Science.gov

Sample records for pressure control valve

  1. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  2. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  3. Pressure tracking control of vehicle ABS using piezo valve modulator

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  4. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    Wilkes, Karlin; Larsen, Ed; McCourt, Jackson

    2003-01-01

    A control valve that can throttle high-pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body.

  5. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    NASA Astrophysics Data System (ADS)

    Groen, Maarten S.; Wu, Kai; Brookhuis, Robert A.; van Houwelingen, Marc J.; Brouwer, Dannis M.; Lötters, Joost C.; Wiegerink, Remco J.

    2014-12-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch.

  6. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  7. Failure Analysis of High Pressure Test Facility Control Valves

    DTIC Science & Technology

    2013-10-01

    larger than the axial load applied to the stem by the actuator in the closed valve position), so we decided that no further buckling analysis was...caused the stem to bend. There are only two modes by which the stem could have bent in the manner it did: buckling and/or a cantilever load...load; however, we have clearly demonstrated on other valves (much to our embarrassment) that it is entirely possible to buckle the stem by over

  8. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    Wilkes, Karlin; Larsen, Ed; McCourt, Jackson

    2004-01-01

    A control valve that can throttle high pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body. The design feature that provides flexibility for changing the trim is a split body. The body is divided into an upper and a lower section with the seat ring sandwiched in between. In order to maintain the plug stem packing at an acceptable sealing temperature during cryogenic service, heat-exchanging fins were added to the upper body section (see figure). The body is made of stainless steel.

  9. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A control valve that can throttle high-pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body. The design feature that provides flexibility for changing the trim is a split body. The body is divided into an upper and a lower section with the seat ring sandwiched in between. In order to maintain the plug stem packing at an acceptable sealing temperature during cryogenic service, heat-exchanging fins were added to the upper body section. The body is made of stainless steel. The seat ring is made of a nickel-based alloy having a coefficient of thermal expansion less than that of the body material. Consequently, when the interior of the valve is cooled cryogenically, the body surrounding the seat ring contracts more than the seat ring. This feature prevents external leakage at the body-seat joint. The seat ring has been machined to have small, raised-face sealing surfaces on both sides of the seal groove. These sealing surfaces concentrate the body bolt load over a small area, thereby preventing external leakage. The design of the body bolt circle is different from that of conventional highpressure control valves. Half of the bolts clamp the split body together from the top, and half from the bottom side. This bolt-circle design allows a short, clean flow path, which minimizes frictional flow losses. This bolt-circle design also makes it possible to shorten the face-toface length of the valve, which is 25.5 in. (65 cm). In contrast, a conventional, high-pressure control valve face-to-face dimension may be greater than 40 in. (>1 m

  10. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOEpatents

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  11. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    DOEpatents

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  12. Pressure model of a four-way spool valve for simulating electrohydraulic control systems

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.

    1976-01-01

    An equation that relates the pressure flow characteristics of hydraulic spool valves was developed. The dependent variable is valve output pressure, and the independent variables are spool position and flow. This causal form of equation is preferred in applications that simulate the effects of hydraulic line dynamics. Results from this equation are compared with those from the conventional valve equation, whose dependent variable is flow. A computer program of the valve equations includes spool stops, leakage spool clearances, and dead-zone characteristics of overlap spools.

  13. Evaluation of a fracture failure mode in the Space Shuttle hydrogen pressurization system flow control valves

    NASA Astrophysics Data System (ADS)

    Hauver, S. E.; Sueme, D. R.

    1992-07-01

    During acceptance testing of the Space Shuttle Endeavor hydrogen flow control valves, which are used in the Orbiter's fuel tank pressurization system, two of the valves experienced fracture of the poppet flange. The poppets are made of 440 C, a high strength, wear-resistant, low ductility, martensitic stainless steel. The investigation which was initiated to determine the cause of these failures is traced. All aspects of the poppet processing that may have introduced a defect were assessed. This included machining, heat treating, passivation, assembly, and test. In addition, several potential failure modes were investigated. The extensive investigation revealed no obvious cause of the failures, but did result in a recommendation for a different material application.

  14. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOEpatents

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  15. Combined pressure regulator and shutoff valve

    NASA Technical Reports Server (NTRS)

    Koch, E. F. (Inventor)

    1974-01-01

    A remotely operable pressure regulator and shutoff valve particularly suited for achieving high resolution and flow control, and positive shutoff is described. The valve is characterized by a spring-loaded ball coaxially aligned with a fluid port to be sealed, a spring-loaded pintle extended through the port into engagement with the ball, for controlling the position, a spring-loaded diaphragm for controlling the position of the pintle, and an axially displaceable spring supported by a movable stop which, in turn, is repositioned by a selectively operable stepper motor. Thus, the pressure-response characteristics for the valve can be varied through a selective repositioning of the stop.

  16. Theoretical analysis of a pressure setting and control system with PWM direction control valve

    NASA Astrophysics Data System (ADS)

    Avram, M.; Duminică, D.; Cartal, L. A.

    2016-08-01

    The paper tackles theoretical aspects concerning an original automated system that sets and controls the pressure inside a tank chamber of fixed volume. The structure of the system integrates an original device developed and designed by the authors. The device digitally controls the one way flow of the working fluid using pulse width modulation, allowing the free flow in the other way. The purpose of this research stage was the theoretical establishing of the variation law of the pressure inside the controlled chamber.

  17. Intraocular Pressure Control after Implantation of an Ahmed Glaucoma Valve in Eyes with a Failed Trabeculectomy

    PubMed Central

    Schimiti, Rui B; Abe, Ricardo Y; Tavares, Carla M; Vasconcellos, Jose PC; Costa, Vital P

    2016-01-01

    Aim To evaluate the results of Ahmed glaucoma valve (AGV) in eyes with a failed trabeculectomy. Materials and methods This retrospective study evaluated 61 eyes with a failed trabeculectomy that underwent implantation of an AGV due to uncontrolled intraocular pressure (IOP) on maximal medical therapy. Success was defined as IOP ≤ 21 mm Hg (criterion 1) or 20% reduction in IOP (criterion 2) with or without antiglaucoma medications. Persistent hypotony, loss of light perception, and reoperation for IOP control were defined as failure. Results Mean preoperative IOP and mean lOPs at 6, 12, and 24 months were 21.93 ± 6.32 mm Hg (n = 61), 14.15 ± 4.33 mm Hg (n = 59), 13.21 ± 4.44 mm Hg (n = 56), and 13.60 ± 3.27 mm Hg (n = 25) respectively. Mean number of antiglaucoma medications preoperatively and at 6, 12, and 24 months was 3.95 ± 0.85, 2.19 ± 1.38, 2.48 ± 1.44, and 2.40 ± 1.32 respectively. The reductions in the number of medications and IOP measurements were statistically significant at all time intervals (p < 0.001, Wilcoxon signed rank test). According to criterion 1, the Kaplan-Meier survival curve disclosed success rates of 75% at 12 and 24 months. According to criterion 2, the success rates were 57% at 12 months and 55% at 24 months. The most frequent complications were hypertensive phase (18%) and shallow anterior chamber (16.4%). Conclusion The AGV may effectively reduce IOP in eyes that had a failed trabeculectomy. Clinical significance The AGV is an alternative in eyes with a failed trabeculectomy. How to cite this article Schimiti RB, Abe RY, Tavares CM, Vasconcellos JPC, Costa VP. Intraocular Pressure Control after Implantation of an Ahmed Glaucoma Valve in Eyes with a Failed Trabeculectomy. J Curr Glaucoma Pract 2016;10(3):97-103. PMID:27857489

  18. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  19. Cavitation guide for control valves

    SciTech Connect

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  20. Solenoid-valve-controlled fuel injection device

    SciTech Connect

    Oshizawa, H.

    1988-12-06

    This patent describes a solenoid-valve-controlled fuel injection device comprising: a fuel injection pump having a pump cylinder, a plunger rotatably and reciprocably disposed in the pump cylinder in a fluid-tight manner and defining a fuel pressurization chamber between a distal end of the plunger and the pump cylinder, a drive shaft rotatable in synchronism with an output shaft of an internal combustion engine, means responsive to rotation of the drive shaft for reciprocably displacing the plunger to pressurize fuel in the pressurization chamber, and a fuel chamber for being supplied with fuel from a fuel tank in response to rotation of the drive shaft, whereby the pressurized fuel can be fed into cylinders of the internal combustion engine; a solenoid valve for selectively opening and closing a communication passage by which the pressurization chamber and the fuel chamber communicate with each other; valve opening delay time detecting means for detecting a valve opening delay time of the solenoid valve; valve closing delay time detecting means for detecting a valve closing delay time of the solenoid valve; valve closing period calculating means for calculating a valve closing time of the solenoid valve according to operating conditions of the internal combustion engine; target fuel injection time calculating means for calculating a target fuel injection time according to the operating conditions of the internal combustion engine.

  1. Self-aligning, low-pressure sealing poppet valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Bratfisch, W. A.

    1972-01-01

    Design and characteristics of poppet valve operated by very low differential pressures to control fluid flow are described. Valve is used to control flow of petroleum, chemical, and aircraft hydraulics where low leakage rates and activation at low pressures are required.

  2. FLUID PRESSURE AND CAM OPERATED VACUUM VALVE

    DOEpatents

    Batzer, T.H.

    1963-11-26

    An ultra-high vacuum valve that is bakable, reusable, and capable of being quickly opened and closed is described. A translationally movable valve gate having an annular ridge is adapted to contact an annular soft metal gasket disposed at the valve seat such that the soft metal gasket extends beyond the annular ridge on all sides. The valve gate is closed, by first laterally aligning the valve gate with the valve seat and then bringing the valve gate and valve seat into seating contact by the translational movement of a ramp-like wedging means that engages similar ramp-like stractures at the base of the valve gate to force the valve gate into essentially pressureless contact with the annular soft metal gasket. This gasket is then pressurized from beneath by a fluid thereby effecting a vacuura tight seal between the gasket and the ridge. (AEC)

  3. Exhaust gas bypass valve control for thermoelectric generator

    SciTech Connect

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  4. 30. Engine controls and valve gear, looking aft on main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Engine controls and valve gear, looking aft on main (promenade) deck level. Threaded admission valve lift rods (two at immediate left of chronometer) permit adjustment of valve timing in lower and upper admission valves of cylinder (left rod controls lower valve, right rod upper valve). Valve rods are lifted by jaw-like "wipers" during operation. Exhaust valve lift rods and wipers are located to right of chronometer. Crank at extreme right drives valve wiper shaft when engaged to end of eccentric rod, shown under "Crank Indicator" dial. Pair of handles to immediate left of admission valve rods control condenser water valves; handles to right of exhaust valve rods control feedwater flow to boilers from pumps. Gauges indicate boiler pressure (left) and condenser vacuum (right); "Crank Indicator" on wall aids engineer in keeping engine crank off "dead-center" at stop so that engine may be easily restarted. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  5. The Effect of Pressure Ratio on Unsteady Fluid-Structure Interaction Characteristics of Ball Type Control Valve

    NASA Astrophysics Data System (ADS)

    Du, Yang; Tu, Shan; Wang, Hongjuan

    Two-way sequential fluid-structure interaction method was used to analyze and discuss the characteristics of unsteady fluid-structure interaction of the complex flow channel of a steam turbine ball type control valve. Research indicates that when the pressure ratio changes as a sine wave, its flow rate occurs a sine wave change, and the maximum flow rate value of 57.46kg•s-1 occurs in the minimum pressure ratio condition. The longitudinal force of the structure domain decreases with the reduction of the pressure ratio, and points to the opposite direction of the flow. The lateral force increases with the decrease of the pressure ratio, and points to the opposite direction of the flow. The maximum value of deformation and force of the structure domain changes consistently with the pressure ratio fluctuation. The maximum value of the structure domain stress is 28.67MPa, which is far less than the yield strength of the structure material, and the maximum deformation value is 3.25um.

  6. Methods for combining a theoretical and an empirical approach in modelling pressure and flow control valves for CAE-programs for fluid power circuits

    NASA Astrophysics Data System (ADS)

    Handroos, Heikki

    An analytical mathematical model for a fluid power valve uses equations based on physical laws. The parameters consist of physical coefficients, dimensions of the internal elements, spring constants, etc. which are not provided by the component manufacturers. The valve has to be dismantled in order to determine their values. The model is only in accordance with a particular type of valve construction and there are a large number of parameters. This is a major common problem in computer aided engineering (CAE) programs for fluid power circuits. Methods for solving this problem by combining a theoretical and an empirical approach are presented. Analytical models for single stage pressure and flow control valves are brought into forms which contain fewer parameters whose values can be determined from measured characteristic curves. The least squares criterion is employed to identify the parameter values describing the steady state of a valve. The steady state characteristic curves that are required data for this identification are quite often provided by the manufacturers. The parameters describing the dynamics of a valve are determined using a simple noncomputational method using dynamic characteristic curves that can be easily measured. The importance of the identification accuracy of the different parameters of the single stage pressure relief valve model is compared using a parameter sensitivity analysis method. A new comparison method called relative mean value criterion is used to compare the influences of variations of the different parameters to a nominal dynamic response.

  7. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  8. Intraocular pressure control after the implantation of a second Ahmed glaucoma valve.

    PubMed

    Jiménez-Román, Jesús; Gil-Carrasco, Félix; Costa, Vital Paulino; Schimiti, Rui Barroso; Lerner, Fabián; Santana, Priscila Rezende; Vascocellos, Jose Paulo Cabral; Castillejos-Chévez, Armando; Turati, Mauricio; Fabre-Miranda, Karina

    2016-06-01

    The objective of this study is to evaluate the efficacy and safety of a second Ahmed glaucoma valve (AGV) in eyes with refractory glaucoma that had undergone prior Ahmed device implantation. This multicenter, retrospective study evaluated 58 eyes (58 patients) that underwent a second AGV (model S2-n = 50, model FP7-n = 8) due to uncontrolled IOP under maximal medical therapy. Outcome measures included IOP, visual acuity, number of glaucoma medications, and postoperative complications. Success was defined as IOP <21 mmHg (criterion 1) or 30 % reduction of IOP (criterion 2) with or without hypotensive medications. Persistent hypotony (IOP <5 mmHg after 3 months of follow-up), loss of light perception, and reintervention for IOP control were defined as failure. Mean preoperative IOP and mean IOPs at 12 and 30 months were 27.55 ± 1.16 mmHg (n = 58), 14.45 ± 0.83 mmHg (n = 42), and 14.81 ± 0.87 mmHg (n = 16), respectively. The mean numbers of glaucoma medications preoperatively at 12 and 30 months were 3.17 ± 0.16 (n = 58), 1.81 ± 0.2 (n = 42), and 1.83 ± 0.35 (n = 18), respectively. The reductions in mean IOP and number of medications were statistically significant at all time intervals (P < 0.001). According to criterion 1, Kaplan-Meier survival curves disclosed success rates of 62.9 % at 12 months and 56.6 % at 30 months. According to criterion 2, Kaplan-Meier survival curves disclosed success rates of 43.9 % at 12 months and 32.9 % at 30 months. The most frequent early complication was hypertensive phase (10.3 %) and the most frequent late complication was corneal edema (17.2 %). Second AGV implantation may effectively reduce IOP in eyes with uncontrolled glaucoma, and is associated with relatively few complications.

  9. Glovebox pressure relief and check valve

    SciTech Connect

    Blaedel, K.L.

    1986-03-17

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury.

  10. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOEpatents

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  11. Importance of pressure reducing valves (PRVs) in water supply networks.

    NASA Astrophysics Data System (ADS)

    Signoreti, R. O. S.; Camargo, R. Z.; Canno, L. M.; Pires, M. S. G.; Ribeiro, L. C. L. J.

    2016-08-01

    Challenged with the high rate of leakage from water supply systems, these managers are committed to identify control mechanisms. In order to standardize and control the pressure Pressure Reducing Valves (VRP) are installed in the supply network, shown to be more effective and provide a faster return for the actual loss control measures. It is known that the control pressure is while controlling the occurrence of leakage. Usually the network is sectored in areas defined by pressure levels according to its topography, once inserted the VRP in the same system will limit the downstream pressure. This work aims to show the importance of VRP as loss reduction for tool.

  12. Simulation of a Hydraulic Pump Control Valve

    NASA Technical Reports Server (NTRS)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  13. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  14. 46 CFR 154.1846 - Relief valves: Changing set pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Relief valves: Changing set pressure. 154.1846 Section... Relief valves: Changing set pressure. The master shall: (a) Supervise the changing of the set pressure of relief valves under § 154.802(b); (b) Enter the change of set pressure in the vessel's log; and...

  15. 46 CFR 154.806 - Capacity of pressure relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Capacity of pressure relief valves. 154.806 Section 154... Equipment Cargo Vent Systems § 154.806 Capacity of pressure relief valves. Pressure relief valves for each cargo tank must have a combined relief capacity, including the effects of back pressure from vent...

  16. 46 CFR 154.1846 - Relief valves: Changing set pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Relief valves: Changing set pressure. 154.1846 Section... Relief valves: Changing set pressure. The master shall: (a) Supervise the changing of the set pressure of relief valves under § 154.802(b); (b) Enter the change of set pressure in the vessel's log; and...

  17. 46 CFR 154.1846 - Relief valves: Changing set pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Relief valves: Changing set pressure. 154.1846 Section... Relief valves: Changing set pressure. The master shall: (a) Supervise the changing of the set pressure of relief valves under § 154.802(b); (b) Enter the change of set pressure in the vessel's log; and...

  18. 46 CFR 154.1846 - Relief valves: Changing set pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Relief valves: Changing set pressure. 154.1846 Section... Relief valves: Changing set pressure. The master shall: (a) Supervise the changing of the set pressure of relief valves under § 154.802(b); (b) Enter the change of set pressure in the vessel's log; and...

  19. 46 CFR 154.1846 - Relief valves: Changing set pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Relief valves: Changing set pressure. 154.1846 Section... Relief valves: Changing set pressure. The master shall: (a) Supervise the changing of the set pressure of relief valves under § 154.802(b); (b) Enter the change of set pressure in the vessel's log; and...

  20. 46 CFR 154.806 - Capacity of pressure relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Capacity of pressure relief valves. 154.806 Section 154... Equipment Cargo Vent Systems § 154.806 Capacity of pressure relief valves. Pressure relief valves for each cargo tank must have a combined relief capacity, including the effects of back pressure from vent...

  1. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  2. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  3. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  4. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  5. 46 CFR 105.10-20 - Pressure vacuum relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vacuum relief valve. 105.10-20 Section 105.10... Pressure vacuum relief valve. (a) The term pressure vacuum relief valve means any device or assembly of a mechanical, liquid, weight, or other type used for the automatic regulation of pressure or vacuum in...

  6. 46 CFR 154.806 - Capacity of pressure relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Capacity of pressure relief valves. 154.806 Section 154... Equipment Cargo Vent Systems § 154.806 Capacity of pressure relief valves. Pressure relief valves for each cargo tank must have a combined relief capacity, including the effects of back pressure from vent...

  7. 46 CFR 154.806 - Capacity of pressure relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Capacity of pressure relief valves. 154.806 Section 154... Equipment Cargo Vent Systems § 154.806 Capacity of pressure relief valves. Pressure relief valves for each cargo tank must have a combined relief capacity, including the effects of back pressure from vent...

  8. 46 CFR 154.806 - Capacity of pressure relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Capacity of pressure relief valves. 154.806 Section 154... Equipment Cargo Vent Systems § 154.806 Capacity of pressure relief valves. Pressure relief valves for each cargo tank must have a combined relief capacity, including the effects of back pressure from vent...

  9. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  10. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  11. Digital valve for high pressure high flow applications

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Sherrit, Stewart; Lewis, Derek; Bao, Xiaoqi; Bar-Cohen, Yoseph; Hall, Jeffery L.

    2016-04-01

    To address the challenges, which are involved with the development of flow control valves that can meet high demand requirements such as high pressure, high flow rate, limited power and limited space, the authors have conceived a novel design configuration. This design consists of a digitalized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet. A choke valve controls the total flow rate by digitally opening different paths or different combination of the paths. Each path is controlled by a poppet cap valve basically operated in on-off states. The number of flow states is 2N where N is the number of flow paths. To avoid erosion from sand in the fluid and high speed flow, the seal area of the poppet cap valve is located at a distance from the flow inlet away from the high speed flow and the speed is controlled to stay below a predefined erosion safe limit. The path is a multistage structure composed of a set of serial nozzles-expansion chambers that equally distribute the total pressure drop to each stage. The pressure drop of each stage and, therefore, the flow speed at the nozzles and expansion chambers is controlled by the number of stages. The paths have relatively small cross section and could be relatively long for large number of stages and still fit in a strict annular space limit. The paper will present the design configuration, analysis and preliminary test results.

  12. EXPERIMENTAL DESIGN OF A FLUID-CONTROLLED HOT GAS VALVE

    DTIC Science & Technology

    Effort is described toward development of a hot gas jet reaction valve utilizing boundary layer techniques to control a high pressure, high...temperature gas stream. The result has been the successful design of a hot gas valve in a reaction control system utilizing fluid-controlled bi-stable

  13. Tortuous path control valves for vibration and noise control

    SciTech Connect

    Miller, H.L.

    1996-09-01

    Control valves are needed in many offshore applications involving fluid pressure drop levels that result in excessive system noise and vibration. These situations occur in liquid and gas flow applications. The root cause of the destructive forces that result in noise and vibration is excessive fluid velocities and the kinetic energy associated with these velocities during the pressure letdown. These high uncontrolled velocities can also cause significant erosion of internal parts that would result in a measurable degradation of the valve performance. The use of a multi-path, multi-staged trim design results in fluid velocities that will eliminate the noise and vibration associated with the pressure letdown. Valves of this type are used in chokes, pipeline vents, flow to flare, compressor recycle, pump minimum flow, level control, pressure letdown, fire water control, and bypass flow to mention a few.

  14. Energy conservation with automatic flow control valves

    SciTech Connect

    Phillips, D.

    1984-12-01

    Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.

  15. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  16. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  17. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  18. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  19. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  20. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  1. Statistical Performance Evaluation Of Soft Seat Pressure Relief Valves

    SciTech Connect

    Harris, Stephen P.; Gross, Robert E.

    2013-03-26

    Risk-based inspection methods enable estimation of the probability of failure on demand for spring-operated pressure relief valves at the United States Department of Energy's Savannah River Site in Aiken, South Carolina. This paper presents a statistical performance evaluation of soft seat spring operated pressure relief valves. These pressure relief valves are typically smaller and of lower cost than hard seat (metal to metal) pressure relief valves and can provide substantial cost savings in fluid service applications (air, gas, liquid, and steam) providing that probability of failure on demand (the probability that the pressure relief valve fails to perform its intended safety function during a potentially dangerous over pressurization) is at least as good as that for hard seat valves. The research in this paper shows that the proportion of soft seat spring operated pressure relief valves failing is the same or less than that of hard seat valves, and that for failed valves, soft seat valves typically have failure ratios of proof test pressure to set pressure less than that of hard seat valves.

  2. 20. GENERATOR #1 NEEDLE VALVE CONTROL WHEEL, WATERWHEEL GOVERNOR, PENSTOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. GENERATOR #1 NEEDLE VALVE CONTROL WHEEL, WATERWHEEL GOVERNOR, PENSTOCK PRESSURE GAUGE, AND GOVERNOR OIL SET. VIEW TO EAST. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  3. Functional Changes of Diaphragm Type Shunt Valves Induced by Pressure Pulsation

    NASA Astrophysics Data System (ADS)

    Lee, Chong-Sun; Suh, Chang-Min; Ra, Young-Shin

    Shunt valves used to treat patients with hydrocephalus were tested to investigate influence of pressure pulsation on their flow control characteristics. Our focus was on flow dynamic and functional changes of the small and thin diaphragms in the valves that serve as the main flow control mechanism and are made from silicone elastomer. Firstly, pressure-flow control curves were compared under pulsed and steady flow (without pulsation) conditions. Secondly, functional changes of the valves were tested after a long-term continuous pulsation with a peristaltic pump. Thirdly, flushing procedures selectively conducted by neurosurgeons were simulated with a fingertip pressed on the dome of the valves. As 20cc/hr of flow rate was adjusted at a constant pressure, application of 40mmH2O of pressure pulse increased flow rate through shunt valves more than 60%. As a 90cm length silicone catheter was connected to the valve outlet, increase in the flow rate was substantially reduced to 17.5%. Pressure-flow control characteristics of some valves showed significant changes after twenty-eight days of pressure pulsation at 1.0 Hz under 50.0cc/hr of flow rate. Flushing simulation resulted in temporary decrease in the pressure level. It took three hours to fully recover the normal pressure-flow control characteristics after the flushing. Our results suggest that shunt valves with a thin elastic diaphragm as the main flow control mechanism are sensitive to intracranial pressure pulsation or pressure spikes enough to change their pressure-flow control characteristics.

  4. Coolant-Control Valves For Fluid-Sampling Probes

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1989-01-01

    Small built-in leaks prevent overheating. Downstream flow-control globe valve replaced with modified gate valve. Modification consists of drilling small hole through valve gate, so valve never turned completely off. This "leaky" valve provides enough flow of coolant to prevent overheating causing probe to fail. Principle also applied to automatic control system by installing small bypass line around control valve.

  5. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2001-11-06

    An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

  6. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  7. Valving for controlling a fluid-driven reciprocating apparatus

    SciTech Connect

    Whitehead, J.C.

    1995-06-27

    A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.

  8. Valving for controlling a fluid-driven reciprocating apparatus

    SciTech Connect

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  9. Evaluation of a high response electrohydraulic digital control valve

    NASA Technical Reports Server (NTRS)

    Anderson, R. L.

    1973-01-01

    The application is described of a digital control valve on an electrohydraulic servo actuator. The digital control problem is discussed in general as well as the design and evaluation of a breadboard actuator. The evaluation revealed a number of problems associated with matching the valve to a hydraulic load. The problems were related to lost motion resulting from bulk modulus and leakage. These problems were effectively minimized in the breadboard actuator by maintaining a 1000 psi back pressure on the valve circuit and thereby improving the effective bulk modulus.

  10. Valve for controlling solids flow

    DOEpatents

    Staiger, M. Daniel

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  11. Valve for controlling solids flow

    DOEpatents

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  12. High precision high flow range control valve

    DOEpatents

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  13. High precision high flow range control valve

    DOEpatents

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  14. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  15. Numerical investigation of vibration in a steam turbine control valve

    NASA Astrophysics Data System (ADS)

    Novak, Luke Michael

    A numerical analysis is performed at North Dakota State University to investigate and resolve steam inlet control valve vibration in a Minnkota Power Cooperative turbine. Pressure fluctuations resulting from an unstable flow pattern are found to cause vibration. Multiple valve disc and seat design modifications to stabilize the flow are made and tested. The full scale geometry is used with steam as the working material. Both steady-state and transient analyses are completed. Analytical calculations are used for verification. Investigation of all modifications is discussed. Results from the original valve configuration show vortex shedding off of the disc. A currently installed cutoff disc has not removed flow-induced vibration. Flow expansion generates unstable flow, creating an unsteady separation bubble on the valve seat at the throat exit. Changing the throat from a converging-diverging to a purely converging nozzle stabilizes the flow, removing the flow-induced pressure forces causing disc vibration.

  16. 74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR LIQUID NITROGEN PUMPING STATION - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Detail view of valve mechanisms and goverenor on high pressure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of valve mechanisms and goverenor on high pressure stage engine of unit 43. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  18. Injection pump with radially mounted spill control valve

    SciTech Connect

    Djordjevic, I.

    1987-05-26

    This patent describes a rotary fuel injection pump for an internal combustion engine,. The method comprises: a housing, a rotor rotatable in the housing, a charge pump having radially extending plunger bores in the rotor and a plunger pump for each plunger bore having a pumping plunger reciprocable in the bore. The pumping plunger has outward fuel tank strokes and inward fuel delivery strokes for supplying high pressure charges of fuel for fuel injection. A cam ring surrounds the rotor and is engageable with the plunger pumps to reciprocate the plungers as the rotor rotates. A spill control mechanism has spill valve means connected to the charge pump for spill control of the high pressure charge of fuel. The improvement consists of the spill valve means which comprises at least one rotary spill valve having a valve bore in the rotor oriented transversely to the axis of the rotor and connected to the charge pump through pump passage means and a rotary spill valve member rotatably mounted within the valve bore; and the spill control mechanism.

  19. Effects of pressure and temperature on gate valve unwedging

    SciTech Connect

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-12-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. {open_quotes}Pressure locking{close_quotes} and {open_quotes}thermal binding{close_quotes} refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an {open_quotes}interference{close_quotes} between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat {open_quotes}interference{close_quotes}. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat {open_quotes}interference{close_quotes} or disk-to-seat friction.

  20. Pressure locking and thermal binding of gate valves

    SciTech Connect

    Kelly, E.M.

