaction yields were determined as percentage of the reactant converted to the reaction product. Pligopeptides more than hexamer were additionally identified by the detection of the molecular ion by liquid chromatography mass spectrometry (LC / MS). A HPLC chromatogram of the products indicated at least seven oligomers: diketopiperazine (cyc(Gly)2), di-glycine (Gly2), tri-glycine (Gly3), tetra-glycine (Gly4), penta-glycine (Gly5) and hexa-glycine (Gly6). We also identified hepta-glycine (Gly7), octa-glycine (Gly8) and nona-glycine (Gly9) with LC/MS. This is the first report that up to nona-glycine was synthesized under high temperature and pressure conditions. In addition, our experiments indicate that polymerization occurs wide range of pressure from 25 to 100 MPa. On the other hand, yields of total amounts of peptide did not change with pressure, suggesting that an unknown process in the autoclave is limiting the yield. We speculate the activity of water vapor, generated by peptide formation reaction, controlled the yield in the autoclave. The results from this study support the theory that chemical evolution could happen in deep Earth environments, such as inside of lithosphere.

  14. Soil-Moisture Retention Curves, Capillary Pressure Curves, and Mercury Porosimetry: A Theoretical and Computational Investigation of the Determination of the Geometric Properties of the Pore Space

    NASA Astrophysics Data System (ADS)

    Strand, T. E.; Wang, H. F.

    2003-12-01

    Immiscible displacement protocols have long been used to infer the geometric properties of the void space in granular porous media. The three most commonly used experimental techniques are the measurement of soil-moisture retention curves and relative permeability-capillary pressure-saturation relations, as well as mercury intrusion porosimetry experiments. A coupled theoretical and computational investigation was performed that provides insight into the limitations associated with each technique and quantifies the relationship between experimental observations and the geometric properties of the void space. It is demonstrated that the inference of the pore space geometry from both mercury porosimetry experiments and measurements of capillary pressure curves is influenced by trapping/mobilization phenomena and subject to scaling behavior. In addition, both techniques also assume that the capillary pressure at a location on the meniscus can be approximated by a pressure difference across a region or sample. For example, when performing capillary pressure measurements, the capillary pressure, taken to be the difference between the injected fluid pressure at the inlet and the defending fluid pressure at the outlet, is increased in a series of small steps and the fluid saturation is measured each time the system reaches steady. Regions of defending fluid that become entrapped by the invading fluid can be subsequently mobilized at higher flow rates (capillary pressures), contributing to a scale-dependence of the capillary pressure-saturation curve that complicates the determination of the properties of the pore space. This scale-dependence is particularly problematic for measurements performed at the core scale. Mercury porosimetry experiments are subject to similar limitations. Trapped regions of defending fluid are also present during the measurement of soil-moisture retention curves, but the effects of scaling behavior on the evaluation of the pore space properties from the immiscible displacement structure are much simpler to account for due to the control of mobilization phenomena. Some mobilization may occur due to film flow, but this can be limited by keeping time scales relatively small or exploited at longer time scales in order to quantify the rate of film flow. Computer simulations of gradient-stabilized drainage and imbibition to the (respective) equilibrium positions were performed using a pore-scale modified invasion percolation (MIP) model in order to quantify the relationship between the saturation profile and the geometric properties of the void space. These simulations are similar to the experimental measurement of soil-moisture retention curves. Results show that the equilibrium height and the width of the equilibrium fringe depend on two length scale distributions, one controlling the imbibition equilibrium structure and the other controlling the drainage structure. The equilibrium height is related to the mean value of the appropriate distribution as described by Jurin's law, and the width of the equilibrium fringe scales as a function of a combined parameter, the Bond number, Bo, divided by the coefficient of variation (cov). Simulations also demonstrate that the apparent radius distribution obtained from saturation profiles using direct inversion by Jurin's law is a subset of the actual distribution in the porous medium. The relationship between the apparent and actual radius distributions is quantified in terms of the combined parameter, Bo/cov, and the mean coordination number of the porous medium.

  15. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    PubMed

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  16. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  17. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was tomore » provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.« less

  18. Active control: an investigation method for combustion instabilities

    NASA Astrophysics Data System (ADS)

    Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.

    1992-07-01

    Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of combustion instabilities are discussed.

  19. Contaminant sequestration in karstic aquifers: Experiments and quantification

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Loper, David E.; Kung, Robin

    2008-02-01

    A karstic aquifer typically has significant secondary porosity consisting of an interconnected system of caves or conduits. Conduit-borne contaminants can enter the contiguous limestone matrix, remain inside for a longer time than in the conduit, and subsequently be flushed out. This retention or sequestration can significantly influence the fate of contaminants within the aquifer and alter the shape of the breakthrough curve. The mechanisms involved in sequestration have been identified and quantified by analysis of the breakthrough curves generated by a set of laboratory experiments in which a conduit, porous limestone matrix, and conservative contaminant were simulated by a porous-walled pipe, chamber of closely packed glass beads, and salt, respectively. Experiments were conducted with both active and passive transfer of water between conduit and matrix, simulating differing hydrogeologic regimes. In active transfer the primary control parameter is the volume of water transferred; sequestration is primarily due to advection with the effects of diffusion and dispersion being minimal. In passive transfer the control parameters are the conduit Reynolds number and the duration that contaminant resides in the conduit; sequestration is caused by the combined effects of the conduit pressure drop, pressure variation due to bedform, and diffusion. Active and passive transfer can be unified by analyzing the ratio of the scale of pressure variation to the conduit length. In accordance with the resolved mechanisms a variety of models have been constructed to recover solute distributions in the matrix and to regenerate breakthrough curves. These analyses and models provide a potential approach to investigate contaminant migration in karstic aquifers.

  20. F-15A in flight closeup of 10 degree cone experiment

    NASA Image and Video Library

    1976-02-04

    The number two F-15A (Serial #71-0281) was obtained by NASA from the U.S. Air Force in 1976 and was used for more than 25 advanced research projects involving aerodynamics, performance, propulsion control, control integration, instrumentation development, human factors, and flight test techniques. Included in these projects was its role as a testbed to evaluate aerodynamic pressures on Space Shuttle thermal protection tiles at specific altitudes and speeds.

  1. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  2. m=1 diocotron mode damping in the Electron Diffusion Gauge (EDG) experiment

    NASA Astrophysics Data System (ADS)

    Paul, Stephen F.; Morrison, Kyle A.; Davidson, Ronald C.; Jenkins, Thomas G.

    2002-01-01

    The evolution of the amplitude of the m=1 diocotron mode is used to measure the background neutral pressure in the Electron Diffusion Gauge (EDG), a Malmberg-Penning trap. Below 5×10-8 Torr, the dependence on pressure scales as P1/4, and is sensitive to pressure changes as small as ΔP=5×10-11 Torr. Previous studies on the EDG showed that the diocotron mode is more strongly damped at higher neutral pressures. Both the diocotron mode damping rate and the plasma expansion rate depend similarly on experimental parameters, i.e., conditions which favor expansion also favor suppression of the diocotron mode. The sensitivity of the mode evolution is examined as a function of the resistive growth driving conditions, which are controlled by the amount of wall resistance connected to the trap.

  3. Counter Clockwise Rotation of Cylinder with Variable Position to Control Base Flows

    NASA Astrophysics Data System (ADS)

    Asadullah, Mohammed; Khan, S. A.; Asrar, Waqar; Sulaeman, E.

    2018-05-01

    Experimental study of supersonic base flow at Mach 2 has been carried out to see the effect of cylinder when rotated counter clockwise inside the dead zone at variable locations near its base to control base pressure for different level of expansion for area ratio 9. Active cylinder of 2 mm diameter rotating counter clockwise when seen from top, is mounted as a controller. Three locations are chosen from the side wall of square duct namely at 2, 4, 6 mm respectively and 8 mm from square nozzle exit in the base region to mount the controller. Base pressure in recirculation zone and wall pressure along the square duct length has been measured with and without control. The experiments were carried out for NPR 2, 3, 6, 7.8 and 8.5. Cylinder when rotated counter clockwise as an active controller were found to reduce the base drag as high as 62 percent at NPR 8.5 when located near to duct wall and 50 percent when located away from duct wall for the same NPR. For perfectly expanded flows at NPR 7.8 the reduction in base drag was 53 percent near duct wall and 44 percent near duct wall. The active controller was up to 19 percentage effective for over expanded flows near to duct wall and up to 12 percent when located away from duct wall. Also, the control did not adversely affect the flow field.

  4. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of the Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.

  5. Path tracking control of an omni-directional walker considering pressures from a user.

    PubMed

    Tan, Renpeng; Wang, Shuoyu; Jiang, Yinlai; Ishida, Kenji; Fujie, Masakatsu G

    2013-01-01

    An omni-directional walker (ODW) is being developed to support the people with walking disabilities to do walking rehabilitation. The training paths, which the user follows in the rehabilitation, are defined by physical therapists and stored in the ODW. In order to obtain a good training effect, the defined training paths need to be performed accurately. However, the ODW deviates from the training path in real rehabilitation, which is caused by the variation of the whole system's parameters due to the force from the user. In this paper, the characteristics of pressures from a user are measured, based on which an adaptive controller is proposed to deal with this problem, and validated in an experiment in which a pseudo handicapped person follows the ODW. The experimental results show that the proposed method can control the ODW to accurately follow the defined path with or without a user.

  6. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Hickman, S. H.

    2008-12-01

    Room-temperature friction and indentation experiments suggest fault strengthening during the interseismic period results from increases in asperity contact area due to solid-state deformation. However, field observations on exhumed fault zones indicate that solution-transport processes, pressure solution, crack healing and contact overgrowth, influence fault zone rheology near the base of the seismogenic zone. Contact overgrowths result from gradients in surface curvature, where material is dissolved from the pore walls, diffuses through the fluid and precipitates at the contact between two asperities, cementing the asperities together without convergence normal to the contact. To determine the mechanisms and kinetics of asperity cementation, we conducted laboratory experiments in which convex and flat lenses prepared from quartz single crystals were pressed together in an externally heated pressure vessel equipped with an optical observation port. Convergence between the two lenses and contact morphology were continuously monitored during these experiments using reflected-light interferometry through a long-working-distance microscope. Contact normal force is constant with an initial effective normal stress of 1.7 MPa. Four single-phase experiments were conducted at temperatures between 350 and 530C at 150 MPa water pressure, along with two controls: one single phase, dry at 425C and one bimaterial (qtz/sapphire) at 425C and 150 MPa water pressure. No contact growth or convergence was observed in either of the controls. For wet single-phase contacts, however, growth was initially rapid and then decreased with time following an inverse squared dependence of contact radius on aperture. No convergence was observed over the duration of these experiments, suggesting that neither significant pressure solution nor crystal plasticity occurred at these stresses and temperatures. The formation of fluid inclusions between the lenses indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth, a definitive indication of diffusion-limited growth. Diffusion-limited growth is also consistent with the inverse squared aperture dependence. However, the apparent activation energy is ~125 kJ/mol, much higher than expected for silica diffusion in bulk water; at present we do not have a complete explanation for the high activation energy. When our lab-measured overgrowth rates are extrapolated to the 5 to 30 micron radius contacts inferred from near-field recordings of M-2 sized earthquakes in deep drill holes and mines (i.e., SAFOD and NELSAM), we predict rates of contact area increase that are orders of magnitude faster than seen in dry, room-temperature friction experiments. This suggests that natural strength recovery should be dominated by fluid-assisted processes at hypocentral conditions near the base of the seismogenic zone.

  7. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.

    2006-01-01

    This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a misalignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery offset that was 0.01 lower than the experiment as was seen in the baseline. Comparisons of the flow features for the jet cases revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.

  8. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.

  9. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Girault, F.; Pili, E.

    2017-12-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.

  10. Results from the EPL monkey-pod experiment conducted as part of the 1974 NASA/Ames shuttle CVT-2

    NASA Technical Reports Server (NTRS)

    Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.

    1974-01-01

    The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continuously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general spacecraft sources.

  11. Results from the EPL monkey-pod flight experiments conducted aboard the NASA/Ames CV-990, May 1976

    NASA Technical Reports Server (NTRS)

    Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.

    1976-01-01

    The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general space craft sources.

  12. Extra-intracranial blood shunt mimicking aneurysm rupture: intracranial-pressure-controlled rabbit subarachnoid hemorrhage model.

