Science.gov

Sample records for pressure drop bioaerosol

  1. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  2. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  3. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  4. Raschig ring HDS catalysts reduce pressure drop

    SciTech Connect

    Moyse, B.

    1984-12-31

    Many hydroprocessing units have a limit on their run length imposed by bed plugging. As opposed to catalyst deactivation, bed plugging can cause pressure drop over the reactor or first reactor in the train to develop rapidly. For this reason many reactor designs call for the use of scale baskets together with grading of topping material and/or catalyst in the top bed of the lead reactor. Nevertheless, many plants have a history of unfavorable pressure drop development. Some refiners must regularly practice catalyst skimming operations. In such pressure drop limiting cases the use of Raschig ring catalysts as part of the reactor fill can markedly improve the pressure drop situation.

  5. PS foams at high pressure drop rates

    NASA Astrophysics Data System (ADS)

    Tammaro, Daniele; De Maio, Attilio; Carbone, Maria Giovanna Pastore; Di Maio, Ernesto; Iannace, Salvatore

    2014-05-01

    In this paper, we report data on PS foamed at 100 °C after CO2 saturation at 10 MPa in a new physical foaming batch that achieves pressure drop rates up to 120 MPa/s. Results show how average cell size of the foam nicely fit a linear behavior with the pressure drop rate in a double logarithmic plot. Furthermore, foam density initially decreases with the pressure drop rate, attaining a constant value at pressure drop rates higher than 40 MPa/s. Interestingly, furthermore, we observed that the shape of the pressure release curve has a large effect on the final foam morphology, as observed in tests in which the maximum pressure release rate was kept constant but the shape of the curve changed. These results allow for a fine tuning of the foam density and morphology for specific applications.

  6. Pressure drop in two-phase flow

    NASA Astrophysics Data System (ADS)

    Akashah, S. A.

    1980-12-01

    A computer program was developed containing some of the methods for predicting pressure drop in two-phase flow. The program contains accurate methods for predicting phase behavior and physical properties and can be used to calculate pressure drops for horizontal, inclined and vertical phases. The program was used to solve test cases for many types of flow, varying the diameter, roughness, composition, overall heat transfer coefficient, angle of inclination, and length. The Lockhart-Martinelli correlation predicts the highest pressure drop while the Beggs and Brill method predicts the lowest. The American Gas Association-American Petroleum Institute method is consistent and proved to be reliable in vertical, horizontal and inclined flow. The roughness of the pipe diameter had great effect on pressure drop in two-phase flow, while the overall heat transfer coefficient had little effect.

  7. Program calculates two-phase pressure drop

    SciTech Connect

    Blackwell, W.W.

    1980-11-24

    Analysts have developed a program for determining the two-phase pressure drop in piping. Written for the TI-59 programmable calculator used with a PC-100C printer, the program incorporates several unique features: it calculates single-phase as well as two-phase pressure drops, has a 10-20 s execution time, permits the operating data to be changed easily, and includes an option for calculating the estimated surface tension of paraffinic hydrocarbon liquids.

  8. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  9. Pressure Drops Due to Silica Scaling

    SciTech Connect

    Brown, K.L.; Freeston, D.H.; Dimas, Z.O.; Slatter, A.

    1995-01-01

    Experience with reinjection returns in many geothermal fields has prompted a move towards injecting waste fluids at some distance from the production field. This means that often, reinjection pipelines cover very long distances. If the waste water in the pipelines is supersaturated with respect to amorphous silica, then the deposition of silica in these pipelines is almost certain. Although the deposit may be of negligible thickness, the inner surface characteristics of the pipe will be different to those of clean mild steel. During a silica scaling experiment. geothermal brine was passed through a series of pipes of different sizes and over a period of three weeks, silica scale formed on the inner surface. The pressure drop along a distance of approximately 5m was measured by a water manometer in all test pipe sections. Significant pressure drop was observed during this time and can be correlated with the increase in the friction factor of the pipe walls due to silica scaling.

  10. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  11. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  12. Routines for Computing Pressure Drops in Venturis

    NASA Technical Reports Server (NTRS)

    de Quay, Laurence

    2004-01-01

    A set of computer-program routines has been developed for calculating pressure drops and recoveries of flows through standard venturis, nozzle venturis, and orifices. Relative to prior methods used for such calculations, the method implemented by these routines offers greater accuracy because it involves fewer simplifying assumptions and is more generally applicable to wide ranges of flow conditions. These routines are based on conservation of momentum and energy equations for real nonideal fluids, the properties of which are calculated by curve-fitting subroutines based on empirical properties data. These routines are capable of representing cavitating, choked, non-cavitating, and unchoked flow conditions for liquids, gases, and supercritical fluids. For a computation of flow through a given venturi, nozzle venturi, or orifice, the routines determine which flow condition occurs: First, they calculate a throat pressure under the assumption that the flow is unchoked or non-cavitating, then they calculate the throat pressure under the assumption that the flow is choked or cavitating. The assumption that yields the higher throat pressure is selected as the correct one.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, AIRFLOW PRODUCTS AFP30

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, AIRFLOW PRODUCTS AFP30

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...

  15. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOEpatents

    Sappok, Alexander; Wong, Victor

    2014-11-18

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing or preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.

  16. BIOAEROSOL SAMPLE COLLECTION METHODS

    EPA Science Inventory

    Bioaerosols are generally defined as those airborne particles that are living or originate from living organisms. Bioaerosol inhalation may result in a variety of lung diseases. Bioaerosols are recognized inhalation threats associated with waste management processes such as waste...

  17. BIOAEROSOL SAMPLE COLLECTION METHODS

    EPA Science Inventory

    Bioaerosols are generally defined as those airborne particles that are living or originate from living organisms. Bioaerosol inhalation may result in a variety of lung diseases. Bioaerosols are recognized inhalation threats associated with waste management processes such as waste...

  18. Pressure Drop Across Finned Cylinders Enclosed in a Jacket

    NASA Technical Reports Server (NTRS)

    Rollin, Vern G; Ellerbrock, Herman H

    1937-01-01

    The pressure drop across finned cylinders in a jacket for a range of air speeds from approximately 13 to 230 miles per hour has been investigated. Tests were made to determine the effect on the pressure drop of changes in fin space, fin width, jacket entrance and exit areas, skirt-approach radius, and the use of fillets and a separator plate at the rear of the cylinder. The pressure drop across the cylinder increased as the fin space decreased, the increase being very rapid at fin spaces smaller than approximately 0.20 inch. Fin width had little effect on the pressure drop for the range of widths tested. The pressure drop across the cylinder was nearly halved by increasing the skirt-approach radius from 3/4 inch to 1-1/4 inches, but fillets and a separator plate at the rear of the cylinder had little effect on the pressure drop. The pressure drop across a cylinder with tapered fins was greater than that for a cylinder having rectangular fins with the same effective fin spacing.

  19. Effect of humidity on the filter pressure drop

    SciTech Connect

    Vendel, J.; Letourneau, P.

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATON: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS AAF INTERNATIONAL DRIPAK 90/95%

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the DriPak 90/95% air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 104 Pa clean and 348 Pa dust loaded, and the fil...

  1. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES EXCEL FILTER, MODEL SBG24242898

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Excel Filter, Model SBG24242898 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 82 Pa clean and 348 Pa...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATIONTEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS AAF INTERNATIONAL BIOCEL I (TYPE SH)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the BioCel I (Type SH) air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 236 Pa clean and 478 Pa dust loaded, and th...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, COLUMBUS INDUSTRIES SL-3 RING PANEL

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the High Efficiency Mini Pleat air filter for dust and bioaerosol filtration manufactured by Columbus Industries. The pressure drop across the filter was 142 Pa clean and 283 Pa dust load...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, COLUMBUS INDUSTRIES SL-3 RING PANEL

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the High Efficiency Mini Pleat air filter for dust and bioaerosol filtration manufactured by Columbus Industries. The pressure drop across the filter was 142 Pa clean and 283 Pa dust load...

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATIONTEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS AAF INTERNATIONAL BIOCEL I (TYPE SH)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the BioCel I (Type SH) air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 236 Pa clean and 478 Pa dust loaded, and th...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATON: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS AAF INTERNATIONAL DRIPAK 90/95%

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the DriPak 90/95% air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 104 Pa clean and 348 Pa dust loaded, and the fil...

  7. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES EXCEL FILTER, MODEL SBG24242898

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Excel Filter, Model SBG24242898 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 82 Pa clean and 348 Pa...

  8. Two-Phase Flow Pressure Drop of High Quality Steam

    SciTech Connect

    Curtis, J. M.; Coffield, R. D.

    2001-10-01

    Two-phase pressure drop across a straight test pipe was experimentally determined for high Reynolds (Re) number steam flow for a flow quality range of 0.995 to 1.0. The testing described has been performed in order to reduce uncertainties associated with the effects of two-phase flow on pressure drop. Two-phase flow develops in steam piping because a small fraction of the steam flow condenses due to heat loss to the surroundings. There has been very limited two-phase pressure drop data in open literature for the tested flow quality range. The two-phase pressure drop data obtained in this test has enabled development of a correlation between friction factor, Reynolds number, and flow quality.

  9. Filter aids influence on pressure drop across a filtration system

    NASA Astrophysics Data System (ADS)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  10. Time-resolved pulsed spray drop sizing at elevated pressures

    NASA Astrophysics Data System (ADS)

    Drallmeier, J. A.; Peters, J. E.

    1986-04-01

    An experimental program was conducted to measure drop sizes in pulsed sprays for diesel and fuel-injected spark ignition engine applications. A forward-scattering unit was designed with a high-speed data acquisition system to permit the measurement of drop sizes in sprays at 0.4-ms intervals. Data were taken at elevated pressures from 0.345 to 3.45 MPa with a 0-deg pintle nozzle. The Sauter Mean Diameter (SMD) and size distribution were calculated using a computational method that is independent of a predetermined distribution function. Results taken at the spray centerline indicate that for most elevated pressures, the SMD in the secondary injection region tended to increase as the pressure in the fuel line decreased and tended to increase with increasing environmental pressure, both suggesting an inverse relationship between drop size and the pressure drop across the nozzle. Also as the environmental pressure was raised, the distribution width decreased at a slower rate than the SMD increased, indicating a spreading of the drop sizes with injection time at elevated pressures. Significant cycle-to-cycle variation in both the SMD and distribution width indicate that cycle-to-cycle variations must be considered in pulsed sprays. In addition, more variation was seen between random rather than consecutive cycles.

  11. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment.

  12. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  13. Reducing cyclone pressure drop with evasés

    USDA-ARS?s Scientific Manuscript database

    Cyclones are widely used to separate particles from gas flows and as air emissions control devices. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Evasés or exit diffusers potentially could reduce exit pressure losses without affecting collection...

  14. Microseismicity Induced by Fluid Pressure Drop (Laboratory Study)

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Zenchenko, Evgeny; Melchaeva, Olga

    2013-04-01

    Pore pressure change in saturated porous rocks may result in its fracturing (Maury et Fourmaintraux, 1993) and corresponding microseismic event occurrences. Microseismicity due to fluid injection is considered in numerous papers (Maxwell, 2010, Shapiro et al., 2005). Another type of the porous medium fracturing is related with rapid pore pressure drop at some boundary. The mechanism of such fracturing was considered by (Khristianovich, 1985) as a model of sudden coal blowing and by (Alidibirov, Panov, 1998) as a model of volcano eruptions. If the porous saturated medium has a boundary where it directly contacted with fluid under the high pressure (in a hydraulic fracture or in a borehole), and the pressure at that boundary is dropped, the conditions for tensile cracks can be achieved at some distance from the boundary. In the paper, the results of experimental study of saturated porous sample fracturing due to pore pressure rapid drop are discussed. The samples (82 mm high, ∅60 mm) were made of quartz sand, which was cemented by "liquid glass" glue with mass fraction 1%. The sample (porosity 35%, uniaxial unconfined compression strength 2.5 MPa) was placed in a mould and saturated by oil. The upper end of the sample contacted with the mould upper lid, the lower end contacted with fluid. The fluid pressure was increased to 10 MPa and then discharged through the bottom nipple. The pressure increases/drops were repeated 30-50 times. Pore pressure and acoustic emission (AE) were registered by transducers mounted into upper and bottom lids of the mould. It was found, that AE sources (corresponded to microfracturing) were spreading from the open end to the closed end of the sample, and that maximal number of AE events was registered at some distance from the opened end. The number of AE pulses increased with every next pressure drop, meanwhile the number of pulses with high amplitudes diminished. It was found that AE maximal rate corresponded to the fluid pressure

  15. He II heat transfer through random packed spheres: Pressure drop

    NASA Astrophysics Data System (ADS)

    Vanderlaan, M. H.; Van Sciver, S. W.

    2014-09-01

    Heat flow induced pressure drop through superfluid helium (He II) contained in porous media is examined. In this experiment, heat was applied to one side of a He II column containing a random pack of uniform size polyethylene spheres. Measured results include steady state pressure drops across the random packs of spheres (nominally 35 μm, 49 μm, and 98 μm diameter) for different heat inputs. Laminar, turbulent, and transition fluid flow regimes are examined. The laminar permeability and equivalent channel shape factor are compared to our past studies of the temperature drop through He II in the same porous media of packed spheres. Results from the pressure drop experiments are more accurate than temperature drop experiments due to reduced measurement errors achieved with the pressure transducer. Turbulent results are fitted to models with empirically derived friction factors. A turbulent model considering only dynamic pressure losses in the normal fluid yields the most consistent friction factors. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits all regimes to within 10%.

  16. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  17. MHD pressure drop in ducts with imperfectly insulating coatings

    SciTech Connect

    Malang, S.; Buehler, L.

    1994-08-01

    Liquid metal cooled blankets in fusion tokamak`s are feasible only with electrically insulating coatings at the coolant channel walls. The requirements of such coatings are investigated and a simple analytical model is developed to determine the influence of imperfections in the coatings on the magneto-hydrodynamic pressure drop. This model is compared with the results of a 3D-MHD code based on the core flow approach. Both methods are in good agreement as long as the imperfections do not increase the pressure drop by more than 20%. The analytical model over-estimates the pressure drop for values larger than 20%. The importance of self-healing of coatings in case of cracking or flaking is quantified and an equation for the equilibrium conditions between the generation of imperfection and the healing of such spots is provided.

  18. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR FP-98 MINIPLEAT V-BLANK FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar FP-98 Minipleat V-Bank Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 137 Pa clean and 348 Pa ...

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS:AAF INTERNATIONAL, PERFECTPLEAT ULTRA, 175-102-863

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the PerfectPleat Ultra 175-102-863 air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 112 Pa clean and 229 Pa dust lo...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS: AEOLUS CORPORATION SYNTHETIC MINIPLEAT V-CELL, SMV-M14-2424

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Synthetic Minipleat V-Cell, SMV-M14-2424 air filter for dust and bioaerosol filtration manufactured by Aeolus Corporation. The pressure drop across the filter was 104 Pa clean and 348...

  2. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES Z-PAK SERIES S, MODEL ZPS24241295BO

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Z-Pak Series S, Model ZPS24241295B0 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 91 Pa clean and 34...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS: TRI-DIM FILTER CORP. PREDATOR II MODEL 8VADTP123C23

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Predator II, Model 8VADTP123C23CC000 air filter for dust and bioaerosol filtration manufactured by Tri-Dim Filter Corporation. The pressure drop across the filter was 138 Pa clean and...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HLVAC SYSTEMS: AEOLUS CORPORATION SYNTHETIC MINIPLEAT V-CELL, SMV-M13-2424

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Synthetic Minipleat V-Cell, SMV-M13-2424 air filter for dust and bioaerosol filtration manufactured by Aeolus Corporation. The pressure drop across the filter was 77 Pa clean and 348 ...

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR "C-SERIES" POLYESTER PANEL FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar "C-Series" Polyester Panel Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 126 Pa clean and 267...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS: AEOLUS CORPORATION SYNTHETIC MINIPLEAT V-CELL, SMV-M14-2424

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Synthetic Minipleat V-Cell, SMV-M14-2424 air filter for dust and bioaerosol filtration manufactured by Aeolus Corporation. The pressure drop across the filter was 104 Pa clean and 348...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR FP-98 MINIPLEAT V-BLANK FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar FP-98 Minipleat V-Bank Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 137 Pa clean and 348 Pa ...

  8. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES Z-PAK SERIES S, MODEL ZPS24241295BO

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Z-Pak Series S, Model ZPS24241295B0 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 91 Pa clean and 34...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS: TRI-DIM FILTER CORP. PREDATOR II MODEL 8VADTP123C23

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Predator II, Model 8VADTP123C23CC000 air filter for dust and bioaerosol filtration manufactured by Tri-Dim Filter Corporation. The pressure drop across the filter was 138 Pa clean and...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR "C-SERIES" POLYESTER PANEL FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar "C-Series" Polyester Panel Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 126 Pa clean and 267...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS:AAF INTERNATIONAL, PERFECTPLEAT ULTRA, 175-102-863

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the PerfectPleat Ultra 175-102-863 air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 112 Pa clean and 229 Pa dust lo...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HLVAC SYSTEMS: AEOLUS CORPORATION SYNTHETIC MINIPLEAT V-CELL, SMV-M13-2424

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Synthetic Minipleat V-Cell, SMV-M13-2424 air filter for dust and bioaerosol filtration manufactured by Aeolus Corporation. The pressure drop across the filter was 77 Pa clean and 348 ...

  13. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  14. Prediction of Pressure Drop in the ITER Divertor Cooling Channels

    SciTech Connect

    Yin, S.T.; Chen, J.L.

    2005-04-15

    This study investigated the pressure drop in the divertor cooling channels of the International Thermonuclear Experimental Reactor (ITER). The water in the cooling channels will encounter the following flow and boiling regimes: 1) single-phase convection, 2) highly-subcooled boiling, 3) onset of nucleate boiling (ONB), and 4) fully-developed subcooled boiling. The upper operating boundary is limited by the departure from nucleate boiling (DNB) or burnout conditions. Twisted-tape insert will be used to enhance local heat transfer. Analytical models, validated with relevant databases, were proposed for the above-identified flow regimes. A user-friendly computer code was developed to calculate the overall pressure drop and the exit pressure of a specific local segment throughout the entire flow circuit. Although the operating parameters were based on the CDA phase input the results are found in general agreement when compared with the ITER EDA results.

  15. Experimental study on pressure drop of bends in dense phase pneumatic conveying under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Gaoyang; Liang, Cai; Chen, Xiaoping; Xu, Pan; Xu, Guiling; Shen, Liu

    2014-04-01

    The transport test using nitrogen as conveying gas are carried out at high operating pressure up to 4MPa in the experimental equipment for dense phase pneumatic conveying. The transport powders in the experiment are anthracite coal and petroleum coke. The pressure drop characteristics in bends are acquired with the different transport powder. The experimental results show that under the similar mass flow, the pressure drop of vertical upward bend is greater than the horizontal bend and the horizontal bend is greater than the vertical downward bend at the same superficial gas velocity, while there is a best superficial gas velocity minimizes the pressure drop of the bend. Under the similar mass flow rate and the similar particle size, the pressure drop of the bend with the petroleum coke is greater than the pressure drop with the anthracite coal as the same superficial gas velocity. According to Barth's additional pressure drop method, the pressure drop fitting formulas of the vertical upward bend, the horizontal bend and the vertical downward bend are obtained, and the predicted results are in accordance with that of the experiments.

  16. Description of an oscillating flow pressure drop test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary; Miller, Eric L.; Gedeon, David R.; Koester, Gary E.

    1988-01-01

    A test rig designed to generate heat exchanger pressure drop information under oscillating flow conditions is described. This oscillating flow rig is based on a variable stroke and variable frequency linear drive motor. A frequency capability of 120 hertz and a mean test pressure up to 15 mPA (2200 psi) allows for testing at flow conditions found in modern high specific power Stirling engines. An important design feature of this rig is that it utilizes a single close coupled dynamic pressure transducer to measure the pressure drop across the test sample. This eliminates instrumentation difficulties associated with the pressure sensing lines common to differential pressure transducers. Another feature of the rig is that it utilizes a single displacement piston. This allows for testing of different sample lengths and configurations without hardware modifications. All data acquisition and reduction for the rig is performed with a dedicated personal computer. Thus the overall system design efficiently integrates the testing and data reduction procedures. The design methodology and details of the test rig is described.

  17. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  18. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  19. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  20. The pressure drop in a porous material layer during combustion

    SciTech Connect

    Kondrikov, B.N.

    1995-07-01

    During the combustion of a porous material layer, a manometer, which is attached to the cold end of the charge, records at the bottom of the layer a pressure reduction, which was discovered more than 20 years ago but which remains essentially unexplained up to the present. It is experimentally shown that this effect is similar to the pressure change in the cavities when a light gas (helium, hydrogen) diffuses from (or to) them under isothermal conditions and that it increases during the combustion mainly due to the accompanying Stefan type flow, and probably also as a result of the thermal diffusion. A pressure drop in the cavities is evidently made possible also by the pressure reduction in the flame which follows from the Hugoniot adiabatic theory.

  1. Limiting the Accidental Pressure Drop in NIF Beam Tubes

    SciTech Connect

    Garcia, M

    2000-11-06

    This report summarizes the use of a one-dimensional model of a time-dependent compressible flow condition to validate the results from a more sophisticated three-dimensional model. The flow conditions consist of the sudden decompression of a pressurized tube joined to an evacuated sphere, where the tube also has a leak to external atmosphere that is triggered open at a given pressure difference below sea-level pressure. This flow model is used to calculate conditions in a NIF beam tube if an internal vacuum barrier fails, and to calculate how the size and timing of an opening to external atmosphere changes tube pressure. Decompression of a NIF beam tube is a potential safety hazard since the tube could collapse if the tube pressure is reduced below the buckling limit. To prevent this from occurring, each pressurized section includes a rupture panel which is designed to open to external atmosphere at a given pressure difference. The inrush of external atmosphere through the rupture panel fills both the tube and the vacuum drawing on it, and in this way the pressure drop in the tube is quickly limited and reversed. In summary, the results from the 1D model indicate that the 3-D calculations are accurate and reasonable.

  2. Pressure drop in a borehole intersecting an active fault

    NASA Astrophysics Data System (ADS)

    Doan, M.; Cornet, F. H.

    2004-12-01

    The Corinth Rift, in western Greece, is one of the most active continental Rift in the world, with an opening rate of 1.5cm/yr. Its deformation process is being monitored with a broad range of sensors dispatched across the rift, near the city of Aigio, some 40km east of Patras. In particular, a set of pressure transducers has been set in a 1000m-deep borehole that intersects the active 10km long Aigio fault at a depth of 760m. Below its upper 700m deep cased section, the well has been left open and intersects two artesian aquifers. The upper aquifer is fully hydraulically decoupled from surface aquifers and is developed in tectonized platy limestone, with a 0.5MPa original pressure. Below the fault, the limestone is heavily karstified and the artesian overpressure reaches about 0.85MPa. Hence the fault supports a 0.35MPa differential pressure through the 5m thick radiolarite clay layer that has been smeared along the 150m fault offset. In September 2003, the borehole was let produce water and then was plugged with a packer set at the top of the casing resulting in a direct connection between both aquifers. The pressure is monitored by sensors set just below the packer. Tidal waves are recorded with a resolution better than 1/100. In addition a variety of pressure anomalies have been observed. A 60Pa drop in pore pressure has been recorded at the onset of the S waves generated by the Mw=7.8 Rat Island Earthquake of November, 17th 2003. It is followed by a slow recovery which lasted about 30 minutes. This anomaly, compatible with a minor movement along the fault with a seismic moment of 109Nm, is one of the farthest local effects induced by teleseismic waves ever recorded. A 80Pa pressure drop has been detected 15 minutes before a ML=4.2 earthquake that occured about 15km west of the well. It is much sharper than the coseismic drop. This precursory event exhibits a 2-step recovery that lasted 10 minutes. As seismic sensors located near the well detected no major

  3. Metamorphic record of catastrophic pressure drops in subduction zones

    NASA Astrophysics Data System (ADS)

    Yamato, P.; Brun, J. P.

    2017-01-01

    When deeply buried in subduction zones, rocks undergo mineral transformations that record the increase of pressure and temperature. The fact that high-pressure metamorphic parageneses are found at the Earth’s surface proves that rock burial is followed by exhumation. Here we use analysis of available data sets from high-pressure metamorphic rocks worldwide to show that the peak pressure is proportional to the subsequent decompression occurring during the initial stage of retrogression. We propose, using a simple mechanical analysis, that this linear relationship can be explained by the transition from burial-related compression to extension at the onset of exhumation. This major switch in orientation and magnitude of principal tectonic stresses leads to a catastrophic pressure drop prior to actual rock ascent. Therefore, peak pressures are not necessarily, as commonly believed, directly dependent on the maximum burial depth, but can also reflect a change of tectonic regime. Our results, which are in agreement with natural data, have significant implications for rock rheology, subduction zone seismicity, and the magnitudes of tectonic pressures sustained by rocks. Current views of subduction dynamics could be reconsidered in that perspective.

  4. Filtration of bioaerosols using a granular metallic filter with micrometer-sized collectors

    SciTech Connect

    Damit, Brian E; Bischoff, Brian L; Phelps, Tommy Joe; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    Several experimental studies with granular bed filters composed of micrometer-sized spherical or sintered metallic granules have demonstrated their use in aerosol filtration. However, the effectiveness of these metallic membrane filters against bioaerosols has not been established. In this work, the filtration efficiency and filter quality of these filters against airborne B. subtilis endospore and MS2 virus were determined as a function of face velocity and loading time. In experiments, a physical removal efficiency greater than 99.9% and a viable removal efficiency of greater than 5-log were observed for both bacterial spore and viral aerosols. A lower face velocity produced both higher collection efficiency and filter quality for virus but was not statistically significant for spore filtration. Although the filter had high filtration efficiency of the test bioaerosols, the filter's high pressure drop resulted in a low filter quality (0.25-0.75 kPa- 1). Overall, filters with micrometer-sized collectors capture bioaerosols effectively but their applications in aerosol filtration may be limited by their high pressure drop.

  5. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  6. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    NASA Astrophysics Data System (ADS)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  7. Axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD): a film balance technique for high collapse pressures.

    PubMed

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Neumann, A Wilhelm

    2008-10-07

    Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., <2 mJ/m2), an easier deposition procedure than in a pendant drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.

  8. Pressure drop of He II flow through a porous media

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1990-01-01

    The paper reports on measurements of He II pressure drop across two porous SiO2 ceramic filter materials. These materials vary only in porosity, having values of 0.94 and 0.96. The average fiber diameter in both cases is approximately 5 microns. The experiment consists of a glass tube containing a piece of this sponge in one end. The tube is rapidly displaced downward in a bath of helium and the liquid levels are allowed to equilibrate over time producing variable velocities up to 10 cm/sec. The results are compared with those previously obtained using fine mesh screens. Good qualitative agreement is observed for turbulent flow; however, the behavior in the laminar flow regime is not fully understood.

  9. Pressure drop of He II flow through a porous media

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1990-01-01

    The paper reports on measurements of He II pressure drop across two porous SiO2 ceramic filter materials. These materials vary only in porosity, having values of 0.94 and 0.96. The average fiber diameter in both cases is approximately 5 microns. The experiment consists of a glass tube containing a piece of this sponge in one end. The tube is rapidly displaced downward in a bath of helium and the liquid levels are allowed to equilibrate over time producing variable velocities up to 10 cm/sec. The results are compared with those previously obtained using fine mesh screens. Good qualitative agreement is observed for turbulent flow; however, the behavior in the laminar flow regime is not fully understood.

  10. Method - Pressure drop tests for fuel system components

    NASA Astrophysics Data System (ADS)

    1990-12-01

    Techniques are presented for testing components and improving the accuracy of such tests to meet the requirements of MIL-F-8615 or equivalent specifications. Pressure-drop tests for individual components are described generally including the single and double piezometer-tube methods, and many of the suggested improvements apply to these techniques. The test setup is presented graphically, and the procedural conditions are described. The suggestions for improving the test results include notes regarding air bubbles, pumping-source pulsations, attachment fittings, overshooting the flow rate, and the importance of precise calibration. Diagrams are given for the double piezometer-tube, the mercury-manometer, and the fuel-manometer tests, and the arithmetic computation is described for the data-reduction equation.

  11. A pressurized drop-tube furnace for coal reactivity studies

    NASA Astrophysics Data System (ADS)

    Ouyang, Shan; Yeasmin, Hasina; Mathews, Joseph

    1998-08-01

    The design and characterization of a pressurized drop-tube furnace for investigation of coal devolatilization, gasification, and combustion are presented. The furnace is designed for high-temperature, isothermal operation in a developing laminar flow regime. It can be operated at pressures up to 1600 kPa, and temperatures up to 1673 K, with variable reaction time, particle feeding rate, and with inert and various oxidizing atmospheres. Particle residence times can be varied between ˜0.02 and ˜10 s depending upon operating conditions and positions of injection and sampling probes. Observations ports are available for sample collections and for optical investigation of the reactions or temperature measurements. Characterization of gas temperature in the furnace shows that, although the gas temperature profile in the furnace is affected by the water-cooled injection probe, the furnace is able to achieve isothermal operation in a developing laminar flow regime. Results from a series of brown coal devolatilization tests demonstrated the suitability of the furnace for experiments in coal research.

  12. Two-phase pressure drop of ammonia in small diameter horizontal tubes

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Cornwell, John D.

    1992-01-01

    Data for pressure drop in adiabatic two-phase ammonia flows in small diameter horizontal tubes are presented. The data has direct application to the sizing of the flow-through radiator tubes in the Space Station Freedom heat rejection system. The data are compared to existing correlations for pressure drop and are found to be significantly lower than the most commonly used correlations. However, several of the less commonly used correlations predict the data accurately. Alternate pressure drop prediction methods are explored and a recommendation is made for a method to accurately predict the pressure drop in two-phase ammonia flows in small horizontal tubes.

  13. Pressure drop and thrust predictions for transonic micronozzle flows

    NASA Astrophysics Data System (ADS)

    Gomez, J.; Groll, R.

    2016-02-01

    In this paper, the expansion of xenon, argon, krypton, and neon gases through a Laval nozzle is studied experimentally and numerically. The pressurized gases are accelerated through the nozzle into a vacuum chamber in an attempt to simulate the operating conditions of a cold-gas thruster for attitude control of a micro-satellite. The gases are evaluated at several mass flow rates ranging between 0.178 mg/s and 3.568 mg/s. The Re numbers are low (8-256) and the estimated values of Kn number lie between 0.33 and 0.02 (transition and slip-flow regime). Direct Simulation Monte Carlo (DSMC) and continuum-based simulations with a no-slip boundary condition are performed. The DSMC and the experimental results show good agreement in the range Kn > 0.1, while the Navier-Stokes results describe the experimental data more accurately for Kn < 0.05. Comparison between the experimental and Navier-Stokes results shows high deviations at the lower mass flow rates and higher Kn numbers. A relation describing the deviation of the pressure drop through the nozzle as a function of Kn is obtained. For gases with small collision cross sections, the experimental pressure results deviate more strongly from the no-slip assumption. From the analysis of the developed function, it is possible to correct the pressure results for the studied gases, both in the slip-flow and transition regimes, with four gas-independent accommodation coefficients. The thrust delivered by the cold-gas thruster and the specific impulse is determined based on the numerical results. Furthermore, an increase of the thickness of the viscous boundary layer through the diffuser of the micronozzle is observed. This results in a shock-less decrease of the Mach number and the flow velocity, which penalizes thrust efficiency. The negative effect of the viscous boundary layer on thrust efficiency can be lowered through higher values of Re and a reduction of the diffuser length.

  14. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  15. The effect of pressure on annular flow pressure drop in a small pipe

    SciTech Connect

    de Bertodano, M.A.L.; Beus, S.G.; Shi, Jian-Feng

    1996-09-01

    New experimental data was obtained for pressure drop and entrainment for annular up-flow in a vertical pipe. The 9.5 mm. pipe has an L/D ratio of 440 to insure fully developed annular flow. The pressure ranged from 140 kPa to 660 kPa. Therefore the density ratio was varied by a factor of four approximately. This allows the investigation of the effect of pressure on the interfacial shear models. Gas superficial velocities between 25 and 126 m/s were tested. This extends the range of previous data to higher gas velocities. The data were compared with well known models for interfacial shear that represent the state of the art. Good results were obtained when the model by Asali, Hanratty and Andreussi was modified for the effect of pressure. Furthermore an equivalent model was obtained based on the mixing length theory for rough pipes. It correlates the equivalent roughness to the film thickness.

  16. Oscillatory pressure drops through a woven-screen packed column subjected to a cyclic flow

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Cheng, P.

    An experiment has been performed to investigate oscillatory pressure drop characteristics in packed columns (composed of three different sizes of woven screen) subjected to a periodically reversing flow of air. It was found that the oscillatory pressure drop factor increases with the kinetic Reynolds number (Re ω) Dh and with the dimensionless fluid displacement ( Ao) Dh. Based on 92 experimental runs, correlation equations for the maximum and the cycle-averaged pressure drop factors in terms of these two similarity parameters are obtained. It is found that the value of the cycle-averaged pressure drop of the oscillatory flow in a packed column is four to six times higher than that of a steady flow at the same Reynolds number based on the cross-sectional mean velocity. At small Reynolds numbers, this pressure drop ratio depends only on the geometry of the woven screens and is independent of the Reynolds number (Re gw) Dh and the dimensionless fluid displacement ( Ao) DDh.

  17. Low pressure drop airborne molecular contaminant filtration using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Ding, Lefei; Joriman, Jon; Zastera, Dustin; Seguin, Kevin; Empson, James

    2006-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for AMC is offered by granular filter beds. However, the attributes that make packed beds of adsorbents extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the low pressure drop AMC filters currently offered tend to be quiet costly and contaminant nonspecific. Many of these low pressure drop filters are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCNs), can still offer good filter life and removal efficiency, with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and full fan unit filters this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for AMC removal in a wide range of applications.

  18. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  19. Compressibility Effects on Heat Transfer and Pressure Drop in Smooth Cylindrical Tubes

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1944-01-01

    An analysis is made to simplify pressure-drop calculations for nonadiabatic and adiabatic friction flow of air in smooth cylindrical tubes when the density changes due to heat transfer and pressure drop are appreciable. Solutions of the equation of motion are obtained by the use of Reynolds' analogy between heat transfer and skin friction. Charts of the solutions are presented for making pressure-drop calculations. A technique of using the charts to determine the position of a normal shock in a tube is described.

  20. Laboratory manual for static pressure drop experiments in LMFBR wire wrapped rod bundles

    SciTech Connect

    Burns, K.J.; Todreas, N.E.

    1980-07-01

    Purpose of this experiment is to determine both interior and edge subchannel axial pressure drops for a range of Reynolds numbers. The subchannel static pressure drop is used to calculate subchannel and bundle average friction factors, which can be used to verify existing friction factor correlations. The correlations for subchannel friction factors are used as input to computer codes which solve the coupled energy, continuity, and momentum equations, and are also used to develop flow split correlations which are needed as input to codes which solve only the energy equation. The bundle average friction factor is used to calculate the overall bundle pressure drop, which determines the required pumping power.

  1. LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-03-03

    This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.

  2. Stretching and squeezing of sessile dielectric drops by the optical radiation pressure.

    PubMed

    Chraïbi, Hamza; Lasseux, Didier; Arquis, Eric; Wunenburger, Régis; Delville, Jean-Pierre

    2008-06-01

    We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semiangle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these "optical cones" become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable "optical torus." These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated "optical domain" and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale.

  3. Beyond Bernoulli: Improving the Accuracy and Precision of Noninvasive Estimation of Peak Pressure Drops.

    PubMed

    Donati, Fabrizio; Myerson, Saul; Bissell, Malenka M; Smith, Nicolas P; Neubauer, Stefan; Monaghan, Mark J; Nordsletten, David A; Lamata, Pablo

    2017-01-01

    Transvalvular peak pressure drops are routinely assessed noninvasively by echocardiography using the Bernoulli principle. However, the Bernoulli principle relies on several approximations that may not be appropriate, including that the majority of the pressure drop is because of the spatial acceleration of the blood flow, and the ejection jet is a single streamline (single peak velocity value). We assessed the accuracy of the Bernoulli principle to estimate the peak pressure drop at the aortic valve using 3-dimensional cardiovascular magnetic resonance flow data in 32 subjects. Reference pressure drops were computed from the flow field, accounting for the principles of physics (ie, the Navier-Stokes equations). Analysis of the pressure components confirmed that the spatial acceleration of the blood jet through the valve is most significant (accounting for 99% of the total drop in stenotic subjects). However, the Bernoulli formulation demonstrated a consistent overestimation of the transvalvular pressure (average of 54%, range 5%-136%) resulting from the use of a single peak velocity value, which neglects the velocity distribution across the aortic valve plane. This assumption was a source of uncontrolled variability. The application of the Bernoulli formulation results in a clinically significant overestimation of peak pressure drops because of approximation of blood flow as a single streamline. A corrected formulation that accounts for the cross-sectional profile of the blood flow is proposed and adapted to both cardiovascular magnetic resonance and echocardiographic data. © 2017 The Authors.

  4. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  5. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  6. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  7. Study made of heat transfer and pressure drop through tubes with internal interrupted fins

    NASA Technical Reports Server (NTRS)

    Namkoong, D., Jr.

    1967-01-01

    Argon gas flow through an internal interrupted finned tube was investigated to obtain heat transfer and frictional pressure drop data. The results were plotted against the same data for corresponding louvered plate-finned surfaces.

  8. Comparative studies of hemoperfusion devices. II. Pressure drop and flow uniformity tests.

    PubMed

    Cooney, D O; Infantolino, W; Kane, R

    1979-01-01

    One resin-based hemoperfusion device and three charcoal-based hemoperfusion devices were tested to determine their pressure drop and flow uniformity characteristics. Measurements were made on pressure drop versus flow rate using distilled water and on pressure drop versus time using bovine blood. Effluent concentration curves obtained after the step-change introduction of a high molecular weight dye solution to each unit were used to determine the priming volumes of the devices and were interpreted to yield information regarding the uniformities of flow in each device. The pressure drop and priming volume values for the resin-based device were significantly higher than the corresponding values for the charcoal-based units.

  9. The pressure hold/drop integrity test; its correlation to diffusive flow.

    PubMed

    Trotter, A M; Meltzer, T H

    1998-01-01

    The pressure-drop/hold procedure enables the diffusive flow integrity testing of filters to be performed without breaching the system downstream of the filter. It is not necessary to measure volumetrically the diffused gas on the downstream side of the filter. By means of pressure transducers the pressure loss is determined upstream; thus eliminating the threat of sepsis due to down-stream invasions. The pressure decay exercise can be used to characterize the various filter types. A constancy of filter manufacture is required for a given filter type. Unless the pressure drop exceeds the value established as the maximum allowable decay, the filter is judged to be integral. It qualifies as a sterilizing grade filter. Excessive pressure decays will also eventuate from leaks, as from improperly sealed housings. Performed prior to the filtration, the procedure serves to eliminate the wasteful use of an imperfect system, whether caused by faulty sealing, incorrect filter type or flawed filters. Where leaks are detected, the filter can be reexamined for its integrity. To enable the pressure-drop procedure to serve as an integrity test, the measured pressure decays require being correlated with organism retention data. This is made possible by the arithmetic conversion of the pressure decay curve into the conventional diffusive airflow curve established to have such a correlation. The transformation of the pressure-drop curve into the differential airflow plot is automatically performed by certain of the automated integrity test machines. These devices, utilizing pressure transducers, are capable of measuring small pressure drops with requisite sensitivity; gauges commonly are not. Moreover, as previously stated, the measurements are advantageously made on the upside of the filter. The use of automated test machines is, therefore, recommended for the performance of the pressure hold/drop integrity test in furtherance of the practice of filter integrity testing.

  10. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    PubMed

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  11. Pressure drop measurements of prototype NET and CEA cable-in-conduit conductors (CICCs)

    SciTech Connect

    Maekawa, R.; Smith, M.R.; Van Sciver, S.W.

    1996-12-31

    The pressure drop of two prototype cable-in-conduit conductors (CICCs) were measured. The NET conductor is a conventional type CICC, while the CEA conductor has a central flow channel to reduce hydraulic impedance. The pressure drop measurements were conducted with helium at temperatures ranging from 2K to 4.7K, and pressure from the saturated vapor pressure to in excess of 3 bar. Computer image analysis was used to estimate the flow cross sectional area and wetted perimeter of the conductors. The data are expressed in terms of a classical friction factor, and compared with precious experimental results.

  12. Predominance of single bacterial cells in composting bioaerosols

    NASA Astrophysics Data System (ADS)

    Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie

    2015-04-01

    Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.

  13. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu

    2009-05-15

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  14. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.

    PubMed

    Molla, Shahnawaz; Eskin, Dmitry; Mostowfi, Farshid

    2011-06-07

    Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (∼0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.

  15. Experimental microbubble generation by sudden pressure drop and fluidics

    NASA Astrophysics Data System (ADS)

    Franco Gutierrez, Fernando; Figueroa Espinoza, Bernardo; Aguilar Corona, Alicia; Vargas Correa, Jesus; Solorio Diaz, Gildardo

    2014-11-01

    Mass and heat transfer, as well as chemical species in bubbly flow are of importance in environmental and industrial applications. Microbubbles are well suited to these applications due to the large interface contact area and residence time. The objective of this investigation is to build devices to produce microbubbles using two methods: pressure differences and fluidics. Some characteristics, advantages and drawbacks of both methods are briefly discussed, as well as the characterization of the bubbly suspensions in terms of parameters such as the pressure jump and bubble equivalent diameter distribution. The authors acknowledge the support of Consejo Nacional de Ciencia y Tecnología.

  16. Frictional pressure drop in horizontal pneumatic conveying of coal and limestone

    SciTech Connect

    Daw, C.S.; Thomas, J.F.

    1983-08-01

    Pneumatic conveying experiments were conducted at Oak Ridge National Laboratory (ORNL) with crushed coal, limestone, and coal-limestone mixtures on a conveying system designed to represent the branch feed lines in the TVA 20-MW(e) atmospheric fluidized bed combustor. Test conditions were chosen to cover the anticipated operating ranges of the pilot plant. Details of the experimental apparatus and a summary of the results are presented in ORNL/TM-7724. This report is a further analysis of the horizontal pressure-drop data produced by the ORNL experiments. The results are compared with previous data and correlations in the literature, and the combined data provide strong evidence that there at least two possible pressure-drop modes in horizontal, dilute-phase conveying. The ORNL results follow a high-pressure-drop mode, while a major portion of data in the literature follow a low-pressure-drop mode. The results of Mehta (1955) and Peskin (1963) confirm the existence of the high-pressure-drop mode. It is proposed that the two pressure-drop modes result from inertia-dominated and viscous-dominated flow. With an inertial model, it is possible to derive an expression for the horizontal pressure drop that agrees remarkably well with the ORNL data, the larger-particle data of Mehta (1955), and the data of Peskin (1963). The small particle data of Mehta and the bulk of the data in the literature appear to follow the viscous flow model developed by Julian and Dukler (1965). It also appears that some data in the literature may represent combinations of the two flow regimes or transitions between them. 29 references, 15 figures, 2 tables.

