Science.gov

Sample records for pressure drop porosity

  1. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  2. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  3. PS foams at high pressure drop rates

    NASA Astrophysics Data System (ADS)

    Tammaro, Daniele; De Maio, Attilio; Carbone, Maria Giovanna Pastore; Di Maio, Ernesto; Iannace, Salvatore

    2014-05-01

    In this paper, we report data on PS foamed at 100 °C after CO2 saturation at 10 MPa in a new physical foaming batch that achieves pressure drop rates up to 120 MPa/s. Results show how average cell size of the foam nicely fit a linear behavior with the pressure drop rate in a double logarithmic plot. Furthermore, foam density initially decreases with the pressure drop rate, attaining a constant value at pressure drop rates higher than 40 MPa/s. Interestingly, furthermore, we observed that the shape of the pressure release curve has a large effect on the final foam morphology, as observed in tests in which the maximum pressure release rate was kept constant but the shape of the curve changed. These results allow for a fine tuning of the foam density and morphology for specific applications.

  4. Pressure drop in two-phase flow

    NASA Astrophysics Data System (ADS)

    Akashah, S. A.

    1980-12-01

    A computer program was developed containing some of the methods for predicting pressure drop in two-phase flow. The program contains accurate methods for predicting phase behavior and physical properties and can be used to calculate pressure drops for horizontal, inclined and vertical phases. The program was used to solve test cases for many types of flow, varying the diameter, roughness, composition, overall heat transfer coefficient, angle of inclination, and length. The Lockhart-Martinelli correlation predicts the highest pressure drop while the Beggs and Brill method predicts the lowest. The American Gas Association-American Petroleum Institute method is consistent and proved to be reliable in vertical, horizontal and inclined flow. The roughness of the pipe diameter had great effect on pressure drop in two-phase flow, while the overall heat transfer coefficient had little effect.

  5. Program calculates two-phase pressure drop

    SciTech Connect

    Blackwell, W.W.

    1980-11-24

    Analysts have developed a program for determining the two-phase pressure drop in piping. Written for the TI-59 programmable calculator used with a PC-100C printer, the program incorporates several unique features: it calculates single-phase as well as two-phase pressure drops, has a 10-20 s execution time, permits the operating data to be changed easily, and includes an option for calculating the estimated surface tension of paraffinic hydrocarbon liquids.

  6. Microseismicity Induced by Fluid Pressure Drop (Laboratory Study)

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Zenchenko, Evgeny; Melchaeva, Olga

    2013-04-01

    Pore pressure change in saturated porous rocks may result in its fracturing (Maury et Fourmaintraux, 1993) and corresponding microseismic event occurrences. Microseismicity due to fluid injection is considered in numerous papers (Maxwell, 2010, Shapiro et al., 2005). Another type of the porous medium fracturing is related with rapid pore pressure drop at some boundary. The mechanism of such fracturing was considered by (Khristianovich, 1985) as a model of sudden coal blowing and by (Alidibirov, Panov, 1998) as a model of volcano eruptions. If the porous saturated medium has a boundary where it directly contacted with fluid under the high pressure (in a hydraulic fracture or in a borehole), and the pressure at that boundary is dropped, the conditions for tensile cracks can be achieved at some distance from the boundary. In the paper, the results of experimental study of saturated porous sample fracturing due to pore pressure rapid drop are discussed. The samples (82 mm high, ∅60 mm) were made of quartz sand, which was cemented by "liquid glass" glue with mass fraction 1%. The sample (porosity 35%, uniaxial unconfined compression strength 2.5 MPa) was placed in a mould and saturated by oil. The upper end of the sample contacted with the mould upper lid, the lower end contacted with fluid. The fluid pressure was increased to 10 MPa and then discharged through the bottom nipple. The pressure increases/drops were repeated 30-50 times. Pore pressure and acoustic emission (AE) were registered by transducers mounted into upper and bottom lids of the mould. It was found, that AE sources (corresponded to microfracturing) were spreading from the open end to the closed end of the sample, and that maximal number of AE events was registered at some distance from the opened end. The number of AE pulses increased with every next pressure drop, meanwhile the number of pulses with high amplitudes diminished. It was found that AE maximal rate corresponded to the fluid pressure

  7. Predicting pore pressure and porosity from VSP data

    SciTech Connect

    Stone, D.G.

    1984-04-01

    Presently, VSP is being used to predict interval velocity and depth beneath the drill bit. The method is to exploit special properties of the VSP to produce a successful inversion to acoustic impedance. Depth and interval velocity are derived from the acoustic impedance prediction. This technique is often a valuable aid in making drilling decisions. Other rock properties may be computed from the same data. Pore pressure is one such rock parameter that can be computed from interval transit times and depth. The product of interval transit times, depth, normal compaction ratios, and an area constant is pore pressure. Pore pressure prediction is as reliable as the predicted velocities and depths. In reservoir evaluation, and sometimes in the well completion program, porosity is the important rock property. The interval transit times predicted beneath the bit can be used to compute porosity. Unlike pore pressure, porosity computations require knowledge or assumptions about the rock matrix and shale percentages. For certain conditions these values are known. Further penetration of a reef in search of deeper porous zones is an example of a viable condition for porosity prediction. For both these rock properties the same conventions employed by well log analysis in modifying and interpreting results are needed. Where the parameters assumed fit the actual conditions, the results should have merit. If not, further interpretation is required.

  8. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  9. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  10. Pressure Drops Due to Silica Scaling

    SciTech Connect

    Brown, K.L.; Freeston, D.H.; Dimas, Z.O.; Slatter, A.

    1995-01-01

    Experience with reinjection returns in many geothermal fields has prompted a move towards injecting waste fluids at some distance from the production field. This means that often, reinjection pipelines cover very long distances. If the waste water in the pipelines is supersaturated with respect to amorphous silica, then the deposition of silica in these pipelines is almost certain. Although the deposit may be of negligible thickness, the inner surface characteristics of the pipe will be different to those of clean mild steel. During a silica scaling experiment. geothermal brine was passed through a series of pipes of different sizes and over a period of three weeks, silica scale formed on the inner surface. The pressure drop along a distance of approximately 5m was measured by a water manometer in all test pipe sections. Significant pressure drop was observed during this time and can be correlated with the increase in the friction factor of the pipe walls due to silica scaling.

  11. Pressure drop of He II flow through a porous media

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1990-01-01

    The paper reports on measurements of He II pressure drop across two porous SiO2 ceramic filter materials. These materials vary only in porosity, having values of 0.94 and 0.96. The average fiber diameter in both cases is approximately 5 microns. The experiment consists of a glass tube containing a piece of this sponge in one end. The tube is rapidly displaced downward in a bath of helium and the liquid levels are allowed to equilibrate over time producing variable velocities up to 10 cm/sec. The results are compared with those previously obtained using fine mesh screens. Good qualitative agreement is observed for turbulent flow; however, the behavior in the laminar flow regime is not fully understood.

  12. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  13. Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.

    1973-01-01

    Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.

  14. Secondary compaction after secondary porosity: Can it form a pressure seal

    SciTech Connect

    Weedman, S.D.; Brantley, S.L.; Albrecht, W. )

    1992-04-01

    Petrographic analysis of sandstones from the vicinity of a pressure seal (transition from normal to overpressure) at 5.5-km depth in the lower Tuscaloosa Formation in Louisiana documents local, high porosity above and below the seal. Packing analysis shows that compaction is greater in normally pressured, high-porosity sandstones than in overpressured, high-porosity sandstones; compaction in overpressured, high-porosity sandstones is similar to that in normally pressured, well-cemented sandstones. The authors propose that focused corrosive fluids created a zone of high secondary porosity, allowing further compaction that they call 'secondary compaction.' Secondary compaction is greater above the seal than below, suggesting that high-pressure fluid below the seal has preserved porosity and that the pressure seal became effective soon after dissolution of cement. Cuttings from the pressure-seal zone reveal an unusual texture of fragmented, pressure-solved grains and matrix, which may be a result of extensive secondary compaction.

  15. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOEpatents

    Sappok, Alexander; Wong, Victor

    2014-11-18

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing or preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.

  16. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations.

    PubMed

    Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per

    2016-02-10

    Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination.

  17. Effect of humidity on the filter pressure drop

    SciTech Connect

    Vendel, J.; Letourneau, P.

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  18. Two-Phase Flow Pressure Drop of High Quality Steam

    SciTech Connect

    Curtis, J. M.; Coffield, R. D.

    2001-10-01

    Two-phase pressure drop across a straight test pipe was experimentally determined for high Reynolds (Re) number steam flow for a flow quality range of 0.995 to 1.0. The testing described has been performed in order to reduce uncertainties associated with the effects of two-phase flow on pressure drop. Two-phase flow develops in steam piping because a small fraction of the steam flow condenses due to heat loss to the surroundings. There has been very limited two-phase pressure drop data in open literature for the tested flow quality range. The two-phase pressure drop data obtained in this test has enabled development of a correlation between friction factor, Reynolds number, and flow quality.

  19. Time-resolved pulsed spray drop sizing at elevated pressures

    NASA Astrophysics Data System (ADS)

    Drallmeier, J. A.; Peters, J. E.

    1986-04-01

    An experimental program was conducted to measure drop sizes in pulsed sprays for diesel and fuel-injected spark ignition engine applications. A forward-scattering unit was designed with a high-speed data acquisition system to permit the measurement of drop sizes in sprays at 0.4-ms intervals. Data were taken at elevated pressures from 0.345 to 3.45 MPa with a 0-deg pintle nozzle. The Sauter Mean Diameter (SMD) and size distribution were calculated using a computational method that is independent of a predetermined distribution function. Results taken at the spray centerline indicate that for most elevated pressures, the SMD in the secondary injection region tended to increase as the pressure in the fuel line decreased and tended to increase with increasing environmental pressure, both suggesting an inverse relationship between drop size and the pressure drop across the nozzle. Also as the environmental pressure was raised, the distribution width decreased at a slower rate than the SMD increased, indicating a spreading of the drop sizes with injection time at elevated pressures. Significant cycle-to-cycle variation in both the SMD and distribution width indicate that cycle-to-cycle variations must be considered in pulsed sprays. In addition, more variation was seen between random rather than consecutive cycles.

  20. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  1. Reducing cyclone pressure drop with evasés

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are widely used to separate particles from gas flows and as air emissions control devices. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Evasés or exit diffusers potentially could reduce exit pressure losses without affecting collection...

  2. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  3. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  4. Percolating porosity in ultrafine grained copper processed by High Pressure Torsion

    SciTech Connect

    Wegner, Matthias Leuthold, Jörn; Peterlechner, Martin; Divinski, Sergiy V. Wilde, Gerhard; Setman, Daria; Zehetbauer, Michael; Pippan, Reinhard

    2013-11-14

    Defect structures in copper of different purity (nominally 99.99 and 99.999 wt. %) deformed via High Pressure Torsion (HPT) with varying processing parameters are investigated utilizing the radiotracer diffusion technique. While the degree of deformation is kept constant, the effects of applied quasi-hydrostatic pressure, processing temperature, post-deformation annealing treatments, and of the impurity concentration on the deformed samples are analyzed in terms of the formation of interconnected internal porosity. Furthermore, the anisotropy of the developing porosity network is examined. The porosity channels occurred to be interconnected along the direction parallel to the surface normal with a volume fraction of the order of a few ppm while no long-range penetration along the internal porosity could be detected when measured along the azimuthal or radial directions of a HPT processed sample.

  5. Correlation between macroscopic porosity location and liquid metal pressure in centrifugal casting technique.

    PubMed

    Vaidyanathan, T K; Schulman, A; Nielsen, J P; Shalita, S

    1981-01-01

    Radiographic analysis of uniform cylindrical castings fabricated by the centrifugal casting technique has revealed that the macroscopic porosity is dependent on the location of the sprue attachment to the casting. This is attributed to the significant pressure gradient associated with the centrifugal casting technique. The pressure gradient results in different heat transfer rates at portions of the castings near and away from the free surface of the button. Consequently, the macroscopic porosity is invariably at portions of the casting close to the free surface of the button. In addition, some optimized sprue-reservoir combinations could be predicted and proved, based on this pressure gradient concept.

  6. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  7. Prediction of Pressure Drop in the ITER Divertor Cooling Channels

    SciTech Connect

    Yin, S.T.; Chen, J.L.

    2005-04-15

    This study investigated the pressure drop in the divertor cooling channels of the International Thermonuclear Experimental Reactor (ITER). The water in the cooling channels will encounter the following flow and boiling regimes: 1) single-phase convection, 2) highly-subcooled boiling, 3) onset of nucleate boiling (ONB), and 4) fully-developed subcooled boiling. The upper operating boundary is limited by the departure from nucleate boiling (DNB) or burnout conditions. Twisted-tape insert will be used to enhance local heat transfer. Analytical models, validated with relevant databases, were proposed for the above-identified flow regimes. A user-friendly computer code was developed to calculate the overall pressure drop and the exit pressure of a specific local segment throughout the entire flow circuit. Although the operating parameters were based on the CDA phase input the results are found in general agreement when compared with the ITER EDA results.

  8. Experimental study on pressure drop of bends in dense phase pneumatic conveying under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Gaoyang; Liang, Cai; Chen, Xiaoping; Xu, Pan; Xu, Guiling; Shen, Liu

    2014-04-01

    The transport test using nitrogen as conveying gas are carried out at high operating pressure up to 4MPa in the experimental equipment for dense phase pneumatic conveying. The transport powders in the experiment are anthracite coal and petroleum coke. The pressure drop characteristics in bends are acquired with the different transport powder. The experimental results show that under the similar mass flow, the pressure drop of vertical upward bend is greater than the horizontal bend and the horizontal bend is greater than the vertical downward bend at the same superficial gas velocity, while there is a best superficial gas velocity minimizes the pressure drop of the bend. Under the similar mass flow rate and the similar particle size, the pressure drop of the bend with the petroleum coke is greater than the pressure drop with the anthracite coal as the same superficial gas velocity. According to Barth's additional pressure drop method, the pressure drop fitting formulas of the vertical upward bend, the horizontal bend and the vertical downward bend are obtained, and the predicted results are in accordance with that of the experiments.

  9. Secondary porosity and permeability of coal vs. gas composition and pressure

    SciTech Connect

    Mavor, M.J,; Gunter, W.D.

    2006-04-15

    We have been investigating the sequestration of atmospheric pollutants by injection into coal seams while at the same time enhancing hydrocarbon productivity by displacement of methane with pollutants. We found that changing the composition of the gas sorbed into the coal changes the porosity and permeability of the coal natural-fracture system owing to gas-content changes, which cause matrix swelling or shrinkage due to relative adsorption of different gases. We collected sufficient information to develop a method for predicting the permeability and porosity of a coalbed as a function of the secondary porosity system (SPS) pressure and the gas content and composition of the primary porosity system (PPS). The method uses data from injection/falloff tests with water and/or a weaker adsorbing gas (WAG) than CH{sub 4} and a stronger adsorbing gas (SAG) than CH{sub 4}. Estimates of effective permeability to gas and water obtained from these tests are used with an iterative computation procedure subject to constraints to solve for equivalent SPS porosity and absolute permeability at atmospheric pressure. Once calibrated, the model can be used to predict a coalbed's permeability and porosity as a function of injection pressure and injected-fluid composition, which in turn are used to predict injection performance. The model is applicable to production forecasts to account for SPS permeability and porosity changes as reservoir pressure declines with changes in gas composition. This paper describes the new model and discusses well-test procedures to obtain the data required for model calibration. Also included are coal property estimates resulting from Alberta Medicine River (Manville) coal core and test data and an example model calibration.

  10. Description of an oscillating flow pressure drop test rig

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary; Miller, Eric L.; Gedeon, David R.; Koester, Gary E.

    1988-01-01

    A test rig designed to generate heat exchanger pressure drop information under oscillating flow conditions is described. This oscillating flow rig is based on a variable stroke and variable frequency linear drive motor. A frequency capability of 120 hertz and a mean test pressure up to 15 mPA (2200 psi) allows for testing at flow conditions found in modern high specific power Stirling engines. An important design feature of this rig is that it utilizes a single close coupled dynamic pressure transducer to measure the pressure drop across the test sample. This eliminates instrumentation difficulties associated with the pressure sensing lines common to differential pressure transducers. Another feature of the rig is that it utilizes a single displacement piston. This allows for testing of different sample lengths and configurations without hardware modifications. All data acquisition and reduction for the rig is performed with a dedicated personal computer. Thus the overall system design efficiently integrates the testing and data reduction procedures. The design methodology and details of the test rig is described.

  11. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  12. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  13. Modeling pressure drop using generalized scaffold characteristics in an axial-flow bioreactor for soft tissue regeneration.

    PubMed

    Podichetty, Jagdeep T; Bhaskar, Prasana R; Khalf, Abdurizzagh; Madihally, Sundararajan V

    2014-06-01

    The goal of this study was to better understand how analytical permeability models based on scaffold architecture can facilitate a non-invasive technique to real time monitoring of pressure drop in bioreactors. In particular, we evaluated the permeability equations for electrospun and freeze dried scaffolds via pressure drop comparison in an axial-flow bioreactor using computational fluid dynamic (CFD) and experimentation. The polycaprolactone-cellulose acetate fibers obtained by co-axial electrospinning technique and Chitosan-Gelatin scaffolds prepared using freeze-drying techniques were utilized. Initially, the structural properties (fiber size, pore size and porosity) and mechanical properties (elastic modulus and Poisson's ratio) of scaffolds in phosphate buffered saline at 37 °C were evaluated. The CFD simulations were performed by coupling fluid flow, described by Brinkman equation, with structural mechanics using a moving mesh. The experimentally obtained pressure drop values for both 1 mm thick and 2 mm thick scaffolds agreed with simulation results. To evaluate the effect of permeability and elastic modulus on pressure drop, CFD predictions were extended to a broad range of permeabilities spanning synthetic scaffolds and tissues, elastic moduli, and Poisson's ratio. Results indicated an increase in pressure drop with increase in permeability. Scaffolds with higher elastic modulus performed better and the effect of Poisson's ratio was insignificant. Flow induced deformation was negligible in axial-flow bioreactor. In summary, scaffold permeabilities can be calculated using scaffold microarchitecture and can be used in non-invasive monitoring of tissue regeneration.

  14. The pressure drop in a porous material layer during combustion

    SciTech Connect

    Kondrikov, B.N.

    1995-07-01

    During the combustion of a porous material layer, a manometer, which is attached to the cold end of the charge, records at the bottom of the layer a pressure reduction, which was discovered more than 20 years ago but which remains essentially unexplained up to the present. It is experimentally shown that this effect is similar to the pressure change in the cavities when a light gas (helium, hydrogen) diffuses from (or to) them under isothermal conditions and that it increases during the combustion mainly due to the accompanying Stefan type flow, and probably also as a result of the thermal diffusion. A pressure drop in the cavities is evidently made possible also by the pressure reduction in the flame which follows from the Hugoniot adiabatic theory.

  15. Limiting the Accidental Pressure Drop in NIF Beam Tubes

    SciTech Connect

    Garcia, M

    2000-11-06

    This report summarizes the use of a one-dimensional model of a time-dependent compressible flow condition to validate the results from a more sophisticated three-dimensional model. The flow conditions consist of the sudden decompression of a pressurized tube joined to an evacuated sphere, where the tube also has a leak to external atmosphere that is triggered open at a given pressure difference below sea-level pressure. This flow model is used to calculate conditions in a NIF beam tube if an internal vacuum barrier fails, and to calculate how the size and timing of an opening to external atmosphere changes tube pressure. Decompression of a NIF beam tube is a potential safety hazard since the tube could collapse if the tube pressure is reduced below the buckling limit. To prevent this from occurring, each pressurized section includes a rupture panel which is designed to open to external atmosphere at a given pressure difference. The inrush of external atmosphere through the rupture panel fills both the tube and the vacuum drawing on it, and in this way the pressure drop in the tube is quickly limited and reversed. In summary, the results from the 1D model indicate that the 3-D calculations are accurate and reasonable.

  16. Metamorphic record of catastrophic pressure drops in subduction zones

    NASA Astrophysics Data System (ADS)

    Yamato, P.; Brun, J. P.

    2017-01-01

    When deeply buried in subduction zones, rocks undergo mineral transformations that record the increase of pressure and temperature. The fact that high-pressure metamorphic parageneses are found at the Earth’s surface proves that rock burial is followed by exhumation. Here we use analysis of available data sets from high-pressure metamorphic rocks worldwide to show that the peak pressure is proportional to the subsequent decompression occurring during the initial stage of retrogression. We propose, using a simple mechanical analysis, that this linear relationship can be explained by the transition from burial-related compression to extension at the onset of exhumation. This major switch in orientation and magnitude of principal tectonic stresses leads to a catastrophic pressure drop prior to actual rock ascent. Therefore, peak pressures are not necessarily, as commonly believed, directly dependent on the maximum burial depth, but can also reflect a change of tectonic regime. Our results, which are in agreement with natural data, have significant implications for rock rheology, subduction zone seismicity, and the magnitudes of tectonic pressures sustained by rocks. Current views of subduction dynamics could be reconsidered in that perspective.

  17. Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures

    NASA Astrophysics Data System (ADS)

    Saito, Satoshi; Ishikawa, Masahiro; Arima, Makoto; Tatsumi, Yoshiyuki

    2016-05-01

    In order to evaluate the influence of porosity on the elastic properties of crustal rocks at deep crustal pressures, we performed laboratory measurements of compressional-wave (Vp) and shear-wave (Vs) velocities in a porosity-developed gabbro sample up to 1.0 GPa at room temperature. Based on the measured Vp and Vs data, we evaluated the changes in velocities, Vp/Vs, Poisson's ratio (σ), and total porosity of the rock as a function of pressure. Compared with the 'porosity-free' intrinsic elastic values of the gabbro sample, our results suggest that the development of porosity in crustal rocks lowers their Vp, Vs, Vp/Vs, and Poisson's ratio. Deviations (ΔVp, ΔVs, ΔVp/Vs, and Δσ) of the measured values from the intrinsic values are enhanced with increasing porosity. We evaluated the ΔVp from previous experimental study on the rocks of Tanzawa plutonic complex providing constraints on interpretation of the seismic velocity profiles of the Izu-Bonin-Mariana (IBM) arc and found a large negative ΔVp (up to - 22.7%) at lower pressures. The intrinsic velocity combined with the measured velocity data at in situ pressure conditions suggest that the ranges of Vp (6.0-6.5 km/s) in the middle crust of the IBM arc reflect the presence of considerable porosity and its closure in intermediate rocks and/or the change of composition from felsic to intermediate in mid-crustal rocks.