    1996-12-01

    Pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. Supplement 6 to Generic Letter 89-10, {open_quotes}Safety-Related Motor-Operated Gate Valve Testing and Surveillance,{close_quotes} provided an acceptable approach to addressing pressure locking and thermal binding of gate valves. More recently, the NRC has issued Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} to request that licensees take certain actions to ensure that safety-related power-operated gate valves that are susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases. Over the past two years, several plants in Region I determined that valves in certain systems were potentially susceptible to pressure locking and thermal binding, and have taken various corrective actions. The NRC Region I Systems Engineering Branch has been actively involved in the inspection of licensee actions in response to the pressure locking and thermal binding issue. Region I continues to maintain an active involvement in this area, including participation with the Office of Nuclear Reactor Regulation in reviewing licensee responses to Generic Letter 95-07.

  1. Development of Opto-Pneumatic On/Off Control Valve

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi

    An optical servo system is a new control system that can be used in hazardous environments. The purpose of our study is to develop such an optical control system. In a previous study, we had realized an optical control system that executed cart positioning using optical control signals instead of electric signals. We developed an optical servo valve in which the output pressure was proportional to input optical power. As a next step, we need to develop another type of optical valve in order to get higher pressure-gain. In this study, we propose and produce an optical on/off valve that consists of an optical on/off device and a fluid amplifier, and the structure, operating principle and fundamental characteristics of the valve are investigated. As the result, we obtain a higher output pressure of the tested valve compared with the previous one. And we propose the analytical model of the optical on/off device and identify the system parameters. We confirm their validity by comparing them with experimental results. And finally, we improve the dynamics of the device by using a feedback passage plate based on analytical results of the device.

  2. Study of fluid parameters in high pressure descaling valves

    NASA Astrophysics Data System (ADS)

    Adhikari, Param; Panta, Yogendra

    2012-11-01

    Our work is focused on the high pressure valves used for descaling purposes in steel mills. A reverse flow operation was set in one of such valves due to piping constraints. Computational approaches are being utilized to understand the fluid phenomena at such high pressures. Though the valve geometry accounts for the complete fluid flow path, a study has been initiated from an axisymmetric model of the valve core. The highly energized fluid from the descaling pump sets off a static pressure of 5000 psi at the valve inlet. It is responsible for continuous fluid flow rate of up to 208 gpm for fully open position. A Shear Stress Transport turbulence model is utilized to study pressure at nearly closed position of the poppet part while Renormalization Group Turbulence model is compared with Shear Stress Transport turbulence model for full opening position. A very low pressure developed below the poppet seat suggests the onset of cavitation zones which may lead to leakage. A full 3D model is studied after a complete studies of fluid phenomenon in the axisymmetric geometry. Using ANSYS Fluent, a commercial CFD software package, the poppet valve assembly was processed for modeling, meshing and setting up of physical parameters. Computational results show the cavitation intensities higher at small openings than at larger openings which is further verified by literature research and currently comparing with experiments.

  3. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59...

  4. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59...

  5. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59...

  6. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59...

  7. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59...

  8. Chaos in a Hydraulic Control Valve

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Hayase, T.; Kurahashi, T.

    1997-08-01

    In this paper we have studied the instability and chaos occurring in a pilot-type poppet valve circuit. The system consists of a poppet valve, an upstream plenum chamber, a supply pipeline and an orifice inserted between the pelnum and the pipeline. Although the poppet valve rests on the seat stably for a supply pressure lower than the cracking pressure, the circuit becomes unstable for an initial disturbance beyond a critical value and develops a self-excited vibration. In this unstable region, chaotic vibration appears at the period-doubling bifurcation. We have investigated the stability of the circuit and the chaotic phenomenon numerically, and elucidated it by power spectra, a bifurcation diagram and Lyapunov exponent calculations, showing that the phenomenon follows the Feigenbaum route to chaos.Copyright 1997 Academic Press Limited

  9. Electromagnetic unit fuel injector with piston assist solenoid actuated control valve

    SciTech Connect

    Teerman, R. F.; Bosch, R. H.; Wirth, R. C.

    1985-11-05

    An electromagnetic unit fuel injector includes a pump assembly having an external actuated plunger reciprocable in a bushing with flow therefrom during a pump stroke being directed to a fuel injection nozzle of the assembly. Fuel flow from the pump can also flow through a passage means, containing a normally open, substantially pressure-balanced control valve actuated by a solenoid assembly in the valve closing direction to block drain flow during a pump stroke, as desired. A piston, actuated by discharge fuel pressure is operatively connected to the control valve to assist the solenoid in holding the control valve in a closed position.

  10. Valve control system for internal combustion engines

    SciTech Connect

    Kaptur, S.J.

    1989-10-24

    This patent describes a valve control system for an internal combustion engine. The system comprising a primary control and a secondary control for modifying the operation of the primary control. The primary control comprising: a camshaft journaled for rotation in camshaft brackets, intake and exhaust cylindrical cams including cam channels; valve pin means; and timing belt means. The secondary system comprising: control plate means adjustably mounted between the cylindrical cams, rocker arm means; and at least one driver positioned between the driver leg and one of cylindrical cams.

  11. Controlling the cavitation phenomenon of evolution on a butterfly valve

    NASA Astrophysics Data System (ADS)

    Baran, G.; Catana, I.; Magheti, I.; Safta, C. A.; Savu, M.

    2010-08-01

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  12. Ventricular pressure slope and bileaflet mechanical heart valve closure.

    PubMed

    Wu, Z J; Hwang, N H

    1995-01-01

    The maximum left ventricular pressure slope (dP/dt) value has been used by several investigators as the criterion for studying mitral valve closure. In this article, the relationship between the ventricular pressure slope (dP/dt) and the leaflet closing behavior of bileaflet mechanical heart valves (BMV) is investigated. Two current BMVs, the St. Jude Medical 29 mm and CarboMedics 29 mm, installed in the mitral position of a mock circulatory pulsatile flow loop were used as the study model. Under simulated physiologic pressures and flow conditions, the experiment was conducted at 70, 90, and 120 beats/min with corresponding flow rates of 5.0, 6.0, and 7.5 liters/min, respectively. A laser sweeping technique was used to monitor the leaflet closing motion within the last 3 degrees excursion at valve closure. A modified dual beam laser sweeping technique system was used to register the difference of leaflet/housing impact time between the two BMV closing leaflets in asynchronous closure. Common BMV asynchronous closures were found in both BMVs at all three heart rates tested. The second closing leaflet was found to always close at higher velocity than the first. Simultaneous measurements of the ventricular pressure (Pv) and the leaflet closing time showed that Pv exhibited three stage characteristics. In the first stage, Pv gradually increased as the ventricle was filled. A sudden rise of Pv occurred immediately after closing of the first leaflet. The maximum dp/dt occurred in the third stage after closure of both BMV leaflets. The BMV closing behavior and the corresponding Pv pattern were found to depend strongly upon valve type and heart rate. The time averaged ventricular pressure slope (dp/dt) values at 70, 90, and 120 beats/min were about 40, 70, and 150 mmHg/sec for the St. Jude Medical valve and 40, 105, and 205 for the CarboMedics valve during the first closing stage. The maximum dp/dt values were 2670, 4350, and 5000 mmHg/sec for the St. Jude Medical valve

  13. Hydraulic servo control spool valve

    DOEpatents

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  14. High-temperature, high-pressure oxygen metering valve

    NASA Technical Reports Server (NTRS)

    Christianson, Rollin C. (Inventor); Lycou, Peter P. (Inventor); Daniel, James A. (Inventor)

    1993-01-01

    A control valve includes a body defining a central cavity arranged between a fluid inlet and outwardly-diverging first and second fluid outlets respectively disposed in a common transverse plane. A valve member is arranged in the cavity for rotation between first and second operating positions where a transverse fluid passage through the valve member alternatively communicates the fluid inlet with one or the other of the fluid outlets. To minimize fluid turbulence when the valve member is rotated to an alternate operating position, the fluid passage has a convergent entrance for maintaining the passage in permanent communication with the fluid inlet as well as an oblong exit opening with spaced side walls for enabling the exit opening to temporarily span the first and second fluid outlets as the valve member is turned between its respective operating positions.

  15. Numerical Simulation of Flow-Induced Noise in High Pressure Reducing Valve

    PubMed Central

    Wei, Lin; Zhu, Guorong; Qian, Jinyuan; Fei, Yang; Jin, Zhijiang

    2015-01-01

    The main objective of this paper is to study the characteristics of flow-induced noise in high pressure reducing valve (HPRV) and to provide some guidance for noise control. Based on computational fluid dynamics (CFD), numerical method was used to compute flow field. Ffowcs Williams and Hawkings Model was applied to obtain acoustic signals. The unsteady flow field shows that noise sources are located at the bottom of plug for valve without perforated plate, and noise sources are behind the plate for valve with perforated plate. Noise directivity analysis and spectrum characteristics indicate that the perforated plate could help to reduce noise effectively. Inlet pressure has great effects on sound pressure level (SPL). The higher inlet pressure will lead to larger SPL at high frequency. When the maximum Ma is close to 1, SPL at low frequency becomes very high. PMID:26061396

  16. Simulation of dynamics of hydraulic system with proportional control valve

    NASA Astrophysics Data System (ADS)

    Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2016-03-01

    Dynamics of a hydraulic system is influenced by several parameters, in this case mainly by proportional control valve, oil bulk modulus, oil viscosity, mass load etc. This paper will be focused on experimental measurement and mathematical simulation of dynamics of a hydraulic system with proportional control valve, linear hydraulic cylinder and mass load. The measurement is performed on experimental equipment that enables realization of dynamic processes of the hydraulic system. Linear hydraulic cylinder with mass load is equipped with position sensor of piston. The movement control of piston rod is ensured by the proportional control valve. The equipment enables to test an influence of parameter settings of regulator of the proportional control valve on position and pressure system responses. The piston position is recorded by magnetostrictive sensor that is located in drilled piston rod side of the linear hydraulic cylinder. Pressures are measured by piezoresistive sensors on the piston side and the piston rod side of the hydraulic cylinder. The measurement is performed during movement of the piston rod with mass load to the required position. There is realized and verified a mathematical model using Matlab SimHydraulics software for this hydraulic system.

  17. Workshop on gate valve pressure locking and thermal binding

    SciTech Connect

    Brown, E.J.

    1995-07-01

    The purpose of the Workshop on Gate Valve Pressure Locking and Thermal Binding was to discuss pressure locking and thermal binding issues that could lead to inoperable gate valves in both boiling water and pressurized water reactors. The goal was to foster exchange of information to develop the technical bases to understand the phenomena, identify the components that are susceptible, discuss actual events, discuss the safety significance, and illustrate known corrective actions that can prevent or limit the occurrence of pressure locking or thermal binding. The presentations were structured to cover U.S. Nuclear Regulatory Commission staff evaluation of operating experience and planned regulatory activity; industry discussions of specific events, including foreign experience, and efforts to determine causes and alleviate the affects; and valve vendor experience and recommended corrective action. The discussions indicated that identifying valves susceptible to pressure locking and thermal binding was a complex process involving knowledge of components, systems, and plant operations. The corrective action options are varied and straightforward.

  18. Liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. [design techniques and practices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development of and operational programs for effective use in design are presented for liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. A review of the total design problem is presented, and design elements are identified which are involved in successful design. Current technology pertaining to these elements is also described. Design criteria are presented which state what rule or standard must be imposed on each essential design element to assure successful design. These criteria serve as a checklist of rules for a project manager to use in guiding a design or in assessing its adequacy. Recommended practices are included which state how to satisfy each of the criteria.

  19. Reed Valve Regulates Welding Back-Purge Pressure

    NASA Technical Reports Server (NTRS)

    Coby, J. Ben, Jr.; Weeks, Jack L.

    1991-01-01

    Simple modification yields welds of better quality. Reed valve halves fluctuations in pressure in back-purge chamber attached to workpiece undergoing keyhole plasma arc welding. Identical to one used in fuel system of two-cycle gasoline engine. Backbead smoother, and weld penetrates more uniformly.

  20. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance...

  1. Valve assembly for use with high temperature and high pressure fluids

    DOEpatents

    De Feo, Angelo

    1982-01-01

    The valve assembly for use with high temperature and high pressure fluids has inner and outer spaced shells and a valve actuator support of inner and outer spaced members which are connected at their end portions to the inner and outer shells, respectively, to extend substantially normal to the longitudinal axis of the inner shell. A layer of resilient heat insulating material covers the outer surfaces of the inner shell and the inner actuator support member and is of a thickness to only occupy part of the spaces between the inner and outer shells and inner and outer actuator support members. The remaining portion of the space between the inner and outer shells and the space between the inner and outer members is substantially filled with a body of castable, rigid refractory material. A movable valve member is disposed in the inner shell. A valve actuator assembly is supported in the valve actuator support to extend into the inner shell for connection with the movable valve member for movement of the movable valve member to positions from a fully open to a fully closed position to control flow of fluid through the inner shell. An anchor mneans is disposed adjacent opposite sides of the axis of the valve actuator support and attached to the inner shell so that relative radial movement between the inner and outer shell is permitted by the layer of resilient heat insulating material and relative longitudinal movement of the inner shell to the outer shell is permitted in opposite directions from the anchor means to thereby maintain the functional integrity of the movable valve member by providing an area of the inner shell surrounding the movable valve member longitdinally stationary, but at the same time allowing radial movement.

  2. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tests of pressure relief valves. 179.220-24... FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas...

  3. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tests of pressure relief valves. 179.220-24... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  4. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tests of pressure relief valves. 179.200-23... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  5. Fluidised-bed combustion. IEA Grimethorpe Pressurized Fluidised-Bed Test Facility back-end valves: history and modification

    SciTech Connect

    Not Available

    1982-01-01

    The pressure of the combustor freeboard is controlled by one of three back-end pressure control valves. The back-end valves are so called as they are situated at the back end of the exhaust gas system at the outlet of the main exhaust gas heat exchanger. In normal operation one of the valves is on pressure control duty, another on pressure relief duty, and the third is shut and available for operation on control or relief duty. These valves are subjected to a very arduous duty: temperatures of up to 350/sup 0/C to 375/sup 0/C with pressure drops of approximately 8 bar, and an estimated solids content of up to 400 ppM in the exhaust gases. Severe erosion on the valves seats, shafts, seals and upstream and downstream pipework has occurred and a large amount of remedial work has been carried out on the valves and adjacent pipework. This report describes the history of the valve erosion, the maintenance/remedial work carried out, and the steps being taken to attempt to solve the problem for future tests.

  6. Pressure activated stability-bypass-control valves to increase the stable airflow range of a Mach 2.5 inlet with 40 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. The inlet stable airflow range provided by various stability-bypass entrance configurations in alternate combination with several stability-bypass exit controls was determined for both steady-state conditions and internal transient pulses. Transient results were also obtained for the inlet with a choke point at the diffuser exit. Instart angles of attack were determined for the various stability-bypass entrance configurations. The response of the inlet-coldpipe system to internal and external oscillating disturbances was determined. Poppet valves at the stability-bypass exit provided an inlet stable airflow range of 28 percent or greater at all static and transient conditions.

  7. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    USGS Publications Warehouse

    Morgan, Leah; Davidheiser-Kroll, Brett

    2015-01-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ∼0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  8. VALVE

    DOEpatents

    Arkelyan, A.M.; Rickard, C.L.

    1962-04-17

    A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)

  9. Pressure regulation for earth pressure balance control on shield tunneling machine by using adaptive robust control

    NASA Astrophysics Data System (ADS)

    Xie, Haibo; Liu, Zhibin; Yang, Huayong

    2016-05-01

    Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control (ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation.

  10. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Test of pressure relief valves. 179.400-21 Section 179.400-21 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  11. Underwater space suit pressure control regulator

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Cooper, C. R.; Rasquin, J. R. (Inventor)

    1973-01-01

    A device is reported for regulating the pneumatic pressure in a ventilated space suit relative to the pressure imposed on the suit when being worn by a person underwater to simulate space environment for testing and experimentation. A box unit located on the chest area of the suit comprises connections for suit air supply and return lines and carries a regulator valve that stabilizes the air pressure differential between the inside and outside of the suit. The valve and suit pressure is controlled by the suit occupant and the valve includes a mechanism for quickly dumping the suit pressure in case of emergency. Pressure monitoring and relief devices are also included in the box unit.

  12. Transient pressure signals in mechanical heart valve cavitation.

    PubMed

    Wu, Z J; Slonin, J H; Hwang, N H

    1996-01-01

    The purpose of this investigation was to establish a correlation between mechanical heart valve (MHV) cavitation and transient pressure (TP) signals at MHV closure. This correlation may suggest a possible method to detect in vivo MHV cavitation. In a pulsatile mock flow loop, a study was performed to measure TP and observe cavitation bubble inception at MHV closure under simulated physiologic ventricular and aortic pressures at heart rates of 70, 90, 120, and 140 beats/min with corresponding cardiac outputs of 5.0, 6.0, 7.5, and 8.5 L/min, respectively. The experimental study included two bileaflet MHV prostheses: 1) St. Jude Medical 31 mm and 2) Carbomedics 31 mm. High fidelity piezo-electric pressure transducers were used to measure TP immediately before and after the valve leaflet/housing impact. A stroboscopic lighting imaging technique was developed to capture cavitation bubbles on the MHV inflow surfaces at selected time delays ranging from 25 microseconds to 1 ms after the leaflet/housing impact. The TP traces measured 10 mm away from the valve leaflet tip showed a large pressure reduction peak at the leaflet/housing impact, and subsequent high frequency pressure oscillations (HPOs) while the cavitation bubbles were observed. The occurrence of cavitation bubbles and HPO bursts were found to be random on a beat by beat basis. However, the amplitude of the TP reduction, the intensity of the cavitation bubble (size and number), and the intensity of HPO were found to increase with the test heart rate. A correlation between the MHV cavitation bubbles and the HPO burst was positively established. Power spectrum analysis of the TP signals further showed that the frequency of the HPO (cavitation bubble collapse pressures) ranged from 100 to 450 kHz.

  13. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  14. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  15. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or...

  16. 49 CFR 179.400-21 - Test of pressure relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-21 Test of pressure relief valves. Each valve must be tested with air or gas...

  17. Effect of transcatheter aortic valve implantation on intraoperative left ventricular end-diastolic pressure.

    PubMed

    Toyota, Kosaku; Ota, Takashi; Nagamine, Katsutoshi; Koide, Yasuhiro; Nomura, Takeshi; Yamanaka, Futoshi; Shishido, Koki; Tanaka, Masashi; Saito, Shigeru

    2016-12-01

    Transcatheter aortic valve implantation (TAVI) for patients with aortic stenosis is a less invasive alternative to surgical aortic valve replacement. Despite this, careful anesthetic management, especially strict control of blood pressure and fluid management, is necessary. During TAVI, normalization of left ventricular afterload due to aortic balloon valvuloplasty and prosthetic valve deployment is expected to result in rapid improvement of systolic function and consequent improvement in diastolic function. However, the early effect of TAVI on left ventricular diastolic function is less clear. We hypothesized that TAVI induces a rapid decrease in left ventricular end-diastolic pressure (LVEDP) after valve deployment. This retrospective observational study included 71 patients who had undergone TAVI using the transfemoral approach with a balloon-expandable valve under general anesthesia. Intraoperative LVEDP was measured using an intracardiac catheter. The severity of residual aortic regurgitation (AR) was assessed using the Sellers criteria. The mean (SD) LVEDP was 17.8 (5.3) mmHg just before TAVI and increased significantly to 27.3 (8.2) mmHg immediately after prosthetic valve deployment (p < 0.0001). The change in LVEDP was 8.7 (8.6) mmHg in patients with low residual AR (Sellers ≤1) and 11.0 (7.1) mmHg in those with high residual AR (Sellers ≥2); however, this difference was not significant. No correlation was found between the LVEDP change and intraoperative fluid balance. In conclusion, LVEDP increased significantly in the early period after valve deployment during TAVI, regardless of residual AR severity. It was suggested that the tolerability of fluid load could be reduced at that time.

  18. 17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE BUTTERFLY VALVE LOCK INDICATES THE BUTTERFLY VALVE IS CLOSED AS UNIT 43 WAS SHUT DOWN FOR REPAIRS, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  19. 46 CFR 30.10-55 - Pressure vacuum relief valve-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Pressure vacuum relief valve-TB/ALL. 30.10-55 Section 30... Definitions § 30.10-55 Pressure vacuum relief valve—TB/ALL. The term pressure vacuum relief valve means any... pressure or vacuum in enclosed places....

  20. 46 CFR 30.10-55 - Pressure vacuum relief valve-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pressure vacuum relief valve-TB/ALL. 30.10-55 Section 30... Definitions § 30.10-55 Pressure vacuum relief valve—TB/ALL. The term pressure vacuum relief valve means any... pressure or vacuum in enclosed places....

  1. 46 CFR 30.10-55 - Pressure vacuum relief valve-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Pressure vacuum relief valve-TB/ALL. 30.10-55 Section 30... Definitions § 30.10-55 Pressure vacuum relief valve—TB/ALL. The term pressure vacuum relief valve means any... pressure or vacuum in enclosed places....

  2. 46 CFR 30.10-55 - Pressure vacuum relief valve-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pressure vacuum relief valve-TB/ALL. 30.10-55 Section 30... Definitions § 30.10-55 Pressure vacuum relief valve—TB/ALL. The term pressure vacuum relief valve means any... pressure or vacuum in enclosed places....

  3. 46 CFR 30.10-55 - Pressure vacuum relief valve-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Pressure vacuum relief valve-TB/ALL. 30.10-55 Section 30... Definitions § 30.10-55 Pressure vacuum relief valve—TB/ALL. The term pressure vacuum relief valve means any... pressure or vacuum in enclosed places....

  4. Controlling flow in microfluidic channels with a manually actuated pin valve.

    PubMed

    Brett, Marie-Elena; Zhao, Shuping; Stoia, Jonathan L; Eddington, David T

    2011-08-01

    There is a need for a simple method to control fluid flow within microfluidic channels. To meet this need, a simple push pin with a polydimethylsiloxane (PDMS) tip has been integrated into microfluidic networks to be placed within the microchannel to obstruct flow. This new valve design can attain on/off control of fluid flow without an external power source using readily-available, low-cost materials. The valve consists of a 14 gauge (1.6 mm) one inch piece of metal tubing with a PDMS pad at the tip to achieve a fluidic seal when pressed against a microfluidic channel's substrate. The metal tubing or pin is then either manually pushed down to block or pulled up to allow fluid flow. The valve was validated using a pressure transducer and fluorescent dye to determine the breakthrough pressure the valve can withstand over multiple cycles. In the first cycle, the median value for pressure withstood by the valve was 8.8 psi with a range of 17.5-2.7 psi. The pressure the valves were able to withstand during each successive trial was lower suggesting they may be most valuable as a method to control the initial introduction of fluids into a microfluidic device. These valves can achieve flow regulation within microfluidic devices, have a small dead volume, and are simple to fabricate and use, making this technique widely suitable for a range of applications.

  5. Computational Modeling of Liquid and Gaseous Control Valves

    NASA Technical Reports Server (NTRS)

    Daines, Russell; Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Moore, Arden; Sulyma, Peter

    2005-01-01

    In this paper computational modeling efforts undertaken at NASA Stennis Space Center in support of rocket engine component testing are discussed. Such analyses include structurally complex cryogenic liquid valves and gas valves operating at high pressures and flow rates. Basic modeling and initial successes are documented, and other issues that make valve modeling at SSC somewhat unique are also addressed. These include transient behavior, valve stall, and the determination of flow patterns in LOX valves. Hexahedral structured grids are used for valves that can be simplifies through the use of axisymmetric approximation. Hybrid unstructured methodology is used for structurally complex valves that have disparate length scales and complex flow paths that include strong swirl, local recirculation zones/secondary flow effects. Hexahedral (structured), unstructured, and hybrid meshes are compared for accuracy and computational efficiency. Accuracy is determined using verification and validation techniques.

  6. Use of thermocapillary migration in a controllable heat valve

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1982-01-01

    In accordance with the Marangoni effect, immiscible droplets in a host fluid in which a temperature gradient exists move in the direction of increasing temperature. It is proposed that this thermocapillary migration could be used to construct a 'liquid wick' that would return the condensed vapor at the condenser end of a heat pipe back to the evaporator, thus completing the fluid circuit. The droplets would be formed by capillary pressure forcing the condensate through a perforated diaphragm whose temperature would control the droplet flux, and hence the heat flux between the two ends of the heat pipe, thus making it a controllable heat valve.

  7. Fast acting check valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1979-01-01

    A check valve which closes more rapidly to prevent wearing of the valve seat and of the valve member that seals thereagainst, including a solenoid or other actuator that aids the normal spring to quickly close the valve at approximately the time when downpath fluid flow would stop, the actuator then being deenergized. The control circuit that operates the actuator can include a pair of pressure sensors sensing pressure both upstream and downstream from the valve seat. Where the valve is utilized to control flow to or from a piston pump, energization of the actuator can be controlled by sensing when the pump piston reaches its extreme of travel.

  8. Fluid-driven reciprocating apparatus and valving for controlling same

    SciTech Connect

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  9. Calibration of sonic valves for the laminar flow control, leading-edge flight test

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.

    1985-01-01

    Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.

  10. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-09-02

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  11. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-01-01

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  12. 25. Typical valves used to control flow into and out ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Typical valves used to control flow into and out of filtration bed. Left valve (painted red) drains the bed, and center valve (painted green) admits water into the bed. The right valve is a cross over valve which is used to admit water into a dry bed from the bottom. This bottom fill excludes entrapped air as the bed is filled. When the water reached to top of the bed, filling is continued from the top of the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  13. 77 FR 59408 - Finding of Equivalence; Alternate Pressure Relief Valve Settings on Certain Vessels Carrying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ...] Finding of Equivalence; Alternate Pressure Relief Valve Settings on Certain Vessels Carrying Liquefied... announces the availability of CG-ENG Policy Letter 04-12, ``Alternative Pressure Relief Valve Settings on... Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) Section VIII with respect...

  14. 46 CFR 32.20-5 - Pressure vacuum relief valves-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Pressure vacuum relief valves-TB/ALL. 32.20-5 Section 32..., AND HULL REQUIREMENTS Equipment Installations § 32.20-5 Pressure vacuum relief valves—TB/ALL. The pressure vacuum relief valve shall be of a type and size approved by the Commandant for the...

  15. 46 CFR 32.20-5 - Pressure vacuum relief valves-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Pressure vacuum relief valves-TB/ALL. 32.20-5 Section 32..., AND HULL REQUIREMENTS Equipment Installations § 32.20-5 Pressure vacuum relief valves—TB/ALL. The pressure vacuum relief valve shall be of a type and size approved by the Commandant for the...

  16. 46 CFR 32.20-5 - Pressure vacuum relief valves-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Pressure vacuum relief valves-TB/ALL. 32.20-5 Section 32..., AND HULL REQUIREMENTS Equipment Installations § 32.20-5 Pressure vacuum relief valves—TB/ALL. The pressure vacuum relief valve shall be of a type and size approved by the Commandant for the...

  17. 46 CFR 32.20-5 - Pressure vacuum relief valves-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Pressure vacuum relief valves-TB/ALL. 32.20-5 Section 32..., AND HULL REQUIREMENTS Equipment Installations § 32.20-5 Pressure vacuum relief valves—TB/ALL. The pressure vacuum relief valve shall be of a type and size approved by the Commandant for the...

  18. 46 CFR 32.20-5 - Pressure vacuum relief valves-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Pressure vacuum relief valves-TB/ALL. 32.20-5 Section 32..., AND HULL REQUIREMENTS Equipment Installations § 32.20-5 Pressure vacuum relief valves—TB/ALL. The pressure vacuum relief valve shall be of a type and size approved by the Commandant for the...

  19. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  20. Engine control system having pressure-based timing

    DOEpatents

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  1. Results of pressure locking and thermal binding tests of gate valves

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; McKellar, M.G.; Bramwell, D.

    1998-05-01

    The US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering and Environmental Laboratory (INEEL) in performing research investigating the performance of gate valves subjected to pressure locking and thermal binding conditions. Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most gate valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. Thermal binding can occur when thermal expansion/contraction effects cause the disc to be squeezed between the valve body seats. If the loads associated with pressure locking or thermal binding are very high, the actuator might not have the capacity to open the valve. The authors tested a flexible-wedge gate valve and a double-disc gate valve under pressure locking and thermal binding conditions. The results show that these valves are susceptible to pressure locking; however, they are not significantly affected by thermal binding. For the flexible-wedge gate valve, pressure locking loads (in terms of stem thrust) were higher than corresponding hydrostatic opening loads by a factor of 1.1 to 1.5. For the parallel disc gate valve, pressure locking loads were higher by a factor of 2.05 to 2.4. The results also show that seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.