  17. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  18. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  19. Pressure drop characteristics of cryogenic mixed refrigerant at macro and micro channel heat exchangers

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Jeong, Sangkwon; Hwang, Gyuwan

    2012-12-01

    Mixed Refrigerant-Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. The temperature glide effect is one of the major features of using mixed refrigerants since a recuperative heat exchanger in a MR-JT refrigerator is utilized for mostly two-phase flow. Although a pressure drop estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in MR-JT refrigerator heat exchanger designs, it has been rarely discussed so far. In this paper, macro heat exchangers and micro heat exchangers are compared in order to investigate the pressure drop characteristics in the experimental MR-JT refrigerator operation. The tube in tube heat exchanger (TTHE) is a well-known macro-channel heat exchanger in MR-JT refrigeration. Printed Circuit Heat Exchangers (PCHEs) have been developed as a compact heat exchanger with micro size channels. Several two-phase pressure drop correlations are examined to discuss the experimental pressure measurement results. The result of this paper shows that cryogenic mixed refrigerant pressure drop can be estimated with conventional two-phase pressure drop correlations if an appropriate flow pattern is identified.

  20. Analysis of pressure drop and heat transfer data from the reversing flow test facility

    SciTech Connect

    Roach, P D; Bell, K J

    1989-05-01

    The Reversing Flow Test Facility is part of the heat engine R and D capabilities at Argonne National Laboratory. The facility permits the study of heat transfer and pressure drop under conditions of rapidly reversing flow. This report summarizes the results that have been obtained to date from more than 100 data sets that cover a wide range of temperatures, pressures, and frequencies. Pressure drop data are presented as normalized pressure drop vs. the Reynolds number calculated from the amplitude of the oscillatory flow. Heat transfer data for the regenerators are presented as regenerator effectiveness vs. Reynolds number. Three significant conclusions are derived from our analysis of the data: (1) no frequency dependence is observed in either the pressure drop or the heat transfer data, (2) the measured pressure drops for the heater and coolers are distinctly higher than those calculated from steady-flow correlations, and (3) the heat transfer coefficient in the heater is about 80 percent of that predicted by steady-flow correlations. The correlations presented here provide the basis for improving existing models. 4 refs., 20 figs., 3 tabs.

  1. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    USDA-ARS?s Scientific Manuscript database

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  2. Detection of bubble nucleation event in superheated drop detector by the pressure sensor

    NASA Astrophysics Data System (ADS)

    Das, Mala; Biswas, Nilanjan

    2017-01-01

    Superheated drop detector consisting of drops of superheated liquid suspended in polymer or gel matrix is of great demand, mainly because of its insensitivity to ß-particles and ?-rays and also because of the low cost. The bubble nucleation event is detected by measuring the acoustic shock wave released during the nucleation process. The present work demonstrates the detection of bubble nucleation events by using the pressure sensor. The associated circuits for the measurement are described in this article. The detection of events is verified by measuring the events with the acoustic sensor. The measurement was done using drops of various sizes to study the effect of the size of the drop on the pressure recovery time. Probability of detection of events has increased for larger size of the superheated drops and lesser volume of air in contact with the gel matrix. The exponential decay fitting to the pressure sensor signals shows the dead time for pressure recovery of such a drop detector to be a few microseconds.

  3. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    SciTech Connect

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.

    1993-12-01

    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality.

  4. Pressure Drop and Heat Transfer Characteristics of Boiling Nitrogen in Square Pipe flow

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Nakayama, Tadashi; Takahashi, Koichi; Kobayashi, Hiroaki; Taguchi, Hideyuki; Aoki, Itsuo

    Pressure drop and forced convection heat transfer were studied in the boiling nitrogen flow in a horizontal square pipe with a side of 12 mm at inlet pressure between 0.1 and0.15 MPa with a mass flux between 70 and 2000 kg/m2-s and with a heat flux of 5, 10 and 20 kW/m2. Accordingly, the flow and heat transfer mechanisms specific to square pipe were elucidated, and the applicability to cryogenic fluids of pressure drop and heat transfer models originally proposed for room temperature fluids was clarified.

  5. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    SciTech Connect

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; Koglin, Jason E.; Liang, Mengning; Aquila, Andrew L.; Robinson, Joseph S.; Gumerlock, Karl L.; Blaj, Gabriel; Sierra, Raymond G.; Boutet, Sebastien; Guillet, Serge A. H.; Curtis, Robin H.; Vetter, Sharon L.; Loos, Henrik; Turner, James L.; Decker, Franz -Josef

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPa were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  6. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  7. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    PubMed

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-02

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  8. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    SciTech Connect

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; Koglin, Jason E.; Liang, Mengning; Aquila, Andrew L.; Robinson, Joseph S.; Gumerlock, Karl L.; Blaj, Gabriel; Sierra, Raymond G.; Boutet, Sebastien; Guillet, Serge A. H.; Curtis, Robin H.; Vetter, Sharon L.; Loos, Henrik; Turner, James L.; Decker, Franz -Josef

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPa were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  9. Effect of flameholder pressure drop on emissions and performance of premixed-prevaporized combustors

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.; Lyons, V. J.

    1983-01-01

    Parametric tests were conducted to determine the effects of flameholder pressure drop on the emissions and performance of lean premixed-prevaporized combustors. A conical flameholder mounted in a diverging duct was tested with two values of flameholder blockage. Emissions of nitrogen oxides, carbon monoxide, carbon dioxide, and unburned hydrocarbons were measured for combustor entrance conditions of 600 to 800 K air temperature, 0.3 MPa to 0.5 MPa pressure, and 20 m/sec to 35 m/sec reference velocity. Jet A fuel was injected at flow rates corresponding to an equivalence ratio range from 0.8 down to the lean stability limit. Emission results for the high-blockage flameholder were a substantial improvement over the low-blockage emission results. A correlation of combustion efficiency with flameholder pressure drop was developed for pressure drops less than 9 percent.

  10. Variability among electronic cigarettes in the pressure drop, airflow rate, and aerosol production.

    PubMed

    Williams, Monique; Talbot, Prue

    2011-12-01

    This study investigated the performance of electronic cigarettes (e-cigarettes), compared different models within a brand, compared identical copies of the same model within a brand, and examined performance using different protocols. Airflow rate required to generate aerosol, pressure drop across e-cigarettes, and aerosol density were examined using three different protocols. First 10 puff protocol: The airflow rate required to produce aerosol and aerosol density varied among brands, while pressure drop varied among brands and between the same model within a brand. Total air hole area correlated with pressure drop for some brands. Smoke-out protocol: E-cigarettes within a brand generally performed similarly when puffed to exhaustion; however, there was considerable variation between brands in pressure drop, airflow rate required to produce aerosol, and the total number of puffs produced. With this protocol, aerosol density varied significantly between puffs and gradually declined. CONSECUTIVE TRIAL PROTOCOL: Two copies of one model were subjected to 11 puffs in three consecutive trials with breaks between trials. One copy performed similarly in each trial, while the second copy of the same model produced little aerosol during the third trial. The different performance properties of the two units were attributed to the atomizers. There was significant variability between and within brands in the airflow rate required to produce aerosol, pressure drop, length of time cartridges lasted, and production of aerosol. Variation in performance properties within brands suggests a need for better quality control during e-cigarette manufacture.

  11. Fast and accurate pressure-drop prediction in straightened atherosclerotic coronary arteries.

    PubMed

    Schrauwen, Jelle T C; Koeze, Dion J; Wentzel, Jolanda J; van de Vosse, Frans N; van der Steen, Anton F W; Gijsen, Frank J H

    2015-01-01

    Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD. As a first step towards exploring the proposed method we investigated ten straightened coronary arteries. First, the flow fields were calculated with CFD and velocity profiles were fitted on the results. Second, the Navier-Stokes equation was simplified and solved with the found velocity profiles to obtain a pressure-drop estimate (Δp (1)). Next, Δp (1) was compared to the pressure-drop from CFD (Δp CFD) as a validation step. Finally, the velocity profiles, and thus the pressure-drop were predicted based on geometry and flow, resulting in Δp geom. We found that Δp (1) adequately estimated Δp CFD with velocity profiles that have one free parameter β. This β was successfully related to geometry and flow, resulting in an excellent agreement between Δp CFD and Δp geom: 3.9 ± 4.9% difference at Re = 150. We showed that this method can quickly and accurately predict pressure-drop on the basis of geometry and flow in straightened coronary arteries that are mildly diseased.

  12. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  13. Development and verification of two-phase pressure drop correlations for RBMK-type reactors

    NASA Astrophysics Data System (ADS)

    Zvinys, Evaldas

    The available two-phase frictional pressure drop correlations are reviewed and compared, extending their applicability range to include the thermal-hydraulic conditions prevailing in RBMK reactor fuel channels. It is shown that the Heat Transfer and Fluid Flow Service (HTFS) pressure drop correlation used in RELAP5 MOD 3.2.1.2 code has shortcomings. From the list of alternative correlations the Osmachkin and Friedel correlations are selected. The behavior of the above two correlations is explained and the shortcomings of the Osmachkin correlation are noted. In order to improve the Osmachkin correlation, a new concept of the free flow fraction is introduced. It is shown that using the free flow fraction one can predict the quality at which the homogeneous equilibrium model case pressure drop is approached. A computational algorithm for two-phase pressure drop multiplier is developed using the transition criteria based on the free flow fraction and also on the Friedel and Osmachkin two-phase pressure drop relations. This algorithm is implemented into the RELAP5 code. The performance of the updated code version is verified using the Ignalina Nuclear Power Plant data base of operation parameters. The comparison reveals that the "updated" code version shows a better agreement with data. The performance of the updated and standard code versions is also investigated by modeling a group distribution header guillotine rupture in the Ignalina Nuclear Power Plant. Although the calculated results show differences, the deviation between the two code versions is within the engineering uncertainty range.

  14. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.

    2013-11-01

    Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.

  15. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  16. Nucleate boiling pressure drop in an annulus: Book 5

    SciTech Connect

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux. This document consists solely of the plato file index from 11/87 to 11/90.

  17. Mineral matter transformations in a pressurized drop-tube furnace

    SciTech Connect

    Swanson, M.L.; Tibbetts, J.E.

    1992-01-01

    To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal's unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

  18. Mineral matter transformations in a pressurized drop-tube furnace

    SciTech Connect

    Swanson, M.L.; Tibbetts, J.E.

    1992-12-31

    To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal`s unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

  19. Nucleate boiling pressure drop in an annulus: Book 2

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux.

  20. Investigation of lean combustion stability and pressure drop in porous media burners

    NASA Astrophysics Data System (ADS)

    Sobhani, Sadaf; Haley, Bret; Bartz, David; Dunnmon, Jared; Sullivan, John; Ihme, Matthias

    2016-11-01

    The stability and thermal durability of combustion in porous media burners (PMBs) is examined experimentally and computationally. For this, two burner concepts are considered, which consist of different pore topologies, porous materials, and matrix arrangements. Long-term material durability tests at constant and cycled on-off conditions are performed, along with a characterization of combustion stability, pressure drop and pollutant emissions for a range of equivalence ratios and mass flow rates. Experimental thermocouple temperature measurements and pressure drop data are presented and compared to results obtained from one-dimensional volume-averaged simulations. Experimental and model results show reasonable agreement for temperature profiles and pressure drop evaluated using Ergun's equations. Enhanced flame stability is illustrated for burners with Yttria-stabilized Zirconia Alumina upstream and Silicon Carbide in the downstream combustion zone. Results reinforce concepts in PMB design and optimization, and demonstrate the potential of PMBs to overcome technological barriers associated with conventional free-flame combustion technologies.

  1. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  2. Pressure drop measurements on supercritical helium cooled cable in conduit conductors

    SciTech Connect

    Daugherty, M.A.; Huang, Y.; Van Sciver, S.W. . Applied Superconductivity Center)

    1989-03-01

    Forced flow cable-in-conduit conductors with large cooled surface areas provide excellent stability margins at the price of high frictional losses and large pumping power requirements. For extensive projects such as the International Thermonuclear Experimental Reactor design cooperation it is essential to know the pressure drops to be expected from different conductor geometries and operating conditions. To measure these pressure drops a flow loop was constructed to circulate supercritical helium through different conductors. The loop is surrounded by a 5 K radiation shield to allow for stable operation at the required temperatures. A coil heat exchanger immersed in a helium bath is used to remove the heat generated by the pump. Pressure drops are measured across 1 meter lengths of the conductors for various mass flow rates. Friction factor versus Reynolds number plots are used to correlate the data.

  3. Pressure drop measurements on supercritical helium cooled cable in conduit conductors

    SciTech Connect

    Daugherty, M.A.; Huang, Y.; Van Sciver, S.W.

    1988-01-01

    Forced flow cable-in-conduit conductors with large cooled surface areas provide excellent stability margins at the price of high frictional losses and large pumping power requirements. For extensive projects such as the International Thermonuclear Experimental Reactor design cooperation it is essential to know the pressure drops to be expected from different conductor geometries and operating conditions. To measure these pressure drops a flow loop was constructed to circulate supercritical helium through different conductors. The loop is surrounded by a 5 K radiation shield to allow for stable operation at the required temperatures. A coil heat exchanger immersed in a helium bath is used to remove the heat generated by the pump. Pressure drops are measured across 1 meter lengths of the conductors for various mass flow rates. Friction factor versus Reynolds number plots are used to correlate the data. 12 refs., 4 figs. 1 tab.

  4. Pressure drops during low void volume combustion retorting of oil shale

    SciTech Connect

    McLendon, T.R.

    1986-01-01

    Stacks of cut oil shale bricks were combustion retorted in a batch, pilot scale sized retort at low void volumes (overall voids ranged from 8.4% to 18.4%). Retort pressure drops increased during retorting at least one order of magnitude. The Ergun equation and Darcy's law have been used by several researchers and organizations as diagnostic tools on oil shale retorts. These equations were tested on the uniformly packed retort reported in this paper to evaluate how well the equations represented the experimental conditions. Use of the Ergun equation to estimate the average particle size from retort pressure drops gave answers that were only approximately correct. Calculation of retort pressure drops from Darcy's law during retorting at low void volumes will probably give answers that are several times too small. Thermal expansion of the shale during retorting decreases retort permeability greatly and calculation of the decreased permeability is not possible at the present level of technology.

  5. An improved correlation of the pressure drop in stenotic vessels using Lorentz's reciprocal theorem

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Jin; Sugiyama, Kazuyasu; Noda, Shigeho; He, Ying; Himeno, Ryutaro

    2015-02-01

    A mathematical model of the human cardiovascular system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a theoretical relation between pressure drop and flow rate based on Lorentz's reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxel-based simulator V-FLOW VOF3D, where the vessel geometry is expressed by using volume of fluid (VOF) functions, is employed to find the flow distribution in an idealized stenosis vessel and the identity was validated numerically. It is revealed from the correlation that the pressure drop of NS flow in a stenosis vessel can be decomposed into a linear term caused by Stokes flow with the same boundary conditions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication theory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geometric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under different stenosis conditions by using 1D mathematical model.

  6. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  7. Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations.

    PubMed

    Just, Natasha A; Létourneau, Valérie; Kirychuk, Shelley P; Singh, Baljit; Duchaine, Caroline

    2012-05-01

    Antibiotics are used in animal confinement buildings, such as cage-housed (CH) and floor-housed (FH) poultry operations, to lower the likeliness of disease transmission. In FH facilities, antibiotics may also be used at sub-therapeutic levels for growth promotion. Low levels of antibiotic create a selective pressure toward antimicrobial resistance (AMR) in chicken fecal bacteria. The objective of this study was to compare bacteria and AMR genes in bioaerosols from CH and FH poultry facilities. Bioaerosols were collected from 15 CH and 15 FH poultry operations, using stationary area samplers as well as personal sampling devices. Bacteria concentrations were determined by genus- or species-specific quantitative polymerase chain reaction (PCR) and AMR genes were detected using endpoint PCR. Enterococcus spp., Escherichia coli, and Staphylococcus spp. were significantly higher in bioaerosols of FH poultry operations than CH bioaerosols (P < 0.001) while Clostridium perfringens was significantly higher in area bioaerosols of CH operations than FH area bioaerosols (P < 0.05). Campylobacter spp. were detected only in bioaerosols of FH facilities. Zinc bacitracin resistance gene, bcrR, erythromycin resistance gene, ermA, and tetracycline resistance gene, tetA/C, were more prevalent in bioaerosols of FH facilities than CH bioaerosols (P < 0.01, P < 0.01, and P < 0.05, respectively). Most bacteria are more concentrated and most AMR genes are more prevalent in bioaerosols of FH poultry operations, where growth-promoting antibiotics may be used.

  8. Use of the isopycnic plots in designing operations of supercritical fluid chromatography: IV. Pressure and density drops along columns.

    PubMed

    Tarafder, Abhijit; Kaczmarski, Krzysztof; Ranger, Megan; Poe, Donald P; Guiochon, Georges

    2012-05-18

    The pressure- and the density-drops along a chromatographic column eluted with supercritical fluid carbon dioxide were mapped as a function of the outlet column pressure and the temperature on the P-T diagram of neat CO(2). At low densities, the viscosity of CO(2) is low, which is expected to result into a low pressure drop along the column. However, at these low densities, the volumetric flow rates of the mobile phase at constant mass flow rates are high, which might result into a high pressure drop along the column. These conflicting effects of an adjustment in the mobile phase density on the pressure drop of the mobile phase along the column makes it nearly impossible to develop a simple intuitive understanding of the relationships between the net pressure drops and the operating temperatures and pressures. The development of a similar understanding of their relationships with the density drop along the column is even more complex, because this density drop depends also on the compressibility of the mobile phase, itself a function of the operating pressures and temperatures. Numerical calculations of the pressure and density drops along columns packed with particles of different sizes, under different operating conditions (temperature, outlet pressure, and flow rate), provide important insights regarding the extent of the pressure and density drops under these operating conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.

    1973-01-01

    Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.

  10. Prediction of pressure drops accompanying the evaporation of refrigerants inside horizontal tubes. Technical memo

    SciTech Connect

    Stoneham, H.G.; Saluja, S.N.; Dunn, A.

    1980-01-01

    Four of the more widely used correlations for the prediction of pressure drops were compared with published experimental data using statistical techniques. None of the correlations examined were found to be suitably accurate over the range of conditions normally encountered in direct expansion evaporators. A new correlation was developed and is presented here, that can be used with an acceptable degree of accuracy by the design engineer. The correlation is presented in a form that can be easily written into a program for solution on a programmable calculator leading to quick and accurate evaluation of the pressure drop that accompanies a refrigerant evaporatoring inside a horontal tube evaporator.

  11. Nucleate boiling pressure drop in an annulus: Book 4

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  12. Nucleate boiling pressure drop in an annulus: Book 8

    SciTech Connect

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of tables of temperature measurements.

  13. Nucleate boiling pressure drop in an annulus: Book 3

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  14. An experimental investigation of pressure drop in forced-convection condensation and evaporation of oil-refrigerant mixtures

    SciTech Connect

    Tichy, J.A.; Duque-Rivera, J.; Macken, N.A.; Duval, W.M.B.

    1986-01-01

    Experimental measurements of pressure drop have been made for forced-convection evaporation and condensation of oil-refrigerant (R-12) mixtures inside a horizontal tube. Data were compared to a wide range of frictional pressure drop and void fraction relationships. The best representations for the oil-free data were then modified to better correlate both oil-free and oil-refrigerant results. For condensation, a modification of the prediction given by the Lockhart-Martinelli relation for frictional pressure drop and the homogeneous void fraction model is presented. For evaporation, the prediction given by the Dukler II frictional pressure-drop correlation and the homogeneous void fraction is modified. These relationships predict the pressure drop for 85% of the data to within +- 35%. The added oil increased the pressure drop 2% to 6% for condensation and 63% to 86% for evaporation.

  15. Comparison of Pressure Drop between Calculation and Experiment for a Two-phase Carbon Dioxide Loop

    NASA Astrophysics Data System (ADS)

    Mo, D.-C.; Xiao, W.-J.; Huang, Z.-C.; Sun, X.-H.; Chen, Y.; Lu, S.-S.; Li, T.-X.; Qi, X.-M.; Wang, Z.-X.; Pauw, A.; Bsibsi, M.; Gargiulo, C.; van Es, J.; He, Z.-H.

    2008-09-01

    Tracker thermal control system (TTCS) is an active-pumped two-phase carbon dioxide cooling loop, which is developed for the Alpha Magnetic Spectrometer tracker front-end electronics. The maintenance-free centrifugal pump is a critical component in the design mainly due to the limited pressure head with small mass flows. Therefore a correct pressure drop is required to predict the pressure drop for dynamic modeling. As the normal operational temperature of the carbon dioxide in the TTCS is from - 15°C to +15°C, which is very close to its critical point, 33°C, and many two-phase pressure drop correlations may not fit well here. In this paper, we attempt to correlate the pressure drops between the calculations and the experiment of the two-phase CO2 loop. The comparison will focus on one evaporator. Here, the Lockhart/Martinelli correlation is recorrelated with different definition C value for CO2 according to the test results. Comparison shows that, the new correlation can fit the test results well.

  16. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  17. Pressure drop and arterial compliance - Two arterial parameters in one measurement.

    PubMed

    Rotman, Oren M; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2017-01-04

    Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid-structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information.

  18. Intraocular pressure in cats is lowered by drops of hornet venom.

    PubMed

    Kam, J; Waron, M; Barishak, Y R; Schachner, E; Ishay, J S

    1989-01-01

    1. Nine cats were given an intravenous injection of the Oriental hornet (Vespa orientalis, Vespinae; Hymenoptera) venom sac extract (VSE) and seven cats had the same VSE administered as eye drops. 2. When injected intravenously, the hornet VSE decreased the intraocular pressure in both eyes sharply during the first 20 min and with a slower rate later on until the end of the 3 hr experiment. The intraocular pressure dropped to zero in some cases. 3. VSE eye drops decreased the intraocular pressure only in the treated eye, while in the second eye (left as a control) the intraocular pressure remained the same throughout the experiment. 4. The decrease in the intraocular pressure was sharp during the first 20 min and slowed down afterwards until the end of the experiment. 5. The intraocular pressure did not reduce to zero. 6. This study shows that the active components of the hornet venom which caused a decrease in the intraocular pressure can cross the cornea and exert a hypotensive effect in the eye.

  19. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressure drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.

  20. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.

    PubMed

    Guan, Yulong; Palanzo, David; Kunselman, Allen; Undar, Akif

    2009-11-01

    An increasing amount of evidence points to cerebral embolization during cardiopulmonary bypass (CPB) as the principal etiologic factor of neurologic complications. In this study, the capability of capturing and classification of gaseous emboli and pressure drop of three different membrane oxygenators (Sorin Apex, Terumo Capiox SX25, Maquet QUADROX) were measured in a simulated adult model of CPB using a novel ultrasound detection and classification quantifier system. The circuit was primed with 1000 mL heparinized human packed red blood cells and 1000 mL lactated Ringer's solution (total volume 2000 mL, corrected hematocrit 26-28%). After the injection of 5 mL air into the venous line, an Emboli Detection and Classification Quantifier was used to simultaneously record microemboli counts at post-pump, post-oxygenator, and post-arterial filter sites. Trials were conducted at normothermic (35 degrees C) and hypothermic (25 degrees C) conditions. Pre-oxygenator and post-oxygenator pressure were recorded in real time and pressure drop was calculated. Maquet QUADROX membrane oxygenator has the lowest pressure drops compared to the other two oxygenators (P < 0.001). The comparison among the three oxygenators indicated better capability of capturing gaseous emboli with the Maquet QUADROX and Terumo Capiox SX25 membrane oxygenator and more emboli may pass through the Sorin Apex membrane oxygenator. Microemboli counts uniformly increased with hypothermic perfusion (25 degrees C). Different types of oxygenators and reservoirs have different capability of capturing gaseous emboli and transmembrane pressure drop. Based on this investigation, Maquet QUADROX membrane oxygenator has the lowest pressure drop and better capability for capturing gaseous microemboli.

  1. Pressure drop measurements on cable-in-conduit conductors of various geometries

    SciTech Connect

    Daugherty, M.A.; Van Sciver, S.W. . Applied Superconductivity Center)

    1991-03-01

    This paper measures the pressure drop on various cable-in-conduit conductors with different void fractions, number of strands and flow areas. To carry out these measurements, supercritical helium is circulated through a loop containing several conductor sections instrumented with cold pressure transducers. A cold centrifugal pump is used to force the helium through the loop at flow rates of up to several grams per second. The modular design of the flow loop allows for relatively easy insertion of different test sections.

  2. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    USDA-ARS?s Scientific Manuscript database

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  3. New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Braisted, Jon; Kurwitz, Cable; Best, Frederick

    2004-02-01

    The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.

  4. An experimental study of heat transfer and pressure drop characteristics of divergent wavy minichannels using nanofluids

    NASA Astrophysics Data System (ADS)

    Dominic, A.; Sarangan, J.; Suresh, S.; Devahdhanush, V. S.

    2017-03-01

    An experimental investigation was conducted to study the heat transfer and pressure drop characteristics of an array of wavy divergent minichannels and the results were compared with wavy minichannels with constant cross-section. The experiment was conducted in hydro dynamically developed and thermally developing laminar and transient regimes. The minichannel heat sink array consisted of 15 rectangular channels machined on a 30 × 30 mm2 and 11 mm thick Aluminium substrate. Each minichannel was of 0.9 mm width, 1.8 mm pitch and the depth was varied from 1.3 mm at entrance to 3.3 mm at exit for the divergent channels. DI water and 0.5 and 0.8 % concentrations of Al2O3/water nanofluid were used as working fluids. The Reynolds number was varied from 700 to 3300 and the heat flux was maintained at 45 kW/m2. The heat transfer and pressure drop of these minichannels were analyzed based on the experimental results obtained. It was observed that the heat transfer performance of divergent wavy minichannels was 9 % higher and the pressure drop was 30-38 % lesser than that of the wavy minichannels with constant cross-section, in the laminar regime. Hence, divergent channel flows can be considered one of the better ways to reduce pressure drop. The performance factor of divergent wavy minichannels was 115-126 % for water and 110-113 % for nanofluids.

  5. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across the Blowbox: Gin Testing

    USDA-ARS?s Scientific Manuscript database

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox usi...

  6. Pressure drop and gas distribution in compost based biofilters: medium mixing and composition effects.

    PubMed

    Morgan-Sagastume, J M; Revah, S; Noyola, A

    2003-07-01

    The pressure drop and gas distribution in four different filter media for compost biofilters were studied as a function of three superficial loading rates of moist air and by carrying out the filter medium homogenization by mixing. The filter media used were compost, compost with cane bagasse, lava rock and aerobic sludge previously dried to 60% of water content. The pressure drop increased when lava rock and cane bagasse were used as bulking agents. The same trend was observed when water was added to the filter medium. Pressure drop tended to decrease with time as flow channels were formed inthe filter media. Tracer studies were carried out to quantify the gas distribution and the effect of channel formation. For the biofilters submitted to an airflow of 10, 40 and 70 l min(-1), an average normalized time of 0.96, 0.89 and 0.82, respectively were obtained. The results showed that channel formation was increased as the superficial loading rate was also increased. An operational practice that this work proposes and evaluates to improve gas distribution and medium moisture control is to carry out intermittent medium mixing. The medium moisture and void volume achieved under mixing condition were around 50% and 0.40, respectively with an average constant pressure drop of 11, 45 and 78 cm of water m(-1) for air velocities of 75, 300 and 525 m h(-1).

  7. A computer code for calculating subcooled boiling pressure drop in forced convective tube flows

    NASA Astrophysics Data System (ADS)

    Wong, Christopher F.

    1988-12-01

    A calculation procedure, embodied in a computer code, was developed to calculate the convective subcooled boiling (SCB) pressure drop of water flowing in small diameter vertical or horizontal tubes under the condition of high heat fluxes. The present investigation is an extension of previous work performed by C. T. Kline in 1985. The computer code, presented then and now, numerically integrates the single-phase and separated-flow-model pressure drop equations from the inlet to the outlet of a heated tube. Efforts in this study were concentrated on identifying weaknesses in Kline's best code version and investigating his recommendations for future work. The calculation procedures for each flow regime in the tube were modified to give better overall results. New work focused primarily on the partially-developed boiling (PDB) and fully-developed boiling (FDB) regimes. The pressure drop predictions from each code version were compared to the experimental pressure drop results from the experimental investigations of Dormer/Bergles, Owens/Schrock, and Reynolds.

  8. Pressure Drop and Heat Transfer of Water Flowing Shell-Side of Multitube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Ohashi, Yukio; Hashizume, Kenichi

    Experimental studies on heat transfer augmentation in water-flowing shell sides of counter flow multitube exchangers are presented. Various kinds of augmented tube bundles have been examined to obtain the characteristics of pressure drop and heat transfer. Data for a smooth tube bundle were a little different from those for the tube side. The pressure drop in the shell side depended on Re-0.4 and deviated from the tube side pressure drop to within +30%, while the shell side heat transfer coefficient depended on Re0.8 but about 35%. larger than that of the tube side. Furthermore the augmented tube bundles have been evaluated and compared using 21 evaluation criteria. Enhanced tube bundles, low-finned tube bundles and those with twisted tapes inserted had especially good performances. The ratios of increase in heat transfer were larger than those in pressure drop. In case of low-finned tube bundles, there seem to exist an optimum fin-pitch and an optimum relation between the fin-pitch and the pitch of twisted tapes inserted.

  9. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.

    PubMed

    Vrouwenvelder, J S; Buiter, J; Riviere, M; van der Meer, W G J; van Loosdrecht, M C M; Kruithof, J C

    2010-02-01

    Biomass accumulation and pressure drop development have been studied in membrane fouling simulators at different flow regimes. At linear flow velocities as applied in practice in spiral wound nanofiltration (NF) and reverse osmosis (RO) membranes, voluminous and filamentous biofilm structures developed in the feed spacer channel, causing a significant increase in feed channel pressure drop. Elevated shear by both single phase flow (water) and two phase flow (water with air sparging: bubble flow) caused biofilm filaments and a pressure drop increase. The amount of accumulated biomass was independent of the applied shear, depending on the substrate loading rate (product of substrate concentration and linear flow velocity) only. The biofilm streamers oscillated in the passing water. Bubble flow resulted in a more compact and less filamentous biofilm structure than single phase flow, causing a much lower pressure drop increase. The biofilm grown under low shear conditions was more easy to remove during water flushing compared to a biofilm grown under high shear. To control biofouling, biofilm structure may be adjusted using biofilm morphology engineering combined with biomass removal from membrane elements by periodic reverse flushing using modified feed spacers. Potential long and short term consequences of flow regimes on biofilm development are discussed. Flow regimes manipulate biofilm morphology affecting membrane performance, enabling new approaches to control biofouling. (c) 2009 Elsevier Ltd. All rights reserved.

  10. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Okuyama, Jun; Nakagomi, Kei; Takahashi, Koichi

    2012-12-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are solid-liquid, two-phase fluids. As a functional thermal fluid, there are high expectations for use of slush fluids in various applications such as fuels for spacecraft engines, clean-energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental flow tests were performed using slush nitrogen to elucidate pressure-drop characteristics of converging-diverging (C-D) pipes and corrugated pipes. In experimental results regarding pressure drop in two different types of C-D Pipes, i.e., a long-throated pipe and a short-throated pipe, each having an inner diameter of 15 mm, pressure drop for slush nitrogen in the long-throated pipe at a flow velocity of over 1.3 m/s increased by a maximum of 50-60% as compared to that for liquid nitrogen, while the increase was about 4 times as compared to slush nitrogen in the short-throated pipe. At a flow velocity of over 1.5 m/s in the short-throated pipe, pressure drop reduction became apparent, and it was confirmed that the decrease in pressure drop compared to liquid nitrogen was a maximum of 40-50%. In the case of two different types of corrugated pipes with an inner diameter of either 12 mm or 15 mm, a pressure-drop reduction was confirmed at a flow velocity of over 2 m/s, and reached a maximum value of 37% at 30 wt.% compared to liquid nitrogen. The greater the solid fractions, the smaller the pipe friction factor became, and the pipe friction factor at the same solid fraction showed a constant value regardless of the Reynolds number. From the observation of the solid particles' behavior using a high-speed video camera and the PIV method, the pressure-drop reduction mechanisms for both C-D and corrugated pipes were demonstrated.

  11. In vivo validation of the in silico predicted pressure drop across an arteriovenous fistula.

    PubMed

    Browne, Leonard D; Griffin, Philip; Bashar, Khalid; Walsh, Stewart R; Kavanagh, Eamon G; Walsh, Michael T

    2015-06-01

    The creation of an arteriovenous fistula offers a unique example of vascular remodelling and adaption. Yet, the specific factors which elicit remodelling events which determine successful maturation or failure have not been unambiguously determined. Computational fluid dynamic (CFD) simulations are increasingly been employed to investigate the interaction between local hemodynamics and remodelling and can potentially be used to assist in clinical risk assessment of maturation or failure. However, these simulations are inextricably linked to their prescribed boundary conditions and are reliant on in vivo measurements of flow and pressure to ensure their validity. The study compares in vivo measurements of the pressure distribution across arteriovenous fistulae against a representative numerical model. The results of the study indicate relative agreement (error ≈ 8-10%) between the in vivo and CFD prediction of the mean pressure drop across the AVFs. The large pressure drop across the AVFs coincided with a palpable thrill (perivascular vibration) in vivo and fluctuations were observed in the numerical pressure drop signal due to flow instabilities arising at the anastomosis. This study provides a benchmark of the pressure distribution within an AVF and validates that CFD solutions are capable of replicating the abnormal physiological flow conditions induced by fistula creation.

  12. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  13. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sreyashi; Vlachos, Pavlos

    2016-11-01

    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  14. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  15. Blood Pressure Drop Prediction by using HRV Measurements in Orthostatic Hypotension.

    PubMed

    Sannino, Giovanna; Melillo, Paolo; Stranges, Saverio; De Pietro, Giuseppe; Pecchia, Leandro

    2015-11-01

    Orthostatic Hypotension is defined as a reduction of systolic and diastolic blood pressure within 3 minutes of standing, and may cause dizziness and loss of balance. Orthostatic Hypotension has been considered an important risk factor for falls since 1960. This paper presents a model to predict the systolic blood pressure drop due to orthostatic hypotension, relying on heart rate variability measurements extracted from 5 minute ECGs recorded before standing. This model was developed and validated with the leave-one-out cross-validation technique involving 10 healthy subjects, and finally tested with an additional 5 healthy subjects, whose data were not used during the training and cross-validation process. The results show that the model predicts correctly the systolic blood pressure drop in 80 % of all experiments, with an error rate below the measurement error of a sphygmomanometer digital device.

  16. Pressure drop and temperature rise in He II flow in round tubes, Venturi flowmeters and valves

    NASA Technical Reports Server (NTRS)

    Walstrom, P. L.; Maddocks, J. R.

    1988-01-01

    Pressure drops in highly turbulent He II flow were measured in round tubes, valves, and Venturi flowmeters. Results are in good agreement with single-phase flow correlations for classical fluids. The temperature rise in flow in a round tube was measured, and found to agree well with predictions for isenthalpic expansion. Cavitation was observed in the venturis under conditions of low back pressure and high flow rate. Metastable superheating of the helium at the venturi throat was observed before the helium made a transition to saturation pressure.

  17. Performance evaluation of two personal bioaerosol samplers.

    PubMed

    Tolchinsky, Alexander D; Sigaev, Vladimir I; Varfolomeev, Alexander N; Uspenskaya, Svetlana N; Cheng, Yung S; Su, Wei-Chung

    2011-01-01

    In this study, the performance of two newly developed personal bioaerosol samplers for monitoring the level of environmental and occupational airborne microorganisms was evaluated. These new personal bioaerosol samplers were designed based on a swirling cyclone with recirculating liquid film. The performance evaluation included collection efficiency tests using inert aerosols, the bioaerosol survival test using viable airborne microorganism, and the evaluation of using non-aqueous collection liquid for long-period sampling. The test results showed that these two newly developed personal bioaerosol samplers are capable of doing high efficiency, aerosol sampling (the cutoff diameters are around 0.7 μm for both samplers), and have proven to provide acceptable survival for the collected bioaerosols. By using an appropriate non-aqueous collection liquid, these two personal bioaerosol samplers should be able to permit continuous, long-period bioaerosol sampling with considerable viability for the captured bioaerosols.

  18. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Experimental characterization of pressure drops and channel instabilities in helical coil SG tubes

    SciTech Connect

    Colombo, M.; Cammi, A.; De Amicis, J.; Ricotti, M. E.

    2012-07-01

    Helical tube heat exchangers provide better heat transfer characteristics, an improved capability to accommodate stresses due to thermal expansions and a more compact design with respect to straight tube heat exchangers. For these advantages they are considered as an option for the Steam Generator (SG) of many new reactor projects of Generation III+ and Generation IV. In particular, their compactness fits well with the requirements of Small-medium Modular Reactors (SMRs) of integral design, where all the primary system components are located inside the reactor vessel. In this framework, thermal hydraulics of helical pipes has been studied in recent years by Politecnico di Milano in different experimental campaigns. Experiments have been carried out in a full-scale open loop test facility installed at SIET labs in Piacenza (Italy)), to simulate the SG of a typical SMR. The facility includes two helical pipes (1 m coil diameter, 32 m length, 8 m height), connected via lower and upper headers. Following recently completed experimental campaigns dedicated to pressure drops and density wave instabilities, this paper deals with a new experimental campaign focused on both pressure drops (single-phase flow and two-phase flow, laminar and turbulent regimes) and flow instabilities. The availability of a large number of experimental data, in particular on two-phase flow, is of fundamental interest for correlation development, model validation and code assessment. Two-phase pressure drops have been measured in adiabatic conditions, ranging from 200 to 600 kg/m{sup 2}s for the mass flux, from 30 to 60 bar for the pressure and from 0.1 to 1.0 for the flow quality. The channel characteristics mass flow rate - pressure drop has been determined experimentally in the range 10-40 bar, varying the mass flow rate at a fixed value of the thermal flux. In addition, single-phase pressure drops have been measured in both laminar and turbulent conditions. Density wave instabilities have

  20. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    SciTech Connect

    Blackwell, B.F.; Sobolik, K.B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  1. Effects of vascular structures on the pressure drop in stenotic coronary arteries

    NASA Astrophysics Data System (ADS)

    Kim, Jaerim; Choi, Haecheon; Kweon, Jihoon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-11-01

    A stenosis, which is a narrowing of a blood vessel, of the coronary arteries restricts the flow to the heart and it may lead to sudden cardiac death. Therefore, the accurate determination of the severity of a stenosis is a critical issue. Due to the convenience of visual assessments, geometric parameters such as the diameter stenosis and area stenosis have been used, but the decision based on them sometimes under- or overestimates the functional severity of a stenosis, i.e., pressure drop. In this study, patient-specific models that have similar area stenosis but different pressure drops are considered, and their geometries are reconstructed from the coronary computed tomography angiography (CCTA). Both steady and pulsatile inflows are considered for the simulations. Comparison between two models that have a bifurcation right after a stenosis shows that the parent to daughter vessel angle results in different secondary flow patterns and wall shear stress distributions which affect the pressure downstream. Thus, the structural features of the lower and upper parts of a stenosis significantly affect the pressure drop. Supported by 20152020105600.

  2. MHD pressure drop of NaK flow in stainless steel pipe

    SciTech Connect

    Miyazaki, K.; Kotake, S.

    1983-09-01

    An experiment on electric potential and pressure drop for NaK flow in uniform transverse magnetic fields was conducted. A test channel was constructed using 45.3 mm (or 28 mm) I.D. and 1.65 mm thick 304-SS circular pipe in the NaK-Blowdown MHD Experimental Facility of Osaka University. The experimental range covered had a driving gas pressure <8 bar, an applied magnetic flux density: B/sub 0/=0.3 about1.75 T, a mean flow velocity of NaK: U/sub 0/=2 about 15 m/sec, a Reynolds number Re = 8 X 10/sup 4/ about6.2 X 10/sup 5/ and a Hartmann number: Ha = 740 about4150. A theoretical analysis is given on the basis of a uniform-velocity thick-wall model. Good agreement between the theory and the experiment were obtained both for the potential and for the pressure drop, except a small deviation of the experimental pressure drop towards values lying above the theoretical ones in a weak B/sub 0/ and high U/sub 0/ region (Ha/sup 2//Re <15).

  3. [Nasal endoscope negative pressure cleaning and sinupret drops to treat radiation nasosinusitis].

    PubMed

    Lin, Wenbiao; Quan, Chaokun; Zhang, Longcheng

    2015-12-01

    To observe the effect of nasal endoscope negative pressure cleaning and sinupret drops to treat radiation nasosinusitis (RNS). One hundred and fifty-three patients with nasopharyngeal carcinoma were randomly divided into treatment group A, B, C . Group A using nasal endoscope negative pressure cleaning and sinupret drops, group B using nasal endoscope negative pressure cleaning and normal saline spray washing, group C using saline nasal irrigation through nasal catheter. All patients with sinusitis condition were evaluated at the end of radiotherapy, three months and six months after radiotherapy. Comparison between groups, three periods of RNS incidence, moderate to severe RNS incidence are A < B < C. Six months after radiotherapy, group A compared with group C, there are significant difference (P < 0.01), group A and group C compared with group B respectively, the difference was statistically significant (P < 0.05). Nasal endoscope negative pressure cleaning and sinupret drops can significantly reduce the long-term incidence of RNS, especially obviously reduce the incidence of moderate to severe RNS,which is a practical and effective method to treat RNS.

  4. Gas-liquid pressure drop in vertical internally wavy 90 bend

    SciTech Connect

    Benbella, Shannak; Al-Shannag, Mohammad; Al-Anber, Zaid A.

    2009-01-15

    Experiments of air water two-phase flow pressure drop in vertical internally wavy 90 bend have been carried out. The tested bends are flexible and made of stainless steel with inner diameter of 50 mm and various curvature radiuses of 200, 300, 400 and 500 mm. The experiments were performed under the following conditions of two-phase parameters; mass flux from 350 to 750 kg/m{sup 2} s. Gas quality from 1% to 50% and system pressure from 4 to 7.5 bar. The results demonstrate that the effect of the above-mentioned parameters is very significant at high ranges of mass flow quality. Due to the increasing of two-phase flow resistance, energy dissipations, friction losses and interaction of the two-phases in the vertical internally wavy 90 bend the total pressure drops are perceptible about 2-5 times grater than that in smooth bends. Based on the mass and energy balance as well as the presented experimental results, new empirical correlation has been developed to calculate the two-phase pressure drop and hence the two-phase friction factor of the tested bends. The correlation includes the relevant primary parameter, fit the data well, and is sufficiency accurate for engineering purposes. (author)

  5. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.

    PubMed

    Hu, Ruiqing; Li, Fen; Lv, Jiaqi; He, Ying; Lu, Detang; Yamada, Takashi; Ono, Naoki

    2015-01-01

    The retinal arterial network is the only source of the highly nutrient-consumptive retina, thus any insult on the arteries can impair the retinal oxygen and nutrient supply and affect its normal function. The aim of this work is to study the influences of vascular structure variation on the flow and pressure characteristics via microfluidic devices. Two sets of micro-channel were designed to mimic the stenosed microvessels and dichotomous branching structure in the retinal arteries. Three working fluids including red blood cell (RBC) suspension were employed to investigate the pressure drop in the stenosed channel. The flow behaviors of RBC suspensions inside the micro channels were observed using high speed camera system. Pressure drop of different working fluids and RBC velocity profiles in the stenosed channel were obtained. Moreover, hematocrit levels of RBC suspensions inside the bifurcated channels were analyzed from the sequential images of RBC flow. The results of the flow in the stenosed channel show that RBCs drift from the center of the channels, and RBC velocity is influenced not only by the inlet flow rate but also the interaction between RBCs. The measured pressure drops in the stenosed channel increase notably with the increase of fluid viscosity. Furthermore, the dimensionless pressure drop due to the stenosis decreases with Reynolds number. On the other hand, the results of flow through the bifurcated channels show that as the ratio of the daughter-branch width to the mother-channel width increases, the ratio of hematocrit in two connected branches (Ht/Hd) decreases, which is in favorable agreement with the available analysis results.