  18. Axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD): a film balance technique for high collapse pressures.

    PubMed

    Saad, Sameh M I; Policova, Zdenka; Acosta, Edgar J; Neumann, A Wilhelm

    2008-10-07

    Collapse pressure of insoluble monolayers is a property determined from surface pressure/area isotherms. Such isotherms are commonly measured by a Langmuir film balance or a drop shape technique using a pendant drop constellation (ADSA-PD). Here, a different embodiment of a drop shape analysis, called axisymmetric drop shape analysis-constrained sessile drop (ADSA-CSD) is used as a film balance. It is shown that ADSA-CSD has certain advantages over conventional methods. The ability to measure very low surface tension values (e.g., <2 mJ/m2), an easier deposition procedure than in a pendant drop setup, and leak-proof design make the constrained sessile drop constellation a better choice than the pendant drop constellation in many situations. Results of compression isotherms are obtained on three different monolayers: octadecanol, dipalmitoyl-phosphatidyl-choline (DPPC), and dipalmitoyl-phosphatidyl-glycerol (DPPG). The collapse pressures are found to be reproducible and in agreement with previous methods. For example, the collapse pressure of DPPC is found to be 70.2 mJ/m2. Such values are not achievable with a pendant drop. The collapse pressure of octadecanol is found to be 61.3 mJ/m2, while that of DPPG is 59.0 mJ/m2. The physical reasons for these differences are discussed. The results also show a distinctive difference between the onset of collapse and the ultimate collapse pressure (ultimate strength) of these films. ADSA-CSD allows detailed study of this collapse region.

  19. On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process

    NASA Astrophysics Data System (ADS)

    Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad

    2015-05-01

    This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.

  20. Diminished pore pressure in low-porosity crystalline rock under tensional failure: Apparent strengthening by dilatancy

    NASA Astrophysics Data System (ADS)

    Schmitt, Douglas R.; Zoback, Mark D.

    1992-01-01

    Rupture tests on internally pressurized, thin-walled hollow cylinders of Westerly granite with impermeable inner membranes suggest that the conventional, or Terzaghi, effective stress law does not describe tensile failure at high internal pressurization rates near 6 MPa/s. Unjacketed and saturated samples, with an initial pore pressure and for which the inner cavity pressure was increased rapidly with respect to the diffusivity, display substantially increased apparent tensile strengths and deformational moduli much higher than similarly configured but more slowly pressurized tests. Alternatively, the properties of completely dry test pieces with no pore pressure show little, if any, dependence on pressurization rate. Further, the behavior of the rapid unjacketed tests was similar to that for completely dry samples. These observations cannot be explained by the predicted undrained response, but they provide indirect evidence for diminished pore pressure effects reminiscent of dilatant hardening observed in compressive failure experiments. Calculated pore pressure diffusion rates support this suggestion as pore pressure perturbations cannot be damped out on the time scale of the rapidly pressurized tests. It is not clear if these effects are produced by elastic microcrack dilatancy, of which the nonlinear stress-strain curve of granites is symptomatic, or the irreversible production of new porosity as in compressive shear failure tests.

  1. Method - Pressure drop tests for fuel system components

    NASA Astrophysics Data System (ADS)

    1990-12-01

    Techniques are presented for testing components and improving the accuracy of such tests to meet the requirements of MIL-F-8615 or equivalent specifications. Pressure-drop tests for individual components are described generally including the single and double piezometer-tube methods, and many of the suggested improvements apply to these techniques. The test setup is presented graphically, and the procedural conditions are described. The suggestions for improving the test results include notes regarding air bubbles, pumping-source pulsations, attachment fittings, overshooting the flow rate, and the importance of precise calibration. Diagrams are given for the double piezometer-tube, the mercury-manometer, and the fuel-manometer tests, and the arithmetic computation is described for the data-reduction equation.

  2. Linking the pressure dependency of elastic and electrical properties of porous rocks by a dual porosity model

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng; Gurevich, Boris; Pervukhina, Marina; Clennell, Michael Ben; Zhang, Junfang

    2016-04-01

    Knowledge about the pressure dependency of elastic and electrical properties is important for a variety of geophysical applications. We present a technique to invert for the stiff and compliant porosity from velocity measurements made as a function of differential pressure on saturated sandstones. A dual porosity concept is used for dry rock compressibility and a squirt model is employed for the pressure and frequency dependent elastic properties of the rocks when saturated. The total porosity obtained from inversion shows satisfactory agreement with experimental results. The electrical cementation factor was determined using the inverted porosity in combination with measured electrical conductivity. It was found that cementation factor increased exponentially with increasing differential pressure during isostatic loading. Elastic compressibility, electrical cementation factor and electrical conductivity of the saturated rocks correlate linearly with compliant porosity, and electrical cementation factor and electrical conductivity exhibit linear correlations with elastic compressibility of the saturated rocks under loading. The results show that the dual porosity concept is sufficient to explain the pressure dependency of elastic, electrical and joint elastic-electrical properties of saturated porous sandstones.

  3. Pressure drop and thrust predictions for transonic micronozzle flows

    NASA Astrophysics Data System (ADS)

    Gomez, J.; Groll, R.

    2016-02-01

    In this paper, the expansion of xenon, argon, krypton, and neon gases through a Laval nozzle is studied experimentally and numerically. The pressurized gases are accelerated through the nozzle into a vacuum chamber in an attempt to simulate the operating conditions of a cold-gas thruster for attitude control of a micro-satellite. The gases are evaluated at several mass flow rates ranging between 0.178 mg/s and 3.568 mg/s. The Re numbers are low (8-256) and the estimated values of Kn number lie between 0.33 and 0.02 (transition and slip-flow regime). Direct Simulation Monte Carlo (DSMC) and continuum-based simulations with a no-slip boundary condition are performed. The DSMC and the experimental results show good agreement in the range Kn > 0.1, while the Navier-Stokes results describe the experimental data more accurately for Kn < 0.05. Comparison between the experimental and Navier-Stokes results shows high deviations at the lower mass flow rates and higher Kn numbers. A relation describing the deviation of the pressure drop through the nozzle as a function of Kn is obtained. For gases with small collision cross sections, the experimental pressure results deviate more strongly from the no-slip assumption. From the analysis of the developed function, it is possible to correct the pressure results for the studied gases, both in the slip-flow and transition regimes, with four gas-independent accommodation coefficients. The thrust delivered by the cold-gas thruster and the specific impulse is determined based on the numerical results. Furthermore, an increase of the thickness of the viscous boundary layer through the diffuser of the micronozzle is observed. This results in a shock-less decrease of the Mach number and the flow velocity, which penalizes thrust efficiency. The negative effect of the viscous boundary layer on thrust efficiency can be lowered through higher values of Re and a reduction of the diffuser length.

  4. The role of water in the performance of biofilters: parameterization of pressure drop and sorption capacities for common packing materials.

    PubMed

    Dorado, Antonio D; Lafuente, Javier; Gabriel, David; Gamisans, Xavier

    2010-08-15

    The presence of water in a biofilter is critical in keeping microorganisms active and abating pollutants. In addition, the amount of water retained in a biofilter may drastically affect the physical properties of packing materials and packed beds. In this study, the influence of water on the pressure drop and sorption capacities of 10 different packing materials were experimentally studied and compared. Pressure drop was characterized as a function of dynamic hold-up, porosity and gas flow rate. Experimental data were fitted to a mathematical expression based on a modified Ergun correlation. Sorption capacities for toluene were determined for both wet and dry materials to obtain information about the nature of interactions between the contaminant, the packing materials and the aqueous phase. The experimental sorption capacities of materials were fitted to different isotherm models for gas adsorption in porous materials. The corresponding confidence interval was determined by the Fisher information matrix. The results quantified the dynamic hold-up effect resulting from the significant increase in the pressure drop throughout the bed, i.e. the financial cost of driving air, and the negative effect of this air on the total amount of hydrophobic pollutant that can be adsorbed by the supports. Furthermore, the results provided equations for ascertaining water presence and sorption capacities that could be widely used in the mathematical modeling of biofilters.

  5. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  6. The effect of pressure on annular flow pressure drop in a small pipe

    SciTech Connect

    de Bertodano, M.A.L.; Beus, S.G.; Shi, Jian-Feng

    1996-09-01

    New experimental data was obtained for pressure drop and entrainment for annular up-flow in a vertical pipe. The 9.5 mm. pipe has an L/D ratio of 440 to insure fully developed annular flow. The pressure ranged from 140 kPa to 660 kPa. Therefore the density ratio was varied by a factor of four approximately. This allows the investigation of the effect of pressure on the interfacial shear models. Gas superficial velocities between 25 and 126 m/s were tested. This extends the range of previous data to higher gas velocities. The data were compared with well known models for interfacial shear that represent the state of the art. Good results were obtained when the model by Asali, Hanratty and Andreussi was modified for the effect of pressure. Furthermore an equivalent model was obtained based on the mixing length theory for rough pipes. It correlates the equivalent roughness to the film thickness.

  7. Effect of Hydrostatic Pressure on the 3D Porosity Distribution and Mechanical Behavior of a High Pressure Die Cast Mg AZ91 Alloy

    NASA Astrophysics Data System (ADS)

    Sket, Federico; Fernández, Ana; Jérusalem, Antoine; Molina-Aldareguía, Jon M.; Pérez-Prado, María Teresa

    2015-09-01

    A limiting factor of high pressure die cast (HPDC) Mg alloys is the presence of porosity, which has a detrimental effect on the mechanical strength and gives rise to a large variability in the ductility. The application of hydrostatic pressure after casting is known to be beneficial to improve the mechanical response of HPDC Mg alloys. In this study, a combined experimental and simulation approach has been developed in order to investigate the influence of pressurization on the 3D porosity distribution and on the mechanical behavior of an HPDC Mg AZ91 alloy. Examination of about 10,000 pores by X-ray computed microtomography allowed determining the effect of hydrostatic pressure on the bulk porosity volume fraction, as well as the change in volume and geometry of each individual pore. The evolution of the 3D porosity distribution and mechanical behavior of a sub-volume containing 200 pores was also simulated by finite element analysis. Both experiments and simulations consistently revealed a decrease in the bulk porosity fraction and a bimodal distribution of the individual volume changes after the application of the pressure. This observation is associated with pores containing internal pressure as a result of the HPDC process. Furthermore, a decrease in the complexity factor with increasing volume change is observed experimentally and predicted by simulations. The pressure-treated samples have consistently higher plastic flow strengths.

  8. Low pressure drop airborne molecular contaminant filtration using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Ding, Lefei; Joriman, Jon; Zastera, Dustin; Seguin, Kevin; Empson, James

    2006-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for AMC is offered by granular filter beds. However, the attributes that make packed beds of adsorbents extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the low pressure drop AMC filters currently offered tend to be quiet costly and contaminant nonspecific. Many of these low pressure drop filters are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCNs), can still offer good filter life and removal efficiency, with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and full fan unit filters this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for AMC removal in a wide range of applications.

  9. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  10. Compressibility Effects on Heat Transfer and Pressure Drop in Smooth Cylindrical Tubes

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1944-01-01

    An analysis is made to simplify pressure-drop calculations for nonadiabatic and adiabatic friction flow of air in smooth cylindrical tubes when the density changes due to heat transfer and pressure drop are appreciable. Solutions of the equation of motion are obtained by the use of Reynolds' analogy between heat transfer and skin friction. Charts of the solutions are presented for making pressure-drop calculations. A technique of using the charts to determine the position of a normal shock in a tube is described.

  11. Laboratory manual for static pressure drop experiments in LMFBR wire wrapped rod bundles

    SciTech Connect

    Burns, K.J.; Todreas, N.E.

    1980-07-01

    Purpose of this experiment is to determine both interior and edge subchannel axial pressure drops for a range of Reynolds numbers. The subchannel static pressure drop is used to calculate subchannel and bundle average friction factors, which can be used to verify existing friction factor correlations. The correlations for subchannel friction factors are used as input to computer codes which solve the coupled energy, continuity, and momentum equations, and are also used to develop flow split correlations which are needed as input to codes which solve only the energy equation. The bundle average friction factor is used to calculate the overall bundle pressure drop, which determines the required pumping power.

  12. LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-03-03

    This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.

  13. Stretching and squeezing of sessile dielectric drops by the optical radiation pressure.

    PubMed

    Chraïbi, Hamza; Lasseux, Didier; Arquis, Eric; Wunenburger, Régis; Delville, Jean-Pierre

    2008-06-01

    We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semiangle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these "optical cones" become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable "optical torus." These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated "optical domain" and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale.

  14. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  15. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  16. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  17. The pressure hold/drop integrity test; its correlation to diffusive flow.

    PubMed

    Trotter, A M; Meltzer, T H

    1998-01-01

    The pressure-drop/hold procedure enables the diffusive flow integrity testing of filters to be performed without breaching the system downstream of the filter. It is not necessary to measure volumetrically the diffused gas on the downstream side of the filter. By means of pressure transducers the pressure loss is determined upstream; thus eliminating the threat of sepsis due to down-stream invasions. The pressure decay exercise can be used to characterize the various filter types. A constancy of filter manufacture is required for a given filter type. Unless the pressure drop exceeds the value established as the maximum allowable decay, the filter is judged to be integral. It qualifies as a sterilizing grade filter. Excessive pressure decays will also eventuate from leaks, as from improperly sealed housings. Performed prior to the filtration, the procedure serves to eliminate the wasteful use of an imperfect system, whether caused by faulty sealing, incorrect filter type or flawed filters. Where leaks are detected, the filter can be reexamined for its integrity. To enable the pressure-drop procedure to serve as an integrity test, the measured pressure decays require being correlated with organism retention data. This is made possible by the arithmetic conversion of the pressure decay curve into the conventional diffusive airflow curve established to have such a correlation. The transformation of the pressure-drop curve into the differential airflow plot is automatically performed by certain of the automated integrity test machines. These devices, utilizing pressure transducers, are capable of measuring small pressure drops with requisite sensitivity; gauges commonly are not. Moreover, as previously stated, the measurements are advantageously made on the upside of the filter. The use of automated test machines is, therefore, recommended for the performance of the pressure hold/drop integrity test in furtherance of the practice of filter integrity testing.

  18. Turning Vanes in Exhaust Duct Flow: Study for Energy Efficiency, Optimization and Pressure Drop Mitigation

    DTIC Science & Technology

    2014-09-01

    backpressure caused by recirculation zones and reduce soot accumulation. The eddy recirculation zones tend to accumulate soot , thereby increasing pressure drop...zone size. Recirculation zones tend to accumulate soot and other particles, increase pressure drop as well as increase the frequency of required...of turning vanes on the reduction of primary and secondary recirculation zones, which will affect soot and particle accumulation sites, has not been

  19. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage.

  20. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu

    2009-05-15

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  1. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.

    PubMed

    Molla, Shahnawaz; Eskin, Dmitry; Mostowfi, Farshid

    2011-06-07

    Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (∼0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.

  2. Experimental microbubble generation by sudden pressure drop and fluidics

    NASA Astrophysics Data System (ADS)

    Franco Gutierrez, Fernando; Figueroa Espinoza, Bernardo; Aguilar Corona, Alicia; Vargas Correa, Jesus; Solorio Diaz, Gildardo

    2014-11-01

    Mass and heat transfer, as well as chemical species in bubbly flow are of importance in environmental and industrial applications. Microbubbles are well suited to these applications due to the large interface contact area and residence time. The objective of this investigation is to build devices to produce microbubbles using two methods: pressure differences and fluidics. Some characteristics, advantages and drawbacks of both methods are briefly discussed, as well as the characterization of the bubbly suspensions in terms of parameters such as the pressure jump and bubble equivalent diameter distribution. The authors acknowledge the support of Consejo Nacional de Ciencia y Tecnología.

  3. Frictional pressure drop in horizontal pneumatic conveying of coal and limestone

    SciTech Connect

    Daw, C.S.; Thomas, J.F.

    1983-08-01

    Pneumatic conveying experiments were conducted at Oak Ridge National Laboratory (ORNL) with crushed coal, limestone, and coal-limestone mixtures on a conveying system designed to represent the branch feed lines in the TVA 20-MW(e) atmospheric fluidized bed combustor. Test conditions were chosen to cover the anticipated operating ranges of the pilot plant. Details of the experimental apparatus and a summary of the results are presented in ORNL/TM-7724. This report is a further analysis of the horizontal pressure-drop data produced by the ORNL experiments. The results are compared with previous data and correlations in the literature, and the combined data provide strong evidence that there at least two possible pressure-drop modes in horizontal, dilute-phase conveying. The ORNL results follow a high-pressure-drop mode, while a major portion of data in the literature follow a low-pressure-drop mode. The results of Mehta (1955) and Peskin (1963) confirm the existence of the high-pressure-drop mode. It is proposed that the two pressure-drop modes result from inertia-dominated and viscous-dominated flow. With an inertial model, it is possible to derive an expression for the horizontal pressure drop that agrees remarkably well with the ORNL data, the larger-particle data of Mehta (1955), and the data of Peskin (1963). The small particle data of Mehta and the bulk of the data in the literature appear to follow the viscous flow model developed by Julian and Dukler (1965). It also appears that some data in the literature may represent combinations of the two flow regimes or transitions between them. 29 references, 15 figures, 2 tables.

  4. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  5. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  6. Pressure drop characteristics of cryogenic mixed refrigerant at macro and micro channel heat exchangers

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Jeong, Sangkwon; Hwang, Gyuwan

    2012-12-01

    Mixed Refrigerant-Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. The temperature glide effect is one of the major features of using mixed refrigerants since a recuperative heat exchanger in a MR-JT refrigerator is utilized for mostly two-phase flow. Although a pressure drop estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in MR-JT refrigerator heat exchanger designs, it has been rarely discussed so far. In this paper, macro heat exchangers and micro heat exchangers are compared in order to investigate the pressure drop characteristics in the experimental MR-JT refrigerator operation. The tube in tube heat exchanger (TTHE) is a well-known macro-channel heat exchanger in MR-JT refrigeration. Printed Circuit Heat Exchangers (PCHEs) have been developed as a compact heat exchanger with micro size channels. Several two-phase pressure drop correlations are examined to discuss the experimental pressure measurement results. The result of this paper shows that cryogenic mixed refrigerant pressure drop can be estimated with conventional two-phase pressure drop correlations if an appropriate flow pattern is identified.

  7. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  8. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    SciTech Connect

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.

    1993-12-01

    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality.

  9. Detection of bubble nucleation event in superheated drop detector by the pressure sensor

    NASA Astrophysics Data System (ADS)

    Das, Mala; Biswas, Nilanjan

    2017-01-01

    Superheated drop detector consisting of drops of superheated liquid suspended in polymer or gel matrix is of great demand, mainly because of its insensitivity to ß-particles and ?-rays and also because of the low cost. The bubble nucleation event is detected by measuring the acoustic shock wave released during the nucleation process. The present work demonstrates the detection of bubble nucleation events by using the pressure sensor. The associated circuits for the measurement are described in this article. The detection of events is verified by measuring the events with the acoustic sensor. The measurement was done using drops of various sizes to study the effect of the size of the drop on the pressure recovery time. Probability of detection of events has increased for larger size of the superheated drops and lesser volume of air in contact with the gel matrix. The exponential decay fitting to the pressure sensor signals shows the dead time for pressure recovery of such a drop detector to be a few microseconds.

  10. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    PubMed

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-02

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  11. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    SciTech Connect

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; Koglin, Jason E.; Liang, Mengning; Aquila, Andrew L.; Robinson, Joseph S.; Gumerlock, Karl L.; Blaj, Gabriel; Sierra, Raymond G.; Boutet, Sebastien; Guillet, Serge A. H.; Curtis, Robin H.; Vetter, Sharon L.; Loos, Henrik; Turner, James L.; Decker, Franz -Josef

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPa were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  12. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  13. Effect of flameholder pressure drop on emissions and performance of premixed-prevaporized combustors

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.; Lyons, V. J.

    1983-01-01

    Parametric tests were conducted to determine the effects of flameholder pressure drop on the emissions and performance of lean premixed-prevaporized combustors. A conical flameholder mounted in a diverging duct was tested with two values of flameholder blockage. Emissions of nitrogen oxides, carbon monoxide, carbon dioxide, and unburned hydrocarbons were measured for combustor entrance conditions of 600 to 800 K air temperature, 0.3 MPa to 0.5 MPa pressure, and 20 m/sec to 35 m/sec reference velocity. Jet A fuel was injected at flow rates corresponding to an equivalence ratio range from 0.8 down to the lean stability limit. Emission results for the high-blockage flameholder were a substantial improvement over the low-blockage emission results. A correlation of combustion efficiency with flameholder pressure drop was developed for pressure drops less than 9 percent.

  14. Fast and accurate pressure-drop prediction in straightened atherosclerotic coronary arteries.

    PubMed

    Schrauwen, Jelle T C; Koeze, Dion J; Wentzel, Jolanda J; van de Vosse, Frans N; van der Steen, Anton F W; Gijsen, Frank J H

    2015-01-01

    Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD. As a first step towards exploring the proposed method we investigated ten straightened coronary arteries. First, the flow fields were calculated with CFD and velocity profiles were fitted on the results. Second, the Navier-Stokes equation was simplified and solved with the found velocity profiles to obtain a pressure-drop estimate (Δp (1)). Next, Δp (1) was compared to the pressure-drop from CFD (Δp CFD) as a validation step. Finally, the velocity profiles, and thus the pressure-drop were predicted based on geometry and flow, resulting in Δp geom. We found that Δp (1) adequately estimated Δp CFD with velocity profiles that have one free parameter β. This β was successfully related to geometry and flow, resulting in an excellent agreement between Δp CFD and Δp geom: 3.9 ± 4.9% difference at Re = 150. We showed that this method can quickly and accurately predict pressure-drop on the basis of geometry and flow in straightened coronary arteries that are mildly diseased.