  2. Time-frequency analysis of transient pressure signals for a mechanical heart valve cavitation study.

    PubMed

    Yu, A A; White, J A; Hwang, N H

    1998-01-01

    A series of transient pressure signals (TPSs) can be measured using a miniature pressure transducer mounted near the tip of the inflow side of a mechanical heart valve (MHV) occluder during closure. A relationship appears to exist between the intensity and pattern of the TPS and the cavitation potential of a MHV. To study the relationship between MHV cavitation and the TPSs, we installed an MHV in a valve testing chamber of a digitally controlled burst test loop. A charge coupled device (CCD) camera and a personal computer based image grabbing program was used to visualize cavitation bubbles appearing on or near the occluder surface. One bileaflet MHV was used as the model for this study. Cavitation bubbles were observed within 300 microsec of the leaflet/housing impact. The valve was tested at various driving pressures between 100 and 1,300 mmHg. MHV cavitation bubble intensities were qualitatively classified into three categories: 1) strong, 2) weak, and 3) none. Digital images of the MHV occluder inflow surface were recorded simultaneously with the TPSs. TPSs were studied by the time-frequency analysis method (spectrogram) and correlated to MHV cavitation potential. The intensity of the cavitation bubbles was found to be associated with burst test loop driving pressures during leaflet closure.

  3. Fuel cell system shutdown with anode pressure control

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  4. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel valves and controls. 23.995 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.995 Fuel valves and controls. (a) There must be a means to allow appropriate flight...

  5. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Control valves for brakes. 393.49 Section 393.49 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as...

  6. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the... system protects. Control valves must not be located in a protected space unless the CO2 cylinders are also in the protected space. (b) A CO2 system that protects more than one space must have a...

  7. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the... system protects. Control valves must not be located in a protected space unless the CO2 cylinders are also in the protected space. (b) A CO2 system that protects more than one space must have a...

  8. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel valves and controls. 23.995 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.995 Fuel valves and controls. (a) There must be a means to allow appropriate flight...

  9. Semitoroidal-diaphragm cavitating valve designed for bipropellant flow control

    NASA Technical Reports Server (NTRS)

    Young, A. L.

    1969-01-01

    Valve controls the flow of bipropellant liquids in rocket engines. Throttling and cavitation of the liquids are controlled by axial deflections of a semitoroidal metal diaphram. The valve is highly resistant to corrosion and leakage, and should be useful in food processing and chemical industries.

  10. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  11. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  12. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  13. 49 CFR 179.200-23 - Tests of pressure relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-23 Tests of pressure relief valves. (a) Each valve shall be tested by air or gas for compliance with § 179.15...

  14. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  15. 49 CFR 179.220-24 - Tests of pressure relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-24 Tests of pressure relief valves. Each safety relief valve must be tested by air or gas for compliance with §...

  16. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  17. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  18. Liquid-fuel valve with precise throttling control

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Porter, R. N.; Riebling, R. W.

    1971-01-01

    Prototype liquid-fuel valve performs on-off and throttling functions in vacuum without component cold-welding or excessive leakage. Valve design enables simple and rapid disassembly and parts replacement and operates with short working stroke, providing maximum throttling sensitivity commensurate with good control.

  19. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  20. Navier-Stokes Flow Field Analysis of Compressible Flow in a Pressure Relief Valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat K.

    1993-01-01

    The present study was motivated to analyze the complex flow field involving gaseous oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined with the pilot valve to regulate the actuation pressure of the main valve system. During a high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body before and after accident. It was understood that the subject RV has never been operated at 5500 psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics (CFD) analysis is carried out to investigate the side load across the piston sleeve and the erosion patterns resulting from flow distribution around piston/nozzle interface.

  1. Continuous-flow gas-lift installation design utilizing production-pressure-operated valve performance

    SciTech Connect

    Winkler, H.W.

    1995-12-31

    The variable-gradient design-line method is a widely accepted procedure for spacing gas-lift valves (GLVs) in a continuous-flow gas-lift (GL) installation. Injection-pressure-operated (IPO) and production-pressure-operated (PPO) GLVs can be used in a variable gradient designed installation. The primary purpose of GLVs is to unload a well to the desired depth of gas injection. If the installation design is based on a constant surface injection-gas pressure (p{sub io}), the GLVs must be opened by an increase in the flowing-production pressure at valve depth (p{sub pfD}) rather than an increase in injection-gas pressure at valve depth (p{sub ioD}). PPO, also called fluid-operated, valves are opened and closed by changes in p{sub pfD}. This paper outlines in detail the calculations for a variable-gradient continuous-flow installation design procedure based on a constant p{sub io} for spacing the unloading PPO valves. The valve spacing and port size selection includes performance characteristics of PPO GLVs. A simplified method for calculating the injection daily volumetric gas rate (q{sub gsc}) throughput of an unbalanced bellows type of PPO valve on the basis of a change in p{sub pfD} and the valve bellows-assembly load rate (B{sub lr}) is given in the Appendix.

  2. Performance of adjustable pressure-limiting (APL) valves in two different modern anaesthesia machines.

    PubMed

    Thomas, J; Weiss, M; Schmidt, A R; Buehler, P K

    2017-01-01

    The ability to gently ventilate a patient's lungs using a self-inflating bag requires a properly working adjustable pressure-limiting (APL) valve. We compared the performance of the APL valves of the GE Aisys CS(2) and the Draeger Fabius anaesthetic machines during closure and opening from 1-20 and from 20-1 cmH2 O, using standardised experimental baby and adolescent patient lung models. Airway pressures and inspiratory tidal volumes were measured using an ASL-5000 test lung and a GE Aisys CS(2) near-patient spirometry sensors. In both lung models, the GE Aisys CS(2) APL valves demonstrated non-linear behaviours for airway pressures and for inspiratory tidal volumes, with a sharp increase at set APL pressure levels of 8-10 cmH2 O. With further closure of the GE Aisys CS(2) APL valves up to 20 cmH2 O, inspiratory tidal volumes decreased to ~50% of the highest values measured. Airway pressures in the Draeger Fabius APL valves demonstrated a near linear increase and decrease. Airway pressure values measured in the Draeger Fabius were never higher than those set by the APL valves, whereas in the GE Aisys CS(2) , they considerably exceeded set pressures (by up to 27 cmH2 O). We conclude that the performance of the GE Aisys CS(2) APL valve does not allow safe bag-assisted ventilation of a patient's lungs.

  3. Fuel control valve construction, parts therefor and methods

    SciTech Connect

    Kelly, S.T.; Katchka, J.R.

    1990-05-29

    This patent describes a fuel control valve construction. It comprises: a housing means having an inlet means adapted to be interconnected to a main burner means, the housing means having a main valve seat for interconnecting the inlet means with the main outlet means, the housing means having a movable main valve member for opening and closing the main valve seat, the housing means having a movable lever carrying the main valve member and having a manually operable actuator means for controlling the operating positions of the lever, the lever having an intermediate cam follower portion and opposed ends disposed on each side of the cam follower portion with one end of the opposed ends being pivotally mounted to the housing means and with the other end of the opposed ends carrying the main valve member, the housing means having biasing means operatively interconnected to the lever to tend to pivot the lever in one direction that opens the main valve member away from its main valve seat.

  4. Experiment and numerical simulation of cavitation performance on a pressure-regulating valve with different openings

    NASA Astrophysics Data System (ADS)

    Qu, W. S.; Tan, L.; Cao, S. L.; Xu, Y.; Huang, J.; Xu, Q. H.

    2015-01-01

    As a kind of widely used device in pipe system for pressure and flow rate regulating, the valve would experience cavitation in the case when a sharp pressure drop occurs, which will induce the energy loss, noise and vibration of pipeline system, and even operational accidents. The experiment on flow resistance coefficient of a DN600 pressure-regulating valve under operation conditions from 0% to 100% openings is conducted. Based on the RNG k-e turbulence model and the Rayleigh-Plesset cavitation equation, a set of computational model is developed to simulate the turbulent flow in the valve under operational conditions from 0% to 100% openings. The computational results of flow resistance coefficient are compared to the experimental data. And the numerical simulation is employed to predict the cavitation performance of the valve at different inlet flow conditions. The transient cavitating flow is calculated to reveal the time evolution of cavitation in the valve.

  5. 49 CFR 178.337-9 - Pressure relief devices, piping, valves, hoses, and fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., valves, hose, and fittings. (1) The burst pressure of all piping, pipe fittings, hose and other pressure... of the cargo tank. Additionally, the burst pressure may not be less than 4 times any higher pressure... must be tested for leakage at not less than 225 psig using dry air or inert gas. (c) Marking inlets...

  6. 49 CFR 178.338-8 - Pressure relief devices, piping, valves, and fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Piping, valves, and fittings. (1) The burst pressure of all piping, pipe fittings, hoses and other... pressure of the tank. Additionally, the burst pressure may not be less than 4 times any higher pressure to..., and fittings have been tested after installation with gas or air and proved leak tight at not...

  7. 49 CFR 178.338-8 - Pressure relief devices, piping, valves, and fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Piping, valves, and fittings. (1) The burst pressure of all piping, pipe fittings, hoses and other... pressure of the tank. Additionally, the burst pressure may not be less than 4 times any higher pressure to..., and fittings have been tested after installation with gas or air and proved leak tight at not...

  8. 49 CFR 178.338-8 - Pressure relief devices, piping, valves, and fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Piping, valves, and fittings. (1) The burst pressure of all piping, pipe fittings, hoses and other... pressure of the tank. Additionally, the burst pressure may not be less than 4 times any higher pressure to..., and fittings have been tested after installation with gas or air and proved leak tight at not...

  9. 8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, MOSAIC TILE FLOOR, AS SEEN FROM VISITORS GALLERY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  10. 137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 19. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE IN ONE OF THE LOCK GATES WHICH SEPARATES UPPER AND LOWER CHAMBERS: 1976 - Pawtucket Canal, Swamp Locks, Pawtucket & Merrimack Canals, Lowell, Middlesex County, MA

  12. 20. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE IN ONE OF THE GATES BETWEEN THE UPPER AND LOWER CHAMBERS: 1976 - Pawtucket Canal, Swamp Locks, Pawtucket & Merrimack Canals, Lowell, Middlesex County, MA

  13. 18. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. WORM AND SPUR GEARS FOR CONTROLLING THE PADDLE VALVE IN ONE OF THE GATES BETWEEN THE UPPER AND LOWER CHAMBERS: 1976 - Pawtucket Canal, Swamp Locks, Pawtucket & Merrimack Canals, Lowell, Middlesex County, MA

  14. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  15. Reactant pressure differential control for fuel cell gases

    NASA Technical Reports Server (NTRS)

    Grasso, A. P. (Inventor)

    1985-01-01

    A pair of spool valves are described which are balanced between pressures of reactant gases supplied to a fuel cell power plant. The pressure differences are controlled between the gases so as to maintain those pressures substantially in the proportions necessary for operation of the fuel cell.

  16. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOEpatents

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  17. Valve timing control system for internal combustion engine

    SciTech Connect

    Masuda, S.; Morita, Y.; Oda, H.

    1986-04-15

    This patent describes an internal combustion engine having a camshaft, having an axis of rotation, bearing thereon a cam and a tappet member which transmits the movement of the cam to the stem of a valve to open and close the valve in a timed relation, a valve timing control system comprising a swinging member which is mounted for pivotal movement about the axis of rotation of the camshaft and is provided with a tappet receiving hole for receiving the tappet member to permit sliding movement of the tappet member therein to transmit the movement of the cam to the valve stem, and a control device which swings the swinging member together with the tappet member received in the tappet receiving hole according to the operating condition of the engine so that the relative position of the tappet member to the cam at a given angular position of the camshaft is changed. The tappet member has a cam abutting surface at one end and a valve stem abutting surface at the other end. The valve stem abutting surface is arcuately convex toward the valve, the center of curvature thereof being on the axis of rotation of the camshaft.

  18. Development of a quick reference table for setting programmable pressure valves in patients with idiopathic normal pressure hydrocephalus.

    PubMed

    Miyake, Hiroji; Kajimoto, Yoshinaga; Tsuji, Masao; Ukita, Tohru; Tucker, Adam; Ohmura, Takehisa

    2008-10-01

    Quick and reliable setting of programmable pressure valves (PPVs) is important in the treatment of idiopathic normal pressure hydrocephalus (iNPH), especially for reducing overdrainage complications and related medical costs. A new quick reference table (QRT) was developed for improved PPV control and outcome. Shunt control can be based on the pressure environment in the sitting condition, given as hydrostatic pressure (HP) = intracranial pressure + PPV setting + intraabdominal pressure (IAP). Using this relationship, and estimating HP and IAP from the patient's height and body mass index, respectively, a QRT was designed, consisting of a matrix of the patient's height and weight. The QRT was used to make initial PPV settings in 25 patients with iNPH and the clinical outcomes were evaluated. Postoperative readjustments of the PPV were not necessary in 15 of the 25 patients. At 1 month after operation, the PPV setting was decreased once in 5 patients and increased once in 2 patients. Four of these 7 patients improved after a single readjustment. Three patients required further readjustments. At 3 months after operation, another 3 patients required a single readjustment and all improved after this readjustment. The readjustment rate was 40% and readjustment number was 0.68 times/patient. The mean PPV setting at 1 year after operation was 15.5 +/- 3.9 cmH(2)O. Use of the QRT in non-bedridden iNPH patients results in a low incidence of PPV readjustment.

  19. Turbo-generator control with variable valve actuation

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  20. Flow characteristics of control valve for different strokes

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-03-01

    The article deals with the determination of flow characteristics and loss coefficients of control valve when the water flows in the interval of operating parameters, including the evaluation of vapour and air cavitation regime. The characteristics of the control valve are measured on the experimental equipment and subsequently loss coefficients are determined. Data from experimental measurements are used for creating of mathematical model with vapour and air cavitation and verification results. This validation will enable the application of methods of numerical modelling for valves of atypical dimensions e.g. for use in nuclear power industry. The correct knowledge of the valve characteristics and fundamental coefficients (e.g. flow coefficient, cavitation coefficient and loss coefficient) is necessarily required primarily for designers of pipe networks.

  1. Well safety valve

    SciTech Connect

    Vinzant, M.B.; Hilts, R.L.; Meaders, M.; Speegle, S.C.

    1984-07-24

    A retrievable well safety valve in a cased well system including a tubing string, a dual packer downhole around the tubing sealing with the casing and submersible pump in the tubing string below the packer. The safety valve controls flow of pumped fluids through the tubing to surface and directs gas flow into the casing annulus above the packer. When the safety valve is landed in cooperating tubing nipples above the packer, separated central annular flow passages are formed for pumped fluids and gas respectively. A ball valve in the central flow passage controls pumped fluid flow therethrough and an annular valve coupled to the ball valve controls gas flow from below the packer through the annular flow passage around and by the ball valve. When the ball valve is in the down and open position, the valve ball member engages a lower seat, which maintains the central and annular flow passages separate and prevents comingling flow of fluids and gas. The coupled valves are held open by pressured fluid from surface and are closed automatically on loss of pressure in their control fluid circuits. When the valves close, a circuit of flow passages for recirculating pumped fluids and gas are opened below the ball valve and the pump may continue operation without overload.

  2. Numerical investigation of cavitation flow inside spool valve with large pressure drop

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pan, Dingyi; Xie, Fangfang; Shao, Xueming

    2015-12-01

    Spool valves play an important role in fluid power system. Cavitation phenomena happen frequently inside the spool valves, which cause structure damages, noise and lower down hydrodynamic performance. A numerical tools incorporating the cavitation model, are developed to predict the flow structure and cavitation pattern in the spool valve. Two major flow states in the spool valve chamber, i.e. flow-in and flow-out, are studies. The pressure distributions along the spool wall are first investigated, and the results agree well with the experimental data. For the flow-in cases, the local pressure at the throttling area drops much deeper than the pressure in flow-out cases. Meanwhile, the bubbles are more stable in flow-in cases than those in flow-out cases, which are ruptured and shed into the downstream.

  3. A method for evaluating pressure locking and thermal binding of gate valves

    SciTech Connect

    Dogan, T.

    1996-12-01

    A method is described to evaluate the susceptibility of gate valves to pressure locking and thermal binding. Binding of the valve disc in the closed position due to high pressure water trapped in the bonnet cavity (pressure locking) or differential thermal expansion of the disk in the seat (thermal binding) represents a potential mechanism that can prevent safety-related systems from functioning when called upon. The method described here provides a general equation that can be applied to a given gate valve design and set of operating conditions to determine the susceptibility of the valve to fail due to disc binding. The paper is organized into three parts. The first part discusses the physical mechanisms that cause disc binding. The second part describes the mathematical equations. The third part discusses the conclusions.

  4. Analysis of HFIR pressurizer pump overspeed transients and relief valve performance

    SciTech Connect

    Sozer, M.C.

    1992-09-11

    The pressurizer pump overspeed transients at the High Flux Isotope Reactor (HFIR) fall in the category of {open_quotes}increase in coolant inventory transients.{close_quotes} They are among the accident transients to be performed for Chapter 15 of the HFIR safety analysis report (SAR). The pressurizer pump speed starting to increase inadvertently to reach its maximum speed of 3,560 rpm while the reactor operates under normal conditions is the cause of this transient. Increased primary coolant system pressure due to increased pressurizer pump flow into the primary coolant head tank challenges the relief valves to open. If the relief valves do not open, increased primary coolant system pressure will challenge the integrity of the high pressure boundary. Two sets of analyses were performed to analyze the pressurizer pump overspeed transients. The purpose of the first analysis is to estimate how long it will take for the relief valves to open under different conditions and whether or not they will chatter or flutter for a considerable amount of time. The analysis estimates relief valve performance and stability using four different relief valve subsystem models. The relief valve subsystem models are not attached to the primary coolant system model. Vigorous pressure oscillations were produced in all of the computations performed as part of the first analysis. The second analysis includes new simulations of the pressurizer pump overspeed transients that were previously simulated using the RELAP5 thermal-hydraulic computer code. The HFIRSYS, High Flux Isotope Reactor System Transient Analysis computer code, was utilized for these simulations providing referable results for comparisons. The increased pressurizer pump flow due to runaway pressurizer pump speed pressurizes the primary coolant system. The assumptions were made in such a way to form constraining conditions at initiation of and during the transients to generate as high an overpressure situation as possible.

  5. Blood Pressure Control

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering Development Laboratory developed a system for the cardiovascular study of weightless astronauts. This was designed to aid people with congestive heart failure and diabetes. While in space, astronauts' blood pressure rises, heart rate becomes unstable, and there are sometimes postflight lightheadedness or blackouts. The Baro-Cuff studies the resetting of blood pressure. When a silicone rubber chamber is strapped to the neck, the Baro-Cuff stimulates the carotid arteries by electronically controlled pressure application. Blood pressure controls in patients may be studied.

  6. Valve

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A positive acting valve suitable for operation in a corrosive environment is provided. The valve includes a hollow valve body defining an open-ended bore for receiving two, axially aligned, spaced-apart, cylindrical inserts. One insert, designated the seat insert, terminates inside the valve body in an annular face which lies within plane normal to the axis of the two inserts. An elastomeric O-ring seal is disposed in a groove extending about the annular face. The other insert, designated the wedge insert, terminates inside the valve body in at least two surfaces oppositely inclined with respect to each other and with respect to a plane normal to the axis of the two inserts. An elongated reciprocable gate, movable between the two inserts along a path normal to the axis of the two inserts, has a first flat face portion disposed adjacent and parallel to the annular face of the seat insert. The gate has a second face portion opposite to the first face portion provided with at least two oppositely inclined surfaces for mating with respective inclined surfaces of the wedge insert. An opening is provided through the gate which registers with a flow passage through the two inserts when the valve is open. Interaction of the respective inclined surfaces of the gate and wedge insert act to force the first flat face portion of the gate against the O-ring seal in the seat insert at the limits of gate displacement where it reaches its respective fully open and fully closed positions.

  7. Radial-directed fluid-pressure-loaded all-metal-sealed gate valve

    DOEpatents

    Batzer, Thomas H.

    1992-01-01

    A large diameter gate valve uses a radially directed fluid pressure loaded all metal seal formed by engaging and disengaging a fixed and a moveable seal element. The fixed element is formed of a circular flange which contains a pressure chamber with a deformable wall, and is mounted to the valve body. The moving seal element contains an annular recess which mates with the circular flange, and is carried on a moveable sub-frame which moves on a frame fixed in the valve body. The valve opening defines an axis in a first direction, and the sub-frame moves through the valve body in a second direction which is substantially perpendicular to the first direction. The sub-frame and moveable seal element move in the second direction until the moveable element reaches a stop mounted in the valve body at which position the moveable element is aligned with but spaced apart from the fixed element. As the sub-frame continues to move in the second direction, the moveable element is forced to move toward and engage the fixed element. The pressure chamber in the flange is then pressurized to complete the seal.

  8. Directional control valve with the ability to "dangle"

    NASA Astrophysics Data System (ADS)

    Meller, Michael; Tiwari, Rashi; Garcia, Ephrahim

    2011-04-01

    The majority of double-acting hydraulic cylinders are controlled via a 4/3 spool valve, which allows for the active movement of the cylinder in two directions, as well as holding its current position. These control valves lack the ability to "dangle," or rather, the ability to permit the hydraulic cylinder to freely sway passively in response to external forces. Including the ability to dangle within a control valve is of particular interest for a number of reasons. It allows for much more naturalistic actuation of the hydraulic cylinder, making it further compatible with bio-inspired platforms, such as driving the legs of a prosthetic limb or an exoskeleton for human augmentation. Additionally, dangle offers an opportunity for considerable efficiency gains. This is possible because the momentum of the load, gravity, among other external forces, can be utilized to move the actuator instead of solely relying on an active input. A novel control valve that integrates all of the features of a 4/3 spool valve in addition to dangle is reported herein.

  9. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  10. Aortic Valve Regurgitation

    MedlinePlus

    ... valve. Also, a narrowing of the aortic valve (aortic stenosis) can be associated with leaking. High blood pressure (hypertension). High blood pressure may stretch the root of the aorta where the aortic valve sits. The valve flaps ( ...

  11. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations.

  12. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls...

  13. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls...

  14. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls...

  15. Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes: long-period analysis

    NASA Astrophysics Data System (ADS)

    Meniconi, Silvia; Brunone, Bruno; Ferrante, Marco; Massari, Christian

    2012-07-01

    The literature contains few reports devoted to the analysis of the effects of a partially closed in-line valve on the characteristics of transients in viscoelastic pressurized pipes. In this paper a contribution to the analysis of the long-period behavior of pressure is offered from both the experimental and numerical modeling point of view. In the first part, laboratory tests and the related results—noticeably extensive with respect to the existing literature—are examined. More precisely, the dependance of the damping of the dimensionless pressure maximum values on the initial conditions and in-line valve local head loss coefficient is shown. In the second part, a 1-D numerical model is developed by determining its parameters within a physically based procedure. Model parameters are obtained by considering transients in a constant-diameter pipe (single pipe) and then exported to the case of pipes with a partially closed in-line valve (in-line valve pipe). Moreover, particular attention is devoted to the modalities of specifying boundary conditions. In particular, the quasi-steady-state approach is followed for determining the transient local head loss due to the partially closed in-line valve and the actual supply conditions and characteristics of the maneuver are taken into account. Finally, the effect of unsteady friction and viscoelasticity is examined in both single and in-line valve pipes.

  16. Numerical acoustic characteristics and optimum design of the pressure reducing valve

    NASA Astrophysics Data System (ADS)

    Guo, P. C.; Sun, L. G.; Sun, S. H.; Feng, J. J.; Wu, K. G.; Luo, X. Q.

    2016-11-01

    The pressure reducing valves are widely used in the technological water supplied ways of gravity flow. A credible pressure reducing valve can provide stable cooling water for units with extremely low maintenance cost and labor intensity in a fairly long period of time. In this paper, a three-dimensional numerical simulation of flow field and acoustic characteristics towards a combined type pressure reducing valve was carried out based on ANSYS Fluent and the FW-H equation. The numerical results achieve the regulation of noise generation, transmission and attenuation. It shows that the sound pressure level of monitoring points seem to be higher and large gradient at low frequencies under the same flow velocity, while it presents reverse results with the increment of frequency and maintains a constant valve finally. At the same time, the monitoring points in the vicinity of throttling cone shows higher sound pressure level and upstream noise is lower than downstream's. Aiming at the problem of valve noise, a modified measure to reduce the flow-induced noise was proposed.

  17. D0 Silicon Upgrade: Cryolab Control Valve Modification Information for D0-EVMF-H

    SciTech Connect

    Rucincki, Russ; /Fermilab

    1995-10-26

    This engineering note documents some information regarding the solenoid magnet flow valve, EVMF. See also EN-437 'Control Dewar valve sizing' also for further information on this valve. This note documents the modification done to the valve to change it to a Cv = 0.32.

  18. Parallel Control of Velocity Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Self-Organizing Fuzzy Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Chiang, Mao-Hsiung; Chien, Yu-Wei

    Conventional hydraulic valve-controlled systems that incorporate positive displacement pumps and relief valves have a problem of low energy efficiency. The objective of the research is to implement parallel control of energy-saving control in an electro-hydraulic load-sensing system and velocity control in a hydraulic valve-controlled cylinder system to achieve both high velocity control accuracy and low input power simultaneously. The overall control system is a two-input two-output system. For that, the control strategy of self-organizing fuzzy sliding mode control (SOFSMC) is developed in this study to reduce the fuzzy rule number and to self-organize on-line the fuzzy rules. To compare the energy-saving performance, the velocity control is implemented under three different energy-saving control systems, such as load-sensing control system, constant supply pressure control system and conventional hydraulic system. The parallel control of the velocity control and energy-saving control by the SOFSMC is implemented experimentally.

  19. A Respiratory Airway-Inspired Low-Pressure, Self-Regulating Valve for Drip Irrigation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo-Qian; Winter, Amos G.; GEAR Lab Team

    2015-11-01

    One of the most significant barriers to achieving large-scale dissemination of drip irrigation is the cost of the pump and power system. An effective means of reducing power consumption is by reducing pumping pressure. The principle source of pressure drop in a drip system is the high flow resistance in the self-regulating flow resistors installed at the outlets of the pips, which evenly distribute water over a field. Traditional architectures require a minimum pressure of ~1 bar to maintain a constant flow rate; our aim is to reduce this pressure by 90% and correspondingly lower pumping power to facilitate the creation of low-cost, off-grid drip irrigation systems. This study presents a new Starling resistor architecture that enables the adjustment of flow rate with a fixed minimum pressure demand of ~0.1 bar. A Starling resistor is a flexible tube subjected to a transmural pressure, which collapses the tube to restrict flow. Our design uses a single pressure source to drive flow through the flexible tube and apply a transmural pressure. Flow into the flexible tube is restricted with a needle valve, to increase the transmural pressure. Using this device, a series of experiments were conducted with different flexible tube diameters, lengths and wall thickness. We found that the resistance of the needle valve changes flow rate but not the minimum transmural pressure required to collapse the tube. A lumped-parameter model was developed to capture the relationships between valve openings, pressure, and flow rates.

  20. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  1. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  2. Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.

    2005-01-01

    A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.

  3. Numerical simulation analysis and optimum design for combined type pressure reducing valves

    NASA Astrophysics Data System (ADS)

    Gou, D. M.; Guo, P. C.; Zheng, X. B.; Luo, X. Q.; Sun, L. G.

    2016-05-01

    Pressure reducing valve is an extremely significant equipment of energy dissipation for the water supply by gravity with pressure reducing technology in hydropower stations, and which has a pronounced effect on the normal technical water supply even safety operation for the hydropower units. A three-dimensional numerical calculation of flow field and cavitation characteristics towards a combined type pressure reducing valves was carried out based on the system of technical water supply in this paper. The numerical results show that the investigated valve could meet the requirements of technological supply water pressure and great pressure loss was caused when the water flow was accelerated by narrow overflowing section between throttling cone and valve seat. At working operation, obvious cavitation phenomenon was observed on the surface of throttling cone, and the maximum volume fraction of vapor reached 0.537%. Based on above researches, this paper introduces an optimization model for profile line design of throttling cone. The optimal results show that the cavitation performance is effectively improved with identical pressure drop compared with original results.

  4. Critical shunt-induced subdural hematoma treated with combined pressure-programmable valve implantation and endoscopic third ventriculostomy.

    PubMed

    Fukuhara, T; Vorster, S J; Luciano, M G

    2000-07-01

    The authors present 2 patients with VP shunt-induced subdural hematomas (SDH) treated with pressure-programmable valve implantation and endoscopic third ventriculostomies (TV). The first patient is an 11-year-old girl who developed a shunt-induced SDH. Revision of the shunt valve with a higher-pressure valve resulted in a prolonged deterioration of her consciousness. External ventricular drainage at low pressure led to clinical improvement. A pressure-programmable valve set at 50 mm H(2)O was implanted, and the pressure gradually increased. At a pressure of 120 mm H(2)O symptoms recurred, even though the subdural collection was beginning to decrease in size. An endoscopic TV was performed, and the valve pressure was then increased to 200 mm H(2)O without any neurological symptoms. The second patient, a 7-year-old boy with shunt-induced SDH, had recurrent SDH, even after shunt revision with placement of a higher-pressure valve, which resulted in prolonged lethargy. A pressure-programmable valve was implanted with concurrent endoscopic TV. Gradual valve pressure increases up to 200 mm H(2)O could be performed without recurrent symptoms. Eventually, the shunt system was ligated to resolve residual positional headache, and the TV has been patent for more than 3 years. In both patients, the pressure-programmable valve was useful, since the optimal CSF drainage pressure changed during the period of recovery from symptomatic subdural collections. Concurrent TV appeared to enable increasing the valve pressure gradually without any neurological symptoms. The advantages of this combined approach are discussed.