    PubMed

    Marbacher, Serge; Sherif, Camillo; Neuschmelting, Volker; Schläppi, Janine-Ai; Takala, Jukka; Jakob, Stephan M; Fandino, Javier

    2010-08-30

    The achieved degree of delayed cerebral vasospasm (DCVS) in the rabbits most frequently applied cistern magna blood injection model is often mild. The aim of this study was to characterize and evaluate the feasibility of an experimental SAH technique that mimics pathophysiological mechanisms and triggers higher degrees of DCVS. SAH was induced by extracranial-intracranial (EC/IC) shunting of blood from the subclavian artery into the great cerebral cistern. Intracranial pressure (ICP), arterial blood pressure, heart rate, arterial blood gas analysis, and neurological status were monitored throughout the experiments. The magnitude of spasm was determined by comparison of pre-SAH (day 0) and post-SAH (day 3) angiograms and postmortem morphometric analysis of the basilar artery. A total of 13 experiments (SAH, n=11; controls, n=2) were performed. Two animals died after initiation of the EC/IC blood shunt in respiratory arrest. In SAH animals, ICP (baseline: 12+/-1 [mean+/-SD]; peak: 51+/-4; steady-state level: 15+/-2 mm Hg) rose to diastolic blood pressure levels (56+/-3 mm Hg) within 98+/-20s, and fell to a steady state within 186+/-41 s. SAH-induced vasoconstriction of the basilar artery was 53.1+/-2.8% on day 3 compared to baseline (P<0.05) and histology confirmed marked vasoconstriction. This novel technique of SAH induction closely mimics the pathophysiological sequelae of aneurysm rupture and triggers constant higher degrees of delayed cerebral vasospasm than previously described rabbit models. The severity of vasospasm attained offers a unique opportunity to evaluate future therapeutic treatment options. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Medium-term methionine supplementation increases plasma homocysteine but not ADMA and improves blood pressure control in rats fed a diet rich in protein and adequate in folate and choline.

    PubMed

    Mariotti, François; Hammiche, Alexia; Blouet, Clémence; Daré, Sophie; Tomé, Daniel; Huneau, Jean François

    2006-10-01

    Hyperhomocysteinemia (HHcy) is associated with cardiovascular risk, possibly because it increases asymmetric dimethyl-arginine (ADMA), but the general association remains unclear and may vary with nutritional and physiological conditions. We aimed to monitor the effect of methionine supplementation, and subsequent HHcy, on plasma ADMA and hemodynamics in the context of a diet rich in protein and adequate in folic acid and choline. For 6 weeks, rats were fed a 29% protein diet supplemented (M) or not (C) with 8 g/kg L: -methionine. Blood pressure and plasma amino acids, including homocysteine and ADMA, were measured throughout the experiment and additional parameters, including in vivo hemodynamic response to acetylcholine, were measured at week 5-6. As compared to the C diet, the M diet induced a marked HHcy during the first 3 weeks, which lessened at week 5. In contrast, plasma ADMA stayed similar in the C and M diet. Paradoxically, M rats had lower mean and diastolic blood pressure values over the experiment, together with a lower left ventricular mass at week 6, when compared with C rats. No difference was observed between groups regarding vascular reactivity and plasma NOx at week 6. In a context of a diet rich in protein and adequate in methyl donors, rats exhibit a complex adaptation to the medium-term methionine supplementation, with improvement in blood pressure control despite marked HHcy. The lack of increase in plasma ADMA may account for the absence of detrimental effects of HHcy on hemodynamics.

  14. Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Kobayashi, Satoshi

    In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.

  15. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  16. Time Pressure Increases Cooperation in Competitively Framed Social Dilemmas

    PubMed Central

    Cone, Jeremy; Rand, David G.

    2014-01-01

    What makes people willing to pay costs to benefit others? Does such cooperation require effortful self-control, or do automatic, intuitive processes favor cooperation? Time pressure has been shown to increase cooperative behavior in Public Goods Games, implying a predisposition towards cooperation. Consistent with the hypothesis that this predisposition results from the fact that cooperation is typically advantageous outside the lab, it has further been shown that the time pressure effect is undermined by prior experience playing lab games (where selfishness is the more advantageous strategy). Furthermore, a recent study found that time pressure increases cooperation even in a game framed as a competition, suggesting that the time pressure effect is not the result of social norm compliance. Here, we successfully replicate these findings, again observing a positive effect of time pressure on cooperation in a competitively framed game, but not when using the standard cooperative framing. These results suggest that participants' intuitions favor cooperation rather than norm compliance, and also that simply changing the framing of the Public Goods Game is enough to make it appear novel to participants and thus to restore the time pressure effect. PMID:25551386

  17. Time pressure increases cooperation in competitively framed social dilemmas.

    PubMed

    Cone, Jeremy; Rand, David G

    2014-01-01

    What makes people willing to pay costs to benefit others? Does such cooperation require effortful self-control, or do automatic, intuitive processes favor cooperation? Time pressure has been shown to increase cooperative behavior in Public Goods Games, implying a predisposition towards cooperation. Consistent with the hypothesis that this predisposition results from the fact that cooperation is typically advantageous outside the lab, it has further been shown that the time pressure effect is undermined by prior experience playing lab games (where selfishness is the more advantageous strategy). Furthermore, a recent study found that time pressure increases cooperation even in a game framed as a competition, suggesting that the time pressure effect is not the result of social norm compliance. Here, we successfully replicate these findings, again observing a positive effect of time pressure on cooperation in a competitively framed game, but not when using the standard cooperative framing. These results suggest that participants' intuitions favor cooperation rather than norm compliance, and also that simply changing the framing of the Public Goods Game is enough to make it appear novel to participants and thus to restore the time pressure effect.

  18. The Relationships between Air Exposure, Negative Pressure and Hemolysis

    PubMed Central

    Pohlmann, Joshua R.; Toomasian, John M.; Hampton, Claire E.; Cook, Keith E.; Annich, Gail M.; Bartlett, Robert H.

    2013-01-01

    The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in-vitro static blood model. Samples of fresh ovine or human blood (5 mL) were subjected to a bubbling air interface (0–100 mL/min) or negative pressure (0–600 mmHg) separately, or in combination, for controlled periods of time, and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air prior to initiating the test, hemolysis was 4–5 times greater than samples not pre-exposed to air. When these experiments were repeated using freshly drawn human blood the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone. PMID:19730004

  19. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.

  20. Prospects for earthquake prediction and control

    USGS Publications Warehouse

    Healy, J.H.; Lee, W.H.K.; Pakiser, L.C.; Raleigh, C.B.; Wood, M.D.

    1972-01-01

    The San Andreas fault is viewed, according to the concepts of seafloor spreading and plate tectonics, as a transform fault that separates the Pacific and North American plates and along which relative movements of 2 to 6 cm/year have been taking place. The resulting strain can be released by creep, by earthquakes of moderate size, or (as near San Francisco and Los Angeles) by great earthquakes. Microearthquakes, as mapped by a dense seismograph network in central California, generally coincide with zones of the San Andreas fault system that are creeping. Microearthquakes are few and scattered in zones where elastic energy is being stored. Changes in the rate of strain, as recorded by tiltmeter arrays, have been observed before several earthquakes of about magnitude 4. Changes in fluid pressure may control timing of seismic activity and make it possible to control natural earthquakes by controlling variations in fluid pressure in fault zones. An experiment in earthquake control is underway at the Rangely oil field in Colorado, where the rates of fluid injection and withdrawal in experimental wells are being controlled. ?? 1972.

  1. An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology.

    PubMed

    Espinoza, Karlos; Valera, Diego L; Torres, José A; López, Alejandro; Molina-Aiz, Francisco D

    2015-08-12

    Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s(-1) for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.

  2. Undecompressed microbial populations from the deep sea.

    PubMed Central

    Jannasch, H J; Wirsen, C O; Taylor, C D

    1976-01-01

    Metabolic transformations of glutamate and Casamino Acids by natural microbial populations collected from deep waters (1,600 to 3,100 m) were studied in decompressed and undecompressed samples. Pressure-retaining sampling/incubation vessels and appropriate subsampling/incubation vessels and appropriate subsampling techniques permitted time course experiments. In all cases the metabolic activity in undecompressed samples was lower than it was when incubated at 1 atm. Surface water controls showed a reduced activity upon compression. The processes involving substrate incorporation into cell material were more pressure sensitive than was respiration. The low utilization of substrates, previously found by in situ incubations for up to 12 months, was confirmed and demonstrated to consist of an initial phase of activity, in the range of 5 to 60 times lower than the controls, followed by a stationary phase of virtually no substrate utilization. No barophilic growth response (higher rates at elevated pressure than at 1 atm) was recorded; all populations observed exhibition various degrees of barotolerance. Images PMID:791117

  3. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    DOE PAGES

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less

  4. Bubble and Slug Flow at Microgravity Conditions: State of Knowledge and Open Questions

    NASA Technical Reports Server (NTRS)

    Colin, C.; Fabre, J.; McQuillen, J.

    1996-01-01

    Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter; however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model. It is shown from local measurements that the drift of the gas with respect to the mixture is due to non-uniform radial distribution of void fraction. The pressure drop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.

  5. COLD-SAT: An orbital cryogenic hydrogen technology experiment

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, Joseph P.; Powers, Albert G.

    1989-01-01

    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(-6) to 10(-4)g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology.

  6. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static Factor of Safety (FS), and in theory failure occurs when FS ≤ 1. Using the 1-D analysis, all experiments having failure had FS well below 1 (typically 0.5-0.8). Using the 2-D analysis for these same conditions, FS was less than but closer to 1 (typically 0.8-0.9). For the experiment with no failure, the 2-D FS was, reassuringly, > 1. These results indicate that the 2-D Janbu analysis is more accurate than the 1-D infinite-slope method for computing limit-equilibrium slope stability in shallow slides with limited areal extent.

  7. Metabolic and cardiovascular adaptation, monkey. NASA SMD 3, project 76, experiment 44 conducted at NASA/JSC, 14-25 May 1977

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1977-01-01

    The biomedical results from an experiment on a monkey subjected to space flight conditions are reported. A background history of the development and testing of an experiment system designed to permit measurement of physiological parameters in subhuman primates during continuous, comfortable, couch restraint for periods of up to 30 days is reviewed. Of major importance in the experimental design of the system was the use of a fiberglass pod, which could be sealed and subdivided into upper and lower parts, to monitor and control the physiological responses for various parts of the animal's body. The experiment was conducted within the Spacelab Simulator for a period of 11 days. Data recorded includes: Spacelab Simulator cabin temperature; ventilation rate; pod internal temperature; fraction percent oxygen; fraction percent carbon dioxide; oxygen consumption rate; carbon dioxide production rate; respiratory quotient; intrathoracic temperature; heart rate; mean aortic pressure; mean ventricular pressure; diurnal variation of parameters measured; comparison of mean preflight, flight, and postflight values of the parameters measured; and correlation matrix for the parameters measured.

  8. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers

    NASA Astrophysics Data System (ADS)

    Chen, Xun; Fu, ChangBo; Galan, Javier; Giboni, Karl; Giuliani, Franco; Gu, LingHui; Han, Ke; Ji, XiangDong; Lin, Heng; Liu, JiangLai; Ni, KaiXiang; Kusano, Hiroki; Ren, XiangXiang; Wang, ShaoBo; Yang, Yong; Zhang, Dan; Zhang, Tao; Zhao, Li; Sun, XiangMing; Hu, ShouYang; Jian, SiYu; Li, XingLong; Li, XiaoMei; Liang, Hao; Zhang, HuanQiao; Zhao, MingRui; Zhou, Jing; Mao, YaJun; Qiao, Hao; Wang, SiGuang; Yuan, Ying; Wang, Meng; Khan, Amir N.; Raper, Neill; Tang, Jian; Wang, Wei; Dong, JiaNing; Feng, ChangQing; Li, Cheng; Liu, JianBei; Liu, ShuBin; Wang, XiaoLian; Zhu, DanYang; Castel, Juan F.; Cebrián, Susana; Dafni, Theopisti; Garza, Javier G.; Irastorza, Igor G.; Iguaz, Francisco J.; Luzón, Gloria; Mirallas, Hector; Aune, Stephan; Berthoumieux, Eric; Bedfer, Yann; Calvet, Denis; d'Hose, Nicole; Delbart, Alain; Diakaki, Maria; Ferrer-Ribas, Esther; Ferrero, Andrea; Kunne, Fabienne; Neyret, Damien; Papaevangelou, Thomas; Sabatié, Franck; Vanderbroucke, Maxence; Tan, AnDi; Haxton, Wick; Mei, Yuan; Kobdaj, Chinorat; Yan, Yu-Peng

    2017-06-01

    Searching for the neutrinoless double beta decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (particle and astrophysical xenon experiment III) will search for the NLDBD of 136Xe at the China Jin Ping Underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% 136Xe enriched gas operated at 10 bar. Fine pitch micro-pattern gas detector (Microbulk Micromegas) will be used at both ends of the TPC for the charge readout with a cathode in the middle. Charge signals can be used to reconstruct the electron tracks of the NLDBD events and provide good energy and spatial resolution. The detector will be immersed in a large water tank to ensure 5 m of water shielding in all directions. The second phase, a ton-scale experiment, will consist of five TPCs in the same water tank, with improved energy resolution and better control over backgrounds.

  9. The Effect of Emotional Intelligence on Student Success

    ERIC Educational Resources Information Center

    Chapin, Krysta

    2015-01-01

    Emotional intelligence (EI) is the ability to recognize, assess, and control one's emotions, as well as the emotions of others, and even groups. It also allows people to handle added pressures, as they often experience in higher education. Occasionally clinicians report a small number of senior veterinary medicine students lack the ability to…

  10. Guiding Adolescents toward Responsible Sexual Decisions.

    ERIC Educational Resources Information Center

    Juhasz, Anne McCreary

    Many teenagers will be pressured by either external or internal forces to become involved in sexual experiences. Assuming that adolescents will be faced with the question of whether or not to have intercourse, that this will be an individual decision involving internal control, and that each individual will have to make that decision, it becomes…

  11. Response of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera:Tephritidae) to metabolic stress disinfection and disinfestation treatment

    USDA-ARS?s Scientific Manuscript database

    Metabolic stress disinfection and disinfestation (MSDD) is a postharvest treatment designed to control pathogens and arthropod pests on commodities that combines short cycles of low pressure/vacuum and high CO2 with ethanol vapor. Experiments were conducted to evaluate the effect of MSDD treatment o...