  15. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.

    2013-11-01

    Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.

  16. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  17. Mineral matter transformations in a pressurized drop-tube furnace

    SciTech Connect

    Swanson, M.L.; Tibbetts, J.E.

    1992-12-31

    To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal`s unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

  18. Mineral matter transformations in a pressurized drop-tube furnace

    SciTech Connect

    Swanson, M.L.; Tibbetts, J.E.

    1992-01-01

    To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal's unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

  19. Nucleate boiling pressure drop in an annulus: Book 5

    SciTech Connect

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux. This document consists solely of the plato file index from 11/87 to 11/90.

  20. Nucleate boiling pressure drop in an annulus: Book 2

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux.

  1. Pressure drops during low void volume combustion retorting of oil shale

    SciTech Connect

    McLendon, T.R.

    1986-01-01

    Stacks of cut oil shale bricks were combustion retorted in a batch, pilot scale sized retort at low void volumes (overall voids ranged from 8.4% to 18.4%). Retort pressure drops increased during retorting at least one order of magnitude. The Ergun equation and Darcy's law have been used by several researchers and organizations as diagnostic tools on oil shale retorts. These equations were tested on the uniformly packed retort reported in this paper to evaluate how well the equations represented the experimental conditions. Use of the Ergun equation to estimate the average particle size from retort pressure drops gave answers that were only approximately correct. Calculation of retort pressure drops from Darcy's law during retorting at low void volumes will probably give answers that are several times too small. Thermal expansion of the shale during retorting decreases retort permeability greatly and calculation of the decreased permeability is not possible at the present level of technology.

  2. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  3. Investigation of lean combustion stability and pressure drop in porous media burners

    NASA Astrophysics Data System (ADS)

    Sobhani, Sadaf; Haley, Bret; Bartz, David; Dunnmon, Jared; Sullivan, John; Ihme, Matthias

    2016-11-01

    The stability and thermal durability of combustion in porous media burners (PMBs) is examined experimentally and computationally. For this, two burner concepts are considered, which consist of different pore topologies, porous materials, and matrix arrangements. Long-term material durability tests at constant and cycled on-off conditions are performed, along with a characterization of combustion stability, pressure drop and pollutant emissions for a range of equivalence ratios and mass flow rates. Experimental thermocouple temperature measurements and pressure drop data are presented and compared to results obtained from one-dimensional volume-averaged simulations. Experimental and model results show reasonable agreement for temperature profiles and pressure drop evaluated using Ergun's equations. Enhanced flame stability is illustrated for burners with Yttria-stabilized Zirconia Alumina upstream and Silicon Carbide in the downstream combustion zone. Results reinforce concepts in PMB design and optimization, and demonstrate the potential of PMBs to overcome technological barriers associated with conventional free-flame combustion technologies.

  4. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    NASA Astrophysics Data System (ADS)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  5. Prediction of pressure drops accompanying the evaporation of refrigerants inside horizontal tubes. Technical memo

    SciTech Connect

    Stoneham, H.G.; Saluja, S.N.; Dunn, A.

    1980-01-01

    Four of the more widely used correlations for the prediction of pressure drops were compared with published experimental data using statistical techniques. None of the correlations examined were found to be suitably accurate over the range of conditions normally encountered in direct expansion evaporators. A new correlation was developed and is presented here, that can be used with an acceptable degree of accuracy by the design engineer. The correlation is presented in a form that can be easily written into a program for solution on a programmable calculator leading to quick and accurate evaluation of the pressure drop that accompanies a refrigerant evaporatoring inside a horontal tube evaporator.

  6. Nucleate boiling pressure drop in an annulus: Book 4

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  7. Comparison of Pressure Drop between Calculation and Experiment for a Two-phase Carbon Dioxide Loop

    NASA Astrophysics Data System (ADS)

    Mo, D.-C.; Xiao, W.-J.; Huang, Z.-C.; Sun, X.-H.; Chen, Y.; Lu, S.-S.; Li, T.-X.; Qi, X.-M.; Wang, Z.-X.; Pauw, A.; Bsibsi, M.; Gargiulo, C.; van Es, J.; He, Z.-H.

    2008-09-01

    Tracker thermal control system (TTCS) is an active-pumped two-phase carbon dioxide cooling loop, which is developed for the Alpha Magnetic Spectrometer tracker front-end electronics. The maintenance-free centrifugal pump is a critical component in the design mainly due to the limited pressure head with small mass flows. Therefore a correct pressure drop is required to predict the pressure drop for dynamic modeling. As the normal operational temperature of the carbon dioxide in the TTCS is from - 15°C to +15°C, which is very close to its critical point, 33°C, and many two-phase pressure drop correlations may not fit well here. In this paper, we attempt to correlate the pressure drops between the calculations and the experiment of the two-phase CO2 loop. The comparison will focus on one evaporator. Here, the Lockhart/Martinelli correlation is recorrelated with different definition C value for CO2 according to the test results. Comparison shows that, the new correlation can fit the test results well.

  8. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  9. Pressure drop and arterial compliance - Two arterial parameters in one measurement.

    PubMed

    Rotman, Oren M; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2017-01-04

    Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid-structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information.

  10. An experimental investigation of pressure drop in forced-convection condensation and evaporation of oil-refrigerant mixtures

    SciTech Connect

    Tichy, J.A.; Duque-Rivera, J.; Macken, N.A.; Duval, W.M.B.

    1986-01-01

    Experimental measurements of pressure drop have been made for forced-convection evaporation and condensation of oil-refrigerant (R-12) mixtures inside a horizontal tube. Data were compared to a wide range of frictional pressure drop and void fraction relationships. The best representations for the oil-free data were then modified to better correlate both oil-free and oil-refrigerant results. For condensation, a modification of the prediction given by the Lockhart-Martinelli relation for frictional pressure drop and the homogeneous void fraction model is presented. For evaporation, the prediction given by the Dukler II frictional pressure-drop correlation and the homogeneous void fraction is modified. These relationships predict the pressure drop for 85% of the data to within +- 35%. The added oil increased the pressure drop 2% to 6% for condensation and 63% to 86% for evaporation.

  11. Intraocular pressure in cats is lowered by drops of hornet venom.

    PubMed

    Kam, J; Waron, M; Barishak, Y R; Schachner, E; Ishay, J S

    1989-01-01

    1. Nine cats were given an intravenous injection of the Oriental hornet (Vespa orientalis, Vespinae; Hymenoptera) venom sac extract (VSE) and seven cats had the same VSE administered as eye drops. 2. When injected intravenously, the hornet VSE decreased the intraocular pressure in both eyes sharply during the first 20 min and with a slower rate later on until the end of the 3 hr experiment. The intraocular pressure dropped to zero in some cases. 3. VSE eye drops decreased the intraocular pressure only in the treated eye, while in the second eye (left as a control) the intraocular pressure remained the same throughout the experiment. 4. The decrease in the intraocular pressure was sharp during the first 20 min and slowed down afterwards until the end of the experiment. 5. The intraocular pressure did not reduce to zero. 6. This study shows that the active components of the hornet venom which caused a decrease in the intraocular pressure can cross the cornea and exert a hypotensive effect in the eye.

  12. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressure drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.

  13. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.

    PubMed

    Guan, Yulong; Palanzo, David; Kunselman, Allen; Undar, Akif

    2009-11-01

    An increasing amount of evidence points to cerebral embolization during cardiopulmonary bypass (CPB) as the principal etiologic factor of neurologic complications. In this study, the capability of capturing and classification of gaseous emboli and pressure drop of three different membrane oxygenators (Sorin Apex, Terumo Capiox SX25, Maquet QUADROX) were measured in a simulated adult model of CPB using a novel ultrasound detection and classification quantifier system. The circuit was primed with 1000 mL heparinized human packed red blood cells and 1000 mL lactated Ringer's solution (total volume 2000 mL, corrected hematocrit 26-28%). After the injection of 5 mL air into the venous line, an Emboli Detection and Classification Quantifier was used to simultaneously record microemboli counts at post-pump, post-oxygenator, and post-arterial filter sites. Trials were conducted at normothermic (35 degrees C) and hypothermic (25 degrees C) conditions. Pre-oxygenator and post-oxygenator pressure were recorded in real time and pressure drop was calculated. Maquet QUADROX membrane oxygenator has the lowest pressure drops compared to the other two oxygenators (P < 0.001). The comparison among the three oxygenators indicated better capability of capturing gaseous emboli with the Maquet QUADROX and Terumo Capiox SX25 membrane oxygenator and more emboli may pass through the Sorin Apex membrane oxygenator. Microemboli counts uniformly increased with hypothermic perfusion (25 degrees C). Different types of oxygenators and reservoirs have different capability of capturing gaseous emboli and transmembrane pressure drop. Based on this investigation, Maquet QUADROX membrane oxygenator has the lowest pressure drop and better capability for capturing gaseous microemboli.

  14. Effect of instant controlled pressure drop treatments on the oligosaccharides extractability and microstructure of Tephrosia purpurea seeds.

    PubMed

    Amor, Bouthaina Ben; Lamy, Cécile; Andre, Patrice; Allaf, Karim

    2008-12-12

    The study of the oligosaccharides extracted from Tephrosia purpurea seeds was undertaken using the instant controlled pressure drop (DIC) as a pre-treatment prior to conventional solvent extraction. This DIC procedure provided structural modification in terms of expansion, higher porosity and improvement of specific surface area; diffusion of solvent inside such seeds and availability of oligosaccharides increase notably. In this paper, we investigated and quantified the impact of the different DIC operative parameters on the yields of ciceritol and stachyose extracted from T. purpurea seeds. The treatment could be optimized with a steam pressure (P) (P=0.2 MPa), initial water content (W) (W=30% dry basis (DB)) and thermal treatment time (t) (t=30s). By applying DIC treatment in these conditions, the classic process of extraction was intensified in both aspects of yields (145% of ciceritol and 185% of stachyose), and kinetics (1h of extraction time instead of 4h for conventional process). The scanning electron microscopy micrographs provided evident modifications of structure of seeds due to the DIC treatment.

  15. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  16. An experimental study of heat transfer and pressure drop characteristics of divergent wavy minichannels using nanofluids

    NASA Astrophysics Data System (ADS)

    Dominic, A.; Sarangan, J.; Suresh, S.; Devahdhanush, V. S.

    2016-07-01

    An experimental investigation was conducted to study the heat transfer and pressure drop characteristics of an array of wavy divergent minichannels and the results were compared with wavy minichannels with constant cross-section. The experiment was conducted in hydro dynamically developed and thermally developing laminar and transient regimes. The minichannel heat sink array consisted of 15 rectangular channels machined on a 30 × 30 mm2 and 11 mm thick Aluminium substrate. Each minichannel was of 0.9 mm width, 1.8 mm pitch and the depth was varied from 1.3 mm at entrance to 3.3 mm at exit for the divergent channels. DI water and 0.5 and 0.8 % concentrations of Al2O3/water nanofluid were used as working fluids. The Reynolds number was varied from 700 to 3300 and the heat flux was maintained at 45 kW/m2. The heat transfer and pressure drop of these minichannels were analyzed based on the experimental results obtained. It was observed that the heat transfer performance of divergent wavy minichannels was 9 % higher and the pressure drop was 30-38 % lesser than that of the wavy minichannels with constant cross-section, in the laminar regime. Hence, divergent channel flows can be considered one of the better ways to reduce pressure drop. The performance factor of divergent wavy minichannels was 115-126 % for water and 110-113 % for nanofluids.

  17. Pressure drop and gas distribution in compost based biofilters: medium mixing and composition effects.

    PubMed

    Morgan-Sagastume, J M; Revah, S; Noyola, A

    2003-07-01

    The pressure drop and gas distribution in four different filter media for compost biofilters were studied as a function of three superficial loading rates of moist air and by carrying out the filter medium homogenization by mixing. The filter media used were compost, compost with cane bagasse, lava rock and aerobic sludge previously dried to 60% of water content. The pressure drop increased when lava rock and cane bagasse were used as bulking agents. The same trend was observed when water was added to the filter medium. Pressure drop tended to decrease with time as flow channels were formed inthe filter media. Tracer studies were carried out to quantify the gas distribution and the effect of channel formation. For the biofilters submitted to an airflow of 10, 40 and 70 l min(-1), an average normalized time of 0.96, 0.89 and 0.82, respectively were obtained. The results showed that channel formation was increased as the superficial loading rate was also increased. An operational practice that this work proposes and evaluates to improve gas distribution and medium moisture control is to carry out intermittent medium mixing. The medium moisture and void volume achieved under mixing condition were around 50% and 0.40, respectively with an average constant pressure drop of 11, 45 and 78 cm of water m(-1) for air velocities of 75, 300 and 525 m h(-1).

  18. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across the Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox usi...

  19. Pressure Drop and Heat Transfer of Water Flowing Shell-Side of Multitube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Ohashi, Yukio; Hashizume, Kenichi

    Experimental studies on heat transfer augmentation in water-flowing shell sides of counter flow multitube exchangers are presented. Various kinds of augmented tube bundles have been examined to obtain the characteristics of pressure drop and heat transfer. Data for a smooth tube bundle were a little different from those for the tube side. The pressure drop in the shell side depended on Re-0.4 and deviated from the tube side pressure drop to within +30%, while the shell side heat transfer coefficient depended on Re0.8 but about 35%. larger than that of the tube side. Furthermore the augmented tube bundles have been evaluated and compared using 21 evaluation criteria. Enhanced tube bundles, low-finned tube bundles and those with twisted tapes inserted had especially good performances. The ratios of increase in heat transfer were larger than those in pressure drop. In case of low-finned tube bundles, there seem to exist an optimum fin-pitch and an optimum relation between the fin-pitch and the pitch of twisted tapes inserted.

  20. New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Braisted, Jon; Kurwitz, Cable; Best, Frederick

    2004-02-01

    The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.

  1. An experimental study of heat transfer and pressure drop characteristics of divergent wavy minichannels using nanofluids

    NASA Astrophysics Data System (ADS)

    Dominic, A.; Sarangan, J.; Suresh, S.; Devahdhanush, V. S.

    2017-03-01

    An experimental investigation was conducted to study the heat transfer and pressure drop characteristics of an array of wavy divergent minichannels and the results were compared with wavy minichannels with constant cross-section. The experiment was conducted in hydro dynamically developed and thermally developing laminar and transient regimes. The minichannel heat sink array consisted of 15 rectangular channels machined on a 30 × 30 mm2 and 11 mm thick Aluminium substrate. Each minichannel was of 0.9 mm width, 1.8 mm pitch and the depth was varied from 1.3 mm at entrance to 3.3 mm at exit for the divergent channels. DI water and 0.5 and 0.8 % concentrations of Al2O3/water nanofluid were used as working fluids. The Reynolds number was varied from 700 to 3300 and the heat flux was maintained at 45 kW/m2. The heat transfer and pressure drop of these minichannels were analyzed based on the experimental results obtained. It was observed that the heat transfer performance of divergent wavy minichannels was 9 % higher and the pressure drop was 30-38 % lesser than that of the wavy minichannels with constant cross-section, in the laminar regime. Hence, divergent channel flows can be considered one of the better ways to reduce pressure drop. The performance factor of divergent wavy minichannels was 115-126 % for water and 110-113 % for nanofluids.

  2. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration.

    PubMed

    Podichetty, Jagdeep T; Dhane, Dhananjay V; Madihally, Sundararajan V

    2012-07-01

    In this study, transport characteristics in flow-through and parallel-flow bioreactors used in tissue engineering were simulated using computational fluid dynamics. To study nutrient distribution and consumption by smooth muscle cells colonizing the 100 mm diameter and 2-mm thick scaffold, effective diffusivity of glucose was experimentally determined using a two-chambered setup. Three different concentrations of chitosan-gelatin scaffolds were prepared by freezing at -80°C followed by lyophilization. Experiments were performed in both bioreactors to measure pressure drop at different flow rates. At low flow rates, experimental results were in agreement with the simulation results for both bioreactors. However, increase in flow rate beyond 5 mL/min in flow-through bioreactor showed channeling at the circumference resulting in lower pressure drop relative to simulation results. The Peclet number inside the scaffold indicated nutrient distribution within the flow-through bioreactor to be convection-dependent, whereas the parallel-flow bioreactor was diffusion-dependent. Three alternative design modifications to the parallel-flow were made by (i) introducing an additional inlet and an outlet, (ii) changing channel position, and (iii) changing the hold-up volume. Simulation studies were performed to assess the effect of scaffold thickness, cell densities, and permeability. These new designs improved nutrient distribution for 2 mm scaffolds; however, parallel-flow configuration was found to be unsuitable for scaffolds more than 4-mm thick, especially at low porosities as tissues regenerate. Furthermore, operable flow rate in flow-through bioreactors is constrained by the mechanical strength of the scaffold. In summary, this study showed limitations and differences between flow-through and parallel-flow bioreactors used in tissue engineering.

  3. In vivo validation of the in silico predicted pressure drop across an arteriovenous fistula.

    PubMed

    Browne, Leonard D; Griffin, Philip; Bashar, Khalid; Walsh, Stewart R; Kavanagh, Eamon G; Walsh, Michael T

    2015-06-01

    The creation of an arteriovenous fistula offers a unique example of vascular remodelling and adaption. Yet, the specific factors which elicit remodelling events which determine successful maturation or failure have not been unambiguously determined. Computational fluid dynamic (CFD) simulations are increasingly been employed to investigate the interaction between local hemodynamics and remodelling and can potentially be used to assist in clinical risk assessment of maturation or failure. However, these simulations are inextricably linked to their prescribed boundary conditions and are reliant on in vivo measurements of flow and pressure to ensure their validity. The study compares in vivo measurements of the pressure distribution across arteriovenous fistulae against a representative numerical model. The results of the study indicate relative agreement (error ≈ 8-10%) between the in vivo and CFD prediction of the mean pressure drop across the AVFs. The large pressure drop across the AVFs coincided with a palpable thrill (perivascular vibration) in vivo and fluctuations were observed in the numerical pressure drop signal due to flow instabilities arising at the anastomosis. This study provides a benchmark of the pressure distribution within an AVF and validates that CFD solutions are capable of replicating the abnormal physiological flow conditions induced by fistula creation.

  4. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  5. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sreyashi; Vlachos, Pavlos

    2016-11-01

    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  6. Blood Pressure Drop Prediction by using HRV Measurements in Orthostatic Hypotension.

    PubMed

    Sannino, Giovanna; Melillo, Paolo; Stranges, Saverio; De Pietro, Giuseppe; Pecchia, Leandro

    2015-11-01

    Orthostatic Hypotension is defined as a reduction of systolic and diastolic blood pressure within 3 minutes of standing, and may cause dizziness and loss of balance. Orthostatic Hypotension has been considered an important risk factor for falls since 1960. This paper presents a model to predict the systolic blood pressure drop due to orthostatic hypotension, relying on heart rate variability measurements extracted from 5 minute ECGs recorded before standing. This model was developed and validated with the leave-one-out cross-validation technique involving 10 healthy subjects, and finally tested with an additional 5 healthy subjects, whose data were not used during the training and cross-validation process. The results show that the model predicts correctly the systolic blood pressure drop in 80 % of all experiments, with an error rate below the measurement error of a sphygmomanometer digital device.

  7. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view.

  8. Experimental characterization of pressure drops and channel instabilities in helical coil SG tubes

    SciTech Connect

    Colombo, M.; Cammi, A.; De Amicis, J.; Ricotti, M. E.

    2012-07-01

    Helical tube heat exchangers provide better heat transfer characteristics, an improved capability to accommodate stresses due to thermal expansions and a more compact design with respect to straight tube heat exchangers. For these advantages they are considered as an option for the Steam Generator (SG) of many new reactor projects of Generation III+ and Generation IV. In particular, their compactness fits well with the requirements of Small-medium Modular Reactors (SMRs) of integral design, where all the primary system components are located inside the reactor vessel. In this framework, thermal hydraulics of helical pipes has been studied in recent years by Politecnico di Milano in different experimental campaigns. Experiments have been carried out in a full-scale open loop test facility installed at SIET labs in Piacenza (Italy)), to simulate the SG of a typical SMR. The facility includes two helical pipes (1 m coil diameter, 32 m length, 8 m height), connected via lower and upper headers. Following recently completed experimental campaigns dedicated to pressure drops and density wave instabilities, this paper deals with a new experimental campaign focused on both pressure drops (single-phase flow and two-phase flow, laminar and turbulent regimes) and flow instabilities. The availability of a large number of experimental data, in particular on two-phase flow, is of fundamental interest for correlation development, model validation and code assessment. Two-phase pressure drops have been measured in adiabatic conditions, ranging from 200 to 600 kg/m{sup 2}s for the mass flux, from 30 to 60 bar for the pressure and from 0.1 to 1.0 for the flow quality. The channel characteristics mass flow rate - pressure drop has been determined experimentally in the range 10-40 bar, varying the mass flow rate at a fixed value of the thermal flux. In addition, single-phase pressure drops have been measured in both laminar and turbulent conditions. Density wave instabilities have

  9. Effects of vascular structures on the pressure drop in stenotic coronary arteries

    NASA Astrophysics Data System (ADS)

    Kim, Jaerim; Choi, Haecheon; Kweon, Jihoon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-11-01

    A stenosis, which is a narrowing of a blood vessel, of the coronary arteries restricts the flow to the heart and it may lead to sudden cardiac death. Therefore, the accurate determination of the severity of a stenosis is a critical issue. Due to the convenience of visual assessments, geometric parameters such as the diameter stenosis and area stenosis have been used, but the decision based on them sometimes under- or overestimates the functional severity of a stenosis, i.e., pressure drop. In this study, patient-specific models that have similar area stenosis but different pressure drops are considered, and their geometries are reconstructed from the coronary computed tomography angiography (CCTA). Both steady and pulsatile inflows are considered for the simulations. Comparison between two models that have a bifurcation right after a stenosis shows that the parent to daughter vessel angle results in different secondary flow patterns and wall shear stress distributions which affect the pressure downstream. Thus, the structural features of the lower and upper parts of a stenosis significantly affect the pressure drop. Supported by 20152020105600.