  5. Controlling your high blood pressure

    MedlinePlus

    ... ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... blood pressure goes up. When is Your Blood Pressure a Concern? If your blood pressure is high, ...

  6. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2002-01-01

    Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.

  7. Blood Pressure Control

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Engineering Development Lab., Inc.'s E-2000 Neck Baro Reflex System was developed for cardiovascular studies of astronauts. It is regularly used on Space Shuttle Missions, and a parallel version has been developed as a research tool to facilitate studies of blood pressure reflex controls in patients with congestive heart failure, diabetes, etc. An advanced version, the PPC-1000, was developed in 1991, and the technology has been refined substantially. The PPC provides an accurate means of generating pressure for a broad array of laboratory applications. An improved version, the E2010 Barosystem, is anticipated.

  8. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  9. Shunt Overdrainage Caused by Displacement of the Pressure Control Cam after Pressure Adjustment

    PubMed Central

    Kim, Su-Ho; Lee, Min-Seok; Suh, Sang-Jun; Lee, Jeong-Ho; Kang, Dong-Gee

    2016-01-01

    Although the Codman-Hakim programmable valve is one of most popular shunt systems used in the clinical practice for the treatment of hydrocephalus, malfunctions related with this system have been also reported which lead to underdrainage or overdrainage of the cerebrospinal fluid. While obstruction of the ventricular catheter by tissue materials or hematoma and catheter disconnection are relatively common, the malfunction of the valve itself is rare. Herein, we report on a rare case of shunt overdrainage caused by displacement of the pressure control cam after pressure adjustment. A 57-year-old female, who underwent a ventriculoperitoneal shunt eight years ago, experienced aggravating symptoms of shunt overdrainage after pressure adjustment. Displacement of the pressure control cam was revealed on the X-ray, and a shunt revision was performed. The purpose of this report is to provide a working knowledge of the valve structure and to enhance the ability to interpret the valve setting on an X-ray for diagnosis of valve malfunction. PMID:27857929

  10. 49 CFR 178.337-9 - Pressure relief devices, piping, valves, hoses, and fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... chlorine service, see paragraph (b)(7) of this section. (2) Pipe joints must be threaded, welded, or... subchapter. (iii) Mark each hose assembly with the month and year of its original pressure test. (8) Chlorine cargo tanks. Angle valves on cargo tanks intended for chlorine service must conform to the standards...

  11. 49 CFR 178.337-9 - Pressure relief devices, piping, valves, hoses, and fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... chlorine service, see paragraph (b)(7) of this section. (2) Pipe joints must be threaded, welded, or... subchapter. (iii) Mark each hose assembly with the month and year of its original pressure test. (8) Chlorine cargo tanks. Angle valves on cargo tanks intended for chlorine service must conform to the standards...

  12. 49 CFR 178.337-9 - Pressure relief devices, piping, valves, hoses, and fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in service. For chlorine service, see paragraph (b)(7) of this section. (2) Pipe joints must be... original pressure test. (8) Chlorine cargo tanks. Angle valves on cargo tanks intended for chlorine service must conform to the standards of the Chlorine Institute, Inc., Dwg. 104-8 or “Section 3, Pamphlet...

  13. 49 CFR 178.337-9 - Pressure relief devices, piping, valves, hoses, and fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... chlorine service, see paragraph (b)(7) of this section. (2) Pipe joints must be threaded, welded, or... subchapter. (iii) Mark each hose assembly with the month and year of its original pressure test. (8) Chlorine cargo tanks. Angle valves on cargo tanks intended for chlorine service must conform to the standards...

  14. Metabolite Valves: Dynamic Control of Metabolic Flux for Pathway Engineering

    NASA Astrophysics Data System (ADS)

    Prather, Kristala

    2015-03-01

    Microbial strains have been successfully engineered to produce a wide variety of chemical compounds, several of which have been commercialized. As new products are targeted for biological synthesis, yield is frequently considered a primary driver towards determining feasibility. Theoretical yields can be calculated, establishing an upper limit on the potential conversion of starting substrates to target compounds. Such yields typically ignore loss of substrate to byproducts, with the assumption that competing reactions can be eliminated, usually by deleting the genes encoding the corresponding enzymes. However, when an enzyme encodes an essential gene, especially one involved in primary metabolism, deletion is not a viable option. Reducing gene expression in a static fashion is possible, but this solution ignores the metabolic demand needed for synthesis of the enzymes required for the desired pathway. We have developed Metabolite valves to address this challenge. The valves are designed to allow high flux through the essential enzyme during an initial period where growth is favored. Following an external perturbation, enzyme activity is then reduced, enabling a higher precursor pool to be diverted towards the pathway of interest. We have designed valves with control at both the transcriptional and post-translational levels. In both cases, key enzymes in glucose metabolism are regulated, and two different compounds are targeted for heterologous production. We have measured increased concentrations of intracellular metabolites once the valve is closed, and have demonstrated that these increased pools lead to increased product yields. These metabolite valves should prove broadly useful for dynamic control of metabolic flux, resulting in improvements in product yields.

  15. Intraoperative testing of opening and closing pressure predicts risk of low intraocular pressure after Ahmed glaucoma valve implantation

    PubMed Central

    Bochmann, F; Kipfer, A; Tarantino, J; Kaufmann, C; Bachmann, L; Thiel, M

    2014-01-01

    Purpose The aim of this study was to assess whether intraoperative testing of silicone Ahmed glaucoma valves (AGVs) would identify valves with an increased risk of low postoperative intraocular pressure (IOP). Methods In 30 consecutive cases of glaucoma surgery with AGV implantation, after priming the AGV, we intraoperatively measured the opening pressure A, closing pressure B, and re-opening pressure C using the active infusion pump of a phako-machine. IOP was checked postoperatively on the same day. Low IOP was defined as <5 mm Hg. Intraoperatively measured pressure characteristics of the valve function were analysed for their ability to predict postoperative IOP outcomes. Results Opening A, closing B, and re-opening C pressures (mean, (SD)) were 18.4 (5.1), 8.3 (4.7), and 11.7 (4.8)mm Hg, respectively. Ten patients (33.3%) had low IOP. An opening pressure of ≤18 mm Hg predicted low postoperative IOP with a sensitivity (10/10) of 100% (95% CI, 69.2–100) and a specificity (13/20) of 65.0% (95% CI, 40.8–84.6). Conclusions AGVs have a high variability of opening, closing, and re-opening pressures. An opening pressure of ≤18 mm Hg, a closing pressure of ≤10 mm Hg, or a re-opening pressure of ≤11 mm Hg identified all patients with low postoperative IOP. PMID:25060848

  16. Control valves and cascades for the first stages of turbines with ultrasupercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.

    2016-06-01

    This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.

  17. A control system for maintaining high stability in gas pressure

    SciTech Connect

    Wuest, C.R.; Hendricks, C.D.

    1987-09-01

    A pressure control system has been implemented on an experiment designed to detect the presence of fractional charges in bulk matter. The experiment utilizes a liquid-droplet generation technique requiring high-stability gas-pressure delivery to ensure accurate data collection. The pressure control system consists of a pressurized mercury reservoir containing a low-vapor-pressure, diffusion-pump oil. A commercially available differential pressure transducer, servo-driven valve, and controller sense the pressure fluctuations with respect to a static reference pressure. The system can maintain constant pressure to better than one part in 10,000 at working pressures in the range of 100 to 300 psi. 3 refs., 7 figs.

  18. Engine including hydraulically actuated valvetrain and method of valve overlap control

    SciTech Connect

    Cowgill, Joel

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  19. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  20. Device for controlling a safety valve disposed below an activation pump in a hydrocarbon production well

    SciTech Connect

    Lefebvre, H. M.; Helderle, P. M.

    1985-05-21

    In a hydrocarbon production well in which the effluent is activated by an activation pump installed in a production pipe, a safety valve is disposed in the production pipe below the pump, the safety valve being operated by lowering of an operating member by a controlling device. The controlling device comprises a piston and cylinder system, and connection means connecting the piston to the operating member during the downward movement of the piston. The cylinder and piston system is provided at the level of the pump, and is advantageously constituted by the production pipe and pump respectively, so that pressurized fluid present at the level of the pump will cause downward movement of the piston.

  1. Development of Small-sized Fluid Control Valve with Self-holding Function Using Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Ueda, Hirofumi

    Recently, force feedback devices in virtual reality and power assisted nursing care systems have received much attention and active research. In such a control system, an actuator and a driving device such as a control valve are mounted on the human body. In this condition, the size and weight of the control valve become serious problems. At the same time, the valve should be operated with lower energy consumption because of using a limited electrical power. The typical electro magnetic solenoid valve drives its spool using a larger solenoid to open the valve. The complex construction of the valve for sealing makes its miniaturization and the fabrication of a low cost valve more difficult. In addition, the solenoid in the valve consumes more electrical power while the valve is kept opening. The purpose of our study is to develop a small-sized, lightweight, lower energy consumption and flexible control valve that can be safe enough to mount on the human body at a lower cost. In our pervious study, we proposed and tested the control valve that can open using a vibration motor. In this study, we propose and test a new type of fluid control valve with a self-holding function. The new valve uses a permanent magnet ball. It has a cylindrical magnet and two solenoids. The self-holding function of the valve is done as follows. When one side of the solenoid is stimulated by the current momentarily, the solenoid gives a repulsive force to the cylindrical magnet. The magnet moves toward the opposite side of the solenoid and is attracted to the iron core. Then, the magnet ball moves toward the cylindrical magnet and opens the orifice. The valve can keep open without electrical energy. As a result, the valve with the extremely lower energy consumption can be developed.

  2. Electromechanical actuation for cryogenic valve control

    NASA Technical Reports Server (NTRS)

    Lister, M. J.; Reichmuth, D. M.

    1993-01-01

    The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

  3. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-01-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  4. Pressure Controlled Chemical Gardens.

    PubMed

    Bentley, Megan R; Batista, Bruno C; Steinbock, Oliver

    2016-06-30

    The dissolution of metal salts in silicate solution can result in the growth of hollow precipitate tubes. These "chemical gardens" are a model of self-organization far from the equilibrium and create permanent macroscopic structures. The reproducibility of the growth process is greatly improved if the solid salt seed is replaced by a salt solution that is steadily injected by a pump; however, this modification of the original experiment eliminates the membrane-based osmotic pump at the base of conventional chemical gardens and does not allow for analyses in terms of the involved pressure. Here we describe a new experimental method that delivers the salt solution according to a controlled hydrostatic pressure. In one form of the experiment, this pressure slowly decreases as zinc sulfate solution flows into the silicate-containing reaction vessel, whereas a second version holds the respective solution heights constant. In addition to three known growth regimes (jetting, popping, budding), we observe single tubes that fill the vessel in a horizontally undulating but vertically layered fashion (crowding). The resulting, dried product has a cylindrical shape, very low density, and one continuous connection from top to bottom. We also present phase diagrams of these growth modes and show that the flow characteristics of our experiments follow a reaction-independent Hagen-Poiseuille equation.

  5. A new PROFIBUS interface for vacuum sector gate valve controllers

    NASA Astrophysics Data System (ADS)

    Pigny, G.; Ferreira, R.; Gomes, P.; Gyori, L.; Roda, M.

    2017-02-01

    The vacuum control systems of the accelerators complex at CERN are based on PLCs, which communicate with controllers either with direct inputs or outputs, or via PROFIBUS. In order to improve the efficiency of the sector valve controller communication, a low cost PROFIBUS interface card has been designed. This paper presents the developed hardware and firmware, together with the corresponding assessment tests. It flags the improvements of this new interface, in comparison with the former system. Furthermore, this paper can be helpful for any custom design that needs a PROFIBUS interface.

  6. Pressurized fluid torque driver control and method

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S., Jr.

    1994-08-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  7. Pressurized fluid torque driver control and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  8. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  9. Conductance valve and pressure-to-conductance transducer method and apparatus

    DOEpatents

    Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

    2005-01-18

    A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

  10. Wear resistant valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A valve which is resistant to wear caused by particles trapped between the valve seat and the valve member or poppet when the valve closes, including an outlet for directing washing fluid at the valve seat and/or sealing face of the poppet and means for supplying pressured fluid to the outlet at the time when the valve is closing.

  11. Hydraulic valve control system for internal combustion engines

    SciTech Connect

    Bowman, T.J.; LoRusso, J.A.; Kaufman, W.F.

    1992-07-07

    This patent describes a hydraulic engine valve actuating assembly for use in an internal combustion engine cylinder head having a poppet valve which is axially shiftable therein by a rotary camshaft, the hydraulic engine valve actuating assembly. It comprises a housing having a mounted surface to attach to the cylinder head immediately above the poppet valve, a master piston cooperating with the camshaft and sealingly engaging the first cavity; a slave piston cooperating with the poppet valve and sealingly engaging the housing second cavity; a hydraulic energy and fluid storage accumulator assembly affixed and sealingly engaged relative to the housing and being provided with a fluid port coupled with the housing fluid passageway; valve means; the housing including a third cavity coaxially aligned with the poppet valve; and the valve means including a reciprocal valve piston sealingly engaged within the third cavity.

  12. Successful application of a PressureWire retrogradely across an ATS prosthetic aortic valve to diagnose constrictive pericarditis.

    PubMed

    Palmer, Sonny; Mariani, Justin A; Newcomb, Andrew; Stokes, Michael B; Burns, Andrew T

    2012-01-01

    Assessment of the left ventricular pressure measured across an aortic valve prosthesis is occasionally necessary when noninvasive imaging and Doppler echocardiographic data are inconclusive or differ from the clinical findings for specific scenarios, such as diagnosing constrictive or restrictive physiology. We present a case in which we safely and effectively replicate the previous successful application of a PressureWire in diagnosing constrictive pericarditis in a patient with a bileafltet mechanical aortic and mitral valves.

  13. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  14. Magnetorheological valve based actuator for improvement of passively controlled turbocharger system

    NASA Astrophysics Data System (ADS)

    Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.

    2016-03-01

    Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.

  15. 40 CFR 65.110 - Standards: Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and..., valves, connectors, and agitators in heavy liquid service; pressure relief devices in light liquid...

  16. 40 CFR 65.110 - Standards: Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and..., valves, connectors, and agitators in heavy liquid service; pressure relief devices in light liquid...

  17. 40 CFR 65.110 - Standards: Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and..., valves, connectors, and agitators in heavy liquid service; pressure relief devices in light liquid...

  18. 40 CFR 65.110 - Standards: Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and..., valves, connectors, and agitators in heavy liquid service; pressure relief devices in light liquid...

  19. 40 CFR 65.110 - Standards: Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and..., valves, connectors, and agitators in heavy liquid service; pressure relief devices in light liquid...

  20. Development of myoelectric control type speaking valve with low flow resistance

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Sakurai, Kohei; Mimaki, Shinya

    2015-12-01

    We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user's will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.

  1. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    NASA Astrophysics Data System (ADS)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  2. The Nordic Aortic Valve Intervention (NOTION) trial comparing transcatheter versus surgical valve implantation: study protocol for a randomised controlled trial

    PubMed Central

    2013-01-01

    Background Degenerative aortic valve (AV) stenosis is the most prevalent heart valve disease in the western world. Surgical aortic valve replacement (SAVR) has until recently been the standard of treatment for patients with severe AV stenosis. Whether transcatheter aortic valve implantation (TAVI) can be offered with improved safety and similar effectiveness in a population including low-risk patients has yet to be examined in a randomised setting. Methods/Design This randomised clinical trial will evaluate the benefits and risks of TAVI using the transarterial CoreValve System (Medtronic Inc., Minneapolis, MN, USA) (intervention group) compared with SAVR (control group) in patients with severe degenerative AV stenosis. Randomisation ratio is 1:1, enrolling a total of 280 patients aged 70 years or older without significant coronary artery disease and with a low, moderate, or high surgical risk profile. Trial outcomes include a primary composite outcome of myocardial infarction, stroke, or all-cause mortality within the first year after intervention (expected rates 5% for TAVI, 15% for SAVR). Exploratory safety outcomes include procedure complications, valve re-intervention, and cardiovascular death, as well as cardiac, cerebral, pulmonary, renal, and vascular complications. Exploratory efficacy outcomes include New York Heart Association functional status, quality of life, and valve prosthesis and cardiac performance. Enrolment began in December 2009, and 269 patients have been enrolled up to December 2012. Discussion The trial is designed to evaluate the performance of TAVI in comparison with SAVR. The trial results may influence the choice of treatment modality for patients with severe degenerative AV stenosis. Trial registration ClinicalTrials.gov: NCT01057173 PMID:23302232

  3. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  4. Assessment of trans-aortic pressure gradient using a coronary pressure wire in patients with mechanical aortic and mitral valve prostheses.

    PubMed

    Kherada, Nisharahmed; Brenes, Juan Carlos; Kini, Annapoorna S; Dangas, George D

    2017-03-15

    Accurate evaluation of trans-aortic valvular pressure gradients is challenging in cases where dual mechanical aortic and mitral valve prostheses are present. Non-invasive Doppler echocardiographic imaging has its limitations due to multiple geometric assumptions. Invasive measurement of trans-valvular gradients with cardiac catheterization can provide further information in patients with two mechanical valves, where simultaneous pressure measurements in the left ventricle and ascending aorta must be obtained. Obtaining access to the left ventricle via the mitral valve after a trans-septal puncture is not feasible in the case of a concomitant mechanical mitral valve, whereas left ventricular apical puncture technique is associated with high procedural risks. Retrograde crossing of a bileaflet mechanical aortic prosthesis with standard catheters is associated with the risk of catheter entrapment and acute valvular regurgitation. In these cases, the assessment of trans-valvular gradients using a 0.014˝ diameter coronary pressure wire technique has been described in a few case reports. We present the case of a 76-year-old female with rheumatic valvular heart disease who underwent mechanical aortic and mitral valve replacement in the past. She presented with decompensated heart failure and echocardiographic findings suggestive of elevated pressure gradient across the mechanical aortic valve prosthesis. The use of a high-fidelity 0.014˝ diameter coronary pressure guidewire resulted in the detection of a normal trans-valvular pressure gradient across the mechanical aortic valve. This avoided a high-risk third redo valve surgery in our patient. © 2017 Wiley Periodicals, Inc.

  5. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    SciTech Connect

    J. Napoleon

    1998-12-01

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  6. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  7. Investigation Of Adhesion Formation In New Stainless Steel Trim Spring Operated Pressure Relief Valves

    SciTech Connect

    Gross, Robert E.; Bukowski, Julia V.; Goble, William M.

    2013-04-16

    Examination of proof test data for new (not previously installed) stainless steel (SS) trim spring operated pressure relief valves (SOPRV) reveals that adhesions form between the seat and disc in about 46% of all such SOPRV. The forces needed to overcome these adhesions can be sufficiently large to cause the SOPRV to fail its proof test (FPT) prior to installation. Furthermore, a significant percentage of SOPRV which are found to FPT are also found to ''fail to open'' (FTO) meaning they would not relief excess pressure in the event of an overpressure event. The cases where adhesions result in FTO or FPT appear to be confined to SOPRV with diameters < 1 in and set pressures < 150 psig and the FTO are estimated to occur in 0.31% to 2.00% of this subpopulation of SS trim SOPRV. The reliability and safety implications of these finding for end-users who do not perform pre-installation testing of SOPRV are discussed.

  8. A Simple Method for Noninvasive Quantification of Pressure Gradient Across the Pulmonary Valve

    PubMed Central

    Zhou, Xueying; Xing, Changyang; Feng, Yang; Duan, Yunyou; Zheng, Qiangsun; Wang, Zuojun; Liu, Jie; Cao, Tiesheng; Yuan, Lijun

    2017-01-01

    Pressure gradient across the pulmonary valve (PVPG) is an important hemodynamic variable used in the management of patients with cardiovascular and pulmonary disease. However, a reliable noninvasive method is unavailable. We hypothesized that a progressive Muller maneuver would elicit the pulmonary valve premature opening (PVPO) in diastole and that this event would be detectable by Doppler echocardiography. The intrathoracic pressure (ITP) decrease during this maneuver equals PVPG, which may be assessed with a custom airway pressure measurement device. A total of 102 subjects were enrolled in the study. At the earliest appearance of PVPO, the ITP decrease was recorded as the PVPG. PVPG was also simultaneously measured and compared by other two methods: right heart catheterization in 43 subjects, and routine Doppler echocardiography (pulmonary regurgitation jet) in the other 59 subjects. The results measured by different approaches were compared using the Bland-Altman analysis. PVPG assessed via PVPO showed strong agreement with PVPG measured by catheterization or routine Doppler echocardiography methods, with Lin concordance correlation coefficients of 0.91 and 0.70, respectively. In conclusion, PVPO provides a new noninvasive method of quantification of PVPG. PMID:28198458

  9. A Simple Method for Noninvasive Quantification of Pressure Gradient Across the Pulmonary Valve.

    PubMed

    Zhou, Xueying; Xing, Changyang; Feng, Yang; Duan, Yunyou; Zheng, Qiangsun; Wang, Zuojun; Liu, Jie; Cao, Tiesheng; Yuan, Lijun

    2017-02-15

    Pressure gradient across the pulmonary valve (PVPG) is an important hemodynamic variable used in the management of patients with cardiovascular and pulmonary disease. However, a reliable noninvasive method is unavailable. We hypothesized that a progressive Muller maneuver would elicit the pulmonary valve premature opening (PVPO) in diastole and that this event would be detectable by Doppler echocardiography. The intrathoracic pressure (ITP) decrease during this maneuver equals PVPG, which may be assessed with a custom airway pressure measurement device. A total of 102 subjects were enrolled in the study. At the earliest appearance of PVPO, the ITP decrease was recorded as the PVPG. PVPG was also simultaneously measured and compared by other two methods: right heart catheterization in 43 subjects, and routine Doppler echocardiography (pulmonary regurgitation jet) in the other 59 subjects. The results measured by different approaches were compared using the Bland-Altman analysis. PVPG assessed via PVPO showed strong agreement with PVPG measured by catheterization or routine Doppler echocardiography methods, with Lin concordance correlation coefficients of 0.91 and 0.70, respectively. In conclusion, PVPO provides a new noninvasive method of quantification of PVPG.

  10. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  11. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  12. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  13. Polypropylene vs silicone Ahmed valve with adjunctive mitomycin C in paediatric age group: a prospective controlled study

    PubMed Central

    El Sayed, Y; Awadein, A

    2013-01-01

    Purpose To compare the results of silicone and polypropylene Ahmed glaucoma valves (AGV) implanted during the first 10 years of life. Methods A prospective study was performed on 50 eyes of 33 patients with paediatric glaucoma. Eyes were matched to either polypropylene or silicone AGV. In eyes with bilateral glaucoma, one eye was implanted with polypropylene and the other eye was implanted with silicone AGV. Results Fifty eyes of 33 children were reviewed. Twenty five eyes received a polypropylene valve, and 25 eyes received a silicone valve. Eyes implanted with silicone valves achieved a significantly lower intraocular pressure (IOP) compared with the polypropylene group at 6 months, 1 year, and 2 years postoperatively. The average survival time was significantly longer (P=0.001 by the log-rank test) for the silicone group than for the polypropylene group and the cumulative probability of survival by the log-rank test at the end of the second year was 80% (SE: 8.0, 95% confidence interval (CI): 64–96%) in the silicone group and 56% (SE: 9.8, 95% CI: 40–90%) in the polypropylene group. The difference in the number of postoperative interventions and complications between both groups was statistically insignificant. Conclusion Silicone AGVs can achieve better IOP control, and longer survival with less antiglaucoma drops compared with polypropylene valves in children younger than 10 years. PMID:23579403

  14. Gas flow in plant microfluidic networks controlled by capillary valves

    NASA Astrophysics Data System (ADS)

    Capron, M.; Tordjeman, Ph.; Charru, F.; Badel, E.; Cochard, H.

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ˜102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP ⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP =ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  15. Gas flow in plant microfluidic networks controlled by capillary valves.

    PubMed

    Capron, M; Tordjeman, Ph; Charru, F; Badel, E; Cochard, H

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ∼102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP=ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  16. 40 CFR 63.1010 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and agitators...

  17. 40 CFR 63.1029 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... shall comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and...

  18. 40 CFR 63.1010 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and agitators...

  19. 40 CFR 63.1029 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... shall comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and...

  20. 40 CFR 63.1029 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... shall comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and...

  1. 40 CFR 63.1010 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and agitators...

  2. 40 CFR 63.1029 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... shall comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and...

  3. 40 CFR 63.1029 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... shall comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and...

  4. 40 CFR 63.1010 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and agitators...

  5. 40 CFR 63.1010 - Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems..., connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and... comply with paragraphs (b)(1) and (b)(2) of this section. Pumps, valves, connectors, and agitators...

  6. 40 CFR 60.482-8 - Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid service, pressure relief devices in light liquid or heavy liquid service, and connectors. 60.482-8... Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid... any other detection method at pumps and valves in heavy liquid service, pressure relief devices...

  7. 40 CFR 60.482-8 - Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid service, pressure relief devices in light liquid or heavy liquid service, and connectors. 60.482-8... Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid... any other detection method at pumps and valves in heavy liquid service, pressure relief devices...

  8. 40 CFR 60.482-8 - Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquid service, pressure relief devices in light liquid or heavy liquid service, and connectors. 60.482-8... Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid... any other detection method at pumps and valves in heavy liquid service, pressure relief devices...

  9. 40 CFR 60.482-8 - Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid service, pressure relief devices in light liquid or heavy liquid service, and connectors. 60.482-8... Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid... any other detection method at pumps and valves in heavy liquid service, pressure relief devices...

  10. 40 CFR 60.482-8 - Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquid service, pressure relief devices in light liquid or heavy liquid service, and connectors. 60.482-8... Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid... any other detection method at pumps and valves in heavy liquid service, pressure relief devices...

  11. Dual-Use Partnership Addresses Performance Problems with "Y" Pattern Control Valves

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A Dual-Use Cooperative Agreement between the Propulsion Test Directorate (PTD) at Stennis Space Center (SSC) and Oceaneering Reflange, Inc. of Houston, TX has produced an improved 'Y' pattern split-body control valve for use in the propulsion test facilities at Stennis Space Center. The split-body, or clamped bonnet technology, provides for a 'cleaner' valve design featuring enhanced performance and increased flow capacity with extended life expectancy. Other points addressed by the partnership include size, weight and costs. Overall size and weight of each valve will be reduced by 50% compared to valves currently in use at SSC. An initial procurement of two 10 inch valves will result in an overall cost reduction of 15% or approximately $50,000 per valve.

  12. Helium pressures in RHIC vacuum cryostats and relief valve requirements from magnet cooling line failure

    SciTech Connect

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results. The conclusions are as follows: (1) The S/F simulation results show that the highest internal pressure in the cryostats, due to the magnet line failure, is {approx}37 psig (255115 Pa); (2) Based on the simulation, the temperature on the cryostat chamber, INJ Q8-Q9, could drop to 228 K, which is lower than the material minimum design temperature allowed by the Code; (3) Based on the ASME Code and ANSYS results, the reliefs on all the cryostats inside the RHIC tunnel are adequate to protect the vacuum chambers when the magnet cooling lines fail; and (4) In addition to the pressure loading, the thermal deformations, due to the temperature decrease on the cryostat chambers, could also cause a high stress on the chamber, if not properly supported.