  12. The Impact of the Student Teaching Experience on the Development of Teacher Perspectives.

    ERIC Educational Resources Information Center

    Tabachnick, B. Robert; And Others

    Research findings on teachers' perspectives on teaching tend to indicate that institutional pressures are not strong enough to control what teachers think and how they act within their classrooms. While teachers will conform to organizational demands, their basic teaching styles are likely to remain unchanged. This study explored the socializing…

  13. Dynamics of flexible fibers transported in confined viscous flows

    NASA Astrophysics Data System (ADS)

    Cappello, Jean; Duprat, Camille; Du Roure, Olivia; Nagel, Mathias; Gallaire, François; Lindner, Anke

    2017-11-01

    The dynamics of elongated objects has been extensively studied in unbounded media as for example the sedimentation of fibers at low Reynolds numbers. It has recently been shown that these transport dynamics are strongly modified by bounding walls. Here we focus on the dynamics of flexible fibers confined by the top and bottom walls of a microchannel and transported in pressure-driven flows. We combine well-controlled microfluidic experiments and simulations using modified Brinkmann equations. We control shape, orientation, and mechanical properties of our fibers using micro-fabrication techniques and in-situ characterization methods. These elastic fibers can be deformed by viscous and pressure forces leading to very rich transport dynamics coupling lateral drift with shape evolution. We show that the bending of a perpendicular fiber is proportional to an elasto-viscous number and we fully characterize the influence of the confinement on the deformation of the fiber. Experiments on parallel flexible fibers reveal the existence of a buckling threshold. The European Research Council is acknowledged for funding the work through a consolidator Grant (ERC PaDyFlow 682367).

  14. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  15. Effects of Different Spectral Shapes and Amplitude Modulation of Broadband Noise on Annoyance Reactions in a Controlled Listening Experiment.

    PubMed

    Schäffer, Beat; Pieren, Reto; Schlittmeier, Sabine J; Brink, Mark

    2018-05-19

    Environmental noise from transportation or industrial infrastructure typically has a broad frequency range. Different sources may have disparate acoustical characteristics, which may in turn affect noise annoyance. However, knowledge of the relative contribution of the different acoustical characteristics of broadband noise to annoyance is still scarce. In this study, the subjectively perceived short-term (acute) annoyance reactions to different broadband sounds (namely, realistic outdoor wind turbine and artificial, generic sounds) at 40 dBA were investigated in a controlled laboratory listening experiment. Combined with the factorial design of the experiment, the sounds allowed for separation of the effects of three acoustical characteristics on annoyance, namely, spectral shape, depth of periodic amplitude modulation (AM), and occurrence (or absence) of random AM. Fifty-two participants rated their annoyance with the sounds. Annoyance increased with increasing energy content in the low-frequency range as well as with depth of periodic AM, and was higher in situations with random AM than without. Similar annoyance changes would be evoked by sound pressure level changes of up to 8 dB. The results suggest that besides standard sound pressure level metrics, other acoustical characteristics of (broadband) noise should also be considered in environmental impact assessments, e.g., in the context of wind turbine installations.

  16. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  17. High Pressure EPR for Probing the Magnetic Anisotropy in Single Molecule Magnets

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Lakshmi; Trociewitz, Bianca; Dubroca, Thierry; Hill, Stephen

    Single-molecule magnets (SMM) are potential candidates for nanoscale magnetic information storage, and a platform for studying classical and quantum behaviors at the mesoscopic scale. Varying the structures of these molecules by chemical modification can give rise to changes in their magnetic properties. However, this approach can be unpredictable, leaving very little control via chemical synthesis. An alternate approach is to exert physical pressure. This convenient tool can be used to vary crystal packing, local coordination geometries, as well as inter-ion and intermolecular interactions without changing the chemical composition of a SMM. Moreover, pressure in combination with Electron Paramagnetic Resonance (EPR), can be employed to better understand the factors that control magnetic anisotropy, both at the single-ion level and in exchange-coupled molecules. Here we present a microwave cavity integrated with a diamond anvil cell with a pressure range up to 1.5 GPa. As an example we show results from single crystal high field EPR experiments performed on an exchange coupled system, [Fe8O2(OH)12(tacn)6] Br8.9H2O, better known as Fe8 with a giant spin of S =10. The obtained pressure-dependent results will be discussed. National High Magnetic Field Laboratory.

  18. Survey view of EXPRESS Rack 4 in the JPM during Expedition 22

    NASA Image and Video Library

    2009-12-30

    iss022e015850 (12/30/2009) --- The image shows a front view of EXpedite the PRocessing of Experiments to Space Station EXPRESS Rack 4 (Rack 4,JPM/1F5) in the Japanese Experiment Module (JEM) Japanese Pressurized Module (JPM). Equipment visible in the EXPRESS Rack includes the Biotechnology Specimen Temperature Controller (BSTC) and the Gas Supply Module (GSM) support hardware for the CBOSS (Cellular Biotechnology Operations Support Systems) investigations, and the Device for the Study of Critical Liquids and Crystallization (DECLIC).

  19. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Rui; Song, Min; Zhang, Shuai

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasifiedmore » with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (author)« less

  20. Mean curvature model for a quasi-static advancing meniscus: a drop tower test

    NASA Astrophysics Data System (ADS)

    Chen, Yongkang; Tavan, Noel; Weislogel, Mark

    A critical geometric wetting condition resulting in a significant shift of a capillary fluid from one region of a container to another was recently demonstrated during experiments performed aboard the International Space Station (the Capillary Flow Experiments, Vane Gap test units, bulk shift phenomena). Such phenomena are of interest for advanced methods of control for large quantities of liquids aboard spacecraft. The dynamics of the flows are well understood, but analytical models remain qualitative without the correct capillary pressure driving force for the shifting bulk fluid—where one large interface (meniscus) advances while another recedes. To determine this pressure an investigation of the mean curvature of the advancing meniscus is presented which is inspired by earlier studies of receding bulk menisci in non-circular cylindrical containers. The approach is permissible only in the quasi-static limit. It will be shown that the mean curvature of the advancing bulk meniscus is related to that of the receding bulk meniscus, both of which are highly sensitive to container geometry and wetting conditions. The two meniscus curvatures are identical for any control parameter at the critical value identified by the Concus-Finn analysis. However, they differ when the control parameter is below its critical value. Experiments along these lines are well suited for drop towers and comparisons with the analytical predictions implementing the mean curvature model are presented. The validation opens a pathway to the analysis of such flows in containers of great geometric complexity.

  1. Levitation and locomotion on an air-table of plates with herringbone grooves

    NASA Astrophysics Data System (ADS)

    Hinch, John; de Maleprade, Helene

    2017-11-01

    Recent experiments in ESPCI in Paris and numerical simulations in Nano- and Microfluidics in Darmstadt have shown that plates with herringbone grooves in their base are accelerated on an air-table in the direction that the chevron grooves point. A simple two-dimensional model is constructed of the air flow down a channel with pressure controlled influx across the lower boundary. Limiting cases are considered of low and high Reynolds numbers, and of small and large pressure drop down the channel compared with the pressure drop across the porous plate. The levitation and locomotion forces are calculated. A prediction is made for the locomotive acceleration which avoids the complications of the shorter grooves which exit the front and back edges.

  2. Effects of exercise and excitement on mesenteric and renal dynamics in conscious, unrestrained baboons

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.

    1978-01-01

    Radiotelemetry was used to measure arterial pressure and mesenteric and renal blood flows from nine unrestrained, conscious baboons during periods of rest, moderate exercise, and extreme excitement. A description of the experiments hardware is presented, including artificial depressants phenylcyclidine hydrochloride, 0.5-1.0 mg/kg, and pentobarbital sodium, 15 mg/kg, and an ultrasonic telemetry flow meter. Results showed rising heart rate and arterial pressure coupled with a reduction of mesenteric and renal flows as the level of exercise was increased. These findings are compared with mesenteric and renal flows somewhat above control level, but relatively stable heart rate and arterial pressure, postprandially. Attention is given to a quantitative analysis of the experimental results.

  3. Automatic Control of Veno-Venous Extracorporeal Lung Assist.

    PubMed

    Kopp, Ruedger; Bensberg, Ralf; Stollenwerk, Andre; Arens, Jutta; Grottke, Oliver; Walter, Marian; Rossaint, Rolf

    2016-10-01

    Veno-venous extracorporeal lung assist (ECLA) can provide sufficient gas exchange even in most severe cases of acute respiratory distress syndrome. Commercially available systems are manually controlled, although an automatically controlled ECLA could allow individualized and continuous adaption to clinical requirements. Therefore, we developed a demonstrator with an integrated control algorithm to keep continuously measured peripheral oxygen saturation and partial pressure of carbon dioxide constant by automatically adjusting extracorporeal blood and gas flow. The "SmartECLA" system was tested in six animal experiments with increasing pulmonary hypoventilation and hypoxic inspiratory gas mixture to simulate progressive acute respiratory failure. During a cumulative evaluation time of 32 h for all experiments, automatic ECLA control resulted in a peripheral oxygen saturation ≥90% for 98% of the time with the lowest value of 82% for 15 s. Partial pressure of venous carbon dioxide was between 40 and 49 mm Hg for 97% of the time with no value <35 mm Hg or >49 mm Hg. With decreasing inspiratory oxygen concentration, extracorporeal oxygen uptake increased from 68 ± 25 to 154 ± 34 mL/min (P < 0.05), and reducing respiratory rate resulted in increasing extracorporeal carbon dioxide elimination from 71 ± 37 to 92 ± 37 mL/min (P < 0.05). The "SmartECLA" demonstrator allowed reliable automatic control of the extracorporeal circuit. Proof of concept could be demonstrated for this novel automatically controlled veno-venous ECLA circuit. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Isovolumic relaxation time varies predictably with its time constant and aortic and left atrial pressures: implications for the noninvasive evaluation of ventricular relaxation.

    PubMed

    Thomas, J D; Flachskampf, F A; Chen, C; Guererro, J L; Picard, M H; Levine, R A; Weyman, A E

    1992-11-01

    The isovolumic relaxation time (IVRT) is an important noninvasive index of left ventricular diastolic function. Despite its widespread use, however, the IVRT has not been related analytically to invasive parameters of ventricular function. Establishing such a relationship would make the IVRT more useful by itself and perhaps allow it to be combined more precisely with other noninvasive parameters of ventricular filling. The purpose of this study was to validate such a quantitative relationship. Assuming isovolumic relaxation to be a monoexponential decay of ventricular pressure (pv) to a zero-pressure asymptote, it was postulated that the time interval from aortic valve closure (when pv = p(o)) until mitral valve opening (when pv = left atrial pressure, pA) would be given analytically by IVRT = tau[log(p(o))-log(pA)], where tau is the time constant of isovolumic relaxation and log is to the base e. To test this hypothesis we analyzed data from six canine experiments in which ventricular preload and afterload were controlled nonpharmacologically. In addition, tau was adjusted with the use of beta-adrenergic blockade and calcium infusion, as well as with hypothermia. In each experiment data were collected before and after the surgical formation of mitral stenosis, performed to permit the study of a wide range of left atrial pressures. High-fidelity left atrial, left ventricular, and aortic root pressures were digitized, the IVRT was measured from the aortic dicrotic notch until the left atrioventricular pressure crossover point, and tau was calculated by nonlinear least-squares regression.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles

    NASA Astrophysics Data System (ADS)

    Fan, Ji-Zhuang; Zhang, Wei; Kong, Peng-Cheng; Cai, He-Gao; Liu, Gang-Feng

    2017-09-01

    Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. However, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the independent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the simulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller.

  6. Baroreceptors mask sympathetic responses to high intraocular pressure in dogs.

    PubMed

    Yahagi, Toru; Koyama, Shozo; Osaka, Kazumasa; Koyama, Haruhide

    2008-05-30

    These experiments were designed to investigate whether increasing intraocular pressure (IOP) in anesthetized dogs produces differential control of sympathetic nerve activities to various organs (heart, kidney, liver, and spleen) and if these sympathetic responses are modified by baroreceptors. We performed simultaneous multi-recordings of cardiac, renal, hepatic and splenic sympathetic nerve activities (CNA, RNA, HNA and SpNA, respectively) during 2 min of increasing IOP to a mean pressure of 30 mmHg. After increasing IOP in dogs with the intact baroreceptors, all of measured nerve activities did not change significantly throughout the experiment. In dogs with denervation of baroreceptors (cervical vagotomy with denervation of the carotid sinus and aortic nerves), only RNA and CNA showed significant increases in response to the increased IOP. However, time course changes in HNA and SpNA did not show any significant differences as compared with the baseline or that of the control group. These results indicate that systemic sympathetic nerve responses to increasing IOP are masked by systemic baroreceptors. As animals were denervated of their systemic baroreceptors, the unidirectional sympathoexcitatory responses to increased IOP were observed on CNA and RNA, but not on HNA and SpNA. These sympathetic outflow, when systemic baroreceptors are impaired as observed in old age, may play an important role in management of glaucoma attack with the use of adrenolytic drugs.