  10. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    SciTech Connect

    Blackwell, B.F.; Sobolik, K.B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  11. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    NASA Astrophysics Data System (ADS)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  12. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.

    PubMed

    Hu, Ruiqing; Li, Fen; Lv, Jiaqi; He, Ying; Lu, Detang; Yamada, Takashi; Ono, Naoki

    2015-01-01

    The retinal arterial network is the only source of the highly nutrient-consumptive retina, thus any insult on the arteries can impair the retinal oxygen and nutrient supply and affect its normal function. The aim of this work is to study the influences of vascular structure variation on the flow and pressure characteristics via microfluidic devices. Two sets of micro-channel were designed to mimic the stenosed microvessels and dichotomous branching structure in the retinal arteries. Three working fluids including red blood cell (RBC) suspension were employed to investigate the pressure drop in the stenosed channel. The flow behaviors of RBC suspensions inside the micro channels were observed using high speed camera system. Pressure drop of different working fluids and RBC velocity profiles in the stenosed channel were obtained. Moreover, hematocrit levels of RBC suspensions inside the bifurcated channels were analyzed from the sequential images of RBC flow. The results of the flow in the stenosed channel show that RBCs drift from the center of the channels, and RBC velocity is influenced not only by the inlet flow rate but also the interaction between RBCs. The measured pressure drops in the stenosed channel increase notably with the increase of fluid viscosity. Furthermore, the dimensionless pressure drop due to the stenosis decreases with Reynolds number. On the other hand, the results of flow through the bifurcated channels show that as the ratio of the daughter-branch width to the mother-channel width increases, the ratio of hematocrit in two connected branches (Ht/Hd) decreases, which is in favorable agreement with the available analysis results.

  13. Ppi results from the balloon drop experiment of the hasi pressure profile instrument

    NASA Astrophysics Data System (ADS)

    Mäkinen, T.; Lehto, A.; Salminen, P.; Leppelmeier, G.; Harri, A. M.

    1998-10-01

    At December 1995 a balloon drop experiment was conducted at León, Spain, for the HASI (Huygens Atmospheric Structure Instrument) instrument of the Huygens probe. A part of HASI is the Pressure Profile Instrument (PPI) which will measure the atmospheric pressure profile of Titan during the descent at November 2004. The experiment platform was carried by a balloon to an altitude of 30 km and it made a subsequent parachute-assisted descent. The pressure instrument functioned basically as expected. The vertical flight trajectory and pressure profile was reconstructed by using the collected data of the pressure instrument and the simultaneous temperature measurements. The calculated flight trajectory was in agreement with independent measurements with Omega and GPS. Some turbulence was detected near the surface and other dynamic behaviour in the upper part of the trajectory. The experiment demonstrated the nominal performance of the PPI instrument and serves as a real-like test flight for the actual mission.

  14. Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction flow

    NASA Astrophysics Data System (ADS)

    López-Aguilar, J. E.; Tamaddon-Jahromi, H. R.; Webster, M. F.; Walters, K.

    2016-10-01

    This paper addresses the problem of matching experimental findings with numerical prediction for the extreme experimental levels of pressure-drops observed in the 4:1 sharp-corner contraction flows, as reported by Nigen and Walters ["Viscoelastic contraction flows: Comparison of axisymmetric and planar configurations," J. Non- Newtonian Fluid Mech. 102, 343-359 (2002)]. In this connection, we report on significant success in achieving quantitative agreement between predictions and experiments. This has been made possible by using a new swanINNFM model, employing an additional dissipative function. Notably, one can observe that extremely large pressure-drops may be attained with a suitable selection of the extensional viscous time scale. In addition, and on vortex structure, the early and immediate vortex enhancement for Boger fluids in axisymmetric contractions has also been reproduced, which is shown to be absent in planar counterparts.

  15. Theoretical investigation of pressure drop in combined cyclone and fabric filter systems

    NASA Astrophysics Data System (ADS)

    Dirgo, John A.; Cooper, Douglas W.

    Computer simulations were conducted to investigate potential pressure drop reductions obtainable by combining cyclones, as pre-collectors, with fabric filters. The Leith-Licht model was used to characterize cyclone emissions and the specific resistance ( K2) of the fabric filter dust cake was calculated from an empirical correlation. Several important dimensionless groups were identified and evaluated. One group, the product of the ratio of the dust cake specific resistances expected with and without the cyclone and the mass penetration of the cyclone, ( K2/ K2) Pn, indicates whether a pressure drop reduction is possible. A correlation was developed for this group as a function of the size properties of the inlet dust (particle mass median diameter and geometric standard deviation) and the cyclone particle cut diameter. Expressions were derived for the break-even time, the duration of filtration with the cyclone needed to show a pressure drop reduction in comparison with filtration without the cyclone. It is shown that in previously reported experiments and simulations indicating an advantage for the combined cyclone-fabric filter system, filtration cycles were typically longer than the break-even time; those showing no improvement typically had filtration times shorter than the break-even time.

  16. Heat transfer and pressure drop in pin-fin trapezoidal ducts

    SciTech Connect

    Hwang, J.J.; Lai, D.Y.; Tsia, Y.P.

    1999-04-01

    Experiments are conducted to determine the log-mean averaged Nusselt number and overall pressure-drop coefficient in a pin-fin trapezoidal duct that models the cooling passages in modern gas turbine blades. The effects of pin arrangement (in-line and staggered), flow Reynolds number (6,000 {le} Re {le}40,000) and ratio of lateral-to-total flow rate (0 {le} {var_epsilon} {le} 1.0) are examined. The results of smooth trapezoidal ducts without pin arrays are also obtained for comparison. It is found that, for the single-outlet-flow duct, the log-mean averaged Nusselt number in the pin-fin trapezoidal duct with lateral outlet is insensitive to the pin arrangement, which is higher than that in straight-outlet-flow duct with the corresponding pin array. As for the trapezoidal ducts having both outlets, the log-mean averaged Nusselt number has a local minimum value at about {var_epsilon} = 0.3. After about {var_epsilon} {ge} 0.8, the log-mean averaged Nusselt number is nearly independent of the pin configuration. Moreover, the staggered pin array pays more pressure-drop penalty as compared with the in-line pin array in the straight-outlet-flow duct; however, in the lateral-outlet-flow duct, the in-line and staggered pin arrays yield almost the same overall pressure drop.

  17. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    NASA Astrophysics Data System (ADS)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  18. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  19. Effects of sudden expansion and contraction flow on pressure drops in the Stirling engine regenerator

    SciTech Connect

    Hamaguchi, K.; Yamashita, I.; Hirata, K.

    1998-07-01

    The flow losses in the regenerators greatly influence the performance of the Stirling engine. The losses mainly depend on fluid friction through the regenerator matrix, but are also generated in sudden expansion and contraction flow at the regenerator ends. The latter losses can't be neglected in the case of small area ratio (entrance area/cross-sectional area in regenerator). The pressure drops in regenerators are usually estimated assuming a uniform velocity distribution of working gas in the matrices. The estimation results, however, are generally smaller than practical data. The cross-sectional flow areas of the heater and cooler of typical Stirling engines are smaller than the cross- sectional area of the regenerator. The effects of the small flow passage on the velocity distribution of working fluid in the matrix, that is, a flow transition from tubes or channels to a regenerator matrix, can be often confirmed by the discolored matrix. Especially, the lack of a uniform distribution of velocity in the matrix causes increased flow loss and decreased thermal performance. So, it is necessary to understand the quantitative effects of the sudden change in flow area at the regenerator ends on the velocity distribution and pressure drop. In this paper, using matrices made of stacks of wire screens, the effects of the entrance and exit areas and the length of the regenerator on pressure drops are examined by an unidirectional steady flow apparatus. The experimental data are arranged in an empirical equation. The lack of a uniformity of velocity distribution is visualized using smoke-wire methods. The empirical equation presented is applied to the estimation of pressure loss in an actual engine regenerator. The applicability of the equation is examined by comparison of estimated value with engine data in pressure loss.

  20. Effect of impregnation pressure and time on the porosity, structure and properties of polyacrylonitrile-fiber based carbon composites

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Roy, Mainak; Thomas, Susy; Patra, A. K.; Sathiyamoorthy, D.; Tyagi, A. K.

    2013-02-01

    Carbon-carbon composites may find applications in critical parts of advanced nuclear reactors. A series of carbon-carbon composites were prepared using polyacrylonitrile (PAN) based carbon fibers. The materials were densified by impregnating two-dimensional (2D) preforms with liquid phenol formaldehyde resin at different pressures and for different periods of time and then carbonizing those by slowly heating at 1000 °C. Effects of the processing parameters on the structure of the composites were extensively studied. The study showed conclusively that open porosity decreased with increasing impregnation pressure, whereas impregnation time had lesser effect. Matrix-resin bonding also improved at higher pressure. d002 spacing decreased and ordering along c-axis increased with concomitant increase in sp2-carbon fraction at higher impregnation pressures. The fiber reinforced composites exhibited short range ordering of carbon atoms and satisfied structural conditions (d002 values) of amorphous carbon according to the turbostratic model for non-graphitic carbon materials. The composites had pellet-density of ˜85% of the theoretical value, low thermal expansion and negligible neutron-poisoning. They maintained structural integrity and retained disordered nature even on heat-treatment at ca. 1800 °C.

  1. Hereditary neuropathy with liability to pressure palsy: a recurrent and bilateral foot drop case report.

    PubMed

    Flor-de-Lima, Filipa; Macedo, Liliana; Taipa, Ricardo; Melo-Pires, Manuel; Rodrigues, Maria Lurdes

    2013-01-01

    Hereditary neuropathy with liability to pressure palsy is characterized by acute, painless, recurrent mononeuropathies secondary to minor trauma or compression. A 16-year-old boy had the first episode of right foot drop after minor motorcycle accident. Electromyography revealed conduction block and slowing velocity conduction of the right deep peroneal nerve at the fibular head. After motor rehabilitation, he fully recovered. Six months later he had the second episode of foot drop in the opposite site after prolonged squatting position. Electromyography revealed sensorimotor polyneuropathy of left peroneal, sural, posterior tibial, and deep peroneal nerves and also of ulnar, radial, and median nerves of both upper limbs. Histological examination revealed sensory nerve demyelination and focal thickenings of myelin fibers. The diagnosis of hereditary neuropathy with liability to pressure palsy was confirmed by PMP22 deletion of chromosome 17p11.2. He started motor rehabilitation and avoidance of stressing factors with progressive recovery. After one-year followup, he was completely asymptomatic. Recurrent bilateral foot drop history, "sausage-like" swellings of myelin in histological examination, and the results of electromyography led the authors to consider the diagnosis despite negative family history. The authors highlight this rare disease in pediatric population and the importance of high index of clinical suspicion for its diagnosis.

  2. Extraction of essential oils from Algerian myrtle leaves using instant controlled pressure drop technology.

    PubMed

    Berka-Zougali, Baya; Hassani, Aicha; Besombes, Colette; Allaf, Karim

    2010-10-01

    In the present work, the new extraction process of Détente Instantanée Contrôlée DIC (French, for instant controlled pressure drop) was studied, developed, quantitatively and qualitatively compared to the conventional hydrodistillation method for the extraction of essential oils from Algerian myrtle leaves. DIC was used as a thermomechanical treatment, DIC subjecting the product to a high-pressure saturated steam. The DIC cycle ends with an abrupt pressure drop towards vacuum, and this instantly leads to an autovaporization of myrtle volatile compounds. An immediate condensation in the vacuum tank produced a micro-emulsion of water and essential oils. Thus, an ultra-rapid cooling of residual leaves occurred, precluding any thermal degradation. An experimental protocol was designed with 3 independent variables: saturated steam pressure between 0.1 and 0.6 MPa, resulting in a temperature between 100 and 160°C, a total thermal processing time between 19 and 221 s, and between 2 and 6 DIC cycles. The essential oils yield was defined as the main dependent variable. This direct extraction gave high yields and high quality essential oil, as revealed by composition and antioxidant activity (results not shown). After this treatment, the myrtle leaves were recovered and hydrodistilled in order to quantify the essential oil content in residual DIC-treated samples. Scanning electron microscope (SEM) showed some modification of the structure with a slight destruction of cell walls after DIC treatment.

  3. Numerical investigation of cavitation flow inside spool valve with large pressure drop

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pan, Dingyi; Xie, Fangfang; Shao, Xueming

    2015-12-01

    Spool valves play an important role in fluid power system. Cavitation phenomena happen frequently inside the spool valves, which cause structure damages, noise and lower down hydrodynamic performance. A numerical tools incorporating the cavitation model, are developed to predict the flow structure and cavitation pattern in the spool valve. Two major flow states in the spool valve chamber, i.e. flow-in and flow-out, are studies. The pressure distributions along the spool wall are first investigated, and the results agree well with the experimental data. For the flow-in cases, the local pressure at the throttling area drops much deeper than the pressure in flow-out cases. Meanwhile, the bubbles are more stable in flow-in cases than those in flow-out cases, which are ruptured and shed into the downstream.

  4. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  5. Geometry-based pressure drop prediction in mildly diseased human coronary arteries.

    PubMed

    Schrauwen, J T C; Wentzel, J J; van der Steen, A F W; Gijsen, F J H

    2014-06-03

    Pressure drop (△p) estimations in human coronary arteries have several important applications, including determination of appropriate boundary conditions for CFD and estimation of fractional flow reserve (FFR). In this study a △p prediction was made based on geometrical features derived from patient-specific imaging data. Twenty-two mildly diseased human coronary arteries were imaged with computed tomography and intravascular ultrasound. Each artery was modelled in three consecutive steps: from straight to tapered, to stenosed, to curved model. CFD was performed to compute the additional △p in each model under steady flow for a wide range of Reynolds numbers. The correlations between the added geometrical complexity and additional △p were used to compute a predicted △p. This predicted △p based on geometry was compared to CFD results. The mean △p calculated with CFD was 855±666Pa. Tapering and curvature added significantly to the total △p, accounting for 31.4±19.0% and 18.0±10.9% respectively at Re=250. Using tapering angle, maximum area stenosis and angularity of the centerline, we were able to generate a good estimate for the predicted △p with a low mean but high standard deviation: average error of 41.1±287.8Pa at Re=250. Furthermore, the predicted △p was used to accurately estimate FFR (r=0.93). The effect of the geometric features was determined and the pressure drop in mildly diseased human coronary arteries was predicted quickly based solely on geometry. This pressure drop estimation could serve as a boundary condition in CFD to model the impact of distal epicardial vessels.

  6. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space.

    PubMed

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L

    2015-12-16

    It is a challenge for the human body to maintain stable blood pressure while standing. The body's failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change--supposedly mediated by reflexes to the cardiovascular system. We show--for the first time--a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth.

  7. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space

    PubMed Central

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T.; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L.

    2015-01-01

    It is a challenge for the human body to maintain stable blood pressure while standing. The body’s failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change – supposedly mediated by reflexes to the cardiovascular system. We show – for the first time – a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth. PMID:26671177

  8. Minimum rate of spouting and peak pressure-drop in a spouted bed

    SciTech Connect

    Ogino, Fumiaru; Zhang, Laiying; Maehashi, Yasuo . Dept. of Chemical Engineering)

    1993-04-01

    Spouted beds are a type of fluidized bed, but one which has certain advantages, viz., (1) the capability of handling coarse particles; (2) the capability of handling particles with complicated shapes; (3) the absence of the need to have a high flow-rate; and (4) a small pressure drop. The first and second of these advantages, in particular, are responsible for spouted beds having found use in industry in the drying of powdered materials, in granulation apparatus, in the roasting of mineral ores, and in waste incinerators, while their application in coal gasification and shale pyrolysis is, also, examined.

  9. A New Population Dataset on Dust Devil Pressure Drops : Setting the Stage for Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-09-01

    A quarter of a century ago in the first in-situ study of dust devils on Mars, Ryan and Lucich (1983) rue that 'Unfortunately, we have been unable to find a terrestrial data set that permits a one-to-one comparison with our Mars data'. Remarkably, this state of affairs has largely persisted. Here I present a set of fixed station terrestrial field data, enabled by recent technological developments, which enables a direct comparison with dust devils (as indicated by vortex pressure drops) from Mars Pathfinder, Phoenix, and hopefully MSL Curiosity.

  10. Pressure drop and mass transfer in two-pass ribbed channels

    NASA Technical Reports Server (NTRS)

    Chandra, P. R.; Han, J. C.

    1989-01-01

    The combined effects of the sharp 180-deg turn and of the rib configuration on the pressure drop and mass transfer characteristics in a two-pass square channel with a pair of opposite rib-roughened walls (to simulate turbine airfoil cooling passages) were determined for a Reynolds number range of 10,000-60,000. Heat transfer enhancements were compared for the first pass and for the two-pass channel with the sharp 180-deg turn. Correlations for the fully-developed friction factors and loss coefficients were obtained.

  11. The Interdependence of Plate Coupling Processes, Subduction Rate, and Asthenospheric Pressure Drop across Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Royden, L.; Holt, A.; Becker, T. W.

    2015-12-01

    One advantage of analytical models, in which analytic expressions are used for the various components of the subduction system, is the efficient exploration of parameter space and identification of the physical mechanisms controlling a wide breadth of slab kinematics. We show that, despite subtle differences in how plate interfaces and boundary conditions are implemented, results for single subduction from a 3-D semi-analytical model for subduction FAST (Royden & Husson, 2006; Jagoutz et al., 2015) and from the numerical finite-element model CitcomCU (Moresi & Gurnis, 1996, Zhong et al., 2006) are in excellent agreement when plate coupling (via shear stress on the plate interface) takes place in the FAST without the development of topographic relief at the plate boundary. Results from the two models are consistent across a variety of geometries, with fixed upper plate, fixed lower plate, and stress-free plate ends. When the analytical model is modified to include the development of topography above the subduction boundary, subduction rates are greatly increased, indicating a strong sensitivity of subduction to the mode of plate coupling. Rates of subduction also correlate strongly with the asthenospheric pressure drop across the subducting slab, which drives toroidal flow of the asthenosphere around the slab. When the lower plate is fixed, subduction is relatively slow and the pressure drop from below to above the slab is large, inhibiting subduction and slab roll-back. When the upper plate is fixed and when the plate ends are stress-free, subduction rates are approximately 50% faster and the corresponding asthenospheric pressure drop from below to above the slab is small, facilitating rapid subduction. This qualitative correlation between plate coupling processes, asthenospheric pressure drop, and rates of subduction can be extended to systems with more than one subduction zone (Holt et al., 2015 AGU Fall Abstract). Jagoutz, O., Royden, L., Holt, A. & Becker, T. W

  12. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device.

    PubMed

    Xu, Ke; Tostado, Chris P; Xu, Jian-Hong; Lu, Yang-Cheng; Luo, Guang-Sheng

    2014-04-07

    In this study, we developed a new method for the direct measurement of differential pressures in a co-flow junction microfluidic device using a Capillary Laplace Gauge (CLG). The CLG - used inside the microchannel device--was designed using a tapered glass-capillary set up in co-flow junction architecture with a three-phase liquid-liquid-gas system with two flowing liquid phases and an entrained gas phase. By taking advantage of the Laplace equation, basic geometric relations and an integrated image analysis program, the movement of the entrained gas phase with the flow of the liquid-phases is tracked and monitored, allowing the gauge to function as an ultra-sensitive, integrated, differential pressure sensor measuring fluctuations in the liquid-dispersed phase channel pressure as small as tens of Pascals caused by droplet formation. The gauge was used to monitor the drop formation and breakup process in a co-flow junction microfluidic device under different flow conditions across a large range (1 × 10(-3) to 2.0 × 10(-1)) of capillary numbers. In addition to being able to monitor short and long term dispersed phase pressure fluctuation trends for both single drop and large droplet populations, the gauge was also used to clearly identify a transition between the dripping and jetting flow regimes. Overall, the combination of a unique, integrated image analysis program with this new type of sensor serves as a powerful tool with great potential for a variety of different research and industrial applications requiring sensitive microchannel pressure measurements.

  13. Pressure Drop in Tortuosity/Kinking of the Internal Carotid Artery: Simulation and Clinical Investigation

    PubMed Central

    Wang, Lijun; Zhao, Feng; Wang, Daming; Hu, Shen; Liu, Jiachun; Zhou, Zhilun; Lu, Jun; Qi, Peng; Song, Shiying

    2016-01-01

    Background. Whether carotid tortuosity/kinking of the internal carotid artery leads to cerebral ischemia remains unclear. There is very little research about the hemodynamic variation induced by carotid tortuosity/kinking in the literature. The objective of this study was to research the blood pressure changes induced by carotid tortuosity/kinking. Methods. We first created a geometric model of carotid tortuosity/kinking. Based on hemodynamic boundary conditions, the hemodynamics of carotid tortuosity and kinking were studied via a finite element simulation. Then, an in vitro system was built to validate the numerical simulation results. The mean arterial pressure changes before and after carotid kinking were measured using pressure sensors in 12 patients with carotid kinking. Results. Numerical simulation revealed that the pressure drops increased with increases in the kinking angles. Clinical tests and in vitro experiments confirmed the numerical simulation results. Conclusions. Carotid kinking leads to blood pressure reduction. In certain conditions, kinking may affect the cerebral blood supply and be associated with cerebral ischemia. PMID:27195283

  14. Two-phase pressure drop with twisted-tape swirl generators

    SciTech Connect

    Jensen, M.K.; Bensler, H.P.; Pourdoshti, M.