  13. Unidirectional Expiratory Valve Method to Assess Maximal Inspiratory Pressure in Individuals without Artificial Airway

    PubMed Central

    Grams, Samantha Torres; Kimoto, Karen Yumi Mota; Azevedo, Elen Moda de Oliveira; Lança, Marina; de Albuquerque, André Luis Pereira; de Brito, Christina May Moran; Yamaguti, Wellington Pereira

    2015-01-01

    Introduction Maximal Inspiratory Pressure (MIP) is considered an effective method to estimate strength of inspiratory muscles, but still leads to false positive diagnosis. Although MIP assessment with unidirectional expiratory valve method has been used in patients undergoing mechanical ventilation, no previous studies investigated the application of this method in subjects without artificial airway. Objectives This study aimed to compare the MIP values assessed by standard method (MIPsta) and by unidirectional expiratory valve method (MIPuni) in subjects with spontaneous breathing without artificial airway. MIPuni reproducibility was also evaluated. Methods This was a crossover design study, and 31 subjects performed MIPsta and MIPuni in a random order. MIPsta measured MIP maintaining negative pressure for at least one second after forceful expiration. MIPuni evaluated MIP using a unidirectional expiratory valve attached to a face mask and was conducted by two evaluators (A and B) at two moments (Tests 1 and 2) to determine interobserver and intraobserver reproducibility of MIP values. Intraclass correlation coefficient (ICC[2,1]) was used to determine intraobserver and interobserver reproducibility. Results The mean values for MIPuni were 14.3% higher (-117.3 ± 24.8 cmH2O) than the mean values for MIPsta (-102.5 ± 23.9 cmH2O) (p<0.001). Interobserver reproducibility assessment showed very high correlation for Test 1 (ICC[2,1] = 0.91), and high correlation for Test 2 (ICC[2,1] = 0.88). The assessment of the intraobserver reproducibility showed high correlation for evaluator A (ICC[2,1] = 0.86) and evaluator B (ICC[2,1] = 0.77). Conclusions MIPuni presented higher values when compared with MIPsta and proved to be reproducible in subjects with spontaneous breathing without artificial airway. PMID:26360255

  14. VALIDATION OF SPRING OPERATED PRESSURE RELIEF VALVE TIME TO FAILURE AND THE IMPORTANCE OF STATISTICALLY SUPPORTED MAINTENANCE INTERVALS

    SciTech Connect

    Gross, R; Stephen Harris, S

    2009-02-18

    The Savannah River Site operates a Relief Valve Repair Shop certified by the National Board of Pressure Vessel Inspectors to NB-23, The National Board Inspection Code. Local maintenance forces perform inspection, testing, and repair of approximately 1200 spring-operated relief valves (SORV) each year as the valves are cycled in from the field. The Site now has over 7000 certified test records in the Computerized Maintenance Management System (CMMS); a summary of that data is presented in this paper. In previous papers, several statistical techniques were used to investigate failure on demand and failure rates including a quantal response method for predicting the failure probability as a function of time in service. The non-conservative failure mode for SORV is commonly termed 'stuck shut'; industry defined as the valve opening at greater than or equal to 1.5 times the cold set pressure. Actual time to failure is typically not known, only that failure occurred some time since the last proof test (censored data). This paper attempts to validate the assumptions underlying the statistical lifetime prediction results using Monte Carlo simulation. It employs an aging model for lift pressure as a function of set pressure, valve manufacturer, and a time-related aging effect. This paper attempts to answer two questions: (1) what is the predicted failure rate over the chosen maintenance/ inspection interval; and do we understand aging sufficient enough to estimate risk when basing proof test intervals on proof test results?

  15. Lessons Learned from the Space Shuttle Engine Hydrogen Flow Control Valve Poppet Breakage

    NASA Technical Reports Server (NTRS)

    Martinez, Hugo E.; Damico, Stephen; Brewer, John

    2011-01-01

    The Main Propulsion System (MPS) uses three Flow Control Valves (FCV) to modulate the flow of pressurant hydrogen gas from the Space Shuttle Main Engines (SSME) to the hydrogen External Tank (ET). This maintains pressure in the ullage volume as the liquid level drops, preserving ET structural integrity and assuring the engines receive a sufficient amount of head pressure. On Space Transportation System (STS)-126 (2009), with only a handful of International Space Station (ISS) assembly flights from the end of the Shuttle program, a portion of a single FCV?s poppet head broke off at about a minute and a half after liftoff. The risk of the poppet head failure is that the increased flow area through the FCV could result in excessive gaseous hydrogen flow back to the external tank, which could result in overboard venting of hydrogen ullage pressure. If the hydrogen venting were to occur in first stage (i.e., lower atmosphere), a flammability hazard exists that could lead to catastrophic loss of crew and vehicle. Other failure risks included particle impact damage to MPS downstream hardware. Although the FCV design had been plagued by contamination-related sluggish valve response problems prior to a redesign at STS-80 (1996), contamination was ruled out as the cause of the STS-126 failure. Employing a combination of enhanced hardware inspection and a better understanding of the consequences of a poppet failure, safe flight rationale for subsequent flights (STS-119 and later) was achieved. This paper deals with the technical lessons learned during the investigation and mitigation of this problem at a time when assembly flights were each in the critical path to Space Station success.

  16. High pressure capillary micro-fluidic valve device and a method of fabricating same

    DOEpatents

    Crocker, Robert W.; Caton, Pamela F.; Gerhardt, Geoff C.

    2007-04-17

    A freeze-thaw valve and a method of micro-machining the freeze-thaw valve is provided and includes a valve housing, wherein the valve housing defines a housing cavity and includes a housing inlet, a housing vent, a capillary tubing inlet and a capillary tubing outlet. A valve body is provided, at least a portion of which is lithographically constructed, wherein the valve body includes a refrigerant inlet, a refrigerant outlet and an expansion chamber. The expansion chamber is disposed to communicate the refrigerant inlet with the refrigerant outlet and includes a restriction region having a flow restriction. Additionally, the valve body is disposed within the housing cavity to form an insulating channel between the valve housing and the valve body.

  17. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  18. Pressurized metered dose inhalers: chlorofluorocarbon to hydrofluoroalkane transition-valve performance.

    PubMed

    Cummings, R H

    1999-12-01

    This article reviews the issues related to the performance of valves in metered dose inhalers with respect to chlorofluorocarbon propellant replacement. Reformulation of existing chlorofluorocarbon-based products with hydrofluoroalkane propellants has been a much more difficult task than initially anticipated, complicated by the need to concurrently develop better performing valves with cleaner extractive profiles. This paper will examine issues related to the reformulation and development of new valves and the tests and procedures used to evaluate valve performance. Evaluation of valve performance will consider the tests performed: mechanisms by which valves fail and analytic testing errors that can complicate the interpretation of results.

  19. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    SciTech Connect

    Kavaklioglu, K.; Ikonomopoulos, A. )

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint.

  20. Heart valve surgery - series (image)

    MedlinePlus

    There are four valves in the heart: aortic valve, mitral valve, tricuspid valve, and pulmonary valve. The valves are designed to control the direction of blood flow through the heart. The opening and closing of the heart valves produce the heart-beat sounds.

  1. Chaos in blood pressure control.

    PubMed

    Wagner, C D; Nafz, B; Persson, P B

    1996-03-01

    A number of control mechanisms are comprised within blood pressure regulation, ranging from events on the cellular level up to circulating hormones. Despite their vast number, blood pressure fluctuations occur preferably within a certain range (under physiological conditions). A specific class of dynamic systems has been extensively studied over the past several years: nonlinear coupled systems, which often reveal a characteristic form of motion termed "chaos". The system is restricted to a certain range in phase space, but the motion is never periodic. The attractor the system moves on has a non-integer dimension. What all chaotic systems have in common is their sensitive dependence on initial conditions. The question arises as to whether blood pressure regulation can be explained by such models. Many efforts have been made to characterise heart rate variability and EEG dynamics by parameters of chaos theory (e.g., fractal dimensions and Lyapunov exponents). These method were successfully applied to dynamics observed in single organs, but very few studies have dealt with blood pressure dynamics. This mini-review first gives an overview on the history of blood pressure dynamics and the methods suitable to characterise the dynamics by means of tools derived from the field of nonlinear dynamics. Then applications to systemic blood pressure are discussed. After a short survey on heart rate variability, which is indirectly reflected in blood pressure variability, some dynamic aspects of resistance vessels are given. Intriguingly, systemic blood pressure reveals a change in fractal dimensions and Lyapunov exponents, when the major short-term control mechanism--the arterial baroreflex--is disrupted. Indeed it seems that cardiovascular time series can be described by tools from nonlinear dynamics [66]. These methods allow a novel description of some important aspects of biological systems. Both the linear and the nonlinear tools complement each other and can be useful in

  2. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    PubMed

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation.

  3. Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Bahari, Norulain; Arof, Hamzah; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-02-25

    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.

  4. THE EFFECTS OF MAINTENANCE ACTIONS ON THE PFDavg OF SPRING OPERATED PRESSURE RELIEF VALVES

    SciTech Connect

    Harris, S.; Gross, R.

    2014-04-01

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accounted for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.

  5. The Effects of Maintenance Actions on the PFDavg of Spring Operated Pressure Relief Valves

    SciTech Connect

    Harris, S.; Gross, R.; Goble, W; Bukowski, J

    2015-12-01

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accounted for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.

  6. The Effects of Maintenance Actions on the PFDavg of Spring Operated Pressure Relief Valves

    DOE PAGES

    Harris, S.; Gross, R.; Goble, W; ...

    2015-12-01

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less

  7. PROCESS WATER BUILDING, TRA605. SIX CONTROL VALVES INSTALLED ABOVE PIPES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SIX CONTROL VALVES INSTALLED ABOVE PIPES IN BASEMENT. INL NEGATIVE NO. 3583A. Unknown Photographer, 10/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System

    PubMed Central

    Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S.; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela

    2015-01-01

    There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing

  9. Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System.

    PubMed

    Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela; Harpa, Marius; Simionescu, Dan Teodor

    2015-12-01

    There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open-close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing

  10. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  11. An investigation of the use of discharge valves and an intake control for improving the performance of N.A.C.A. Roots type supercharger

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Wilson, Ernest E

    1929-01-01

    This report presents the results of an analytical investigation on the practicability of using mechanically operated discharge valves in conjunction with a manually operated intake control for improving the performance of N. A. C. A. Roots type superchargers. These valves, which may be either of the oscillating or rotating type, are placed in the discharge opening of the supercharger and are so shaped and synchronized with the supercharger impellers that they do not open until the air has been compressed to the delivery pressure. The intake control limits the quantity of air compressed to engine requirements by permitting the excess air to escape from the compression chamber before compression begins. The percentage power saving and the actual horsepower saved were computed for altitudes from 0 to 20,000 feet. These computations are based on the pressure-volume cards for the conventional and the modified roots type superchargers and on the results of laboratory tests of the conventional type. The use of discharge valves shows a power saving of approximately 26 per cent at a critical altitude of 20,000 feet. In addition, these valves reduce the amplitude of the discharge pulsations and increase the volumetric efficiency. With slow-speed roots blowers operating at high-pressure differences even better results would be expected. For aircraft engine superchargers operating at high speeds these discharge valves increase the performance as above, but have the disadvantages of increasing the weight and of adding a high-speed mechanism to a simple machine. (author)

  12. Long-term survival rates of gravity-assisted, adjustable differential pressure valves in infants with hydrocephalus.

    PubMed

    Gebert, Anna-Felicitas; Schulz, Matthias; Schwarz, Karin; Thomale, Ulrich-Wilhelm

    2016-05-01

    OBJECTIVE The use of adjustable differential pressure valves with gravity-assisted units in shunt therapy of children with hydrocephalus was reported to be feasible and promising as a way to avoid chronic overdrainage. In this single-center study, the authors' experiences in infants, who have higher rates of shunt complications, are presented. METHODS All data were collected from a cohort of infants (93 patients [37 girls and 56 boys], less than 1 year of age [mean age 4.1 ± 3.1 months]) who received their first adjustable pressure hydrocephalus shunt as either a primary or secondary implant between May 2007 and April 2012. Rates of valve and shunt failure were recorded for a total of 85 months until the end of the observation period in May 2014. RESULTS During a follow-up of 54.2 ± 15.9 months (range 26-85 months), the Kaplan-Meier rate of shunt survival was 69.2% at 1 year and 34.1% at 85 months; the Kaplan-Meier rate of valve survival was 77.8% at 1 year and 56% at 85 months. Survival rates of the shunt were significantly inferior if the patients had previous shunt surgery. During follow-up, 44 valves were exchanged in cases of infection (n = 19), occlusion (n = 14), dysfunction of the adjustment unit (n = 10), or to change the gravitational unit (n = 1). CONCLUSIONS Although a higher shunt complication rate is observed in infant populations compared with older children, reasonable survival rates demonstrate the feasibility of using this sophisticated valve technology. The gravitational unit of this valve is well tolerated and its adjustability offers the flexible application of opening pressure in an unpredictable cohort of patients. This may adequately address overdrainage-related complications from early in treatment.

  13. DECREASES IN VENTRICULAR VOLUME CORRELATE WITH DECREASES IN VENTRICULAR PRESSURE IN IDIOPATHIC NORMAL PRESSURE HYDROCEPHALUS PATIENTS WHO EXPERIENCED CLINICAL IMPROVEMENT AFTER IMPLANTATION WITH ADJUSTABLE VALVE SHUNTS

    PubMed Central

    McConnell, Kathleen A.; Zou, Kelly H.; Chabrerie, Alexandra V.; Bailey, Nancy Olsen; Black, Peter McL.

    2005-01-01

    OBJECTIVE: This retrospective study examined whether changes in ventricular volume correspond with changes in adjustable valve pressure settings in a cohort of patients who received shunts to treat idiopathic normal pressure hydrocephalus. We also examined whether these pressure—volume curves and other patient variables would co-occur with a positive clinical response to shunting. METHODS: We selected 51 patients diagnosed with idiopathic normal pressure hydrocephalus who had undergone implantation of a Codman Hakim programmable valve (Medos S.A., Le Locle, Switzerland). Clinical data were gathered from the patients’ records and clinical notes by an investigator blinded to patients’ ventricular volumes. Ventricular volume was measured using 3D Slicer, an image analysis and interactive visualization software package developed and maintained at the Surgical Planning Laboratory at Brigham and Women’s Hospital. RESULTS: Eighty-six percent of patients with gait disturbance at presentation showed improvement of this symptom, 70% experienced improvement in incontinence, and 69% experienced improvement in dementia. For the group showing 100% clinical improvement, the correlation coefficient of average changes in valve pressure over time (ΔP/ΔT) and average changes in ventricular volume over time (ΔV/ΔT) were high at 0.843 (P < 0.05). For the group experiencing no or only partial improvement, the correlation coefficient was 0.257 (P = 0.32), indicating no correlation between average ΔV/ΔT and average ΔP/ΔT for each patient. CONCLUSION: This was a carefully analyzed modeling study of idiopathic normal pressure hydrocephalus treatment made possible only by adjustable valve technology. With careful volumetric analysis, we found that changes in ventricular volume correlated with adjustments in valve pressure settings for those patients who improved clinically after shunting. This suggests that positive clinical responders retained parenchymal elasticity

  14. Double-reed exhaust valve engine

    DOEpatents

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  15. Inhibition of Calcification of Bioprosthetic Heart Valves by Local Controlled-Release Diphosphonate

    NASA Astrophysics Data System (ADS)

    Levy, Robert J.; Wolfrum, Jacqueline; Schoen, Frederick J.; Hawley, Marguerite A.; Lund, Sally Anne; Langer, Robert

    1985-04-01

    Bioprostheses fabricated from porcine aortic valves are widely used to replace diseased heart valves. Calcification is the principal cause of the clinical failure of these devices. In the present study, inhibition of the calcification of bioprosthetic heart valve cusps implanted subcutaneously in rats was achieved through the adjacent implantation of controlled-release matrices containing the anticalcification agent ethanehydroxydiphosphonate dispersed in a copolymer of ethylene-vinyl acetate. Prevention of calcification was virtually complete, without the adverse effects of retarded bone and somatic growth that accompany systemic administration of ethanehydroxydiphosphonate.

  16. Achieving Target Pressures with Combined Surgery: Primary Patchless Ahmed Valve Combined with Phacoemulsification vs Primary Phacotrabeculectomy

    PubMed Central

    Sánchez-Noguera, Carmen C; Cárdenas-Gómez, Lorena; Castañeda-Diez, Rafael; Thomas, Ravi; Gil-Carrasco, Félix

    2015-01-01

    ABSTRACT Purpose: To evaluate the ability of phacoemulsification combined with either primary trabeculectomy (PT) or primary Ahmed glaucoma valve implantation (PAVI) to achieve target intraocular pressures (TIOP) in adults with primary open angle glaucoma. Materials and methods: Chart review of 214 adult patients operated between January 2002 and June 2008 with a minimum follow-up of 6 months. Group 1 comprised 181 eyes of 166 patients undergoing PT while group 2 included 50 eyes of 49 patients in combination with primary AVI. Target lOPs were pre-determined for each patient and success was defined as an IOP at or lower than target with or without medications. An IOP above target, loss of light perception or need for additional procedures to lower IOP were considered a failure. Results: Mean preoperative IOP was 17.2 mm Hg in group 1 and 17.3 in group 2. Mean postoperative IOPs were 10.2 and 9.2 on day 1, 12.2 and 11.6 at year 1, and 10.7 in both groups at year 5. Survival rates in groups 1 and 2 were 96.7 vs 96% at 6 months, 89 vs 96% at 12 months, 83.5 vs 96% at 24 months and 79.4 vs 89.1% at 36, 48 and 72 months. Transient bleb leaks were more frequent in group 1 (26 eyes, 14.4 vs 0%, p = 0.001) and transient choroidal detachments were more frequent in group 2 (7 eyes, 3.9 vs 6 eyes, 12%, p = 0.038). Conclusion: Midterm results for achieving target pressures using combined phacoemulsification with either PT or PAVI are comparable. The profile of complications is different for the two procedures. How to cite this article: Albis-Donado O, Sánchez-Noguera CC, Cárdenas-Gómez L, Castañeda-Diez R, Thomas R, Gil-Carrasco F. Achieving Target Pressures with Combined Surgery: Primary Patchless Ahmed Valve Combined with Phacoemulsification vs Primary Phacotrabeculectomy. J Curr Glaucoma Pract 2015;9(1):6-11. PMID:26997825

  17. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  18. Analysis of operational methane emissions from pressure relief valves from biogas storages of biogas plants.

    PubMed

    Reinelt, Torsten; Liebetrau, Jan; Nelles, Michael

    2016-10-01

    The study presents the development of a method for the long term monitoring of methane emissions from pressure relief valves (PRV(1)) of biogas storages, which has been verified during test series at two PRVs of two agricultural biogas plants located in Germany. The determined methane emission factors are 0.12gCH4kWhel(-1) (0.06% CH4-loss, within 106days, 161 triggering events, winter season) from biogas plant A and 6.80/7.44gCH4kWhel(-1) (3.60/3.88% CH4-loss, within 66days, 452 triggering events, summer season) from biogas plant B. Besides the operational state of the biogas plant (e.g. malfunction of the combined heat and power unit), the mode of operation of the biogas flare, which can be manually or automatically operated as well as the atmospheric conditions (e.g. drop of the atmospheric pressure) can also affect the biogas emission from PRVs.

  19. Internal combustion engine valve lift and cam duration control system

    SciTech Connect

    Bledsoe, P.G.

    1987-02-17

    A mechanism is described for varying the lift, timing and duration of a valve member associated with an internal combustion engine having a camshaft, a cam on the camshaft, and a rectilinear reciprocatable valve member for opening and closing a valve port in communication with a combustion chamber of the engine. The mechanism comprises an elongated rocker arm having a first pivot end and a second end forming a valve member actuating free end and an intermediate portion extending therebetween. The free end has a shaped valve member contact formation projecting therefrom and the pivot end has a circular opening therethrough receiving a pivotal mounting assembly therethrough having an exterior cylindrical surface within and corresponding substantially to the diameter of the circular opening forming the surface about which the rocker arm pivots. A pair of eccentric means form a first eccentric member and a second eccentric member collectively defines a pivot axis within the circular opening for the rocker arm, the first eccentric member comprising a shaft having cylindrical end portions journaled for rotation about a shaft axis and an eccentric cylindrical portion located within the opening of the rocker arm. The eccentric cylindrical portion is concentric with a first eccentric axis spaced from the shaft axis, and the second eccentric member comprises a tubular sleeve defining the exterior cylindrical surface and having a cylindrical bore having an inner diameter corresponding to the eccentric cylindrical portion of the shaft rotatably supported on the surface of the latter and concentric with a second eccentric axis spaced from the shaft axis and the first eccentric axis, a first means for rotating the shaft.

  20. An online tuned novel nonlinear PI controller for stiction compensation in pneumatic control valves.

    PubMed

    Mishra, Puneet; Kumar, Vineet; Rana, K P S

    2015-09-01

    A novel Nonlinear PI Controller (NPIC) has been proposed for effective control of flow process employing a sticky pneumatic control valve. The proposed control scheme has been inherited from a classical PI control structure with a difference that the integral gain has been varied in accordance with the instantaneous error and the rate of change of error. The tuning of controller has been carried out online using Differential Evolution algorithm. To evaluate the effectiveness of the proposed controller, a comparative study with the conventional PI controller has also been carried out for the setpoint tracking, disturbance rejection and robustness to parameter uncertainties on account of operating point change on a laboratory scale nonlinear flow process. Based on these intensive experimental evidences, it has been concluded that the NPIC performed far better than the conventional PI controller for all the case studies and suppressed effectively any stiction induced oscillations.

  1. Water hammer caused by closure of turbine safety spherical valves

    NASA Astrophysics Data System (ADS)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  2. Multi-bottle, no compressor, mean pressure control system for a Stirling engine

    DOEpatents

    Corey, John A.

    1990-01-01

    The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

  3. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of

  4. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  5. Conical Seat Shut-Off Valve

    NASA Technical Reports Server (NTRS)

    Farner, Bruce

    2013-01-01

    A moveable valve for controlling flow of a pressurized working fluid was designed. This valve consists of a hollow, moveable floating piston pressed against a stationary solid seat, and can use the working fluid to seal the valve. This open/closed, novel valve is able to use metal-to-metal seats, without requiring seat sliding action; therefore there are no associated damaging effects. During use, existing standard high-pressure ball valve seats tend to become damaged during rotation of the ball. Additionally, forces acting on the ball and stem create large amounts of friction. The combination of these effects can lead to system failure. In an attempt to reduce damaging effects and seat failures, soft seats in the ball valve have been eliminated; however, the sliding action of the ball across the highly loaded seat still tends to scratch the seat, causing failure. Also, in order to operate, ball valves require the use of large actuators. Positioning the metal-to-metal seats requires more loading, which tends to increase the size of the required actuator, and can also lead to other failures in other areas such as the stem and bearing mechanisms, thus increasing cost and maintenance. This novel non-sliding seat surface valve allows metal-to-metal seats without the damaging effects that can lead to failure, and enables large seating forces without damaging the valve. Additionally, this valve design, even when used with large, high-pressure applications, does not require large conventional valve actuators and the valve stem itself is eliminated. Actuation is achieved with the use of a small, simple solenoid valve. This design also eliminates the need for many seals used with existing ball valve and globe valve designs, which commonly cause failure, too. This, coupled with the elimination of the valve stem and conventional valve actuator, improves valve reliability and seat life. Other mechanical liftoff seats have been designed; however, they have only resulted in

  6. Ionogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds.

    PubMed

    Benito-Lopez, Fernando; Byrne, Robert; Răduţă, Ana Maria; Vrana, Nihal Engin; McGuinness, Garrett; Diamond, Dermot

    2010-01-21

    We present the fabrication, characterisation and performance of four novel ionic liquid polymer gels (ionogels) as photo-actuated valves incorporated into micro-fluidic manifolds. The ionogels incorporate benzospiropyran units and phosphonium-based ionic liquids. Each ionogel is photo-polymerised in situ in the channels of a poly(methyl methacrylate) micro-fluidic device, generating a manifold incorporating four different micro-valves. The valves are actuated by simply applying localised white light irradiation, meaning that no physical contact between the actuation impulse (light) and the valve structure is required. Through variation of the composition of the ionogels, each of the micro-valves can be tuned to open at different times under similar illumination conditions. Therefore, flows through the manifold can be independently controlled by a single light source. At present, the contraction process to open the channel is relatively rapid (seconds) while the recovery (expansion) process to re-close the channel is relatively slow (minutes), meaning that the valve, in its current form, is better suited for single-actuation events.

  7. NASA Work on Fatigue-Induced Cracking of H2 Flow Control Valve Poppet

    NASA Technical Reports Server (NTRS)

    Maes, Miguel

    2009-01-01

    This slide presentation reviews the work that is being done to resolve a potential problem with the flow control valve poppet that controls the flow of GH2 into the space shuttle's main engine. The STS Hydrogen Flow Control Valve (HFVC) and potential problems that could arise from the failure of a poppet are reviewed. The analysis and testing that were performed are discussed. There is discussion about the current work involved in finding a resolution to the problem, including finding new materials to use in construction of poppetts,

  8. Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems

    PubMed Central

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597

  9. Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.

    PubMed

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.

  10. The Electronic Valve Instrument (EVI), an electronic musical wind controller for playing synthesizers

    NASA Astrophysics Data System (ADS)

    Steiner, Nyle A.

    2001-05-01

    The Electronic Valve Instrument (EVI) is an electronic musical wind instrument with playing techniques similar to that of a trumpet. Invented by Nyle Steiner in the early 1970's, it was designed to give the performer control of dynamics from breath pressure and the ability to make a humanly generated vibrato. Other musical paramaters can be controlled as well. It has a playing range of seven octaves (similar to that of a piano). When musical lines are played using this instrument (controller) connected to an electronic music synthesizer, the sound is much more natural sounding and expressive than when a normal musical keyboard is used. The evolution of this instrument from the pre-Midi era to it latest Midi configuration, principles of operation, synthesizer programming, and its wide use in movie and TV scoring will be discussed. The EVI has played featured musical lines in many major movie soundtracks and TV shows such as Apocalypse Now, Witness, Dead Poets Society, Fatal Attraction, No Way Out, Gorillas in the Mist, and many others. The EVI design has also been adapted as an Electronic Woodwind Instrument (EWI) by Nyle Steiner and has been manufactured and sold worldwide by the AKAI Co. in Japan.

  11. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    NASA Astrophysics Data System (ADS)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  12. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  13. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  14. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  15. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  16. Aortic Valve Stenosis

    MedlinePlus

    ... By Mayo Clinic Staff Aortic valve stenosis — or aortic stenosis — occurs when the heart's aortic valve narrows. This ... pressure may prevent or slow the development of aortic stenosis. Ask your doctor if you need to lower ...

  17. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  18. Integrating bio-prosthetic valves in the Fontan operation - Novel treatment to control retrograde flow in caval veins

    NASA Astrophysics Data System (ADS)

    Vukicevic, Marija; Conover, Timothy; Zhou, Jian; Hsia, Tain-Yen; Figliola, Richard

    2012-11-01

    For a child born with only one functional heart ventricle, the sequence of palliative surgeries typically culminates in the Fontan operation. This procedure is usually successful initially, but leads to later complications, for reasons not fully understood. Examples are respiratory-dependent retrograde flows in the caval and hepatic veins, and increased pulmonary vascular resistance (PVR), hypothesized to be responsible for elevated pressure in the liver and disease of the liver and intestines. Here we study the parameters responsible for retrograde flows in the inferior vena cava (IVC) and hepatic vein (HV), and investigate two novel interventions to control retrograde flow: implanting either a Medtronic Contegra valved conduit or an Edwards lifescience pericardial aortic valve in the IVC or HV. We performed the experiments in a multi-scale, patient specific mock circuit, with normal and elevated PVR, towards the optimization of the Fontan circulation. The results show that both valves can significantly reduce retrograde flows in the veins, suggesting potential advantages in the treatment of the patients with congenital heart diseases. Fondation Leducq

  19. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  20. Pressure natriuresis and the renal control of arterial blood pressure.

    PubMed

    Ivy, Jessica R; Bailey, Matthew A

    2014-09-15

    The regulation of extracellular fluid volume by renal sodium excretion lies at the centre of blood pressure homeostasis. Renal perfusion pressure can directly regulate sodium reabsorption in the proximal tubule. This acute pressure natriuresis response is a uniquely powerful means of stabilizing long-term blood pressure around a set point. By logical extension, deviation from the set point can only be sustained if the pressure natriuresis mechanism is impaired, suggesting that hypertension is caused or sustained by a defect in the relationship between renal perfusion pressure and sodium excretion. Here we describe the role of pressure natriuresis in blood pressure control and outline the cascade of biophysical and paracrine events in the renal medulla that integrate the vascular and tubular response to altered perfusion pressure. Pressure natriuresis is impaired in hypertension and mechanistic insight into dysfunction comes from genetic analysis of blood pressure disorders. Transplantation studies in rats show that blood pressure is determined by the genotype of the kidney and Mendelian hypertension indicates that the distal nephron influences the overall natriuretic efficiency. These approaches and the outcomes of genome-wide-association studies broaden our view of blood pressure control, suggesting that renal sympathetic nerve activity and local inflammation can impair pressure natriuresis to cause hypertension. Understanding how these systems interact is necessary to tackle the global burden of hypertension.