  6. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    NASA Astrophysics Data System (ADS)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  7. Ppi results from the balloon drop experiment of the hasi pressure profile instrument

    NASA Astrophysics Data System (ADS)

    Mäkinen, T.; Lehto, A.; Salminen, P.; Leppelmeier, G.; Harri, A. M.

    1998-10-01

    At December 1995 a balloon drop experiment was conducted at León, Spain, for the HASI (Huygens Atmospheric Structure Instrument) instrument of the Huygens probe. A part of HASI is the Pressure Profile Instrument (PPI) which will measure the atmospheric pressure profile of Titan during the descent at November 2004. The experiment platform was carried by a balloon to an altitude of 30 km and it made a subsequent parachute-assisted descent. The pressure instrument functioned basically as expected. The vertical flight trajectory and pressure profile was reconstructed by using the collected data of the pressure instrument and the simultaneous temperature measurements. The calculated flight trajectory was in agreement with independent measurements with Omega and GPS. Some turbulence was detected near the surface and other dynamic behaviour in the upper part of the trajectory. The experiment demonstrated the nominal performance of the PPI instrument and serves as a real-like test flight for the actual mission.

  8. Pressure drop in the SHOOT superfluid helium acquisition system. [Superfluid Helium On-Orbit Transfer system

    NASA Technical Reports Server (NTRS)

    Nissen, J. A.; Maytal, B.; Van Sciver, S. W.

    1990-01-01

    Central to the upcoming Superfield Helium On-Orbit Transfer (SHOOT) demonstration is the fluid acquisition system. The main component of the system is a rectangular cross-section gallery area with one side fabricated from a fine mesh screen. He II enters through the screen and is delivered to a fountain effect pump. A model is proposed to predict the pressure drop as fluid flows through the screen and an expression is derived for the required gallery arm length as a function of flow rate demand. The model is compared with measurement of pressure drop in a full scale SHOOT gallery arm operated with flow rates of up to 850 cu dm/hr. The tests were conducted in the University of Wisconsin horizontal liquid helium flow facility to minimize gravitational effects.

  9. Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction flow

    NASA Astrophysics Data System (ADS)

    López-Aguilar, J. E.; Tamaddon-Jahromi, H. R.; Webster, M. F.; Walters, K.

    2016-10-01

    This paper addresses the problem of matching experimental findings with numerical prediction for the extreme experimental levels of pressure-drops observed in the 4:1 sharp-corner contraction flows, as reported by Nigen and Walters ["Viscoelastic contraction flows: Comparison of axisymmetric and planar configurations," J. Non- Newtonian Fluid Mech. 102, 343-359 (2002)]. In this connection, we report on significant success in achieving quantitative agreement between predictions and experiments. This has been made possible by using a new swanINNFM model, employing an additional dissipative function. Notably, one can observe that extremely large pressure-drops may be attained with a suitable selection of the extensional viscous time scale. In addition, and on vortex structure, the early and immediate vortex enhancement for Boger fluids in axisymmetric contractions has also been reproduced, which is shown to be absent in planar counterparts.

  10. Pressure-drop Reduction and Heat-transfer Deterioration of Slush Nitrogen in Square Pipe flow

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Nakagomi, Kei; Takahashi, Koichi; Aoki, Itsuo

    Pressure drop and heat transfer tests were carried out using slush nitrogen flowing in a horizontal square pipe at flow velocity between 1.0 and 4.9 m/s, with a mass solid fraction between 6 and 26 wt.%, and with heat fluxes of 0, 10 and 20 kW/m2. Pressure drop reduction became apparent at flow velocity of 2.5 m/s and over, with the maximum amount of reduction being 12% in comparison with liquid nitrogen, regardless of heating, while heat transfer deterioration became apparent at flow velocity of 1.0 m/s and over, with the maximum amount of deterioration being 16 and 21% at 10 and 20 kW/m2, respectively.

  11. Numerical simulation of Flow Pressure Drop and Friction Factor of Water in 2D channel

    NASA Astrophysics Data System (ADS)

    Aya Baquero, H.; Camargo Casallas, L. H.

    2017-01-01

    The paper presents the results obtained from the numerical study of the dynamic properties of a straight channel 50 mm long and 780 μm wide on a 2D model. Numerical simulations were performed by using Navier-Stokes equation. The results showed a good agreement with experiments and other models. Pressure drop and friction factor of water in the channel in the studied ranges of Reynolds number are due to viscosity effects.

  12. Prediction of in-tube pressure drop of low GWP refrigerants during condensation and evaporation

    NASA Astrophysics Data System (ADS)

    Khan, Md. Masud Rana; Hossain, Md. Anowar; Afroz, Hasan M. M.; Miyara, Akio

    2017-06-01

    In the present work, a new in-tube two phase pressure drop correlation of low GWP refrigerants during condensation and evaporation has been proposed in this paper. This correlation for the prediction of condensation and evaporation pressure drop inside smooth horizontal tube by incorporating the effect of mass velocity, tube geometry and surface tension. By comparing with other existing well-known correlations and the newly proposed correlation of two-phase pressure drop have been used to predict the condensation and evaporation pressure drop of R1234ze(E), R32, R410A, dimethyl ether (DME), CO2/DME mixtures (10/90, 25/75 and 45/55 weight %) and R1234ze(E)/R32 mixtures (30/70 and 45/55 weight %) inside a horizontal smooth tube. The predicted results have been compared with the available experimental data which is done inside a water heated double tube heat exchanger. The test section is a horizontally installed smooth tube with effective length of 3.6m and inner diameter of 4.35mm. The experiment had been carried out under the conditions of mass flux varying from 147 to 403 kgm-2s-1 and the saturation temperatures ranging between 30 and 45°C for condensation and 5-10°C for evaporation, over the vapor quality range 0.00 to 1.00. From the analysis and results of comparison, proposed correlation shows better performance. Proposed correlation can predict all the experimental condensation and evaporation data within ±13.91%.

  13. Isolation of Indonesian cananga oil using multi-cycle pressure drop process.

    PubMed

    Kristiawan, Magdalena; Sobolik, Vaclav; Allaf, Karim

    2008-05-30

    New process, instantaneous controlled pressure drop (DIC) was applied on Cananga odorata dry flowers with the aim to isolate essential oil. DIC is based on high temperature, short time heating followed by an abrupt pressure drop into a vacuum. A part of volatile compounds is carried away from flowers in the form of vapor (DIC direct oil) that evolves adiabatically during the pressure drop (proper isolation process) and the other part remains in the DIC-treated flowers (DIC residual oil). In the present paper, the effect of DIC cycle number (1-9) and heating time (4.3-15.7 min) on the availability of oil compounds was investigated at three levels of steam pressure (0.28, 0.4 and 0.6 MPa). The availability was defined as the amount of a compound in direct or residual oil divided by the amount of this compound in the reference oil extracted from non-treated flowers by chloroform during 2h. The total availability and yield of volatiles in the direct oil increased with pressure and cycle number. At a higher pressure, the effect of heating time was insignificant. The amount of oxygenated monoterpenes and other light oxygenated compounds (i.e. predominantly exogenous compounds) in the residual flowers was lower than in the direct oil and this amount decreased with cycle number. On the other hand, the availability of oxygenated sesquiterpenes and other heavy oxygenated compounds (i.e. predominantly endogenous compounds) in residual flowers exhibited a maximum for about five cycles and their quantity at this point was three times as much as in the direct oil. The total availability of each compound at 0.6 MPa was higher than one. The rapid DIC process (0.6 MPa, 8 cycles, 6 min) gave better results than steam distillation (16 h) concerning direct oil yield (2.8%dm versus 2.5%dm) and content of oxygenated compounds (72.5% versus 61.7%).

  14. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  15. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    NASA Astrophysics Data System (ADS)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  16. Heat transfer and pressure drop in pin-fin trapezoidal ducts

    SciTech Connect

    Hwang, J.J.; Lai, D.Y.; Tsia, Y.P.

    1999-04-01

    Experiments are conducted to determine the log-mean averaged Nusselt number and overall pressure-drop coefficient in a pin-fin trapezoidal duct that models the cooling passages in modern gas turbine blades. The effects of pin arrangement (in-line and staggered), flow Reynolds number (6,000 {le} Re {le}40,000) and ratio of lateral-to-total flow rate (0 {le} {var_epsilon} {le} 1.0) are examined. The results of smooth trapezoidal ducts without pin arrays are also obtained for comparison. It is found that, for the single-outlet-flow duct, the log-mean averaged Nusselt number in the pin-fin trapezoidal duct with lateral outlet is insensitive to the pin arrangement, which is higher than that in straight-outlet-flow duct with the corresponding pin array. As for the trapezoidal ducts having both outlets, the log-mean averaged Nusselt number has a local minimum value at about {var_epsilon} = 0.3. After about {var_epsilon} {ge} 0.8, the log-mean averaged Nusselt number is nearly independent of the pin configuration. Moreover, the staggered pin array pays more pressure-drop penalty as compared with the in-line pin array in the straight-outlet-flow duct; however, in the lateral-outlet-flow duct, the in-line and staggered pin arrays yield almost the same overall pressure drop.

  17. Theoretical investigation of pressure drop in combined cyclone and fabric filter systems

    NASA Astrophysics Data System (ADS)

    Dirgo, John A.; Cooper, Douglas W.

    Computer simulations were conducted to investigate potential pressure drop reductions obtainable by combining cyclones, as pre-collectors, with fabric filters. The Leith-Licht model was used to characterize cyclone emissions and the specific resistance ( K2) of the fabric filter dust cake was calculated from an empirical correlation. Several important dimensionless groups were identified and evaluated. One group, the product of the ratio of the dust cake specific resistances expected with and without the cyclone and the mass penetration of the cyclone, ( K2/ K2) Pn, indicates whether a pressure drop reduction is possible. A correlation was developed for this group as a function of the size properties of the inlet dust (particle mass median diameter and geometric standard deviation) and the cyclone particle cut diameter. Expressions were derived for the break-even time, the duration of filtration with the cyclone needed to show a pressure drop reduction in comparison with filtration without the cyclone. It is shown that in previously reported experiments and simulations indicating an advantage for the combined cyclone-fabric filter system, filtration cycles were typically longer than the break-even time; those showing no improvement typically had filtration times shorter than the break-even time.

  18. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  19. An experimental and theoretical study of density wave and pressure drop oscillations

    SciTech Connect

    Yuncu, H. )

    1990-01-01

    A study of the stability of an electrically heated, forced-convection, single horizontal channel system with a gas-loaded surge tank placed upstream of the heated channel was conducted. Freon 11 was used as the test fluid. The major modes of oscillations, namely, density wave-type (high-frequency) and pressure drop-type (low-frequency)oscillations, have been observed. Steady-state pressure drops, stable and unstable boundaries are experimentally determined for given ranges of heat flux, mass flow rate, and compressible volume in the surge tank. An analytical model has been developed to predict stable and unstable boundaries for the pressure drop and density wave oscillations of the boiling two-phase flow system. The model is based on homogenous flow assumption and thermodynamic equilibrium between the liquid and vapor phases. The governing equations are solved first to establish the steady-state behavior of the system. This solution is then used to obtain the unsteady solution by perturbation technique.

  20. Inhaling to mitigate exhaled bioaerosols.

    PubMed

    Edwards, David A; Man, Jonathan C; Brand, Peter; Katstra, Jeffrey P; Sommerer, K; Stone, Howard A; Nardell, Edward; Scheuch, Gerhard

    2004-12-14

    Humans commonly exhale aerosols comprised of small droplets of airway-lining fluid during normal breathing. These "exhaled bioaerosols" may carry airborne pathogens and thereby magnify the spread of certain infectious diseases, such as influenza, tuberculosis, and severe acute respiratory syndrome. We hypothesize that, by altering lung airway surface properties through an inhaled nontoxic aerosol, we might substantially diminish the number of exhaled bioaerosol droplets and thereby provide a simple means to potentially mitigate the spread of airborne infectious disease independently of the identity of the airborne pathogen or the nature of any specific therapy. We find that some normal human subjects expire many more bioaerosol particles than other individuals during quiet breathing and therefore bear the burden of production of exhaled bioaerosols. Administering nebulized isotonic saline to these "high-producer" individuals diminishes the number of exhaled bioaerosol particles expired by 72.10 +/- 8.19% for up to 6 h. In vitro and in vivo experiments with saline and surfactants suggest that the mechanism of action of the nebulized saline relates to modification of the physical properties of the airway-lining fluid, notably surface tension.

  1. Experimental and numerical studies of coal gasification with pressurized drop tube furnace

    SciTech Connect

    Ahn, D.H.; Park, H.Y.; Kim, C.Y.

    1997-12-31

    This paper describes coal gasification studies in a PDTF reactor for IGCC. The effects of changes in reaction temperature and oxygen/coal ratio on the coal gasification process have been investigated by utilizing a pressurized drop tube furnace. The objective of this study is to determine the reaction mechanisms and kinetics for gasification of imported coals under the simulated operating conditions of commercial entrained flow gasifier. The PDTF reactor is designed to operate up to a temperature of about 1,600 C, a pressure of up to 25 bar with a wide range of inert, reducing and oxidizing atmospheres. The effects of changes in reaction temperature and oxygen/coal ratio on the coal gasification process of Datong Chinese coal have been investigated by utilizing a pressurized drop tube furnace. Pulverized coal of under 200 mesh with a feed rate of 2g/min is fed into the reaction tube by transport nitrogen gas of 2 SLPM. Instead of using oxygen, air is used as a secondary stream of oxidant for the gasification reaction with feed rate of 4.1 to 9.5 SLPM according to the oxygen/coal ratio of 0.6 to 1.4, which is preheated up to the reaction temperature. The reaction temperature is changed to 1,000 C, 1,200 C and 1,400 C respectively. However, the effects of pressure and steam/coal ratio on gasification were not considered in this experiment. In order to provide the proper engineering analyses for design and operation of a commercial coal gasifier for IGCC, it is necessary to characterize the basic behavior of gasification of coals at the same operating condition as the gasifier. A Pressurized Drop Tube Furnace reactor is considered as an useful facility for the such kinetic studies.

  2. Effects of sudden expansion and contraction flow on pressure drops in the Stirling engine regenerator

    SciTech Connect

    Hamaguchi, K.; Yamashita, I.; Hirata, K.

    1998-07-01

    The flow losses in the regenerators greatly influence the performance of the Stirling engine. The losses mainly depend on fluid friction through the regenerator matrix, but are also generated in sudden expansion and contraction flow at the regenerator ends. The latter losses can't be neglected in the case of small area ratio (entrance area/cross-sectional area in regenerator). The pressure drops in regenerators are usually estimated assuming a uniform velocity distribution of working gas in the matrices. The estimation results, however, are generally smaller than practical data. The cross-sectional flow areas of the heater and cooler of typical Stirling engines are smaller than the cross- sectional area of the regenerator. The effects of the small flow passage on the velocity distribution of working fluid in the matrix, that is, a flow transition from tubes or channels to a regenerator matrix, can be often confirmed by the discolored matrix. Especially, the lack of a uniform distribution of velocity in the matrix causes increased flow loss and decreased thermal performance. So, it is necessary to understand the quantitative effects of the sudden change in flow area at the regenerator ends on the velocity distribution and pressure drop. In this paper, using matrices made of stacks of wire screens, the effects of the entrance and exit areas and the length of the regenerator on pressure drops are examined by an unidirectional steady flow apparatus. The experimental data are arranged in an empirical equation. The lack of a uniformity of velocity distribution is visualized using smoke-wire methods. The empirical equation presented is applied to the estimation of pressure loss in an actual engine regenerator. The applicability of the equation is examined by comparison of estimated value with engine data in pressure loss.

  3. Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Lantz, Jonas; Ziegler, Magnus; Casas, Belen; Karlsson, Matts; Dyverfeldt, Petter; Ebbers, Tino

    2017-04-01

    The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1-3 mm regression slope = 0.91, R2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR > 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R2 = 0.999, Bland-Altman agreement = 0.75 ± 3.93 mmHg).

  4. Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI

    PubMed Central

    Ha, Hojin; Lantz, Jonas; Ziegler, Magnus; Casas, Belen; Karlsson, Matts; Dyverfeldt, Petter; Ebbers, Tino

    2017-01-01

    The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1–3 mm; regression slope = 0.91, R2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR > 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R2 = 0.999, Bland-Altman agreement = 0.75 ± 3.93 mmHg). PMID:28425452

  5. Evaluation of Low-Pressure Drop Antimicrobial and Hybrid Air Filters

    DTIC Science & Technology

    2006-09-01

    Pass Bioaerosol Removal Efficiencies of a Room Air Cleaner,” Karin K. Foarde, James T. Hanley, David S. Ensor , Peter Roessler Aerosol Science...Karin K. Foarde, James T. Hanley, Alan C. Veeck ASHRAE Journal 52-58 (2000) “Determine the Efficacy of Antimicrobial Treatments of Fibrous...Air Filters,” Karin K. Foarde, James T. Hanley ASHRAE Transactions: Research 4429 (RP-909): 156–170. “Development of a Method for Measuring Single

  6. Hereditary neuropathy with liability to pressure palsy: a recurrent and bilateral foot drop case report.

    PubMed

    Flor-de-Lima, Filipa; Macedo, Liliana; Taipa, Ricardo; Melo-Pires, Manuel; Rodrigues, Maria Lurdes

    2013-01-01

    Hereditary neuropathy with liability to pressure palsy is characterized by acute, painless, recurrent mononeuropathies secondary to minor trauma or compression. A 16-year-old boy had the first episode of right foot drop after minor motorcycle accident. Electromyography revealed conduction block and slowing velocity conduction of the right deep peroneal nerve at the fibular head. After motor rehabilitation, he fully recovered. Six months later he had the second episode of foot drop in the opposite site after prolonged squatting position. Electromyography revealed sensorimotor polyneuropathy of left peroneal, sural, posterior tibial, and deep peroneal nerves and also of ulnar, radial, and median nerves of both upper limbs. Histological examination revealed sensory nerve demyelination and focal thickenings of myelin fibers. The diagnosis of hereditary neuropathy with liability to pressure palsy was confirmed by PMP22 deletion of chromosome 17p11.2. He started motor rehabilitation and avoidance of stressing factors with progressive recovery. After one-year followup, he was completely asymptomatic. Recurrent bilateral foot drop history, "sausage-like" swellings of myelin in histological examination, and the results of electromyography led the authors to consider the diagnosis despite negative family history. The authors highlight this rare disease in pediatric population and the importance of high index of clinical suspicion for its diagnosis.

  7. Extraction of essential oils from Algerian myrtle leaves using instant controlled pressure drop technology.

    PubMed

    Berka-Zougali, Baya; Hassani, Aicha; Besombes, Colette; Allaf, Karim

    2010-10-01

    In the present work, the new extraction process of Détente Instantanée Contrôlée DIC (French, for instant controlled pressure drop) was studied, developed, quantitatively and qualitatively compared to the conventional hydrodistillation method for the extraction of essential oils from Algerian myrtle leaves. DIC was used as a thermomechanical treatment, DIC subjecting the product to a high-pressure saturated steam. The DIC cycle ends with an abrupt pressure drop towards vacuum, and this instantly leads to an autovaporization of myrtle volatile compounds. An immediate condensation in the vacuum tank produced a micro-emulsion of water and essential oils. Thus, an ultra-rapid cooling of residual leaves occurred, precluding any thermal degradation. An experimental protocol was designed with 3 independent variables: saturated steam pressure between 0.1 and 0.6 MPa, resulting in a temperature between 100 and 160°C, a total thermal processing time between 19 and 221 s, and between 2 and 6 DIC cycles. The essential oils yield was defined as the main dependent variable. This direct extraction gave high yields and high quality essential oil, as revealed by composition and antioxidant activity (results not shown). After this treatment, the myrtle leaves were recovered and hydrodistilled in order to quantify the essential oil content in residual DIC-treated samples. Scanning electron microscope (SEM) showed some modification of the structure with a slight destruction of cell walls after DIC treatment.

  8. Statistical correlation between transient pressure drop and cavitation at closure of a mechanical heart valve.

    PubMed

    Wu, Changfu; Liu, Jia-Shing; Hwang, Ned H C; Lin, Yu-Kweng M

    2005-01-01

    Cavitation on a mechanical heart valve (MHV) is attributable to transient regional pressure drop at the instant of valve closure. As a cavitation bubble collapses, it emits shock waves, which have the characteristics of high frequency oscillations (HFO) on a pressure time trace. The potential for such HFO bursts to cause material damage on an MHV can be measured by the cavitation impulse I, which is defined as the area under the trace of the HFO bursts. In the present study, experiments were conducted on a bileaflet MHV in a durability tester, operated at pulse rates from 300-1,000 bpm. In each case, the transient pressure near an occluder was monitored for 60,000 beats via a transducer. The peak pressure drop Pm and the corresponding cavitation impulse I obtained for the 60,000 beat sequence are found to resemble sample records of two stationary stochastic processes, each of which follows a log normal distribution. Their first order probability density functions are estimated from the records. The correlation is investigated between I and Pm associated with each beat, which is found to be of statistical significance.

  9. Development of a new pressure dependent threshold superheated drop detector for neutrons

    NASA Astrophysics Data System (ADS)

    Rezaeian, Peiman; Raisali, Gholamreza; Akhavan, Azam; Ghods, Hossein; Hajizadeh, Bardia

    2015-03-01

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for 241Am-Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the 241Am-Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the 241Am-Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors.

  10. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section

    NASA Astrophysics Data System (ADS)

    Al-Kayiem, A. H. H.; Ibrahim, M. A.

    2015-12-01

    The flow behaviour and the pressure drop throughout an annular flow test section was investigated in order to evaluate and justify the reliability of experimental flow loop for wax deposition studies. The specific objective of the present paper is to assess and highlight the influence of the equivalent diameter method on the analysis of the hydrodynamic behaviour of the flow and the pressure drop throughout the annular test section. The test section has annular shape of 3 m length with three flow passages, namely; outer thermal control jacket, oil annular flow and inner pipe flow of a coolant. The oil annular flow has internal and external diameters of 0.0422 m and 0.0801 m, respectively. Oil was re-circulated in the annular passage while a cold water-glycol mixture was re-circulated in the inner pipe counter currently to the oil flow. The experiments were carried out at oil Reynolds number range of 2000 to 17000, covering laminar, transition and turbulent flow regimes. Four different methods of equivalent diameter of the annulus have been considered in this hydraulic analysis. The correction factor model for frictional pressure drop was also considered in the investigations. All methods addressed the high deviation of the prediction from the experimental data, which justified the need of a suitable pressure prediction correlation for the annular test section. The conventional hydraulic diameter method is a convenient substitute for characterizing physical dimension of a non-circular duct, and it leads to fairly good correlation between turbulent fluid flow and heat transfer characteristic of annular ducts.

  11. Numerical investigation of cavitation flow inside spool valve with large pressure drop

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pan, Dingyi; Xie, Fangfang; Shao, Xueming

    2015-12-01

    Spool valves play an important role in fluid power system. Cavitation phenomena happen frequently inside the spool valves, which cause structure damages, noise and lower down hydrodynamic performance. A numerical tools incorporating the cavitation model, are developed to predict the flow structure and cavitation pattern in the spool valve. Two major flow states in the spool valve chamber, i.e. flow-in and flow-out, are studies. The pressure distributions along the spool wall are first investigated, and the results agree well with the experimental data. For the flow-in cases, the local pressure at the throttling area drops much deeper than the pressure in flow-out cases. Meanwhile, the bubbles are more stable in flow-in cases than those in flow-out cases, which are ruptured and shed into the downstream.

  12. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  13. Effect of nepafenac eye drops on intraocular pressure: a randomized prospective study.

    PubMed

    Dave, Paaraj; Shah, Kuntal; Ramchandani, Bharat; Jain, Rupa

    2014-03-01

    To report the effect of nepafenac (0.1%) eye drops on intraocular pressure in eyes with cataract. Prospective randomized clinical trial. Three hundred and twenty-seven patients with bilateral cataracts in an institutional setting were included. All patients had a baseline intraocular pressure (IOP) ≤ 21 mm Hg without a history of intraocular surgery in the past 3 months. One eye of each individual was randomized to the treatment group, with the other eye acting as a control. Nepafenac (0.1%) eye drops were instilled 3 times a day in the eye that received treatment. Intraocular pressure (IOP) with Goldmann applanation tonometer (GAT) was measured at baseline and at 4 and 8 weeks. Proportion of eyes with an IOP elevation of >4 mm Hg was the main outcome measure. The mean age of the participants was 45.7 ± 4.4 years. Participants included 192 female and 135 male patients. The mean IOP at baseline in the treated and control eyes was, respectively, 13.8 ± 2.5 mm Hg and 13.4 ± 3.0 mm Hg, which reduced to 12.0 ± 2.0 mm Hg and 12.1 ± 1.5 mm Hg, respectively, at the end of 8 weeks. This reduction in IOP in both groups was significant (P < .01). The difference between the IOP in the treated and control eyes at 8 weeks was not statistically significant (P = .34). One eye in the treated group and 2 eyes in the control group had an IOP elevation of >4 mm Hg. Nepafenac eye drops do not increase the IOP. They can possibly be used as an alternative to steroid medications where steroid responsiveness is a concern. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Geometry-based pressure drop prediction in mildly diseased human coronary arteries.

    PubMed

    Schrauwen, J T C; Wentzel, J J; van der Steen, A F W; Gijsen, F J H

    2014-06-03

    Pressure drop (△p) estimations in human coronary arteries have several important applications, including determination of appropriate boundary conditions for CFD and estimation of fractional flow reserve (FFR). In this study a △p prediction was made based on geometrical features derived from patient-specific imaging data. Twenty-two mildly diseased human coronary arteries were imaged with computed tomography and intravascular ultrasound. Each artery was modelled in three consecutive steps: from straight to tapered, to stenosed, to curved model. CFD was performed to compute the additional △p in each model under steady flow for a wide range of Reynolds numbers. The correlations between the added geometrical complexity and additional △p were used to compute a predicted △p. This predicted △p based on geometry was compared to CFD results. The mean △p calculated with CFD was 855±666Pa. Tapering and curvature added significantly to the total △p, accounting for 31.4±19.0% and 18.0±10.9% respectively at Re=250. Using tapering angle, maximum area stenosis and angularity of the centerline, we were able to generate a good estimate for the predicted △p with a low mean but high standard deviation: average error of 41.1±287.8Pa at Re=250. Furthermore, the predicted △p was used to accurately estimate FFR (r=0.93). The effect of the geometric features was determined and the pressure drop in mildly diseased human coronary arteries was predicted quickly based solely on geometry. This pressure drop estimation could serve as a boundary condition in CFD to model the impact of distal epicardial vessels.

  15. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space.

    PubMed

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L

    2015-12-16

    It is a challenge for the human body to maintain stable blood pressure while standing. The body's failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change--supposedly mediated by reflexes to the cardiovascular system. We show--for the first time--a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth.

  16. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space

    PubMed Central

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T.; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L.

    2015-01-01

    It is a challenge for the human body to maintain stable blood pressure while standing. The body’s failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change – supposedly mediated by reflexes to the cardiovascular system. We show – for the first time – a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth. PMID:26671177

  17. Pressure drop and mass transfer in two-pass ribbed channels

    NASA Technical Reports Server (NTRS)

    Chandra, P. R.; Han, J. C.

    1989-01-01

    The combined effects of the sharp 180-deg turn and of the rib configuration on the pressure drop and mass transfer characteristics in a two-pass square channel with a pair of opposite rib-roughened walls (to simulate turbine airfoil cooling passages) were determined for a Reynolds number range of 10,000-60,000. Heat transfer enhancements were compared for the first pass and for the two-pass channel with the sharp 180-deg turn. Correlations for the fully-developed friction factors and loss coefficients were obtained.

  18. A New Population Dataset on Dust Devil Pressure Drops : Setting the Stage for Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-09-01

    A quarter of a century ago in the first in-situ study of dust devils on Mars, Ryan and Lucich (1983) rue that 'Unfortunately, we have been unable to find a terrestrial data set that permits a one-to-one comparison with our Mars data'. Remarkably, this state of affairs has largely persisted. Here I present a set of fixed station terrestrial field data, enabled by recent technological developments, which enables a direct comparison with dust devils (as indicated by vortex pressure drops) from Mars Pathfinder, Phoenix, and hopefully MSL Curiosity.

  19. The Interdependence of Plate Coupling Processes, Subduction Rate, and Asthenospheric Pressure Drop across Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Royden, L.; Holt, A.; Becker, T. W.

    2015-12-01

    One advantage of analytical models, in which analytic expressions are used for the various components of the subduction system, is the efficient exploration of parameter space and identification of the physical mechanisms controlling a wide breadth of slab kinematics. We show that, despite subtle differences in how plate interfaces and boundary conditions are implemented, results for single subduction from a 3-D semi-analytical model for subduction FAST (Royden & Husson, 2006; Jagoutz et al., 2015) and from the numerical finite-element model CitcomCU (Moresi & Gurnis, 1996, Zhong et al., 2006) are in excellent agreement when plate coupling (via shear stress on the plate interface) takes place in the FAST without the development of topographic relief at the plate boundary. Results from the two models are consistent across a variety of geometries, with fixed upper plate, fixed lower plate, and stress-free plate ends. When the analytical model is modified to include the development of topography above the subduction boundary, subduction rates are greatly increased, indicating a strong sensitivity of subduction to the mode of plate coupling. Rates of subduction also correlate strongly with the asthenospheric pressure drop across the subducting slab, which drives toroidal flow of the asthenosphere around the slab. When the lower plate is fixed, subduction is relatively slow and the pressure drop from below to above the slab is large, inhibiting subduction and slab roll-back. When the upper plate is fixed and when the plate ends are stress-free, subduction rates are approximately 50% faster and the corresponding asthenospheric pressure drop from below to above the slab is small, facilitating rapid subduction. This qualitative correlation between plate coupling processes, asthenospheric pressure drop, and rates of subduction can be extended to systems with more than one subduction zone (Holt et al., 2015 AGU Fall Abstract). Jagoutz, O., Royden, L., Holt, A. & Becker, T. W

  20. Minimum rate of spouting and peak pressure-drop in a spouted bed

    SciTech Connect

    Ogino, Fumiaru; Zhang, Laiying; Maehashi, Yasuo . Dept. of Chemical Engineering)

    1993-04-01

    Spouted beds are a type of fluidized bed, but one which has certain advantages, viz., (1) the capability of handling coarse particles; (2) the capability of handling particles with complicated shapes; (3) the absence of the need to have a high flow-rate; and (4) a small pressure drop. The first and second of these advantages, in particular, are responsible for spouted beds having found use in industry in the drying of powdered materials, in granulation apparatus, in the roasting of mineral ores, and in waste incinerators, while their application in coal gasification and shale pyrolysis is, also, examined.

  1. Influence of arterial wall compliance on the pressure drop across coronary artery stenoses under hyperemic flow condition.

    PubMed

    Konala, Bhaskar Chandra; Das, Ashish; Banerjee, Rupak K

    2011-03-01

    Hemodynamic endpoints such as flow and pressure drop are often measured during angioplasty procedures to determine the functional severity of a coronary artery stenosis. There is a lack of knowledge regarding the influence of compliance of the arterial wall-stenosis on the pressure drop under hyperemic flows across coronary lesions. This study evaluates the influence in flow and pressure drop caused by variation in arterial-stenosis compliance for a wide range of stenosis severities. The flow and pressure drop were evaluated for three different severities of stenosis and tested for limiting scenarios of compliant models. The Mooney-Rivlin model defined the non-linear material properties of the arterial wall and the plaque regions. The non-Newtonian Carreau model was used to model the blood flow viscosity. The fluid (blood)-structure (arterial wall) interaction equations were solved numerically using the finite element method. Irrespective of the stenosis severity, the compliant models produced a lower pressure drop than the rigid artery due to compliance of the plaque region. A wide variation in the pressure drop was observed between different compliant models for significant (90% area occlusion) stenosis with 41.0, 32.1, and 29.8 mmHg for the rigid artery, compliant artery with calcified plaque, and compliant artery with smooth muscle cell proliferation, respectively. When compared with the rigid artery for significant stenosis the pressure drop decreased by 27.7% and 37.6% for the calcified plaque and for the smooth muscle cell proliferation case, respectively. These significant variations in pressure drop for the higher stenosis may lead to misinterpretation and misdiagnosis of the stenosis severity.

  2. The pressure drop across the endotracheal tube in mechanically ventilated pediatric patients.

    PubMed

    Spaeth, Johannes; Steinmann, Daniel; Kaltofen, Heike; Guttmann, Josef; Schumann, Stefan

    2015-04-01

    During mechanical ventilation, the airway pressure (Paw) is usually monitored. However, Paw comprises the endotracheal tube (ETT)-related pressure drop (∆PETT ) and thus does not reflect the pressure in the patients' lungs. Therefore, monitoring of mechanical ventilation should be based on the tracheal pressure (Ptrach ). We systematically investigated potential factors influencing ∆PETT in pediatric ETTs. In this study, the flow-dependent pressure drop across pediatric ETTs from four manufacturers [2.0-4.5 mm inner diameter (ID)] was estimated in a physical model of the upper airways. Additionally, ∆PETT was examined with the ETTs shortened to 75% of their original length and at different curvatures. In nine healthy mechanically ventilated children (aged between 9 days and 29 months), Ptrach was compared to Paw . ∆PETT was nonlinearly flow dependent. Low IDs corresponded to high ∆PETT . Differences between ETTs from different manufacturers were identified. Shortening of the ETTs' length by 25% reduced ∆PETT on average by 14% of the value at original length. Ventilation frequency and tube curvature did not influence ∆PETT to a relevant extent. In the pediatric patients, the root mean square deviation between Paw and Ptrach was 2.3 cm H2O. Paw and Ptrach differ considerably (by ∆PETT ) during mechanical ventilation of pediatric patients. The ETTs' ID, tube length, and manufacturer type are significant factors for ∆PETT and should be taken into account when Paw is valuated. For this purpose, Ptrach can be continuously calculated with good precision by means of the Rohrer approximation. © 2014 John Wiley & Sons Ltd.

  3. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device.

    PubMed

    Xu, Ke; Tostado, Chris P; Xu, Jian-Hong; Lu, Yang-Cheng; Luo, Guang-Sheng

    2014-04-07

    In this study, we developed a new method for the direct measurement of differential pressures in a co-flow junction microfluidic device using a Capillary Laplace Gauge (CLG). The CLG - used inside the microchannel device--was designed using a tapered glass-capillary set up in co-flow junction architecture with a three-phase liquid-liquid-gas system with two flowing liquid phases and an entrained gas phase. By taking advantage of the Laplace equation, basic geometric relations and an integrated image analysis program, the movement of the entrained gas phase with the flow of the liquid-phases is tracked and monitored, allowing the gauge to function as an ultra-sensitive, integrated, differential pressure sensor measuring fluctuations in the liquid-dispersed phase channel pressure as small as tens of Pascals caused by droplet formation. The gauge was used to monitor the drop formation and breakup process in a co-flow junction microfluidic device under different flow conditions across a large range (1 × 10(-3) to 2.0 × 10(-1)) of capillary numbers. In addition to being able to monitor short and long term dispersed phase pressure fluctuation trends for both single drop and large droplet populations, the gauge was also used to clearly identify a transition between the dripping and jetting flow regimes. Overall, the combination of a unique, integrated image analysis program with this new type of sensor serves as a powerful tool with great potential for a variety of different research and industrial applications requiring sensitive microchannel pressure measurements.

  4. Inhaling to mitigate exhaled bioaerosols

    PubMed Central

    Edwards, David A.; Man, Jonathan C.; Brand, Peter; Katstra, Jeffrey P.; Sommerer, K.; Stone, Howard A.; Nardell, Edward; Scheuch, Gerhard

    2004-01-01

    Humans commonly exhale aerosols comprised of small droplets of airway-lining fluid during normal breathing. These “exhaled bioaerosols” may carry airborne pathogens and thereby magnify the spread of certain infectious diseases, such as influenza, tuberculosis, and severe acute respiratory syndrome. We hypothesize that, by altering lung airway surface properties through an inhaled nontoxic aerosol, we might substantially diminish the number of exhaled bioaerosol droplets and thereby provide a simple means to potentially mitigate the spread of airborne infectious disease independently of the identity of the airborne pathogen or the nature of any specific therapy. We find that some normal human subjects expire many more bioaerosol particles than other individuals during quiet breathing and therefore bear the burden of production of exhaled bioaerosols. Administering nebulized isotonic saline to these “high-producer” individuals diminishes the number of exhaled bioaerosol particles expired by 72.10 ± 8.19% for up to 6 h. In vitro and in vivo experiments with saline and surfactants suggest that the mechanism of action of the nebulized saline relates to modification of the physical properties of the airway-lining fluid, notably surface tension. PMID:15583121

  5. Pressure Drop in Tortuosity/Kinking of the Internal Carotid Artery: Simulation and Clinical Investigation

    PubMed Central

    Wang, Lijun; Zhao, Feng; Wang, Daming; Hu, Shen; Liu, Jiachun; Zhou, Zhilun; Lu, Jun; Qi, Peng; Song, Shiying

    2016-01-01

    Background. Whether carotid tortuosity/kinking of the internal carotid artery leads to cerebral ischemia remains unclear. There is very little research about the hemodynamic variation induced by carotid tortuosity/kinking in the literature. The objective of this study was to research the blood pressure changes induced by carotid tortuosity/kinking. Methods. We first created a geometric model of carotid tortuosity/kinking. Based on hemodynamic boundary conditions, the hemodynamics of carotid tortuosity and kinking were studied via a finite element simulation. Then, an in vitro system was built to validate the numerical simulation results. The mean arterial pressure changes before and after carotid kinking were measured using pressure sensors in 12 patients with carotid kinking. Results. Numerical simulation revealed that the pressure drops increased with increases in the kinking angles. Clinical tests and in vitro experiments confirmed the numerical simulation results. Conclusions. Carotid kinking leads to blood pressure reduction. In certain conditions, kinking may affect the cerebral blood supply and be associated with cerebral ischemia. PMID:27195283

  6. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  7. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  8. Two-phase pressure drop with twisted-tape swirl generators

    SciTech Connect

    Jensen, M.K.; Bensler, H.P.; Pourdoshti, M.

    1985-03-01

    An experimental study has been conducted to determine the effect of twisted-tape swirl generators on adiabatic and diabatic two-phase flow pressure drops in vertical straight tubes. Tape-twist ratios (length for 180/sup 0/ twist/inside tube diameter) of 3.94, 8.94, and 13.92 were tested with R-113 over a range of pressures, mass velocities, qualities, and heat fluxes. Empty tube reference data were successfully predicted with a correlation from the literature. The twisted tape data wer successfully correlated by using the hydraulic diameter and a single-phase swirl flow friction factor in the empty tube correlation. Data from the literature also were predicted well with this correlation.

  9. Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.

    SciTech Connect

    Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne; Lucero, Daniel A.; Hubbard, Joshua A.; Servantes, Brandon Lee

    2011-10-01

    Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomerate test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.

  10. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-01-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  11. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-02-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  12. Heat transfer and pressure drop in tube with broken twisted tape insert

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng; Liou, Jin Shuen

    2007-11-15

    An experimental study measuring the axial heat transfer distributions and the pressure drop coefficients of the tube fitted with a broken twisted tape of twist ratio 1, 1.5, 2, 2.5 or {infinity} is performed in the Re range of 1000-40,000. This type of broken twisted tape is newly invented without previous investigations available. Local Nusselt numbers and mean Fanning friction factors in the tube fitted with the broken twisted tape increase as the twist ratio decreases. Heat transfer coefficients, mean Fanning friction factors and thermal performance factors in the tube fitted with the broken twisted tape are, respectively, augmented to 1.28-2.4, 2-4.7 and 0.99-1.8 times of those in the tube fitted with the smooth twisted tape. Empirical heat transfer and pressure drop correlations which evaluate the local Nusselt number and the mean Fanning friction factor for the tube with the broken twisted tape insert are generated to assist the industrial applications. (author)

  13. Heat transfer and pressure drop in hexagonal ducts with surface dimples

    SciTech Connect

    Chang, S.W.; Chiang, K.F.; Chou, T.C.

    2010-11-15

    Measurements of detailed Nusselt number (Nu) distributions and pressure drop coefficients (f) for four hexagonal ducts with smooth and dimpled walls are performed to comparatively examine the thermal performances of three sets of dimpled walls with concave-concave, convex-convex and concave-convex configurations at Reynolds numbers (Re) in the range of 900-30,000. A set of selected experimental data illustrates the influences of dimple configuration and Re on the detailed Nu distributions, the area-averaged Nu over developed flow region (Nu-bar) and the pressure drop coefficients. Relative enhancements of Nu and f from the smooth-walled references (Nu{sub {infinity}} and f{sub {infinity}}) along with the thermal performance factor ({eta}) defined as (Nu-bar/Nu{sub {infinity}})/(f/f{sub {infinity}}){sup 1/3} are examined. Nu-bar and f correlations are individually obtained for each tested hexagonal duct using Re as the controlling parameter. (author)

  14. Prediction of pressure drop of two-phase coal slurries in pipelines

    NASA Astrophysics Data System (ADS)

    Sanghvi, S. M.; Tolan, J. S.

    1982-11-01

    Pressure drop and flow rate measurements through pipeline viscometers were analyzed using the power law, Bingham-plastic and Bowen non-Newtonian heological models in a computer program. Wall slip was corrected with Hanks' modification of the Rabinowitsch-Mooney equation. The possibility of solids settling was analyzed with the Oroskar-Turian correlation. The program relates shear stress to shear rate for Fort Lewis coal-slurry data to within 5% for flow without solids settling. Wilsonville coal-slurry data with solids settling were fit to within 17% by the Bowen model, but the Bowen parameters are very sensitive to operating conditions. Pressure drop is predicted in the program as a function of flow rate and pipe diameter, using the analysis of best-fit rheological parameters and literature correlations for friction factors. The effect of wall slip on shear stress decreased with increasing pipe diameter. A modification to the graphical criterion for turbulence was proposed that utilizes the numerical value of the slopes of the branched flow curves.

  15. The effect of longitudinal spacer ribs on the minimum pressure drop in a heated annulus

    SciTech Connect

    Johnston, B.S.; Neff, J.M.

    1990-01-01

    When evaluating a heated flow passage for vulnerability to static flow excursions, special note should be taken of flow restrictions which might allow premature vapor generation. In this study, measurements of steady state pressure drop were made for the downward flow of water in a vertical annulus. The outer wall was uniformly heated to allow subcooled boiling. Minima in the pressure drop characteristics were compared for test sections with and without longitudinal spacer ribs. For a given power and inlet temperature, the minimum occurred at a higher flow rate in the ribbed test section. This is attributed to vapor generation at the ribs. The work cited in this document show how a restriction in a heated channel can produce vapor which would not be observed in the absence of the restriction. In the present study, the effect of a flow restriction on the tendency to flow excursion is explored by finding demand curves for a heated annulus in subcooled boiling flow. The annulus is heated from the outside, and alternately equipped with and without longitudinal spacer ribs. These ribs separate the heated and unheated walls; in pressing against the heated wall they provide a means for premature vapor production.