  7. Effects of music listening on depressed women in Taiwan.

    PubMed

    Lai, Y M

    1999-01-01

    This study investigated the physiological and psychological effects of music listening on depressed women in Taiwan. Through the use of a pretest-posttest, control group, experimental design, the heart rate, respiratory rate, blood pressure, and immediate mood states before and after a music/sound intervention were measured in 30 women. Quantitative data were analyzed descriptively and with t tests. A qualitative questionnaire was administered to participants to elicit information related to the subjective experience of music/sound listening. Significant posttest differences were found in experimental group participants' heart rates, respiratory rates, blood pressure, and tranquil mood states. Significant posttest differences also were found in control group participants' heart rates and tranquil mood states. The results support the use of music listening as a body-mind healing modality for depressed women.

  8. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations of actuator geometry in the supersonic base flow determined that inclined cavity and normal cavity actuators positioned on the base near the base edge could produce significant disturbances in the shear layer. The disturbances were able to be tracked in time with phase-locked schlieren imaging and particle image velocimetry (PIV). The final set of flow control experiments were therefore performed with an eight-actuator base using the inclined cavity actuator geometry. The actuators were able to cause moderate influences on the axisymmetric shear layer velocity profile and base pressure. The most substantial changes to the shear layer and base pressure were noted for the highest current and duty cycle tests. At 1 A and 20% duty cycle, the base pressure was reduced by 3.5%. Similar changes were noted for all modes and a range of frequencies from about 10-30 kHz. Increases in duty cycle between 4% and 20% caused a nearly linear decrease in base pressure. Analysis of the shear layer velocity profiles acquired through PIV show a local thickening of the shear layer in the region of the disturbances caused by the actuator. A slight increase in thickness was also observed away from the disturbance. Disturbances were able to be tracked at all frequencies and translated along the shear layer at a convective velocity of 430 +/- 20 m/s. A fairly clear trend of increasing velocity disturbance amplitude correlating to increasing base pressure changes was noted. Moreover, the ability of the disturbances to stay well organized further down the shear layer also appears to be a significant factor in the actuators' effect on base pressure. Consistent with these observations, it appears that increased duty cycle causes increased shear layer disturbance amplitudes. The use of PIV has enabled substantial insight to be gained into the effects of the actuators on the ensemble-averaged flow field and on the variability of the instantaneous flow field with and without control. A sensitive bimodal recirculation region behavior was found in the no-control flow field that the plasma actuators could force. The flow field and turbulence statistics in each mode were substantially different. Through analysis of past no-control base pressure measurements, it is believed that the bimodal behavior fluctuates at a characteristic frequency between 0.4 and 0.5 Hz [StD = [special character omitted](5x10-5)]. The flat time-averaged base pressure distribution is due to the superposition of a normally non-flat instantaneous base pressure distribution. Also, the standard deviation of the base pressure measurements is reduced when in one recirculation region mode as compared to when it is fluctuating between recirculation region modes.

  9. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    NASA Technical Reports Server (NTRS)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  10. Experimental study of operation performance for hydrocarbon fuel pump with low specific speed

    NASA Astrophysics Data System (ADS)

    Wu, Xianyu; Yang, Jun; Jin, Xuan

    2017-10-01

    In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump.

  11. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment.

    PubMed

    Schofield, J T; Barnes, J R; Crisp, D; Haberle, R M; Larsen, S; Magalhães, J A; Murphy, J R; Seiff, A; Wilson, G

    1997-12-05

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24.7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1.

  12. KSC-08pd1012

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is being raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  13. KSC-08pd1014

    NASA Image and Video Library

    2008-04-24

    CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is suspended vertically after rotation from the horizontal. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann

  14. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    USGS Publications Warehouse

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  15. [Exoskeleton robot system based on real-time gait analysis for walking assist].

    PubMed

    Xie, Zheng; Wang, Mingjiang; Huang, Wulong; Yong, Shanshan; Wang, Xin'an

    2017-04-01

    This paper presents a wearable exoskeleton robot system to realize walking assist function, which oriented toward the patients or the elderly with the mild impairment of leg movement function, due to illness or natural aging. It reduces the loads of hip, knee, ankle and leg muscles during walking by way of weight support. In consideration of the characteristics of the psychological demands and the disease, unlike the weight loss system in the fixed or followed rehabilitation robot, the structure of the proposed exoskeleton robot is artistic, lightweight and portable. The exoskeleton system analyzes the user's gait real-timely by the plantar pressure sensors to divide gait phases, and present different control strategies for each gait phase. The pressure sensors in the seat of the exoskeleton system provide real-time monitoring of the support efforts. And the drive control uses proportion-integral-derivative (PID) control technology for torque control. The total weight of the robot system is about 12.5 kg. The average of the auxiliary support is about 10 kg during standing, and it is about 3 kg during walking. The system showed, in the experiments, a certain effect of weight support, and reduction of the pressure on the lower limbs to walk and stand.

  16. Process optimization of helium cryo plant operation for SST-1 superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Panchal, R.; Patel, R.; Mahesuriya, G.; Sonara, D.; Srikanth G, L. N.; Garg, A.; Christian, D.; Bairagi, N.; Sharma, R.; Patel, K.; Shah, P.; Nimavat, H.; Purwar, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-02-01

    Several plasma discharge campaigns have been carried out in steady state superconducting tokamak (SST-1). SST-1 has toroidal field (TF) and poloidal field (PF) superconducting magnet system (SCMS). The TF coils system is cooled to 4.5 - 4.8 K at 1.5 - 1.7 bar(a) under two phase flow condition using 1.3 kW helium cryo plant. Experience revealed that the PF coils demand higher pressure heads even at lower temperatures in comparison to TF coils because of its longer hydraulic path lengths. Thermal run away are observed within PF coils because of single common control valve for all PF coils in distribution system having non-uniform lengths. Thus it is routine practice to stop the cooling of PF path and continue only TF cooling at SCMS inlet temperature of ˜ 14 K. In order to achieve uniform cool down, different control logic is adopted to make cryo stable system. In adopted control logic, the SCMS are cooled down to 80 K at constant inlet pressure of 9 bar(a). After authorization of turbine A/B, the SCMS inlet pressure is gradually controlled by refrigeration J-T valve to achieve stable operation window for cryo system. This paper presents process optimization for cryo plant operation for SST-1 SCMS.

  17. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.

  18. Automatic blood pressure measuring system (M092)

    NASA Technical Reports Server (NTRS)

    Nolte, R. W.

    1977-01-01

    The Blood Pressure Measuring System is described. It measures blood pressure by the noninvasive Korotkoff sound technique on a continual basis as physical stress is imposed during experiment M092, Lower Body Negative Pressure, and experiment M171, Metabolic Activity.

  19. An NGO-Implemented Community-Clinic Health Worker Approach to Providing Long-Term Care for Hypertension in a Remote Region of Southern India.

    PubMed

    Sankaran, Sujatha; Ravi, Prema S; Wu, Yichen Ethel; Shanabogue, Sharan; Ashok, Sangeetha; Agnew, Kaylan; Fang, Margaret C; Khanna, Raman A; Dandu, Madhavi; Harrison, James D

    2017-12-28

    Poor blood pressure control results in tremendous morbidity and mortality in India where the leading cause of death among adults is from coronary heart disease. Despite having little formal education, community health workers (CHWs) are integral to successful public health interventions in India and other low- and middle-income countries that have a shortage of trained health professionals. Training CHWs to screen for and manage chronic hypertension, with support from trained clinicians, offers an excellent opportunity for effecting systemwide change in hypertension-related burden of disease. In this article, we describe the development of a program that trained CHWs between 2014 and 2015 in the tribal region of the Sittilingi Valley in southern India, to identify hypertensive patients in the community, refer them for diagnosis and initial management in a physician-staffed clinic, and provide them with sustained lifestyle interventions and medications over multiple visits. We found that after 2 years, the CHWs had screened 7,176 people over age 18 for hypertension, 1,184 (16.5%) of whom were screened as hypertensive. Of the 1,184 patients screened as hypertensive, 898 (75.8%) had achieved blood pressure control, defined as a systolic blood pressure less than 140 and a diastolic blood pressure less than 90 sustained over 3 consecutive visits. While all of the 24 trained CHWs reported confidence in checking blood pressure with a manual blood pressure cuff, 4 of the 24 CHWs reported occasional difficulty documenting blood pressure values because they were unable to write numbers properly. They compensated by asking other CHWs or members of their community to help with documentation. Our experience and findings suggest that a CHW blood pressure screening system linked to a central clinic can be a promising avenue for improving hypertension control rates in low- and middle-income countries. © Sankaran et al.

  20. Elastic adhesive dressing treatment of bleeding wounds in trauma victims.

    PubMed

    Naimer, S A; Chemla, F

    2000-11-01

    Conventional methods for hemorrhage control in the trauma patient fall short of providing a full solution for the life-threatening bleeding injury. The tourniquet is limited specifically to injuries of the distal limbs. Local pressure or tight bandaging with military bandages is cumbersome and often insufficient. Therefore, we sought a superior method to stop bleeding in emergency situations. Our objective is report and description of our experience with this method. Since 1992 our trauma team repeatedly encountered multiple trauma victims presenting with bleeding wounds. We achieved hemorrhage control by means of an adhesive elastic bandage applied directly over a collection of 4 x 4 gauze pads placed on the wound surface. The roll is then wrapped around the body surface, over the bleeding site, until sufficient pressure is reached to terminate ongoing hemorrhage. Three typical cases are described in detail. Adhesive elastic dressing compression was successful in fully controlling bleeding without compromise of distal blood flow. Our method corresponded to the demand for an immediate, effective and lasting form of hemorrhage control without complications. Furthermore, this technique proved successful even over body surfaces normally recognized as difficult to compress. We experienced equal favorable success while working during transit by either ambulance or helicopter transportation. We find our preliminary experience using elastic adhesive dressing for bleeding control encouraging and suggest that this may substitute existing practices as the selected treatment when indicated. This method is presently underrecognized for this purpose. Development of a single unit bandage may further enhance success in the future.

  1. Closed-loop control of renal perfusion pressure in physiological experiments.

    PubMed

    Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E

    2013-07-01

    This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).

  2. Complete agreement of the post-spinel transition with the 660-km seismic discontinuity.

    PubMed

    Ishii, Takayuki; Huang, Rong; Fei, Hongzhan; Koemets, Iuliia; Liu, Zhaodong; Maeda, Fumiya; Yuan, Liang; Wang, Lin; Druzhbin, Dmitry; Yamamoto, Takafumi; Bhat, Shrikant; Farla, Robert; Kawazoe, Takaaki; Tsujino, Noriyoshi; Kulik, Eleonora; Higo, Yuji; Tange, Yoshinori; Katsura, Tomoo

    2018-04-20

    The 660-km seismic discontinuity, which is a significant structure in the Earth's mantle, is generally interpreted as the post-spinel transition, as indicated by the decomposition of ringwoodite to bridgmanite + ferropericlase. All precise high-pressure and high-temperature experiments nevertheless report 0.5-2 GPa lower transition pressures than those expected at the discontinuity depth (i.e. 23.4 GPa). These results are inconsistent with the post-spinel transition hypothesis and, therefore, do not support widely accepted models of mantle composition such as the pyrolite and CI chondrite models. Here, we present new experimental data showing post-spinel transition pressures in complete agreement with the 660-km discontinuity depth obtained by high-resolution in situ X-ray diffraction in a large-volume high-pressure apparatus with a tightly controlled sample pressure. These data affirm the applicability of the prevailing mantle models. We infer that the apparently lower pressures reported by previous studies are experimental artefacts due to the pressure drop upon heating. The present results indicate the necessity of reinvestigating the position of mantle mineral phase boundaries previously obtained by in situ X-ray diffraction in high-pressure-temperature apparatuses.

  3. Computer-aided technique for automatic determination of the relationship between transglottal pressure change and voice fundamental frequency.

    PubMed

    Deguchi, Shinji; Kawashima, Kazutaka; Washio, Seiichi

    2008-12-01

    The effect of artificially altered transglottal pressures on the voice fundamental frequency (F0) is known to be associated with vocal fold stiffness. Its measurement, though useful as a potential diagnostic tool for noncontact assessment of vocal fold stiffness, often requires manual and painstaking determination of an unstable F0 of voice. Here, we provide a computer-aided technique that enables one to carry out the determination easily and accurately. Human subjects vocalized in accordance with a series of reference sounds from a speaker controlled by a computer. Transglottal pressures were altered by means of a valve embedded in a mouthpiece. Time-varying vocal F0 was extracted, without manual procedures, from a specific range of the voice spectrum determined on the basis of the controlled reference sounds. The validity of the proposed technique was assessed for 11 healthy subjects. Fluctuating voice F0 was tracked automatically during experiments, providing the relationship between transglottal pressure change and F0 on the computer. The proposed technique overcomes the difficulty in automatic determination of the voice F0, which tends to be transient both in normal voice and in some types of pathological voice.