  1. Pressure natriuresis and the renal control of arterial blood pressure

    PubMed Central

    Ivy, Jessica R; Bailey, Matthew A

    2014-01-01

    The regulation of extracellular fluid volume by renal sodium excretion lies at the centre of blood pressure homeostasis. Renal perfusion pressure can directly regulate sodium reabsorption in the proximal tubule. This acute pressure natriuresis response is a uniquely powerful means of stabilizing long-term blood pressure around a set point. By logical extension, deviation from the set point can only be sustained if the pressure natriuresis mechanism is impaired, suggesting that hypertension is caused or sustained by a defect in the relationship between renal perfusion pressure and sodium excretion. Here we describe the role of pressure natriuresis in blood pressure control and outline the cascade of biophysical and paracrine events in the renal medulla that integrate the vascular and tubular response to altered perfusion pressure. Pressure natriuresis is impaired in hypertension and mechanistic insight into dysfunction comes from genetic analysis of blood pressure disorders. Transplantation studies in rats show that blood pressure is determined by the genotype of the kidney and Mendelian hypertension indicates that the distal nephron influences the overall natriuretic efficiency. These approaches and the outcomes of genome-wide-association studies broaden our view of blood pressure control, suggesting that renal sympathetic nerve activity and local inflammation can impair pressure natriuresis to cause hypertension. Understanding how these systems interact is necessary to tackle the global burden of hypertension. PMID:25107929

  2. Control Blood Pressure, Protect Your Kidneys

    MedlinePlus

    ... Bar Home Current Issue Past Issues Health Lines Control Blood Pressure, Protect Your Kidneys Past Issues / Fall ... Not Alone / Keep Weight Off / Facts About Fat / Control Blood Pressure, Protect Your Kidneys Fall 2008 Issue: ...

  3. The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1931-01-01

    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.

  4. 40 CFR 60.482-8a - Standards: Pumps, valves, and connectors in heavy liquid service and pressure relief devices in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. 60... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. (a... at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light...

  5. 40 CFR 60.482-8a - Standards: Pumps, valves, and connectors in heavy liquid service and pressure relief devices in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. 60... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. (a... at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light...

  6. 40 CFR 60.482-8a - Standards: Pumps, valves, and connectors in heavy liquid service and pressure relief devices in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. 60... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. (a... at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light...

  7. 40 CFR 60.482-8a - Standards: Pumps, valves, and connectors in heavy liquid service and pressure relief devices in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. 60... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. (a... at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light...

  8. 40 CFR 60.482-8a - Standards: Pumps, valves, and connectors in heavy liquid service and pressure relief devices in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. 60... connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service. (a... at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light...

  9. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    NASA Astrophysics Data System (ADS)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  10. Electronic controlled fuel supply system for high pressure injector

    SciTech Connect

    Peters, L.L.; Perr, J.P.; Smith, E.D.

    1991-08-27

    This patent describes an electronically controlled fuel supply system for supplying fuel and timing fluid to a plurality of fuel injectors in an internal combustion engine, wherein each of the injectors includes a hydraulic link formed by the timing fluid which cooperates with a serially arranged plunger assembly to pressurize the fuel to be injected wherein the hydraulic link may have a variable effective length in response to variations in pressure of the timing fluid supplied to the the injector, the fuel supply system. It includes pump means fluidically connected to a fuel reservoir for pumping fuel from the reservoir to fuel channel means for supplying fuel to the injections and to timing means for supplying timing fluid to the injectors at a sufficient flow rate and pressure to operate the system; valve means fluidically interposed between the pump means and the fuel channel means and the timing fluid channel means for regulating the fuel supply to the fuel channel means and to the timing fluid channel means; electronically controlled fuel pressure regulating means fluidically connected to the pump means and to the injectors for regulating the pressure of the fuel to be supplied through the fuel channel means to the injectors for controlling the quantity of fuel to be injected by the injector.

  11. Qualification of the Lasentec M600P Particle Size Analyzer and the Red Valve Model 1151 Pressure Sensor

    SciTech Connect

    JR Bontha; NG Colton; EA Daymo; TD Hylton; CK Bayne; TH May

    2000-01-28

    The Lasentec M600 in-line particle size analyzer was installed at Oak Ridge National Laboratory (ORNL) in August 1998 to support retrieval of the Gunite and Associated Tanks (GAAT). Before installation at ORNL, the sensor underwent validation testing at the Pacific Northwest National Laboratory (PNNL) Instrument Validation facility. Mechanically, the instrument worked well during validation testing and met all expectations. Operationally, much was learned about optimum ways to display and interpret the data. Slurry samples taken during the in-line tests at PNNL were shipped to the vendor for analysis with a benchtop Lasentec sensor. These experiments were performed to determine if off-line analyses yield particle size distributions similar to those generated by the in-line sensor. It was determined that the Lasentec sensor measures repeatable chord lengths as long as particles are ''presenter'' to the sensor window the same way. After the initial non-radioactive simulant testing at PNNL, the instrument was shipped for radioactive validation and acceptance testing in the Slurry Monitoring Test System (SMTS) connected to the Tank W-9 of the GAATs at ORNL. For all acceptance tests conducted at ORNL, the variation in the chord length distribution and the total particle count corresponded very well with the slurry density data as determined using an in-line Promass 63M Coriolis meter. Based on the performance results obtained, the Lasentec M600P FBRM is expected to meet the requirements for measuring the particle size distribution during the slurry transfer operations at Hanford and the Oak Ridge GAAT remediation project. The Red Valve pressure sensor was endorsed at the Hanford Site following instrument validation tests at PNNL and is currently in operation in the Tank 241-C-106 pump pit. While this instrument measures pressure within a transfer line, this type of pressure sensor could be configured to measure pressure drop over time. In turn, the status of a slurry

  12. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  13. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  14. Nonlinear control of valves in diesel engines using the derivative-free nonlinear Kalman Filter

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The paper studies robust nonlinear control for gas exchange valves in diesel engines, with the use of the Derivative-free nonlinear Kalman Filter. Robust control of gas exchange valves is important for improving the efficiency in the operation of diesel engines. By applying differential flatness theory the initial nonlinear model of the system is transformed in the linear canonical (Brunovsky) form. For the latter model it is possible to design a state feedback controller that enables accurate tracking of the valve's reference set-points. To estimate the nonmeasurable state variables of the model and the unknown external disturbances the Derivative-free nonlinear Kalman Filter is used as a disturbance observer. The Derivative-free nonlinear Kalman Filter consists of the standard Kalman Filter recursion on the linearized equivalent model of the valve and of computation of state and disturbance estimates using the diffeomorphism (relations about state variables transformation) provided by differential flatness theory. Evaluation tests are performed for assessing the performance of the proposed control scheme.

  15. A Novel Implantable Glaucoma Valve Using Ferrofluid

    PubMed Central

    Paschalis, Eleftherios I.; Chodosh, James; Sperling, Ralph A.; Salvador-Culla, Borja; Dohlman, Claes

    2013-01-01

    Purpose To present a novel design of an implantable glaucoma valve based on ferrofluidic nanoparticles and to compare it with a well-established FDA approved valve. Setting Massachusetts Eye & Ear Infirmary, Boston, USA. Methods A glaucoma valve was designed using soft lithography techniques utilizing a water-immiscible magnetic fluid (ferrofluid) as a pressure-sensitive barrier to aqueous flow. Two rare earth micro magnets were used to calibrate the opening and closing pressure. In-vitro flow measurements were performed to characterize the valve and to compare it to Ahmed™ glaucoma valve. The reliability and predictability of the new valve was verified by pressure/flow measurements over a period of three months and X-ray diffraction (XRD) analysis over a period of eight weeks. In vivo assessment was performed in three rabbits. Results In the in vitro experiments, the opening and closing pressures of the valve were 10 and 7 mmHg, respectively. The measured flow/pressure response was linearly proportional and reproducible over a period of three months (1.8 µl/min at 12 mmHg; 4.3 µl/min at 16 mmHg; 7.6 µl/min at 21 mmHg). X-ray diffraction analysis did not show oxidization of the ferrofluid when exposed to water or air. Preliminary in vivo results suggest that the valve is biocompatible and can control the intraocular pressure in rabbits. Conclusions The proposed valve utilizes ferrofluid as passive, tunable constriction element to provide highly predictable opening and closing pressures while maintaining ocular tone. The ferrofluid maintained its magnetic properties in the aqueous environment and provided linear flow to pressure response. Our in-vitro tests showed reliable and reproducible results over a study period of three months. Preliminary in-vivo results were very promising and currently more thorough investigation of this device is underway. PMID:23840691

  16. Long life valve design concepts

    NASA Technical Reports Server (NTRS)

    Jones, J. R.; Hall, A. H., Jr.

    1975-01-01

    Valve concept evaluation, final candidate selection, design, manufacture, and demonstration testing of a pneumatically actuated 10-inch hybrid poppet butterfly shutoff valve are presented. Conclusions and recommendations regarding those valve characteristics and features which would serve to guide in the formulation of future valve procurements are discussed. The pertinent design goals were temperature range of plus 200 to minus 423 F, valve inlet pressure 35 psia, actuation pressure 750 psia, main seal leakage 3 x 0.00001 sccs at 35 psia valve inlet pressure, and a storage and operating life of 10 years. The valve was designed to be compatible with RP-1, propane, LH2, LO2, He, and N2.

  17. Fuel injection system electromagnetic-valve controlled type

    SciTech Connect

    Oshizawa, H.; Ishikawa, M.

    1989-01-31

    A fuel injection system for an engine is described including: (a) a fuel injection pump having a pump housing, a plunger associated with the pump housing and reciprocatively movable in relation to rotation of a crankshaft of the engine, and a fuel pressurizing chamber associated with the pump housing and variable in volume in response to reciprocative movement of the plunger; (b) supply passage means supplying fuel to the fuel pressurizing chamber, the supply passage means being closed substantially during a forward stroke of the plunger and being opened substantially during a backward stroke of the plunger; (c) forcible-delivery passage means connecting the fuel pressurizing chamber to at least one fuel injection nozzle of the engine; (d) release passage means communicating with the fuel pressurizing chamber.

  18. Managing Stress to Control High Blood Pressure

    MedlinePlus

    ... Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 10,2017 The importance of stress ... content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  19. Dual stage check valve

    NASA Technical Reports Server (NTRS)

    Whitten, D. E. (Inventor)

    1973-01-01

    A dual stage seat valve head arrangement is described which consists of a primary sealing point located between a fixed orifice seat and a valve poppet, and a secondary sealing point between an orifice poppet and a valve poppet. Upstream of the valve orifice is a flexible, convoluted metal diaphragm attached to the orifice poppet. Downstream of the valve orifice, a finger spring exerts a force against the valve poppet, tending to keep the valve in a closed position. The series arrangement of a double seat and poppet is able to tolerate small particle contamination while minimizing chatter by controlling throttling or metering across the secondary seat, thus preserving the primary sealing surface.

  20. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    SciTech Connect

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  1. Aortic Valve Calcification in Mild Primary Hyperparathyroidism

    PubMed Central

    Iwata, Shinichi; Walker, Marcella Donovan; Di Tullio, Marco R.; Hyodo, Eiichi; Jin, Zhezhen; Liu, Rui; Sacco, Ralph L.; Homma, Shunichi

    2012-01-01

    Context: It is unclear whether cardiovascular disease is present in primary hyperparathyroidism (PHPT). Objective: Aortic valve structure and function were compared in PHPT patients and population-based controls. Design: This is a case-control study. Setting: The study was conducted in a university hospital metabolic bone disease unit. Participants: We studied 51 patients with PHPT and 49 controls. Outcome Measures: We measured the aortic valve calcification area and the transaortic pressure gradient. Results: Aortic valve calcification area was significantly higher in PHPT (0.24 ± 0.02 vs. 0.17 ± 0.02 cm2, p<0.01), although there was no difference in the peak transaortic pressure gradient, a functional measure of valvular calcification (5.6 ± 0.3 vs. 6.0 ± 0.3 mm Hg, P = 0.39). Aortic valve calcification area was positively associated with PTH (r = 0.34; P < 0.05) but not with serum calcium, phosphorus, or 25-hydroxyvitamin D levels or with calcium-phosphate product. Serum PTH level remained an independent predictor of aortic valve calcification area after adjustment for age, sex, body mass index, smoking status, history of hypercholesterolemia and hypertension, and estimated glomerular filtration rate. Conclusions: Mild PHPT is associated with subclinical aortic valve calcification. PTH, but not serum calcium concentration, predicted aortic valve calcification. PTH was a more important predictor of aortic valve calcification than well-accepted cardiovascular risk factors. PMID:22031523

  2. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-01-01

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  3. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, D.J.

    1984-05-30

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.

  4. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-02-03

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  5. Nutraceuticals for blood pressure control.

    PubMed

    Sirtori, Cesare R; Arnoldi, Anna; Cicero, Arrigo F G

    2015-01-01

    Significant effects on blood pressure (BP) have been reported from large nutritional interventions, particularly the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet. In more recent years, numerous studies have investigated the possible BP-lowering effect of different nutraceuticals; these range from specific foods to minerals, lipids, whole proteins, peptides, amino acids, probiotics, and vitamins. While a very large body of evidence supports the use of potassium, L-arginine, vitamins C and D, cocoa flavonoids, beetroot juice, some probiotics, coenzyme Q10, controlled-release melatonin, aged garlic extract, and coffee, the use of other nutraceuticals, such as green tea, flaxseed, and resveratrol, has not as yet been supported by adequate evidence. In some cases, e.g. proteins/peptides, the responsible component needs also to be fully uncovered. Finally, while for most of the products only short-term studies are available, with no specific end-points, an ongoing very large prospective study on chocolate flavanols will answer the question whether this may reduce cardiovascular risk. Thus, in addition to data on long-term safety, further clinical research is advisable in order to identify, among active nutraceuticals, those with the best cost-effectiveness and risk-benefit ratio for a wide use in the general population with a raised cardiovascular risk consequent to uncomplicated hypertension.

  6. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  7. Pressure Characteristic Analysis of a Hydraulic System

    NASA Astrophysics Data System (ADS)

    Cho, H. Y.; Yang, H. J.

    2017-02-01

    EPPR(ElectroProportional Pressure Reducing) valve control the MCV(Main Control Valve) built on the mobile heavy machine. The EPPR valve was tested in the experimental setup and the performance of the valve was compared with that of the existing EPPR valve. On thisstudy, electromagnetic properties analysis using AMESim program was performed to optimize the designing of EPPR Valve (Electric Proportional Pressure Reducing Valve) and by applying its results to the hydraulic system analytical model, performance of the valve could be predicted. Also by comparing the results of the actual experiment and the simulation, The results of thisstudy is that the 3 factor(cone angle, tip width, clearance between sleeve and plunger) have much effectiveness than other components in the EPPR valve.

  8. Velocity of closure of Björk-Shiley Convexo-Concave mitral valves: effect of mitral annulus orientation and rate of left ventricular pressure rise.

    PubMed

    Blick, E F; Wieting, D W; Inderbitzen, R; Schreck, S; Stein, P D

    1995-07-01

    The purpose of this study was to determine analytically the hemodynamic factors that affect the closing velocity of the disc of Björk-Shiley convexo-concave (BSCC) prosthetic mitral valves. The motion of the BSCC disk was modelled by Newton's second law written in the form of a second order differential equation which expressed the instantaneous angle of the disc with respect to the valve ring as a function of the instantaneous pressure drop across the mitral valve, delta P(t), and the angle of the pressure gradient vector acting upon the disc during closure. The disc closes in response to the negative pressure drop created by the crossover of left atrial and left ventricular (LV) pressures. The rate of closure depends on the rate of development of the pressure drop across the valve, d delta P/dt, which is largely dependent upon the rate of change of left ventricular pressure during isovolumic contraction, LV dP/dt. The closure rate is also strongly dependent on the initial angle of the pressure drop vector with respect to the disc. The disc was predicted to reach its highest velocity at the moment of impact, based on the Runge-Kutta solution. Modelling suggests that a high LV dP/dt during valve closure or distorted LV geometry, causing the angle between the fully open disc and the pressure drop vector to shift, will cause the valve to have a high velocity at the moment of impact and may produce high impact loads.

  9. Valve technology: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A technical compilation on the types, applications and modifications to certain valves is presented. Data cover the following: (1) valves that feature automatic response to stimuli (thermal, electrical, fluid pressure, etc.), (2) modified valves changed by redesign of components to increase initial design effectiveness or give the item versatility beyond its basic design capability, and (3) special purpose valves with limited application as presented, but lending themselves to other uses with minor changes.

  10. 49 CFR 178.338-8 - Pressure relief devices, piping, valves, and fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-8 Pressure... pressure parts, except for pump seals and pressure relief devices, must be at least 4 times the...

  11. 49 CFR 178.338-8 - Pressure relief devices, piping, valves, and fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS... other pressure parts, except for pump seals and pressure relief devices, must be at least 4 times...

  12. Space Shuttle Main Propulsion System Gaseous Hydrogen Flow Control Valve Poppet Failure

    NASA Technical Reports Server (NTRS)

    Zeitler, Rick

    2010-01-01

    The presentation provides background information pertinent to the MPS GH2 Flow Control Valve Poppet failure which occurred on the Space Shuttle Endeavour during STS-126 flight. The presentation provides general MPS system operating information which is pertinent to understanding the failure causes and affects. The presentation provides additional background information on the operating environment in which the FCV functions and basic design history of the flow control valve. The presentation provides an overview of the possible flight failure modes and a brief summary of the flight rationale which was developed for this failure event. This presentation is an introductory presentation to 3 other speakers at the conference who will be speaking on M&P aspects of the investigation, non destructive inspection techniques development, and particle impact testing.

  13. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  14. Determinants of valve gating in collecting lymphatic vessels from rat mesentery

    PubMed Central

    Rahbar, Elaheh; Gashev, Anatoliy A.; Zawieja, David C.; Moore, James E.

    2011-01-01

    Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1–2.2 cmH2O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating. PMID:21460194

  15. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.

    PubMed

    Davis, Michael J; Rahbar, Elaheh; Gashev, Anatoliy A; Zawieja, David C; Moore, James E

    2011-07-01

    Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1-2.2 cmH(2)O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating.

  16. A Study of the Fluid-Dynamic Pressure Fields on Compressor Reed Valves.

    DTIC Science & Technology

    1985-12-01

    nigher *A pressures. The total pressure ol the reservoir wnicn suppiieo the air was measured on either a lovi-incn mercury manometer or a3 -v)-incn... mercury manometer . This was the same manometer which was used to measure the total pressure of the reservoir. A pressure tap ran from this total

  17. Electrical servo actuator bracket. [fuel control valves on jet engines

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  18. Improved pointing at trackable targets by integrating control valve signals

    NASA Technical Reports Server (NTRS)

    Stone, R. W.; Laverty, C. R.; Colby, M. J.

    1982-01-01

    A compact, low-cost add-on electronic module has been developed for the STRAP III control system to improve pointing at trackable targets. The module provides peak-to-peak limit cycle excursions of + or - 5 arcseconds while tracking a +3 magnitude or brighter star. This is achieved without using rate-integrating gyroscopes, thus reducing payload length, weight, cost, and preparation time. This module has flown successfully five times. In May 1981, it improved the performance of a two-startracker attitude control system with TV camera and joystick control which pointed at a nontrackable target. This paper describes the operation of the module, how it alters the ordinary STRAP III operation, and how it was developed using an analog-computer-based rocket flight simulator.

  19. Higher ambulatory blood pressure is associated with aortic valve calcification in the elderly: a population-based study.

    PubMed

    Iwata, Shinichi; Russo, Cesare; Jin, Zhezhen; Schwartz, Joseph E; Homma, Shunichi; Elkind, Mitchell S V; Rundek, Tatjana; Sacco, Ralph L; Di Tullio, Marco R

    2013-01-01

    Aortic valve calcification (AVC) without outflow obstruction (stenosis) is common in the elderly and increases the risk of cardiovascular morbidity and mortality. Although high blood pressure (BP) measured at the doctor's office is known to be associated with AVC, little is known about the association between 24-hour ambulatory BP (ABP) and AVC. Our objective was to clarify the association between ABP variables and AVC. The study population consisted of 737 patients (mean age, 71±9 years) participating in the Cardiovascular Abnormalities and Brain Lesions study who underwent 24-hour ABP monitoring. Each aortic valve leaflet was graded on a scale of 0 (normal) to 3 (severe calcification). A total valve score (values 0-9) was calculated as the sum of all leaflet scores. Advanced AVC (score ≥4) was present in 77 subjects (10.4%). All of the systolic ABP variables (except systolic BP nocturnal decline) and mean asleep diastolic BP were positively associated with advanced calcification, whereas normal dipping status and diastolic BP nocturnal decline were negatively associated. Multiple regression analysis indicated that mean awake diastolic BP (odds ratio, 1.31 [95% CI, 1.01-1.71]) and asleep diastolic BP (odds ratio, 1.34 [95% CI, 1.04-1.72]) remained independently associated with advanced calcification after adjustment for age, sex, cigarette smoking, diabetes mellitus, hypercholesterolemia, hypertension, serum creatinine, and any degree of aortic insufficiency. Diastolic ABP is independently associated with advanced calcification. This finding may have important implications in gaining further insight into the mechanism of AVC.

  20. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    SciTech Connect

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.

  1. Back end valves: history and modifications, status report, June 1983

    SciTech Connect

    Not Available

    1984-02-01

    At the Grimethorpe Experimental Facility the valves which control the combustor freeboard pressure are known as the back end valves. They are situated downstream of the main heat exchanger. They are required to work under adverse conditions and their operation has not been without problems. The report provides a description of the valves and a history of their operation and modifications from December 1980 to April 1983. Considerable erosion and control problems were experienced during 1981, however, operational and mechanical modifications have now been made which have greatly improved the reliability of the valves.

  2. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  3. Locking apparatus for gate valves

    DOEpatents

    Fabyan, Joseph; Williams, Carl W.

    1988-01-01

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing futher movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  4. Locking apparatus for gate valves

    DOEpatents

    Fabyan, J.; Williams, C.W.

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing further movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  5. Are anticoagulant independent mechanical valves within reach—fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models

    PubMed Central

    Siegel, Rolland

    2015-01-01

    Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration

  6. A solenoid failure detection system for cold gas attitude control jet valves

    NASA Technical Reports Server (NTRS)

    Johnston, P. A.

    1970-01-01

    The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.

  7. Development and marketing of a prosthetic urinary control valve system

    NASA Technical Reports Server (NTRS)

    Tenney, J. B., Jr.; Rabinowitz, R.; Rogers, D. W.; Harrison, H. N.

    1983-01-01

    An implantable prosthetic for the control of urinary incontinence was developed and marketed. Three phases are presented: bench development studies, animal trials, and human clinical trials. This work was performed under the direction of a Research Team at Rochester General Hospital (RGH). Bench trials were completed on prototype hardware and provided early verification of the device's ability to withstand repeated cyclic testing. Configurational variants were evaluated and a preferred design concept was established. Silicone rubber (medical grade) was selected as the preferred material for the prosthesis.

  8. System for pressure letdown of abrasive slurries

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.

  9. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  10. Testing for Controlled Rapid Pressurization

    DOE Data Explorer

    Steven Knudsen

    2014-09-03

    Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole w-1

  11. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    NASA Astrophysics Data System (ADS)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  12. Ventless pressure control of cryogenic storage tanks

    NASA Astrophysics Data System (ADS)

    Barsi, Stephen

    Future operations in space exploration will require the ability to store cryogenic liquids for long durations. During storage, the tanks may self-pressurize due to heat leaks from the ambient environment. When heat leaks into the tank, the cryogenic liquid vaporizes causing the ullage pressure to rise. Being able to effectively control tank pressure will make these long duration storage concepts feasible. One way to control tank pressure involves the use of a subcooled axial liquid jet to both thermally destratify the bulk liquid and remove energy from the tank. In this dissertation, the effectiveness of using subcooled jet mixing as a pressure control scheme is analyzed by performing a small-scale experiment in a normal gravity environment with a refrigerant. Following a period of self-pressurization, the jet's speed and degree of subcooling are parametrically varied so that relevant trends can be identified. Experimental results show that mixing the bulk liquid is not sufficient to control pressure. To sustain any pressure reduction, subcooling the mixing jet is necessary. The rate of pressure reduction is greater for increased jet speeds and subcooling. Analytical and computational models were developed in order to predict the pressurization behavior. Model comparisons reveal that generally a thermodynamic model underpredicts the self-pressurization and depressurization rates. The lack of agreement is primarily attributed to the homogeneity assumption inherent in the model. To improve model predictions, a zonal model is developed which relaxes the global homogeneity assumption. Comparisons between the experimental data and the zonal model predictions are excellent for moderate to high jet flow rates. For slower jet speeds, buoyant flow in the bulk liquid adversely affects the effectiveness of a subcooled mixing jet and a more detailed computational model is required to capture this intraphase phenomena.

  13. Pressure-control purge panel for automatic butt welding

    NASA Technical Reports Server (NTRS)

    Lang, E. J.; Van Wagner, B. H.

    1969-01-01

    Modification of a purge panel for use in an automatic butt weld reduces the drop in pressure between the regulators and the weld head and tube purge fitting. The invention affects air regulators for plants, regulating circuits for pneumatic valves, and automatic welding machines.

  14. Dump valve

    SciTech Connect

    Webber, J.C.

    1981-06-23

    A swab assembly is provided having a dump valve responsive to fluid pressure and drag which will dump the fluid load should either fluid load or drag or the effect of both fluid load and drag become abnormal. Also if the fluid pressure and/or drag become abnormal, the fluid load on the cup will be released and wash away foreign material causing abnormal drag. When the cup is dumped the pulling capabilities of the wireline truck can concentrate on overcoming the drag. The dump valve opens to wide open position and remains open to dump the fluid to assist in washing away solid materials above the cup. A swab assembly also is provided which with normal drag and an overload, may be pulled relatively slowly, but if pulled too rapidly will result in the load on the swab being dumped to protect the swab assembly and the pulling apparatus from damage. 15 claims.

  15. A review of design and modeling of magnetorheological valve

    NASA Astrophysics Data System (ADS)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  16. Safety valve

    DOEpatents

    Bergman, Ulf C.

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  17. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    PubMed

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness.

  18. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  19. Effect of pressure pulses at the interface valve on the stability of second dimension columns in online comprehensive two-dimensional liquid chromatography.

    PubMed

    Talus, Eric S; Witt, Klaus E; Stoll, Dwight R

    2015-01-23

    Users of online comprehensive two-dimensional liquid chromatography (LCxLC) frequently acknowledge that the mechanical instability of HPLC columns installed in these systems, particularly in the second dimension, is a significant impediment to its use. Such instability is not surprising given the strenuous operating environment to which these columns are subjected, including the large number (thousands per day) of fast and large pressure pulses resulting from interface valve switches (on the timescale of tens of milliseconds) associated with very fast second dimension separations. There appear to be no published reports of systematic studies of the relationship between second dimension column lifetime and any of these variables. In this study we focused on the relationship between the lifetimes of commercially available columns and the pressure pulses observed at the inlet of the second dimension column that occur during the switching of the valve that interfaces the two dimensions of a LCxLC system. We find that the magnitude of the pressure drop at the inlet of the second dimension column during the valve switch, which may vary between 10 and 95% of the column inlet pressure, is dependent on valve switching speed and design, and has a dramatic impact on column lifetime. In the worst case, columns fail within the first few hours of use in an LCxLC system. In the best case, using a valve that exhibits much smaller pressure pulses, the same columns exhibit much improved lifetimes and have been used continuously under LCxLC conditions for several days with no degradation in performance. This result represents a first step in understanding the factors that affect second dimension column lifetime, and will significantly improve the usability of the LCxLC technique in general.

  20. Operational experience using the novel FixCup collecting main valve

    SciTech Connect

    Giertz, J.; Huhn, F.; Spitz, J.

    1996-12-31

    On the occasion of the 1995 AIME conference the new PROven (Pressure Regulated Oven) process to control the pressure in coke ovens individually was introduced. This process was made feasible with a new collecting main valve, termed FixCup, with the aid of this valve a variable flow resistance to the raw gas discharge can be realized using a water immersion system. However, just the application of the FixCup system alone--without any pressure regulation--is very advantageous and cost saving. Thyssen has equipped 30 ovens with the new valve. The special constructive features as well as the operational experience using the FixCup valve are treated.

  1. Isolated calcification of tricuspid valve with severe low pressure tricuspid regurgitation in an infant.

    PubMed

    Mittal, S R

    2013-12-01

    A three-month-old asymptomatic male infant was evaluated for a systolic murmur. Echocardiography revealed calcification of tricuspid leaflets with severe low pressure tricuspid regurgitation. Pulmonary artery flow was normal. There was no other congenital anomaly.

  2. Fluid relief and check valve

    DOEpatents

    Blaedel, K.L.; Lord, S.C.; Murray, I.

    1986-07-17

    A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.

  3. Analysis and compensation for the cascade dead-zones in the proportional control valve.

    PubMed

    Xu, Bing; Su, Qi; Zhang, Junhui; Lu, Zhenyu

    2017-01-01

    The four-way proportional directional control valve has been widely used as the main stage spring constant for the two-stage proportional control valve (PDV). Since a tradeoff should be made between manufacturing costs and static performance, two symmetry dead-zones are introduced in the main stage spring constant: the center dead-zone caused by the center floating position and the intermediate dead-zone caused by the intermediate position. Though the intermediate dead-zone is much smaller than the center dead-zone, it has significant effect on the dynamic position tracking performance. In this paper, the cascade dead-zones problem in a typical two-stage PDV is analyzed and a cascade dead-zones model is proposed for the main stage spring constant. Then, a cascade dead-zones inverse method is improved with gain estimation and dead-zone detection to compensate the dead-zone nonlinearity. Finally, a digital controller is designed for verification. The comparative experimental results indicate that it is effective to reduce the large position tracking error when the proposed method is applied.