  16. Investigation of the different base fluid effects on the nanofluids heat transfer and pressure drop

    NASA Astrophysics Data System (ADS)

    Bayat, Javad; Nikseresht, Amir Hossein

    2011-09-01

    A numerical study of laminar forced convective flows of three different nanofluids through a horizontal circular tube with a constant heat flux condition has been performed. The effect of Al2O3 volume concentration 0 ≤ φ ≤ 0.09 in the pure water, water-ethylene glycol mixture and pure ethylene glycol as base fluids, and Reynolds number of 100 ≤ Re ≤ 2,000 for different power inputs in the range of 10 ≤ Q( W) ≤ 400 have been investigated. In this study, all of the nanofluid properties are temperature and nanoparticle volume concentration dependent. The governing equations have been solved using finite volume approach with the SIMPLER algorithm. The results indicate an increase in the averaged heat transfer coefficient with increasing the mass of ethylene glycol in the water base fluid, solid concentration and Reynolds number. From the investigations it can be inferred that, the pressure drop and pumping power in the nanofluids at low solid volumetric concentration (φ < 3%) is approximately the same as in the pure base fluid in the various Reynolds numbers, but the higher solid nanoparticle volume concentration causes a penalty drop in the pressure. Moreover, this study shows it is possible to achieve a higher heat transfer rate with lower wall shear stress with the use of proper nanofluids.

  17. Heat transfer and pressure drop measurement in wavy channels with flow disturbers

    SciTech Connect

    Dini, S.; Veronesi, R.; Hryniewicz, E.V.

    1999-07-01

    In the current work, the transient method was employed to obtain the local heat transfer coefficient for a 6 in. x 3/8 in. x 12 in. (15.24cm x .9525cm x 30.48cm) Plexiglas {reg_sign} wavy channel with and without flow disturbers. A short duration transient test was performed to measure the heat transfer coefficient by introducing heated air over test specimen that had been sprayed with calibrated thermochromic liquid crystals. This technique allowed the experimenter to observe the temperature changes using a video camera. because a Plexiglas surface has a low thermal diffusivity, a one-dimensional assumption is a reasonable approximation because the surface temperature response is limited to a thin layer near the surface and lateral conduction is small. The heat transfer coefficient using the transient technique is then determined from the response of the surface temperature to a step change in the local temperature. Using this method, the axial variation in the heat transfer coefficient for Reynolds numbers in the laminar (1100) and turbulent region (2900) were obtained. These Reynolds numbers were based on the hydraulic diameter at the inlet of the wavy channel. Also, in this investigation, the region of greatest heat transfer and the pressure drop were both experimentally and analytically determined and the friction factor across an in-phase corrugated wall channel (wavy channel) at Reynolds numbers of 1100 and 2900 were obtained. A manometer and a pressure transducer were employed to measure pressure drop across the channel. The effect of flow disturbers mounted on each peak, alternate peaks and the first six peaks of a twelve-peak channel were also investigated. For all cases, the pressure drop and friction factor were shown to moderately increase with rib placement in the test section when compared to the results obtained from a similar smooth wavy channel without ribs. Additionally, for all cases, the friction factor also decreased with an increase in the

  18. Airborne observations of bioaerosol over the Southeast United States using a Wideband Integrated Bioaerosol Sensor

    NASA Astrophysics Data System (ADS)

    Ziemba, Luke D.; Beyersdorf, Andreas J.; Chen, Gao; Corr, Chelsea A.; Crumeyrolle, Suzanne N.; Diskin, Glenn; Hudgins, Charlie; Martin, Robert; Mikoviny, Tomas; Moore, Richard; Shook, Michael; Thornhill, K. Lee; Winstead, Edward L.; Wisthaler, Armin; Anderson, Bruce E.

    2016-07-01

    Biological aerosols represent a diverse subset of particulate matter that is emitted directly to the atmosphere in the form of (but not limited to) bacteria, fungal spores, pollens, viruses, and plant debris. These particles can have local air quality implications, but potentially play a larger climate role by acting as efficient ice nucleating particles (INPs) and cloud condensation nuclei. We have deployed a Wideband Integrated Bioaerosol Sensor on the NASA DC-8 aircraft to (1) quantify boundary layer (BL) variability of fluorescent biological aerosol particle (FBAP) concentrations in the Southeast United States (SEUS), (2) link this variability explicitly to land cover heterogeneity in the region, and (3) examine the vertical profile of bioaerosols in the context of convective vertical redistribution. Flight-averaged FBAP concentrations ranged between 0.1 and 0.43 scm-3 (cm-3 at standard temperature and pressure) with relatively homogeneous concentrations throughout the region; croplands showed the highest concentrations in the BL (0.37 scm-3), and lowest concentrations were associated with evergreen forests (0.24 scm-3). Observed FBAP concentrations are in generally good agreement with model parameterized emission rates for bacteria, and discrepancies are likely the result of fungal spore contributions. Shallow convection in the region is shown to be a relatively efficient lofting mechanism as the vertical transport efficiency of FBAP is at least equal to black carbon aerosol, suggesting that ground-level FBAP survives transport into the free troposphere to be available for INP activation. Comparison of the fraction of coarse-mode particles that were biological (fFBAP) suggested that the SEUS (fFBAP = 8.5%) was a much stronger source of bioaerosols than long-range transport during a Saharan Air Layer (SAL) dust event (fFBAP = 0.17%) or summertime marine emissions in the Gulf of Mexico (fFBAP = 0.73%).

  19. An improved method for simultaneous determination of frictional pressure drop and vapor volume fraction in vertical flow boiling

    NASA Technical Reports Server (NTRS)

    Klausner, J. F.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The two-phase frictional pressure drop and vapor volume fraction in the vertical boiling and adiabatic flow of the refrigerant, R11, have been simultaneously measured by a liquid balancing column and differential magnetic reluctance pressure transducers. An account is given of the experimental apparatus and procedure, data acquisition and analysis, and error estimation employed. All values of two-phase multipliers evaluated on the basis of the measured frictional pressure drop data in vertical upflow fall in the range bounded by the predictions of the Chisholm correlation and the homogeneous model.

  20. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop.

  1. Modeling pressure drop using generalized scaffold characteristics in an axial-flow bioreactor for soft tissue regeneration.

    PubMed

    Podichetty, Jagdeep T; Bhaskar, Prasana R; Khalf, Abdurizzagh; Madihally, Sundararajan V

    2014-06-01

    The goal of this study was to better understand how analytical permeability models based on scaffold architecture can facilitate a non-invasive technique to real time monitoring of pressure drop in bioreactors. In particular, we evaluated the permeability equations for electrospun and freeze dried scaffolds via pressure drop comparison in an axial-flow bioreactor using computational fluid dynamic (CFD) and experimentation. The polycaprolactone-cellulose acetate fibers obtained by co-axial electrospinning technique and Chitosan-Gelatin scaffolds prepared using freeze-drying techniques were utilized. Initially, the structural properties (fiber size, pore size and porosity) and mechanical properties (elastic modulus and Poisson's ratio) of scaffolds in phosphate buffered saline at 37 °C were evaluated. The CFD simulations were performed by coupling fluid flow, described by Brinkman equation, with structural mechanics using a moving mesh. The experimentally obtained pressure drop values for both 1 mm thick and 2 mm thick scaffolds agreed with simulation results. To evaluate the effect of permeability and elastic modulus on pressure drop, CFD predictions were extended to a broad range of permeabilities spanning synthetic scaffolds and tissues, elastic moduli, and Poisson's ratio. Results indicated an increase in pressure drop with increase in permeability. Scaffolds with higher elastic modulus performed better and the effect of Poisson's ratio was insignificant. Flow induced deformation was negligible in axial-flow bioreactor. In summary, scaffold permeabilities can be calculated using scaffold microarchitecture and can be used in non-invasive monitoring of tissue regeneration.

  2. Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment.

    PubMed

    Sefiane, Khellil

    2004-04-15

    The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.

  3. Heat exchange effectiveness and pressure drop for air flow through perforated plates with and without crosswind

    NASA Astrophysics Data System (ADS)

    Kutscher, C. F.

    1994-05-01

    Low-porosity perforated plates are being used as absorbers for heating ambient air in a new type of unglazed solar collector. This paper investigates the convective heat transfer effectiveness for low-speed air flow through thin, isothermal perforated plates with and without a crosswind on the upstream face. The objective of this work is to provide information that will allow designers to optimize hole size and spacing. In order to obtain performance data, a wind tunnel and small lamp array were designed and built. Experimental data were taken for a range of plate porosities from 0.1 to 5 percent, hole Reynolds numbers from 100 to 2000, and wind speeds from 0 to 4 m/s. Correlations were developed for heat exchange effectiveness and also for pressure drop. Infrared thermography was used to visualize the heat transfer taking place at the surface.

  4. Two-phase pressure drop across a hydrofoil-based micro pin device using R-123

    SciTech Connect

    Kosar, Ali

    2008-05-15

    The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)

  5. Pressure Drop in Cold Water Flow in Beds Packed with Several Kinds of Crushed Ice.

    NASA Astrophysics Data System (ADS)

    Yanadori, Michio; Ohira, Akiyoshi

    This paper deals with the pressure drop in cold water flow in the beds packed with crushed ice. 1n each case, ice-packed beds were filled with sevral kinds of crushed ice, and friction-loss coefficients were examined. The following results were obtained. (1) The friction factor of rectangular-type ice-packed beds is smaller than that of ideal sphere beds by about 1/4 to 1/2. (2) The friction factor of small-stone-type ice-packed beds is about twice as large as that of ideal sphere beds. (3) It is difficult to compare the flow model of water in restricted channel of particle-type ice-packed beds with that of ideal packed beds.

  6. Preliminary investigation of labyrinth packing pressure drops at onset of swirl-induced rotor instability

    NASA Technical Reports Server (NTRS)

    Miller, E. H.; Vohr, J. H.

    1984-01-01

    Backward and forward subsynchronous instability was observed in a flexible model test rotor under the influence of swirl flow in a straight-through labyrinth packing. The packing pressure drop at the onset of instability was then measured for a range of operating speeds, clearances and inlet swirl conditions. The trend in these measurements for forward swirl and forward instability is generally consistent with the short packing rotor force formulations of Benchert and Wachter. Diverging clearances were also destabilizing and had a forward orbit with forward swirl and a backward orbit with reverse swirl. A larger, stiff rotor model system is now being assembled which will permit testing steam turbine-type straight-through and hi-lo labyrinth packings. With calibrated and adjustable bearings in this new apparatus, direct measure of the net destabilizing force generated by the packings can be made.

  7. Nonisothermal motion of an elastoviscoplastic medium through a pipe under a changing pressure drop

    NASA Astrophysics Data System (ADS)

    Burenin, A. A.; Kovtanyuk, L. V.; Panchenko, G. L.

    2015-09-01

    The solution of a sequence of coupled problems of thermoelastic plasticity on the nucleation and development of medium flow in a cylindrical pipe in conditions of varying pressure drop and material heating due to friction on the pipe wall and subsequent stagnation of flow under slow load removal and cooling of the layer material is derived based on the theory of large elastoplastic deformations generalized for the nonisothermal case. The thermal and deformation processes are interrelated with the temperature dependence of the yield point. The conditions of nucleation of the viscoplastic flow and regularities of motion of the elastoplastic boundaries over the layer are noted, and the flow rates and large strains, both irreversible and reversible, are calculated.

  8. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  9. Coupled degassing and crystallization: experimental study at continuous pressure drop, with application to volcanic bombs

    NASA Astrophysics Data System (ADS)

    Simakin, Alexander G.; Armienti, Pietro; Epel'baum, M. B.

    Experiments on degassing of water-saturated granite melts with a pressure drop from 100 and 450MPa to 40 and 120MPa, respectively, at temperatures close to feldspar liquidus (750-700 °C), were carried out to determine the modality of water exsolution and vesicle formation at the liquidus temperature. Pressure-drop rates as small as approximately 100bar/day were used. Uniform space distributions of bubbles of exsolved water were obtained with starting glass containing a small fraction ( 0.5vol.%) of trapped air bubbles. Volume crystallization of feldspar was observed in degassed melts supplied with seeds. Bubble size distributions (BSD) measured in granite glasses after degassing are presented. Data on vesicle characteristics (number, radius, area, elongation) were acquired on images digitized with standard software, while the reconstruction of size distributions was performed with the Schwartz-Saltikov "unfolding" procedure. Bubble size distributions of size classes in the range 5-1000μm were acquired with proper magnification and satisfactory statistical reliability of determined number densities. The BSDs of the experimental samples are compared with the results of measurements of rapidly degassed products of Mt. Etna and Vulcano Island. Many particular features of the bubble nucleation and growth can be distinguished in an individual BSD. However, the general BSD of the whole data set, including natural ones, can be relatively well described with linear regression in bilogarithmic coordinates. The slope of this regression is approximately 2.8+/-0.1. This dependence is in striking contrast with distributions theoretically predicted with classical nucleation models based on homogeneous nucleation of vesicles. The theoretical distribution requires the occurrence of strong maxima that are not observed in our experimental and natural samples, thus arguing for heterogeneous nucleation mechanisms.

  10. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Downward in a Small Diameter Tube

    NASA Astrophysics Data System (ADS)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    Experiments were performed on boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically downward in a copper smooth tube of 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and quality from 0.1 to over 1 at evaporation temperature of 10°C. Pressure drops were measured and flow patterns were observed at mass fluxes from 30 to 200 kg/(m2•s) and quality from 0.1 to 0.9. The characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified by comparing the measurements with the data for the vertically upward flow previously obtained.

  11. Experimental study on the flow patterns and the two-phase pressure drops in a horizontal impacting T-Junction

    NASA Astrophysics Data System (ADS)

    Bertani, C.; Malandrone, M.; Panella, B.

    2014-04-01

    The present paper analyzes the experimental results concerning the flow patterns and pressure drops in two-phase flow through a horizontal impacting T-junction, whose outlet pipes are aligned and perpendicular to the inlet pipe. The test section consists of plexiglass pipes with inner diameter of 10 mm. A mixture of water and air at ambient temperature and pressures up to 2.4 bar flows through the T-junction, with different splitting of flow rates in the two outlet branches; superficial velocities of air and water in the inlet pipe have been varied up to a maximum of 35 m/s and 3.5 m/s respectively. The flow patterns occurring in the inlet and branch pipes are compared with the predictions of the Baker and Taitel - Dukler maps. The pressure drops along the branches have been measured relatively to different splitting of the flow rate through the two branches and the pressure loss coefficients in the junction have been evaluated. Friction pressure drops have allowed us to evaluate two-phase friction multipliers, which have then been compared to the predictions of Lockhart-Martinelli, and Friedel correlations. Local pressure drops have been extrapolated at the junction centre and analyzed; the two-phase multiplier has been evaluated and compared with the predictions of Chisholm correlation; the value of the empirical coefficient that minimizes the discrepancy has also been evaluated.

  12. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  13. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol

  14. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a

  15. Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows

    NASA Astrophysics Data System (ADS)

    Tripathi, Sumit; Tabor, Rico F.; Singh, Ramesh; Bhattacharya, Amitabh

    2017-08-01

    We study the transportation of highly viscous furnace-oil in a horizontal pipe as core-annular flow (CAF) using experiments. Pressure drop and high-speed images of the fully developed CAF are recorded for a wide range of flow rate combinations. The height profiles (with respect to the centerline of the pipe) of the upper and lower interfaces of the core are obtained using a high-speed camera and image analysis. Time series of the interface height are used to calculate the average holdup of the oil phase, speed of the interface, and the power spectra of the interface profile. We find that the ratio of the effective velocity of the annular fluid to the core velocity, α , shows a large scatter. Using the average value of this ratio (α =0.74 ) yields a good estimate of the measured holdup for the whole range of flow rate ratios, mainly due to the low sensitivity of the holdup ratio to the velocity ratio. Dimensional analysis implies that, if the thickness of the annular fluid is much smaller than the pipe radius, then, for the given range of parameters in our experiments, the non-dimensional interface shape, as well as the non-dimensional wall shear stress, can depend only on the shear Reynolds number and the velocity ratio. Our experimental data show that, for both lower and upper interfaces, the normalized power spectrum of the interface height has a strong dependence on the shear Reynolds number. Specifically, for low shear Reynolds numbers, interfacial modes with large wavelengths dominate, while, for large shear Reynolds numbers, interfacial modes with small wavelengths dominate. Normalized variance of the interface height is higher at lower shear Reynolds numbers and tends to a constant with increasing shear Reynolds number. Surprisingly, our experimental data also show that the effective wall shear stress is, to a large extent, proportional to the square of the core velocity. Using the implied scalings for the holdup ratio and wall shear stress, we can derive

  16. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  17. Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Upward in a Small Diameter Tube

    NASA Astrophysics Data System (ADS)

    Miyata, Kazushi; Mori, Hideo; Ohishi, Katsumi; Tanaka, Hirokazu

    In the present study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a refrigerant R410A flowing vertically upward in a copper smooth tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small diameter tubes for air conditioning systems. Local heat transfer coefficients were measured in a range of mass fluxes from 30 to 200 kg/(m2•s), heat fluxes from 1 to 16 kW/m2 and qualities from 0.1 to over 1 at evaporation temperature of 10°C, and pressure drops were also measured at mass fluxes of 100 and 200 kg/(m2•s) and qualities from 0.1 to 0.9. Three types of flow pattern were observed in the tube: A slug, a slug-annular and an annular flow. Based on the measurements, the characteristics of frictional pressure drop, heat transfer coefficient and dryout qualities were clarified. The measured pressure drop and heat transfer coefficient were compared with correlations.

  18. Influence of Peer Pressure on Secondary School Students Drop out in Rongo Sub-County, Migori County, Kenya

    ERIC Educational Resources Information Center

    Omollo, Atieno Evaline; Yambo, Onyango J. M.

    2017-01-01

    The purpose of this study was to establish the influence of peer pressure on secondary school students' drop out in Rongo Sub-County, Migori County, Kenya. The statement of the problem showed that the sub-county had a dropout rate of 43 percent as compared to the neighboring sub counties like Uriri, Awendo, Nyatike, Kuria and Migori which had 25,…

  19. Two-Phase Pressure Drop in a Twisted Tape Boiler for a Microgravity Rankine Cycle Power System

    NASA Astrophysics Data System (ADS)

    Oinuma, Ryoji; Bean, David; Neill, Charles; Supak, Kevin; Best, Frederick

    2006-01-01

    A once-through type boiler with twisted tape inserts has been proposed for a Rankine cycle power system in space since the 1960s. However, information regarding fluid dynamics such as pressure drop in the boiler is not established well. As a fundamental study of the system characteristics, adiabatic two-phase pressure drop is measured over the range of 0 to 175.4 kg/m2s for water and 0 to 25.4 kg/m2s for air and is compared using the Homogeneous model and correlations of two-phase multipliers. The Homogeneous model and the Lockhart-Martinelli correlations predict by 30 % of the experimental results. The Friedel correlation predicts much higher values and the Jensen correlation predicts much lower values. Flow regimes for each test point are observed by a high speed camera. To evaluate the diabatic pressure drop, a heat exchanger with a twisted tape insert is designed. R-11 is used as a working fluid and boiler is heated with hot water. For the diabatic pressure drop, the values predicted by the Homogeneous model are approximately 30% lower than the experimental results.

  20. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels

    NASA Astrophysics Data System (ADS)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  1. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    PubMed

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.

  2. Heat transfer and pressure drop in blade cooling channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Lei, C. K.

    1984-01-01

    Repeated rib roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle-of-attack of 90 deg. The objective of the project was to investigate the effect of rib angle-of-attack on the pressure drop and the average heat transfer coefficients in a square duct with two opposite rib-roughned walls for Reynolds number varied from 8000 to 80,000. The rib height-to-equivalent diameter ratio (e/D) was kept at a constant value of 0.063, the rib pitch-to-height ratio (P/e) was varied from 10 to 20, and the rib angle-of-attack (alpha) was varied from 90 deg to 60 deg to 45 deg to 30 deg respectively. Two types of entrance conditions were examined, namely, long duct and sudden contraction. The heat transfer coefficient distribution on the smooth side wall and the rough side wall at the entrance and the fully developed regions were measured. Thermal performance comparison indicated that the pumping power requirement for the rib with an oblique angle to the flow (alpha = 45 deg to 30 deg) was about 20 to 50 percent lower than the rib with a 90 deg angle to the flow for a given heat transfer duty.

  3. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  4. Instant controlled pressure drop extraction of lavandin essential oils: fundamentals and experimental studies.

    PubMed

    Besombes, Colette; Berka-Zougali, Baya; Allaf, Karim

    2010-10-29

    Détente Instantanée contrôlée (DIC), French for Instant Controlled Pressure Drop, was performed on laboratory apparatus as well as on a pilot plant for proving its feasibility, and identifying the optimized processing conditions and recognizing the energy consumption and the quantity of water used for such an operation. GC-MS and SPME analysis of the extracts and residue material were carried out to assess the extracts and solid residues. The lavandin essential oils obtained by using the new DIC extraction process was studied, modeled and quantitatively and qualitatively compared to the conventional hydrodistillation method. The most important differences between the two essential oils were reflected in the yields, with 4.25 as against 2.3 g EO/100 g of raw matter, and in the extraction time, with 480 s as against some hours for respectively the DIC and the hydrodistillation operations. These differences have been previewed through the fundamental analysis. They can normally explain the great decreasing of energy consumption to be 662 kWh/t of raw material. The amount of water to be added was about 42 kg water/t of raw material. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Relationships between biomass, pressure drop, and performance in a polyurethane biofilter.

    PubMed

    Ryu, Hee Wook; Cho, Kyung-Suk; Chung, Dong Jin

    2010-03-01

    In biofilters for controlling volatile organic compounds (VOCs), clogging in the filter bed due to overgrowth of biomass causes the deterioration of biofilter performance. In this study, the relationships between biofilter performance, biomass concentration (X), and pressure drop (DeltaP) was qualitatively and quantitatively evaluated in a polyurethane (PU) biofilter. Benzene was used as a model VOC. The relationship between DeltaP and X at a moisture content of 80-90% was expressed as log DeltaP (mm H(2)Om(-1))=0.315+3.87 log X (g-dry cell weight (DCW) g-PU(-1)), 0.8

  6. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture.

    PubMed

    Hayashi, T; Lee, T G; Hazelwood, M; Hedrick, E; Biswas, P

    2000-06-01

    The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.

  7. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel

    NASA Astrophysics Data System (ADS)

    Rezaei, Omid; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Pourfattah, Farzad; Mashayekhi, Ramin

    2017-09-01

    In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.

  8. Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Andrzejczyk, Rafał; Jakubowska, Blanka; Mikielewicz, Jarosław

    2014-09-01

    In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.

  9. Miniature PCR based portable bioaerosol monitor development.

    PubMed

    Agranovski, I E; Usachev, E V; Agranovski, E; Usacheva, O V

    2017-01-01

    A portable bioaerosol monitor is greatly demanded technology in many areas including air quality control, occupational exposure assessment and health risk evaluation, environmental studies and, especially, in defence and bio-terrorism applications. Our recent groundwork allowed us to formulate the concept of a portable bioaerosol monitor, which needs to be light, user friendly, reliable and capable of detecting airborne pathogens within 1-1·5 h on the spot. Conceptually, the event of a bioaerosol concentration burst is determined by triggers to commence the representative air sampling with sequential real-time polymerase chain reaction (PCR) confirmation of the targeted micro-organism present in the air. To minimize reagent consumption and idle running of the technology, an event of a bioaerosol burst is confirmed by three parameters: aerosol particle size, concentration and composition. Only particle sizes above 200 nm attract interest in the bioaerosol. Only an elevated aerosol concentration above the threshold (background aerosol concentration) is a signal to commence the analytical procedure. The combination of our previously developed personal bioaerosol sampler, aerosol particle counter based trigger and portable real-time PCR device formed the basis of the bioaerosol monitoring technology. The portable real-time PCR device was advanced to provide internally controlled detection, significantly reducing false-positive alarms. The technique is capable of detecting selected airborne micro-organisms on the spot within 30-80 min, depending on the genome organization of the particular strain. Due to recent outbreaks of infectious airborne diseases and the continuing threat of intentionally released bioaerosol attacks, investigations into the possibility of the early and reliable detection of pathogenic micro-organisms in the air is becoming increasingly important. The proposed technology consisting of a bioaerosol sampler, technology trigger and PCR device is

  10. Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems

    SciTech Connect

    Reed, C.B.; Hua, T.Q.; Natesan, K.; Kirillov, I.R.; Vitkovski, I.V.; Anisimov, A.M.

    1995-03-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al{sub 2}O{sub 3}/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.

  11. Evaluation of the models available for the prediction of pressure drop in venturi scrubbers.

    PubMed

    Gonçalves, J A; Alonso, D F; Costa, M A; Azzopardi, B J; Coury, J R

    2001-01-29

    The major running cost derived from the operation of venturi scrubbers is pressure drop. In the present study, the predictions of different models are compared to experimental data from venturi scrubbers of different sizes (throat diameter from 1.9 to 16cm), geometries, operating variables and liquid injection arrangements. As a result, it is concluded that most of the models must be used with caution. Much attention must be paid to the validity of the assumptions employed in the mathematical models. The equations proposed by Calvert [Scrubbing, Air Pollution, 3rd Edition, Vol. IV, Academic Press, New York, 1982], Yung et al. [JAPCA 27 (1977) 348] or Hesketh [Atomization and cloud behaviour in wet scrubbers, in: Proceedings of the US-USSR Symposium Control Fine Particulate Emissions 1974, San Francisco, 15-18 January 1974] produce good results only in very specific situations. The model proposed by Boll [Ind. Eng. Chem. Fundam. 12 (1973) 40] is simple, easy to compute and agrees reasonably well with the experimental data. Unfortunately, it cannot predict the effect of different liquid injection arrangements. The model by Azzopardi and coworkers [Filtr. Sep. 21 (1984) 196; Trans. IchemE. 69B (1991) 237; Chem Eng. J. 67 (1997) 9] was the only one to give good predictions for all the range of variables studied. On the other hand, this model is not simple and requires from the engineer an additional effort in terms of computation. In order to apply this model to the rectangular geometry, the concept of hydraulic equivalent diameter was used.

  12. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  13. Use of the isopycnic plots in designing operations of supercritical fluid chromatography. V. Pressure and density drops using mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Tarafder, Abhijit; Kaczmarski, Krzysztof; Poe, Donald P; Guiochon, Georges

    2012-10-05

    The drops of pressure and density along chromatographic columns of different characteristics, eluted with different mixtures of carbon dioxide and methanol was mapped as functions of the column outlet pressure and the operating temperature. This paper extends an earlier report reporting the extent of the pressure and density drops along chromatographic columns eluted with neat CO(2)[1]. It illustrates the similarities and differences in the pressure and density profiles along columns operated with mixed mobile phases and with neat CO(2). Numerical calculations of the pressure and density drops along columns packed with particles of different sizes, under different operating conditions (temperature, outlet pressure, and flow rate), provide important insights regarding the extent of the pressure and density drops under these operating conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A study of pressure drop in a Capillary tube-viscometer for a two-phase flow

    SciTech Connect

    Ohene, F.; Livingston, C.; Matthews, C.; Rhone, Y.

    1995-09-01

    The analysis of pipeline transportation of highly concentrated suspensions such as coal-water slurries, can exhibit several flow characteristics depending on the concentration and the physical parameters of the dispersed phase. Experiments were conducted for coal-water slurries flows in a series of horizontal capillary tubes of diameters 0.8, 1.5 and 3.0 mm and 100 mm in length, in order to investigate the effect of concentration, pressure drop, and the transitional Reynolds number from laminar to turbulent flow in a homogeneous slurry. The solid concentration was varied from 15% to 63% in 0.1% xanthum gum solution. Pressure drop and the volume flow measurement were made using HVA-6 Capillary viscometer. The Reynolds numbers obtained were found to be dependent on the slurry concentration and the viscosity of the slurry mixture, but independent of the capillary diameter.

  15. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  16. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  17. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 2: Friction pressure drop lessening

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. Two heated sections with different internal diameter (10 and 6 mm) were tested. The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were registered. The post-CHF regime was studied watching simultaneously the evolution of boiling crisis onset along the test section and the evolution of pressure drop and mass flow rate. A significant lessening of friction was observed simultaneous to the development of the post-CHF regime, accompanied by a mass flow rate increase, which lets suppose that the vapor film in the film boiling regime acts as a lubricant. A model was created based on this idea and on heat transfer considerations. The predictions by this model are satisfactory for the low quality post-CHF regime.

  18. Experimental studies on pressure drop characteristics of cryogenic cross-counter flow coiled finned tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Gupta, Prabhat Kumar; Kush, P. K.; Tiwari, Ashesh

    2010-04-01

    Cross-counter flow coiled finned tube heat exchangers used in medium capacity helium liquefiers/refrigerators were developed in our lab. These heat exchangers were developed using integrated low finned tubes. Experimental studies have been performed to know the pressure drop characteristics of tube side and shell side flow of these heat exchangers. All experiments were performed at room temperature in the Reynolds number range of 3000-30,000 for tube side and 25-155 for shell side. The results of present experiments indicate that available correlations for tube side can not be used for prediction of tube side pressure drop data due to complex surface formation at inner side of tube during formation of fins over the outer surface. Results also indicate that surface roughness effect becomes more pronounced as the value of di/ D m increases. New correlations based on present experimental data are proposed for predicting the friction factors for tube side and shell side.

  19. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  20. Smooth- and enhanced-tube heat transfer and pressure drop : Part II. The role of transition to turbulent flow.

    SciTech Connect

    Obot, N. T.; Das, L.; Rabas, T. J.

    2000-11-14

    The objectives of this presentation are two-fold: first, to demonstrate the connection between the attainable coefficients and transition to turbulent flow by using the transition-based corresponding states method to generalize results obtained with smooth tubes and enhanced tubes, and second, to provide guidelines on the calculation of heat transfer coefficients from pressure-drop data and vice versa by using the transition concept or the functional law of corresponding states.

  1. Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line

    SciTech Connect

    Lee, Chi Young; Lee, Sang Yong

    2010-01-15

    In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air-water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%. (author)

  2. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  3. Pressure drop of two-phase plug flow in round mini-channels: Influence of surface wettability

    SciTech Connect

    Lee, Chi Young; Lee, Sang Yong

    2008-09-15

    In the present experimental study, the pressure drop of two-phase plug flows in round mini-channels was investigated for three different tube materials, i.e., glass, polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. Air and water were used as the test fluids. In the wet-plug flow regime (wet wall condition at the gas portions), the pressure drop was reasonably predicted by the homogeneous flow model or by the correlations of Mishima and Hibiki [K. Mishima, T. Hibiki, Some characteristics of air-water two-phase flow in small diameter vertical tubes, Int. J. Multiphase Flow 22 (1996) 703-712] and Chisholm [D. Chisholm, A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat Mass Transfer 10 (1967) 1767-1778]. On the other hand, in the dry-plug flow regime (dry wall condition at the gas portions), the role of the moving contact lines turned out to be significant. To take into account the effect of the moving contact lines, a modified Lockhart-Martinelli type correlation was proposed, which fitted the measured pressure-drop data within the mean deviation of 6%. (author)

  4. The role of water in the performance of biofilters: parameterization of pressure drop and sorption capacities for common packing materials.

    PubMed

    Dorado, Antonio D; Lafuente, Javier; Gabriel, David; Gamisans, Xavier

    2010-08-15

    The presence of water in a biofilter is critical in keeping microorganisms active and abating pollutants. In addition, the amount of water retained in a biofilter may drastically affect the physical properties of packing materials and packed beds. In this study, the influence of water on the pressure drop and sorption capacities of 10 different packing materials were experimentally studied and compared. Pressure drop was characterized as a function of dynamic hold-up, porosity and gas flow rate. Experimental data were fitted to a mathematical expression based on a modified Ergun correlation. Sorption capacities for toluene were determined for both wet and dry materials to obtain information about the nature of interactions between the contaminant, the packing materials and the aqueous phase. The experimental sorption capacities of materials were fitted to different isotherm models for gas adsorption in porous materials. The corresponding confidence interval was determined by the Fisher information matrix. The results quantified the dynamic hold-up effect resulting from the significant increase in the pressure drop throughout the bed, i.e. the financial cost of driving air, and the negative effect of this air on the total amount of hydrophobic pollutant that can be adsorbed by the supports. Furthermore, the results provided equations for ascertaining water presence and sorption capacities that could be widely used in the mathematical modeling of biofilters.

  5. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels

    NASA Astrophysics Data System (ADS)

    Kandlikar, Satish G.; Schmitt, Derek; Carrano, Andres L.; Taylor, James B.

    2005-10-01

    Roughness features on the walls of a channel wall affect the pressure drop of a fluid flowing through that channel. This roughness effect can be described by (i) flow area constriction and (ii) increase in the wall shear stress. Replotting the Moody's friction factor chart with the constricted flow diameter results in a simplified plot and yields a single asymptotic value of friction factor for relative roughness values of ɛ /D>0.03 in the fully developed turbulent region. After reviewing the literature, three new roughness parameters are proposed (maximum profile peak height Rp, mean spacing of profile irregularities RSm, and floor distance to mean line Fp). Three additional parameters are presented to consider the localized hydraulic diameter variation (maximum, minimum, and average) in future work. The roughness ɛ is then defined as Rp+Fp. This definition yields the same value of roughness as obtained from the sand-grain roughness [H. Darcy, Recherches Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux (Mallet-Bachelier, Paris, France, 1857); J. T. Fanning, A Practical Treatise on Hydraulic and Water Supply Engineering (Van Nostrand, New York, 1877, revised ed. 1886); J. Nikuradse, "Laws of flow in rough pipes" ["Stromungsgesetze in Rauen Rohren," VDI-Forschungsheft 361 (1933)]; Beilage zu "Forschung auf dem Gebiete des Ingenieurwesens," Ausgabe B Band 4, English translation NACA Tech. Mem. 1292 (1937)]. Specific experiments are conducted using parallel sawtooth ridge elements, placed normal to the flow direction, in aligned and offset configurations in a 10.03mm wide rectangular channel with variable gap (resulting hydraulic diameters of 325μm-1819μm with Reynolds numbers ranging from 200 to 7200 for air and 200 to 5700 for water). The use of constricted flow diameter extends the applicability of the laminar friction factor equations to relative roughness values (sawtooth height) up to 14%. In the turbulent region, the aligned and offset

  6. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  7. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  8. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  9. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction.

    PubMed

    Vrouwenvelder, J S; Hinrichs, C; Van der Meer, W G J; Van Loosdrecht, M C M; Kruithof, J C

    2009-01-01

    In an earlier study, it was shown that biofouling predominantly is a feed spacer channel problem. In this article, pressure drop development and biofilm accumulation in membrane fouling simulators have been studied without permeate production as a function of the process parameters substrate concentration, linear flow velocity, substrate load and flow direction. At the applied substrate concentration range, 100-400 microg l(-1) as acetate carbon, a higher concentration caused a faster and greater pressure drop increase and a greater accumulation of biomass. Within the range of linear flow velocities as applied in practice, a higher linear flow velocity resulted in a higher initial pressure drop in addition to a more rapid and greater pressure drop increase and biomass accumulation. Reduction of the linear flow velocity resulted in an instantaneous reduction of the pressure drop caused by the accumulated biomass, without changing the biofilm concentration. A higher substrate load (product of substrate concentration and flow velocity) was related to biomass accumulation. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. A decrease of substrate load caused a gradual decline in time of both biomass concentration and pressure drop increase. It was concluded that the pressure drop increase over spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane systems can be reduced by lowering both substrate load and linear flow velocity. There is a need for RO and NF systems with a low pressure drop increase irrespective of the biomass formation. Current efforts to control biofouling of spiral wound membranes focus in addition to pretreatment on membrane improvement. According to these authors, adaptation of the hydrodynamics, spacers and pressure vessel configuration offer promising alternatives. Additional approaches may be replacing heavily biofouled elements and flow direction reversal.

  10. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    SciTech Connect

    Lee, T.-W An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  11. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    NASA Astrophysics Data System (ADS)

    Lee, T.-W.; An, Keju

    2016-06-01

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  12. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  13. Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations.

    PubMed

    Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel

    2017-01-01

    Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.

  14. Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations

    PubMed Central

    Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel

    2017-01-01

    Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal’s energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum. PMID:28695119

  15. Special topics reports for the reference tandem mirror fusion breeder: liquid metal MHD pressure drop effects in the packed bed blanket. Vol. 1

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wong, C.P.C.

    1984-09-01

    Magnetohydrodynamic (MHD) effects which result from the use of liquid metal coolants in magnetic fusion reactors include the modification of flow profiles (including the suppression of turbulence) and increases in the primary loop pressure drop and the hydrostatic pressure at the first wall of the blanket. In the reference fission-suppressed tandem mirror fusion breeder design concept, flow profile modification is a relatively minor concern, but the MHD pressure drop in flowing the liquid lithium coolant through an annular packed bed of beryllium/thorium pebbles is directly related to the required first wall structure thickness. As such, it is a major concern which directly impacts fissile breeding efficiency. Consequently, an improved model for the packed bed pressure drop has been developed. By considering spacial averages of electric fields, currents, and fluid flow velocities the general equations have been reduced to simple expressions for the pressure drop. The averaging approach results in expressions for the pressure drop involving a constant which reflects details of the flow around the pebbles. Such details are difficult to assess analytically, and the constant may eventually have to be evaluated by experiment. However, an energy approach has been used in this study to bound the possible values of the constant, and thus the pressure drop. In anticipation that an experimental facility might be established to evaluate the undetermined constant as well as to address other uncertainties, a survey of existing facilities is presented.

  16. High-fin staggered tube banks: Heat transfer and pressure drop for turbulent single phase gas flow

    NASA Astrophysics Data System (ADS)

    1986-10-01

    This Data Item ESDU 86022 is an addition to the Heat Transfer Sub-series. New correlations are presented for external heat transfer coefficient and static pressure loss for single phase flow over plain circular fins of either retangular or tapered cross section on round tubes. The correlations were derived by a regression analysis of experimental results extracted from the literature for a wide range of tube bundle configurations. Fin densities of 4 to 11 per inch (equivalent to fin pitches of 6.4 to 2.3 mm) tube outside diameters of 3/8 to 2 inch (10 to 51 mm), fin heights of 1/4 to 5/8 inch (6 to 16 mm), and ratios of fin tip to fin root diameter of 1.2 to 2.4 were covered. For heat transfer the range of Reynolds number based on tube outer diameter was from 2,000 to 40,000 and for pressure drop from 5,000 to 50,000. Comparison of the prediction with experiment shows that for heat transfer 85% of the data points were within 10% of estimated and for pressure drop 72% were within 10%. A comprehensive worked example showing the use of the method for an air cooled heat exchanger bundle is included. The applicability of this method to nonintegral fins is considered and factors influencing the thermal resistance of the interface are discussed. Effects of fouling are also briefly covered.

  17. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Drop Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  18. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    PubMed

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  19. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    PubMed Central

    Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas

    2006-01-01

    Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers

  20. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges.

    PubMed

    Bernhard, Stefan; Möhlenkamp, Stefan; Tilgner, Andreas

    2006-06-21

    The pressure drop-flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 - 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers during re-opening of the vessel in

  1. Gas convection caused by electron pressure drop in the afterglow of a pulsed inductively coupled plasma discharge

    SciTech Connect

    Cunge, G.; Vempaire, D.; Sadeghi, N.

    2010-03-29

    Neutral depletion is an important phenomenon in high-density plasmas. We show that in pulsed discharges, the neutral depletion caused by the electron pressure P{sub e} plays an important role on radical transport. In the afterglow, P{sub e} drops rapidly by electron cooling. So, a neutral pressure gradient built up between the plasma bulk and the reactor walls, which forces the cold surrounding gas to move rapidly toward the reactor center. Measured drift velocity of Al atoms in the early afterglow of Cl{sub 2}/Ar discharge by time-resolved laser induced fluorescence is as high as 250 ms{sup -1}. This is accompanied by a rapid gas cooling.

  2. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    SciTech Connect

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-07-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  3. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography.

    PubMed

    Poe, Donald P; Schroden, Jonathan J

    2009-11-06

    The effects of particle size and thermal insulation on retention and efficiency in packed-column supercritical fluid chromatography with large pressure drops are described for the separation of a series of model n-alkane solutes. The columns were 2.0mm i.d.x150mm long and were packed with 3, 5, or 10-mum porous octylsilica particles. Separations were performed with pure carbon dioxide at 50 degrees C at average mobile phase densities of 0.47g/mL (107bar) and 0.70g/mL (151bar). The three principal causes of band broadening were the normal dispersion processes described by the van Deemter equation, changes in the retention factor due to the axial density gradient, and radial temperature gradients associated with expansion of the mobile phase. At the lower density the use of thermal insulation resulted in significant improvements in efficiency and decreased retention times at large pressure drops. The effects are attributed to the elimination of radial temperature gradients and the concurrent enhancement of the axial temperature gradient. Thermal insulation had no significant effect on chromatographic performance at the higher density. A simple expression to predict the onset of excess efficiency loss due to the radial temperature gradient is proposed.

  4. Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2017-09-01

    Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.

  5. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-07-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  6. A simple expression for pressure drops of water and other low molecular liquids in the flow through micro-orifices

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomiichi; Ushida, Akiomi; Narumi, Takatsune

    2015-12-01

    Flows are generally divided into two types: shear flows and shear-free elongational (extensional) flows. Both are necessary for a thorough understanding of the flow properties of a fluid. Shear flows are easy to achieve in practice, for example, through Poiseuille or Couette flows. Shear-free elongational flows are experimentally hard to achieve, resulting in an incomplete understanding of the flow properties of fluids in micro-devices. Nevertheless, flows through micro-orifices are useful for probing the properties of elongational flows at high elongational rates; although these flows exhibit shear and elongation, the elongation is dominant and the shear is negligible in the central region of the flows. We previously reported an anomalous reduction in pressure drops in the flows of water, a 50/50 mixture of glycerol and water, and silicone oils through micro-orifices. In the present paper, we rearrange the data presented in the previous paper and reveal a simple relationship where the pressure drop is proportional to the velocity through the micro-orifices, independent of the orifice diameter and the viscosity of the liquids tested. We explain our observations by introducing a "fluid element" model, in which fluid elements are formed on entering the orifice. The model is based on the idea that low molecular liquids, including water, generate strong elongational stress, similar to a polymer solution, in the flow through micro-orifices.

  7. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  8. Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Xinyu; Wu, Huiying; Cheng, Ping

    2009-10-01

    Experimental investigations were performed on the single-phase flow and heat transfer characteristics through the silicon-based trapezoidal microchannels with a hydraulic diameter of 194.5 µm using Al2O3-H2O nanofluids with particle volume fractions of 0, 0.15% and 0.26% as the working fluids. The effects of the Reynolds number, Prandtl number and nanoparticle concentration on the pressure drop and convective heat transfer were investigated. Experimental results show that the pressure drop and flow friction of the nanofluids increased slightly when compared with that of the pure water, while the Nusselt number increased considerably. At the same pumping power, using nanofluids instead of pure water caused a reduction in the thermal resistance. It was also found that the Nusselt number increased with the increase in the particle concentration, Reynolds number and Prandtl number. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of Al2O3-H2O nanofluids through silicon microchannels were proposed for the first time. The agglomeration and deposition of nanoparticles in the silicon microchannels were also examined in this paper. It was found that the Al2O3 nanoparticles deposited on the inner wall of microchannels more easily with increasing wall temperature, and once boiling commenced, there is a severe deposition and adhesion of nanoparticles to the inner wall, which makes the boiling heat transfer of nanofluids in silicon microchannels questionable.

  9. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-05

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Al-Coated Conductive Fibrous Filter with Low Pressure Drop for Efficient Electrostatic Capture of Ultrafine Particulate Pollutants.