  4. The effect of live music on decreasing anxiety in patients undergoing chemotherapy treatment.

    PubMed

    Ferrer, Alejandra J

    2007-01-01

    The purpose of this study was to investigate the effects of familiar live music on the anxiety levels of patients undergoing chemotherapy treatment. Randomly selected patients were assigned to experimental (n = 25) and control (n = 25) conditions. Pre and posttests consisted of questionnaires and the recording of the patient's heart rate and blood pressures. Subjects in the experimental group received 20 minutes of familiar live music during their chemotherapy treatment. Subjects in the control group received standard chemotherapy. It was assumed that those patients receiving music intervention would: (a) lower their anxiety levels; (b) experience a decrease in heart rate and blood pressure; (c) improve their levels of negative reactions including fatigue, worry, and fear; and (d) improve their levels of positive reactions including comfort and relaxation. Results of the study showed statistically significant improvement for the experimental group on the measures of anxiety, fear, fatigue, relaxation, and diastolic blood pressure. No significant differences between groups were found for heart rate and systolic blood pressure. Descriptive values indicated that, on average, the experimental group was influenced positively by the music intervention, and participants improved their quality of life while undergoing chemotherapy treatment.

  5. Investigation on the reproduction performance versus acoustic contrast control in sound field synthesis.

    PubMed

    Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao

    2014-10-01

    A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.

  6. Blood Pressure and Heart Rate Alterations through Music in Patients Undergoing Cataract Surgery in Greece.

    PubMed

    Merakou, Kyriakoula; Varouxi, Georgia; Barbouni, Anastasia; Antoniadou, Eleni; Karageorgos, Georgios; Theodoridis, Dimitrios; Koutsouri, Aristea; Kourea-Kremastinou, Jenny

    2015-01-01

    Music has been proposed as a safe, inexpensive, nonpharmacological antistress intervention. The purpose of this study was to determine whether patients undergoing cataract surgery while listening to meditation music experience lower levels of blood pressure and heart rate. Two hundred individuals undergoing cataract surgery participated in the study. Hundred individuals listened to meditation music, through headphones, before and during the operation (intervention group) and 100 individuals received standard care (control group). Patients stress coping skills were measured by the Sense of Coherence Scale (SOC Scale). Systolic and diastolic blood pressure and heart rate were defined as outcome measures. According to the SOC Scale, both groups had similar stress coping skills (mean score: 127.6 for the intervention group and 127.3 for the control group). Before entering the operating room (OR) as well as during surgery the rise in systolic and diastolic pressures was significantly lower in the intervention group (P < 0.001). Among patients receiving antihypertensive therapy, those in the intervention group presented a lower increase only in systolic pressure (P < 0.001) at both time recordings. For those patients in the intervention group who did not receive antihypertensive treatment, lower systolic blood pressure at both time recordings was recorded (P < 0.001) while lower diastolic pressure was observed only during entry to the OR (P = 0.021). Heart rate was not altered between the two groups in any of the recordings. Meditation music influenced patients' preoperative stress with regard to systolic blood pressure. This kind of music can be used as an alternative or complementary method for blood pressure stabilizing in patients undergoing cataract surgery.

  7. Real behavior in virtual environments: psychology experiments in a simple virtual-reality paradigm using video games.

    PubMed

    Kozlov, Michail D; Johansen, Mark K

    2010-12-01

    The purpose of this research was to illustrate the broad usefulness of simple video-game-based virtual environments (VEs) for psychological research on real-world behavior. To this end, this research explored several high-level social phenomena in a simple, inexpensive computer-game environment: the reduced likelihood of helping under time pressure and the bystander effect, which is reduced helping in the presence of bystanders. In the first experiment, participants had to find the exit in a virtual labyrinth under either high or low time pressure. They encountered rooms with and without virtual bystanders, and in each room, a virtual person requested assistance. Participants helped significantly less frequently under time pressure but the presence/absence of a small number of bystanders did not significantly moderate helping. The second experiment increased the number of virtual bystanders, and participants were instructed to imagine that these were real people. Participants helped significantly less in rooms with large numbers of bystanders compared to rooms with no bystanders, thus demonstrating a bystander effect. These results indicate that even sophisticated high-level social behaviors can be observed and experimentally manipulated in simple VEs, thus implying the broad usefulness of this paradigm in psychological research as a good compromise between experimental control and ecological validity.

  8. Entrainment of bed sediment by debris flows: results from large-scale experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.

    2011-01-01

    When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.

  9. Flow and fracturing of viscoelastic media under diffusion-driven bubble growth: An analogue experiment for eruptive volcanic conduits

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Spieler, O.; Ichihara, M.; Dingwell, D. B.; Scarlato, P.

    2006-03-01

    To visualize the behavior of erupting magma in volcanic conduits, we performed shock tube experiments on the ductile-brittle response of a viscoelastic medium to diffusion-driven bubble expansion. A sample of shear-thinning magma analogue is saturated by gas Ar under high pressure. On rapid decompression, Ar supersaturation causes bubbles to nucleate, grow, and coalesce in the sample, forcing it to expand, flow, and fracture. Experimental variables include saturation pressure and duration, and shape and lubrication of the flow path. Bubble growth in the experiments controls both flow and fracturing, and is consistent with physical models of magma vesiculation. Two types of fractures are observed: i) sharp fractures along the uppermost rim of the sample, and ii) fractures pervasively diffused throughout the sample. Rim fractures open when shear stress accumulates and strain rate is highest at the margin of the flow (a process already inferred from observations and models to occur in magma). Pervasive fractures originate when wall-friction retards expansion of the sample, causing pressure to build-up in the bubbles. When bubble pressure overcomes wall-friction and the tensile strength of the porous sample, fractures open with a range of morphologies. Both types of fracture open normally to flow direction, and both may heal as the flow proceeds. These experiments also illustrate how the development of pervasive fractures allows exsolving gas to escape from the sample before the generation of a permeable network via other processes, e.g., bubble coalescence. This is an observation that potentially impact the degassing of magma and the transition between explosive and effusive eruptions.

  10. Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors.

    PubMed

    Munoz-Organero, Mario; Parker, Jack; Powell, Lauren; Mawson, Susan

    2016-10-01

    Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT) enhanced Personalised Self-Management Rehabilitation System (PSMrS) for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation.

  11. Expediting red blood cell transfusions by syringing causes significant hemolysis.

    PubMed

    De Villiers, Willem Lambertus; Murray, Adriaan Albertus; Levin, Andrew Ian

    2017-11-01

    Techniques commonly used to expedite blood transfusions include pneumatically pressurizing red blood cell (RBC) bags or manual syringing its contents. We compared these techniques on RBC hemolysis using a simulated transfusion model. Fifteen warmed RBC units that were 12.3 ± 4.3 (95% confidence interval [CI], 10.1-14.5) days old were each subjected to two experimental rapid transfusion techniques. RBCs from each technique were directed through 18- and 22-gauge cannulas attached to blood administration sets. One technique involved RBC bag pressurization to 300 mmHg. The other employed a 20-mL syringe to effect forceful, manual aspiration from the RBC bag followed by forceful, manual RBC injection. The control group was gravity driven without cannulas. Free hemoglobin (Hb) concentrations were measured and percent hemolysis was calculated. Free Hb concentrations and percent hemolysis (median [95% CI]) were similar in the control (0.05 [0.03-0.08] g/dL and 0.13% [0.09%-0.17%], respectively) and pressurized experiments (0.06 [0.05-0.09] g/dL; 0.14% [0.12%-0.22%]), respectively. Syringing resulted in 10-fold higher free Hb concentrations (0.55 [0.38-0.92] g/dL) and percent hemolysis (1.28% [1.03%-2.15%]) than when employing the control (p < 0.0001) or pressurization (p < 0.0001) techniques. Cannula sizes studied did not affect hemolysis. Forceful manual syringing caused significant hemolysis and high free Hb concentrations. Pressurizing RBC bags induced no more hemolysis than after gravity-facilitated transfusions. Syringing to expedite RBC transfusions should be avoided in favor of pneumatic RBC bag pressurization. © 2017 AABB.

  12. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  13. Threshold kinetics of a solar-simulator-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Lee, Y.; Weaver, W. R.; Humes, D. H.; Lee, J. H.

    1984-01-01

    A model of the chemical kinetics of the n-C3F7I solar-simulator-pumped iodine laser is utilized to study the major kinetic processes associated with the threshold behavior of this experimental system. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state diffusion to the cell wall is the dominant limiting factor below 5 torr. Excited-state recombination with the alkyl radical and quenching by the parent gas control threshold at higher pressures. Treatment of the hyperfine splitting and uncertainty in the pressure broadening are important factors in fixing the threshold level. In spite of scatter in the experimental data caused by instabilities in the simulator high-pressure high-pressure arc, reasonable agreement is achieved between the model and experiment. Model parameters arrived at are within the uncertainty range of values found in the literature.

  14. Cardiovascular results from a rhesus monkey flown aboard the Cosmos 1514 spaceflight

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Hines, J.; Benjamin, B. A.; Halpryn, B. M.; Krotov, V. P.

    1987-01-01

    The results of the Cosmos 1514 cardiovascular experiment, in which the blood flow to the head and the carotid pressure of a rhesus monkey were measured during the 5-d spaceflight, are reported. A single cylindrical probe containing both pressure and flow transducers was chronically implanted as a cuff around the left common carotid artery; measurements were obtained for 4 min every 2 h and compared to identical recordings obtained during a preflight control period and during 12 h on a launch pad. Immediately on its insertion into orbit, mean arterial pressure increased by 10 percent and has maintained a 16-27 percent increase over the first few hours of flight before returning to baseline level. Blood flow showed reciprocal changes to pressure on orbital insertion. Cardiovascular system changes persisted into the second day of flight, with the signs of adaptation appearing on days 3-5.

  15. Stability limits and transformation pathways of α-quartz under high pressure

    NASA Astrophysics Data System (ADS)

    Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.

    2017-03-01

    Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.

  16. Neural Control of the Cardiovascular System in Space

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Pawelczyk, James A.; Zuckerman, Julie; Zhang, Rong; Fu, Qi; Iwasaki, Kenichi; Ray, Chet; Blomqvist, C. Gunnar; Lane, Lynda D.; Giller, Cole A.

    2003-01-01

    During the acute transition from lying supine to standing upright, a large volume of blood suddenly moves from the chest into the legs. To prevent fainting, the blood pressure control system senses this change immediately, and rapidly adjusts flow (by increasing heart rate) and resistance to flow (by constricting the blood vessels) to restore blood pressure and maintain brain blood flow. If this system is inadequate, the brain has a backup plan. Blood vessels in the brain can adjust their diameter to keep blood flow constant. If blood pressure drops, the brain blood vessels dilate; if blood pressure increases, the brain blood vessels constrict. This process, which is called autoregulation, allows the brain to maintain a steady stream of oxygen, even when blood pressure changes. We examined what changes in the blood pressure control system or cerebral autoregulation contribute to the blood pressure control problems seen after spaceflight. We asked: (1) does the adaptation to spaceflight cause an adaptation in the blood pressure control system that impairs the ability of the system to constrict blood vessels on return to Earth?; (2) if such a defect exists, could we pinpoint the neural pathways involved?; and (3) does cerebral autoregulation become abnormal during spaceflight, impairing the body s ability to maintain constant brain blood flow when standing upright on Earth? We stressed the blood pressure control system using lower body negative pressure, upright tilt, handgrip exercise, and cold stimulation of the hand. Standard cardiovascular parameters were measured along with sympathetic nerve activity (the nerve activity causing blood vessels to constrict) and brain blood flow. We confirmed that the primary cardiovascular effect of spaceflight was a postflight reduction in upright stroke volume (the amount of blood the heart pumps per beat). Heart rate increased appropriately for the reduction in stroke volume, thereby showing that changes in heart rate regulation alone cannot be responsible for orthostatic hypotension after spaceflight. All of the astronauts in our study had an increase in sympathetic nerve activity during upright tilting on Earth postflight. This increase was well calibrated for the reduction in stroke volume induced by the upright posture. The results obtained from stimulating the sympathetic nervous system using handgrip exercise or cold stress were also entirely normal during and after spaceflight. No astronaut had reduced cerebral blood flow during upright tilt, and cerebral autoregulation was normal or even enhanced inflight. These experiments show that the cardiovascular adaptation to spaceflight does not lead to a defect in the regulation of blood vessel constriction via sympathetic nerve activity. In addition, cerebral autoregulation is well-maintained. It is possible that despite the increased sympathetic nerve activity, blood vessels did not respond with a greater degree of constriction than occurred preflight, possibly uncovering a limit of vasoconstrictor reserve.

  17. GEODE 2: Manufacturing large area format cadmium-mercury-telluride crystals in a microgravity environment. Pressure sensor proof of concept

    NASA Astrophysics Data System (ADS)

    Gale, M. R.; Beattie, D. A.

    In the GEODE 1 experiment, a semiconductor Cd-Hg telluride crystal was grown in the MASER1 sounding rocket. It was shown that bulk-quench Cd-Hg telluride crystallization in a microgravity environment results in a more homogeneous crystal structure than can be achieved terrestrially. In the GEODE 2 program, the wall thickness of the quartz ampoule containing the crystal will be reduced to improve the heat transfer characteristics during crystallization. Ampoule explosion must be prevented by active control of the pressure surrounding the weaker, thin-walled ampoule to match that inside the furnace. A prototype pressure sensor that uses the absorption of ultraviolet light by Hg vapor has been built and tested. Pressures from 4 to 40 atmospheres have been measured with a resolution better than 0.35 atmospheres over the entire range. The feasibility of the pressure measurement technique has been demonstrated, although some design improvements are required in order to make measurements more repeatable.