  4. Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link

    NASA Technical Reports Server (NTRS)

    Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete

    2012-01-01

    Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.

  5. Liquid Level Control System.

    DTIC Science & Technology

    A system for controlling liquid flow from an inlet into a tank comprising a normally closed poppet valve controlled by dual pressure chambers each...containing a diaphragm movable by the pressure of the liquid in the inlet to cause the valve to close. Pressure against the diaphragms is relieved by

  6. [New concepts for pressure-controlled glaucoma implants].

    PubMed

    Allemann, R; Stachs, O; Falke, K; Schmidt, W; Siewert, S; Sternberg, K; Chichkov, B; Wree, A; Schmitz, K-P; Guthoff, R F

    2013-08-01

    In industrialized countries glaucoma is one of the most common causes that leads to blindness. It is also the most common cause of irreversible blindness worldwide. In addition to local treatment of intraocular pressure and filtering glaucoma surgery, alloplastic implants are increasingly being used in glaucoma therapy. As long-term results published in the literature of commonly used implants are unsatisfactory, it seems useful to search for new concepts. In order to avoid the well-known short-term and long-term postoperative complications a pressure-controlled microstent with antiproliferative surface modifications was developed. Additionally, the functionality of such a microstent should be investigated using an animal glaucoma model. This paper describes the concept of a microstent which drains aquous humour from the anterior chamber into the suprachoroidal space. In addition, the glaucoma models described in the literature are discussed. Unfortunately, none of the methods could be reproduced permanently. First results show a correct implantation of a coated microstent with valve where the anti-proliferative effect could be demonstrated histologically. The promising results should lead to further investigations and the final goal will be the testing of the stent in the human eye.

  7. Aging and service wear of spring-loaded pressure relief valves used in safety-related systems at nuclear power plants

    SciTech Connect

    Staunton, R.H.; Cox, D.F.

    1995-03-01

    Spring-loaded pressure relief valves (PRVS) are used in some safety-related applications at nuclear power plants. In general, they are used in systems where, during accidents, pressures may rise to levels where pressure safety relief is required for protection of personnel, system piping, and components. This report documents a study of PRV aging and considers the severity and causes of service wear and how it is discovered and corrected in various systems, valve sizes, etc. Provided in this report are results of the examination of the recorded failures and identification of trends and relationships/correlations in the failures when all failure-related parameters are considered. Components that comprise a typical PRV, how those components fail, when they fail, and the current testing frequencies and methods are also presented in detail.

  8. Bistable diverter valve in microfluidics

    NASA Astrophysics Data System (ADS)

    Tesař, V.; Bandalusena, H. C. H.

    2011-05-01

    Bistable diverter valves are useful for a large number of no-moving-part flow control applications, and there is a considerable interest in using them also in microfluidics, especially for handling small pressure-driven flows. However, with decreasing Reynolds number, the Coanda effect—on which the flow diverting effect depends—becomes less effective. Authors performed a study, involving flow visualisation, PIV experiments, measurements of the flow rates, and numerical flowfield computations, aimed at clarifying behaviour of a typical fluidic valve at low Reynolds numbers. A typical fluidic valve originally developed for high Re operation was demonstrated to be useful, though with progressively limited efficiency, down to surprisingly low Re values as small as Re = 800. Also observed was a previously not reported discontinuation in the otherwise monotonic decrease in performance at Re between 1,500 and 2,000.

  9. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  10. A Novel Pressure Compensating Valve for Low-Cost Drip Irrigation

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Wiens, Alexander

    2014-11-01

    Nearly one billion people are currently living as subsistence farmers in the developing world. Irrigation could drastically increase quality of life for these individuals by enabling them to grow more and higher value crops. However, current irrigation technologies are too costly for this economic sector, particularly in off-grid applications. The cost of an off-grid irrigation system is primarily driven by the power required to pump the water at a relatively high pressure (>1 bar). We propose a novel pressure compensating drip emitter design which allows these systems to operate at 1/10 the pressure of current products, making them economically viable in developing markets. Our proposed solution is inspired by the resonating nozzle of a deflating balloon. We use a reduced order model to understand the physical principles which drive the cyclic collapse of the balloon nozzle. This knowledge is applied to propose a pressure compensating drip emitter consisting of a simple compliant tube in series with a rigid conical diffuser. A scaling analysis is performed to determine the ideal geometry of the system and the model is applied to demonstrate that the proposed design is capable of pressure compensation in the required operation range. Preliminary experiments are presented.

  11. Diagnostic Relevance of Pressure-Controlled Discography

    PubMed Central

    Shin, Dong-Ah; Jung, Jae-Hyun; Shin, Dong-Gyu; Lee, Jung-Ok

    2006-01-01

    Discogenic pain is a leading cause of chronic low back pain. The authors investigated the efficacy of pressure-controlled discography to determine its role in clinical decision-making for the management of patients with discogenic pain. Pressure-controlled discography was performed in 21 patients (51 discs) with pain-provocation, followed by post-discography computerized tomography scans. Pain response was classified as positive response and negative response, and measured with visual analog scale scores. Discographic findings were graded by the modified Dallas discogram scale. Elastance, pain provocation on intradiscal pressure, pressure and volume of initial pain response, and pain response intensity were statistically analyzed. Elastance showed significant differences between Grade 0 and Grade 4 & 5. Decreased elastance with positive pain response group was a good indicator to imply that disc degeneration presumably is a pain generator. Results of pain response were well correlated with intradiscal pressure but not with the amount of injected volume. Among 31 discs of Grade 4 and 5, 74% showed negative pain response and 26% showed positive response. It was concluded that pressure-controlled discography was useful to diagnose discogenic pain and excellent guide in decision-making for spinal operations. PMID:17043428

  12. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  13. Spring-Loaded Joule-Thomson Valve

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Britcliffe, M. J.

    1986-01-01

    Improved design reduces clogging and maintains constant pressure drop as flow rate varies. Spring-Loaded Joule-Thomson Valve pressure drop regulated by spring pushing stainless-steel ball against soft brass seat. Pressure drop remains nearly constant, regardless of helium flow rate and of any gas contaminants frozen on valve seat. Because springloaded J-T valve maintains constant pressure drop, upstream roomtemperature throttle valve adjusts flow rate precisely for any given upstream pressure. In addition, new valve relatively invulnerable to frozen gas contaminants, which clog fixed-orifice J-T valves.

  14. ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis

    NASA Technical Reports Server (NTRS)

    Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.

    2015-01-01

    Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.

  15. Valves Based on Amplified Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Le Letty, R.; Lhermet, N.; Patient, G.; Claeyssen, F.; Lang, M.

    2004-10-01

    Amplified Piezo Actuators have been developed at CEDRAT TECHNOLOGIES for several years and found several applications in space. Their well-known advantages (rapid response and precise positioning) have been used in valve designs to obtain either rapid or fine proportional valves. A first gas valve is using a small amplified piezo actuator and is further driven with a switched amplifier to get a high frequency modulation. A frequency modulation higher than 400 Hz with a stroke of 100 m has been measured. These properties can also be used for gasoline injectors. A second gas valve is also using an amplified piezo actuator, a linear amplifier, and a servo controller to get an accurate proportional valve dedicated to precise gas flow control in the fields of instrumentation and space. A linear and stable flow control has been demonstrated. The low power consumption of the piezoelectric valve in the space applications is an additional advantage. A stable flow of dry Nitrogen ranging from 0.1 sccm to 200 sccm has been measured with an inlet pressure of 1 bar. These valves have been designed with the help of several modelling tools: finite element procedure for the electro-mechanical part, the contact mechanics between the poppet and the seat, the computational fluid dynamics. The valves have been further measured by using several measuring equipment's, including a laser interferometer, a spectrum analyser to measure the gas flow stability, Thermal vacuum and leak tests have also been performed. A special emphasis is realised on the driving and control aspects of this valve for space applications.

  16. Mesofluidic two stage digital valve

    DOEpatents

    Jansen, John F; Love, Lonnie J; Lind, Randall F; Richardson, Bradley S

    2013-12-31

    A mesofluidic scale digital valve system includes a first mesofluidic scale valve having a valve body including a bore, wherein the valve body is configured to cooperate with a solenoid disposed substantially adjacent to the valve body to translate a poppet carried within the bore. The mesofluidic scale digital valve system also includes a second mesofluidic scale valve disposed substantially perpendicular to the first mesofluidic scale valve. The mesofluidic scale digital valve system further includes a control element in communication with the solenoid, wherein the control element is configured to maintain the solenoid in an energized state for a fixed period of time to provide a desired flow rate through an orifice of the second mesofluidic valve.

  17. Variable pattern contamination control under positive pressure

    SciTech Connect

    Philippi, H.M.

    1997-08-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs.

  18. Dietary fiber and blood pressure control.

    PubMed

    Aleixandre, A; Miguel, M

    2016-04-01

    In the past few years, new strategies to control blood pressure levels are emerging by developing new bioactive components of foods. Fiber has been linked to the prevention of a number of cardiovascular diseases and disorders. β-Glucan, the main soluble fiber component in oat grains, was initially linked to a reduction in plasma cholesterol. Several studies have shown afterward that dietary fiber may also improve glycaemia, insulin resistance and weight loss. The effect of dietary fiber on arterial blood pressure has been the subject of far fewer studies than its effect on the above-mentioned variables, but research has already shown that fiber intake can decrease arterial blood pressure in hypertensive rats. Moreover, certain fibers can improve arterial blood pressure when administered to hypertensive and pre-hypertensive subjects. The present review summarizes all those studies which attempt to establish the antihypertensive effects of dietary fiber, as well as its effect on other cardiovascular risk factors.

  19. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  20. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  1. CAM operated fuel valve

    SciTech Connect

    Kelly, S.T.; Katchka, J.R.

    1991-09-03

    This patent describes improvement in a fuel control valve construction comprising a housing means having an inlet means adapted to be interconnected to a fuel source and a main outlet means adapted to be interconnected to a main burner means, the housing means having a main valve seat for interconnecting the inlet means with the main outlet means, the housing means having a movable main valve member for opening and closing the main valve seat, the housing means having a movable lever operatively associated with the main valve member and having a manually operable actuator means for controlling the operating positions of the lever, the lever having an intermediate cam follower portion and opposed ends disposed on each side of the cam follower portion with one end of the opposed ends being pivotally mounted to the housing means and with the other end of the opposed ends for operating the main valve member, the housing means having biasing means operatively interconnected to the lever to tend to pivot the lever in one direction that opens the main valve member away from its the main valve seat. The improvement comprises; the housing means has a thermostatically controlled means that is operatively associated with the lever and is adapted to engage and hold the lever in a position wherein the main valve member is in a closed condition against its the main valve seat when the thermostatically controlled means is in one operating condition thereof and the actuator means is in the on condition thereof.

  2. Computer controlled vent and pressurization system

    NASA Technical Reports Server (NTRS)

    Cieslewicz, E. J.

    1975-01-01

    The Centaur space launch vehicle airborne computer, which was primarily used to perform guidance, navigation, and sequencing tasks, was further used to monitor and control inflight pressurization and venting of the cryogenic propellant tanks. Computer software flexibility also provided a failure detection and correction capability necessary to adopt and operate redundant hardware techniques and enhance the overall vehicle reliability.

  3. Acoustic oscillatory pressure control for ramjet

    SciTech Connect

    Brown, R.S.; Dunlap, R.

    1988-08-02

    A method for controlling the acoustic oscillatory pressures generated by gas flow at the combustor inlet to a ramjet engine, the inlet including a sudden geometry expansion is described characterized by; restricting the inlet at the sudden expansion geometry such that the gas flow separates upstream and has a vena contracta downstream of the restricted inlet.

  4. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    PubMed Central

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  5. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    PubMed

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  6. A normally-closed piezoelectric micro-valve with flexible stopper

    NASA Astrophysics Data System (ADS)

    Chen, Song; Lu, Song; Liu, Yong; Wang, Jiantao; Tian, Xiaochao; Liu, Guojun; Yang, Zhigang

    2016-04-01

    In the field of controlled drug delivery system, there are still many problems on those reported micro-valves, such as the small opening height, unsatisfactory particle tolerance and high cost. To solve the above problems, a novel normally-closed piezoelectric micro-valve is presented in this paper. The micro-valve was driven by circular unimorph piezoelectric vibrator and natural rubber membrane with high elasticity was used as the valve stopper. The small axial displacement of piezoelectric vibrator can be converted into a large stroke of valve stopper based on hydraulic amplification mechanism. The experiment indicates that maximum hydraulic amplification ratio is up to 14, and the cut-off pressure of the micro-valve is 39kPa in the case of no working voltage. The presented micro valve has a large flow control range (ranging from 0 to 8.75mL/min).

  7. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  8. Pulmonary Valve Stenosis

    MedlinePlus

    ... as mild, moderate or severe, depending on a measurement of the blood pressure difference between the right ... balloon, widening the narrowed valve to increase blood flow, and then removes the balloon. The most common ...

  9. Bidirectional piston valve

    DOEpatents

    Fischer, Harry C.

    1977-01-01

    This invention is a reversing valve having an inlet, an outlet, and an inlet-outlet port. The valve is designed to respond to the introduction of relatively high-pressure fluid at its inlet or, alternatively, of lower-pressure fluid at its inlet-outlet port. The valve includes an axially slidable assembly which is spring-biased to a position where it isolates the inlet and connects the inlet-outlet port to the outlet. The admission of high-pressure fluid to the inlet displaces the slidable assembly to a position where the outlet is isolated and the inlet is connected to the inlet-outlet port. The valve is designed to minimize pressure drops and leakage. It is of a reliable and comparatively simple design.

  10. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  11. Influence of pre-injection control parameters on main-injection fuel quantity for an electronically controlled double-valve fuel injection system of diesel engine

    NASA Astrophysics Data System (ADS)

    Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun

    2013-09-01

    A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.

  12. Valve mechanism having variable valve timing

    SciTech Connect

    Oda, H.; Masuda, S.; Morita, Y.

    1986-04-08

    This patent describes a valve mechanism for an internal combustion engine which consists of a camshaft rotatable about a longitudinal axis and having a cam formed thereon, a swingable member mounted for swinging movement about the longitudinal axis of the camshaft and formed with a tappet receiving hole. A valve tapper is received in the tappet receiving hole for a slidable movement along the tappet receiving hole. The tappet has a cam which engages the surface at one end and a stem engages the surface at the other end. A valve stem is mounted for axial movement and engaged at one end with the stem engaging, surface of the tappet to be actuated thereby. A valve timing control swingably moves the swingable member and the tappet about the camshaft axis in accordance with predetermined engine operating conditions to thereby change valve opening and valve closing timing. The control includes means for holding the swingable member at a first position. The tappet and valve stem are in contact at a first position on the stem engaging surface of the tappet and the direction of the slidable movement of the tappet is aligned with the direction of the axial movement of the valve stem at least under heavy load, high speed engine operation, and for moving the swingable member from the first position to a second position. The tappet and valve stem are in contact at a second position on the stem engaging surface of the tappet at low speed engine operation to effect a change in valve opening and valve closing timing.

  13. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of

  14. Mixture distribution in a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors

    NASA Astrophysics Data System (ADS)

    Mitroglou, N.; Arcoumanis, C.; Mori, K.; Motoyama, Y.

    2006-07-01

    Laser-induced fluorescence has been mainly used to characterise the two-dimensional fuel vapour concentration inside the cylinder of a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors. The effects of injection timing, in-cylinder charge motion and injector tip layout have been quantified. The flexibility in nozzle design of the multi-hole injectors has proven to be a powerful tool in terms of matching overall spray cone angle and number of holes to specific engine configurations. Injection timing was found to control spray impingement on the piston and cylinder wall, thus contributing to quick and efficient fuel evaporation. It was confirmed that in-cylinder charge motion plays a major role in engine's stable operation by assisting in the transportation of the air-fuel mixture towards the ignition locations (i.e. spark-plugs) in the way of a uniformly distributed charge or by preserving stratification of the charge depending on operating mode of the engine.

  15. All metal valve structure for gas systems

    DOEpatents

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  16. Failure Analysis of Fractured Poppet from Space Shuttle Orbiter Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Russell, Richard

    2010-01-01

    This slide presentation reviews the failure analysis of a fractured poppet from a flow control valve (FCV) used on the space shuttle. This presentation has focused on the laboratory analysis of the failed hardware. The use of Scanning electron fractography during the investigation led to the conclusion that the poppet failed due to fatigue cracking that, most likely, occurred under changing loading conditions. The initial investigation led to a more thorough test of poppets that had been retired, this testing led to the conclusion that the thumbnail cracks in the flight hardware had existed for the life of the shuttle program. This led to a program to develop an eddy current technique that was capable of detecting small very tight cracks.

  17. Mechanism utilizing a single rocker arm for controlling an internal combustion engine valve

    SciTech Connect

    Burandt, C.O.

    1988-02-09

    This patent describes in combination with an internal combustion engine having a rotatable camshaft, a cam on the camshaft, a combustion chamber and a reciprocable valve member for opening and closing a valve port in communication with the combustion chamber, a mechanism for operating the valve member comprising a rocker arm having first and second angularly disposed and integrally connected legs. The first leg having a cam follower suface thereon having a first section thereof extending in the same general direction that the valve member reciprocates and having a second section thereof curving toward the valve member and toward the direction in which the valve member reciprocates, means mounting the rocker arm for rocking movement about a first axis, and means for shifting the first axis relative to the camshaft in also the same general direction the valve member reciprocates so that various portions of the first and second sections of the cam follower surface on the first leg are relatively engageable with the cam, sufficient shifting of the first axis in the same general direction producing a desmodromic action, and the second leg including a single portion thereof engaging the valve member so that only the single portion acts on the valve member.

  18. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  19. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  20. Ground Simulator Studies of the Effects of Valve Friction, Stick Friction, Flexibility, and Backwash on Power Control System Quality

    NASA Technical Reports Server (NTRS)

    Brown, B Porter

    1958-01-01

    Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.

  1. NASA Helps Industry Relieve Pressure Safely

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In many industrial applications, pressure relief valves (PRV) perform the critical function of safely releasing pressure before potentially damaging build-ups occur. Conventional relief valves, however, have proven unstable, leading to premature wear and devasting consequences. A high-performance pressure relief valve, the PRV95, now being manufactured my Marotta Scientific Controls, Inc., of Montville, NJ, provides the answer to premature wear and instability. Using an improved valve design developed under a NASA Small Business Innovation Research Program (SBIR) contract from John C. Stennis Space Center (SSC), Marotta's PRV95 pressure relief valve provides stability over the entire operational range, from fully closed to fully open. The valve employs upstream control for valve positioning, that makes the valve more stable and affords excellent repeatability with minimal lag time. 'It opens and closes softly, and does not oscillate or generate hard impacts; oscillation can result in a hard impact pressure release, which can lead to an explosion in the presence of oxygen,' says Bill St. Cyr, Chief of Test Technology Branch at Stennis Space Center. Marotta's PRV95 design is also unique in its ability to maintain a seal near the set point of the relief limit. Typically, relief valves seal tightly up to 90% of set point and then reseat when pressure is reduced to 85% of set point. The PRV95 technology maintains seal integrity until 98% of set point and will reseat a 95-97% of set point. This allows the operator to protect his system while not exceeding its limits.

  2. ELECTROSTRICTION VALVE

    DOEpatents

    Kippenhan, D.O.

    1962-09-25

    An accurately controlled, pulse gas valve is designed capable of delivering output pulses which vary in length from one-tenth millisecond to one second or more, repeated at intervals of a few milliseconds or- more. The pulsed gas valve comprises a column formed of barium titanate discs mounted in stacked relation and electrically connected in parallel, with means for applying voltage across the discs to cause them to expand and effect a mechanical elongation axially of the column. The column is mounted within an enclosure having an inlet port and an outlet port with an internal seat in communication with the outlet port, such that a plug secured to the end of the column will engage the seat of the outlet port to close the outlet port in response to the application of voltage is regulated by a conventional electronic timing circuit connected to the column. (AEC)

  3. A capillary valve for microfluidic systems.

    SciTech Connect

    Cummings, Eric B.; Kanouff, Michael P.; Rush, Brian M.

    2004-10-01

    Microfluidic systems are becoming increasingly complicated as the number of applications grows. The use of microfluidic systems for chemical and biological agent detection, for example, requires that a given sample be subjected to many process steps, which requires microvalves to control the position and transport of the sample. Each microfluidic application has its own specific valve requirements and this has precipitated the wide variety of valve designs reported in the literature. Each of these valve designs has its strengths and weaknesses. The strength of the valve design proposed here is its simplicity, which makes it easy to fabricate, easy to actuate, and easy to integrate with a microfluidic system. It can be applied to either gas phase or liquid phase systems. This novel design uses a secondary fluid to stop the flow of the primary fluid in the system. The secondary fluid must be chosen based on the type of flow that it must stop. A dielectric fluid must be used for a liquid phase flow driven by electroosmosis, and a liquid with a large surface tension should be used to stop a gas phase flow driven by a weak pressure differential. Experiments were carried out investigating certain critical functions of the design. These experiments verified that the secondary fluid can be reversibly moved between its 'valve opened' and 'valve closed' positions, where the secondary fluid remained as one contiguous piece during this transport process. The experiments also verified that when Fluorinert is used as the secondary fluid, the valve can break an electric circuit. It was found necessary to apply a hydrophobic coating to the microchannels to stop the primary fluid, an aqueous electrolyte, from wicking past the Fluorinert and short-circuiting the valve. A simple model was used to develop valve designs that could be closed using an electrokinetic pump, and re-opened by simply turning the pump off and allowing capillary forces to push the secondary fluid back into its

  4. Controls on ostracod valve geochemistry, Part 1: Variations of environmental parameters in ostracod (micro-)habitats

    NASA Astrophysics Data System (ADS)

    Decrouy, Laurent; Vennemann, Torsten Walter; Ariztegui, Daniel

    2011-11-01

    The variations of environmental conditions ( T°, pH, δ 13C DIC, [DIC], δ 18O, Mg/Ca, and Sr/Ca) of ostracod habitats were examined to determine the controls of environmental parameters on the chemical and isotopic composition of ostracod valves. Results of a one-year monitoring of environmental parameters at five sites, with depths of between 2 and 70 m, in Lake Geneva indicate that in littoral to sub-littoral zones (2, 5, and 13 m), the chemical composition of bottom water varies seasonally in concert with changes in temperature and photosynthetic activity. An increase of temperature and photosynthetic activity leads to an increase in δ 13C values of DIC and to precipitation of authigenic calcite, which results in a concomitant increase of Mg/Ca and Sr/Ca ratios of water. In deeper sites (33 and 70 m), the composition of bottom water remains constant throughout the year and isotopic values and trace element contents are similar to those of deep water within the lake. The chemical composition of interstitial pore water also does not reflect seasonal variations but is controlled by calcite dissolution, aerobic respiration, anaerobic respiration with reduction of sulphate and/or nitrate, and methanogenesis that may occur in the sediment pores. Relative influence of each of these factors on the pore water geochemistry depends on sediment thickness and texture, oxygen content in bottom as well as pore water. Variations of chemical compositions of the ostracod valves of this study vary according to the specific ecology of the ostracod species analysed, that is its life-cycle and its (micro-)habitat. Littoral species have compositions that are related to the seasonal variations of temperature, δ 13C values of DIC, and of Mg/Ca and Sr/Ca ratios of water. In contrast, the compositions of profundal species are largely controlled by variations of pore fluids along sediment depth profiles according to the specific depth preference of the species. The control on the

  5. Onsite testing of pressure sampling

    NASA Technical Reports Server (NTRS)

    Mallory, R.

    1980-01-01

    Portable test instrument containing controller, pressure port identification, 5-V power source for transducer excitation, and digital voltmeter to test pressure sampling valves completely, including leak and plug check before, during, or after installation in any location or environment. Controller comprises 117/24-Vac 100-watt transformer, bridge rectifier, capacitive-discharge stepper, and constant voltage source for homing sampling valve. It also includes 5-V regulated power supply and bipolar digital voltmeter having 10-uV resolution.

  6. Progress on a small multi-cycling cryogenic fluid flow valve

    NASA Astrophysics Data System (ADS)

    Weilert, M.; Hahn, I.; Barmatz, M.; Higham, D.; Frodsham, G.

    2001-11-01

    Mission Research Corporation (MRC) in cooperation with the Jet Propulsion Laboratory (JPL) has developed a new small remote-controlled fluid valve. The motivation for developing this valve came from the requirements of a future International Space Station experiment called Microgravity Scaling Theory Experiment (MISTE). This experiment requires an in situ, low-temperature operated, fluid valve that can be open/closed over 50 times during a 4.5 month flight. The successful operation of MISTE and other space-based and ground-based laboratory experiments now in development will require reliable cryogenic fluid valves that are remotely operated, helium leak tight, non-magnetic, very low power, and which have a small dead volume. The new valve is normally closed and requires fluid actuation at a pressure of approximately 600 kPa to open. The heart of the valve design is found in the configuration of the valve seat and sealing poppet. The design of these two surfaces was derived from work performed previously during a five year development program for a larger MRC remote-controlled, cryogenic fluid flow control valve. More than 50 of the larger valves have been produced and delivered for space flight applications. The new small valve has only three moving parts, which move less than 0.012 cm when the valve fully opens or closes. The bearing surfaces in the valve operating mechanism are all flexure (except for the valve poppet) and thus the valve is expected to have a lifetime of thousands of open/close cycles. The materials and processes used to fabricate the new valve have been flight certified. Results from the first extensively tested prototype show repeatable behavior with a leak rate of typically 3×10 -8 scc/ s after the first open/close cycle at 4.2 K, rising to about 10 -6 scc/ s after 100 cycles. Further tests and minor modifications are expected to improve the performance.

  7. Computer Controller Optical Surfacing (CCOS) lap pressure control system

    NASA Astrophysics Data System (ADS)

    Greenleaf

    1985-09-01

    A rotary lapping system and process is disclosed for producing a controlled pressure gradient, including positive and negative lift, when lapping a workpiece coated with an abrasive slurry liquid with a plurality of grinding pads mounted beneath a rotating lap substrate. To obtain positive and negative lift, the grinding pads are tilted with respectively a positive and negative angle of attack, which hydrodynamically reacts with the abrasive slurry liquid to produce the desired lift. The controlled pressure gradient is further varied by decentering the rotation of lap substrate.

  8. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo boil-off as fuel: Valves. 154.708 Section 154.708 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the...

  9. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: Valves. 154.708 Section 154.708 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the...

  10. Blood pressure control for diabetic retinopathy

    PubMed Central

    Do, Diana V; Wang, Xue; Vedula, Satyanarayana S; Marrone, Michael; Sleilati, Gina; Hawkins, Barbara S; Frank, Robert N

    2015-01-01

    Background Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Research has established the importance of blood glucose control to prevent development and progression of the ocular complications of diabetes. Simultaneous blood pressure control has been advocated for the same purpose, but findings reported from individual studies have supported varying conclusions regarding the ocular benefit of interventions on blood pressure. Objectives The primary aim of this review was to summarize the existing evidence regarding the effect of interventions to control or reduce blood pressure levels among diabetics on incidence and progression of diabetic retinopathy, preservation of visual acuity, adverse events, quality of life, and costs. A secondary aim was to compare classes of anti-hypertensive medications with respect to the same outcomes. Search methods We searched a number of electronic databases including CENTRAL as well as ongoing trial registries. We last searched the electronic databases on 25 April 2014. We also reviewed reference lists of review articles and trial reports selected for inclusion. In addition, we contacted investigators of trials with potentially pertinent data. Selection criteria We included in this review randomized controlled trials (RCTs) in which either type 1 or type 2 diabetic participants, with or without hypertension, were assigned randomly to intense versus less intense blood pressure control, to blood pressure control versus usual care or no intervention on blood pressure, or to different classes of anti-hypertensive agents versus placebo. Data collection and analysis Pairs of review authors independently reviewed titles and abstracts from electronic and manual searches and the full text of any document that appeared to be relevant. We assessed included trials independently for risk of bias with respect to outcomes reported in this review. We extracted data regarding trial

  11. Feasibility of controlling speed-dependent low-frequency brake vibration amplification by modulating actuation pressure

    NASA Astrophysics Data System (ADS)

    Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.

  12. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the...

  13. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the...

  14. Heart valve surgery - discharge

    MedlinePlus

    ... surgery - minimally invasive Aortic valve surgery - open Bicuspid aortic valve Endocarditis Heart valve surgery Mitral valve prolapse Mitral valve surgery - minimally invasive Mitral valve surgery - open Pulmonary valve stenosis Smoking - tips on how to quit Patient Instructions ...