    PubMed

    Choi, Dong Yun; Jung, Soo-Ho; Song, Dong Keun; An, Eun Jeong; Park, Duckshin; Kim, Tae-Oh; Jung, Jae Hee; Lee, Hye Moon

    2017-05-17

    Here, we demonstrate a new strategy of air filtration based on an Al-coated conductive fibrous filter for high efficient nanoparticulate removals. The conductive fibrous filter was fabricated by a direct decomposition of Al precursor ink, AlH3{O(C4H9)2}, onto surfaces of a polyester air filter via a cost-effective and scalable solution-dipping process. The prepared conductive filters showed a low sheet resistance (<1.0 Ω sq(-1)), robust mechanical durability and high oxidative stability. By electrostatic force between the charged fibers and particles, the ultrafine particles of 30-400 nm in size were captured with a removal efficiency of ∼99.99%. Moreover, the conductive filters exhibited excellent performances in terms of the pressure drop (∼4.9 Pa at 10 cm s(-1)), quality factor (∼2.2 Pa(-1) at 10 cm s(-1)), and dust holding capacity (12.5 μg mm(-2)). After being cleaned by water, the filtration efficiency and pressure drop of the conductive filter was perfectly recovered, which indicates its good recyclability. It is expected that these promising features make the conductive fibrous filter have a great potential for use in low-cost and energy-efficient air cleaning devices as well as other relevant research areas.

  11. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-01-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  12. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The effect of flexible tube vibration on pressure drop and heat transfer in heat exchangers considering viscous dissipation effects

    NASA Astrophysics Data System (ADS)

    Shokouhmand, H.; Sangtarash, F.

    2008-04-01

    The pressure drop and heat transfer coefficient in tube bundle of shell and tube heat exchangers are investigated considering viscous dissipation effects. The governing equations are solved numerically. Because of temperature-dependent viscosity the equations should be solved simultaneously. The flexible tubes vibration is modeled in a quasi-static method by taking the first tube of the row to be in 20 asymmetric positions with respect to the rest of the tubes which are assumed to be fixed and time averaging the steady state solutions corresponding to each one of these positions .The results show that the eccentricity of the first tube increases pressure drop and heat transfer coefficients significantly comparing to the case of rigid tube bundles, symmetrically placed. In addition, these vibrations not only compensate the effect of viscous dissipations on heat transfer coefficient but also increase heat transfer coefficient. The constant viscosity results obtained from our numerical method have a good agreement with the available experimental data of constant viscosity for flexible tube heat exchangers.

  14. [Probability of altitude decompression sickness following a drop in pressure from 840 to 308 mm Hg].

    PubMed

    Barer, A S; Vakar, M I; Vorob'ev, G F; Iseev, L R; Filipenkov, S N

    1982-01-01

    The decompression from the hyperbaric air atmosphere with the pressure 840+/-5 mm Hg and subsequent 40 min exposure to the hypobaric atmosphere 308+/-1 mm Hg containing 40 to 95% O2 cause a decompression disease in 5-40% cases. The probability of the disease depends on the duration of nitrogen saturation at an increased pressure, physical fitness and individual susceptibility to decompression sickness.

  15. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    NASA Astrophysics Data System (ADS)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2017-01-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  16. Bioaerosols from composting facilities—a review

    PubMed Central

    Wéry, Nathalie

    2014-01-01

    Bioaerosols generated at composting plants are released during processes that involve the vigorous movement of material such as shredding, compost pile turning, or compost screening. Such bioaerosols are a cause of concern because of their potential impact on both occupational health and the public living in close proximity to such facilities. The biological hazards potentially associated with bioaerosol emissions from composting activities include fungi, bacteria, endotoxin, and 1-3 β-glucans. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants as well as the potential exposure of nearby residents. This is due in part to the difficulty of tracing specifically these microorganisms in air. In recent years, molecular tools have been used to develop new tracers which should help in risk assessments. This review summarizes current knowledge of microbial diversity in composting aerosols and of the associated risks to health. It also considers methodologies introduced recently to enhance understanding of bioaerosol dispersal, including new molecular indicators and modeling. PMID:24772393

  17. Pressure drop, flow pattern and local water volume fraction measurements of oil-water flow in pipes

    NASA Astrophysics Data System (ADS)

    Kumara, W. A. S.; Halvorsen, B. M.; Melaaen, M. C.

    2009-11-01

    Oil-water flow in horizontal and slightly inclined pipes was investigated. The experimental activities were performed using the multiphase flow loop at Telemark University College, Porsgrunn, Norway. The experiments were conducted in a 15 m long, 56 mm diameter, inclinable steel pipe using Exxsol D60 oil (density of 790 kg m-3 and viscosity of 1.64 mPa s) and water (density of 996 kg m-3 and viscosity of 1.00 mPa s) as test fluids. The test pipe inclination was changed in the range from 5° upward to 5° downward. Mixture velocity and inlet water cut vary up to 1.50 m s-1 and 0.975, respectively. The time-averaged cross-sectional distributions of oil and water were measured with a single-beam gamma densitometer. The pressure drop along the test section of the pipe was also measured. The characterization of flow patterns and identification of their boundaries are achieved via visual observations and by analysis of local water volume fraction measurements. The observed flow patterns were presented in terms of flow pattern maps for different pipe inclinations. In inclined flows, dispersions appear at lower mixture velocities compared to the horizontal flows. Smoothly stratified flows observed in the horizontal pipe disappeared in upwardly inclined pipes and new flow patterns, plug flow and stratified wavy flow were observed. The water-in-oil dispersed flow regime slightly shrinks as the pipe inclination increases. In inclined flows, the dispersed oil-in-water flow regime extended to lower mixture velocities and lower inlet water cuts. The present experimental data were compared with the results of a flow-pattern-dependent prediction model, which uses the area-averaged steady-state two-fluid model for stratified flow and the homogeneous model for dispersed flow. The two-fluid model was able to predict the pressure drop and water hold-up for stratified flow. The homogeneous model was not able to predict the pressure profile of dispersed oil-water flow at higher water

  18. Pressure drop testing of corrugated stainless steel pliable gas tubing (PLT)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bharadwaj

    An experimental program was initiated to determine the Darcy friction factor in straight corrugated stainless steel pliable gas tubing (PLT). Pressure loss tests were conducted on PLT per I.S. EN 15266:2007. A power law least-squares curve fit was used to relate pressure loss per unit length as a function of volume flow rate. The calculated coefficient of determination values for the straight PLT exceeded 0.90 indicating suitable correlation. Darcy friction factors were calculated from test data for each case and plotted on a Moody diagram as a function of Reynolds number based on the minimum PLT cross section. For Reynolds numbers less than 2300 the pressure loss data for PLT yielded an inverse relationship between the Darcy friction factor and the Reynolds number, with a proportionality coefficient of 49. The measurement uncertainty estimates for straight sections was performed with a 95% confidence level. Straight PLT flow rates for air and representative fuel gases that would yield a pressure loss Deltap = 1 mbar were calculated as a function of PLT length and diameter. Fitting pressure loss tests were performed for elbows, tees, and bullhead tees. The loss coefficients were evaluated and tabulated. The calculated coefficient of determination values for the fittings was found to be low. The measurement uncertainty was calculated using the root sum square error method and was found to be very high because of the low flow rates considered in this experiment.

  19. Fluctuation emergence of bubbles under a rapid drop of pressure in a liquid

    NASA Astrophysics Data System (ADS)

    Pavlov, P. A.; Vinogradov, V. E.

    2015-07-01

    Explosive cavitation at the front of a negative-pressure pulse has been studied. Conditions for the emergence of bubbles by the mechanism of homogeneous fluctuation nucleation were identified. Those conditions feature a high rate of the phase transformation, with the vapor formation process being concentrated in time at the instant of attainment of a certain pressure. Under such conditions, the liquid cavitation strength is maximal, and its value can be predicted by the homogeneous nucleation theory. For implementing the regime with high nucleation frequency, a method based on passing a negative-pressure pulse across a region with locally heated liquid was employed. The cavitation kinetics was examined by monitoring the perturbation of the heat flow from a miniature heater. The experimental data were generalized using the theory of explosive vapor formation in shock boiling mode. A method for calculating the cavitation in the regime of the fluctuation emergence of bubbles was approbated.

  20. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-04

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems.

  1. Composting public health aspects: Odors and bioaerosols

    SciTech Connect

    Williams, T.O.; Epstein, E.

    1995-09-01

    The two dominating public health issues associated with composting are odors and bioaerosols, regardless of the feedstock or method of composting. Odors, per se, are an irritant and a nuisance rather than a direct health problem. However, when odors emanate form a facility, the surrounding public often associates odors with compounds which may result in health problems. For example, hydrogen sulfide is not found in high concentrations during composting or found to be of a health significance in the air surrounding composting facilities, yet health issues related to this compound have emerged as a result of odors. Another health concern associated with odors is bioaerosols. Bioaerosols are biological organisms or substances from biological organisms which have been implicated in human health. Bioaerosols may contain fungal spores, actinomycetes, microbial products, and other organisms. Mitigating odors and bioaerosols is a function of facility design and operations. There is a greater opportunity in municipal solid waste (MSW) and biosolids facilities for effective design than with year waste facilities. MSW and biosolids facilities as a result of the nature of the feedstock generally require more sophisticated materials handling equipment which require enclosures. With enclosures there is a greater opportunity to scrub the air for removal of odors and dust. There are also more regulatory requirements for MSW and sewage sludge composting for both process and product by states and the Federal government. The objective of this paper is to provide information on the concerns, state-of-the-art, and potential mitigating aspects which need to be considered in the design and operation of MSW facilities.

  2. Two-phase flow heat transfer and pressure drop characteristics of R-22 and R-32/125

    SciTech Connect

    Wijaya, H.; Spatz, M.W.

    1995-08-01

    The two-phase heat transfer coefficient and pressure drop characteristics of refrigerants R-22 and R-32/125 (ASI 1990) (a mixture of 50 wt% R-32 and 50 wt% R-125 that exhibits azeotropic behavior) have been measured. The experiments were conducted without oil in the refrigerant loop. The condenser/evaporator test sections consist of smooth, horizontal copper tubes of 3/8-in. (9.53-mm) outer diameter (OD) and 0.305-in. (7.75-mm) inner diameter (ID). A lengths of the condenser and evaporator test sections are 10 ft (3.05 m) and 12 ft (3.66 m), respectively. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and a water-glycol mixture flowing in the annulus. The evaporator is a smooth copper tube sandwiched with aluminum blocks. Heating tapes are wrapped around the outer surface of these aluminum blocks. The average saturated condensing temperatures were 115 F (46.1 C) and 125 F (51.7 C), while the saturated evaporating temperature was 40 F (4.4 C). The average inlet and exit qualities for the condensation tests were 87% and 25%, respectively and for the evaporation tests they were 20% and 90%, respectively. The mass flux was varied from 118 klb/ft{sup 2}{minus}{center_dot}h (160 kg/s{center_dot}m{sup 2}) to 414 klb/ft{sup 2}{center_dot}h (561 kg/s{center_dot}m{sup 2}). A differential pressure transducer was used to measure the pressure drop across the test section. The results showed that at similar mass fluxes the condensation heat transfer coefficients for R-32/125 were slightly higher (about 2% to 6%) than those of R-22.

  3. Experimental studies on the enhanced flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in vertical porous coated tube

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Shen, Zhi; Chen, Tingkuan; Zhou, Chenn Q.

    2013-07-01

    The characteristics of flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in a vertical porous coated tube are experimentally studied in this paper. The experiments are performed at evaporation pressure of 0.16-0.31MPa, mass flux of 390-790kg/m2s, and vapor quality of 0.06-0.58. The variations of heat transfer coefficient and pressure drop with vapor quality are measured and compared to the results of smooth tube. Boiling curves are generated at mass flux of 482 and 675kg/m2s. The experimental results indicate that the heat transfer coefficients of the porous tube are 1.8-3.5 times those of smooth tube, and that the frictional pressure drops of the porous tube are 1.1-2.9 times those of smooth tube. The correlations for heat transfer coefficient and frictional pressure drop are derived, in which the effect of fluid molecular weight is included. The experiments show that significant heat transfer enhancement is accompanied by a little pressure drop penalty, the application of the porous coated tube is promising in the process industries.

  4. Computational and experimental investigation of the drag reduction and the components of pressure drop in horizontal slug flow using liquids of different viscosities

    SciTech Connect

    Daas, Mutaz; Bleyle, Derek

    2006-03-01

    Computational and experimental investigation in 10-cm ID horizontal pipes have been carried out utilizing carbon dioxide as the gas phase and two types of oil with different viscosities; namely 0.0025Pas and 0.05Pas, as the liquid phase. The influence of oil viscosity on the magnitude of total pressure drop and each of its components as well as the effectiveness of a drag reducing additive (DRA, CDR WS 500M flow improver) in decreasing the pressure loss was investigated in two-phase oil-gas slug flow. The effects of changing oil viscosity on the contribution of frictional and accelerational components to total pressure drop in slug flow were also examined and analyzed. Computations of accelerational and frictional components of pressure drop were performed. The accelerational component of pressure drop was dominant in the 0.0025Pas oil while the frictional component had significant contributions in the 0.05Pas oil. Despite the fact that the magnitude of drag reduction was higher in the 0.05Pas oil, the DRA was more effective in reducing the total pressure drop and its components in the 0.0025Pas oil. (author)

  5. Effects of bioaerosol polluted outdoor air on airways of residents: a cross sectional study.

    PubMed

    Herr, C E W; Zur Nieden, A; Jankofsky, M; Stilianakis, N I; Boedeker, R-H; Eikmann, T F

    2003-05-01

    Bioaerosol pollution of workplace and home environments mainly affects airways and mucous membranes. The effect of environmental outdoor residential bioaerosol pollution, for example, livestock holdings, farming, and waste disposal plants, is unclear. To investigate the perceived health of residents living in areas with measurable outdoor bioaerosol pollution (for example, spores of Aspergillus fumigatus and actinomycetes), and effects of accompanying odours. In a cross sectional study, double blinded to ongoing microbial measurements, doctors collected 356 questionnaires from residents near a large scale composting site, and from unexposed controls in 1997. Self reported prevalence of health complaints during the past year, doctors' diagnoses, as well as residential odour annoyance were assessed. Microbiological pollution was measured simultaneously in residential outdoor air. Concentrations of >10(5) colony forming units of thermophilic actinomycetes, moulds, and total bacteria/m(3) air were measured 200 m from the site, dropping to near background concentrations within 300 m. Positive adjusted associations were observed for residency within 150-200 m from the site versus unexposed controls for self reported health complaints: "waking up due to coughing", odds ratio (OR) 6.59 (95% confidence interval (CI) 2.57 to 17.73); "coughing on rising or during the day", OR 3.18 (95% CI 1.24 to 8.36); "bronchitis", OR 3.59 (95% CI 1.40 to 9.4); and "excessive tiredness", OR 4.27 (95% CI 1.56 to 12.15). Reports of irritative airway complaints were associated with residency in the highest bioaerosol exposure, 150-200 m (versus residency >400-500 m) from the site, and period of residency more than five years, but not residential odour annoyance. Lifetime prevalence of self reported diseases did not differ with exposure. Bioaerosol pollution of residential outdoor air can occur in concentrations found in occupational environments. For the first time residents exposed to

  6. Effects of bioaerosol polluted outdoor air on airways of residents: a cross sectional study

    PubMed Central

    Herr, C; zur Nieden, A; Jankofsky, M; Stilianakis, N; Boedeker, R; Eikmann, T

    2003-01-01

    Background: Bioaerosol pollution of workplace and home environments mainly affects airways and mucous membranes. The effect of environmental outdoor residential bioaerosol pollution, for example, livestock holdings, farming, and waste disposal plants, is unclear. Aims: To investigate the perceived health of residents living in areas with measurable outdoor bioaerosol pollution (for example, spores of Aspergillus fumigatus and actinomycetes), and effects of accompanying odours. Methods: In a cross sectional study, double blinded to ongoing microbial measurements, doctors collected 356 questionnaires from residents near a large scale composting site, and from unexposed controls in 1997. Self reported prevalence of health complaints during the past year, doctors' diagnoses, as well as residential odour annoyance were assessed. Microbiological pollution was measured simultaneously in residential outdoor air. Results: Concentrations of >105 colony forming units of thermophilic actinomycetes, moulds, and total bacteria/m3 air were measured 200 m from the site, dropping to near background concentrations within 300 m. Positive adjusted associations were observed for residency within 150–200 m from the site versus unexposed controls for self reported health complaints: "waking up due to coughing", odds ratio (OR) 6.59 (95% confidence interval (CI) 2.57 to 17.73); "coughing on rising or during the day", OR 3.18 (95% CI 1.24 to 8.36); "bronchitis", OR 3.59 (95% CI 1.40 to 9.4); and "excessive tiredness", OR 4.27 (95% CI 1.56 to 12.15). Reports of irritative airway complaints were associated with residency in the highest bioaerosol exposure, 150–200 m (versus residency >400–500 m) from the site, and period of residency more than five years, but not residential odour annoyance. Lifetime prevalence of self reported diseases did not differ with exposure. Conclusions: Bioaerosol pollution of residential outdoor air can occur in concentrations found in occupational

  7. Two-phase flow boiling frictional pressure drop of liquid nitrogen in horizontal circular mini-tubes: Experimental investigation and comparison with correlations

    NASA Astrophysics Data System (ADS)

    Chen, Xingya; Chen, Shuangtao; Chen, Jun; Li, Jiapeng; Liu, Xiufang; Chen, Liang; Hou, Yu

    2017-04-01

    The two-phase flow boiling characteristics of liquid nitrogen (LN2) in horizontal circular mini-tubes were experimentally studied. Experiments were performed in a wide range of flow conditions, e.g. inlet pressure from 0.17 to 0.35 MPa, mass flux from 140 to 330 kg/m2 s, heat flux from 0.5 to 69.4 kW/m2 and tube diameters of 2.92 mm and 3.96 mm. The influences of mass flux, heat flux, and inlet pressure on the pressure drop were discussed. The results indicated that the pressure drop increases with the increasing mass flux and heat flux but decreases with the increasing inlet pressure. But the influence of heat flux on the frictional pressure drop of LN2 was weaker than mass flux and inlet pressure. The frictional pressure drop of two-phase flow of LN2 was compared with homogeneous model and several semi-empirical correlations. An improved correlation based on the Lockhart-Martinelli model, which used coefficient C as a function of Reynolds number and Weber number was proposed.

  8. Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics

    NASA Technical Reports Server (NTRS)

    Ludewig, M.; Omori, S.; Rao, G. L.

    1974-01-01

    Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.

  9. Evaluation of the anti-Acanthamoeba activity of two commercial eye drops commonly used to lower eye pressure.

    PubMed

    Sifaoui, Ines; Reyes-Batlle, María; López-Arencibia, Atteneri; Wagner, Carolina; Chiboub, Olfa; De Agustino Rodríguez, Jacqueline; Rocha-Cabrera, Pedro; Valladares, Basilio; Piñero, José E; Lorenzo-Morales, Jacob

    2017-08-01

    Efficient treatments against Acanthamoeba Keratitis (AK), remains until the moment, as an issue to be solved due to the existence of a cyst stage which is highly resistant to most chemical and physical agents. In this study, two antiglaucoma eye drops were tested for their activity against Acanthamoeba. Moreover, this study was based on previous data which gave us evidence of a possible link between the absences of Acanthamoeba at the ocular surface in patients treated with beta blockers for high eye pressure both containing timolol as active principle. The amoebicidal activity of the tested eye drops was evaluated against four strains of Acanthamoeba using Alamar blue method. For the most active drug the cysticidal activity against A. castellanii Neff cysts and further experiments studying changes in chromatin condensation levels, in the permeability of the plasmatic membrane, the mitochondrial membrane potential and the ATP levels in the treated amoebic strains were done. Even though both eye drops were active against the different tested strains of Acanthamoeba, statistical analysis revealed that one of them (Timolol Sandoz) was the most effective one against all the tested strains presenting IC50s ranging from 0.529% ± 0.206 for the CLC 16 strain to 3.962% ± 0.150 for the type strain Acanthamoeba castellanii Neff. Timolol Sandoz 0.50% seems to induce amoebic cell death by damaging the amoebae at the mitochondrial level. Considering its effect, Timolol Sandoz 0.50% could be used in the case of contact lens wearers and patients with glaucoma. Copyright © 2017. Published by Elsevier Inc.

  10. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation.

    PubMed

    Qureshi, M Umar; Vaughan, Gareth D A; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S; Olufsen, Mette S; Hill, N A

    2014-10-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281-1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of 'large' arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the 'smaller' arteries and veins of radii ≥ 50 μm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung.

  11. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    PubMed Central

    Qureshi, M. Umar; Vaughan, Gareth D.A.; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S.; Olufsen, Mette S.; Hill, N.A.

    2014-01-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen and coworkers (Ottesen et al., 2003; Olufsen et al., 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50µm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment of circulatory diseases within the lung. PMID:24610385

  12. Short term Heart Rate Variability to predict blood pressure drops due to standing: a pilot study.

    PubMed

    Sannino, G; Melillo, P; Stranges, S; De Pietro, G; Pecchia, L

    2015-01-01

    Standing from a bed or chair may cause a significant lowering of blood pressure (ΔBP), which may have severe consequences such as, for example, falls in older subjects. The goal of this study was to develop a mathematical model to predict the ΔBP due to standing in healthy subjects, based on their Heart Rate Variability, recorded in the 5 minutes before standing. Heart Rate Variability was extracted from an electrocardiogram, recorded from 10 healthy subjects during the 5 minutes before standing. The blood pressure value was measured before and after rising. A mathematical model aiming to predict ΔBP based on Heart Rate Variability measurements was developed using a robust multi-linear regression and was validated with the leave-one-subject-out cross-validation technique. The model predicted correctly the ΔBP in 80% of experiments, with an error below the measurement error of sphygmomanometer digital devices (± 4.5 mmHg), a false negative rate of 7.5% and a false positive rate of 10%. The magnitude of the ΔBP was associated with a depressed and less chaotic Heart Rate Variability pattern. The present study showes that blood pressure lowering due to standing can be predicted by monitoring the Heart Rate Variability in the 5 minutes before standing.

  13. Short term Heart Rate Variability to predict blood pressure drops due to standing: a pilot study

    PubMed Central

    2015-01-01

    Background Standing from a bed or chair may cause a significant lowering of blood pressure (ΔBP), which may have severe consequences such as, for example, falls in older subjects. The goal of this study was to develop a mathematical model to predict the ΔBP due to standing in healthy subjects, based on their Heart Rate Variability, recorded in the 5 minutes before standing. Methods Heart Rate Variability was extracted from an electrocardiogram, recorded from 10 healthy subjects during the 5 minutes before standing. The blood pressure value was measured before and after rising. A mathematical model aiming to predict ΔBP based on Heart Rate Variability measurements was developed using a robust multi-linear regression and was validated with the leave-one-subject-out cross-validation technique. Results The model predicted correctly the ΔBP in 80% of experiments, with an error below the measurement error of sphygmomanometer digital devices (±4.5 mmHg), a false negative rate of 7.5% and a false positive rate of 10%. The magnitude of the ΔBP was associated with a depressed and less chaotic Heart Rate Variability pattern. Conclusions The present study showes that blood pressure lowering due to standing can be predicted by monitoring the Heart Rate Variability in the 5 minutes before standing. PMID:26391336

  14. Investigation of Electrobiological Properties of Bioaerosols

    NASA Astrophysics Data System (ADS)

    Mainelis, G.; Yao, M.; An, H. R.

    2004-05-01

    Exposure to bioaerosols, especially to pathogenic or allergenic microorganisms, may cause a wide range of respiratory and other health disorders in occupational and general populations. One of bioaerosol characteristics - electric charge - can greatly influence their deposition in sampling lines and collection devices. The magnitude of electric charge carried by inhaled particles can have a significant effect on their deposition in the lung. In addition, electric charge may affect role of bioaerosols as ice and cloud condensation nuclei; charge (or electrical mobility) can control bioaerosol movement in electrical fields, such as created by power lines. Electrical charge is also important for the development of bioaerosol samplers that utilize electrostatics for particle collection - this technique has been shown to be more "gentle" collection method than traditionally used impactors and impingers. Our previous studies have shown that airborne environmental bacteria, such as Pseudomonas fluorescens and B. subtilis var. niger, have a net negative charge, with individual cells carrying as many as 10,000 elementary charge units, which sharply contrasted with low electrical charges carried by non-biological test particles. We have also found that magnitude and polarity of electrical charge can significantly affect viability of sensitive bacteria, such as P. fluorescens. In our continuing exploration of electrobiological properties of bioaerosols, we investigated application of electrostatic collection method for concurrent determination of total and viable bioaerosols, and also analyzed the effect of electrical fields on microbial viability. In our new bioaerosol collector, the biological particles are drawn into the sampler's electrical field and are concurrently deposited on an agar plate for determining viable microorganisms, and into a ELISA plate for determining total collected microorganisms. Experiments with B. subtilis var. niger and P. fluorescens vegetative

  15. Real-time monitoring for bioaerosols--flow cytometry.

    PubMed

    Chen, Pei-Shih; Li, Chih-Shan

    2007-01-01

    Bioaerosol detection in real time is an urgent civilian and military requirement. In this article, bioaerosol mass spectrometry, an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence, real-time qPCR, and FCM/FL were discussed. Although, challenging work remains to determine the interfering substances (e.g. particulates) of different environments, distinguish the specific species with specific probe, and overcome the high detection limit of FCM (10(4)-10(8) cells ml(-1)), literature reports suggested that FCM/FL has a great potential for real-time monitoring of bioaerosols.

  16. Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches

    NASA Astrophysics Data System (ADS)

    Okbaz, Abdulkerim; Olcay, Ali Bahadır; Cellek, Mehmet Salih; Pınarbaşı, Ali

    In this study 3-D numerical simulations on heat transfer and pressure drop characteristics for a typical louver fin-and- double-row tube heat exchanger were carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles, fin pitch and Reynolds number, and reported in terms of Colburn j-factor and Fanning friction factor f. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles between 20° ≤Ө≤ 30°, louver pitch of Lp=3.8 mm and frontal velocities of U between 1.22 m/s - 3 m/s. In addition, flow visualization of detailed flow features results, such as velocity vectors, streamlines and temperature counters have been shown to understand heat transfer enhancement mechanism. The present results indicated that louver angle and fin pitch noticeably affected the thermal and hydraulic performance of heat exchanger. It has been seen that increasing louver angle, increases thermal performance while decreasing hydraulic performance associated to pressure drop for fin pitches of 3.2 mm and 2.5 mm. Fin pitch determines the flow behaviour that for fin pitch of 2 mm, increasing louver angle decreased heat transfer and pressure drop. Velocity vectors and streamlines give considerable information about the flow whether it is duct directed or louver directed. For all conditions the flow is louver directed.

  17. Pressure-drop viscosity measurements for gamma-Al2O nanoparticles in water and PG-water mixtures (nanofluids).

    PubMed

    Lai, W Y; Phelan, P E; Prasher, R S

    2010-12-01

    Nanofluids have attracted wide attention because of their promising thermal applications. Compared with the base fluid, numerous experiments have generally indicated increases in effective thermal conductivity and convective heat transfer coefficient for suspensions having only a small amount of nanoparticles. It is also known that with the presence of nanoparticles, the viscosity of a nanofluid is greater than its base fluid and deviates from Einstein's classical prediction. However, only a few groups have reported nanofluid viscosity results to date. Therefore, relative viscosity data for gamma-Al2O3 nanoparticles in DI-water and propylene glycol/H2O mixtures are presented here based on pressure drop measurements of flowing nanofluids. Results indicate that with constant wall heat flux, the relative viscosities of nanofluid decrease with increasing volume flow rate. The results also show, based on Brenner's model, that the nanofluid viscosity can be explained in part by the aspect ratio of the aggregates.

  18. Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma.

    PubMed

    Morrison, J C; Nylander, K B; Lauer, A K; Cepurna, W O; Johnson, E

    1998-03-01

    To determine whether chronic topical glaucoma therapy can control intraocular pressure (IOP) and protect nerve fibers in a rat model of pressure-induced optic nerve damage. Sixteen adult Brown Norway rats were-administered unilateral episcleral vein injections of hypertonic saline to produce scarring of the aqueous humor outflow pathways. Twice daily applications of either artificial tears (n = 6), 0.5% betaxolol (n = 5), or 0.5% apraclonidine (n = 5) were delivered to both eyes, and awake pressures were monitored with a TonoPen XL tonometer for 17 days before the rats were killed. For animals administered artificial tears, the mean IOP of the experimental eyes was 39 +/- 2 mm Hg compared with 29 +/- 1 mm Hg for the control eyes. This difference was statistically significant (P < 0.001). Mean IOPs in the experimental eyes of animals administered betaxolol and apraclonidine were 29 +/- 7 and 29 +/- 4 mm Hg, respectively, whereas the mean IOP in the control eyes was 28 +/- 1 mm Hg for both groups. There was no statistically significant difference among these values. The mean IOP for the experimental eyes in the betaxolol and apraclonidine groups was lower than that in animals administered artificial tears (P = 0.003). Quantitative histologic analysis of optic nerve damage in experimental eyes showed that four of the six animals administered artificial tears had damage involving 100% of the neural area. This degree of damage appeared in only 3 of 10 animals administered glaucoma therapy. Optic nerve protection was closely correlated with IOP history because damage was limited to less than 10% of the cross-sectional area in all animals in which the maximal IOP was less than or equal to 39 mm Hg, more than 2 SD below the mean value for eyes administered artificial tears. Topical glaucoma therapy in this model can prevent IOP elevation and protect optic nerve fibers.

  19. Heat Transfer and Pressure Drop Data for Circular Cylinders in Ducts and Various Arrangements

    DTIC Science & Technology

    1951-09-01

    cities - and Constant Spacing iii Scinch, Duct - ~-^ - - -r =• -~ - -- - - - - 37;, Single, Cylinder’ and Three- Cylinders in line" with Yard...heating coils surrounded by .a 3/Scinch thicis shell of ^anslte, .an asbest -cs-cemens material; oo’CiSlstljig of 35 per cent Portland cement .and lä per...gradients did, not permit very accurate de-* teraiinationä--&t low flois veio- cities because of ihseösitivity af She fee generalization of the, pressure

  20. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration.

    PubMed

    Podichetty, Jagdeep T; Dhane, Dhananjay V; Madihally, Sundararajan V

    2012-07-01

    In this study, transport characteristics in flow-through and parallel-flow bioreactors used in tissue engineering were simulated using computational fluid dynamics. To study nutrient distribution and consumption by smooth muscle cells colonizing the 100 mm diameter and 2-mm thick scaffold, effective diffusivity of glucose was experimentally determined using a two-chambered setup. Three different concentrations of chitosan-gelatin scaffolds were prepared by freezing at -80°C followed by lyophilization. Experiments were performed in both bioreactors to measure pressure drop at different flow rates. At low flow rates, experimental results were in agreement with the simulation results for both bioreactors. However, increase in flow rate beyond 5 mL/min in flow-through bioreactor showed channeling at the circumference resulting in lower pressure drop relative to simulation results. The Peclet number inside the scaffold indicated nutrient distribution within the flow-through bioreactor to be convection-dependent, whereas the parallel-flow bioreactor was diffusion-dependent. Three alternative design modifications to the parallel-flow were made by (i) introducing an additional inlet and an outlet, (ii) changing channel position, and (iii) changing the hold-up volume. Simulation studies were performed to assess the effect of scaffold thickness, cell densities, and permeability. These new designs improved nutrient distribution for 2 mm scaffolds; however, parallel-flow configuration was found to be unsuitable for scaffolds more than 4-mm thick, especially at low porosities as tissues regenerate. Furthermore, operable flow rate in flow-through bioreactors is constrained by the mechanical strength of the scaffold. In summary, this study showed limitations and differences between flow-through and parallel-flow bioreactors used in tissue engineering.

  1. A position-sensitive neutron spectrometer/dosimeter based on pressurized superheated drop (bubble) detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Nath, R.; Holland, S. K.; Lamba, M.; Patz, S.; Rivard, M. J.

    2002-01-01

    A position-sensitive, superheated emulsion chamber (SEC) is introduced for three-dimensional (3D) spectrometry and dosimetry of fast neutrons. The detector is based on a fine suspension of octafluorocyclobutane droplets emulsified in a tissue-equivalent gel. This gel is highly viscous and immobilizes the bubbles at the location of their formation. At an operating temperature of 35°C, the droplets are moderately superheated and their evaporation is nucleated by the densely ionizing products of fast neutron interactions, with no response to sparsely ionizing radiations. Thus, when a neutron emitter such as a 252Cf brachytherapy source is inserted in the SEC, a bubble distribution forms around the source and makes the neutron field visible. The SEC is operated at different externally applied pressures that correspond to different response thresholds. These responses form a virtually orthogonal matrix which is suitable for spectrometry and allows the use of effective few channel unfolding procedures, yielding the spatial dependence of absorbed dose and neutron energy spectra in-tissue. Bubble spatial distributions in the chamber can be determined through optical tomography or magnetic resonance imaging (MRI). A 3D, steady-state MRI method has proven particularly effective for this purpose. After the imaging, the SEC can be pressurized above the halocarbon vapor tension in order to recondense the bubbles to the liquid phase. Within a few minutes, the device is annealed and ready to be used again for repeated measurements improving the bubble counting statistics.

  2. Condensation inside tubes: Computer program for pressure drop in straight tubes (horizontal and vertical with downflow)

    NASA Astrophysics Data System (ADS)

    1993-12-01

    ESDU 93014 introduces a Fortran program that implements the calculation procedures of ESDU 90024 and 91023 respectively for vertical and horizontal cases. Those documents should be consulted for details of the empirical correlation used. Since vapor density is an important variable in the calculation and is usually available as a function of saturation temperature, the relationship between pressure and saturation temperature is required at points along the tube, although a constant value of vapor density may be used if the user wishes. The program provides options to use an Antoine or Wagner equation, or to provide a set of values of saturation pressure and temperature; for the vapor density the options are to use the ideal gas law, to provide a set of values of saturation temperature and density or to use a specific correlation equation (log density as a fraction of critical as a five term polynomial function of reciprocal reduced temperature minus one). For a wide range of pure compounds the ESDU Physical Data, Chemical Engineering Sub-series provides values of the constants in the correlation equations for saturation temperature and vapor density. The program (ESDUpac A9314) is provided on disc (uncompiled) in the software volume, and also compiled within ESDUview, a user-friendly shell running under MS DOS that prompts on screen for the input data. A worked example illustrates the use of the program and the formats of the input data and the output.

  3. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  4. UV fluorescence lidar detection of bioaerosols

    NASA Astrophysics Data System (ADS)

    Christesen, Steven D.; Merrow, Clifton N.; Desha, Michael S.; Wong, Anna; Wilson, Mark W.; Butler, John C.

    1994-06-01

    A UV fluorescence lidar system for the remote detection of bioaerosols has been built and tested. At the heart of the UV- LIDAR Fluorosensor system are a 200 mJ quadrupled Nd:YAG laser at 266 nm and a 16-inch Cassagrain telescope. Operating on three data collection channels, the UV lidar is capable of real time monitoring of 266 nm elastic backscatter, the total fluorescence between 300 and 400 nm, and the dispersed fluorescence spectrum (using a small spectrograph and gated intensified CCD array). Our goal in this effort was to assess the capabilities of biofluorescence for quantitative detection and discrimination of bioaerosols. To this end, the UV-LIDAR Fluorosensor system was tested against the aerosolized bacterial spore Bacillus subtilus var. niger sp. globiggi (BG) and several likely interferences at several ranges from approximately 600 to 3000 m. Our tests with BG indicate a detection limit of approximately 500 mg/cubic meter at a range of 3000 m.

  5. Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop

    SciTech Connect

    Brownell, H.H.; Yu, E.K.C.; Saddler, J.N.

    1986-06-01

    Material balances for pentosan, lignin, and hexosan, during steam-explosion pretreatment of aspenwood, showed almost quantitative recovery of cellulose in the water-insoluble fraction. Dilute acid impregnation resulted in more selective hydrolysis of pentosan relative to undesirable pyrolysis, and gave a more accessible substrate for enzymatic hydrolysis. Thermocouple probes, located inside simulated aspenwood chips heated in 240 degrees C-saturated steam, showed rapid heating of air-dry wood, whereas green or impregnated wood heated slowly. Small chips, 3.2 mm in the fiber direction, whether green or air dry gave approximately equal rates of pentosan destruction and solubilization, and similar yields of glucose and of total reducing sugars on enzmatic hydrolysis with Trichoderma harzianum. Partial pyrolysis, destroying one-third of the pentosan of aspenwood at atmospheric pressure by dry steam at 276 degrees C, gave little increase in yield of reducing sugars on enzymatic hydrolysis. Treatment with saturated steam at 240 degrees C gave essentially the same yields of butanediol and ethanol on fermentation with Klebsiella pneumoniae, whether or not 80% of the steam was bled off before explosion and even if the chips remained intact, showing that explosion was unnecessary. 17 references.

  6. Rainfall feedback via persistent effects on bioaerosols

    NASA Astrophysics Data System (ADS)

    Bigg, E. K.; Soubeyrand, S.; Morris, C. E.

    2014-10-01

    Consistent temporal differences between ice nucleus concentrations after and before a heavy fall of rain have been found in four areas of Australia. Closely similar differences were found between rainfall quantity or frequency at 106 sites in south-eastern and 61 sites in south-western Australia that had >92 years of daily rainfall records. The differences suggest an impulsive increase in ice nuclei or in rain on the day following heavy rain that decreased exponentially with time and was often still detectable after 20 days. The similarity of ice nucleus concentrations, bacterial populations, bioaerosols and rainfall responses to heavy rain strongly corroborate the involvement of biological ice nuclei in a rainfall feedback process. Cumulative differences of after-before rainfall amount or frequency for each rainfall event were next combined to form a historical record of the feedback process for each site. Comparison of cumulative totals pre-1960 and post-1960 showed differences bearing apparent relations to upwind coal-fired power stations, growth of metropolitan areas and increased areas of cultivation of wheat. These observations suggested that fungal spores or other bioaerosols as well as ice-nucleating bacteria were involved in the feedback. The overall conclusion is that interactions between micro-organisms, bioaerosols and rainfall have impacts over longer time spans and are stronger than have been previously described.

  7. Bioaerosols in the Barcelona subway system.

    PubMed

    Triadó-Margarit, X; Veillette, M; Duchaine, C; Talbot, M; Amato, F; Minguillón, M C; Martins, V; de Miguel, E; Casamayor, E O; Moreno, T

    2016-09-30

    Subway systems worldwide transport more than 100 million people daily; therefore, air quality on station platforms and inside trains is an important urban air pollution issue. We examined the microbiological composition and abundance in space and time of bioaerosols collected in the Barcelona subway system during a cold period. Quantitative PCR was used to quantify total bacteria, Aspergillus fumigatus, influenza A and B, and rhinoviruses. Multitag 454 pyrosequencing of the 16S rRNA gene was used to assess bacterial community composition and biodiversity. The results showed low bioaerosol concentrations regarding the targeted microorganisms, although the bacterial bioburden was rather high (10(4) bacteria/m(3) ). Airborne bacterial communities presented a high degree of overlap among the different subway environments sampled (inside trains, platforms, and lobbies) and were dominated by a few widespread taxa, with Methylobacterium being the most abundant genus. Human-related microbiota in sequence dataset and ascribed to potentially pathogenic bacteria were found in low proportion (maximum values below 2% of sequence readings) and evenly detected. Hence, no important biological exposure marker was detected in any of the sampled environments. Overall, we found that commuters are not the main source of bioaerosols in the Barcelona subway system.

  8. Effect of instant controlled pressure drop treatments on the oligosaccharides extractability and microstructure of Tephrosia purpurea seeds.

    PubMed

    Amor, Bouthaina Ben; Lamy, Cécile; Andre, Patrice; Allaf, Karim

    2008-12-12

    The study of the oligosaccharides extracted from Tephrosia purpurea seeds was undertaken using the instant controlled pressure drop (DIC) as a pre-treatment prior to conventional solvent extraction. This DIC procedure provided structural modification in terms of expansion, higher porosity and improvement of specific surface area; diffusion of solvent inside such seeds and availability of oligosaccharides increase notably. In this paper, we investigated and quantified the impact of the different DIC operative parameters on the yields of ciceritol and stachyose extracted from T. purpurea seeds. The treatment could be optimized with a steam pressure (P) (P=0.2 MPa), initial water content (W) (W=30% dry basis (DB)) and thermal treatment time (t) (t=30s). By applying DIC treatment in these conditions, the classic process of extraction was intensified in both aspects of yields (145% of ciceritol and 185% of stachyose), and kinetics (1h of extraction time instead of 4h for conventional process). The scanning electron microscopy micrographs provided evident modifications of structure of seeds due to the DIC treatment.

  9. Effect of filtration velocity and filtration pressure drop on the bag-cleaning performance of a pulse-jet baghouse

    SciTech Connect

    Tsai, C.J.; Tsai, M.L.; Lu, H.C.

    2000-01-01

    In this study the filtration velocity and filtration pressure drop at the beginning of bag cleaning were used as experimental parameters to evaluate the bag-cleaning performance of a pulse-jet baghouse. The effective residual pressure loss was used to indicate the cleaning performance after bag cleaning. Two different test dusts, fly ash and limestone, were used. The critical cleaning indices under different operation conditions for bag cleaning were also investigated. A critical average pulse overpressure was found to exist beyond which bag-cleaning performance did not improve much. It was found the filter's final filtration resistance is an important parameter to decide whether a Venturi is necessary for a good bag-cleaning performance or not. Use of a Venturi was found to increase the average pulse overpressure for a system with a filter's final resistance coefficient greater than about 500 Pa{center{underscore}dot}s/cm. However, no Venturi is recommended when the filter's final resistance coefficient is smaller than 500 Pa{center{underscore}dot}s/cm.

  10. Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures.

    PubMed

    Yuan, Zhang Fu; Mukai, Kusuhiro; Takagi, Katsuhiko; Ohtaka, Masahiko; Huang, Wen Lai; Liu, Qiu Sheng

    2002-10-15

    The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P(O(2))) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P(O(2))=2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mN m(-1) K(-1), respectively. However, at high P(O(2)) (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P(O(2)) is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173 degrees, and the wettability is poor.

  11. Mixed convective low flow pressure drop in vertical rod assemblies: I---Predictive model and design correlation

    SciTech Connect

    Suh, K.Y.; Todreas, N.E.; Rohsenow, W.M. )

    1989-11-01

    A predicative theory has been developed for rod bundle frictional pressure drop characteristics under laminar and transitional mixed convection conditions on the basis of the intraassembly and intrasubchannel flow redistributions due to buoyancy for a wide spectrum of radial power profiles and for the geometric arrangements of practical design interest. Both the individual subchannel correlations and overall bundle design correlations have been formulated as multipliers applied to the isothermal friction factors at the same Reynolds numbers. Standard and modified subchannel friction factors have been obtained to be used with spatial-average and bulk-mean densities, respectively. A correlating procedure has been proposed to assess the effects of interacting subchannel flows, developing mixed convective flow, wire wrapping, power skew, rod number, and transition from laminar flow. In contrast to forced convection behavior, a strong rod number effect is present under mixed convection conditions in bundle geometries. The results of this study are of design importance in natural circulation conditions becasue the mixed convection frictional pressure losses exceed the corresponding isothermal values at the same Reynolds numbers.