  18. Quasi-dynamic pressure and temperature initiated β<-->δ solid phase transitions in HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Farber, Daniel L.; Craig, Ian M.; Blosch, Laura L.; Shuh, David K.; Hansen, Donald W.; Aracne-Ruddle, Chantel M.

    2000-04-01

    The phase transformation of β-HMX (>0.5% RDX) to δ phase has been studied for over twenty years and more recently with an high-contrast optical second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al. [1] in 1978. However, the stability field favors the β polymorph over δ as pressure is increased (up to 5.4 GPa) along any thermodynamically reasonable isotherm. In this experiment, strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced β→δ transition, the pressure induced is heterogeneous in nature. The 1 bar 25 °C δ→β transition is not immediate, occuring over tens of hours. Transition points and kinetics are path dependent and consequently this paper describes our work in progress.

  19. [Effects of pressure induced retinal ischemia on ERG in rabbit].

    PubMed

    Song, G; Yang, X; Zhang, Z; Zhang, D

    2001-12-01

    To observe the effects of pressure induced retinal ischemia on electroretinogram(ERG) in rabbit. Retinal ischemia was induced in rabbits by increasing intraocular pressure at 30 mmHg, 60 mmHg, 90 mmHg, 120 mmHg for 45 minutes, and retinal function was monitored by eletroretinography. There was no difference on ERG before or after the experiment both in 30 mmHg group and control one. In 60 mmHg pressure induced ischemia eyes, the amplitudes of the b-wave and OPs wave reduced significantly. Four hours after reperfusion, they were totally recovered. After an ischemic insult of 90 mmHg or 120 mmHg for 45 minutes, there was no response of ERG. Four hours later, the amplitudes of the b-wave and OPs wave were 66.912 +/- 20.157 and 16.423 +/- 3.965 the former, 38.852 +/- 23.438 and 8.610 +/- 12.090 the latter, respectively. These results suggest that higher intraocular pressure causes more severe retina ischemic damage, and less recovery ability.

  20. Formation of wadsleyite in a shock experiment - implications for the duration of shock events in meteorite parent bodies

    NASA Astrophysics Data System (ADS)

    Tschauner, O.; Asimow, P. D.; Ahrens, T. J.; Kostandova, N.; Sinogeikin, S.

    2007-12-01

    We report the first observation of the high-pressure silicate phase wadsleyite in the recovery products of a shock experiment. Wadsleyite was detected by micro-X ray diffraction and EBSD. Wadsleyite grew from melt which formed by chemical reaction of periclase and silica during shock. Our findings show that the growth rate of high pressure silicate phases in shock-generated melts can be of the order of m/s and is probably not diffusion controlled. Our finding has important implications for the time scale of shock events recorded by meteorites and indicates that the presence of high pressure silicates found in shocked meteorites does not necessarily imply large impactor sizes. This work was supported by the NNSA Cooperative Agreement DOE-FC88-01NV14049 and NASA/Goddard grants under awards NNG04GP57G and NNG04GI07G. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA, NSF, DOD -TACOM, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. W-31-109-Eng-38.

  1. F-16XL Wing Pressure Distributions and Shock Fence Results from Mach 1.4 to Mach 2.0

    NASA Technical Reports Server (NTRS)

    Landers, Stephen F.; Saltzman, John A.; Bjarke, Lisa J.

    1997-01-01

    Chordwise pressure distributions were obtained in-flight on the upper and lower surfaces of the F-16XL ship 2 aircraft wing between Mach 1.4 and Mach 2.0. This experiment was conducted to determine the location of shock waves which could compromise or invalidate a follow-on test of a large chord laminar flow control suction panel. On the upper surface, the canopy closure shock crossed an area which would be covered by a proposed laminar flow suction panel. At the laminar flow experiment design Mach number of 1.9, 91 percent of the suction panel area would be forward of the shock. At Mach 1.4, that value reduces to 65 percent. On the lower surface, a shock from the inlet diverter would impinge on the proposed suction panel leading edge. A chordwise plate mounted vertically to deflect shock waves, called a shock fence, was installed between the inlet diverter and the leading edge. This plate was effective in reducing the pressure gradients caused by the inlet shock system.

  2. Numerical and experimental study of the dynamics of a superheated jet

    NASA Astrophysics Data System (ADS)

    Sinha, Avick; Gopalakrishnan, Shivasubramanian; Balasubramanian, Sridhar

    2015-11-01

    Flash-boiling is a phenomenon where a liquid experiences low pressures in a system resulting in it getting superheated. The sudden drop in pressures results in accelerated expansion and violent vapour formation. Understanding the physics behind the jet disintegration and flash-boiling phenomenon is still an open problem, with applications in automotive and aerospace combustors. The behaviour of a flash-boiling jet is highly dependent on the input parameters, inlet temperature and pressure. In the present study, the external (outside nozzle) and the internal (inside nozzle) flow characteristics of the two-phase flow has been studied numerically and experimentally. The phase change from liquid to vapour takes place over a finite period of time, modeled sing Homogeneous Relaxation Model (HRM). In order to validate the numerical results, controlled experiments were performed. Optical diagnostic techniques such as Particle Image Velocimetry (PIV) and Shadowgraphy were used to study the flow characteristics. Spray angle, penetration depth, droplet spectra were obtained which provides a better understanding of the break-up mechanism. Linear stability analysis is performed to study the stability characteristics of the jet.

  3. Special report on the data collection programs for the ground based nitrogen washout experiment. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Bueker, P. A.

    1982-01-01

    The Nitrogen Washout System measures nitrogen elimination on a breath basis from the body tissues of a subject breathing pure oxygen. The system serves as a prototype for a Space Shuttle Life Sciences experiment and in the Environmental Physiology Laboratory. Typically, a subject washes out body nitrogen for three hours while breathing oxygen from a mask enclosed in a positive-pressure oxygen tent. A nitrogen washout requires one test operator and the test subject. A DEC LSI-11/02 computer is used to (1) control and calibrate the mass spectrometer and Skylab spirometer, (2) gather and store experimental data and (3) provide limited real time analysis and more extensive post-experiment analysis. Five programs are used to gather and store the experimental data and perform all the real time control and analysis.

  4. Expanding ICU facilities in an epidemic: recommendations based on experience from the SARS epidemic in Hong Kong and Singapore.

    PubMed

    Gomersall, Charles D; Tai, Dessmon Y H; Loo, Shi; Derrick, James L; Goh, Mia Siang; Buckley, Thomas A; Chua, Catherine; Ho, Ka Man; Raghavan, Geeta P; Ho, Oi Man; Lee, Lay Beng; Joynt, Gavin M

    2006-07-01

    Epidemics have the potential to severely strain intensive care resources and may require an increase in intensive care capability. Few intensivists have direct experience of rapidly expanding intensive care services in response to an epidemic. This contribution presents the recommendations of an expert group from Hong Kong and Singapore who had direct experience of expanding intensive care services in response to the epidemic of severe acute respiratory syndrome. These recommendations cover training, infection control, staffing, communication and ethical issues. The issue of what equipment to purchase is not addressed. Early preparations should include fit testing of negative pressure respirators, training of reserve staff, sourcing of material for physical modifications to the ICU, development of infection control policies and training programmes, and discussion of triage and quarantine issues.

  5. Note: Modified anvil design for improved reliability in DT-Cup experiments.

    PubMed

    Hunt, Simon A; Dobson, David P

    2017-12-01

    The Deformation T-Cup (DT-Cup) is a modified 6-8 multi-anvil apparatus capable of controlled strain-rate deformation experiments at pressures greater than 18 GPa. Controlled strain-rate deformation was enabled by replacing two of the eight cubic "second-stage" anvils with hexagonal cross section deformation anvils and modifying the "first-stage" wedges. However, with these modifications approximately two-thirds of experiments end with rupture of the hexagonal anvils. By replacing the hexagonal anvils with cubic anvils and, split, deformation wedge extensions, we restore the massive support to the deformation anvils that were inherent in the original multi-anvil design and prevent deformation anvil failure. With the modified parts, the DT-Cup has an experimental success rate that is similar to that of a standard hydrostatic 6-8 multi-anvil apparatus.

  6. THERMAL COOK-OFF EXPERIMENTS OF THE HMX BASED HIGH EXPLOSIVE LX-04 TO CHARACTERIZE VIOLENCE WITH VARYING CONFINEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, F; Vandersall, K S; Forbes, J W

    Thermal cook-off experiments were carried out using LX-04 explosive (85% HMX and 15% Viton by weight) with different levels of confinement to characterize the effect of confinement on the reaction violence. These experiments involved heating a porous LX-04 sample in a stainless steel container with varying container end plate thickness and assembly bolt diameter to control overall confinement. As expected, detonation did not occur and reducing the overall confinement lowered the reaction violence. This is consistent with modeling results that predict that a lower confinement will act to lower the cook-off pressure and thus the overall burn rate which lowersmore » the overall violence. These results suggest that controlling the overall system confinement can modify the relative safety in a given scenario.« less

  7. Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M.

    2018-01-01

    The strength of fault zones is strongly dependent on pore fluid pressures within them. Moreover, transient changes in pore fluid pressure can lead to a variety of slip behavior from creep to unstable slip manifested as earthquakes or slow slip events. The frictional properties of low-permeability fault gouge in nature and experiment can be affected by pore fluid pressure development through compaction within the gouge layer, even when the boundaries are drained. Here the conditions under which significant pore fluid pressures develop are analyzed analytically, numerically, and experimentally. Friction experiments on low-permeability fault gouge at different sliding velocities show progressive weakening as slip rate is increased, indicating that faster experiments are incapable of draining the pore fluid pressure produced by compaction. Experiments are used to constrain the evolution of the permeability and pore volume needed for numerical modeling of pore fluid pressure build up. The numerical results are in good agreement with the experiments, indicating that the principal physical processes have been considered. The model is used to analyze the effect of pore fluid pressure transients on the determination of the frictional properties, illustrating that intrinsic velocity-strengthening behavior can appear velocity weakening if pore fluid pressure is not given sufficient time to equilibrate. The results illustrate that care must be taken when measuring experimentally the frictional characteristics of low-permeability fault gouge. The contribution of compaction-induced pore fluid pressurization leading to weakening of natural faults is considered. Cyclic pressurization of pore fluid within fault gouge during successive earthquakes on larger faults may reset porosity and hence the capacity for compaction weakening.

  8. The Effect on Retention of Computer Assisted Instruction in Science Education

    ERIC Educational Resources Information Center

    Kara, Izzet

    2008-01-01

    The aim of this research is to determine the retention effect of Computer Assisted Instruction (CAI) on students' academic achievement for teaching the Physics topics. The research includes the Force and Pressure units of 7th grade Science Lesson. In this research, 132 students were structured as both control and experiment groups. Traditional…

  9. Susceptibility of experimental faults to pore pressure increase: insights from load-controlled experiments on calcite-bearing rocks

    NASA Astrophysics Data System (ADS)

    Spagnuolo, Elena; Violay, Marie; Nielsen, Stefan; Cornelio, Chiara; Di Toro, Giulio

    2017-04-01

    Fluid pressure has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). Terzaghi's principle states that the effective normal stress is linearly reduced by a pore pressure (Pf) increase σeff=σn(1 - αPf), where the effective stress parameter α, may be related to the fraction of the fault area that is flooded. A value of α =1 is often used by default, with Pf shifting the Mohr circle towards lower normal effective stresses and anticipating failure on pre-existing faults. However, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on calcite-bearing rock samples (Carrara marble) at room humidity conditions and in the presence of pore fluids (drained conditions) using a rotary apparatus (SHIVA). A pre-cut fault is loaded by constant shear stress τ under constant normal stress σn=15 MPa until a target value corresponding roughly to the 80 % of the frictional fault strength. The pore pressure Pf is then raised with regular pressure and time steps to induce fault instability. Assuming α=1 and a threshold for instability τp_eff=μp σeff, the experiments reveal that an increase of Pf does not necessarily induce an instability even when the effective strength threshold is largely surpassed (e.g., τp_eff=1.3 μpσeff). This result may indicate that the Pf increase did not instantly diffuse throughout the slip zone, but took a finite time to equilibrate with the external imposed pressure increase due to finite permeability. Under our experimental conditions, a significant departure from α=1 is observed provided that the Pf step is shorter than about < 20s. We interpret this delay as indicative of the diffusion time (td), which is related to fluid penetration length l by l = √ κtd-, where κ is the hydraulic diffusivity on the fault plane. We show that a simple cubic law relates td to hydraulic aperture, pore pressure gradient and injection rate. We redefine α as the ratio between the fluid penetration length and sample dimension L resulting in α = min(√ktd,L) L. Under several pore pressure loading rates this relation yields an approximate hydraulic diffusivity κ ˜10-8 m2 s-1 which is compatible, for example, with a low porosity shale. Our results highlight that a high injection flow rate in fault plane do not necessarily induce seismogenic fault slip: a critical pore penetration length or fluid patch size is necessary to trigger fault instability.