    1985-03-01

    An experimental study has been conducted to determine the effect of twisted-tape swirl generators on adiabatic and diabatic two-phase flow pressure drops in vertical straight tubes. Tape-twist ratios (length for 180/sup 0/ twist/inside tube diameter) of 3.94, 8.94, and 13.92 were tested with R-113 over a range of pressures, mass velocities, qualities, and heat fluxes. Empty tube reference data were successfully predicted with a correlation from the literature. The twisted tape data wer successfully correlated by using the hydraulic diameter and a single-phase swirl flow friction factor in the empty tube correlation. Data from the literature also were predicted well with this correlation.

  15. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  16. Prediction of pressure drop of two-phase coal slurries in pipelines

    NASA Astrophysics Data System (ADS)

    Sanghvi, S. M.; Tolan, J. S.

    1982-11-01

    Pressure drop and flow rate measurements through pipeline viscometers were analyzed using the power law, Bingham-plastic and Bowen non-Newtonian heological models in a computer program. Wall slip was corrected with Hanks' modification of the Rabinowitsch-Mooney equation. The possibility of solids settling was analyzed with the Oroskar-Turian correlation. The program relates shear stress to shear rate for Fort Lewis coal-slurry data to within 5% for flow without solids settling. Wilsonville coal-slurry data with solids settling were fit to within 17% by the Bowen model, but the Bowen parameters are very sensitive to operating conditions. Pressure drop is predicted in the program as a function of flow rate and pipe diameter, using the analysis of best-fit rheological parameters and literature correlations for friction factors. The effect of wall slip on shear stress decreased with increasing pipe diameter. A modification to the graphical criterion for turbulence was proposed that utilizes the numerical value of the slopes of the branched flow curves.

  17. Heat transfer and pressure drop in tube with broken twisted tape insert

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng; Liou, Jin Shuen

    2007-11-15

    An experimental study measuring the axial heat transfer distributions and the pressure drop coefficients of the tube fitted with a broken twisted tape of twist ratio 1, 1.5, 2, 2.5 or {infinity} is performed in the Re range of 1000-40,000. This type of broken twisted tape is newly invented without previous investigations available. Local Nusselt numbers and mean Fanning friction factors in the tube fitted with the broken twisted tape increase as the twist ratio decreases. Heat transfer coefficients, mean Fanning friction factors and thermal performance factors in the tube fitted with the broken twisted tape are, respectively, augmented to 1.28-2.4, 2-4.7 and 0.99-1.8 times of those in the tube fitted with the smooth twisted tape. Empirical heat transfer and pressure drop correlations which evaluate the local Nusselt number and the mean Fanning friction factor for the tube with the broken twisted tape insert are generated to assist the industrial applications. (author)

  18. Heat transfer and pressure drop in hexagonal ducts with surface dimples

    SciTech Connect

    Chang, S.W.; Chiang, K.F.; Chou, T.C.

    2010-11-15

    Measurements of detailed Nusselt number (Nu) distributions and pressure drop coefficients (f) for four hexagonal ducts with smooth and dimpled walls are performed to comparatively examine the thermal performances of three sets of dimpled walls with concave-concave, convex-convex and concave-convex configurations at Reynolds numbers (Re) in the range of 900-30,000. A set of selected experimental data illustrates the influences of dimple configuration and Re on the detailed Nu distributions, the area-averaged Nu over developed flow region (Nu-bar) and the pressure drop coefficients. Relative enhancements of Nu and f from the smooth-walled references (Nu{sub {infinity}} and f{sub {infinity}}) along with the thermal performance factor ({eta}) defined as (Nu-bar/Nu{sub {infinity}})/(f/f{sub {infinity}}){sup 1/3} are examined. Nu-bar and f correlations are individually obtained for each tested hexagonal duct using Re as the controlling parameter. (author)

  19. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-01-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  20. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-02-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  1. Investigation of the different base fluid effects on the nanofluids heat transfer and pressure drop

    NASA Astrophysics Data System (ADS)

    Bayat, Javad; Nikseresht, Amir Hossein

    2011-09-01

    A numerical study of laminar forced convective flows of three different nanofluids through a horizontal circular tube with a constant heat flux condition has been performed. The effect of Al2O3 volume concentration 0 ≤ φ ≤ 0.09 in the pure water, water-ethylene glycol mixture and pure ethylene glycol as base fluids, and Reynolds number of 100 ≤ Re ≤ 2,000 for different power inputs in the range of 10 ≤ Q( W) ≤ 400 have been investigated. In this study, all of the nanofluid properties are temperature and nanoparticle volume concentration dependent. The governing equations have been solved using finite volume approach with the SIMPLER algorithm. The results indicate an increase in the averaged heat transfer coefficient with increasing the mass of ethylene glycol in the water base fluid, solid concentration and Reynolds number. From the investigations it can be inferred that, the pressure drop and pumping power in the nanofluids at low solid volumetric concentration (φ < 3%) is approximately the same as in the pure base fluid in the various Reynolds numbers, but the higher solid nanoparticle volume concentration causes a penalty drop in the pressure. Moreover, this study shows it is possible to achieve a higher heat transfer rate with lower wall shear stress with the use of proper nanofluids.

  2. Heat transfer and pressure drop measurement in wavy channels with flow disturbers

    SciTech Connect

    Dini, S.; Veronesi, R.; Hryniewicz, E.V.

    1999-07-01

    In the current work, the transient method was employed to obtain the local heat transfer coefficient for a 6 in. x 3/8 in. x 12 in. (15.24cm x .9525cm x 30.48cm) Plexiglas {reg_sign} wavy channel with and without flow disturbers. A short duration transient test was performed to measure the heat transfer coefficient by introducing heated air over test specimen that had been sprayed with calibrated thermochromic liquid crystals. This technique allowed the experimenter to observe the temperature changes using a video camera. because a Plexiglas surface has a low thermal diffusivity, a one-dimensional assumption is a reasonable approximation because the surface temperature response is limited to a thin layer near the surface and lateral conduction is small. The heat transfer coefficient using the transient technique is then determined from the response of the surface temperature to a step change in the local temperature. Using this method, the axial variation in the heat transfer coefficient for Reynolds numbers in the laminar (1100) and turbulent region (2900) were obtained. These Reynolds numbers were based on the hydraulic diameter at the inlet of the wavy channel. Also, in this investigation, the region of greatest heat transfer and the pressure drop were both experimentally and analytically determined and the friction factor across an in-phase corrugated wall channel (wavy channel) at Reynolds numbers of 1100 and 2900 were obtained. A manometer and a pressure transducer were employed to measure pressure drop across the channel. The effect of flow disturbers mounted on each peak, alternate peaks and the first six peaks of a twelve-peak channel were also investigated. For all cases, the pressure drop and friction factor were shown to moderately increase with rib placement in the test section when compared to the results obtained from a similar smooth wavy channel without ribs. Additionally, for all cases, the friction factor also decreased with an increase in the

  3. An improved method for simultaneous determination of frictional pressure drop and vapor volume fraction in vertical flow boiling

    NASA Technical Reports Server (NTRS)

    Klausner, J. F.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The two-phase frictional pressure drop and vapor volume fraction in the vertical boiling and adiabatic flow of the refrigerant, R11, have been simultaneously measured by a liquid balancing column and differential magnetic reluctance pressure transducers. An account is given of the experimental apparatus and procedure, data acquisition and analysis, and error estimation employed. All values of two-phase multipliers evaluated on the basis of the measured frictional pressure drop data in vertical upflow fall in the range bounded by the predictions of the Chisholm correlation and the homogeneous model.

  4. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop.

  5. Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment.

    PubMed

    Sefiane, Khellil

    2004-04-15

    The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.

  6. Preliminary investigation of labyrinth packing pressure drops at onset of swirl-induced rotor instability

    NASA Technical Reports Server (NTRS)

    Miller, E. H.; Vohr, J. H.

    1984-01-01

    Backward and forward subsynchronous instability was observed in a flexible model test rotor under the influence of swirl flow in a straight-through labyrinth packing. The packing pressure drop at the onset of instability was then measured for a range of operating speeds, clearances and inlet swirl conditions. The trend in these measurements for forward swirl and forward instability is generally consistent with the short packing rotor force formulations of Benchert and Wachter. Diverging clearances were also destabilizing and had a forward orbit with forward swirl and a backward orbit with reverse swirl. A larger, stiff rotor model system is now being assembled which will permit testing steam turbine-type straight-through and hi-lo labyrinth packings. With calibrated and adjustable bearings in this new apparatus, direct measure of the net destabilizing force generated by the packings can be made.

  7. Two-phase pressure drop across a hydrofoil-based micro pin device using R-123

    SciTech Connect

    Kosar, Ali

    2008-05-15

    The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)

  8. Pressure Drop in Cold Water Flow in Beds Packed with Several Kinds of Crushed Ice.

    NASA Astrophysics Data System (ADS)

    Yanadori, Michio; Ohira, Akiyoshi

    This paper deals with the pressure drop in cold water flow in the beds packed with crushed ice. 1n each case, ice-packed beds were filled with sevral kinds of crushed ice, and friction-loss coefficients were examined. The following results were obtained. (1) The friction factor of rectangular-type ice-packed beds is smaller than that of ideal sphere beds by about 1/4 to 1/2. (2) The friction factor of small-stone-type ice-packed beds is about twice as large as that of ideal sphere beds. (3) It is difficult to compare the flow model of water in restricted channel of particle-type ice-packed beds with that of ideal packed beds.

  9. Nonisothermal motion of an elastoviscoplastic medium through a pipe under a changing pressure drop

    NASA Astrophysics Data System (ADS)

    Burenin, A. A.; Kovtanyuk, L. V.; Panchenko, G. L.

    2015-09-01

    The solution of a sequence of coupled problems of thermoelastic plasticity on the nucleation and development of medium flow in a cylindrical pipe in conditions of varying pressure drop and material heating due to friction on the pipe wall and subsequent stagnation of flow under slow load removal and cooling of the layer material is derived based on the theory of large elastoplastic deformations generalized for the nonisothermal case. The thermal and deformation processes are interrelated with the temperature dependence of the yield point. The conditions of nucleation of the viscoplastic flow and regularities of motion of the elastoplastic boundaries over the layer are noted, and the flow rates and large strains, both irreversible and reversible, are calculated.

  10. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  11. Experimental study on the flow patterns and the two-phase pressure drops in a horizontal impacting T-Junction

    NASA Astrophysics Data System (ADS)

    Bertani, C.; Malandrone, M.; Panella, B.

    2014-04-01

    The present paper analyzes the experimental results concerning the flow patterns and pressure drops in two-phase flow through a horizontal impacting T-junction, whose outlet pipes are aligned and perpendicular to the inlet pipe. The test section consists of plexiglass pipes with inner diameter of 10 mm. A mixture of water and air at ambient temperature and pressures up to 2.4 bar flows through the T-junction, with different splitting of flow rates in the two outlet branches; superficial velocities of air and water in the inlet pipe have been varied up to a maximum of 35 m/s and 3.5 m/s respectively. The flow patterns occurring in the inlet and branch pipes are compared with the predictions of the Baker and Taitel - Dukler maps. The pressure drops along the branches have been measured relatively to different splitting of the flow rate through the two branches and the pressure loss coefficients in the junction have been evaluated. Friction pressure drops have allowed us to evaluate two-phase friction multipliers, which have then been compared to the predictions of Lockhart-Martinelli, and Friedel correlations. Local pressure drops have been extrapolated at the junction centre and analyzed; the two-phase multiplier has been evaluated and compared with the predictions of Chisholm correlation; the value of the empirical coefficient that minimizes the discrepancy has also been evaluated.

  12. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  13. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol

  14. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a

  15. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  16. Two-Phase Pressure Drop in a Twisted Tape Boiler for a Microgravity Rankine Cycle Power System

    NASA Astrophysics Data System (ADS)

    Oinuma, Ryoji; Bean, David; Neill, Charles; Supak, Kevin; Best, Frederick

    2006-01-01

    A once-through type boiler with twisted tape inserts has been proposed for a Rankine cycle power system in space since the 1960s. However, information regarding fluid dynamics such as pressure drop in the boiler is not established well. As a fundamental study of the system characteristics, adiabatic two-phase pressure drop is measured over the range of 0 to 175.4 kg/m2s for water and 0 to 25.4 kg/m2s for air and is compared using the Homogeneous model and correlations of two-phase multipliers. The Homogeneous model and the Lockhart-Martinelli correlations predict by 30 % of the experimental results. The Friedel correlation predicts much higher values and the Jensen correlation predicts much lower values. Flow regimes for each test point are observed by a high speed camera. To evaluate the diabatic pressure drop, a heat exchanger with a twisted tape insert is designed. R-11 is used as a working fluid and boiler is heated with hot water. For the diabatic pressure drop, the values predicted by the Homogeneous model are approximately 30% lower than the experimental results.

  17. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels

    NASA Astrophysics Data System (ADS)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  18. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  19. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment.

  20. Relationships between biomass, pressure drop, and performance in a polyurethane biofilter.

    PubMed

    Ryu, Hee Wook; Cho, Kyung-Suk; Chung, Dong Jin

    2010-03-01

    In biofilters for controlling volatile organic compounds (VOCs), clogging in the filter bed due to overgrowth of biomass causes the deterioration of biofilter performance. In this study, the relationships between biofilter performance, biomass concentration (X), and pressure drop (DeltaP) was qualitatively and quantitatively evaluated in a polyurethane (PU) biofilter. Benzene was used as a model VOC. The relationship between DeltaP and X at a moisture content of 80-90% was expressed as log DeltaP (mm H(2)Om(-1))=0.315+3.87 log X (g-dry cell weight (DCW) g-PU(-1)), 0.8

  1. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture.

    PubMed

    Hayashi, T; Lee, T G; Hazelwood, M; Hedrick, E; Biswas, P

    2000-06-01

    The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.

  2. Heat transfer and pressure drop in blade cooling channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Lei, C. K.

    1984-01-01

    Repeated rib roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle-of-attack of 90 deg. The objective of the project was to investigate the effect of rib angle-of-attack on the pressure drop and the average heat transfer coefficients in a square duct with two opposite rib-roughned walls for Reynolds number varied from 8000 to 80,000. The rib height-to-equivalent diameter ratio (e/D) was kept at a constant value of 0.063, the rib pitch-to-height ratio (P/e) was varied from 10 to 20, and the rib angle-of-attack (alpha) was varied from 90 deg to 60 deg to 45 deg to 30 deg respectively. Two types of entrance conditions were examined, namely, long duct and sudden contraction. The heat transfer coefficient distribution on the smooth side wall and the rough side wall at the entrance and the fully developed regions were measured. Thermal performance comparison indicated that the pumping power requirement for the rib with an oblique angle to the flow (alpha = 45 deg to 30 deg) was about 20 to 50 percent lower than the rib with a 90 deg angle to the flow for a given heat transfer duty.

  3. Impact of instantaneous controlled pressure drop on microstructural modification of green tea and its infusion quality.

    PubMed

    Wang, Yuefei; Xu, Ping; Feng, Liyun; Yang, Xianqiang; Qian, Lisheng

    2014-01-01

    Instantaneous controlled pressure drop (DIC) was applied to obtain a suitable cell disruption extent as a technology in green tea processing. Microstructural observations showed that DIC increased cell disruption in an even manner as reflected from loosened palisade, distorted cells, widened space between cells, disrupted and rearranged cellular membrane in tea leaves. Color difference determination supported that DIC could facilitate the release and transport of cell contents. DIC sample showed a rise in redness, over 2.5 times greater than the control after spreading naturally for 24 h. Chemical determination revealed a better infusion behavior of tea polyphenols and amino acids in green tea manufactured by DIC method both at high and low temperature. The increase in tea polyphenols content in liquor for the first brew from twisted and needle tea was about 35% and that from flat tea was about 15% in DIC method over the traditional processing. These results suggest that DIC process can be applied in green tea processing for both a traditional product and a new kind of tea capable of making with cold water.

  4. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    PubMed

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.

  5. Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Andrzejczyk, Rafał; Jakubowska, Blanka; Mikielewicz, Jarosław

    2014-09-01

    In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.

  6. One-Dimensional Reactive Transport Modeling of CO2 Storage Systems - Change in Cap Rock Porosity Triggered by Pressure and Temperature Dependent CO2-Water-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Hemme, C.; van Berk, W.

    2015-12-01

    In carbon capture and storage (CCS) systems supercritical CO2 is injected into a reservoir and dissolves in the reservoir brine. Subsequently, CO2(aq) diffuses into the cap rock to regions of lower total pressure and temperature and triggers CO2-water-rock interactions that are coupled with mass transport and result in precipitation and/or dissolution of minerals along the CO2 migration path. Such hydrogeochemical interactions change porosities and are responsible for the improvement or deterioration of the long term integrity of the system. This study presents a semi-generic hydrogeochemical model based on chemical equilibrium thermodynamics, data from several CO2 storage systems, and plausible assumptions regarding non-available data. One-dimensional reactive transport modeling is performed by using the U.S.G.S. PHREEQC code (3.1.4-8929; phreeqc.dat database) to identify and quantify the loss or gain of total porosity affected by hydrogeochemical reactions driven by diffusive mass transport exposed to pressure and temperature gradients. A fine spatial and temporal discretization, the use of non-reactive tracers, and a broad variety of modeling scenarios enable the calculation of the relevant timescale for simulations of long-term storage of CO2 and the consideration of the pressure dependent mass action law constants along the CO2 migration path. Modeling results show that the relevant timescale for simulations of long-term storage of CO2 is in the range of 106 years, and that pressure/temperature conditions, heterogeneities (veins and fractures) and the mineralogical composition of the cap rock have the strongest influence on the increase in cap rock porosity (maximum increase from initial 5 % to 7.5 %). Critical parameter combinations - total pressure effects are crucial - could put long-term integrity at risks. Nevertheless, a wide range of conditions and parameter combinations for safe CO2 storage is identified by other modeling scenarios.

  7. Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems

    SciTech Connect

    Reed, C.B.; Hua, T.Q.; Natesan, K.; Kirillov, I.R.; Vitkovski, I.V.; Anisimov, A.M.

    1995-03-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al{sub 2}O{sub 3}/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.

  8. Relationship Between the 3D Porosity and β-Phase Distributions and the Mechanical Properties of a High Pressure Die Cast AZ91 Mg Alloy

    NASA Astrophysics Data System (ADS)

    Biswas, Somjeet; Sket, Federico; Chiumenti, Michele; Gutiérrez-Urrutia, Iván; Molina-Aldareguía, Jon M.; Pérez-Prado, Maria Teresa

    2013-09-01

    Currently, most magnesium lightweight components are fabricated by casting as this process is cost effective and allows forming parts with complex geometries and weak textures. However, cast microstructures are known to be heterogeneous and contain unpredictable porosity distributions, which give rise to a large variability in the mechanical properties. This work constitutes an attempt to correlate the microstructure and the mechanical behavior of a high pressure die cast (HPDC) Mg AZ91 alloy, aimed at facilitating process optimization. We have built a stairway-shaped die to fabricate alloy sections with different thicknesses and, thus, with a range of microstructures. The grain size distributions and the content of β-phase (Mg17Al12) were characterized by optical and electron microscopy techniques as well as by electron backscatter diffraction (EBSD). The bulk porosity distribution was measured by 3D computed X-ray microtomography. It was found that the through-thickness microhardness distribution is mostly related to the local area fraction of the β-phase and to the local area fraction of the pores. We correlate the tensile yield strength to the average pore size and the fracture strength and elongation to the bulk porosity volume fraction. We propose that this empirical approach might be extended to the estimation of mechanical properties in other HPDC Mg alloys.

  9. Development of Porosity Measurement Method in Shale Gas Reservoir Rock

    NASA Astrophysics Data System (ADS)

    Siswandani, Alita; Nurhandoko, BagusEndar B.

    2016-08-01

    The pore scales have impacts on transport mechanisms in shale gas reservoirs. In this research, digital helium porosity meter is used for porosity measurement by considering real condition. Accordingly it is necessary to obtain a good approximation for gas filled porosity. Shale has the typical effective porosity that is changing as a function of time. Effective porosity values for three different shale rocks are analyzed by this proposed measurement. We develop the new measurement method for characterizing porosity phenomena in shale gas as a time function by measuring porosity in a range of minutes using digital helium porosity meter. The porosity of shale rock measured in this experiment are free gas and adsorbed gas porosoty. The pressure change in time shows that porosity of shale contains at least two type porosities: macro scale porosity (fracture porosity) and fine scale porosity (nano scale porosity). We present the estimation of effective porosity values by considering Boyle-Gay Lussaac approximation and Van der Waals approximation.

  10. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 2: Friction pressure drop lessening

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. Two heated sections with different internal diameter (10 and 6 mm) were tested. The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were registered. The post-CHF regime was studied watching simultaneously the evolution of boiling crisis onset along the test section and the evolution of pressure drop and mass flow rate. A significant lessening of friction was observed simultaneous to the development of the post-CHF regime, accompanied by a mass flow rate increase, which lets suppose that the vapor film in the film boiling regime acts as a lubricant. A model was created based on this idea and on heat transfer considerations. The predictions by this model are satisfactory for the low quality post-CHF regime.

  11. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  12. Experimental studies on pressure drop characteristics of cryogenic cross-counter flow coiled finned tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Gupta, Prabhat Kumar; Kush, P. K.; Tiwari, Ashesh

    2010-04-01

    Cross-counter flow coiled finned tube heat exchangers used in medium capacity helium liquefiers/refrigerators were developed in our lab. These heat exchangers were developed using integrated low finned tubes. Experimental studies have been performed to know the pressure drop characteristics of tube side and shell side flow of these heat exchangers. All experiments were performed at room temperature in the Reynolds number range of 3000-30,000 for tube side and 25-155 for shell side. The results of present experiments indicate that available correlations for tube side can not be used for prediction of tube side pressure drop data due to complex surface formation at inner side of tube during formation of fins over the outer surface. Results also indicate that surface roughness effect becomes more pronounced as the value of di/ D m increases. New correlations based on present experimental data are proposed for predicting the friction factors for tube side and shell side.

  13. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  14. Smooth- and enhanced-tube heat transfer and pressure drop : Part II. The role of transition to turbulent flow.

    SciTech Connect

    Obot, N. T.; Das, L.; Rabas, T. J.