  12. Boiling heat transfer and pressure drop of R-600a flowing in the mini-channels with fillisters

    NASA Astrophysics Data System (ADS)

    Wen, Mao-Yu; Jang, Kuang-Jang; Ho, Ching-Yen

    2015-01-01

    This study investigated the boiling heat transfer and pressure drop of hydrocarbon refrigerant (R-600a) flowing in six minichannels with fillisters made by electrical-discharge machining. The tests were run at a inlet pressure of 259-293 kPa and under saturated conditions, with the Reynolds number of 4,400-11,000 (i.e. mass flux of 195-487 kg/m2 s), heat flux of 1,790-8,950 W/m2 and outlet vapor quality of 0.041-0.25. Effects of the geometries of the fillisters, Reynolds number, heat flux and refrigerant quality on the heat transfer coefficient, friction factor and enhancement performance ratio were examined. The results of the minichannels with fillisters (Tests 1-4) compared to the minichannels without any fillister (Test 5) showed that the heat transfer coefficients increase about 1.05-1.34, 1.11-1.25, 1.23-1.59 and 1.07-1.21-fold, respectively. In addition, the friction factors for Tests 1, 2, 3 and 4 were about 3.3-9.4, 11.2-15.6, 14.7-21.9 and 5.0-6.3 % larger compared to that of the minichannels without any fillisters for Test 5. It was also found that Test 3 had the best enhancement of the performance. In summary, this study strongly suggests the use of fillisters constructed in minichannels.

  13. Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Nystrom, D. M.

    1980-01-01

    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.

  14. PRESSURE DROP OF FILTERING FACEPIECE RESPIRATORS: HOW LOW SHOULD WE GO?

    PubMed Central

    Kim, Jung-Hyun; Roberge, Raymond J.; Powell, Jeffrey B.; Shaffer, Ronald E.; Ylitalo, Caroline M.; Sebastian, John M.

    2015-01-01

    Objectives This study was undertaken to determine the mean peak filter resistance to airflow (Rfilter) encountered by subjects while wearing prototype filtering facepiece respirators (PRs) with low Rfilter during nasal and oral breathing at sedentary and low-moderate work rates. Material and Methods In-line pressure transducer measurements of mean Rfilter across PRs with nominal Rfilter of 29.4 Pa, 58.8 Pa and 88.2 Pa (measured at 85 l/min constant airflow) were obtained during nasal and oral breathing at sedentary and low-moderate work rates for 10 subjects. Results The mean Rfilter for the 29.4 PR was significantly lower than the other 2 PRs (p < 0.000), but there were no significant differences in mean Rfilter between the PRs with 58.8 and 88.2 Pa filter resistance (p > 0.05). The mean Rfilter was greater for oral versus nasal breathing and for exercise compared to sedentary activity (p < 0.001). Conclusions Mean oral and nasal Rfilter for all 3 PRs was at, or below, the minimal threshold level for detection of inspiratory resistance (the 58.8–74.5 Pa/1×s−1), which may account for the previously-reported lack of significant subjective or physiological differences when wearing PRs with these low Rfilter. Lowering filtering facepiece respirator Rfilter below 88.2 Pa (measured at 85 l/min constant airflow) may not result in additional subjective or physiological benefit to the wearer. PMID:26159949

  15. Relationship between Arterial Stiffness and Blood Pressure Drop During the Sit-to-stand Test in Patients with Diabetes Mellitus

    PubMed Central

    Kobayashi, Yusuke; Kobayashi, Hideo; Sumida, Koichiro; Suzuki, Shota; Kagimoto, Minako; Okuyama, Yuki; Ehara, Yosuke; Katsumata, Mari; Fujita, Megumi; Fujiwara, Akira; Saka, Sanae; Yatsu, Keisuke; Hashimoto, Tatsuo; Kuji, Tadashi; Hirawa, Nobuhito; Toya, Yoshiyuki; Yasuda, Gen; Umemura, Satoshi

    2017-01-01

    Aim: Patients with orthostatic hypotension (OH) have high arterial stiffness. Patients with diabetes mellitus (DM) often have cardiac autonomic neuropathy that leads to OH; however, whether OH is an indicator of arterial stiffness progression is unclear. We aimed to investigate whether the cardioankle vascular index (CAVI) varies between DM patients with and without OH using the sit-to-stand test (STST). Methods: One hundred and fifty-nine patients with DM underwent CAVI assessment and blood pressure (BP) and heart rate change evaluation during the STST. OH was defined as a decline in systolic BP (SBP) and/or diastolic BP of at least 20 mmHg or 10 mmHg, respectively, in the initial and late upright positions compared with that in the sitting position. Results: OH was diagnosed in 42 patients (26.4%). DM patients with OH had significantly higher CAVI (9.36 ± 1.15 versus 8.89 ± 1.18, p = 0.026) than those without OH. CAVI was significantly inversely correlated with systolic and diastolic BP changes (R = −0.347, p <0.001 and R = −0.314, p <0.001, respectively) in the initial upright position. Multivariate regression analysis revealed that age, SBP changes, and low frequency component in the initial upright position were independent determinants of CAVI. Conclusion: Patients with DM having large BP drops occurring when moving from sitting to standing have high arterial stiffness. A significant BP drop during the STST necessitates careful evaluation of advanced arterial stiffness in patient with DM. PMID:27453255

  16. Field evaluation of personal sampling methods for multiple bioaerosols.

    PubMed

    Wang, Chi-Hsun; Chen, Bean T; Han, Bor-Cheng; Liu, Andrew Chi-Yeu; Hung, Po-Chen; Chen, Chih-Yong; Chao, Hsing Jasmine

    2015-01-01

    Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.

  17. Field Evaluation of Personal Sampling Methods for Multiple Bioaerosols

    PubMed Central

    Wang, Chi-Hsun; Chen, Bean T.; Han, Bor-Cheng; Liu, Andrew Chi-Yeu; Hung, Po-Chen; Chen, Chih-Yong; Chao, Hsing Jasmine

    2015-01-01

    Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols. PMID:25799419

  18. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  19. Strain response and re-equilibration of CH4-rich synthetic aqueous fluid inclusions in calcite during pressure drops

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Pironon, Jacques

    2008-06-01

    Aqueous fluids in sedimentary basins often contain dissolved methane, particularly in petroleum environments. PVTX (Pressure-Volume-Temperature-Composition) reconstructions performed using fluid inclusion data are largely based on the assumption that inclusions do not change from the time of trapping until the present. Many authors, however, consider that fluid inclusions can re-equilibrate, particularly in fragile minerals like calcite. In order to understand this re-equilibration phenomenon in the metamorphic domain, previous experiments have been performed under high PT conditions, but few have been performed at low to medium PT conditions such as those associated with sedimentary burial diagenesis, and no previous studies have examined CH4-bearing aqueous inclusions in calcite. An experimental study of the preservation/modification of CH4-rich synthetic fluid inclusions in calcite during isothermal decompression was conducted. An autoclave was used for accurate PTX control allowing equilibrium between liquid and vapour in the CH4-H2O system. PTX conditions were maintained at four stages of decreasing pressure, with each stage held for 7 days to simulate an isothermal pressure drop. In order of decreasing pressure, the pressure-temperature conditions monitored were 276 ± 10 bar at 180 ± 7 °C, 176 ± 10 bar at 180 ± 7 °C, 76 ± 10 bar at 180 ± 7 °C and 10 ± 3 bar at 180 ± 15 °C. At the end of the experiment, the calcite was recovered and analyzed by microthermometry and Raman microspectroscopy for PTX reconstruction. A careful procedure was adopted to limit re-equilibration of inclusions during analytical procedures. Four types of inclusion shapes and four types of strain patterns were differentiated. Classification of the petrographic strain patterns was carried out. These strain patterns were associated with inclusion stretching and/or leakage regarding CH4, Th and Ph compared to experimental conditions. Factors controlling the preservation or

  20. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  1. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  2. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    PubMed Central

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-01-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer. PMID:28251983

  3. Bidirectional Glenn shunt as an adjunct to surgical repair of congenital heart disease associated with pulmonary outflow obstruction: relevance of the fluid pressure drop-flow relationship.

    PubMed

    Ascuitto, Robert; Ross-Ascuitto, Nancy; Wiesman, Joshua; Deleon, Serafin

    2008-09-01

    A bidirectional Glenn shunt (BGS) was successfully incorporated into a two-ventricle repair for 10 patients (age, 3-17 years) who had congenital heart disease associated with severe pulmonary outflow obstruction. The BGS was used to volume-unload the pulmonary ventricle faced with residual outflow obstruction, thereby avoiding the need for insertion of a ventricle-to-pulmonary artery conduit. Transthoracic Doppler flow velocity analysis was used to determine transpulmonary peak systolic pressure drops as a measure of obstruction. Preoperative values ranged from 70 to 100 mmHg, and postoperative values ranged from less than 10 to 16 mmHg. At this writing, all patients are doing well 15 to 52 months after surgery. To gain further insight into the reduced pressure drop that may be achieved by decreasing flow rate across obstruction, a computer-based description of fluid flow was used to simulate blood traversing circumferentially narrowed passages. Overall pressure drops and associated flow energy losses were determined from numeric solutions (using finite-element analysis) to the Navier-Stokes equations for the proposed fluid reactions. Pressure drops and flow energy losses were found to decrease dramatically as flow rate was progressively reduced. For selected patients, a BGS can be an effective adjunct to the surgical treatment of pulmonary outflow obstruction. This approach avoids the use of a ventricle-to-pulmonary artery conduit, and thus the inevitable need in most patients for reoperations because of somatic growth, conduit failure, or both.

  4. Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3-Cu hybrid nanofluids.

    PubMed

    Suresh, S; Venkitaraj, K P; Hameed, M Shahul; Sarangan, J

    2014-03-01

    A study on fully developed turbulent convective heat transfer and pressure drop characteristics of Al2O3-Cu/water hybrid nanofluid flowing through a uniformly heated circular tube is presented in this paper. For this, Al2O3-Cu nanocomposite powder was synthesized in a thermo chemical route using hydrogen reduction technique and dispersed the hybrid nano powder in deionised water to form a stable hybrid nanofluid of 0.1% volume concentration. The prepared powder was characterized by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) to confirm the chemical composition, determine the particle size and study the surface morphology. Stability of the nanofluid was ensured by pH and zeta potential measurements. The average heat transfer enhancement for Al2O3-Cu/water hybrid nanofluid is 8.02% when compared to pure water. The experimental results also showed that 0.1% Al2O3-Cu/water hybrid nanofluids have slightly higher friction factor compared to 0.1% Al2O3/water nanofluid. The empirical correlations proposed for Nusselt number and friction factor were well agreed with the experimental data.

  5. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  6. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils

    NASA Astrophysics Data System (ADS)

    Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.; Ali, R. K.

    2016-08-01

    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime in the range of Reynolds number of 14,400 ≤ Re ≤ 42,900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio of 0.044 ≤ e/d ≤ 0.133 and coil pitch ratio of 1 ≤ p/d ≤ 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6 %) and (100.1-128 %) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re. The maximum deviation between correlated and experimental values for Nusselt number and friction factor are ±5 and ±6 %, respectively.

  7. The effect of twisted-tape width on heat transfer and pressure drop for fully developed laminar flow

    SciTech Connect

    Chakroun, W.M.; Al-Fahed, S.F.

    1996-07-01

    A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number and the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.

  8. Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube

    SciTech Connect

    Li, Xiao-Wei; Meng, Ji-An; Li, Zhi-Xin

    2007-11-15

    The single-phase pressure drop and heat transfer in a micro-fin tube were measured using oil and water as the working fluids. The Prandtl number varied from 3.2 to 220 and the Reynolds number ranged from 2500 to 90,000. The results show that there is a critical Reynolds number, Re{sub cr}, for heat transfer enhancement. For Re

  9. Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants.

    PubMed

    Allaf, Tamara; Tomao, Valérie; Ruiz, Karine; Chemat, Farid

    2013-01-01

    The instant controlled pressure drop (DIC) technology enabled both the extraction of essential oil and the expansion of the matrix itself which improved solvent extraction. The sequential use of DIC and Ultrasound Assisted Extraction (UAE) triggered complementary actions materialized by supplementary effects. We visualized these combination impacts by comparing them to standard techniques: Hydrodistillation (HD) and Solvent Extraction (SE). First, the extraction of orange peel Essential Oils (EO) was achieved by HD during 4h and DIC process (after optimization) during 2 min; EO yields was 1.97 mg/g dry material (dm) with HD compared to 16.57 mg/g d m with DIC. Second, the solid residue was recovered to extract antioxidant compounds (naringin and hesperidin) by SE and UAE. Scanning electron microscope showed that after HD the recovered solid shriveled as opposite to DIC treatment which expanded the product structure. HPLC analyses showed that the best kinetics and yields of naringin and hesperidin extraction was when DIC and UAE are combined. Indeed, after 1h of extraction, DIC treated orange peels with UAE were 0.825 ± 1.6 × 10(-2)g/g of dry material (dm) for hesperidin and 6.45 × 10(-2) ± 2.3 × 10(-4)g/g d m for naringin compared to 0.64 ± 2.7 × 10(-2)g/g of dry material (dm) and 5.7 × 10(-2) ± 1.6 × 10(-3)g/g d m, respectively with SE. By combining DIC to UAE, it was possible to enhance kinetics and yields of antioxidant extraction.

  10. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles

    SciTech Connect

    Ngo, Tri Lam; Kato, Yasuyoshi; Nikitin, Konstantin; Ishizuka, Takao

    2007-11-15

    A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6-7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4-5 times less than that of MCHE with zigzag fins, although Nu is 24-34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu{sub S-shaped} {sub fins} = 0.1740 Re{sup 0.593}Pr{sup 0.430} and Nu{sub zigzag} {sub fins} = 0.1696 Re{sup 0.629}Pr{sup 0.317} for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f{sub S-shaped} {sub fins} = 0.4545 Re{sup -0.340} and f{sub zigzag} {sub fins} = 0.1924 Re{sup -0.091}. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of {+-}2.3%, although it is {+-}3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of {+-}16.6% and {+-}13.5% for the MCHEs with S-shaped and zigzag fins, respectively. (author)

  11. Bioaerosol sampling system with replicated optics

    NASA Astrophysics Data System (ADS)

    Gross, Mike; Cunningham, Nicholas; Erickson, Joshua; Manning, Christopher J.; Samuels, Alan C.

    2004-09-01

    There is a critical need throughout DoD, the U.S. government, and the commercial sector for cost-effective monitoring systems to detect airborne biological warfare (BW) agents. At present, solutions for this sensor need are relatively expensive and have a high false alarm rate. Manning Applied Technology is developing a compact, portable bioaerosol sampling system for continuous monitoring of air quality, both at field locations and fixed installations. The instrument is premised on optical interrogation via a multi-step process. The first step is electrostatic concentration, to improve detection limits. An advantage of electrostatic particle concentration is the power efficiency, relative to impactors, cyclones and filter-based systems. The second step is presentation for particle analysis, which would employ one of several unique FT spectrometer designs. The advantage of spectroscopic interrogation of bioaerosol particles is the very low cost of each analysis, with no consumables required. It is thought that mid-IR and THz frequency ranges offer the best potential for accurate discrimination. The third, optional step, is archiving the collected particles for further analysis. To reduce component costs in the Fourier transform spectrometer, an optical replication process has been developed and tested, with promising results. The replication and optical testing methods are described in detail.

  12. UV fluorescence lidar detection of bioaerosols

    SciTech Connect

    Christesen, S.D.; DeSha, M.S.; Wong, A.; Merrow, C.N.; Wilson, M.W.; Butler, J.

    1994-12-31

    Biological agents (e.g. bacterial spores, viruses, toxins) pose a serious threat to military forces on the modern battlefield. Remote detection of these agents is crucial to providing early warning of an attack and to allow for the avoidance of contaminated areas. Here, a UV fluorescence lidar system for the remote detection of bioaerosols has been built and tested. At the heart of the UV-LIDAR Fluorosensor system are a 200mJ quadrupled ND:YAG laser at 266nm and a 16 inch cassagrain telescope. Operating on three data collection channels, the UV lidar is capable of real time monitoring of 266nm elastic backscatter, the total fluorescence between 300 and 400nm, and the dispersed fluorescence spectrum (using a small spectrograph and gated intensified CCD array). The goal in this effort was to assess the capabilities of biofluorescence for quantitative detection and discrimination of bioaerosols. To this end, the UV-LIDAR Fluorosensor system was tested against the aerosolized bacterial spore Bacillus subtilus var. niger sp. globiggi (BG) and several likely interferences at several ranges from approximately 600 to 3000 meters. The tests with BG indicate a detection limit of approximately 500 mg/cubic meter at a range of 3000m.

  13. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  14. Characterisation of heat transfer and pressure drop in condensation processes within mini-channel tubes with last generation of refrigerant fluids

    NASA Astrophysics Data System (ADS)

    Lopez Belchi, D. Alejandro

    Heat exchanger developments are driven by energetic efficiency increase and emissionreduction. To reach the standards new system are required based on mini-channels. Mini-channels can be described as tubes with one or more ports extruded in aluminiumwith hydraulic diameter are in the range of 0.2 to 3 mm. Its use in refrigeration systemsfor some years ago is a reality thanks to the human ability to made micro-scale systems.Some heat exchanger enterprises have some models developed specially for their use inautomotive sector, cooling sector, and industrial refrigeration without having a deepknowledge of how these reduced geometries affect the most important parameters suchas pressure drop and the heat transfer coefficient. To respond to this objective, an exhaustive literature review of the last two decades hasbeen performed to determinate the state of the research. Between all the publications,several models have been selected to check the predicting capacities of them becausemost of them were developed for single port mini-channel tubes. Experimentalmeasurements of heat transfer coefficient and frictional pressure drop were recorded inan experimental installation built on purpose at the Technical University of Cartagena.Multiple variables are recorded in this installation in order to calculate local heattransfer coefficient in two-phase condensing flow within mini-channels. Both pressure drop and heat transfer coefficient experimental measurements arecompared to the previously mentioned models. Most of them capture the trend correctlybut others fail predicting experimental data. These differences can be explained by theexperimental parameters considered during the models development. In some cases themodels found in the literature were developed specific conditions, consequently theirpredicting capacities are restricted. As main contributions, this thesis provides new modelling tools for mini-channelscondensing pressure drop and heat transfer coefficient

  15. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the

  16. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2017-01-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  17. A comparison of the heat transfer and pressure drop performance of R-134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes

    SciTech Connect

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    The average heat transfer coefficients and pressure drops during evaporation and condensation are reported for mixtures of R-134a and an ester lubricant in tubes of 12.7 mm (1/2 in.) outer diameter. The objective of this paper is to evaluate the performance of the R-134a-lubricant mixtures in these tubes and determine the performance benefits of the micro-fin tube. The performance benefits of the tubes with 12.7 mm (1/2 in.) outer diameter are compared to those of smaller tubes with 9.52 mm (3/8 in.) outer diameter. The lubricant used was a 169 SUS penta erythritol ester mixed-acid lubricant. The lubricant concentration was varied from 0--5.1% in the mixture. The average heat transfer coefficients in the 12.7 mm (1/2 in.) micro-fin tube were 50--150% higher than those for the 12.7 mm (1/2 in.) smooth tube, while pressure drops in the micro-fin tube were 5% to 50% higher than in the smooth tube. The addition of lubricant degraded the average heat transfer coefficients in all cases except during evaporation at low lubricant concentrations. Pressure drops were always increased with the addition of lubricant. The experimental results also indicate that tube diameter has some effect on the performance benefits of the micro-fin tube over that of the smooth tube.

  18. Heat transfer and pressure drop characteristics of a plate heat exchanger using a propylene-glycol/water mixture as the working fluid

    SciTech Connect

    Talik, A.C.; Fletcher, L.S.; Anand, N.K.; Swanson, L.W.

    1995-12-31

    Plate heat exchangers are becoming increasingly important because of their potential applications in industrial processes, especially in terms of their thermal performance and their limited pressure drop. An experimental investigation to acquire both heat-transfer and pressure-drop data for a plate heat exchanger was conducted in order to respond to these interests. A propylene-glycol/water mixture was used as the working fluid in order to provide lower Reynolds numbers than those provided by water at similar test conditions. The plate heat exchanger was composed of 31 plates, each with a chevron angle of 30 degrees. The isothermal pressure drop data were taken in the fully laminar flow regime for Reynolds numbers from 10 to 80. The heat transfer data were taken in the fully laminar flow regime for Reynolds numbers of 80 to 720 with heat transfer rates of 1.1 {times} 10{sup 5} to 6.5 {times} 10{sup 5} W. The experimental data for the friction factor and Nusselt number were correlated using a standard power-law function. Other published heat-transfer and friction factor correlations for plate heat exchangers with similar plates at selected conditions are compared to the data.

  19. Morphological classification of bioaerosols from composting using scanning electron microscopy

    SciTech Connect

    Tamer Vestlund, A.; Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H.

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.

  20. Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies.

    PubMed

    Haig, C W; Mackay, W G; Walker, J T; Williams, C

    2016-07-01

    Investigations into the suspected airborne transmission of pathogens in healthcare environments have posed a challenge to researchers for more than a century. With each pathogen demonstrating a unique response to environmental conditions and the mechanical stresses it experiences, the choice of sampling device is not obvious. Our aim was to review bioaerosol sampling, sampling equipment, and methodology. A comprehensive literature search was performed, using electronic databases to retrieve English language papers on bioaerosol sampling. The review describes the mechanisms of popular bioaerosol sampling devices such as impingers, cyclones, impactors, and filters, explaining both their strengths and weaknesses, and the consequences for microbial bioefficiency. Numerous successful studies are described that point to best practice in bioaerosol sampling, from the use of small personal samplers to monitor workers' pathogen exposure through to large static samplers collecting airborne microbes in various healthcare settings. Of primary importance is the requirement that studies should commence by determining the bioefficiency of the chosen sampler and the pathogen under investigation within laboratory conditions. From such foundations, sampling for bioaerosol material in the complexity of the field holds greater certainty of successful capture of low-concentration airborne pathogens. From the laboratory to use in the field, this review enables the investigator to make informed decisions about the choice of bioaerosol sampler and its application. Copyright © 2016. Published by Elsevier Ltd.

  1. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  2. Bioaerosol generation by raindrops on soil

    PubMed Central

    Joung, Young Soo; Ge, Zhifei; Buie, Cullen R.

    2017-01-01

    Aerosolized microorganisms may play an important role in climate change, disease transmission, water and soil contaminants, and geographic migration of microbes. While it is known that bioaerosols are generated when bubbles break on the surface of water containing microbes, it is largely unclear how viable soil-based microbes are transferred to the atmosphere. Here we report a previously unknown mechanism by which rain disperses soil bacteria into the air. Bubbles, tens of micrometres in size, formed inside the raindrops disperse micro-droplets containing soil bacteria during raindrop impingement. A single raindrop can transfer 0.01% of bacteria on the soil surface and the bacteria can survive more than one hour after the aerosol generation process. This work further reveals that bacteria transfer by rain is highly dependent on the regional soil profile and climate conditions. PMID:28267145

  3. Bioaerosol generation by raindrops on soil

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Ge, Zhifei; Buie, Cullen R.

    2017-03-01

    Aerosolized microorganisms may play an important role in climate change, disease transmission, water and soil contaminants, and geographic migration of microbes. While it is known that bioaerosols are generated when bubbles break on the surface of water containing microbes, it is largely unclear how viable soil-based microbes are transferred to the atmosphere. Here we report a previously unknown mechanism by which rain disperses soil bacteria into the air. Bubbles, tens of micrometres in size, formed inside the raindrops disperse micro-droplets containing soil bacteria during raindrop impingement. A single raindrop can transfer 0.01% of bacteria on the soil surface and the bacteria can survive more than one hour after the aerosol generation process. This work further reveals that bacteria transfer by rain is highly dependent on the regional soil profile and climate conditions.

  4. Bioaerosol characteristics in hospital clean rooms.

    PubMed

    Li, Chih-Shan; Hou, Po-An

    2003-04-15

    Bioaerosol characteristics were evaluated in hospital clean rooms with different class levels. For total particles, an airborne particle counter was used to determine the particle size ranges (0.1, 0.2, 0.3, 0.5, 1 and 5 microm) for air inlets and patient beds. An Andersen 1-STG sampler was used for bacterial and fungal collection. For aerosol characteristics, it was found that some air inlet particle levels were higher than 100000/foot(3) in class 100000 clean rooms. In addition, it was clearly demonstrated that particle concentrations in patient beds were much higher than those for air inlets. Human activity might play a role in these particle concentration differences. Moreover, it was demonstrated that bacterial and fungal concentrations ranged from 1 to 423 and from 0 to 319 CFU/m(3), respectively. For class 100 clean rooms, no particles were ever found. In addition, bacterial concentrations were found to be in the range of 0-32 CFU/m(3) and there were no fungal aerosols. For operating rooms of class 10000, some of the particle levels observed were higher than 10000/foot(3). Furthermore, the average level of bacterial aerosols was 88 with a range of 13-336 CFU/m(3). In addition, fungal levels ranged from 0 to 51 with a mean value of 4 CFU/m(3). It was indicated that bacterial levels were higher than fungal ones, which might be related to human sources. Moreover, there were weak relationships among class level, particle concentration and bioaerosol levels.

  5. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles.

    PubMed

    Kaczmarski, Krzysztof; Poe, Donald P; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    When chromatography is carried out with high-density carbon dioxide as the mobile phase, the required pressure gradient along the column is moderate but this mobile phase is highly compressible so, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat and causes cooling of the column. The resulting heat transfer causes the formation of axial and radial gradients of temperature and density that may become large under certain conditions. In the first part of this series the pressure, temperature, and density drops were measured over a wide range of experimental temperature and pressure conditions, along columns packed with 3- and 5-μm particles. These columns were suspended in a circulating air bath and were either bare or covered with foam insulation. The behavior of these columns was discussed with special attention to their thermal heterogeneity. In this part we scrutinize the application of two heat transfer models to predict the pressure, temperature and density drops. One is a two-dimensional model that takes into account the axial and radial variations of the relevant chromatographic parameters along the column. The other, one-dimensional model ignores the radial variations of these parameters. The numerical solutions of the two-dimensional model are in excellent agreement with independent experimental data. The one-dimensional model can also be applied for the analysis of the behavior of supercritical fluid chromatography (SFC) columns away from the critical conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A new combination of microbial indicators for monitoring composting bioaerosols

    NASA Astrophysics Data System (ADS)

    Le Goff, Olivier; Godon, Jean-Jacques; Milferstedt, Kim; Bacheley, Hélène; Steyer, Jean-Philippe; Wéry, Nathalie

    2012-12-01

    Bioaerosols emitted from composting plants are a cause of concern because of their potential impact on occupational health and neighboring residential areas. The aim of this study was to identify microbial indicators that are most useful for monitoring bioaerosol emittance and dispersal by industrial composting plants. Seven microbial indicators were measured in air collected outdoors in natural environments and at eleven composting plants. The indicators were: cultivable bacteria and fungi, total bacteria (epifluorescent microscopy), viable bacteria (solid-phase cytometry) and quantification by qPCR of three microbial indicators which had been previously shown as strongly associated with composting. For each indicator, the increase in concentrations due to the turning of composting piles as compared to the background concentration obtained in natural environments and upwind of composting plants was determined. Based on these results, the most effective combination of three indicators was selected for monitoring composting bioaerosol emissions: viable bacteria as one general indicator of bioaerosol emission and two bacterial phylotypes specific to composting bioaerosol: NA07, affiliated to Saccharopolyspora sp. and NC38, affiliated to the Thermoactinomycetaceae. This set of indicator was then quantified on-site and at increasing distances downwind during the turning of compost windrows in thermophilic phase. Composting activity was considered to affect bioaerosol emission when the concentrations of the three indicators were higher than their respective background levels. For all the composting sites studied, an impact was measureable up to distances of 100 m. Further away, the impact was not systematically observed as it depended on meteorological conditions (wind speed) and on levels of bioaerosol emissions.

  7. Measurements of Fluorescent Bioaerosol Particles in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Emerson, J. B.; Fierer, N.; Schwarz, J. P.; Fahey, D. W.

    2013-12-01

    Bioaerosols are of atmospheric interest due to their potential importance as cloud condensation and heterogeneous ice nuclei and because they represent a sizeable fraction of coarse mode aerosol in some locations. Relatively little data exists, however, regarding diurnal, seasonal and annual cycles of bioaerosols and the meteorological processes that control them. Newly developed real-time instrumentation allows for sensitive, high time resolution detection of fluorescent bioaerosols and is uniquely suited to address key uncertainties in the sources, distributions and behavior of these particles in the atmosphere. Here we present observations of ambient fluorescent biological aerosol made on the Front Range of Colorado using a custom-modified Wideband Integrated Bioaerosol Sensor (WIBS) during the summer and fall of 2013. The summertime measurements were made from the roof of the NOAA ESRL David Skaggs Research Center in Boulder and the fall measurements were made both at the surface and aloft at the Boulder Atmospheric Observatory Tall Tower. We examine diurnal variations in loading and size distribution of fluorescent bioaerosol at the two locations. We also investigate the relationship between meteorological events and fluorescent bioaerosol. For example, we observe higher concentrations and markedly different number distributions associated with precipitation events. Simultaneous filter samples were collected for DNA sequencing and flow cytometry. To our knowledge this represents the first such comparison for the WIBS under ambient conditions and the microbial identification accomplished with the filters adds significantly to the analysis. This data set will provide useful insight into the sources, loadings and properties of fluorescent bioaerosol and the local and regional processes that drive them.

  8. An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels

    SciTech Connect

    Ribatski, Gherhardt; Wojtan, Leszek; Thome, John R.

    2006-10-15

    Experimental results for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels were obtained from the literature. The extensive pressure drop database comprises both diabatic and adiabatic results covering eight fluids, mass velocities from 23 to 6000kg/m{sup 2}s and vapor qualities up to 1. These data were carefully analyzed and compared against 12 two-phase frictional pressure drop prediction methods, including both macro- and micro-scale methods. Overall, the methods by Muller-Steinhagen and Heck and by Mishima and Hibiki, as well as the homogenous model, using the two-phase viscosity definition proposed by Cicchitti and coworkers, provide the most accurate predictions. However, they worked poorly at vapor qualities higher than 0.5 where annular, partial dryout and mist flow patterns would be expected. Similarly, a large database for micro-scale flow boiling heat transfer for eleven fluids covering mass velocities from 100 to 800kg/m{sup 2}s, reduced pressures from 0.03 to 0.77 and heat fluxes from 5 to 180kW/m{sup 2} were compared against three recently proposed micro-scale and one well-known macro-scale heat transfer prediction method. Although some heat transfer trends were captured by the methods, in general they poorly predicted the database. This is not surprising since an analysis of the trends of the experimental results revealed large discrepancies between different data sets, even at similar experimental conditions, and no present method could capture such contrasting trends. The study concludes that the 3-zone model proposed by Thome and coworkers based on the transient conduction through an evaporating liquid film seems to be the most promising approach to predict heat transfer coefficients in micro-scale channels but is still not sufficiently developed to use as a general design tool. (author)

  9. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect

    Wongwises, Somchai; Pipathattakul, Manop

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a

  10. Experimental sizing and assessment of two-phase pressure drop correlations for a capillary tube with transcritical and subcritical carbon dioxide flow

    NASA Astrophysics Data System (ADS)

    Trinchieri, R.; Boccardi, G.; Calabrese, N.; Celata, G. P.; Zummo, G.

    2014-04-01

    In the last years, CO2 was proposed as an alternative refrigerant for different refrigeration applications (automotive air conditioning, heat pumps, refrigerant plants, etc.) In the case of low power refrigeration applications, as a household refrigerator, the use of too expensive components is not economically sustainable; therefore, even if the use of CO2 as the refrigerant is desired, it is preferable to use conventional components as much as possible. For these reasons, the capillary tube is frequently proposed as expansion system. Then, it is necessary to characterize the capillary in terms of knowledge of the evolving mass flow rate and the associate pressure drop under all possible operative conditions. For this aim, an experimental campaign has been carried out on the ENEA test loop "CADORE" to measure the performance of three capillary tubes having same inner diameter (0.55 mm) but different lengths (4, 6 and 8 meters). The test range of inlet pressure is between about 60 and 110 bar, whereas external temperatures are between about 20 to 42 °C. The two-phase pressure drop through the capillary tube is detected and experimental values are compared with the predictions obtained with the more widely used correlations available in the literature. Correlations have been tested over a wide range of variation of inlet flow conditions, as a function of different inlet parameters.

  11. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  12. Bioprocess of Kosa bioaerosols: effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust).

    PubMed

    Kobayashi, Fumihisa; Maki, Teruya; Kakikawa, Makiko; Yamada, Maromu; Puspitasari, Findya; Iwasaka, Yasunobu

    2015-05-01

    Kosa (Asian dust) is a well-known weather phenomenon in which aerosols are carried by the westerly winds from inland China to East Asia. Recently, the frequency of this phenomenon and the extent of damage caused have been increasing. The airborne bacteria within Kosa are called Kosa bioaerosols. Kosa bioaerosols have affected ecosystems, human health and agricultural productivity in downwind areas. In order to develop a new and useful bacterial source and to identify the source region of Kosa bioaerosols, sampling, isolation, identification, measurement of ultraviolet (UV) radiation tolerance and experimental simulation of UV radiation conditions were performed during Kosa bioaerosol transportation. We sampled these bioaerosols using a Cessna 404 airplane and a bioaerosol sampler at an altitude of approximately 2900 m over the Noto Peninsula on March 27, 2010. The bioaerosol particles were isolated and identified as Bacillus sp. BASZHR 1001. The results of the UV irradiation experiment showed that the UV radiation tolerance of Kosa bioaerosol bacteria was very high compared with that of a soil bacterium. Moreover, the UV radiation tolerance of Kosa bioaerosol spores was higher than that of soil bacterial spores. This suggested that Kosa bioaerosols are transported across the atmosphere as living spores. Similarly, by the experimental simulation of UV radiation conditions, the limited source region of this Kosa bioaerosol was found to be southern Russia and there was a possibility of transport from the Kosa source area.

  13. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  14. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  15. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.

    PubMed

    Qiu, Feng; Peng, Sophia; Kunselman, Allen; Ündar, Akif

    2010-11-01

    Gaseous microemboli (GME) remain a challenge for cardiopulmonary bypass (CPB) because there is a positive correlation between microemboli exposure during CPB and postoperative neurological injury. Thus, minimizing the number of GME delivered to pediatric patients undergoing CPB procedures would lead to better clinical outcomes. In this study, we used a simulated CPB model to evaluate the effectiveness of capturing GME and the degree of membrane pressure drop for a new membrane oxygenator, Capiox Baby FX05 (Terumo Corporation,Tokyo, Japan), which has an integrated arterial filter with open and closed purge line.We used identical components in this study as our clinical CPB circuit. Three emboli detection and classification quantifier transducers were placed at prepump, preoxygenator, and postoxygenator sites in the circuit.Two flow probes as well as three pressure transducers were placed upstream and downstream of the oxygenator. The system was primed with human blood titrated to 30% hematocrit with Lactated Ringer’s solution.A bolus of air (1 mL) was injected in the prepump site under nonpulsatile perfusion mode at three flow rates (500,750, and 1000 mL/min) and with the purge line either open or closed. Six trials were performed for each unique set-up for a total of 36 trials.All trials were conducted at 35°C. The circuit pressure was kept constant at 100 mm Hg. Both the size and quantity of microemboli detected at postoxygenator site were recorded for 5 min postair injection. It was found that total counts of GME were significantly reduced with the purge line open when compared to keeping the purge line closed (P < 0.0001 at 1000 mL/min). At all flow rates, most of the GME were under 20 microns in size. In terms of microemboli greater than 40 microns, the counts were significantly higher with the purge line closed compared to keeping the purge line open at flow rates of 750 mL/min and 1000 mL/min (P < 0.01). At all flow rates,there is a tiny difference of less

  16. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  17. Flow boiling heat transfer and pressure drop analysis of R134a in a brazed heat exchanger with offset strip fins

    NASA Astrophysics Data System (ADS)

    Amaranatha Raju, M.; Ashok Babu, T. P.; Ranganayakulu, C.

    2017-10-01

    The saturated flow boiling heat transfer and friction analysis of R 134a were experimentally analyzed in a brazed plate fin heat exchanger with offset strip fins. Experiments were performed at mass flux range of 50-82 kg/m2 s, heat flux range of 14-22 kW/m2 and quality of 0.32-0.75. The test section consists of three fins, one refrigerant side fin in which the boiling heat transfer was estimated and two water side fins. These three fins are stacked, held together and vacuum brazed to form a plate fin heat exchanger. The refrigerant R134a flowing in middle of the test section was heated using hot water from upper and bottom sides of the test section. The temperature and mass flow rates of water circuit is controlled to get the outlet conditions of refrigerant R134a. Two-phase flow boiling heat transfer and frictional coefficient was estimated based on experimental data for offset strip fin geometry and presented in this paper. The effects of mass flux, heat flux and vapour quality on heat transfer coefficient and pressure drop were investigated. Two-phase local boiling heat transfer coefficient is correlated in terms of Reynolds number factor F, and Martinelli parameter X. Pressure drop is correlated in terms of two-phase frictional multiplier ϕ f , and Martinelli parameter X.

  18. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  19. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  20. Urban Enhancement of PM10 Bioaerosol Tracers Relative to Background Locations in the Midwestern United States

    PubMed Central

    Rathnayake, Chathurika M.; Metwali, Nervana; Baker, Zach; Jayarathne, Thilina; Kostle, Pamela A.; Thorne, Peter S.; O’Shaughnessy, Patrick T.; Stone, Elizabeth A.

    2016-01-01

    Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas. PMID:27672535

  1. Urban enhancement of PM10 bioaerosol tracers relative to background locations in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Rathnayake, Chathurika M.; Metwali, Nervana; Baker, Zach; Jayarathne, Thilina; Kostle, Pamela A.; Thorne, Peter S.; O'Shaughnessy, Patrick T.; Stone, Elizabeth A.

    2016-05-01

    Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and copollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from Gram-negative bacteria (and a few Gram-positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol, and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins, and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point toward windblown soil as an important source of bioaerosols in urban areas.

  2. Workplace exposure to bioaerosols in podiatry clinics.

    PubMed

    Coggins, Marie A; Hogan, Victoria J; Kelly, Martina; Fleming, Gerard T A; Roberts, Nigel; Tynan, Therese; Thorne, Peter S

    2012-07-01

    The aim of this study was to design and execute a pilot study to collect information on the personal exposure levels of podiatrists to microbial hazards in podiatry clinics and also to assess health and safety knowledge within the sector using a questionnaire survey. A self-report quantitative questionnaire dealing with health and safety/health issues was issued to 250 podiatrist clinics. Fifteen podiatry clinics were randomly recruited to participate in the exposure study. Concentrations of airborne bacteria, fungi, yeasts, and moulds were assessed using a six-stage viable microbial cascade impactor. Personal samples of total inhalable dust and endotoxin were measured in the breathing zone of the podiatrist. A questionnaire response rate of 42% (N = 101) was achieved. Thirty-two per cent of respondents indicated that they had a respiratory condition; asthma was the most prevalent condition reported. The most frequently employed control measures reported were use of disposable gloves during patient treatments (73.3%), use of respiratory protective equipment (34.6%), use of protective aprons (16.8%), and eye protection (15.8%). A total of 15.8% of respondents used mechanical room ventilation, 47.5% used nail drills with local exhaust ventilation systems, and 11% used nail drills with water spray dust suppression. The geometric mean concentrations of bacteria, Staphylococci, fungi, and yeasts/moulds were 590, 190, 422, and 59 CFU m(-3), respectively. The geometric mean endotoxin exposure was 9.6 EU m(-3). A significant percentage of all the bioaerosols that were in the respirable fraction was representative of yeasts and moulds (65%) and Fungi (87%). Even if statistical analysis of data is limited by low sample numbers, this study showed that the frequency of cleaning and use of RPE varied between clinics sampled, and it is likely that refresher health and safety training focusing on health and safety hazards inherent in podiatry work and practical control measures

  3. Sensitive Determination of Cd in Small-Volume Samples by Miniaturized Liquid Drop Anode Atmospheric Pressure Glow Discharge Optical Emission Spectrometry.

    PubMed

    Jamroz, Piotr; Greda, Krzysztof; Dzimitrowicz, Anna; Swiderski, Krzysztof; Pohl, Pawel

    2017-06-06

    A novel liquid drop anode (LDA) direct current atmospheric pressure glow discharge (dc-APGD) system was applied for direct determination of Cd in liquid microsamples (50 μL) by optical emission spectrometry (OES). The microdischarge was generated in open-to-air atmosphere between a solid pin type tungsten cathode and a liquid drop placed on a graphite disk anode. The arrangement of the graphite disk placed on a PTFE chip platform as well as the solid pin type cathode was simple and robust. The limit of detection (LOD) of Cd for the developed LDA-APGD-OES method was 0.20-0.40 μg L(-1), while precision (as the relative standard deviation for the repeated measurements) was within 2-5%. By using the liquid drop of 50 μL, the linearity range of 1-1000 μg L(-1) was achieved. The effect of addition of the low-molecular weight (LMW) organic compounds, easily ionized elements (EIEs), i.e., Ca, K, Mg, and Na, as well as the foreign ions (Al, Cu, Fe, Mn, Zn) to the solution on the in situ atomization and excitation processes occurred during operation of the LDA-APGD system, and the response of Cd was studied. Validation of the proposed method was demonstrated by analysis of Lobster hepatopancreas (TORT-2), pig kidney (ERM-BB186), and groundwater (ERM-CA615) certified reference materials (CRMs) and recoveries of Cd from water samples spiked with 25 μg L(-1) of Cd. Very good agreement between the found and certified values of Cd in the CRMs (the recoveries were within the range of 96.3-99.6%) indicated trueness of the method and its reliability for determination of traces of Cd. In the case of the spiked water samples, the recoveries obtained were in the range from 95.2 to 99.5%.

  4. Effect of oscillation frequency on wall shear stress and pressure drop in a rectangular channel for heat transfer applications

    NASA Astrophysics Data System (ADS)

    Blythman, R.; Persoons, T.; Jeffers, N.; Murray, DB

    2016-09-01

    The exploitation of flow unsteadiness in microchannels is a potentially useful technique for enhancing cooling of future photonics systems. Pulsation is thought to alter the thickness of the hydrodynamic and thermal boundary layers, and hence affect the overall thermal resistance of the heat sink. While the mechanical and thermal problems are inextricably linked, it is useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. The current work characterises the behaviour of the wall shear stress and pressure gradient with frequency, using experimental particle image velocimetry (PIV) measurements and the analytical solution for oscillatory flow in a two-dimensional rectangular channel. Both wall shear stress and pressure gradient are augmented with frequency compared to steady flow, though the pressure gradient increases more significantly as a result of growing inertial losses. The three distinct regimes of unsteadiness are shown to display unique relationships between the parameters pertinent to heat transfer and should therefore be considered independently with respect to thermal enhancement capability. To this end, the regime boundaries are estimated at Womersley number Wo = 1.6 and 28.4 in a rectangular channel, based on the contribution of viscous and inertial losses.

  5. Ophthalmic administration of a 10-fold-lower dose of conventional nanoliposome formulations caused levels of intraocular pressure similar to those induced by marketed eye drops.