  10. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  11. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F 68 , 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  12. In-Flight Lower Body Negative Pressure - Skylab Experiment M092

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart details Skylab's In-Flight Lower Body Negative Pressure experiment facility, a medical evaluation designed to monitor changes in astronauts' cardiovascular systems during long-duration space missions. This experiment collected in-flight data for predicting the impairment of physical capacity and the degree of orthostatic intolerance to be expected upon return to Earth. Data to be collected were blood pressure, heart rate, body temperature, vectorcardiogram, lower body negative pressure, leg volume changes, and body mass. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  13. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment.

    PubMed

    Yousefi, Azizeh-Mitra; Smucker, Byran; Naber, Alex; Wyrick, Cara; Shaw, Charles; Bennett, Katelyn; Szekely, Sarah; Focke, Carlie; Wood, Katherine A

    2018-02-01

    Tissue engineering using three-dimensional porous scaffolds has shown promise for the restoration of normal function in injured and diseased tissues and organs. Rigorous control over scaffold architecture in melt extrusion additive manufacturing is highly restricted mainly due to pronounced variations in the deposited strand diameter upon any variations in process conditions and polymer viscoelasticity. We have designed an I-optimal, split-plot experiment to study the extrudate swell in melt extrusion additive manufacturing and to control the scaffold architecture. The designed experiment was used to generate data to relate three responses (swell, density, and modulus) to a set of controllable factors (plotting needle diameter, temperature, pressure, and the dispensing speed). The fitted regression relationships were used to optimize the three responses simultaneously. The swell response was constrained to be close to 1 while maximizing the modulus and minimizing the density. Constraining the extrudate swell to 1 generates design-driven scaffolds, with strand diameters equal to the plotting needle diameter, and allows a greater control over scaffold pore size. Hence, the modulus of the scaffolds can be fully controlled by adjusting the in-plane distance between the deposited strands. To the extent of the model's validity, we can eliminate the effect of extrudate swell in designing these scaffolds, while targeting a range of porosity and modulus appropriate for bone tissue engineering. The result of this optimization was a predicted modulus of 14 MPa and a predicted density of 0.29 g/cm 3 (porosity ≈ 75%) using polycaprolactone as scaffold material. These predicted responses corresponded to factor levels of 0.6 μm for the plotting needle diameter, plotting pressure of 2.5 bar, melt temperature of 113.5 °C, and dispensing speed of 2 mm/s. The validation scaffold enabled us to quantify the percentage difference for the predictions, which was 9.5% for the extrudate swell, 19% for the density, and 29% for the modulus.

  14. Mental Workload and Performance Experiment (MWPE) Team in the Spacelab Payload Operations Control

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Mental Workload and Performance Experiment (MWPE) team in the SL POCC) during STS-42, IML-1 mission.

  15. Mental Workload and Performance Experiment (MWPE) Team in the Spacelab Payload Operations Control

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured activities are of the Mental Workload and Performance Experiment (MWPE) team in the SL POCC during the IML-1 mission.

  16. Effects of Social Exclusion on Cardiovascular and Affective Reactivity to a Socially Evaluative Stressor.

    PubMed

    Williamson, Timothy J; Thomas, KaMala S; Eisenberger, Naomi I; Stanton, Annette L

    2018-04-03

    Socially disconnected individuals have worse health than those who feel socially connected. The mechanisms through which social disconnection influences physiological and psychological outcomes warrant study. The current study tested whether experimental manipulations of social exclusion, relative to inclusion, influenced subsequent cardiovascular (CV) and affective reactivity to socially evaluative stress. Young adults (N = 81) were assigned through block randomization to experience either social exclusion or inclusion, using a standardized computer-based task (Cyberball). Immediately after exposure to Cyberball, participants either underwent a socially evaluative stressor or an active control task, based on block randomization. Physiological activity (systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR)) and state anxiety were assessed throughout the experiment. Excluded participants evidenced a significant increase in cardiovascular and affective responses to a socially evaluative stressor. Included participants who underwent the stressor evidenced similar increases in anxiety, but systolic blood pressure, diastolic blood pressure, and heart rate did not change significantly in response to the stressor. Results contribute to the understanding of physiological consequences of social exclusion. Further investigation is needed to test whether social inclusion can buffer CV stress reactivity, which would carry implications for how positive social factors may protect against the harmful effects of stress.

  17. The reduction of a ""safety catastrophic'' potential hazard: A case history

    NASA Technical Reports Server (NTRS)

    Jones, J. P.

    1971-01-01

    A worst case analysis is reported on the safety of time watch movements for triggering explosive packages on the lunar surface in an experiment to investigate physical lunar structural characteristics through induced seismic energy waves. Considered are the combined effects of low pressure, low temperature, lunar gravity, gear train error, and position. Control measures constitute a seal control cavity and design requirements to prevent overbanking in the mainspring torque curve. Thus, the potential hazard is reduced to safety negligible.

  18. Detecting Pore Fluid Pressure Changes by Using the Vp/Vs Ratio

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Mavko, G.

    2006-12-01

    A central problem in studies aimed at predicting the dynamic behavior of faults is monitoring and quantifying fluid changes in areas prone to overpressure. Experimental and modeling studies show the Vp/Vs ratio to be a good determinant of the saturation state of a rock formation as well as of its inner pore pressure condition. Dectecting pore pressure changes depends, among other causes, on the reliability of laboratory data to calibrate the in-situ measured velocities. Ideally, laboratory experiments performed under controlled conditions would identify the fundamental mechanisms responsible for changes in the measured acoustic properties. However, technical limitations in the laboratory together with the assumptions driving the experimental and modeling approaches rise spouriuos mechanisms which hinder our present understanding of the actual role of high pore pressure on the elastic and poroelastic parameters. Critical issues unclude: a) the frequencies used in the laboratory are responsible for high-frequency fluid effects which induce velocity dispersion. As a result, both the effective stress parameter and velocities (and their pressure-dependence) estimated from high- frequency ultrasonic data are different from those applicable to crustal low frequency wave propagation; b) laboratory measurements made at dry, drained conditions are assumed to mimic those in gas pressured rocks. However, in dry, drained conditions, no pore pressure is exerted in the pore space, and the pore gas is infinitely compressible; c) when using room-dry, drained measurements as the baseline to model pressured rock formations, the unloading path (i.e. decreasing confining pressure) is supposed to mimic the inflationary path due to pore pressure increase. Doing so, it is assumed that the amount of crack opening due to pore pressure is equal to that of crack closure caused by the overburden stress and thus, the effective stress coefficient is implicitely assumed equal to 1. To minimize the assumptions and limitations described above, we designed a laboratory experiment which used gas as pore fluid medium. Experimental results show that in gas-pressured saturated rocks the Vp/Vs ratio, while remaining lower than values reported for liquid saturation conditions, increases with decreasing differential pressure, similarly to the trend observed in liquid saturated rocks.

  19. Blast Load Simulator Experiments for Computational Model Validation: Report 2

    DTIC Science & Technology

    2017-02-01

    repeatability. The uncertainty in the experimental pressures and impulses was evaluated by computing 95% confidence intervals on the results. DISCLAIMER: The...Experiment uncertainty The uncertainty in the experimental pressure and impulse was evaluated for the five replicate experiments for which, as closely as...comparisons were made among the replicated experiments to evaluate repeatability. The uncertainty in the experimental pressures and impulses was

  20. Foam Experiment Hardware are Flown on Microgravity Rocket MAXUS 4

    NASA Astrophysics Data System (ADS)

    Lockowandt, C.; Löth, K.; Jansson, O.; Holm, P.; Lundin, M.; Schneider, H.; Larsson, B.

    2002-01-01

    The Foam module was developed by Swedish Space Corporation and was used for performing foam experiments on the sounding rocket MAXUS 4 launched from Esrange 29 April 2001. The development and launch of the module has been financed by ESA. Four different foam experiments were performed, two aqueous foams by Doctor Michele Adler from LPMDI, University of Marne la Vallée, Paris and two non aqueous foams by Doctor Bengt Kronberg from YKI, Institute for Surface Chemistry, Stockholm. The foam was generated in four separate foam systems and monitored in microgravity with CCD cameras. The purpose of the experiment was to generate and study the foam in microgravity. Due to loss of gravity there is no drainage in the foam and the reactions in the foam can be studied without drainage. Four solutions with various stabilities were investigated. The aqueous solutions contained water, SDS (Sodium Dodecyl Sulphate) and dodecanol. The organic solutions contained ethylene glycol a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) and decanol. Carbon dioxide was used to generate the aqueous foam and nitrogen was used to generate the organic foam. The experiment system comprised four complete independent systems with injection unit, experiment chamber and gas system. The main part in the experiment system is the experiment chamber where the foam is generated and monitored. The chamber inner dimensions are 50x50x50 mm and it has front and back wall made of glass. The front window is used for monitoring the foam and the back window is used for back illumination. The front glass has etched crosses on the inside as reference points. In the bottom of the cell is a glass frit and at the top is a gas in/outlet. The foam was generated by injecting the experiment liquid in a glass frit in the bottom of the experiment chamber. Simultaneously gas was blown through the glass frit and a small amount of foam was generated. This procedure was performed at 10 bar. Then the pressure was lowered in the experiment chamber to approximately 0,1 bar to expand the foam to a dry foam that filled the experiment chamber. The foam was regenerated during flight by pressurise the cell and repeat the foam generation procedures. The module had 4 individual experiment chambers for the four different solutions. The four experiment chambers were controlled individually with individual experiment parameters and procedures. The gas system comprise on/off valves and adjustable valves to control the pressure and the gas flow and liquid flow during foam generation. The gas system can be divided in four sections, each section serving one experiment chamber. The sections are partly connected in two pairs with common inlet and outlet. The two pairs are supplied with a 1l gas bottle each filled to a pressure of 40 bar and a pressure regulator lowering the pressure from 40 bar to 10 bar. Two sections are connected to the same outlet. The gas outlets from the experiment chambers are connected to two symmetrical placed outlets on the outer structure with diffusers not to disturb the g-levels. The foam in each experiment chamber was monitored with one tomography camera and one overview camera (8 CCD cameras in total). The tomography camera is placed on a translation table which makes it possible to move it in the depth direction of the experiment chamber. The video signal from the 8 CCD cameras were stored onboard with two DV recorders. Two video signals were also transmitted to ground for real time evaluation and operation of the experiment. Which camera signal that was transmitted to ground could be selected with telecommands. With help of the tomography system it was possible to take sequences of images of the foam at different depths in the foam. This sequences of images are used for constructing a 3-D model of the foam after flight. The overview camera has a fixed position and a field of view that covers the total experiment chamber. This camera is used for monitoring the generation of foam and the overall behaviour of the foam. The experiment was performed successfully with foam generation in all 4 experiment chambers. Foam was also regenerated during flight with telecommands. The experiment data is under evaluation.

  1. Epinephrine syringe exchange events in a paediatric cardiovascular ICU: analysing the storm.

    PubMed

    Achuff, Barbara-Jo; Achuff, Jameson C; Park, Hwan H; Moffett, Brady; Acosta, Sebastian; Rusin, Craig G; Checchia, Paul A

    2018-03-01

    Introduction Haemodynamically unstable patients can experience potentially hazardous changes in vital signs related to the exchange of depleted syringes of epinephrine to full syringes. The purpose was to determine the measured effects of epinephrine syringe exchanges on the magnitude, duration, and frequency of haemodynamic disturbances in the hour after an exchange event (study) relative to the hours before (control). Materials and methods Beat-to-beat vital signs recorded every 2 seconds from bedside monitors for patients admitted to the paediatric cardiovascular ICU of Texas Children's Hospital were collected between 1 January, 2013 and 30 June, 2015. Epinephrine syringe exchanges without dose/flow change were obtained from electronic records. Time, magnitude, and duration of changes in systolic blood pressure and heart rate were characterised using Matlab. Significant haemodynamic events were identified and compared with control data. In all, 1042 syringe exchange events were found and 850 (81.6%) had uncorrupted data for analysis. A total of 744 (87.5%) exchanges had at least 1 associated haemodynamic perturbation including 2958 systolic blood pressure and 1747 heart-rate changes. Heart-rate perturbations occurred 37% before exchange and 63% after exchange, and 37% of systolic blood pressure perturbations happened before syringe exchange, whereas 63% occurred after syringe exchange with significant differences found in systolic blood pressure frequency (p<0.001), duration (p<0.001), and amplitude (p<0.001) compared with control data. This novel data collection and signal processing analysis showed a significant increase in frequency, duration, and magnitude of systolic blood pressure perturbations surrounding epinephrine syringe exchange events.

  2. Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island

    NASA Astrophysics Data System (ADS)

    Römer, Miriam; Riedel, Michael; Scherwath, Martin; Heesemann, Martin; Spence, George D.

    2016-09-01

    Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant subsurface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.

  3. Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks

    NASA Astrophysics Data System (ADS)

    de Paola, Nicola; Hirose, Takehiro; Mitchell, Tom; di Toro, Giulio; Viti, Cecilia; Shimamoto, Toshiko

    2010-05-01

    During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee's range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.

  4. Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Hirose, T.; Mitchell, T. M.; di Toro, G.; Viti, C.; Shimamoto, T.

    2009-12-01

    During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee’s range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.