    2000-11-14

    The objectives of this presentation are two-fold: first, to demonstrate the connection between the attainable coefficients and transition to turbulent flow by using the transition-based corresponding states method to generalize results obtained with smooth tubes and enhanced tubes, and second, to provide guidelines on the calculation of heat transfer coefficients from pressure-drop data and vice versa by using the transition concept or the functional law of corresponding states.

  15. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  16. Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line

    SciTech Connect

    Lee, Chi Young; Lee, Sang Yong

    2010-01-15

    In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air-water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%. (author)

  17. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  18. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels

    NASA Astrophysics Data System (ADS)

    Kandlikar, Satish G.; Schmitt, Derek; Carrano, Andres L.; Taylor, James B.

    2005-10-01

    Roughness features on the walls of a channel wall affect the pressure drop of a fluid flowing through that channel. This roughness effect can be described by (i) flow area constriction and (ii) increase in the wall shear stress. Replotting the Moody's friction factor chart with the constricted flow diameter results in a simplified plot and yields a single asymptotic value of friction factor for relative roughness values of ɛ /D>0.03 in the fully developed turbulent region. After reviewing the literature, three new roughness parameters are proposed (maximum profile peak height Rp, mean spacing of profile irregularities RSm, and floor distance to mean line Fp). Three additional parameters are presented to consider the localized hydraulic diameter variation (maximum, minimum, and average) in future work. The roughness ɛ is then defined as Rp+Fp. This definition yields the same value of roughness as obtained from the sand-grain roughness [H. Darcy, Recherches Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux (Mallet-Bachelier, Paris, France, 1857); J. T. Fanning, A Practical Treatise on Hydraulic and Water Supply Engineering (Van Nostrand, New York, 1877, revised ed. 1886); J. Nikuradse, "Laws of flow in rough pipes" ["Stromungsgesetze in Rauen Rohren," VDI-Forschungsheft 361 (1933)]; Beilage zu "Forschung auf dem Gebiete des Ingenieurwesens," Ausgabe B Band 4, English translation NACA Tech. Mem. 1292 (1937)]. Specific experiments are conducted using parallel sawtooth ridge elements, placed normal to the flow direction, in aligned and offset configurations in a 10.03mm wide rectangular channel with variable gap (resulting hydraulic diameters of 325μm-1819μm with Reynolds numbers ranging from 200 to 7200 for air and 200 to 5700 for water). The use of constricted flow diameter extends the applicability of the laminar friction factor equations to relative roughness values (sawtooth height) up to 14%. In the turbulent region, the aligned and offset

  19. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  20. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  1. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.

    2016-08-01

    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  2. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction.

    PubMed

    Vrouwenvelder, J S; Hinrichs, C; Van der Meer, W G J; Van Loosdrecht, M C M; Kruithof, J C

    2009-01-01

    In an earlier study, it was shown that biofouling predominantly is a feed spacer channel problem. In this article, pressure drop development and biofilm accumulation in membrane fouling simulators have been studied without permeate production as a function of the process parameters substrate concentration, linear flow velocity, substrate load and flow direction. At the applied substrate concentration range, 100-400 microg l(-1) as acetate carbon, a higher concentration caused a faster and greater pressure drop increase and a greater accumulation of biomass. Within the range of linear flow velocities as applied in practice, a higher linear flow velocity resulted in a higher initial pressure drop in addition to a more rapid and greater pressure drop increase and biomass accumulation. Reduction of the linear flow velocity resulted in an instantaneous reduction of the pressure drop caused by the accumulated biomass, without changing the biofilm concentration. A higher substrate load (product of substrate concentration and flow velocity) was related to biomass accumulation. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. A decrease of substrate load caused a gradual decline in time of both biomass concentration and pressure drop increase. It was concluded that the pressure drop increase over spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane systems can be reduced by lowering both substrate load and linear flow velocity. There is a need for RO and NF systems with a low pressure drop increase irrespective of the biomass formation. Current efforts to control biofouling of spiral wound membranes focus in addition to pretreatment on membrane improvement. According to these authors, adaptation of the hydrodynamics, spacers and pressure vessel configuration offer promising alternatives. Additional approaches may be replacing heavily biofouled elements and flow direction reversal.

  3. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    NASA Astrophysics Data System (ADS)

    Lee, T.-W.; An, Keju

    2016-06-01

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  4. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  5. The 4D evolution of porosity during ongoing pressure-solution processes in NaCl using x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Butler, Ian; Tudisco, Erika; Hall, Stephen; Andò, Edward

    2016-04-01

    Pressure-solution creep is a common deformation mechanism in the upper crust. It represents a mass transfer via dissolution-reprecipitation that critically affects the hydraulic properties of rocks. Successful management of safe radioactive storage sites in rock-salt deposits critically depends on an accurate knowledge of the hydro-mechanical behaviour of salt deposits. Despite numerous lab experiments that have been conducted, many aspects of pressure-solution are still poorly understood. There is little knowledge about the spatio-temporal evolution of porosity and permeability during pressure-solution creep. While rates of pressure-solution creep in silicates and carbonates are slow, which makes laboratory investigations of these materials impractical, compaction experiments have demonstrated that NaCl samples deform sufficiently fast to study pressure-solution creep in a lab environment at room temperature and modest loads. We present results from novel experiments that quantify the 4-dimensional (three spatial dimensions plus time) evolution of pressure-solution processes using in-situ x-ray microtomography. Our experiments are performed in custom made x-ray transparent presses. 5 mm diameter NaCl powder samples with a grain size of 250-300 μm are loaded dry into the press and pre-compacted to produce a starting aggregated material. The sample is then flooded with saturated NaCl solution and loaded uniaxially by means of a pneumatic actuator to a constant uniaxial stress. Different sample mixtures were tested, as well as different uniaxial loads. The resulting deformation of the samples is documented in 3-dimensional microtomographic datasets, acquired at regular time intervals. Image analysis allowed characterization of the microstructural evolution of the NaCl grains and the spatio-temporal distribution of porosity during ongoing mechanical and chemical compaction. The microtomography data have also been analysed with 3D Digital Image Correlation (3D-DIC or

  6. Heat transfer, pressure drop and void fraction in two- phase, two-component flow in a vertical tube

    NASA Astrophysics Data System (ADS)

    Sujumnong, Manit

    1998-09-01

    There are very few data existing in two-phase, two- component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick- closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were: tested against the present data for mean heat-transfer coefficients. It was found that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid

  7. Special topics reports for the reference tandem mirror fusion breeder: liquid metal MHD pressure drop effects in the packed bed blanket. Vol. 1

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wong, C.P.C.

    1984-09-01

    Magnetohydrodynamic (MHD) effects which result from the use of liquid metal coolants in magnetic fusion reactors include the modification of flow profiles (including the suppression of turbulence) and increases in the primary loop pressure drop and the hydrostatic pressure at the first wall of the blanket. In the reference fission-suppressed tandem mirror fusion breeder design concept, flow profile modification is a relatively minor concern, but the MHD pressure drop in flowing the liquid lithium coolant through an annular packed bed of beryllium/thorium pebbles is directly related to the required first wall structure thickness. As such, it is a major concern which directly impacts fissile breeding efficiency. Consequently, an improved model for the packed bed pressure drop has been developed. By considering spacial averages of electric fields, currents, and fluid flow velocities the general equations have been reduced to simple expressions for the pressure drop. The averaging approach results in expressions for the pressure drop involving a constant which reflects details of the flow around the pebbles. Such details are difficult to assess analytically, and the constant may eventually have to be evaluated by experiment. However, an energy approach has been used in this study to bound the possible values of the constant, and thus the pressure drop. In anticipation that an experimental facility might be established to evaluate the undetermined constant as well as to address other uncertainties, a survey of existing facilities is presented.

  8. High-fin staggered tube banks: Heat transfer and pressure drop for turbulent single phase gas flow

    NASA Astrophysics Data System (ADS)

    1986-10-01

    This Data Item ESDU 86022 is an addition to the Heat Transfer Sub-series. New correlations are presented for external heat transfer coefficient and static pressure loss for single phase flow over plain circular fins of either retangular or tapered cross section on round tubes. The correlations were derived by a regression analysis of experimental results extracted from the literature for a wide range of tube bundle configurations. Fin densities of 4 to 11 per inch (equivalent to fin pitches of 6.4 to 2.3 mm) tube outside diameters of 3/8 to 2 inch (10 to 51 mm), fin heights of 1/4 to 5/8 inch (6 to 16 mm), and ratios of fin tip to fin root diameter of 1.2 to 2.4 were covered. For heat transfer the range of Reynolds number based on tube outer diameter was from 2,000 to 40,000 and for pressure drop from 5,000 to 50,000. Comparison of the prediction with experiment shows that for heat transfer 85% of the data points were within 10% of estimated and for pressure drop 72% were within 10%. A comprehensive worked example showing the use of the method for an air cooled heat exchanger bundle is included. The applicability of this method to nonintegral fins is considered and factors influencing the thermal resistance of the interface are discussed. Effects of fouling are also briefly covered.

  9. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    PubMed

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  10. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    SciTech Connect

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-07-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  11. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-05

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system.

  12. A simple expression for pressure drops of water and other low molecular liquids in the flow through micro-orifices

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomiichi; Ushida, Akiomi; Narumi, Takatsune

    2015-12-01

    Flows are generally divided into two types: shear flows and shear-free elongational (extensional) flows. Both are necessary for a thorough understanding of the flow properties of a fluid. Shear flows are easy to achieve in practice, for example, through Poiseuille or Couette flows. Shear-free elongational flows are experimentally hard to achieve, resulting in an incomplete understanding of the flow properties of fluids in micro-devices. Nevertheless, flows through micro-orifices are useful for probing the properties of elongational flows at high elongational rates; although these flows exhibit shear and elongation, the elongation is dominant and the shear is negligible in the central region of the flows. We previously reported an anomalous reduction in pressure drops in the flows of water, a 50/50 mixture of glycerol and water, and silicone oils through micro-orifices. In the present paper, we rearrange the data presented in the previous paper and reveal a simple relationship where the pressure drop is proportional to the velocity through the micro-orifices, independent of the orifice diameter and the viscosity of the liquids tested. We explain our observations by introducing a "fluid element" model, in which fluid elements are formed on entering the orifice. The model is based on the idea that low molecular liquids, including water, generate strong elongational stress, similar to a polymer solution, in the flow through micro-orifices.

  13. Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Xinyu; Wu, Huiying; Cheng, Ping

    2009-10-01

    Experimental investigations were performed on the single-phase flow and heat transfer characteristics through the silicon-based trapezoidal microchannels with a hydraulic diameter of 194.5 µm using Al2O3-H2O nanofluids with particle volume fractions of 0, 0.15% and 0.26% as the working fluids. The effects of the Reynolds number, Prandtl number and nanoparticle concentration on the pressure drop and convective heat transfer were investigated. Experimental results show that the pressure drop and flow friction of the nanofluids increased slightly when compared with that of the pure water, while the Nusselt number increased considerably. At the same pumping power, using nanofluids instead of pure water caused a reduction in the thermal resistance. It was also found that the Nusselt number increased with the increase in the particle concentration, Reynolds number and Prandtl number. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of Al2O3-H2O nanofluids through silicon microchannels were proposed for the first time. The agglomeration and deposition of nanoparticles in the silicon microchannels were also examined in this paper. It was found that the Al2O3 nanoparticles deposited on the inner wall of microchannels more easily with increasing wall temperature, and once boiling commenced, there is a severe deposition and adhesion of nanoparticles to the inner wall, which makes the boiling heat transfer of nanofluids in silicon microchannels questionable.

  14. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography.

    PubMed

    Poe, Donald P; Schroden, Jonathan J

    2009-11-06

    The effects of particle size and thermal insulation on retention and efficiency in packed-column supercritical fluid chromatography with large pressure drops are described for the separation of a series of model n-alkane solutes. The columns were 2.0mm i.d.x150mm long and were packed with 3, 5, or 10-mum porous octylsilica particles. Separations were performed with pure carbon dioxide at 50 degrees C at average mobile phase densities of 0.47g/mL (107bar) and 0.70g/mL (151bar). The three principal causes of band broadening were the normal dispersion processes described by the van Deemter equation, changes in the retention factor due to the axial density gradient, and radial temperature gradients associated with expansion of the mobile phase. At the lower density the use of thermal insulation resulted in significant improvements in efficiency and decreased retention times at large pressure drops. The effects are attributed to the elimination of radial temperature gradients and the concurrent enhancement of the axial temperature gradient. Thermal insulation had no significant effect on chromatographic performance at the higher density. A simple expression to predict the onset of excess efficiency loss due to the radial temperature gradient is proposed.

  15. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  16. The effect of flexible tube vibration on pressure drop and heat transfer in heat exchangers considering viscous dissipation effects

    NASA Astrophysics Data System (ADS)

    Shokouhmand, H.; Sangtarash, F.

    2008-04-01

    The pressure drop and heat transfer coefficient in tube bundle of shell and tube heat exchangers are investigated considering viscous dissipation effects. The governing equations are solved numerically. Because of temperature-dependent viscosity the equations should be solved simultaneously. The flexible tubes vibration is modeled in a quasi-static method by taking the first tube of the row to be in 20 asymmetric positions with respect to the rest of the tubes which are assumed to be fixed and time averaging the steady state solutions corresponding to each one of these positions .The results show that the eccentricity of the first tube increases pressure drop and heat transfer coefficients significantly comparing to the case of rigid tube bundles, symmetrically placed. In addition, these vibrations not only compensate the effect of viscous dissipations on heat transfer coefficient but also increase heat transfer coefficient. The constant viscosity results obtained from our numerical method have a good agreement with the available experimental data of constant viscosity for flexible tube heat exchangers.

  17. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-01-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  18. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    NASA Astrophysics Data System (ADS)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2017-01-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  19. Pressure drop testing of corrugated stainless steel pliable gas tubing (PLT)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bharadwaj

    An experimental program was initiated to determine the Darcy friction factor in straight corrugated stainless steel pliable gas tubing (PLT). Pressure loss tests were conducted on PLT per I.S. EN 15266:2007. A power law least-squares curve fit was used to relate pressure loss per unit length as a function of volume flow rate. The calculated coefficient of determination values for the straight PLT exceeded 0.90 indicating suitable correlation. Darcy friction factors were calculated from test data for each case and plotted on a Moody diagram as a function of Reynolds number based on the minimum PLT cross section. For Reynolds numbers less than 2300 the pressure loss data for PLT yielded an inverse relationship between the Darcy friction factor and the Reynolds number, with a proportionality coefficient of 49. The measurement uncertainty estimates for straight sections was performed with a 95% confidence level. Straight PLT flow rates for air and representative fuel gases that would yield a pressure loss Deltap = 1 mbar were calculated as a function of PLT length and diameter. Fitting pressure loss tests were performed for elbows, tees, and bullhead tees. The loss coefficients were evaluated and tabulated. The calculated coefficient of determination values for the fittings was found to be low. The measurement uncertainty was calculated using the root sum square error method and was found to be very high because of the low flow rates considered in this experiment.

  20. Fluctuation emergence of bubbles under a rapid drop of pressure in a liquid

    NASA Astrophysics Data System (ADS)

    Pavlov, P. A.; Vinogradov, V. E.

    2015-07-01

    Explosive cavitation at the front of a negative-pressure pulse has been studied. Conditions for the emergence of bubbles by the mechanism of homogeneous fluctuation nucleation were identified. Those conditions feature a high rate of the phase transformation, with the vapor formation process being concentrated in time at the instant of attainment of a certain pressure. Under such conditions, the liquid cavitation strength is maximal, and its value can be predicted by the homogeneous nucleation theory. For implementing the regime with high nucleation frequency, a method based on passing a negative-pressure pulse across a region with locally heated liquid was employed. The cavitation kinetics was examined by monitoring the perturbation of the heat flow from a miniature heater. The experimental data were generalized using the theory of explosive vapor formation in shock boiling mode. A method for calculating the cavitation in the regime of the fluctuation emergence of bubbles was approbated.

  1. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-04

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems.

  2. Unusual properties of high-compliance porosity extracted from measurements of pressure-dependent wave velocities in rocks

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    Conventionally the interpretation of wave velocities and their variations under load is conducted assuming that closable cracks have simple planar shapes, like the popular model of penny-shape cracks. For such cracks, the proportion between complementary variations in different elastic parameters of rocks (such as S- and P-wave velocities) is strictly pre-determined, in particular, it is independent of the crack aspect ratio and rather weakly dependent on the Poisson's ratio of the intact rock. Real rocks, however, contain multitude of cracks of different geometry. Faces of such cracks can exhibit complex modes of interaction when closed by external load, which may result in very different ratios between normal- and shear compliances of such defects. In order to describe the reduction of different elastic moduli, we propose a model in which the compliances of crack-like defects are explicitly decoupled and are not predetermined, so that the ratio q between total normal- and shear- compliances imparted to the rock mass (as well as individual values of these compliances) can be estimated from experimental data on reduction of different elastic moduli (e.g., pressure dependences of P- and S-wave velocities). Physically, the so-extracted ratio q can be interpreted as intrinsic property of individual crack-like defects similar to each other, or as a characteristic of proportion between concentrations of pure normal cracks with very large q and pure shear cracks with q→0. The latter case can correspond, e.g., to saturated cracks in which weakly-compressible liquid prevents crack closing under normal loading. It can be shown that for conventional dry planar cracks, the compliance ratio is q ˜2. The developed model applied to the data on wave-velocity variations with external pressure indicates that elastic properties of the real crack-like defects in rocks can differ considerably from the usually assumed ones. Comparison with experimental data on variations P- and S

  3. Two-phase flow heat transfer and pressure drop characteristics of R-22 and R-32/125

    SciTech Connect

    Wijaya, H.; Spatz, M.W.

    1995-08-01

    The two-phase heat transfer coefficient and pressure drop characteristics of refrigerants R-22 and R-32/125 (ASI 1990) (a mixture of 50 wt% R-32 and 50 wt% R-125 that exhibits azeotropic behavior) have been measured. The experiments were conducted without oil in the refrigerant loop. The condenser/evaporator test sections consist of smooth, horizontal copper tubes of 3/8-in. (9.53-mm) outer diameter (OD) and 0.305-in. (7.75-mm) inner diameter (ID). A lengths of the condenser and evaporator test sections are 10 ft (3.05 m) and 12 ft (3.66 m), respectively. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and a water-glycol mixture flowing in the annulus. The evaporator is a smooth copper tube sandwiched with aluminum blocks. Heating tapes are wrapped around the outer surface of these aluminum blocks. The average saturated condensing temperatures were 115 F (46.1 C) and 125 F (51.7 C), while the saturated evaporating temperature was 40 F (4.4 C). The average inlet and exit qualities for the condensation tests were 87% and 25%, respectively and for the evaporation tests they were 20% and 90%, respectively. The mass flux was varied from 118 klb/ft{sup 2}{minus}{center_dot}h (160 kg/s{center_dot}m{sup 2}) to 414 klb/ft{sup 2}{center_dot}h (561 kg/s{center_dot}m{sup 2}). A differential pressure transducer was used to measure the pressure drop across the test section. The results showed that at similar mass fluxes the condensation heat transfer coefficients for R-32/125 were slightly higher (about 2% to 6%) than those of R-22.

  4. Two-phase flow boiling frictional pressure drop of liquid nitrogen in horizontal circular mini-tubes: Experimental investigation and comparison with correlations

    NASA Astrophysics Data System (ADS)

    Chen, Xingya; Chen, Shuangtao; Chen, Jun; Li, Jiapeng; Liu, Xiufang; Chen, Liang; Hou, Yu

    2017-04-01

    The two-phase flow boiling characteristics of liquid nitrogen (LN2) in horizontal circular mini-tubes were experimentally studied. Experiments were performed in a wide range of flow conditions, e.g. inlet pressure from 0.17 to 0.35 MPa, mass flux from 140 to 330 kg/m2 s, heat flux from 0.5 to 69.4 kW/m2 and tube diameters of 2.92 mm and 3.96 mm. The influences of mass flux, heat flux, and inlet pressure on the pressure drop were discussed. The results indicated that the pressure drop increases with the increasing mass flux and heat flux but decreases with the increasing inlet pressure. But the influence of heat flux on the frictional pressure drop of LN2 was weaker than mass flux and inlet pressure. The frictional pressure drop of two-phase flow of LN2 was compared with homogeneous model and several semi-empirical correlations. An improved correlation based on the Lockhart-Martinelli model, which used coefficient C as a function of Reynolds number and Weber number was proposed.

  5. Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics

    NASA Technical Reports Server (NTRS)

    Ludewig, M.; Omori, S.; Rao, G. L.

    1974-01-01

    Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.

  6. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    PubMed Central

    Qureshi, M. Umar; Vaughan, Gareth D.A.; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S.; Olufsen, Mette S.; Hill, N.A.