    PubMed

    Arroyo, C M; Quinteros, D; Cózar-Bernal, M J; Palma, S D; Rabasco, A M; González-Rodríguez, M L

    2017-09-15

    The purpose of this study was to compare the in vivo efficacy of several timolol (TM)-loaded liposomal formulations with current TM antiglaucoma treatment (aqueous 0.5% w/v eye drops). In this study, conventional liposomes (CL) and deformable liposomes, without (DL1) and with ethanol (DL2) were prepared and characterized. In addition, in vitro release and permeation studies, as well as in vivo lowering intraocular pressure (IOP) and biocompatibility studies were performed. It was found that the quali and quantitative lipid bilayer composition played a significant role in modifying the physical properties of vesicles. The deformability study and electronic microscopy images revealed that membrane elasticity of DL1 and DL2 was much higher than CL. However, in vitro permeation results showed that the flux and permeability coefficient were significantly higher in CL compared to DL. The IOP study revealed that TM-loaded CL showed the best pharmacological activity, in comparison to deformable vesicles. Compared to the eye drops, CL formulation could equally reduce the IOP but using a concentration 10-fold lower, whereas the effective time was significantly longer. In addition, the formulations showed no irritant effects after instillation on the ocular surface. Copyright © 2017. Published by Elsevier B.V.

  6. Air atmospheric pressure plasma jet pretreatment for drop-wise loading of dexamethasone on hydroxyapatite scaffold for increase of osteoblast attachment.

    PubMed

    Lee, Jung-Hwan; Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-10-01

    Periodontal disease affects alveolar bone resorption around the involved teeth. To gain bone height, bone graft materials have been widely used with drug carriers. Application of an atmospheric pressure plasma jet (APPJ) treatment is widely studied due to its ability to change surface characteristics without topographical change. The aim of this study is to identify whether the air APPJ (AAPPJ) treatment before drop-wise loading performance could change loaded amount of dexamethasone, and induce increase of cell attachment and proliferation. The results suggested that AAPPJ treatment decreased the contact angle down to about 13 degrees, which increased gradually but significantly lowered at least 4 days compared to no-treated group. After AAPPJ treatment, hydrocarbon was removed with change of zeta potential into positive charge. However, the AAPPJ treatment did not change the quantity or releasing profile of dexamethasone (p > 0.05). Confocal analysis combined with DNA proliferation analysis showed increase of osteoblast attachment and proliferation. Hence, AAPPJ could be a useful pretreatment method before drop-wise loading on HA scaffold with dexamethasone for increase of osteoblast attachment.

  7. Heat transfer and pressure drop in a compact pin-fin heat exchanger with pin orientation at 18 deg to the flow direction

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    The heat transfer and pressure drop characteristics of a novel, compact heat exchanger in helium gas were measured at 3.5 MPa and Reynolds numbers of 450 to 12,000. The pin-fin specimen consisted of pins, 0.51 mm high and spaced 2.03 mm on centers, spanning a channel through which the helium flows; the angle of the row of pins to the flow direction was 18 deg. The specimen was radiatively heated on the top side at heat fluxes up to 74 W/sq cm and insulated on the back side. Correlations were developed for the friction factor and Nusselt number. The Nusselt number compares favorably to those of past studies of staggered pin-fins, when the measured temperatures are extrapolated to the temperature of the wall-fluid interface.

  8. A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    López, R.; Lecuona, A.; Ventas, R.; Vereda, C.

    2012-11-01

    In Plate Heat Exchangers it is important to determine the flow distribution and pressure drops, because they affect directly the performance of a heat exchanger [1]. This work proposes an incompressible, one-dimensional, steady state, discrete model allowing for variable overall momentum coefficients to determine these magnitudes. The model consists on a modified version of the Bajura and Jones [2] model for dividing and combining flow manifolds. The numerical procedure is based on the finite differences approximation approach proposed by Datta and Majumdar [3]. A linear overall momentum coefficient distribution is used in the dividing manifold, but the model is not limited to linear distributions. Comparisons are made with experimental, numerical and analytical data, yielding good results.

  9. Investigations of Pressure Drops during Piston Flow Pneumatic Conveying of Ice Cubes and Applying It to High Density Conveying of Cold Energy

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi; Yanadori, Michio; Tsubota, Yuji

    To overcome the defect of conventional chilled water systems, we propose pneumatic conveying of ice cubes. We conducted experiments to investigate the pressure drops during pneumatic conveying of ice cubes in a prototype conveyance pipe, and obtained the following results : (1)The mean velocity of the ice cubes is proportional to the mean velocity of the conveying air flow regardless of balls in the pipe or the volume fraction of the ice cubes. (2) Difference in the velocity of the air flow cause variations in the density of ice cubes. If we convey ice cubes with balls, it is possible to convey a higher density. (3) The volume fraction of this method is about 10 times that of the previous experimental results. (4)The pump power of this proposed conveyance system is reduced to about 0.71 to 0.59 times that of the conventional chilled water systems.

  10. Smooth- and enhanced-tube heat transfer and pressure drop : Part I. Effect of Prandtl number with air, water, and glycol/water mixtures.

    SciTech Connect

    Obot, N. T.; Das, L.; Rabas, T. J.

    2000-11-14

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics in laminar, transitional, and turbulent flow through one smooth tube and twenty-three enhanced tubes. The working fluids for the experiments were air, water, ethylene glycol, and ethylene glycol/water mixtures; Prandtl numbers (Pr) ranged from 0.7 to 125.3. The smooth-tube experiments were carried out with Pr values of 0.7, 6.8, 24.8, 39.1, and 125.3; Pr values of 0.7, 6.8, and 24.8 were tested with enhanced tubes. Reynolds number (Re) range (based on the maximum internal diameter of a tube) was 200 to 55,000, depending on Prandtl number and tube geometry. The results are presented and discussed in this paper.

  11. Analysis of pressure drop characteristics and methods for calculating gas and gas-solid flow in horizontal pipes for dilute coal conveying system

    SciTech Connect

    Weiguo Pan; Zuohe Chi; Yongjing Liao

    1997-07-01

    This article reported pressure drop characteristics and methods for calculating friction factors {lambda} 0 and {lambda}{sub {mu}} for gas and gas-solids flows, respectively, in straight horizontal pipes are summarized advantages seed. The and disadvantages of calculating friction factor {lambda}{sub {mu}} through dimensional analysis in comparison with model simulation are analyzed. It is pointed out that model simulation is more suitable to engineering use than dimensional analysis. According to experimental results of dilute gas-coal powder flow in straight horizontal pipes of the coal pulverization system in a power plant; an empirical formula and a theoretical formula for calculating friction factor {lambda}{sub {mu}} in straight horizontal pipes transporting dilute coal powder are obtained.

  12. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  13. Use of Medical Metered Dose Inhalers for Functionality Testing of Bioaerosol Detection and Identification Systems

    DTIC Science & Technology

    2012-05-01

    DETECTION AND IDENTIFICATION SYSTEMS 1. INTRODUCTION Field-deployed near- real - time bioaerosol detection (e.g., fluorescent aerosol particle...testing of two near- real - time UV bioaerosol detectors. Aerosol generated from one actuation of a bioMDD containing 1 µm fluorescently tagged PSLs... BIOAEROSOL DETECTION AND IDENTIFICATION SYSTEMS ECBC-TR-964 Jana Kesavan Deborah R. Schepers Jerold R. Bottiger RESEARCH AND TECHNOLOGY

  14. Detection and Identification of Individual Bioaerosol Microparticles

    NASA Astrophysics Data System (ADS)

    Wolf, J. P.; Boutou, V.; Pan, Y. L.; Chang, R. K.

    Real-time detection and identification of biological aerosols, such as bacteria, viruses, or pollens is a key issue for both environmental and strategic purposes. UV-laser in- duced fluorescence (LIF) is a very efficient technique to detect biological tracers (e.g., amino acids) within airborne microparticles and thus identify bioagents in a mixture of aerosols. In order to obtain selectivity, the fluorescence spectrum of each particle has to be recorded individually. We present the LIF spectra of individual biological particles flowing in the air. The observed spectra reveal the signatures of tryptophan, riboflavin, and NADH. High sensitivity and counting rate are obtained using a novel detection design based on a shot-noise limited 32-anodes photomultiplier. While in- creasing the incident laser energy, parasitic non-linear processes can take place. In particular, we show that the fluorescence spectrum of riboflavin containing microparti- cles is modified by a 2-photon photodegradation- excitation process, which might lead to significant identification errors. However, using ultrashort laser pulses significantly reduces these artefacts since the deposited energy is low. Non-linear multiphoton ex- citation (photodegradation free) can even provide attractive features for bioaerosols identification. In particular, we demonstrated theoretically and experimentally that one-, two-, and three-photon excited fluorescence from dye molecules in spherical microdroplets has an asymmetrical angular distribution and is enhanced in the back- ward direction. Femtosecond excitation allowed us to illuminate the microparticles at high intensity without shape deformation and photodegradation. The enhancement ra- tios (of intensities at 180 and 90) reaches 9 for three-photon excitation. Calculations show a plateau above a given size (1-3 micrometers depending on the process order) under which the enhancement drastically decreases. This change in angular depen- dence might be of

  15. Experimental study of the effects of bleed holes on heat transfer and pressure drop in trapezoidal passages with tapered turbulators

    SciTech Connect

    Taslim, M.E.; Li, T.; Spring, S.D.

    1995-04-01

    Trailing edge cooling cavities in modern gas turbine blades often have trapezoidal cross-sectional areas of relatively low aspect ratio. To enhance cooling effectiveness in these passages, they are roughened with tapered turbulators. Furthermore, to provide additional cooling for the trailing edge, the cooling air may be ejected through trailing edge slots as it moves radially along the cooling passage. The tapered turbulators, in conjunction with the presence of these slots along the smaller base of the trapezoidal cavity, create both spanwise and longitudinal variations in heat transfer coefficient on the turbulated walls. Moreover, the continuous variation of cooling air velocity along these passages causes a continuous change in static pressure, which also requires investigation. Liquid crystals are used in this experimental investigation to study the effects of tapered turbulators on heat transfer coefficients in trailing edge passages with and without bleed holes. The tapered turbulators are configured on two opposite walls of the trapezoidal test section in a staggered arrangement with an angle of attack to the mainstream flow, {alpha}, of 90 deg. Nine different test geometries consisting of two passage aspect ratios, AR, were tested over a range of turbulator aspect ratios, AR{sub t}, blockage ratios, e{sub max}/D{sub h}, pitch-to-height ratios, S/e{sub max}, and Reynolds numbers. Channel pressure losses were also measured and both heat transfer and friction factor results for several geometries are compared. It is concluded that (a) there exists a large spanwise variation in heat transfer coefficient in test sections with no bleed holes, (b) adding bleed holes to the smaller base of the trapezoidal cavity gives a spanwise velocity component to the mainstream flow and reduces this variation, and (c) Nusselt numbers measured in the test sections with bleed holes correlate well with local Reynolds number.

  16. Archaeal characterization of bioaerosols from cage-housed and floor-housed poultry operations.

    PubMed

    Just, Natasha; Blais Lecours, Pascale; Marcoux-Voiselle, Mélissa; Kirychuk, Shelley; Veillette, Marc; Singh, Baljit; Duchaine, Caroline

    2013-01-01

    Although bioaerosols from both cage-housed (CH) and floor-housed (FH) poultry operations are highly concentrated, the concentrations of dust, endotoxin, and bacteria are significantly higher in FH bioaerosols. Workers from CH operations have reported a greater prevalence of respiratory symptoms. To date, archaea have been examined in swine and dairy bioaerosols but not in poultry bioaerosols. The objective of this study was to directly compare methanogenic archaea concentrations in bioaerosols from CH and FH poultry facilities. Bioaerosols were collected from 15 CH and 15 FH poultry operations, using stationary area samplers as well as personal sampling devices. Archaea were quantified and their diversity was investigated using polymerase chain reaction (PCR) followed by denaturing gradient gel electrophoresis (DGGE) and band sequencing. Archaea were significantly higher in area and personal bioaerosols of CH poultry operations than in those from FH poultry operations (p < 0.001 and p < 0.05, respectively) and did not differ significantly between area and personal samples within each barn type. Sequences matching Methanobrevibacter woesei, an archaea previously found in poultry samples, were detected in bioaerosol samples from CH operations. Methanogenic archaea concentrations are significantly different between bioaerosols from CH and FH poultry operations.

  17. Pressure Drop Versus Flow Rate Analysis of the Limited Streamer Tube Gas System of the BaBar Muon Detector Upgrade

    SciTech Connect

    Yi, M.

    2004-09-03

    It has been proposed that Limited Streamer Tubes (LST) be used in the current upgrade of the muon detector in the BaBar detector. An LST consists of a thin silver plated wire centered in a graphite-coated cell. One standard LST tube consists of eight such cells, and two or three such tubes form an LST module. Under operation, the cells are filled with a gas mixture of CO{sub 2}, argon and isobutane. During normal operation of the detector, the gas will be flushed out of the system at a constant low rate of one volume change per day. During times such as installation, however, it is often desired to flush and change the LST gas volumes very rapidly, leading to higher than normal pressure which may damage the modules. This project studied this pressure as a function of flow rate and the number of modules that are put in series in search of the maximal safe flow rate at which to flush the modules. Measurements of pressure drop versus flow rate were taken using a flow meter and a pressure transducer on configurations of one to five modules put in series. Minimal Poly-Flo tubing was used for all connections between test equipment and modules. They contributed less than 25% to all measurements. A ratio of 0.00022 {+-} 0.00001 mmHg per Standard Cubic Centimeter per Minute (SCCM) per module was found, which was a slight overestimate since it included the contributions from the tubing connections. However, for the purpose of finding a flow rate at which the modules can be safely flushed, this overestimate acts as a safety cushion. For a standard module with a volume of 16 liters and a known safe overpressure of 2 inches of water, the ratio translates into a flow rate of 17000 {+-} 1000SCCM and a time requirement of 56 {+-} 5 seconds to flush an entire module.

  18. Flow rate/pressure drop data gathered from testing a sample of the Space Shuttle Strain Isolation Pad (SIP): Effects of ambient pressure combined with tension and compression conditions

    NASA Technical Reports Server (NTRS)

    Springfield, R. D.; Lawing, P. L.

    1983-01-01

    Tests were conducted on a sample of strain isolation pad (SIP) typical of that used in the shuttle orbiter thermal protection system to determine the characteristics of SIP internal flow. Data obtained were pressure drop as a function of flow rate for a range of ambient pressures representing various points along the Shuttle trajectory and for stretched and compressed conditions of the SIP. Flow was in the direction of the weave parallel to most of the fibers. The data are plotted in several standard engineering formats in order to be of maximum utility to the user. In addition to providing support to the Space Shuttle Program, these data are a source of experimental information on flow through fiberous (rather than the more usual sand bed type) porous media.

  19. Experimental investigation of heat transfer and pressure drop characteristics of water and glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

    NASA Astrophysics Data System (ADS)

    Khan, Md Mesbah-ul Ghani

    Microchannels have several advantages over traditional large tubes. Heat transfer using microchannels recently have attracted significant research and industrial design interests. Open literatures leave with question on the applicability of classical macroscale theory in microchannels. Better understanding of heat transfer in various microchannel geometries and building experimental database are continuously urged. The purpose of this study is to contribute the findings and data to this emerging area through carefully designed and well controlled experimental works. The commercially important glycol-water mixture heat transfer fluid and multiport slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter tubes experience turbulent flow whereas the narrow channels face laminar flow and often developing flow. Study of low Reynolds number developing glycol-water mixture laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is not available in the open literature. Current research therefore experimentally investigates glycol-water mixture and water in simultaneously developing laminar flows. Three multiport microchannel heat exchangers; straight and serpentine slabs, are used for each fluid. Friction factors of glycol-water mixture and water flows in straight slabs are higher than conventional fully developed laminar flow. If a comprehensive pressure balance is introduced, the results are well compared with conventional Poiseuille theory. Similar results are found in serpentine slab. The pressure drop for the straight core is the highest, manifolds are the intermediate, and serpentine is the least; which are beneficial for heat exchangers. The heat transfer results in serpentine slab for glycol-water mixture and water are higher and could not be compared with conventional fully developed and developing flow correlations. New

  20. Two-phase frictional pressure drop of R-134a and R-410A refrigerant-oil mixtures in straight tubes and U-type wavy tubes

    SciTech Connect

    Chen, Ing Youn; Wu, Yu-Shi; Chang, Yu-Juei; Wang, Chi-Chuan

    2007-02-15

    This study presents single-phase and two-phase pressure drop data for R-134a/oil mixture flowing in a wavy tube with inner diameter of D=5.07mm and curvature ratio 2R/D=5.18 and R-410A/oil mixture flowing in a wavy tube of D=3.25mm and 2R/D=3.91. Both mixtures have oil concentration C=0%, 1%, 3% and 5% for the tests. The ratio of frictional factor between U-bend in wavy tube and straight tube (f{sub C}/f{sub S}) is about 3.5 for Re<2500 and is approximate 2.5 for Re=3500-25,000 for oil and liquid R-134a mixture flowing in the 5.07mm diameter wavy tube. The influence of oil concentration on single-phase friction factor is negligible, provided that the properties are based on the mixture of lubricant and refrigerant. The ratio between two-phase pressure gradients of U-bend and straight tube is about 2.5-3.5. This ratio is increased with oil concentration and vapor quality. The influence of oil is augmented at a higher mass flux for liquid spreading around the periphery at an annular flow pattern. Moreover, the influence of lubricant becomes more evident of a U-bend configuration. This is associated the induced swirled flow motion and an early change of flow pattern from stratified to annular flow pattern. The frictional two-phase multiplier for straight tube can be fairly correlated by using the Chisholm correlation for the data having Martinelli parameter X between 0.05 and 1.0. Fridel correlation also shows a good agreement with a mean deviation of 17.6% to all the straight tube data. For the two-phase pressure drop in U-bend, the revised Geary correlation agrees very well with the R-134a and R-410A oil-refrigerant data with a mean deviation of 16.4%. (author)

  1. Needles of Pinus halepensis as biomonitors of bioaerosol emissions.

    PubMed

    Galès, Amandine; Latrille, Eric; Wéry, Nathalie; Steyer, Jean-Philippe; Godon, Jean-Jacques

    2014-01-01

    We propose using the surface of pine trees needles to biomonitor the bioaerosol emissions at a composting plant. Measurements were based on 16S rRNA gene copy numbers of Saccharopolyspora rectivirgula, a bioindicator of composting plant emissions. A sampling plan was established based on 29 samples around the emission source. The abundance of 16S rRNA gene copies of S. rectivirgula per gram of Pinus halepensis needles varied from 104 to 102 as a function of the distance. The signal reached the background level at distances around the composting plant ranging from 2 km to more than 5.4 km, depending on the local topography and average wind directions. From these values, the impacted area around the source of bioaerosols was mapped.

  2. [Mycotoxins as exposure parameters in bioaerosols of composting sites].

    PubMed

    Fischer, G; Müller, T; Ostrowski, R; Schwalbe, R; Dott, W

    1999-01-01

    The potential to produce mycotoxins was investigated for freshly isolated strains of airborne fungi. The spectra of metabolites in conidial extracts and culture extracts were compared for some relevant species. Furthermore, their potential to produce mycotoxins on semi-natural media (compost extract agar) supplemented with sucrose, yeast extract, and carboxymethylcellulose in different combinations was investigated. In native bioaerosols in a compost facility (plant 2), tryptoquivaline, a compound with tremorgenic properties, and trypacidin, for which no toxic properties are described, were found. The highly toxic metabolites gliotoxin and verruculogen were not found in the bioaerosols, although they were produced by some strains in pure culture. An inventory of microbial metabolites in addition of fungal propagules has led to a more detailed identification of potential health hazards at the working place. In addition to the pathogenic and allergological relevance, airborne fungi are thus of toxicological concern.

  3. Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes

    NASA Astrophysics Data System (ADS)

    Hernandez, Mark; Perring, Anne E.; McCabe, Kevin; Kok, Greg; Granger, Gary; Baumgardner, Darrel

    2016-07-01

    Rapid bioaerosol characterization has immediate applications in the military, environmental and public health sectors. Recent technological advances have facilitated single-particle detection of fluorescent aerosol in near real time; this leverages controlled ultraviolet exposures with single or multiple wavelengths, followed by the characterization of associated fluorescence. This type of ultraviolet induced fluorescence has been used to detect airborne microorganisms and their fragments in laboratory studies, and it has been extended to field studies that implicate bioaerosol to compose a substantial fraction of supermicron atmospheric particles. To enhance the information yield that new-generation fluorescence instruments can provide, we report the compilation of a referential aerobiological catalogue including more than 50 pure cultures of common airborne bacteria, fungi and pollens, recovered at water activity equilibrium in a mesoscale chamber (1 m3). This catalogue juxtaposes intrinsic optical properties and select bandwidths of fluorescence emissions, which manifest to clearly distinguish between major classes of airborne microbes and pollens.

  4. Metalworking fluid bioaerosols at selected workplaces in a steelworks.

    PubMed

    Górny, Rafał L; Szponar, Bogumiła; Larsson, Lennart; Pehrson, Christina; Prazmo, Zofia; Dutkiewicz, Jacek

    2004-10-01

    Exposure to metalworking fluid (MWF) aerosols has been shown to be associated with a variety of respiratory and skin diseases of workers. Measurements of particulate aerosols, bacterial bioaerosol, and endotoxins and 3-hydroxy fatty acids (3-OH FAs) content in water-based and straight oil MWFs were done during an 8 hr work shift in the grindery and oil basement sections of a steelworks located in Upper Silesia, Poland. Particulate aerosol concentrations were below NIOSH recommended occupational exposure level. Differences in concentration and taxonomical composition of airborne bacteria between grindery and oil basement were found, due to the more aggressive creation of oil mist during machining operations and different MWF characteristics, which favor growth of different bacterial strains. The GC-MS analysis of 3-OH FAs as a marker of endotoxin contamination of the MWF and of the air seems to be a promising tool for evaluation of occupational exposure to bacterial bioaerosols.

  5. Needles of Pinus halepensis as Biomonitors of Bioaerosol Emissions

    PubMed Central

    Galès, Amandine; Latrille, Eric; Wéry, Nathalie; Steyer, Jean-Philippe; Godon, Jean-Jacques

    2014-01-01

    We propose using the surface of pine trees needles to biomonitor the bioaerosol emissions at a composting plant. Measurements were based on 16S rRNA gene copy numbers of Saccharopolyspora rectivirgula, a bioindicator of composting plant emissions. A sampling plan was established based on 29 samples around the emission source. The abundance of 16S rRNA gene copies of S. rectivirgula per gram of Pinus halepensis needles varied from 104 to 102 as a function of the distance. The signal reached the background level at distances around the composting plant ranging from 2 km to more than 5.4 km, depending on the local topography and average wind directions. From these values, the impacted area around the source of bioaerosols was mapped. PMID:25379901

  6. Effect of vibration on dispersal of Cladosporium cladosporioides bioaerosols.

    PubMed

    Lee, Byung Uk

    2010-05-01

    The vibration of fungal cultures was evaluated to determine its potential effect on the dispersal of airborne fungal microorganisms suspected of being pathogens. An artificial vibration system, which simulates the actual environmental vibration of fungal structures, was designed and constructed for this purpose. Experiments featured the use of low-frequency vibrations similar to those induced by earthquakes. Within the range of conditions tested, the vibration of fungal cultures was found to affect the airflow-driven generation of bioaerosols.

  7. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    SciTech Connect

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-15

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 deg. C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min{sup -1}. The nonlinear behavior allows sensitivities equal to 0.6 V l{sup -1} min for flow rates ranging from -2.0 to +2.0 l min{sup -1}, equal to 2.0 V l{sup -1} min for flow rates ranging from -3.0 to -2.0 l min{sup -1} and from +2.0 to +3.0 l min{sup -1}, up to 5.7 V l{sup -1} min at higher flow rates ranging from -7.0 to -3.0 l min{sup -1} and from +3.0 to +7.0 l min{sup -1}. The linear range extends from 3.0 to 7.0 l min{sup -1} with constant sensitivity equal to 5.7 V l{sup -1} min. The sensor is able to detect a flow-rate equal to 1.0 l min{sup -1} with a sensitivity of about 400 mV l{sup -1} min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min{sup -1}, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l{sup -1} min.

  8. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: measurement principle and static calibration.

    PubMed

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min(-1). The nonlinear behavior allows sensitivities equal to 0.6 V l(-1) min for flow rates ranging from -2.0 to +2.0 l min(-1), equal to 2.0 V l(-1) min for flow rates ranging from -3.0 to -2.0 l min(-1) and from +2.0 to +3.0 l min(-1), up to 5.7 V l(-1) min at higher flow rates ranging from -7.0 to -3.0 l min(-1) and from +3.0 to +7.0 l min(-1). The linear range extends from 3.0 to 7.0 l min(-1) with constant sensitivity equal to 5.7 V l(-1) min. The sensor is able to detect a flow-rate equal to 1.0 l min(-1) with a sensitivity of about 400 mV l(-1) min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min(-1), corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l(-1) min.

  9. Pressure drop of two-phase helium along long cryogenic flexible transfer lines to support a superconducting RF operation at its cryogenic test stand.

    PubMed

    Chang, M H; Tsai, M H; Wang, Ch; Lin, M C; Chung, F T; Yeh, M S; Chang, L H; Lo, C H; Yu, T C; Chen, L J; Liu, Z K

    2016-01-01

    Establishing a stand-alone cryogenic test stand is of vital importance to ensure the highly reliable and available operation of superconducting radio-frequency module in a synchrotron light source. Operating a cryogenic test stand relies strongly on a capability to deliver two-phase helium along long cryogenic transfer lines. A newly constructed cryogenic test stand with flexible cryogenic transfer lines of length 220 m at National Synchrotron Radiation Research Center is required to support a superconducting radio-frequency module operated at 126.0 kPa with a 40-W dynamic load for a long-term reliability test over weeks. It is designed based on a simple analytical approach with the introduction of a so-called tolerance factor that serves to estimate the pressure drops in transferring a two-phase helium flow with a substantial transfer cryogenic heat load. Tolerance factor 1.5 is adopted based on safety factor 1.5 commonly applied in cryogenic designs to estimate the total mass flow rate of liquid helium demanded. A maximum 60-W dynamic load is verified with experiment measured with heater power 60 W instead after the cryogenic test stand has been installed. Aligning the modeled cryogenic accumulated static heat load with the results measured in situ, actual tolerance factor 1.287 is obtained. The feasibility and validity of our simple analytical approach with actual tolerance factor 1.287 have been scrutinized by using five test cases with varied operating conditions. Calculated results show the discrepancies of the pressure drops between the estimated and measured values for both liquid helium and cold gaseous helium transfer lines have an underestimate 0.11 kPa and an overestimate 0.09 kPa, respectively. A discrepancy is foreseen, but remains acceptable for engineering applications from a practical point of view. The simple analytical approach with the introduction of a tolerance factor can provide not only insight into optimizing the choice of each lossy

  10. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    NASA Astrophysics Data System (ADS)

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min-1. The nonlinear behavior allows sensitivities equal to 0.6 V l-1 min for flow rates ranging from -2.0 to +2.0 l min-1, equal to 2.0 V l-1 min for flow rates ranging from -3.0 to -2.0 l min-1 and from +2.0 to +3.0 l min-1, up to 5.7 V l-1 min at higher flow rates ranging from -7.0 to -3.0 l min-1 and from +3.0 to +7.0 l min-1. The linear range extends from 3.0 to 7.0 l min-1 with constant sensitivity equal to 5.7 V l-1 min. The sensor is able to detect a flow-rate equal to 1.0 l min-1 with a sensitivity of about 400 mV l-1 min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min-1, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l-1 min.

  11. Gaseous and bioaerosol emissions from municipal wastewater treatment plants.

    PubMed

    Seetha, N; Bhargava, Renu; Gurjar, B R

    2013-10-01

    Wastewater treatment plants (WWTPs) are identified as potential emission sources of greenhouse gases (GHGs) and bioaerosols. This paper reviews and analyse the potential sources of GHGs and bioaerosols from different unit operations and processes of WWTPs. Aeration tanks of activated sludge process (ASP) are found to be the most important sources of GHGs as well as bioaerosol emissions. Nitrification and denitrification processes are found to be important sources of nitrous oxide (N2O) emissions. To minimize the N2O emissions from WWTPs, dissolved oxygen (DO) concentration should be kept greater than 2 mg/L in nitrification process, whereas purely anoxic condition (0 mg/L DO) is required in denitrification process. Diffused aeration emits fewer microbes into the air than surface aerators. It is observed that fixed-film processes emit microbes by two orders of magnitude less than aeration tanks. The various WWTPs discussed in this study used different methods of treatment sample collection and species of microorganisms studied. It is realised that the standardisation of the microorganisms to be analysed and methods of sample collection needs to be done. It is also found that from the microbiological point of view, there is no clean air in the vicinity of a WWTP.

  12. Bioaerosol deposition on an air-conditioning cooling coil

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  13. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    SciTech Connect

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  14. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.

  15. A wind tunnel test of newly developed personal bioaerosol samplers.

    PubMed

    Su, Wei-Chung; Tolchinsky, Alexander D; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-07-01

    In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.

  16. Analysis of portable impactor performance for enumeration of viable bioaerosols.

    PubMed

    Yao, Maosheng; Mainelis, Gediminas

    2007-07-01

    Portable impactors are increasingly being used to estimate concentration of bioaerosols in residential and occupational environments; however, little data are available about their performance. This study investigated the overall performances of the SMA MicroPortable, BioCulture, Microflow, Microbiological Air Sampler (MAS-100), Millipore Air Tester, SAS Super 180, and RCS High Flow portable microbial samplers when collecting bacteria and fungi both indoors and outdoors. The performance of these samplers was compared with that of the BioStage impactor. The Button Aerosol Sampler equipped with gelatin filter was also included in the study. Results showed that the sampling environment can have a statistically significant effect on sampler performance, most likely due to the differences in airborne microorganism composition and/or their size distribution. Data analysis using analysis of variance showed that the relative performance of all samplers (except the RCS High Flow and MAS-100) was statistically different (lower) compared with the BioStage. The MAS-100 also had statistically higher performance compared with other portable samplers except the RCS High Flow. The Millipore Air Tester and the SMA had the lowest performances. The relative performance of the impactors was described using a multiple linear regression model (R(2) = 0.83); the effects of the samplers' cutoff sizes and jet-to-plate distances as predictor variables were statistically significant. The data presented in this study will help field professionals in selecting bioaerosol samplers. The developed empirical formula describing the overall performance of bioaerosol impactors can assist in sampler design.

  17. Bacterial diversity characterization of bioaerosols from cage-housed and floor-housed poultry operations.

    PubMed

    Just, Natasha; Kirychuk, Shelley; Gilbert, Yan; Létourneau, Valérie; Veillette, Marc; Singh, Baljit; Duchaine, Caroline

    2011-05-01

    Although bioaerosols from both cage-housed (CH) and floor-housed (FH) poultry operations are highly concentrated, workers from CH operations have reported a greater prevalence of respiratory symptoms. The objective of this study was to directly compare bacteria, both quantitatively and qualitatively, in bioaerosols from CH and FH poultry facilities. Bioaerosols were collected from fifteen CH and fifteen FH poultry operations, using stationary area samplers as well as personal sampling devices. Dust, endotoxin and bacteria were quantified and bacterial diversity was investigated using PCR followed by denaturing gradient gel electrophoresis (DGGE). Dust (p<0.001), endotoxin (p<0.05) and bacteria (p<0.05) were significantly higher in personal bioaerosols of FH poultry operations than CH bioaerosols. Although dust and endotoxin did not differ significantly between area and personal samples within each barn type, clustering analysis of DGGE profiles of bacteria revealed that area and personal samples shared less than 10% similarity. These data suggest that area samples are not representative of personal bacteria exposures, which may be affected by worker movement, bacteria carried on the worker and worker location. Personal DGGE profiles from CH and FH operations shared less than 20% similarity and composite analysis showed that bacteria were more prevalent in personal samples from CH bioaerosols than FH bioaerosols. Bacteria concentration and diversity are significantly different between bioaerosols from CH and FH poultry operations. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Following the Biochemical and Morphological Changes of Bacillus atrophaeus during Sporulation using Bioaerosol Mass Spectrometry

    SciTech Connect

    Tobias, H J; Pitesky, M E; Fergenson, D P; Horn, J; Frank, M; Gard, E E

    2006-05-03

    The overall objective of this report is to develop a real-time single-particle mass spectrometry technique called Bio-Aerosol Mass Spectrometry (BAMS) in order to efficiently screen and identify bioaerosols and single cells of national security and public health concern.

  19. Bio-aerosols in indoor environment: composition, health effects and analysis.

    PubMed

    Srikanth, Padma; Sudharsanam, Suchithra; Steinberg, Ralf

    2008-01-01

    Bio-aerosols are airborne particles that are living (bacteria, viruses and fungi) or originate from living organisms. Their presence in air is the result of dispersal from a site of colonization or growth. The health effects of bio-aerosols including infectious diseases, acute toxic effects, allergies and cancer coupled with the threat of bioterrorism and SARS have led to increased awareness on the importance of bio-aerosols. The evaluation of bio-aerosols includes use of variety of methods for sampling depending on the concentration of microorganisms expected. There have been problems in developing standard sampling methods, in proving a causal relationship and in establishing threshold limit values for exposures due to the complexity of composition of bio-aerosols, variations in human response to their exposure and difficulties in recovering microorganisms. Currently bio-aerosol monitoring in hospitals is carried out for epidemiological investigation of nosocomial infectious diseases, research into airborne microorganism spread and control, monitoring biohazardous procedures and use as a quality control measure. In India there is little awareness regarding the quality of indoor air, mould contamination in indoor environments, potential source for transmission of nosocomial infections in health care facilities. There is an urgent need to undertake study of indoor air, to generate baseline data and explore the link to nosocomial infections. This article is a review on composition, sources, modes of transmission, health effects and sampling methods used for evaluation of bio-aerosols, and also suggests control measures to reduce the loads of bio-aerosols.

  20. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-01-01

    Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of -11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and -11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique.

  1. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    NASA Astrophysics Data System (ADS)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  2. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC).

    PubMed

    Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan

    2017-06-01

    Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R(2)  > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Validated heat-transfer and pressure-drop prediction methods based on the discrete-element method: Phase 2, two-dimensional rib roughness

    SciTech Connect

    James, C.A.; Hodge, B.K.; Taylor, R.P.

    1993-05-01

    Surface roughness is a commonly used approach for enhancing the rate of heat transfer of surfaces, such as in heat-exchanger tubes. Because the improved thermal performance of roughened surfaces is at the expense of increased flow resistance (increased pressure drop or friction factor), accurate prediction techniques for determining the friction factors and Nusselt numbers for roughened surfaces are required if such features are to be considered as design options. This report presents the results of the second phase of a research program sponsored by Argonne National Laboratory to validate models for the prediction of friction factors and Nusselt numbers for fully developed turbulent flow in enhanced heat-exchanger tubes. The first phase was concerned with validating a roughness model for turbulent flow in tubes internally roughened with three-dimensional distributed roughness elements, such as sandgrains, spheres, hemispheres, and cones. The second phase is concerned with devising and validating methods for the prediction of friction factors and Nusselt numbers for turbulent flow in tubes internally roughened with repeated, two-dimensional ribs aligned perpendicular to the flow. The ribs are spaced sufficiently far apart that the leeward-side separated flow reattaches to the wall before again separating in order to negotiate the next rib. This heat-transfer enhancement mechanism is called the separation and reattachment mechanism, after Rabas (1989). This work is limited to rectangular rib shapes.

  4. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    NASA Astrophysics Data System (ADS)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-04-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  5. Laminar flow heat transfer and pressure drop characteristics of power-law fluids inside tubes with varying width twisted tape inserts

    SciTech Connect

    Patil, A.G.

    2000-02-01

    Results of an experimental investigation of heat transfer and flow friction of a generalized power-law fluid in tape generated swirl flow inside a 25.0 mm i.d. circular tube, are presented. In order to reduce excessive pressure drops associated with full width twisted tapes, with less corresponding reduction in heat transfer coefficients, reduced width twisted tapes of widths ranging from 11.0 to 23.8 mm, which are lower than the tube inside diameter are used. Reduced width twisted tape inserts give 18%--56% lower isothermal friction factors than the full width tapes. Uniform wall temperature Nusselt numbers decrease only slightly by 5%--25%, for tape widths of 19.7 and 11.0 mm, respectively. Based on the constant pumping power criterion, the tapes of width 19.7 mm perform more or less like full width tapes. Correlations are presented for isothermal and heating friction factors and Nusselt numbers (under uniform wall temperature condition) for a fully developed laminar swirl flow, which are applicable to full width as well as reduced width twisted tapes, using a modified twist ratio as pitch to width ratio of the tape. The reduced width tapes offer 20%--50% savings in the tape material as compared to the full width tapes.

  6. Effects of bioaerosol exposure on respiratory health in compost workers: a 13-year follow-up study.

    PubMed

    van Kampen, V; Hoffmeyer, F; Deckert, A; Kendzia, B; Casjens, S; Neumann, H D; Buxtrup, M; Willer, E; Felten, C; Schöneich, R; Brüning, T; Raulf, M; Bünger, J

    2016-12-01

    To determine the risk of German compost workers developing chronic respiratory effects from long-term exposure to bioaerosols. Respiratory health was determined in 74 currently exposed compost workers and 37 non-exposed controls after 13 years of follow-up. In addition, 42 former compost workers (drop-outs) who left their work during the follow-up period were also examined. Respiratory symptoms and working conditions were assessed using identical questionnaires as at baseline. In addition, lung function was measured using the same spirometer as in the initial study. Sera from both surveys were tested for specific IgE and IgG antibodies to moulds and the risk of work-related symptoms was evaluated using regression approaches for prospective studies with binary data. In the follow-up period, the number of participants reporting cough significantly increased in compost workers and drop-outs compared to the controls. Working as a compost worker for at least 5 years increased the relative risk for cough (RR 1.28; 95% CI 1.2 to 1.4) and for cough with phlegm (RR 1.32; 95% CI 1.2 to 1.5). Current and former compost workers had slightly lower predicted percentage of forced expiratory volume in 1 s and predicted percentage of forced vital capacity than controls, but decrease in lung function during follow-up was not different among the 3 groups. In addition, no significant changes could be detected in antibody concentrations. Our results suggest that chronic exposure to bioaerosols in composting plants is related to a significantly higher risk for cough with phlegm, indicating chronic bronchitis. However, compost workers showed no higher incidence of deterioration of pulmonary function over the study. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. A pilot study of bioaerosol reduction using an air cleaning system during dental procedures.

    PubMed

    Hallier, C; Williams, D W; Potts, A J C; Lewis, M A O

    2010-10-23

    Bioaerosols are defined as airborne particles of liquid or volatile compounds that contain living organisms or have been released from living organisms. The creation of bioaerosols is a recognized consequence of certain types of dental treatment and represents a potential mechanism for the spread of infection. The aims of the present study were to assess the bioaerosols generated by certain dental procedures and to evaluate the efficiency of a commercially available Air Cleaning System (ACS) designed to reduce bioaerosol levels. Bioaerosol sampling was undertaken in the absence of clinical activity (baseline) and also during treatment procedures (cavity preparation using an air rotor, history and oral examination, ultrasonic scaling and tooth extraction under local anaesthesia). For each treatment, bioaerosols were measured for two patient episodes (with and without ACS operation) and between five and nine bioaerosol samples were collected. For baseline measurements, 15 bioaerosol samples were obtained. For bioaerosol sampling, environmental air was drawn on to blood agar plates using a bioaerosol sampling pump placed in a standard position 20 cm from the dental chair. Plates were incubated aerobically at 37°C for 48 hours and resulting growth quantified as colony forming units (cfu/m³). Distinct colony types were identified using standard methods. Results were analysed statistically using SPSS 12 and Wilcoxon signed rank tests. The ACS resulted in a significant reduction (p = 0.001) in the mean bioaerosols (cfu/m³) of all three clinics compared with baseline measurements. The mean level of bioaerosols recorded during the procedures, with or without the ACS activated respectively, was 23.9 cfu/m³ and 105.1 cfu/m³ (p = 0.02) for cavity preparation, 23.9 cfu/m³ and 62.2 cfu/m³ (p = 0.04) for history and oral examination; 41.9 cfu/m³ and 70.9 cfu/m³ (p = 0.01) for ultrasonic scaling and 9.1 cfu/m³ and 66.1 cfu/m³ (p = 0.01) for extraction. The predominant

  8. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  9. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid microvolume samples.

    PubMed

    Schaper, J Niklas; Pfeuffer, Kevin P; Shelley, Jacob T; Bings, Nicolas H; Hieftje, Gary M

    2012-11-06

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 μg/mL, without sample pretreatment, were obtained.

  10. Epiphytic cryptogams as a source of bioaerosols and trace gases

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Hrabe de Angelis, Isabella; Zartman, Charles E.; Araùjo, Alessandro; Pöschl, Ulrich; Manzi, Antonio O.; Andreae, Meinrat O.; Pöhlker, Christopher; Weber, Bettina

    2016-04-01

    Cryptogamic covers comprise (cyano-)bacteria, algae, lichens, bryophytes, fungi, and archaea in varying proportions. These organisms do not form flowers, but reproduce by spores or cell cleavage with these reproductive units being dispersed via the atmosphere. As so-called poikilohydric organisms they are unable to regulate their water content, and their physiological activity pattern mainly follows the external water conditions. We hypothesize, that both spore dispersal and the release of trace gases are governed by the moisture patterns of these organisms and thus they could have a greater impact on the atmosphere than previously thought. In order to test this hypothesis, we initiated experiments at the study site Amazonian Tall Tower Observatory (ATTO) in September 2014. We installed microclimate sensors in epiphytic cryptogams at four different heights of a tree to monitor the activity patterns of these organisms. Self-developed moisture probes are used to analyze the water status of the organisms accompanied by light and temperature sensors. The continuously logged data are linked to ongoing measurements of trace gases and particulate bioaerosols to analyze these for the relevance of cryptogams. Here, we are particularly interested in diurnal cycles of coarse mode particles and the atmospheric abundance of fine potassium-rich particles from a currently unknown biogenic source. Based upon the results of this field study we also investigate the bioaerosol and trace gas release patterns of cryptogamic covers under controlled conditions. With this combined approach of field and laboratory experiments we aim to disclose the role of cryptogamic covers in bioaerosol and trace gas release patterns in the Amazonian rainforest.

  11. Comparison of aerosol and bioaerosol collection on air filters.

    PubMed

    Miaskiewicz-Peska, Ewa; Lebkowska, Maria

    2012-06-01

    Air filters efficiency is usually determined by non-biological test aerosols, such as potassium chloride particles, Arizona dust or di-ethyl-hexyl-sebacate (DEHS) oily liquid. This research was undertaken to asses, if application of non-biological aerosols reflects air filters capacity to collect particles of biological origin. The collection efficiency for non-biological aerosol was tested with the PALAS set and ISO Fine Test Dust. Flow rate during the filtration process was 720 l/h, and particles size ranged 0.246-17.165 μm. The upstream and downstream concentration of the aerosol was measured with a laser particle counter PCS-2010. Tested bioaerosol contained 4 bacterial strains of different shape and size: Micrococcus luteus,Micrococcus varians, Pseudomonas putida and Bacillus subtilis. Number of the biological particles was estimated with a culture-based method. Results obtained with bioaerosol did not confirmed 100% filters efficiency noted for the mineral test dust of the same aerodynamic diameter. Maximum efficiency tested with bacterial cells was 99.8%. Additionally, cells reemission from filters into air was also studied. Bioaerosol contained 3 bacterial strains: Micrococcus varians, Pseudomonas putida and Bacillus subtilis. It was proved that the highest intensity of the reemission process was during the first 5 min. and reached maximum 0.63% of total number of bacteria retained in filters. Spherical cells adhered stronger to the filter fibres than cylindrical ones. It was concluded that non-biological aerosol containing particles of the same shape and surface characteristics (like DEHS spherical particles) can not give representative results for all particles present in the filtered air.