  5. Postural stability is altered by the stimulation of pain but not warm receptors in humans.

    PubMed

    Blouin, Jean-Sébastien; Corbeil, Philippe; Teasdale, Normand

    2003-10-17

    It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C) were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively). For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. The stimulation of the warm receptors (40 degrees C) did not induce any postural deterioration. With pain (45 degrees C), subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure). A non-noxious stimulation (40 degrees C) of the small diameter afferents is not a sufficiently intense sensory stimulation to alter the control of posture. A painful stimulation (45 degrees C) of the skin thermoreceptors, however, yielded a deterioration of the postural control system. The observed deteriorating effects of the combined stimulation of nociceptors and Ia afferents (when ankle tendons were vibrated) could result from the convergence of these afferents at the spinal level. This could certainly lead to the hypothesis that individuals suffering from lower limb pain present alterations of the postural control mechanisms; especially populations already at risk of falling (for example, frail elderly) or populations suffering from concomitant lower limb pain and sensory deficits (for example, diabetic polyneuropathy).

  6. An attentional bias for LEGO® people using a change detection task: Are LEGO® people animate?

    PubMed

    LaPointe, Mitchell R P; Cullen, Rachael; Baltaretu, Bianca; Campos, Melissa; Michalski, Natalie; Sri Satgunarajah, Suja; Cadieux, Michelle L; Pachai, Matthew V; Shore, David I

    2016-09-01

    Animate objects have been shown to elicit attentional priority in a change detection task. This benefit has been seen for both human and nonhuman animals compared with inanimate objects. One explanation for these results has been based on the importance animate objects have served over the course of our species' history. In the present set of experiments, we present stimuli, which could be perceived as animate, but with which our distant ancestors would have had no experience, and natural selection could have no direct pressure on their prioritization. In the first experiment, we compared LEGO® "people" with LEGO "nonpeople" in a change detection task. In a second experiment, we attempt to control the heterogeneity of the nonanimate objects by using LEGO blocks, matched in size and colour to LEGO people. In the third experiment, we occlude the faces of the LEGO people to control for facial pattern recognition. In the final 2 experiments, we attempt to obscure high-level categorical information processing of the stimuli by inverting and blurring the scenes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    NASA Astrophysics Data System (ADS)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  8. Experiment 2033. Injection Test of Upper EE-3 Fracture Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigsby, Charles O.

    1983-09-12

    This experiment is designed to investigate the apparent lithologic boundary between the low-opening-pressure fracture system (upper EE-3 fracture and Phase I system) and the high-opening-pressure fracture system (lower fracture in EE-3 and in EE-2). The experiment will test for resistence to breakthrough into the lower EE-2 fracture system at relatively low pressure and will define the veting behavior of the low pressure system.

  9. Synthesis of polycrystalline methane hydrate, and its phase stability and mechanical properties at elevated pressure

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1997-01-01

    Test specimens of methane hydrate were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. Hydrate formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane hydrate with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-hydrate-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.

  10. Manualization of Occupational Therapy Interventions: Illustrations from the Pressure Ulcer Prevention Research Program

    PubMed Central

    Blanche, Erna Imperatore; Fogelberg, Donald; Diaz, Jesus; Carlson, Mike; Clark, Florence

    2011-01-01

    The manualization of a complex occupational therapy intervention is a crucial step in ensuring treatment fidelity for both clinical application and research purposes. Towards this latter end, intervention manuals are essential for assuring trustworthiness and replicability of randomized controlled trials (RCT’s) that aim to provide evidence of the effectiveness of occupational therapy. In this paper, literature on the process of intervention manualization is reviewed. The prescribed steps are then illustrated through our experience in implementing the University of Southern California/Rancho Los Amigos National Rehabilitation Center’s collaborative Pressure Ulcer Prevention Project (PUPP). In this research program, qualitative research provided the initial foundation for manualization of a multifaceted occupational therapy intervention designed to reduce incidence of medically serious pressure ulcers in people with SCI. PMID:22214116

  11. High-pressure, High-temperature Deformation Experiment Using the New Generation Griggs-type Apparatus

    PubMed Central

    Précigout, Jacques; Stünitz, Holger; Pinquier, Yves; Champallier, Rémi; Schubnel, Alexandre

    2018-01-01

    In order to address geological processes at great depths, rock deformation should ideally be tested at high pressure (> 0.5 GPa) and high temperature (> 300 °C). However, because of the low stress resolution of current solid-pressure-medium apparatuses, high-resolution measurements are today restricted to low-pressure deformation experiments in the gas-pressure-medium apparatus. A new generation of solid-medium piston-cylinder ("Griggs-type") apparatus is here described. Able to perform high-pressure deformation experiments up to 5 GPa and designed to adapt an internal load cell, such a new apparatus offers the potential to establish a technological basis for high-pressure rheology. This paper provides video-based detailed documentation of the procedure (using the "conventional" solid-salt assembly) to perform high-pressure, high-temperature experiments with the newly designed Griggs-type apparatus. A representative result of a Carrara marble sample deformed at 700 °C, 1.5 GPa and 10-5 s-1 with the new press is also given. The related stress-time curve illustrates all steps of a Griggs-type experiment, from increasing pressure and temperature to sample quenching when deformation is stopped. Together with future developments, the critical steps and limitations of the Griggs apparatus are then discussed. PMID:29683444

  12. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  13. Operational experience from LCLS-II cryomodule testing

    NASA Astrophysics Data System (ADS)

    Wang, R.; Hansen, B.; White, M.; Hurd, J.; Atassi, O. Al; Bossert, R.; Pei, L.; Klebaner, A.; Makara, J.; Theilacker, J.; Kaluzny, J.; Wu, G.; Harms, E.

    2017-12-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  14. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Allan Brian G.; Owens, Lewis, R.

    2006-01-01

    This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a miss alignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery that was 0.01 lower than the experiment as was seen in the baseline. Comparison of the flow features the jet case revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.

  15. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  16. Role of fluids in experimental calcite-bearing faults at seismic deformation conditions.

    NASA Astrophysics Data System (ADS)

    Violay, M.; Nielsen, S.; Cinti, D.; Spagnuolo, E.; Di Toro, G.; Smith, S.

    2012-04-01

    Fluids play a fundamental physical (fluid pressure, temperature buffering, etc.) and chemical (dissolution, hydrolytic weakening, etc.) role in controlling fault strength and earthquake nucleation, propagation and arrest. However, due to technical challenges, the influence of water at deformation conditions typical of earthquakes (i.e., slip rates of 1 m/s, displacements of 0.1-5 m, normal stress of tens of MPa) remains poorly constrained experimentally. Here we present results from high velocity friction experiments performed with a rotary shear apparatus (SHIVA: Slow to HIgh Velocity (friction) Apparatus) on Carrara marble. SHIVA is equipped with (1) an environmental/vacuum chamber to perform experiments in the absence of room-humidity, (2) a pressure vessel to perform experiments with fluids (up to 15 MPa confining pressure), including devices to determine fluid composition (Ca2+, Mg2+, HCO3-, etc). Experiments were conducted on hollow cylinders (50/30 mm ext/int diameter) of Carrara (98% calcite) marble at velocities of 1-6.5 m/s, displacements up to a few meters, normal stresses up to 40 MPa and fluid pressures between 0 (under vacuum) and 15 MPa (fluid-saturated conditions, with H2O in chemical equilibrium with the marble). Rock and fluid samples were recovered for post-run analysis to determine deformation mechanisms and changes in fluid composition. Under these deformation conditions: 1) the friction coefficient decays rapidly from a peak (= static) μp ~ 0.8 at the initiation of sliding towards a steady-state μss ~ 0.1. The absolute values of both peak and steady-state friction are not significantly influenced by the presence of fluids; 2) the decay from peak to steady-state friction is more abrupt in presence of fluids; 3) during deceleration of the friction apparatus, the friction coefficient recovers almost instantaneously to a value, μr, of 0.2-0.6 ( strength recovery) resulting in a small static stress drop. Strength recovery is smaller in the presence of fluids. 4) the fluid (H2O) after the experiment is enriched in Ca2+, Mg2+ and HCO3-. This chemical evolution suggests breakdown reactions (decarbonation of calcite) promoted by frictional heating and controlled by the presence of H2O. We conclude that the large decrease in friction and abrupt weakening, especially in the presence of fluids, indicates that calcite-bearing rocks are prone to earthquake nucleation and seismic rupture propagation (see the L'Aquila 2009 earthquake sequence). The chemical changes observed in water springs after large earthquakes in carbonatic rocks is similar to those found in these experiments, suggesting that the weakening mechanisms triggered in the experiments might occur in nature.

  17. Source Term Experiments Project (STEP): Aerosol characterization system

    NASA Astrophysics Data System (ADS)

    Schlenger, B. J.; Dunn, P. F.

    A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They were designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Aq/In/Cd control rod material.

  18. Recurrent postural vasovagal syncope: sympathetic nervous system phenotypes.

    PubMed

    Vaddadi, Gautam; Guo, Ling; Esler, Murray; Socratous, Florentia; Schlaich, Markus; Chopra, Reena; Eikelis, Nina; Lambert, Gavin; Trauer, Thomas; Lambert, Elisabeth

    2011-10-01

    The pathophysiology of vasovagal syncope is poorly understood, and the treatment usually ineffective. Our clinical experience is that patients with vasovagal syncope fall into 2 groups, based on their supine systolic blood pressure, which is either normal (>100 mm Hg) or low (70-100 mm Hg). We investigated neural circulatory control in these 2 phenotypes. Sympathetic nervous testing was at 3 levels: electric, measuring sympathetic nerve firing (microneurography); neurochemical, quantifying norepinephrine spillover to plasma; and cellular, with Western blot analysis of sympathetic nerve proteins. Testing was done during head-up tilt (HUT), simulating the gravitational stress of standing, in 18 healthy control subjects and 36 patients with vasovagal syncope, 15 with the low blood pressure phenotype and 21 with normal blood pressure. Microneurography and norepinephrine spillover increased significantly during HUT in healthy subjects. The microneurography response during HUT was normal in normal blood pressure and accentuated in low blood pressure phenotype (P=0.05). Norepinephrine spillover response was paradoxically subnormal during HUT in both patient groups (P=0.001), who thus exhibited disjunction between nerve firing and neurotransmitter release; this lowered norepinephrine availability, impairing the neural circulatory response. Subnormal norepinephrine spillover in low blood pressure phenotype was linked to low tyrosine hydroxylase (43.7% normal, P=0.001), rate-limiting in norepinephrine synthesis, and in normal blood pressure to increased levels of the norepinephrine transporter (135% normal, P=0.019), augmenting transmitter reuptake. Patients with recurrent vasovagal syncope, when phenotyped into 2 clinical groups based on their supine blood pressure, show unique sympathetic nervous system abnormalities. It is predicted that future therapy targeting the specific mechanisms identified in the present report should translate into more effective treatment.

  19. Periodic buckling of constrained cylindrical elastic shells

    NASA Astrophysics Data System (ADS)

    Marthelot, Joel; Brun, Pierre-Thomas; Lopez Jimenez, Francisco; Reis, Pedro M.

    We revisit the classic problem of buckling of a thin cylindrical elastic shell loaded either by pneumatic depressurization or axial compression. The control of the resulting dimpled pattern is achieved by using a concentric inner rigid mandrel that constrains and stabilizes the post-buckling response. Under axial compression, a regular lattice of diamond-like dimples appears sequentially on the surface of the shell to form a robust spatially extended periodic pattern. Under pressure loading, a periodic array of ridges facets the surface of the elastic cylindrical shell. The sharpness of these ridges can be readily varied and controlled through a single scalar parameter, the applied pressure. A combination of experiments, simulations and scaling analyses is used to rationalize the combined role of geometry and mechanics in the nucleation and evolution of the diamond-like dimples and ridges networks.

  20. Customizing elastic pressure bandages for reuse to a predetermined, sub-bandage pressure: A randomized controlled trial.

    PubMed

    Sermsathanasawadi, Nuttawut; Tarapongpun, Tanakorn; Pianchareonsin, Rattana; Puangpunngam, Nattawut; Wongwanit, Chumpol; Chinsakchai, Khamin; Mutirangura, Pramook; Ruangsetakit, Chanean

    2017-01-01

    Objective A randomized clinical trial was performed to compare the effectiveness of unmarked bandages and customized bandages with visual markers in reproducing the desired sub-bandage pressure during self-bandaging by patients. Method Ninety patients were randomly allocated to two groups ("customized bandages" and "unmarked bandages") and asked to perform self-bandaging three times. The achievement of a pressure between 35 and 45 mmHg in at least two of the three attempts was defined as adequate quality. Results Adequate quality was achieved by 33.0% when applying the unmarked bandages, and 60.0% when applying the customized bandages ( p = 0.02). Use of the customized bandage and previous experience of bandaging were independent predictors for the achievement of the predetermined sub-bandage pressure ( p = 0.005 and p = 0.021, respectively). Conclusion Customized bandages may achieve predetermined sub-bandage pressures more closely than standard, unmarked, compression bandages. Clinical trials registration ClinicalTrials.gov (NCT02729688). Effectiveness of a Pressure Indicator Guided and a Conventional Bandaging in Treatment of Venous Leg Ulcer. https://clinicaltrials.gov/ct2/show/NCT02729688.

Top