    2014-01-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen and coworkers (Ottesen et al., 2003; Olufsen et al., 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50µm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment of circulatory diseases within the lung. PMID:24610385

  7. Short term Heart Rate Variability to predict blood pressure drops due to standing: a pilot study

    PubMed Central

    2015-01-01

    Background Standing from a bed or chair may cause a significant lowering of blood pressure (ΔBP), which may have severe consequences such as, for example, falls in older subjects. The goal of this study was to develop a mathematical model to predict the ΔBP due to standing in healthy subjects, based on their Heart Rate Variability, recorded in the 5 minutes before standing. Methods Heart Rate Variability was extracted from an electrocardiogram, recorded from 10 healthy subjects during the 5 minutes before standing. The blood pressure value was measured before and after rising. A mathematical model aiming to predict ΔBP based on Heart Rate Variability measurements was developed using a robust multi-linear regression and was validated with the leave-one-subject-out cross-validation technique. Results The model predicted correctly the ΔBP in 80% of experiments, with an error below the measurement error of sphygmomanometer digital devices (±4.5 mmHg), a false negative rate of 7.5% and a false positive rate of 10%. The magnitude of the ΔBP was associated with a depressed and less chaotic Heart Rate Variability pattern. Conclusions The present study showes that blood pressure lowering due to standing can be predicted by monitoring the Heart Rate Variability in the 5 minutes before standing. PMID:26391336

  8. Pressure-drop viscosity measurements for gamma-Al2O nanoparticles in water and PG-water mixtures (nanofluids).

    PubMed

    Lai, W Y; Phelan, P E; Prasher, R S

    2010-12-01

    Nanofluids have attracted wide attention because of their promising thermal applications. Compared with the base fluid, numerous experiments have generally indicated increases in effective thermal conductivity and convective heat transfer coefficient for suspensions having only a small amount of nanoparticles. It is also known that with the presence of nanoparticles, the viscosity of a nanofluid is greater than its base fluid and deviates from Einstein's classical prediction. However, only a few groups have reported nanofluid viscosity results to date. Therefore, relative viscosity data for gamma-Al2O3 nanoparticles in DI-water and propylene glycol/H2O mixtures are presented here based on pressure drop measurements of flowing nanofluids. Results indicate that with constant wall heat flux, the relative viscosities of nanofluid decrease with increasing volume flow rate. The results also show, based on Brenner's model, that the nanofluid viscosity can be explained in part by the aspect ratio of the aggregates.

  9. Heat Transfer and Pressure Drop Data for Circular Cylinders in Ducts and Various Arrangements

    DTIC Science & Technology

    1951-09-01

    cities - and Constant Spacing iii Scinch, Duct - ~-^ - - -r =• -~ - -- - - - - 37;, Single, Cylinder’ and Three- Cylinders in line" with Yard...heating coils surrounded by .a 3/Scinch thicis shell of ^anslte, .an asbest -cs-cemens material; oo’CiSlstljig of 35 per cent Portland cement .and lä per...gradients did, not permit very accurate de-* teraiinationä--&t low flois veio- cities because of ihseösitivity af She fee generalization of the, pressure

  10. Condensation inside tubes: Computer program for pressure drop in straight tubes (horizontal and vertical with downflow)

    NASA Astrophysics Data System (ADS)

    1993-12-01

    ESDU 93014 introduces a Fortran program that implements the calculation procedures of ESDU 90024 and 91023 respectively for vertical and horizontal cases. Those documents should be consulted for details of the empirical correlation used. Since vapor density is an important variable in the calculation and is usually available as a function of saturation temperature, the relationship between pressure and saturation temperature is required at points along the tube, although a constant value of vapor density may be used if the user wishes. The program provides options to use an Antoine or Wagner equation, or to provide a set of values of saturation pressure and temperature; for the vapor density the options are to use the ideal gas law, to provide a set of values of saturation temperature and density or to use a specific correlation equation (log density as a fraction of critical as a five term polynomial function of reciprocal reduced temperature minus one). For a wide range of pure compounds the ESDU Physical Data, Chemical Engineering Sub-series provides values of the constants in the correlation equations for saturation temperature and vapor density. The program (ESDUpac A9314) is provided on disc (uncompiled) in the software volume, and also compiled within ESDUview, a user-friendly shell running under MS DOS that prompts on screen for the input data. A worked example illustrates the use of the program and the formats of the input data and the output.

  11. Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop

    SciTech Connect

    Brownell, H.H.; Yu, E.K.C.; Saddler, J.N.

    1986-06-01

    Material balances for pentosan, lignin, and hexosan, during steam-explosion pretreatment of aspenwood, showed almost quantitative recovery of cellulose in the water-insoluble fraction. Dilute acid impregnation resulted in more selective hydrolysis of pentosan relative to undesirable pyrolysis, and gave a more accessible substrate for enzymatic hydrolysis. Thermocouple probes, located inside simulated aspenwood chips heated in 240 degrees C-saturated steam, showed rapid heating of air-dry wood, whereas green or impregnated wood heated slowly. Small chips, 3.2 mm in the fiber direction, whether green or air dry gave approximately equal rates of pentosan destruction and solubilization, and similar yields of glucose and of total reducing sugars on enzmatic hydrolysis with Trichoderma harzianum. Partial pyrolysis, destroying one-third of the pentosan of aspenwood at atmospheric pressure by dry steam at 276 degrees C, gave little increase in yield of reducing sugars on enzymatic hydrolysis. Treatment with saturated steam at 240 degrees C gave essentially the same yields of butanediol and ethanol on fermentation with Klebsiella pneumoniae, whether or not 80% of the steam was bled off before explosion and even if the chips remained intact, showing that explosion was unnecessary. 17 references.

  12. Mixed convective low flow pressure drop in vertical rod assemblies: I---Predictive model and design correlation

    SciTech Connect

    Suh, K.Y.; Todreas, N.E.; Rohsenow, W.M. )

    1989-11-01

    A predicative theory has been developed for rod bundle frictional pressure drop characteristics under laminar and transitional mixed convection conditions on the basis of the intraassembly and intrasubchannel flow redistributions due to buoyancy for a wide spectrum of radial power profiles and for the geometric arrangements of practical design interest. Both the individual subchannel correlations and overall bundle design correlations have been formulated as multipliers applied to the isothermal friction factors at the same Reynolds numbers. Standard and modified subchannel friction factors have been obtained to be used with spatial-average and bulk-mean densities, respectively. A correlating procedure has been proposed to assess the effects of interacting subchannel flows, developing mixed convective flow, wire wrapping, power skew, rod number, and transition from laminar flow. In contrast to forced convection behavior, a strong rod number effect is present under mixed convection conditions in bundle geometries. The results of this study are of design importance in natural circulation conditions becasue the mixed convection frictional pressure losses exceed the corresponding isothermal values at the same Reynolds numbers.

  13. Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures.

    PubMed

    Yuan, Zhang Fu; Mukai, Kusuhiro; Takagi, Katsuhiko; Ohtaka, Masahiko; Huang, Wen Lai; Liu, Qiu Sheng

    2002-10-15

    The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P(O(2))) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P(O(2))=2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mN m(-1) K(-1), respectively. However, at high P(O(2)) (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P(O(2)) is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173 degrees, and the wettability is poor.

  14. Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Nystrom, D. M.

    1980-01-01

    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.

  15. Relationship between Arterial Stiffness and Blood Pressure Drop During the Sit-to-stand Test in Patients with Diabetes Mellitus

    PubMed Central

    Kobayashi, Yusuke; Kobayashi, Hideo; Sumida, Koichiro; Suzuki, Shota; Kagimoto, Minako; Okuyama, Yuki; Ehara, Yosuke; Katsumata, Mari; Fujita, Megumi; Fujiwara, Akira; Saka, Sanae; Yatsu, Keisuke; Hashimoto, Tatsuo; Kuji, Tadashi; Hirawa, Nobuhito; Toya, Yoshiyuki; Yasuda, Gen; Umemura, Satoshi

    2017-01-01

    Aim: Patients with orthostatic hypotension (OH) have high arterial stiffness. Patients with diabetes mellitus (DM) often have cardiac autonomic neuropathy that leads to OH; however, whether OH is an indicator of arterial stiffness progression is unclear. We aimed to investigate whether the cardioankle vascular index (CAVI) varies between DM patients with and without OH using the sit-to-stand test (STST). Methods: One hundred and fifty-nine patients with DM underwent CAVI assessment and blood pressure (BP) and heart rate change evaluation during the STST. OH was defined as a decline in systolic BP (SBP) and/or diastolic BP of at least 20 mmHg or 10 mmHg, respectively, in the initial and late upright positions compared with that in the sitting position. Results: OH was diagnosed in 42 patients (26.4%). DM patients with OH had significantly higher CAVI (9.36 ± 1.15 versus 8.89 ± 1.18, p = 0.026) than those without OH. CAVI was significantly inversely correlated with systolic and diastolic BP changes (R = −0.347, p <0.001 and R = −0.314, p <0.001, respectively) in the initial upright position. Multivariate regression analysis revealed that age, SBP changes, and low frequency component in the initial upright position were independent determinants of CAVI. Conclusion: Patients with DM having large BP drops occurring when moving from sitting to standing have high arterial stiffness. A significant BP drop during the STST necessitates careful evaluation of advanced arterial stiffness in patient with DM. PMID:27453255

  16. Analytical Treatment for Deriving the Constitutive Relationship and the Function Governing the System Behavior in the Framework Associated with Heat, Fluid Pressure and Inelastic Porosity

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Yamashita, T.

    2013-12-01

    We have treated the interaction among heat, fluid pressure and inelastic pore creation to explain diversity of dynamic earthquake rupture process. In the present study, we introduce the third nondimensional parameter, Ta, to describe the effect of the upper limit of inelastic porosity, into our previous model, which includes two nondimensional parameters Su and Su'; the parameter Su represents the relative dominance of the effect of inelastic pore creation on the fluid pressure change over that of shear heating, while Su' is associated with the dominance of fluid flow effect over the effect of shear heating. New nonlinearity associated with the upper limit generates qualitatively different behaviors from those shown in our previous studies. With an assumption Su>1-v0* (where v0* is the initial value of normalized slip velocity v*) and without the fluid flow (that is, Su'=0), some solutions show an apparent stable point, v*=0, while the others have the actual stable point v*=0. We can show transient behavior from v*=0 to the actual stable point v*=1 in the former case, which is sometimes observed for nonlinear systems like the Gray-Scott model. Both acceleration accompanied with high-speed slip due to complete stress release and spontaneous slip cessation can be understood in the present single framework. It is important to note that while the governing equations are nonlinear, we can investigate the system behavior in an analytical way. In particular, the analytical form of function dividing those two behaviors, G, has been found and mathematical significance of the present study should be emphasized. Whether G>0 or G<0 completely determines the system behavior: if G>0, slip acceleration occurs, while if G<0, slip ceases spontaneously. In other words, the function G(Su, Ta) determines the qualitative nature of slip behavior, which suggests the slip behavior can be understood in terms of the two nondimensional parameters Su and Ta. Additionally, wide application of

  17. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  18. Strain response and re-equilibration of CH4-rich synthetic aqueous fluid inclusions in calcite during pressure drops

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Pironon, Jacques

    2008-06-01

    Aqueous fluids in sedimentary basins often contain dissolved methane, particularly in petroleum environments. PVTX (Pressure-Volume-Temperature-Composition) reconstructions performed using fluid inclusion data are largely based on the assumption that inclusions do not change from the time of trapping until the present. Many authors, however, consider that fluid inclusions can re-equilibrate, particularly in fragile minerals like calcite. In order to understand this re-equilibration phenomenon in the metamorphic domain, previous experiments have been performed under high PT conditions, but few have been performed at low to medium PT conditions such as those associated with sedimentary burial diagenesis, and no previous studies have examined CH4-bearing aqueous inclusions in calcite. An experimental study of the preservation/modification of CH4-rich synthetic fluid inclusions in calcite during isothermal decompression was conducted. An autoclave was used for accurate PTX control allowing equilibrium between liquid and vapour in the CH4-H2O system. PTX conditions were maintained at four stages of decreasing pressure, with each stage held for 7 days to simulate an isothermal pressure drop. In order of decreasing pressure, the pressure-temperature conditions monitored were 276 ± 10 bar at 180 ± 7 °C, 176 ± 10 bar at 180 ± 7 °C, 76 ± 10 bar at 180 ± 7 °C and 10 ± 3 bar at 180 ± 15 °C. At the end of the experiment, the calcite was recovered and analyzed by microthermometry and Raman microspectroscopy for PTX reconstruction. A careful procedure was adopted to limit re-equilibration of inclusions during analytical procedures. Four types of inclusion shapes and four types of strain patterns were differentiated. Classification of the petrographic strain patterns was carried out. These strain patterns were associated with inclusion stretching and/or leakage regarding CH4, Th and Ph compared to experimental conditions. Factors controlling the preservation or

  19. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  20. Bidirectional Glenn shunt as an adjunct to surgical repair of congenital heart disease associated with pulmonary outflow obstruction: relevance of the fluid pressure drop-flow relationship.

    PubMed

    Ascuitto, Robert; Ross-Ascuitto, Nancy; Wiesman, Joshua; Deleon, Serafin

    2008-09-01

    A bidirectional Glenn shunt (BGS) was successfully incorporated into a two-ventricle repair for 10 patients (age, 3-17 years) who had congenital heart disease associated with severe pulmonary outflow obstruction. The BGS was used to volume-unload the pulmonary ventricle faced with residual outflow obstruction, thereby avoiding the need for insertion of a ventricle-to-pulmonary artery conduit. Transthoracic Doppler flow velocity analysis was used to determine transpulmonary peak systolic pressure drops as a measure of obstruction. Preoperative values ranged from 70 to 100 mmHg, and postoperative values ranged from less than 10 to 16 mmHg. At this writing, all patients are doing well 15 to 52 months after surgery. To gain further insight into the reduced pressure drop that may be achieved by decreasing flow rate across obstruction, a computer-based description of fluid flow was used to simulate blood traversing circumferentially narrowed passages. Overall pressure drops and associated flow energy losses were determined from numeric solutions (using finite-element analysis) to the Navier-Stokes equations for the proposed fluid reactions. Pressure drops and flow energy losses were found to decrease dramatically as flow rate was progressively reduced. For selected patients, a BGS can be an effective adjunct to the surgical treatment of pulmonary outflow obstruction. This approach avoids the use of a ventricle-to-pulmonary artery conduit, and thus the inevitable need in most patients for reoperations because of somatic growth, conduit failure, or both.

  1. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    PubMed Central

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-01-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer. PMID:28251983

  2. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  3. The effect of twisted-tape width on heat transfer and pressure drop for fully developed laminar flow

    SciTech Connect

    Chakroun, W.M.; Al-Fahed, S.F.

    1996-07-01

    A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number and the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.

  4. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  5. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils

    NASA Astrophysics Data System (ADS)

    Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.; Ali, R. K.

    2016-08-01

    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime in the range of Reynolds number of 14,400 ≤ Re ≤ 42,900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio of 0.044 ≤ e/d ≤ 0.133 and coil pitch ratio of 1 ≤ p/d ≤ 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6 %) and (100.1-128 %) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re. The maximum deviation between correlated and experimental values for Nusselt number and friction factor are ±5 and ±6 %, respectively.

  6. Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants.

    PubMed

    Allaf, Tamara; Tomao, Valérie; Ruiz, Karine; Chemat, Farid

    2013-01-01

    The instant controlled pressure drop (DIC) technology enabled both the extraction of essential oil and the expansion of the matrix itself which improved solvent extraction. The sequential use of DIC and Ultrasound Assisted Extraction (UAE) triggered complementary actions materialized by supplementary effects. We visualized these combination impacts by comparing them to standard techniques: Hydrodistillation (HD) and Solvent Extraction (SE). First, the extraction of orange peel Essential Oils (EO) was achieved by HD during 4h and DIC process (after optimization) during 2 min; EO yields was 1.97 mg/g dry material (dm) with HD compared to 16.57 mg/g d m with DIC. Second, the solid residue was recovered to extract antioxidant compounds (naringin and hesperidin) by SE and UAE. Scanning electron microscope showed that after HD the recovered solid shriveled as opposite to DIC treatment which expanded the product structure. HPLC analyses showed that the best kinetics and yields of naringin and hesperidin extraction was when DIC and UAE are combined. Indeed, after 1h of extraction, DIC treated orange peels with UAE were 0.825 ± 1.6 × 10(-2)g/g of dry material (dm) for hesperidin and 6.45 × 10(-2) ± 2.3 × 10(-4)g/g d m for naringin compared to 0.64 ± 2.7 × 10(-2)g/g of dry material (dm) and 5.7 × 10(-2) ± 1.6 × 10(-3)g/g d m, respectively with SE. By combining DIC to UAE, it was possible to enhance kinetics and yields of antioxidant extraction.

  7. Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube

    SciTech Connect

    Li, Xiao-Wei; Meng, Ji-An; Li, Zhi-Xin

    2007-11-15

    The single-phase pressure drop and heat transfer in a micro-fin tube were measured using oil and water as the working fluids. The Prandtl number varied from 3.2 to 220 and the Reynolds number ranged from 2500 to 90,000. The results show that there is a critical Reynolds number, Re{sub cr}, for heat transfer enhancement. For Re

  8. Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles

    SciTech Connect

    Ngo, Tri Lam; Kato, Yasuyoshi; Nikitin, Konstantin; Ishizuka, Takao

    2007-11-15

    A new microchannel heat exchanger (MCHE) with S-shaped fins was developed using the three-dimensional computational fluid dynamics (3D CFD) FLUENT code. The MCHE provided 6-7 times lower pressure drop while maintaining heat-transfer performance that was almost equivalent to that of a conventional MCHE with zigzag fins. This study was done to confirm the simulation results of thermal-hydraulic performance using a supercritical carbon dioxide loop, and to propose empirical correlations of Nusselt numbers and pressure-drop factors for a new MCHE with S-shaped fins and a conventional one with zigzag fins. This study is also intended to confirm the independence of Pr obtained in the previous study by widely varying Pr from 0.75 to 2.2. Experimental results show that the pressure-drop factor of the MCHEs with S-shaped fins is 4-5 times less than that of MCHE with zigzag fins, although Nu is 24-34% less, depending on the Re within its range. The Nusselt number correlations are expressed, respectively as Nu{sub S-shaped} {sub fins} = 0.1740 Re{sup 0.593}Pr{sup 0.430} and Nu{sub zigzag} {sub fins} = 0.1696 Re{sup 0.629}Pr{sup 0.317} for the MCHE with S-shaped and zigzag fins, and their pressure-drop factors are given as f{sub S-shaped} {sub fins} = 0.4545 Re{sup -0.340} and f{sub zigzag} {sub fins} = 0.1924 Re{sup -0.091}. The Nu correlation of the MCHE with S-shaped fins reproduces the experimental data of overall heat transfer coefficients with a standard deviation (1 sigma) of {+-}2.3%, although it is {+-}3.0% for the MCHE with zigzag fins. The calculated pressure drops obtained from pressure-drop factor correlations agree with the experimental data within a standard deviation of {+-}16.6% and {+-}13.5% for the MCHEs with S-shaped and zigzag fins, respectively. (author)

  9. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  10. A comparison of the heat transfer and pressure drop performance of R-134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes

    SciTech Connect

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    The average heat transfer coefficients and pressure drops during evaporation and condensation are reported for mixtures of R-134a and an ester lubricant in tubes of 12.7 mm (1/2 in.) outer diameter. The objective of this paper is to evaluate the performance of the R-134a-lubricant mixtures in these tubes and determine the performance benefits of the micro-fin tube. The performance benefits of the tubes with 12.7 mm (1/2 in.) outer diameter are compared to those of smaller tubes with 9.52 mm (3/8 in.) outer diameter. The lubricant used was a 169 SUS penta erythritol ester mixed-acid lubricant. The lubricant concentration was varied from 0--5.1% in the mixture. The average heat transfer coefficients in the 12.7 mm (1/2 in.) micro-fin tube were 50--150% higher than those for the 12.7 mm (1/2 in.) smooth tube, while pressure drops in the micro-fin tube were 5% to 50% higher than in the smooth tube. The addition of lubricant degraded the average heat transfer coefficients in all cases except during evaporation at low lubricant concentrations. Pressure drops were always increased with the addition of lubricant. The experimental results also indicate that tube diameter has some effect on the performance benefits of the micro-fin tube over that of the smooth tube.

  11. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2017-01-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  12. Heat transfer and pressure drop characteristics of a plate heat exchanger using a propylene-glycol/water mixture as the working fluid

    SciTech Connect

    Talik, A.C.; Fletcher, L.S.; Anand, N.K.; Swanson, L.W.

    1995-12-31

    Plate heat exchangers are becoming increasingly important because of their potential applications in industrial processes, especially in terms of their thermal performance and their limited pressure drop. An experimental investigation to acquire both heat-transfer and pressure-drop data for a plate heat exchanger was conducted in order to respond to these interests. A propylene-glycol/water mixture was used as the working fluid in order to provide lower Reynolds numbers than those provided by water at similar test conditions. The plate heat exchanger was composed of 31 plates, each with a chevron angle of 30 degrees. The isothermal pressure drop data were taken in the fully laminar flow regime for Reynolds numbers from 10 to 80. The heat transfer data were taken in the fully laminar flow regime for Reynolds numbers of 80 to 720 with heat transfer rates of 1.1 {times} 10{sup 5} to 6.5 {times} 10{sup 5} W. The experimental data for the friction factor and Nusselt number were correlated using a standard power-law function. Other published heat-transfer and friction factor correlations for plate heat exchangers with similar plates at selected conditions are compared to the data.

  13. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  14. Formation of shrinkage porosity during solidification of steel: Numerical simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Riedler, M.; Michelic, S.; Bernhard, C.

    2016-07-01

    The phase transformations in solidification of steel are accompanied by shrinkage and sudden changes in the solubility of alloying elements, resulting in negative side effects as micro- and macrosegregation and the formation of gas and shrinkage porosities. This paper deals with the numerical and experimental simulation of the formation of shrinkage porosity during the solidification of steel. First the physical basics for the mechanism of shrinkage pore formation will be discussed. The main reason for this type of porosity is the restraint of fluid flow in the mushy zone which leads to a pressure drop. The pressure decreases from the dendrite tip to the root. When the pressure falls below a critical value, a pore can form. The second part of the paper deals with different approaches for the prediction of the formation of shrinkage porosity. The most common one according to these models is the usage of a simple criterion function, like the Niyama criterion. For the computation of the porosity criterion the thermal gradient, cooling rate and solidification rate must be known, easily to determine from numerical simulation. More complex simulation tools like ProCAST include higher sophisticated models, which allow further calculations of the shrinkage cavity. Finally, the different approaches will be applied to a benchmark laboratory experiment. The presented results deal with an ingot casting experiment under variation of taper. The dominant influence of mould taper on the formation of shrinkage porosities can both be demonstrated by the lab experiment as well as numerical simulations. These results serve for the optimization of all ingot layouts for lab castings at the Chair of Ferrous Metallurgy.