  15. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  16. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  17. 21 CFR 868.1965 - Switching valve (ploss).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... heart, a blood pressure cuff, and an earpiece. The valve allows the user to eliminate one sound channel and listen only to a patient's heart or korotkoff (blood pressure) sounds through the other channel. (b) Classification. Class I (general controls). The device is exempt from the premarket...

  18. Matching flow characteristics of standard shutoff valves eliminates need for custom fabricated valves

    NASA Technical Reports Server (NTRS)

    Bevan, A. F.

    1966-01-01

    Standard high pressure valves are used in low pressure fluid system testing when a substantial system pressure increase is required. The flow-vs-valve stroke is matched with that of the valves being replaced. Some correction to the plug contour may be necessary.

  19. Hydrodynamic Assessment of Aortic Valves Prepared from Porcine Small Intestinal Submucosa.

    PubMed

    Ramaswamy, Sharan; Lordeus, Makensley; Mankame, Omkar V; Valdes-Cruz, Lilliam; Bibevski, Steven; Bell, Sarah M; Baez, Ivan; Scholl, Frank

    2017-03-01

    Infants and children born with severe cardiac valve lesions have no effective long term treatment options since currently available tissue or mechanical prosthetic valves have sizing limitations and no avenue to accommodate the growth of the pediatric patient. Tissue engineered heart valves (TEHVs) which could provide for growth, self-repair, infection resistance, and long-term replacement could be an ideal solution. Porcine small intestinal submucosa (PSIS) has recently emerged as a potentially attractive bioscaffold for TEHVs. PSIS may possess the ability to recruit endogenous cardiovascular cells, leading to phenotypically-matched replacement tissue when the scaffold has completely degraded. Our group has successfully implanted custom-made PSIS valves in 4 infants with critical valve defects in whom standard bioprosthetic or mechanical valves were not an option. Short term clinical follow-up has been promising. However, no hydrodynamic data has been reported to date on these valves. The purpose of this study was to assess the functional effectiveness of tri-leaflet PSIS bioscaffolds in the aortic position compared to standard tri-leaflet porcine bioprosthetic valves. Hydrodynamic evaluation of acute PSIS function was conducted using a left heart simulator in our laboratory. Our results demonstrated similar flow and pressure profiles (p > 0.05) between the PSIS valves and the control valves. However, forward flow energy losses were found to be significantly greater (p < 0.05) in the PSIS valves compared to the controls possibly as a result of stiffer material properties of PSIS relative to glutaraldehyde-fixed porcine valve tissue. Our findings suggest that optimization of valve dimensions and shape may be important in accelerating de novo valve tissue growth and avoidance of long-term complications associated with higher energy losses (e.g. left ventricular hypertrophy). Furthermore, long term animal and clinical studies will be needed in order to

  20. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, K.R.

    1985-07-29

    A drain valve for use in furnace for the melting of thermoplastic material is disclosed. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace.

  1. Aspirator increases relief valve poppet stroke

    NASA Technical Reports Server (NTRS)

    Biddle, M. E.

    1967-01-01

    Addition of an aspirator to a relief valve increases the valve poppet stroke under dynamic flow conditions. The aspirator allows poppet inlet dynamic forces to overcome relief valve spring force. It reduces the fluid pressure in the skirt cavity by providing a low pressure sense probe.

  2. Transcatheter Pulmonary Valve Replacement by Hybrid Approach Using a Novel Polymeric Prosthetic Heart Valve: Proof of Concept in Sheep

    PubMed Central

    Xu, Tong-yi; Zhang, Zhi-gang; Li, Xin; Han, Lin; Xu, Zhi-yun

    2014-01-01

    Background Since 2000, transcatheter pulmonary valve replacement has steadily advanced. However, the available prosthetic valves are restricted to bioprosthesis which have defects like poor durability. Polymeric heart valve is thought as a promising alternative to bioprosthesis. In this study, we introduced a novel polymeric transcatheter pulmonary valve and evaluated its feasibility and safety in sheep by a hybrid approach. Methods We designed a novel polymeric trileaflet transcatheter pulmonary valve with a balloon-expandable stent, and the valve leaflets were made of 0.1-mm expanded polytetrafluoroethylene (ePTFE) coated with phosphorylcholine. We chose glutaraldehyde-treated bovine pericardium valves as control. Pulmonary valve stents were implanted in situ by a hybrid transapical approach in 10 healthy sheep (8 for polymeric valve and 2 for bovine pericardium valve), weighing an average of 22.5±2.0 kg. Angiography and cardiac catheter examination were performed after implantation to assess immediate valvular functionality. After 4-week follow-up, angiography, echocardiography, computed tomography, and cardiac catheter examination were used to assess early valvular function. One randomly selected sheep with polymeric valve was euthanized and the explanted valved stent was analyzed macroscopically and microscopically. Findings Implantation was successful in 9 sheep. Angiography at implantation showed all 9 prosthetic valves demonstrated orthotopic position and normal functionality. All 9 sheep survived at 4-week follow-up. Four-week follow-up revealed no evidence of valve stent dislocation or deformation and normal valvular and cardiac functionality. The cardiac catheter examination showed the peak-peak transvalvular pressure gradient of the polymeric valves was 11.9±5.0 mmHg, while that of two bovine pericardium valves were 11 and 17 mmHg. Gross morphology demonstrated good opening and closure characteristics. No thrombus or calcification was seen

  3. Valve operating device for internal combustion engine

    SciTech Connect

    Shibata, M.; Kumagai, K.; Fukuo, K.; Hiro, T.; Matsumoto, M.

    1989-02-28

    A valve operating mechanism is described for intake or exhaust valves of an internal combustion engine having a low-speed cam formed on a camshaft and suited for an operation mode of the intake or exhaust valves during low-speed operation of the engine, a high-speed cam formed on the camshaft and suited for an operation mode of the intake or exhaust valves during high-speed operation of the engine, a cam follower held in slidable contact with the low-speed cam, a cam follower held in slidable contact with the high-speed cam, and a selective coupling mechanism disposed between the cam followers for selectively connecting and disconnecting the cam followers in order to open and close the intake or exhaust valves dependent on the operating speed of the engine. The improvement comprises a low-speed lubricating oil passage for supplying lubricating oil to sliding surfaces of the low-speed cam and the associated cam follower and a high-speed lubricating oil passage for supplying lubricating oil to sliding surfaces of the high-speed cam and the associate cam follower, the low-speed lubricating oil passage and the high-speed lubricating oil passage being separate of each other. It also includes a control valve connected between and oil supply source and the low-speed lubricating oil passage and the high-speed lubricating oil passage, the control valve being selectively operable for communicating the high-speed lubricating oil passage and the oil pressure supply source throughout a full operating range of the engine while restricting the rate of flow of oil during low-speed operation of the engine and for communicating the low-speed lubricating oil passage and the oil pressure supply source at least during low-speed operation of the engine.

  4. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  5. Airbag vent valve and system

    NASA Technical Reports Server (NTRS)

    Peterson, Leslie D. (Inventor); Zimmermann, Richard E. (Inventor)

    2001-01-01

    An energy absorbing airbag system includes one or more vent valve assemblies for controlling the release of airbag inflation gases to maintain inflation gas pressure within an airbag at a substantially constant pressure during a ride-down of an energy absorbing event. Each vent valve assembly includes a cantilever spring that is flat in an unstressed condition and that has a free end portion. The cantilever spring is secured to an exterior surface of the airbag housing and flexed to cause the second free end portion of the cantilever spring to be pressed, with a preset force, against a vent port or a closure covering the vent port to seal the vent port until inflation gas pressure within the airbag reaches a preselected value determined by the preset force whereupon the free end portion of the cantilever spring is lifted from the vent port by the inflation gases within the airbag to vent the inflation gases from within the airbag. The resilience of the cantilever spring maintains a substantially constant pressure within the airbag during a ride-down portion of an energy absorbing event by causing the cantilever spring to vent gases through the vent port whenever the pressure of the inflation gases reaches the preselected value and by causing the cantilever spring to close the vent port whenever the pressure of the inflation gases falls below the preselected value.

  6. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  7. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  8. Rapid Quench Cold-Seal Apparatus with Computer-Controlled Pressure and Temperature Cycling

    NASA Astrophysics Data System (ADS)

    Johnston, A.; Senkovich, D.

    2007-12-01

    We have constructed two computer-controlled, rapid quench, hydrothermal apparatuses that are ideal for experimentation on volcanological, geothermal, and ore deposit research problems. The devices can achieve maximum pressures of about 2 kbar and temperatures to 1100C, have the ability for experiments to be quenched very rapidly in a water-cooled environment, and are interfaced with computers which can control any regimen of pressure and/or temperature cycling that may be desired, accomplished via Lab-View software and data acquisition and motion control boards from National Instruments. The rapid quench aspects of the design were developed originally by Dr. Phil Ihinger and have subsequently been adopted by many labs around the world; a good summary description of these aspects of the equipment, and the use of filler-rods for controlling redox conditions in such equipment, are provided by Matthews et al. (2004, Am. Mineral., 88: 701-707). Our design has fixed Rene 41 pressure vessels, furnaces that are raised and lowered by computer controlled pneumatic cylinders and water cooling systems that are controlled by computer operated solenoid valves. The novel feature of our design is the pressure generation and control systems. We coupled the seal-ends of commercially available (HIP) pressure generators to shop-built linear actuators consisting of nearly frictionless ball lead screws within thick walled stainless steel housings. These in turn are driven by NEMA size 23 stepper motors coupled to 100:1 gear reduction units. The actuators require 21 revolutions to achieve their full stroke of 12.7 cm which displaces about 10 cc of fluid. Operating the motors at the relatively low resolution of 800 steps per revolution leads to about 132,000 steps per cm of travel of the pressure-generating piston, providing exceptionally high precision and excellent pressure control. Instantaneous decompression can be achieved by simply opening a valve while motor-controlled

  9. Modeling the Mitral Valve

    NASA Astrophysics Data System (ADS)

    Kaiser, Alexander

    2016-11-01

    The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.

  10. Lightweight Valve Closes Duct Quickly

    NASA Technical Reports Server (NTRS)

    Fournier, Walter L.; Burgy, N. Frank

    1991-01-01

    Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.

  11. Liquid blocking check valve

    DOEpatents

    Merrill, John T.

    1984-01-01

    A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.

  12. Apparatus with annulus safety valve for through tubing injection and method of use

    SciTech Connect

    Bowyer, M. L.

    1984-10-23

    An assembly including a tubing safety valve and annulus safety valve mounted within nipples incorporated within an inner conduit is disclosed for use in conjunction with the injection of material, such as gas, through the center of the inner conduit. The injected material can be used to stimulate production of fluids from the formation through the annulus between the inner conduit and an outer concentric conduit. This outer concentric conduit normally comprises an existing producting tubing string having existing safety valve nipple and external control fluid lines. Nipples incorporated within the inner conduit provide means for sealing the annulus between the inner and the outer conduit and for positioning the inner conduit relative to the outer conduit to provide communication between the tubing safety valve and the annulus safety valve and the external existing source of control fluid pressure. Bypass ports above and below on opposite sides of the annulus seals extend through the nipple members and an axially reciprocal annulus safety valve mandrel is moved from a position closing at least one of the bypass ports to an open position when subjected to control line pressure. Both the tubing safety valve and the annulus safety valve are activated when subjected to a common source of control line pressure.

  13. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  14. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  15. Precise and high-speed control of partial pressures of multiple gas species in plasma process chamber using pulse-controlled gas injection

    SciTech Connect

    Morishita, Sadaharu; Goto, Tetsuya; Nagase, Masaaki; Ohmi, Tadahiro

    2009-05-15

    Multiprocesses in a single plasma process chamber with high throughput require precise, sequential, high-speed alteration of partial pressures of multiple gas species. A conventional gas-distribution system cannot realize this because the system seriously overshoots gas pressure immediately following valve operation. Furthermore, chamber volume and conductance of gas piping between the system and chamber should both be considered because they delay the stabilizing time of gas pressure. Therefore, the authors proposed a new gas-distribution system without overshoot by controlling gas flow rate based on pressure measurement, as well as a method of pulse-controlled gas injection immediately following valve operation. Time variation of measured partial pressure agrees well with a calculation based on an equivalent-circuit model that represents the chamber and gas piping between the system and chamber. Using pulse-controlled gas injection, the stabilizing time can be reduced drastically to 0.6 s for HBr added to pure Ar plasma, and 0.7 s for O{sub 2} added to Ar/HBr plasma; without the pulse control, the stabilizing times are 3 and 7 s, respectively. In the O{sub 2} addition case, rapid stabilization can be achieved during the period of line/space pattern etching of poly-Si on a thin SiO{sub 2} film. This occurs without anomalous etching of the underlying SiO{sub 2} film or the Si substrate near the sidewall, thus obtaining a wide process margin with high throughput.

  16. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  17. Valve Disease

    MedlinePlus

    ... valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow though the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation ...

  18. E-health blood pressure control program.

    PubMed

    Ahern, David K; Stinson, Lynda J; Uebelacker, Lisa A; Wroblewski, Joseph P; McMurray, Jerome H; Eaton, Charles B

    2012-01-01

    Both technological and human factors design requirements for integration of home blood pressure monitoring (HBPM) into a patient centered medical home (PCMH) model primary care practice are described. Patients with uncontrolled hypertension were given home blood pressure (BP) monitors, and after a three-month run-in period introduced to either a high-tech only (HBPM connectivity to personal health record and tailored Web portal access) or a high-tech/"high-touch" (high-tech solution plus patient navigator [PN]) solution. Features of the Web portal included: BP graphing function, traffic-light feedback system of BP goal attainment, economic incentives for self-monitoring, and dual patient-facing and care-team-facing dashboard functions. The e-health BP control system with PN support was well received by patients, providers, and the healthcare team. Current e-health technology and limited technological literacy of many patients suggest that a PN or some other personnel resource may be required for the adoption of patient-facing technology in primary care.

  19. Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the PWM wave.

    PubMed

    Moezi, Seyed Alireza; Rafeeyan, Mansour; Zakeri, Ehsan; Zare, Amin

    2016-03-01

    In this paper, a robust optimal fuzzy controller based on the Pulse Width Modulation (PWM) technique is proposed to control a laboratory parallel robot using inexpensive on/off solenoid valves. The controller coefficients are determined using Modified Cuckoo Optimization Algorithm. The objective function of this method is considered such that the results show the position tracking by the robot with less force and more efficiency. Regarding the results of experimental tests, the control strategy with on/off valves indicates good performance such that the maximum value of RMS of error for a circular path with increasing force on the system is 3.1mm. Furthermore, the results show the superiority of the optimal fuzzy controller compared with optimal PID controller in tracking paths with different conditions and uncertainties.

  20. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    NASA Technical Reports Server (NTRS)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  1. Micro system comprising 96 micro valves on a titer plate

    NASA Astrophysics Data System (ADS)

    Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.

    2016-10-01

    A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.

  2. Analysis of hydrodynamic losses for various types of aortic valves

    NASA Astrophysics Data System (ADS)

    Starobin, I. M.; Lupachev, S. P.; Dolgopolov, R. V.; Zaiko, V. M.; Kas'yanov, V. A.; Mungalov, D. D.; Morov, G. V.

    1985-05-01

    The creation of an automated computer-controlled hydraulic stand made it possible to measure the main hydrodynamic parameters of the flow through the investigated HVP and to determine the coefficients of Eq. (2) of fluid flow in the test chamber of the stand. The coefficients found can serve as a criterion of a comparative assessment of the hydrodynamics of HVPs. An analysis of the coefficients showed that the main contribution to pressure losses across ball and disc valves is made by viscous and convective effects. An analysis of inertial losses confirmed the presence of oscillations of the ball closing elements of the AKCh-3-06 valve around the props of the stroke limiters and made it possible to assess them quantitatively. For leaflet valves the contribution of inertial losses to the total pressure losses is more considerable than in the case of disc and ball valves both in the regime of an increase of power of the output and in the regime of a constant power. The mechanical properties of the material of leaflet valves have an effect on the hydrodynamic characteristics. The advantage of the investigated leaflet valves consists not only in that they have smaller total hydraulic losses compared with the other valves, but also in that they provide a high amplitude of pulsations of the blood stream in the case of insufficient contractility of the heart.

  3. Valve selection in aortic valve endocarditis

    PubMed Central

    Zubrytska, Yana

    2016-01-01

    Aortic prosthetic valve endocarditis (PVE) is a potentially life-threatening disease. Mortality and incidence of infective endocarditis have been reduced in the past 30 years. Medical treatment of aortic PVE may be successful in patients who have a prompt response after antibiotic treatment and who do not have prosthetic dysfunction. In advanced stages, antibiotic therapy alone is insufficient to control the disease, and surgical intervention is necessary. Surgical treatment may be lifesaving, but it is still associated with considerable morbidity and mortality. The aim of surgery is to perform a radical excision of all infected and necrotic tissue, reconstruction of the left ventricle outflow tract, and replacement of the aortic valve. There is no unanimous consensus on which is the optimal prosthesis to implant in this context, and several surgical techniques have been suggested. We aim to analyze the efficacy of the surgical treatment and discuss the issue of valve selection in patients with aortic valve endocarditis. PMID:27785132

  4. A pressure control analysis of cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Lin, C.-S.; Vandresar, N. T.; Hasan, M. M.

    1991-01-01

    Self-pressurization of cryogenic storage tanks due to heat leak through the thermal protection system is examined along with the performance of various pressure control technologies for application in microgravity environments. Methods of pressure control such as fluid mixing, passive thermodynamic venting, and active thermodynamic venting are analyzed using the homogeneous thermodynamic model. Simplified equations suggested may be used to characterize the performance of various pressure control systems and to design space experiments.

  5. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.

    1997-01-01

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.

  6. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  7. Development of an expert system for analysis of Shuttle atmospheric revitalization and pressure control subsystem anomalies

    NASA Technical Reports Server (NTRS)

    Lafuse, Sharon A.

    1991-01-01

    The paper describes the Shuttle Leak Management Expert System (SLMES), a preprototype expert system developed to enable the ECLSS subsystem manager to analyze subsystem anomalies and to formulate flight procedures based on flight data. The SLMES combines the rule-based expert system technology with the traditional FORTRAN-based software into an integrated system. SLMES analyzes the data using rules, and, when it detects a problem that requires simulation, it sets up the input for the FORTRAN-based simulation program ARPCS2AT2, which predicts the cabin total pressure and composition as a function of time. The program simulates the pressure control system, the crew oxygen masks, the airlock repress/depress valves, and the leakage. When the simulation has completed, other SLMES rules are triggered to examine the results of simulation contrary to flight data and to suggest methods for correcting the problem. Results are then presented in form of graphs and tables.

  8. Streamline coal slurry letdown valve

    DOEpatents

    Platt, Robert J.; Shadbolt, Edward A.

    1983-01-01

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  9. Streamline coal slurry letdown valve

    DOEpatents

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  10. Fast acting multiple element valve

    DOEpatents

    Yang, Jefferson Y. S.; Wada, James M.

    1991-01-01

    A plurality of slide valve elements having plural axial-spaced annular parts and an internal slide are inserted into a bulkhead in a fluid conduit from a downstream side of the bulkhead, locked in place by a bayonet coupling and set screw, and project through the bulkhead into the upstream conduit. Pneumatic lines connecting the slide valve element actuator to pilot valves are brought out the throat of the valve element to the downstream side. Pilot valves are radially spaced around the exterior of the valve to permit the pneumatic lines to be made identical, thereby to minimize adverse timing tolerances in operation due to pressure variations. Ring manifolds surround the valve adjacent respective pilot valve arrangements to further reduce adverse timing tolerances due to pressure variations, the manifolds being directly connected to the respective pilot valves. Position sensors are provided the valve element slides to signal the precise time at which a slide reaches or passes through a particular point in its stroke to initiate a calibrated timing function.

  11. Boston Scientific Lotus valve.

    PubMed

    Meredith, Ian T; Hood, Kristin L; Haratani, Nicole; Allocco, Dominic J; Dawkins, Keith D

    2012-09-01

    As a result of recent randomised controlled trials and registry observations, transcatheter aortic valve replacement (TAVR) enjoys growing appeal for the treatment of patients at high or extreme risk from surgical aortic valve replacement. However, the current technologies and techniques have important limitations, including risk of stroke, vascular complications and paravalvular aortic regurgitation, which may in turn influence survival. While careful patient selection and screening may improve outcomes, new valve designs and iterations are required. The Lotus aortic valve replacement system is a new fully repositionable device designed to facilitate more precise delivery and minimise paravalvular regurgitation. The safety and efficacy of the Lotus valve are being studied systematically in the REPRISE clinical trial programme.

  12. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  13. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  14. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  15. Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation.

    PubMed

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin; Yang, Ri-Long

    2017-03-29

    Layered materials with open interlayer channels enable various applications such as tissue engineering, ionic and molecular sieving, and electrochemical devices. However, most reports focus on the two-dimensional nanosheets-assembled layered materials, whose interlayer spacing is limited at the nanometer scale. Herein, we demonstrate that one-dimensional inorganic nanowires are the ideal building blocks for the construction of layered materials with open interlayer channels as well, which has not aroused much attention before. It is found that the relatively long inorganic nanowires are capable of assembling into free-standing layered paper with open interlayer channels during the filtration process. The spacings of interlayer channels between adjacent layers are up to tens of micrometers, which are much larger than those of the two-dimensional nanosheets-assembled layered materials. But the closed interlayer channels are observed when the relatively short inorganic nanowires are used as building blocks. The mechanism based on the relationship between the structural variation and the nanowires used is proposed, including the surface charge amplified effect, surface charge superimposed effect, and pillarlike supporting effect. According to the proposed mechanism, we have successfully fabricated a series of layered paper sheets whose architectures (including interlayer channels of cross section and pores on the surface) show gradient changes. The as-prepared layered paper sheets are employed as the valves for controlling water transportation. Tunable water transportation is achieved by the synergistic effect between in-plane interlayer channels (horizontal transportation) from the open to the closed states, and through-layer pores (vertical transportation) without surface modification or intercalation of any guest species.

  16. Valve Repair or Replacement

    MedlinePlus

    ... invasive valve surgery can be done using a robot. Robotic surgery does not require a large incision ... the procedure. The Texas Heart Institute has a robot. With robotic surgery, the surgeon has a control ...

  17. THERMALLY OPERATED VAPOR VALVE

    DOEpatents

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  18. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the lading temperature. (1) Liquid control valves must be of extended stem design. (2) Packing, if... effectively seal the valve stem without causing difficulty of operation. (3) Each control valve and...

  19. Acceptance criteria for reactor coolant pumps and valves

    SciTech Connect

    Gupta, N.K.; Miller, R.F.; Sindelar, R.L.

    1993-05-01

    Each of the six primary coolant loop systems of the Savannah River Site (SRS) production reactors contains one reactor coolant pump, one PUMP suction side motor operated valve, and other smaller valves. The pumps me double suction, double volute, and radially split type pumps. The valves are different size shutoff and control valves rated from ANSI B16.5 construction class 150 to class 300. The reactor coolant system components, also known as the process water system (PWS), are classified as nuclear Safety Class I components. These components were constructed in the 1950`s in accordance with the then prevailing industry practices. No uniform construction codes were used for design and analysis of these components. However, no pressure boundary failures or bolting failures have ever been recorded throughout their operating history. Over the years, the in-service inspection (ISI) was limited to visual inspection of the pressure boundaries, and surface and volumetric examination of the pressure retaining bolts. Efforts are now underway to implement ISI requirements similar to the ASME Section XI requirements for pumps and valves. This report discusses the new ISI requirements which also call for volumetric examination of the pump casing and valve body welds.

  20. How Potassium Can Help Control High Blood Pressure

    MedlinePlus

    ... More How Potassium Can Help Control High Blood Pressure Updated:Dec 13,2016 Understanding the heart-healthy ... content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  1. Computational cavitation flows at inception and light stages on an axial-flow pump blade and in a cage-guided control valve

    NASA Astrophysics Data System (ADS)

    Saito, Sumio; Shibata, Masahiro; Fukae, Hideo; Outa, Eisuke

    2007-11-01

    Cavitation flows induced around an axial-flow pump blade and inside a high pressure cage-type valve are simulated by a two-dimensional unsteady Navier-Stokes analysis with the simplest treatment of bubble dynamics. The fluid is assumed as a continuum of homogeneous dispersed mixture of water and vapor nuclei. The analysis is aimed to capture transient stages with high amplitude pressure change during the birth and collapse of the bubble especially at the stage of cavitation inception. By the pump blade analysis, in which the field pressure is moderate, cavitation number of the inception and locations of developed cavitation are found to agree with experimental results in a wide flow range between high incidence and negative incidence. In the valve flow analysis, in which the water pressure of 5MPa is reduced to 2MPa, pressure change responding to the bubble collapse between the vapor pressure lower than 1 KPa and the extreme pressure of higher than 104 KPa is captured through a stable computation. Location of the inception bubble and pressure force to the valve plug is found agree well with the respective experimental features.

  2. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  3. Heating tar sands formations while controlling pressure

    DOEpatents

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  4. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  5. Multi-port valve assembly

    DOEpatents

    Guggenheim, S. Frederic

    1986-01-01

    A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.

  6. Space shuttle main engine definition (phase B). Volume 5: Valves and interconnects. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1971-01-01

    The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.

  7. Laser Beam Duct Pressure Controller System.

    DTIC Science & Technology

    the axial flow of a conditioning gas within the laser beam duct, by matching the time rate of change of the pressure of the flowing conditioning gas...to the time rate of change of the pressure in the cavity of an operably associated laser beam turret.

  8. Check valve with poppet damping mechanism

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1993-01-01

    An inline check valve for a flow line is presented where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition. One of the guides for the valve element includes a dashpot bore and plunger member to control the rate of travel of the valve element in either direction as well as provided a guiding function. The dashpot is not anchored to the valve body so that the valve can be functional even if the plunger member becomes jammed in the dashpot.

  9. Check valve with poppet damping mechanism

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.

    1993-08-01

    An inline check valve for a flow line is presented where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition. One of the guides for the valve element includes a dashpot bore and plunger member to control the rate of travel of the valve element in either direction as well as provided a guiding function. The dashpot is not anchored to the valve body so that the valve can be functional even if the plunger member becomes jammed in the dashpot.

  10. Check valve with poppet damping mechanism

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.

    1992-06-01

    An inline check valve for a flow line is presented where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition. One of the guides for the valve element includes a dashpot bore and plunger member to control the rate of travel of the valve element in either direction as well as provided a guiding function. The dashpot is not anchored to the valve body so that the valve can be functional even if the plunger member becomes jammed in the dashpot.

  11. Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank

    NASA Astrophysics Data System (ADS)

    Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff

    2016-03-01

    This paper presents a numerical model of a system-level test bed-the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self-Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J-T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions.

  12. Aerodynamic Characteristics of Tracheostomy Speaking Valves.

    ERIC Educational Resources Information Center

    Fornataro-Clerici, Lisa; Zajac, David J.

    1993-01-01

    Pressure-flow characteristics were determined for four different one-way valves (Kisner, Montgomery, Olympic, and Passy-Muir) used for speech production in tracheotomy patients. Results indicated significant differences in resistance among the valves, with the resistance of one valve substantially greater than that of the normal upper airways.…

  13. Piston and valve assembly

    SciTech Connect

    Rolder, G. K.

    1985-10-01

    A downhole hydraulically actuated pump assembly of either the free or fixed type lifts formation fluid from the bottom of a borehole to the surface of the ground. The downhole pump has a power piston which actuates a production plunger. A valve means is concentrically arranged within the power piston. A stationary, hollow valve control rod extends through the power piston and through the valve means, with a lower marginal end of the control rod terminating within the production plunger. Power fluid flows through the control rod and to the valve means. As the power piston reciprocates within the engine cylinder, means on the control rod actuates the valve means between two alternant positions so that power fluid is applied to the bottom face of the power piston to thereby cause the power piston to reciprocate upward; and thereafter, the control rod causes the valve means to shift to the other position, whereupon spent power fluid is exhausted from the engine cylinder. The spent power fluid is admixed with production fluid and is conducted to the surface of the ground.

  14. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  15. Engine idle control system for internal combustion engine

    SciTech Connect

    Yuzawa, H.; Seimiya, Y.

    1989-05-16

    A automotive vehicle is described including: an internal combustion engine having an induction system; a throttle valve disposed in the induction system, the throttle valve being movable in response to a manually derived command signal to move between a closed position and an open position; and a device for controlling the position of the throttle valve when the manually derived command signal is absent and the engine is idling; the device comprising: a control valve which modulates a vacuum pressure signal derived from the induction system in a manner to form a control signal, the control valve having a solenoid; a servo operatively connected with the throttle valve, the servo being responsive to the vacuum pressure signal and the control signal, the servo being arranged to be motivated by the vacuum pressure signal and so that the amount of motivation by the vacuum pressure signal is subject to control by the control signal.

  16. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  17. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.

    PubMed

    Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H

    2015-06-07

    We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.

  18. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  19. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic-driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic-based valve.

  20. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James A.

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic based valve.