  12. Impact of production systems on swine confinement buildings bioaerosols.

    PubMed

    Létourneau, Valérie; Nehmé, Benjamin; Mériaux, Anne; Massé, Daniel; Duchaine, Caroline

    2010-02-01

    Hog production has been substantially intensified in Eastern Canada. Hogs are now fattened in swine confinement buildings with controlled ventilation systems and high animal densities. Newly designed buildings are equipped with conventional manure handling and management systems, shallow or deep litter systems, or source separation systems to manage the large volumes of waste. However, the impacts of those alternative production systems on bioaerosol concentrations within the barns have never been evaluated. Bioaerosols were characterized in 18 modern swine confinement buildings, and the differences in bioaerosol composition in the three different production systems were evaluated. Total dust, endotoxins, culturable actinomycetes, fungi, and bacteria were collected with various apparatuses. The total DNA of the air samples was extracted, and quantitative polymerase chain reaction (PCR) was used to assess the total number of bacterial genomes, as a total (culturable and nonculturable) bacterial assessment. The measured total dust and endotoxin concentrations were not statistically different in the three studied production systems. In buildings with sawdust beds, actinomycetes and molds were found in higher concentrations than in the conventional barns. Aspergillus, Cladosporium, Penicillium, and Scopulariopsis species were identified in all the studied swine confinement buildings. A. flavus, A. terreus, and A. versicolor were abundantly present in the facilities with sawdust beds. Thermotolerant A. fumigatus and Mucor were usually found in all the buildings. The culturable bacteria concentrations were higher in the barns with litters than in the conventional buildings, while real-time PCR revealed nonstatistically different concentrations of total bacteria in all the studied swine confinement buildings. In terms of workers' respiratory health, barns equipped with a solid/liquid separation system may offer better air quality than conventional buildings or barns with

  13. Spectrally resolved laser-induced fluorescence for bioaerosols standoff detection

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Stadnyk, Laurie; Rowsell, Susan; Simard, Jean-Robert; Ho, Jim; Déry, Bernard; McFee, John

    2007-09-01

    An efficient standoff biological warfare detection capability could become an important asset for both defence and security communities based on the increasing biological threat and the limits of the presently existing protection systems. Defence R&D Canada (DRDC) has developed, by the end of the 90s, a standoff bioaerosol sensor prototype based on intensified range-gated spectrometric detection of Laser Induced Fluorescence (LIF). This LIDAR system named SINBAHD monitors the spectrally resolved LIF originating from inelastic interactions with bioaerosols present in atmospheric cells customizable in size and in range. SINBAHD has demonstrated the capability of near real-time detection and classification of bioaerosolized threats at multi-kilometre ranges. In spring 2005, DRDC has initiated the BioSense demonstration project, which combines the SINBAHD technology with a geo-referenced Near InfraRed (NIR) LIDAR cloud mapper. SINBAHD is now being used to acquire more signatures to add in the spectral library and also to optimize and test the new BioSense algorithm strategy. In September 2006, SINBAHD has participated in a two-week trial held at DRDC-Suffield where different open-air wet releases of live and killed bioagent simulants, growth media and obscurants were performed. An autoclave killing procedure was performed on two biological materials (Bacillus subtilis var globigii or BG, and Bacillus thuringiensis or Bt) before being aerosolized, disseminated and spectrally characterized with SINBAHD. The obtained results showed no significant impact of this killing process on their normalised spectral signature in comparison with their live counterparts. Correlation between the detection signals from SINBAHD, an array of slit samplers and a FLuorescent Aerosol Particle Sensor (C-FLAPS) was obtained and SINBAHD's sensitivity could then be estimated. At the 2006 trial, a detection limit of a few tens of Agent Containing Particles per Liter of Air (ACPLA) was obtained

  14. Non-culturable bioaerosols in indoor settings: Impact on health and molecular approaches for detection

    NASA Astrophysics Data System (ADS)

    Blais-Lecours, Pascale; Perrott, Phillipa; Duchaine, Caroline

    2015-06-01

    Despite their significant impact on respiratory health, bioaerosols in indoor settings remain understudied and misunderstood. Culture techniques, predominantly used for bioaerosol characterisation in the past, allow for the recovery of only a small fraction of the real airborne microbial burden in indoor settings, given the inability of several microorganisms to grow on agar plates. However, with the development of new tools to detect non-culturable environmental microorganisms, the study of bioaerosols has advanced significantly. Most importantly, these techniques have revealed a more complex bioaerosol burden that also includes non-culturable microorganisms, such as archaea and viruses. Nevertheless, air quality specialists and consultants remain reluctant to adopt these new research-developed techniques, given that there are relatively few studies found in the literature, making it difficult to find a point of comparison. Furthermore, it is unclear as to how this new non-culturable data can be used to assess the impact of bioaerosol exposure on human health. This article reviews the literature that describes the non-culturable fraction of bioaerosols, focussing on bacteria, archaea and viruses, and examines its impact on bioaerosol-related diseases. It also outlines available molecular tools for the detection and quantification of these microorganisms and states various research needs in this field.

  15. A bio-aerosol detection technique based on tryptophan intrinsic fluorescence measurement

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Zhang, Pei; Zhu, Linglin; Zhao, Yongkai; Huang, Huijie

    2011-12-01

    Based on the measurement of intrinsic fluorescence, a set of bio-aerosol including virus aerosols detection instrument is developed, with which a method of calibration is proposed using tryptophan as the target. The experimental results show a good linear relationship between the fluorescence voltage of the instrument and the concentration of the tryptophan aerosol. An excellent correlation (R2>=0.99) with the sensitivity of 4000PPL is obtained. The research demonstrates the reliability of the bio-aerosol detection by measuring the content of tryptophan. Further more the feasibility of prejudgment to the species of bio-aerosol particles with the multi-channel fluorescence detection technology is discussed.

  16. Characterization of atmospheric bioaerosols at 9 sites in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado, Lilia; Rodríguez, Guillermo; López, Jonathan; Castillo, J. E.; Molina, Luisa; Zavala, Miguel; Quintana, Penelope J. E.

    2014-10-01

    The atmosphere is not considered a habitat for microorganisms, but can exist in the atmosphere as bioaerosols. These microorganisms in the atmosphere have great environmental importance through their influence on physical processes such as ice nucleation and cloud droplet formation. Pathogenic airborne microorganisms may also have public health consequences. In this paper we analyze the microbial concentration in the air at three sites in Tijuana, Mexico border during the Cal-Mex 2010 air quality campaign and from nine sites over the following year. Samples were collected by impaction with the air analyzer Millipore M Air T, followed by incubation and counting as colony forming units (CFU) of viable colonies. Airborne microbial contamination average levels ranged from a low of 230 ± 130 CFU/m³ in the coastal reference site to an average of 40,100 ± 21,689 CFU/m³ in the Tijuana river valley. We found the highest microbial load in the summer and the lowest values in the winter. Potentially pathogenic bacteria were isolated from the samples, with Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis being most common. This work is the first evaluation of bioaerosols in Tijuana, Mexico.

  17. CFD- and Bernoulli-based pressure drop estimates: A comparison using patient anatomies from heart and aortic valve segmentation of CT images.

    PubMed

    Weese, Jürgen; Lungu, Angela; Peters, Jochen; Weber, Frank M; Waechter-Stehle, Irina; Hose, D Rodney

    2017-06-01

    An aortic valve stenosis is an abnormal narrowing of the aortic valve (AV). It impedes blood flow and is often quantified by the geometric orifice area of the AV (AVA) and the pressure drop (PD). Using the Bernoulli equation, a relation between the PD and the effective orifice area (EOA) represented by the area of the vena contracta (VC) downstream of the AV can be derived. We investigate the relation between the AVA and the EOA using patient anatomies derived from cardiac computed tomography (CT) angiography images and computational fluid dynamic (CFD) simulations. We developed a shape-constrained deformable model for segmenting the AV, the ascending aorta (AA), and the left ventricle (LV) in cardiac CT images. In particular, we designed a structured AV mesh model, trained the model on CT scans, and integrated it with an available model for heart segmentation. The planimetric AVA was determined from the cross-sectional slice with minimum AV opening area. In addition, the AVA was determined as the nonobstructed area along the AV axis by projecting the AV leaflet rims on a plane perpendicular to the AV axis. The flow rate was derived from the LV volume change. Steady-state CFD simulations were performed on the patient anatomies resulting from segmentation. Heart and valve segmentation was used to retrospectively analyze 22 cardiac CT angiography image sequences of patients with noncalcified and (partially) severely calcified tricuspid AVs. Resulting AVAs were in the range of 1-4.5 cm(2) and ejection fractions (EFs) between 20 and 75%. AVA values computed by projection were smaller than those computed by planimetry, and both were strongly correlated (R(2) = 0.995). EOA values computed via the Bernoulli equation from CFD-based PD results were strongly correlated with both AVA values (R(2) = 0.97). EOA values were ∼10% smaller than planimetric AVA values. For EOA values < 2.0 cm(2) , the EOA was up to ∼15% larger than the projected AVA. The presented segmentation

  18. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection

    PubMed Central

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  19. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms.

    PubMed

    Ghosh, Bipasha; Lal, Himanshu; Srivastava, Arun

    2015-12-01

    Several tiny organisms of various size ranges present in air are called airborne particles or bioaerosol which mainly includes live or dead fungi and bacteria, their secondary metabolites, viruses, pollens, etc. which have been related to health issues of human beings and other life stocks. Bio-terror attacks in 2001 as well as pandemic outbreak of flue due to influenza A H1N1 virus in 2009 have alarmed us about the importance of bioaerosol research. Hence characterization i.e. identification and quantification of different airborne microorganisms in various indoor environments is necessary to identify the associated risks and to establish exposure threshold. Along with the bioaerosol sampling and their analytical techniques, various literatures revealing the concentration levels of bioaerosol have been mentioned in this review thereby contributing to the knowledge of identification and quantification of bioaerosols and their different constituents in various indoor environments (both occupational and non-occupational sections). Apart from recognition of bioaerosol, developments of their control mechanisms also play an important role. Hence several control methods have also been briefly reviewed. However, several individual levels of efforts such as periodic cleaning operations, maintenance activities and proper ventilation system also serve in their best way to improve indoor air quality.

  20. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria.

    PubMed

    Jensen, P A; Todd, W F; Davis, G N; Scarpino, P V

    1992-10-01

    The need to quantify airborne microorganisms in the commercial microbiology industry (biotechnology) and during evaluations of indoor air quality, infectious disease outbreaks, and agriculture health investigations has shown there is a major technological void in bioaerosol sampling techniques to measure and identify viable and nonviable aerosols. As commercialization of microbiology increases and diversifies, it is increasingly necessary to assess occupational exposure to bioaerosols. Meaningful exposure estimates, by using area or environmental samplers, can only be ensured by the generation of data that are both precise and accurate. The Andersen six-stage viable (microbial) particle sizing sampler (6-STG) and the Ace Glass all-glass impinger-30 (AGI-30) have been suggested as the samplers of choice for the collection of viable microorganisms by the International Aerobiology Symposium and the American Conference of Governmental Industrial Hygienists. Some researchers consider these samplers inconvenient for evaluating industrial bioprocesses and indoor or outdoor environments. Alternative samplers for the collection of bioaerosols are available; however, limited information has been reported on their collection efficiencies. A study of the relative sampling efficiencies of eight bioaerosol samplers has been completed. Eight samplers were individually challenged with a bioaerosol, created with a Collison nebulizer, of either Bacillus subtilis or Escherichia coli. The samplers were evaluated under controlled conditions in a horizontal bioaerosol chamber. During each experimental run, simultaneous samples were collected with a reference AGI-30 to verify the concentration of microorganisms in the chamber from run to run and day to day.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.

  2. Detecting Bioaerosols When Time Is of the Essence

    SciTech Connect

    Hazi, A

    2005-09-20

    About seven years ago, Livermore researchers received seed funding from the Laboratory Directed Research and Development Program to develop an instrument that counters bioterrorism by providing a rapid early warning system for pathogens, such as anthrax. (See S&TR, January/February 2002, pp. 24-26.) That instrument, the Autonomous Pathogen Detection System (APDS), is now ready for deployment to better protect the public from a bioaerosol attack, and the development team has been honored with a 2004 R&D 100 Award. The lectern-size APDS can be placed in airports, office buildings, performing arts centers, mass transit systems, sporting arenas--anywhere an attack might be launched. APDS was designed to get results fast and get them right, without false positives. Biological scientist Richard Langlois, who spearheaded the APDS development effort, explains, ''The system provides results on the spot. Faster results allow a faster emergency response, which in the end means saving lives.''

  3. Inhalation toxicology models of endotoxin- and bioaerosol-induced inflammation.

    PubMed

    Thorne, P S

    2000-11-02

    Inhalation toxicology studies in rodents have proven their usefulness for furthering our understanding of the causal agents, mechanisms, and pathology associated with exposures to environmental endotoxins and bioaerosols. Inhalation animal models are used to determine which components of a mixture are the most important toxicants for inducing the observed adverse outcome. They are used to obtain exposure-response relationships for allergens and pro-inflammatory agents to help elucidate disease mechanisms and contribute quantitative data to the risk assessment process. Inhalation models serve as important adjuncts to epidemiology studies and human exposure studies. They are also useful for establishing phenotype in studies of genetic polymorphisms and disease susceptibility and are widely applied for evaluation of safety and efficacy for potential therapeutic agents. In order to produce reliable data, rigorous exposure chamber design, aerosol generation systems, exposure quantitation and experimental protocols must be utilized.

  4. Dental bioaerosol as an occupational hazard in a dentist's workplace.

    PubMed

    Szymańska, Jolanta

    2007-01-01

    Many-year studies on aerosols as an infection vector, despite their wide range, ignored dental aerosol. All procedures performed with the use of dental unit handpieces cause the formation of aerosol and splatter which are commonly contaminated with bacteria, viruses, fungi, often also with blood. Aerosols are liquid and solid particles, 50 microm or less in diameter, suspended in air. Splatter is usually described as a mixture of air, water and/or solid substances; water droplets in splatter are from 50 microm to several millimetres in diameter and are visible to the naked eye. The most intensive aerosol and splatter emission occurs during the work of an ultrasonic scaler tip and a bur on a high-speed handpiece. Air-water aerosol produced during dental treatment procedures emerges from a patient's mouth and mixes with the surrounding air, thus influencing its composition. Because air contained in this space is the air breathed by both dentist and patient, its composition is extremely important as a potential threat to the dentist's health. According to the author, insufficient awareness of health risk, working habits, and economic factors are the reasons why dentists do not apply the available and recommended methods of protection against the influence of bioaerosol and splatter. Behaviour protecting a dentist and an assistant from the threat resulting from the influence of dental aerosol cannot be limited to isolated actions. The author, on the basis of the literature and own research, characterizes bioaerosol and splatter in a dental surgery and reviews a full range of protective measures against these risk factors.

  5. Immunogenic Properties of Archaeal Species Found in Bioaerosols

    PubMed Central

    Blais Lecours, Pascale; Duchaine, Caroline; Taillefer, Michel; Tremblay, Claudine; Veillette, Marc; Cormier, Yvon; Marsolais, David

    2011-01-01

    The etiology of bioaerosol-related pulmonary diseases remains poorly understood. Recently, archaea emerged as prominent airborne components of agricultural environments, but the consequences of airway exposure to archaea remain unknown. Since subcomponents of archaea can be immunogenic, we used a murine model to study the pulmonary immune responses to two archaeal species found in agricultural facilities: Methanobrevibacter smithii (MBS) and Methanosphaera stadtmanae (MSS). Mice were administered intranasally with 6.25, 25 or 100 µg of MBS or MSS, once daily, 3 days a week, for 3 weeks. MSS induced more severe histopathological alterations than MBS with perivascular accumulation of granulocytes, pronounced thickening of the alveolar septa, alveolar macrophages accumulation and increased perivascular mononucleated cell accumulation. Analyses of bronchoalveolar lavage fluids revealed up to 3 times greater leukocyte accumulation with MSS compared to MBS. Instillation of 100 µg of MBS or MSS caused predominant accumulation of monocyte/macrophages (4.5×105 and 4.8×105 cells/ml respectively) followed by CD4+ T cells (1.38×105 and 1.94×105 cells/ml respectively), B cells (0.73×105 and 1.28×105 cells/ml respectively), and CD8+ T cells (0.20×105 and 0.31×105 cells/ml respectively) in the airways. Both archaeal species induced similar titers of antigen-specific IgGs in plasma. MSS but not MBS caused an accumulation of eosinophils and neutrophils in the lungs, which surprisingly, correlated inversely with the size of the inoculum. Stronger immunogenicity of MSS was confirmed by a 3 fold higher accumulation of myeloid dendritic cells in the airways, compared to MBS. Thus, the dose and species of archaea determine the magnitude and nature of the pulmonary immune response. This is the first report of an immunomodulatory role of archaeal species found in bioaerosols. PMID:21858070

  6. Sump additives as a source of bioaerosols in a school building.

    PubMed

    Thorne, P S

    1993-04-01

    An investigation was launched following complaints of poor air quality and building-related illness in a public elementary school. Occlusion of air intakes put the building under negative pressure and caused vents from a below-ground sump to become air intakes. Outside air drawn through the sump pit traveled into the adjacent main air handling unit and was disseminated throughout the building. Sump additives introduced in an attempt to counteract foul odors contained spores of Bacillus species, which appeared as bioaerosols throughout the school. Viable microbial sampling identified B subtilis, B cereus, and B licheniformis in the sump room and classrooms at levels as high as 760 colony forming units/m3 (CFU/m3). Concentrations of CO2 in classrooms were 1250 ppm, indicating inadequate makeup air. Remediation was accomplished by opening the air intakes, isolating the sump room from the air handling system, venting the sump to the outside, and flushing the sump with fresh water on a regular basis.

  7. Morphological characteristics of bioaerosols from contrasting locations in southern tropical India - A case study

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy E.; Priyamvada, Hema; Ravikrishna, R.; Després, Viviane R.; Biju, C. V.; Sahu, Lokesh K.; Kumar, Ashwini; Verma, R. S.; Philip, L.; Gunthe, Sachin S.

    2015-12-01

    Bioaerosols, which are ubiquitous in the earth's atmosphere, are poorly characterized in terms of their physical and chemical properties. Improved knowledge of their physical and chemical properties is essential to have a better understanding of their dispersion and long-range transport in the atmosphere and at the same time to assess their role as potential Ice Nuclei (IN). In the present work, possibly for the first time we report the morphological characteristics of bioaerosols from marine urban and high altitude continental regions in Southern India. The samples were collected using polycarbonate filter paper and analyzed using Scanning Electron Microscope (SEM) coupled with Energy-dispersive Spectra Detector (EDX/EDS). The observed bioaerosols exhibited great variability in their morphological features over this region of the world. At these contrasting environments, we found that fungal spores constituted the major fraction of the total observed bioaerosols. Pollen grains, plant and insect fragments, and lot of other non-identified bio-particles were also observed constituting the remaining fraction. Further, the classification of fungal spores exhibited strong variability over this region. For example, fungal spores of both Ascomycota and Basidiomycota class were seen in abundance in marine environment, while Ascomycota especially Cladosporium were seen in abundance in high altitude continental environment. Our findings also suggest that increase in diversity of bioaerosol particles at marine site appeared to coincide with precipitation. It appears that vast diversity in the morphological features of bioaerosols exists over this region, which should further be studied using advanced online techniques for better quantification under contrasting environments. However, the diversity observed in morphological characteristics of bioaerosols at these two contrasting locations is limited and restricted to these two sites and season of the year, and should therefore

  8. Survival of microorganisms on antimicrobial filters and the removal efficiency of bioaerosols in an environmental chamber.

    PubMed

    Kim, Sung Yeon; Kim, Misoon; Lee, Sunghee; Lee, JungEun; Ko, GwangPyo

    2012-09-01

    Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) SiO2, ZnO, and Al2O3, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of 25 degrees C and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.

  9. Factors affecting vegetable growers' exposure to fungal bioaerosols and airborne dust.

    PubMed

    Hansen, Vinni M; Meyling, Nicolai Vitt; Winding, Anne; Eilenberg, Jørgen; Madsen, Anne Mette

    2012-03-01

    We have quantified vegetable growers' exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers' exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers' exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m(-3)) compared to exposures reported from other occupational environments. In conclusion, vegetable growers' exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop.

  10. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-02

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure.

  11. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  12. A scoping review on bio-aerosols in healthcare and the dental environment.

    PubMed

    Zemouri, Charifa; de Soet, Hans; Crielaard, Wim; Laheij, Alexa

    2017-01-01

    Bio-aerosols originate from different sources and their potentially pathogenic nature may form a hazard to healthcare workers and patients. So far no extensive review on existing evidence regarding bio-aerosols is available. This study aimed to review evidence on bio-aerosols in healthcare and the dental setting. The objectives were 1) What are the sources that generate bio-aerosols?; 2) What is the microbial load and composition of bio-aerosols and how were they measured?; and 3) What is the hazard posed by pathogenic micro-organisms transported via the aerosol route of transmission? Systematic scoping review design. Searched in PubMed and EMBASE from inception to 09-03-2016. References were screened and selected based on abstract and full text according to eligibility criteria. Full text articles were assessed for inclusion and summarized. The results are presented in three separate objectives and summarized for an overview of evidence. The search yielded 5,823 studies, of which 62 were included. Dental hand pieces were found to generate aerosols in the dental settings. Another 30 sources from human activities, interventions and daily cleaning performances in the hospital also generate aerosols. Fifty-five bacterial species, 45 fungi genera and ten viruses were identified in a hospital setting and 16 bacterial and 23 fungal species in the dental environment. Patients with certain risk factors had a higher chance to acquire Legionella in hospitals. Such infections can lead to irreversible septic shock and death. Only a few studies found that bio-aerosol generating procedures resulted in transmission of infectious diseases or allergic reactions. Bio-aerosols are generated via multiple sources such as different interventions, instruments and human activity. Bio-aerosols compositions reported are heterogeneous in their microbiological composition dependent on the setting and methodology. Legionella species were found to be a bio-aerosol dependent hazard to elderly

  13. Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler

    PubMed Central

    Cao, G.; Noti, J. D.; Blachere, F. M.; Lindsley, W. G.; Beezhold, D. H.

    2016-01-01

    A unique two-stage cyclone bioaerosol sampler has been developed at NIOSH that can separate aerosols into three size fractions. The ability of this sampler to collect infectious airborne viruses from a calm-air chamber loaded with influenza A virus was tested. The sampler’s efficiency at collecting aerosolized viral particles from a calm-air chamber is essentially the same as that from the high performance SKC BioSampler that collects un-fractionated particles directly into a liquid media (2.4 × 104 total viral particles per liter of sampled air (TVP/L) versus 2.6 × 104 TVP/L, respectively, after 15 min) and the efficiency is relatively constant over collection times of 15, 30 and 60 min. Approximately 34% of the aerosolized infectious virus collected after 15 min with the NIOSH bioaerosol sampler remained infectious, and infectious virus was found in all three size fractions. After 60 min of sampling, the infectious virus/liter air found in the NIOSH bioaerosol sampler was 15% of that found in the SKC BioSampler. This preservation of infectivity by the NIOSH bioaerosol sampler was maintained even when the initial infectivity prior to aerosolization was as low as 0.06%. The utility of the NIOSH bioaerosol sampler was further extended by incorporating an enhanced infectivity detection methodology developed in our laboratory, the viral replication assay, which amplified the infectious virus making it more readily detectable. PMID:21975583

  14. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    NASA Astrophysics Data System (ADS)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  15. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  16. Bioaerosol Analysis by Online Fluorescence Detection and Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Huffman, Alex; Pöhlker, Christopher; Treutlein, Bärbel; Pöschl, Ulrich

    2010-05-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (< 1 μm), but not for coarse particles (1 - 20 μm). Microscopy studies were later performed at the same location to more directly investigate and identify biological particles. Averaged over the four-month measurement period (August - December 2006), the mean number concentration of coarse FBAPs was 3x10-2 cm-3, corresponding to 4% of total coarse particle number [1]. The mean mass concentration of FBAPs was 1 ?g m-3, corresponding to 20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters, though a pronounced peak at 3 μm was essentially always observed. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around 1.5 μm, 5 μm, and 13 μm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of PBAPs in aerosol filter samples. To our knowledge, however, this

  17. Bioaerosols study in central Taiwan during summer season.

    PubMed

    Wang, Chun-Chin; Fang, Guor-Cheng; Lee, LienYao

    2007-04-01

    Suspended particles, of which bioaerosols are one type, constitute one of the main reasons to cause severe air quality in Taiwan. Bioaerosols include allergens such as fungi, bacteria, actinomycetes, arthropods and protozoa, as well as microbial products such as mycotoxins, endotoxins and glucans. When allergens and microbial products are suspended in the air, local air quality will be influenced severely. In addition, when the particle size is small enough to pass through the respiratory tract entering the human body, the health of the local population is also threatened. Therefore, the purpose of this study attempted to understand the concentration and types of bacteria during summer period at four sampling sites in Taichung city, central Taiwan. The results indicated that total average bacterial concentration by using R2A medium incubated for 48 h were 7.3 x 10(2) and 1.2 x 10(3) cfu/m3 for Chung-Ming elementary sampling site during daytime and night-time period of summer season. In addition, total average bacterial concentration by using R2A medium incubated for 48 h were 2.2 x 10(3) and 2.5 x 10(3) cfu/m3 for Taichung refuse incineration plant sampling site during daytime and night-time period of summer season. As for Rice Field sampling site during daytime and night-time period of summer season, the results also reflected that the total average bacterial concentration by using R2A medium incubated for 48 h were 3.4 x 10(3) and 3.5 x 10(3) cfu/m3. Finally, total average bacterial concentration by using R2A medium incubated for 48 h were 1.6 x 10(3) and 1.9 x 10(3) cfu/m3 for Central Taiwan Science Park sampling site during daytime and night-time period of summer season. Moreover, the average bacterial concentration increased as the incubated time in a growth medium increased for particle sizes of 0.65-1.1, 1.1-2.1, 2.1-3.3, 3.3-4.7 and 4.7-7.0 microm. The total average bacterial concentration has no significant difference for day and night sampling period at

  18. Nanosize-induced drastic drop in equilibrium hydrogen pressure for hydride formation and structural stabilization in Pd-Rh solid-solution alloys.

    PubMed

    Kobayashi, Hirokazu; Morita, Hitoshi; Yamauchi, Miho; Ikeda, Ryuichi; Kitagawa, Hiroshi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Toh, Shoichi; Matsumura, Syo

    2012-08-01

    We have synthesized and characterized homogeneous solid-solution alloy nanoparticles of Pd and Rh, which are immiscible with each other in the equilibrium bulk state at around room temperature. The Pd-Rh alloy nanoparticles can absorb hydrogen at ambient pressure and the hydrogen pressure of Pd-Rh alloys for hydrogen storage is dramatically decreased by more than 4 orders of magnitude from the corresponding pressure in the metastable bulk state. The solid-solution state is still maintained in the nanoparticles even after hydrogen absorption/desorption, in contrast to the metastable bulks which are separated into Pd and Rh during the process.

  19. Effects of EHD on heat transfer enhancement and pressure drop during two-phase condensation of pure R-134a at high mass flux in a horizontal micro-fin tube

    SciTech Connect

    Laohalertdecha, Suriyan; Wongwises, Somchai

    2006-07-15

    Effects of electrohydrodynamic (EHD) on the two-phase heat transfer enhancement and pressure drop of pure R-134a condensing inside a horizontal micro-fin tube are experimentally investigated. The test section is a 2.5m long counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from micro-fin horizontal copper tubing of 9.52mm outer diameter. The electrode is made from cylindrical stainless steel of 1.47mm diameter. Positive high voltage is supplied to the electrode wire, with the micro-fin tube grounded. In the presence of the electrode, a maximum heat transfer enhancement of 1.15 is obtained at a heat flux of 10kW/m{sup 2}, mass flux of 200kg/m{sup 2}s and saturation temperature of 40{sup o}C, while the application of an EHD voltage of 2.5kV only slightly increases the pressure drop. New correlations of the experimental data based on the data gathered during this work for predicting the condensation heat transfer coefficients are proposed for practical application. (author)

  20. Experimental investigation of heat transfer and pressure drop characteristics of non-Newtonian nanofluids flowing in the shell-side of a helical baffle heat exchanger with low-finned tubes

    NASA Astrophysics Data System (ADS)

    Tan, Yunkai; He, Zhenbin; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2017-09-01

    An aqueous solution of Xanthan Gum (XG) at a weight fraction as high as 0.2% was used as the base liquid, the stable MWCNTs-dispersed non-Newtonian nanofluids at different weight factions of MWCNTs was prepared. The base fluid and all nanofluids show pseudoplastic (shear-thinning) rheological behavior. Experiments were performed to compare the shell-side forced convective heat transfer coefficient and pressure drop of non-Newtonian nanofluids to those of non-Newtonian base fluid in an integrally helical baffle heat exchanger with low-finned tubes. The experimental results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. For nanofluids with 1.0, 0.5 and 0.2 wt% of multi-walled carbon nanotubes (MWCNTs), the heat transfer coefficients respectively augmented by 24.3, 13.2 and 4.7% on average and the pressure drops become larger than those of the base fluid. The comprehensive thermal performance factor is higher than one and increases with an increasing weight fraction of MWCNTs. A remarkable heat transfer enhancement in the shell side of helical baffle heat exchanger with low-finned tubes can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. New correlations have been suggested for the shell-side friction coefficient and the Nusselt numbers of non-Newtonian nanofluids and give very good agreement with experimental data.

  1. Ultraviolet light emitting diodes and bio-aerosol sensing

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina M.

    Recent interest in compact ultraviolet (UV) light emitters has produced advances in material quality and device performance from aluminum-rich alloys of the nitride semiconductor system. The epitaxial growth of device structures from this material poses remarkable challenges, and state-of-the-art in semiconductor UV light sources at wavelengths shorter than 350 nm is currently limited to LEDs. A portion of the work presented in this thesis involves the design and characterization of UV LED structures, with particular focus on sub-300 nm LEDs which have only been demonstrated within the last four years. Emphasis has been placed on the integration of early devices with modest efficiencies and output powers into a practical, fluorescence-based bio-sensing instrument. The quality of AlGaInN and AlGaN-based materials is characterized by way of the performance of 340 nm and 290 nm LEDs respectively. A competitive level of device operation is achieved, although much room remains for improvement in the efficiency of light emission from this material system. A preliminary investigation of 300 nm LEDs grown on bulk AIN shows promising electrical and optical characteristics, and illustrates the numerous advantages that this native substrate offers to the epitaxy of wide bandgap nitride semiconductors. The application of UV LEDs to the field of bio-aerosol sensing is pursued by constructing an on-the-fly fluorescence detection system. A linear array of UV LEDs is designed and implemented, and the capability of test devices to excite native fluorescence from bacterial spores is established. In order to fully capitalize on the reduction in size afforded by LEDs, effort is invested in re-engineering the remaining sensor components. Operation of a prototype system for physically sorting bio-aerosols based on fluorescence spectra acquired in real-time from single airborne particles excited by a UV-LED array is demonstrated using the bio-fluorophores NADH and tryptophan. Sensor

  2. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules and potential interferences

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Huffman, J. A.; Pöschl, U.

    2012-01-01

    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle

  3. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules and potential interferences

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Huffman, J. A.; Pöschl, U.

    2011-09-01

    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle

  4. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  5. Estimating fugitive bioaerosol releases from static compost windrows: feasibility of a portable wind tunnel approach.

    PubMed

    Taha, M P M; Pollard, S J T; Sarkar, U; Longhurst, P

    2005-01-01

    An assessment of the fugitive release of bioaerosols from static compost piles was conducted at a green waste composting facility in South East England; this representing the initial stage of a programme of research into the influence of process parameters on bioaerosol emission flux. Wind tunnel experiments conducted on the surface of static windrows generated specific bioaerosol emission rates (SBER2s) at ground level of between 13 and 22 x 10(3) cfu/m2/s for mesophilic actinomycetes and between 8 and 11 x 10(3)cfu/m2/s for Aspergillus fumigatus. Air dispersion modelling of these emissions using the SCREEN3 air dispersion model in area source term mode was used to generate source depletion curves downwind of the facility for comparative purposes.

  6. Evaluation of exposure-response relationships for health effects of microbial bioaerosols - A systematic review.

    PubMed

    Walser, Sandra M; Gerstner, Doris G; Brenner, Bernhard; Bünger, Jürgen; Eikmann, Thomas; Janssen, Barbara; Kolb, Stefanie; Kolk, Annette; Nowak, Dennis; Raulf, Monika; Sagunski, Helmut; Sedlmaier, Nadja; Suchenwirth, Roland; Wiesmüller, Gerhard; Wollin, Klaus-Michael; Tesseraux, Irene; Herr, Caroline E W

    2015-10-01

    Studies suggest adverse health effects following exposure to bioaerosols in the environment and in particular at workplaces. However, there is still a lack of health-related exposure limits based on toxicological or epidemiological studies from environmental health or from the working environment. The aim of this study was to derive health-based exposure limits for bioaerosols that can protect the general population as group "at risk" via environmental exposure using analysis of peer-reviewed studies related to occupational medicine, indoor air and environmental health. The derivation of exposure limits should be conducted by the members of a bioaerosol expert panel according to established toxicological criteria. A systematic review was performed in Medline (PubMed) including studies containing both data on exposure measurements and observed health outcomes. In addition, literature recommended by the experts was considered. A comprehensive search strategy was generated and resulted in a total of n=1569 studies in combination with the literature recommendations. Subsequently, abstracts were screened using defined exclusion criteria yielding a final number of n=44 studies. A standardized extraction sheet was used to combine data on health effects and exposure to different bioaerosols. After full-text screening and extraction according to the defined exclusion criteria n=20 studies were selected all related to occupational exposures comprising the working areas wood processing, farming, waste processing and others. These studies were analyzed in collaboration with the bioaerosol expert network in terms of suitability for derivation of health-related exposure limits. The bioaerosol expert network concluded that none of the analyzed studies provided suitable dose-response relationships for derivation of exposure limits. The main reasons were: (1) lack of studies with valid dose-response data; (2) diversity of employed measuring methods for microorganisms and bioaerosol

  7. Mycotoxins of Aspergillus fumigatus in pure culture and in native bioaerosols from compost facilities.

    PubMed

    Fischer, G; Müller, T; Ostrowski, R; Dott, W

    1999-04-01

    Exposure to secondary metabolites of airborne fungi in waste handling facilities is discussed in regard to potential toxic impacts on human health. The relevance of mycotoxins has been intensely studied in connection with contamination of food and feed. Toxic secondary metabolites are expected to be present in airborne spores, but exposure to mycotoxins in bioaerosols has not been studied sufficiently. Aspergillus fumigatus is one of the most frequent species in the air of compost plants. A wide range of secondary metabolites was found in pure cultures of freshly isolated strains of A. fumigatus. Tryptoquivaline, a compound with tremorgenic properties, and trypacidin, for which no toxic properties are described, were found in native bioaerosols in a compost facility. The highly toxic metabolites gliotoxin and verruculogen were not found in the bioaerosols.

  8. Exploring the Feasibility of Bioaerosol Analysis as a Novel Fingerprinting Technology

    PubMed Central

    Castillo, Josemar A.; Staton, Sarah J. R.; Taylor, Thomas J.; Herckes, Pierre; Hayes, Mark A.

    2012-01-01

    The purpose of this review is to explore the feasibility of bioaerosol fingerprinting based on current understanding of cellular debris (with an emphasis on human-emitted particulates) in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes. Target aerosol particles include cellular material and proteins emitted by humans, animals and plants and can be considered information- rich packets that carry biochemical information specific to the living organisms present in the collection settings. In this work we discuss sampling and analysis techniques that can be integrated with molecular (e.g. protein) detection protocols to properly assess the aerosolized cellular material of interest. Developing a detailed understanding of bioaerosol molecular profiles in various environments suggests exciting possibilities of bioaerosol analysis with applications ranging from military defense to medical diagnosis and wildlife identification. PMID:22311424

  9. Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory.

    PubMed

    Faridi, Sasan; Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Yunesian, Masud; Nabizadeh, Ramin; Sowlat, Mohammad Hossein; Kashani, Homa; Gholampour, Akbar; Niazi, Sadegh; Zare, Ahad; Nazmara, Shahrokh; Alimohammadi, Mahmood

    2015-06-01

    The concentrations of bacterial and fungal bioaerosols were measured in a retirement home and a school dormitory from May 2012 to May 2013. In the present work, two active and passive methods were used for bioaerosol sampling. The results from the present work indicated that Bacillus spp., Micrococcus spp., and Staphylococcus spp. were the dominant bacterial genera, while the major fungal genera were Penicillium spp., Cladosporium spp., and Aspergillus spp. The results also indicated that the indoor-to-outdoor (I/O) ratios for total bacteria were 1.77 and 1.44 in the retirement home and the school dormitory, respectively; the corresponding values for total fungal spores were 1.23 and 1.08. The results suggested that in addition to outdoor sources, indoor sources also played a significant role in emitting bacterial and fungal bioaerosols in the retirement home and the school dormitory indoor.

  10. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  11. Standoff detection of natural bioaerosol by range-gated laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Simard, Jean-Robert; Roy, Gilles

    2005-11-01

    The biological threat has emerged as one of today's primary security challenges due to the increased accessibility to biological warfare technology and the limited efficiency of detection and protection measures against such menace. Defence Research and Development Canada (DRDC) has investigated various methods, including the improvement of atmospheric bioaerosol monitoring, to increase the readiness against such threat. By the end of the 90s, DRDC developed a standoff bioaerosol sensor based on intensified range-gated spectrometric detection of Laser Induced Fluorescence (LIF). This work has showed an important potential of detecting and discriminating in real-time several bioaerosols. The LIDAR system that monitors atmosphere cells from a standoff position induces specific spectrally wide fluorescence signals originating from inelastic interactions with complex molecules forming the building blocks of the bioaerosols. This LIF signal is spectrally collected by a combination of a dispersive element and a range-gated ICCD that records the spectral information within a range-selected atmospheric volume. To assess further the potential of discrimination of such technique, this innovative sensor was used to obtain spectral data of various natural bioaerosols. In order to evaluate the discrimination of biological agent simulants from naturally occurring background fluorescing materials, the obtained results were compared with the ones of bioaerosol simulants (Bacillius subtilis var globiggi (BG) and Erwinia herbicola (EH)) acquired in 2001. The robustness of the spectral data with time was also investigated. From our results, most of the studied natural materials showed a spectral shift of various degrees, and up to 10 nm, to the longer wavelength one year later.

  12. The influence of bedding materials on bio-aerosol exposure in dairy barns.

    PubMed

    Samadi, Sadegh; van Eerdenburg, Frank J C M; Jamshidifard, Ali-Reza; Otten, Giovanna P; Droppert, Marijke; Heederik, Dick J J; Wouters, Inge M

    2012-07-01

    Bio-aerosol is a well-known cause of respiratory diseases. Exposure to bio-aerosols has been reported previously in dairy barns, but little is known about the sources of bio-aerosol. Bedding materials might be a significant source or substrate for bio-aerosol exposure. The aim of this study was to explore bio-aerosol exposure levels and its determinants in dairy barns with various bedding materials. Dust samples were collected at dairy barns using various bedding materials. Samples were analyzed for endotoxin and β(1 → 3)-glucan contents. Culturable bacteria and fungi were sampled by the Anderson N6 impactor. Exposure models were constructed using linear mixed models. The personal exposure levels to dust, endotoxin, and β(1 → 3)-glucan differed significantly between the barns utilizing diverse main bedding types (P<0.05), with the highest levels (GM: dust, 1.38 mg/m(3); endotoxin, 895 EU/m(3); β(1 → 3)-glucan, 7.84 μg/m(3)) in barns with compost bedding vs the lowest in barns with sawdust bedding (GM: dust, 0.51 mg/m(3); endotoxin, 183 EU/m(3); β(1 → 3)-glucan, 1.11 μg/m(3)). The exposure levels were also highly variable, depending on various extra bedding materials applied. Plant materials, particularly straw, utilized for bedding appeared to be a significant source for β(1 → 3)-glucan. Compost was significantly associated with elevated exposure levels. Between-worker variances of exposure were highly explained by determinants of exposure like type of bedding materials and milking by robot, whereas determinants could explain to lesser extent the within-worker variances. Exposure levels to endotoxin, β(1 → 3)-glucan, bacteria, and fungi in dairy barns were substantial and differed depending on bedding materials, suggesting bedding material types as a significant predictor of bio-aerosol exposure.

  13. Assessment of the total inflammatory potential of bioaerosols by using a granulocyte assay.

    PubMed

    Timm, Michael; Madsen, Anne Mette; Hansen, Jørgen Vinsløv; Moesby, Lise; Hansen, Erik Wind

    2009-12-01

    Occupational health symptoms related to bioaerosol exposure have been observed in a variety of working environments. Bioaerosols contain microorganisms and microbial components. The aim of this study was to estimate the total inflammatory potential (TIP) of bioaerosols using an in vitro assay based on granulocyte-like cells. A total of 129 bioaerosol samples were collected in the breathing zone of workers during their daily working routine at 22 biofuel plants. The samples were analyzed by traditional assays for dust, endotoxin, fungal spores, (1-->3)-beta-d-glucan, total number of bacteria, the enzyme N-acetyl-beta-d-glucosaminidase (NAGase; primarily originating from fungi), Aspergillus fumigatus, and mesophilic and thermophilic actinomycetes; the samples were also assayed for TIP. In a multilinear regression four factors were significant for the TIP values obtained: endotoxin (P < 0.0001), fungal spores (P < 0.0001), (1-->3)-beta-d-glucan (P = 0.0005), and mesophilic actinomycetes (P = 0.0063). Using this model to estimate TIP values on the basis of microbial composition, the correlation to the measured values was r = 0.91. When TIP values obtained in the granulocyte assay were related to the primary working area, we found that bioaerosol samples from personnel working in straw storage facilities showed high TIP values ( approximately 50 times the TIP of unstimulated controls). In contrast, bioaerosol samples from personnel with work functions in offices or laboratories showed low TIP values ( approximately 5 times the TIP of the unstimulated control). This indicates, as expected, that these areas were less contaminated. In conclusion, the granulocyte assay reacts to multiple contaminants in the environmental samples and can be used to obtain a measurement of TIP. Therefore, potential occupational health effects related to inflammation of the airways in a working environment can be estimated using this assay.

  14. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  15. Feasibility of using Backscattered Mueller Matrix Images for Bioaerosol Detection

    NASA Astrophysics Data System (ADS)

    Li, Changhui; Kattawar, George W.

    2006-03-01

    It has been shown that by looking at the backscattered radiance from an object illuminated by a laser beam one could effectively distinguish different morphologies from one another. However, if one wants to obtain all the information possible from elastic scattering either from a single particle or an ensemble of particles then one must use the Mueller matrix which contains all the polarization and radiance information available. In this talk, we will show that if we take advantage of the polarization information of the object, many more images related to the overall morphology as well as the internal structure of the object can be obtained. We will present images of the complete Mueller matrix to show the sensitivity of its sixteen components to both external and internal particle properties. We will also show that by using only one or two elements of this matrix one might be able to distinguish bioaerosols such as anthrax from more benign aerosols. We also show that the backscattering Mueller images contain more information than the forward scattering ones.

  16. Photocatalytic treatment of bioaerosols: impact of the reactor design.

    PubMed

    Josset, Sébastien; Taranto, Jérôme; Keller, Nicolas; Keller, Valérie; Lett, Marie-Claire

    2010-04-01

    Comparing the UV-