  15. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    NASA Astrophysics Data System (ADS)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    clear lithofacies control on the Vp-porosity and the Vs-Vp relationships for faulted limestones. Using porosity patterns quantified in naturally deformed rocks we have modelled their effect on the mechanical stability of fluid-saturated fault zones in the subsurface. Poroelasticity theory predicts that variations in fluid pressure could influence fault stability. Anisotropic patterns of porosity in and around fault zones can - depending on their orientation and intensity - lead to an increase in fault stability in response to a rise in fluid pressure, and a decrease in fault stability for a drop in fluid pressure. These predictions are the exact opposite of the accepted role of effective stress in fault stability. Our work has provided new data on the spatial and statistical variation of porosity in fault zones. Traditionally considered as an isotropic and scalar value, porosity and pore networks are better considered as anisotropic and as scale-dependent statistical distributions. The geological processes controlling the evolution of porosity are complex. Quantifying patterns of porosity variation is an essential first step in a wider quest to better understand deformation processes in and around normal fault zones. Understanding porosity patterns will help us to make more useful predictive tools for all agencies involved in the study and management of fluids in the subsurface.

  16. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect

    Wongwises, Somchai; Pipathattakul, Manop

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a

  17. Experimental sizing and assessment of two-phase pressure drop correlations for a capillary tube with transcritical and subcritical carbon dioxide flow

    NASA Astrophysics Data System (ADS)

    Trinchieri, R.; Boccardi, G.; Calabrese, N.; Celata, G. P.; Zummo, G.

    2014-04-01

    In the last years, CO2 was proposed as an alternative refrigerant for different refrigeration applications (automotive air conditioning, heat pumps, refrigerant plants, etc.) In the case of low power refrigeration applications, as a household refrigerator, the use of too expensive components is not economically sustainable; therefore, even if the use of CO2 as the refrigerant is desired, it is preferable to use conventional components as much as possible. For these reasons, the capillary tube is frequently proposed as expansion system. Then, it is necessary to characterize the capillary in terms of knowledge of the evolving mass flow rate and the associate pressure drop under all possible operative conditions. For this aim, an experimental campaign has been carried out on the ENEA test loop "CADORE" to measure the performance of three capillary tubes having same inner diameter (0.55 mm) but different lengths (4, 6 and 8 meters). The test range of inlet pressure is between about 60 and 110 bar, whereas external temperatures are between about 20 to 42 °C. The two-phase pressure drop through the capillary tube is detected and experimental values are compared with the predictions obtained with the more widely used correlations available in the literature. Correlations have been tested over a wide range of variation of inlet flow conditions, as a function of different inlet parameters.

  18. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation

    SciTech Connect

    Albanakis, C.; Missirlis, D.; Yakinthos, K.; Goulas, A.; Michailidis, N.; Omar, H.; Tsipas, D.; Granier, B.

    2009-01-15

    The main objective of this work was to evaluate the behavior of porous materials, when treated as volumetric receivers under concentrated solar radiation. For this reason various porous metallic and ceramic materials have been tested as potential receivers for concentrated solar radiation. The experimental investigation showed that their efficiency was depending on both materials parameters and flow conditions. In this work, a variety of foam materials such as Ni and Ni alloy, inconel, copper, aluminum and SiC with different open cell porosity were tested as potential media to be used as volumetric receivers and heat exchangers. However, since the results were similar, for space economy, only the results of two of them, nickel and inconel were presented in detail and compared with each other. (author)

  19. Spreading of liquid drops over porous substrates.

    PubMed

    Starov, V M; Zhdanov, S A; Kosvintsev, S R; Sobolev, V D; Velarde, M G

    2003-07-01

    the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments were used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters were determined. Experiments were carried out on the spreading of silicone oil drops over various dry nitrocellulose microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer was monitored. In agreement with our theory all experimental data fell on two universal curves if appropriate scales were used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer using a dimensionless time scale. Theory predicts that (a). the dynamic contact angle dependence on the dimensionless time should be a universal function, (b). the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in our system. These predictions are in the good agreement with our experimental observations. In the case of spreading of liquid drops over thick porous substrates (complete wetting) the spreading process goes in two similar stages as in the case of thin porous substrates. In this case also both the drop base and the radii of the wetted area on the surface of the porous substrates were monitored. Spreading of oil drops (with a wide range of viscosities) on dry porous substrates having similar porosity and average pore size shows universal behavior as in the case of thin porous substrates. However, the spreading behavior on porous substrates having different average pore sizes deviates from the

  20. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  1. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  2. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.

    PubMed

    Qiu, Feng; Peng, Sophia; Kunselman, Allen; Ündar, Akif

    2010-11-01

    Gaseous microemboli (GME) remain a challenge for cardiopulmonary bypass (CPB) because there is a positive correlation between microemboli exposure during CPB and postoperative neurological injury. Thus, minimizing the number of GME delivered to pediatric patients undergoing CPB procedures would lead to better clinical outcomes. In this study, we used a simulated CPB model to evaluate the effectiveness of capturing GME and the degree of membrane pressure drop for a new membrane oxygenator, Capiox Baby FX05 (Terumo Corporation,Tokyo, Japan), which has an integrated arterial filter with open and closed purge line.We used identical components in this study as our clinical CPB circuit. Three emboli detection and classification quantifier transducers were placed at prepump, preoxygenator, and postoxygenator sites in the circuit.Two flow probes as well as three pressure transducers were placed upstream and downstream of the oxygenator. The system was primed with human blood titrated to 30% hematocrit with Lactated Ringer’s solution.A bolus of air (1 mL) was injected in the prepump site under nonpulsatile perfusion mode at three flow rates (500,750, and 1000 mL/min) and with the purge line either open or closed. Six trials were performed for each unique set-up for a total of 36 trials.All trials were conducted at 35°C. The circuit pressure was kept constant at 100 mm Hg. Both the size and quantity of microemboli detected at postoxygenator site were recorded for 5 min postair injection. It was found that total counts of GME were significantly reduced with the purge line open when compared to keeping the purge line closed (P < 0.0001 at 1000 mL/min). At all flow rates, most of the GME were under 20 microns in size. In terms of microemboli greater than 40 microns, the counts were significantly higher with the purge line closed compared to keeping the purge line open at flow rates of 750 mL/min and 1000 mL/min (P < 0.01). At all flow rates,there is a tiny difference of less

  3. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  4. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 1 of 3: Main report, appendix A

    SciTech Connect

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01

    Three groups of core samples from Marker Bed 139 of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) were analyzed to provide data to support the development of numerical models used to predict the long-term hydrologic and structural response of the WIPP repository. These laboratory experiments, part of the FY93 Experimental Scoping Activities of the Salado Two-Phase Flow Laboratory Program, were designed to (1) generate WIPP-specific porosity and single-phase permeability data, (2) provide information needed to design and implement planned tests to measure two-phase flow properties, including threshold pressure, capillary pressure, and relative permeability, and (3) evaluate the suitability of using analog correlations for the Salado Formation to assess the long-term performance of the WIPP. This report contains a description of the boreholes core samples, the core preparation techniques used, sample sizes, testing procedures, test conditions, and results of porosity and single-phase permeability tests performed at three laboratories: TerraTek, Inc. (Salt Lake City, UT), RE/SPEC, Inc. (Rapid City, SD), and Core Laboratories-Special Core Analysis Laboratory (Carrollton, TX) for Rock Physics Associates. In addition, this report contains the only WIPP-specific two-phase-flow capillary-pressure data for twelve core samples. The WIPP-specific data generated in this laboratory study and in WIPP field-test programs and information from suitable analogs will form the basis for specification of single- and two-phase flow parameters for anhydrite markers beds for WIPP performance assessment calculations.

  5. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  6. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  7. Effect of oscillation frequency on wall shear stress and pressure drop in a rectangular channel for heat transfer applications

    NASA Astrophysics Data System (ADS)

    Blythman, R.; Persoons, T.; Jeffers, N.; Murray, DB

    2016-09-01

    The exploitation of flow unsteadiness in microchannels is a potentially useful technique for enhancing cooling of future photonics systems. Pulsation is thought to alter the thickness of the hydrodynamic and thermal boundary layers, and hence affect the overall thermal resistance of the heat sink. While the mechanical and thermal problems are inextricably linked, it is useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. The current work characterises the behaviour of the wall shear stress and pressure gradient with frequency, using experimental particle image velocimetry (PIV) measurements and the analytical solution for oscillatory flow in a two-dimensional rectangular channel. Both wall shear stress and pressure gradient are augmented with frequency compared to steady flow, though the pressure gradient increases more significantly as a result of growing inertial losses. The three distinct regimes of unsteadiness are shown to display unique relationships between the parameters pertinent to heat transfer and should therefore be considered independently with respect to thermal enhancement capability. To this end, the regime boundaries are estimated at Womersley number Wo = 1.6 and 28.4 in a rectangular channel, based on the contribution of viscous and inertial losses.

  8. Microparticles with hierarchical porosity

    DOEpatents

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  9. Air atmospheric pressure plasma jet pretreatment for drop-wise loading of dexamethasone on hydroxyapatite scaffold for increase of osteoblast attachment.

    PubMed

    Lee, Jung-Hwan; Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-10-01

    Periodontal disease affects alveolar bone resorption around the involved teeth. To gain bone height, bone graft materials have been widely used with drug carriers. Application of an atmospheric pressure plasma jet (APPJ) treatment is widely studied due to its ability to change surface characteristics without topographical change. The aim of this study is to identify whether the air APPJ (AAPPJ) treatment before drop-wise loading performance could change loaded amount of dexamethasone, and induce increase of cell attachment and proliferation. The results suggested that AAPPJ treatment decreased the contact angle down to about 13 degrees, which increased gradually but significantly lowered at least 4 days compared to no-treated group. After AAPPJ treatment, hydrocarbon was removed with change of zeta potential into positive charge. However, the AAPPJ treatment did not change the quantity or releasing profile of dexamethasone (p > 0.05). Confocal analysis combined with DNA proliferation analysis showed increase of osteoblast attachment and proliferation. Hence, AAPPJ could be a useful pretreatment method before drop-wise loading on HA scaffold with dexamethasone for increase of osteoblast attachment.

  10. Smooth- and enhanced-tube heat transfer and pressure drop : Part I. Effect of Prandtl number with air, water, and glycol/water mixtures.

    SciTech Connect

    Obot, N. T.; Das, L.; Rabas, T. J.

    2000-11-14

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics in laminar, transitional, and turbulent flow through one smooth tube and twenty-three enhanced tubes. The working fluids for the experiments were air, water, ethylene glycol, and ethylene glycol/water mixtures; Prandtl numbers (Pr) ranged from 0.7 to 125.3. The smooth-tube experiments were carried out with Pr values of 0.7, 6.8, 24.8, 39.1, and 125.3; Pr values of 0.7, 6.8, and 24.8 were tested with enhanced tubes. Reynolds number (Re) range (based on the maximum internal diameter of a tube) was 200 to 55,000, depending on Prandtl number and tube geometry. The results are presented and discussed in this paper.

  11. Investigations of Pressure Drops during Piston Flow Pneumatic Conveying of Ice Cubes and Applying It to High Density Conveying of Cold Energy

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi; Yanadori, Michio; Tsubota, Yuji

    To overcome the defect of conventional chilled water systems, we propose pneumatic conveying of ice cubes. We conducted experiments to investigate the pressure drops during pneumatic conveying of ice cubes in a prototype conveyance pipe, and obtained the following results : (1)The mean velocity of the ice cubes is proportional to the mean velocity of the conveying air flow regardless of balls in the pipe or the volume fraction of the ice cubes. (2) Difference in the velocity of the air flow cause variations in the density of ice cubes. If we convey ice cubes with balls, it is possible to convey a higher density. (3) The volume fraction of this method is about 10 times that of the previous experimental results. (4)The pump power of this proposed conveyance system is reduced to about 0.71 to 0.59 times that of the conventional chilled water systems.

  12. Heat transfer and pressure drop in a compact pin-fin heat exchanger with pin orientation at 18 deg to the flow direction

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    The heat transfer and pressure drop characteristics of a novel, compact heat exchanger in helium gas were measured at 3.5 MPa and Reynolds numbers of 450 to 12,000. The pin-fin specimen consisted of pins, 0.51 mm high and spaced 2.03 mm on centers, spanning a channel through which the helium flows; the angle of the row of pins to the flow direction was 18 deg. The specimen was radiatively heated on the top side at heat fluxes up to 74 W/sq cm and insulated on the back side. Correlations were developed for the friction factor and Nusselt number. The Nusselt number compares favorably to those of past studies of staggered pin-fins, when the measured temperatures are extrapolated to the temperature of the wall-fluid interface.

  13. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  14. Porosity trends of the Lower Cretaceous J Sandstone, Denver Basin, Colorado

    USGS Publications Warehouse

    Schmoker, J.W.; Higley, D.K.

    1991-01-01

    The petrographic factors that most affect J sandstone porosity variability at a given level of thermal maturity are carbonate cementation and clay content. Carbonate cement, where present, reduces porosity. If previously more widespread, carbonate cement could also introduce porosity heterogeneity by temporarily preserving the pore network relative to uncemented intervals. Abundant detrital and authigenic clay reduces porosity by occupying pores. Low clay content indirectly reduces porosity because the inhibiting effects of clay upon quartz cementation and pressure solution are largely absent. -from Authors

  15. Experimental study of the effects of bleed holes on heat transfer and pressure drop in trapezoidal passages with tapered turbulators

    SciTech Connect

    Taslim, M.E.; Li, T.; Spring, S.D.

    1995-04-01

    Trailing edge cooling cavities in modern gas turbine blades often have trapezoidal cross-sectional areas of relatively low aspect ratio. To enhance cooling effectiveness in these passages, they are roughened with tapered turbulators. Furthermore, to provide additional cooling for the trailing edge, the cooling air may be ejected through trailing edge slots as it moves radially along the cooling passage. The tapered turbulators, in conjunction with the presence of these slots along the smaller base of the trapezoidal cavity, create both spanwise and longitudinal variations in heat transfer coefficient on the turbulated walls. Moreover, the continuous variation of cooling air velocity along these passages causes a continuous change in static pressure, which also requires investigation. Liquid crystals are used in this experimental investigation to study the effects of tapered turbulators on heat transfer coefficients in trailing edge passages with and without bleed holes. The tapered turbulators are configured on two opposite walls of the trapezoidal test section in a staggered arrangement with an angle of attack to the mainstream flow, {alpha}, of 90 deg. Nine different test geometries consisting of two passage aspect ratios, AR, were tested over a range of turbulator aspect ratios, AR{sub t}, blockage ratios, e{sub max}/D{sub h}, pitch-to-height ratios, S/e{sub max}, and Reynolds numbers. Channel pressure losses were also measured and both heat transfer and friction factor results for several geometries are compared. It is concluded that (a) there exists a large spanwise variation in heat transfer coefficient in test sections with no bleed holes, (b) adding bleed holes to the smaller base of the trapezoidal cavity gives a spanwise velocity component to the mainstream flow and reduces this variation, and (c) Nusselt numbers measured in the test sections with bleed holes correlate well with local Reynolds number.

  16. Controlled porosity in electrodes

    DOEpatents

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  17. Acute sensitivity of landslide rates to initial soil porosity

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; Iverson, N.R.; LaHusen, R.G.; Logan, M.; Mann, J.E.; Brien, D.L.

    2000-01-01

    Some landslides move imperceptibly downslope, whereas others accelerate catastrophically. Experimental landslides triggered by rising pore water pressure moved at sharply contrasting rates due to small differences in initial porosity. Wet sandy soil with porosity of about 0.5 contracted during slope failure, partially liquefied, and accelerated within 1 second to speeds over I meter per second. The same soil with porosity of about 0.4 dilated during failure and supped episodically at rates averaging 0.002 meter per second. Repeated slip episodes were induced by gradually rising pore water pressure and were arrested by pore dilation and attendant pore pressure decline.

  18. Flow rate/pressure drop data gathered from testing a sample of the Space Shuttle Strain Isolation Pad (SIP): Effects of ambient pressure combined with tension and compression conditions

    NASA Technical Reports Server (NTRS)

    Springfield, R. D.; Lawing, P. L.

    1983-01-01

    Tests were conducted on a sample of strain isolation pad (SIP) typical of that used in the shuttle orbiter thermal protection system to determine the characteristics of SIP internal flow. Data obtained were pressure drop as a function of flow rate for a range of ambient pressures representing various points along the Shuttle trajectory and for stretched and compressed conditions of the SIP. Flow was in the direction of the weave parallel to most of the fibers. The data are plotted in several standard engineering formats in order to be of maximum utility to the user. In addition to providing support to the Space Shuttle Program, these data are a source of experimental information on flow through fiberous (rather than the more usual sand bed type) porous media.

  19. Experimental investigation of heat transfer and pressure drop characteristics of water and glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

    NASA Astrophysics Data System (ADS)

    Khan, Md Mesbah-ul Ghani

    Microchannels have several advantages over traditional large tubes. Heat transfer using microchannels recently have attracted significant research and industrial design interests. Open literatures leave with question on the applicability of classical macroscale theory in microchannels. Better understanding of heat transfer in various microchannel geometries and building experimental database are continuously urged. The purpose of this study is to contribute the findings and data to this emerging area through carefully designed and well controlled experimental works. The commercially important glycol-water mixture heat transfer fluid and multiport slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter tubes experience turbulent flow whereas the narrow channels face laminar flow and often developing flow. Study of low Reynolds number developing glycol-water mixture laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is not available in the open literature. Current research therefore experimentally investigates glycol-water mixture and water in simultaneously developing laminar flows. Three multiport microchannel heat exchangers; straight and serpentine slabs, are used for each fluid. Friction factors of glycol-water mixture and water flows in straight slabs are higher than conventional fully developed laminar flow. If a comprehensive pressure balance is introduced, the results are well compared with conventional Poiseuille theory. Similar results are found in serpentine slab. The pressure drop for the straight core is the highest, manifolds are the intermediate, and serpentine is the least; which are beneficial for heat exchangers. The heat transfer results in serpentine slab for glycol-water mixture and water are higher and could not be compared with conventional fully developed and developing flow correlations. New

  20. Fabrication of High-Porosity Lotus-Type Porous Aluminum in Vacuum

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobang; Li, Yanxiang; He, Yun

    2017-03-01

    Lotus-type porous aluminums with porosities from 10 to 26 pct were fabricated with the Bridgman-type directional solidification method (Gasar). A vacuum atmosphere is critical to obtain high-porosity lotus-type porous aluminum by the Gasar process. The lotus-type porous aluminum was directionally solidified under a pure hydrogen pressure of 0.2 to 16 kPa. The influence of hydrogen pressure on the porosity and pore size in vacuum was investigated. The porosity and pore size increase with decreasing hydrogen pressure, but there exists a maximum porosity at some critical hydrogen pressure. Since a low hydrogen pressure is adopted, the effect of capillary pressure and hydrostatic pressure on the porosity becomes important. With the decreasing of hydrogen pressure, the influence of hydrostatic pressure and capillary pressure on porosity becomes stronger and stronger. The influence of melt height, which is proportional hydrostatic pressure, on porosity and pore size was investigated. The calculated porosities considering capillary pressure and hydrostatic pressure are in good agreement with experimental results.

  1. Fabrication of High-Porosity Lotus-Type Porous Aluminum in Vacuum

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobang; Li, Yanxiang; He, Yun

    2017-01-01

    Lotus-type porous aluminums with porosities from 10 to 26 pct were fabricated with the Bridgman-type directional solidification method (Gasar). A vacuum atmosphere is critical to obtain high-porosity lotus-type porous aluminum by the Gasar process. The lotus-type porous aluminum was directionally solidified under a pure hydrogen pressure of 0.2 to 16 kPa. The influence of hydrogen pressure on the porosity and pore size in vacuum was investigated. The porosity and pore size increase with decreasing hydrogen pressure, but there exists a maximum porosity at some critical hydrogen pressure. Since a low hydrogen pressure is adopted, the effect of capillary pressure and hydrostatic pressure on the porosity becomes important. With the decreasing of hydrogen pressure, the influence of hydrostatic pressure and capillary pressure on porosity becomes stronger and stronger. The influence of melt height, which is proportional hydrostatic pressure, on porosity and pore size was investigated. The calculated porosities considering capillary pressure and hydrostatic pressure are in good agreement with experimental results.

  2. Liquids with permanent porosity

    NASA Astrophysics Data System (ADS)

    Giri, Nicola; Del Pópolo, Mario G.; Melaugh, Gavin; Greenaway, Rebecca L.; Rätzke, Klaus; Koschine, Tönjes; Pison, Laure; Gomes, Margarida F. Costa; Cooper, Andrew I.; James, Stuart L.

    2015-11-01

    Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble ‘scrambled’ porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities.

  3. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    NASA Astrophysics Data System (ADS)

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min-1. The nonlinear behavior allows sensitivities equal to 0.6 V l-1 min for flow rates ranging from -2.0 to +2.0 l min-1, equal to 2.0 V l-1 min for flow rates ranging from -3.0 to -2.0 l min-1 and from +2.0 to +3.0 l min-1, up to 5.7 V l-1 min at higher flow rates ranging from -7.0 to -3.0 l min-1 and from +3.0 to +7.0 l min-1. The linear range extends from 3.0 to 7.0 l min-1 with constant sensitivity equal to 5.7 V l-1 min. The sensor is able to detect a flow-rate equal to 1.0 l min-1 with a sensitivity of about 400 mV l-1 min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min-1, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l-1 min.

  4. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    SciTech Connect

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-15

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 deg. C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min{sup -1}. The nonlinear behavior allows sensitivities equal to 0.6 V l{sup -1} min for flow rates ranging from -2.0 to +2.0 l min{sup -1}, equal to 2.0 V l{sup -1} min for flow rates ranging from -3.0 to -2.0 l min{sup -1} and from +2.0 to +3.0 l min{sup -1}, up to 5.7 V l{sup -1} min at higher flow rates ranging from -7.0 to -3.0 l min{sup -1} and from +3.0 to +7.0 l min{sup -1}. The linear range extends from 3.0 to 7.0 l min{sup -1} with constant sensitivity equal to 5.7 V l{sup -1} min. The sensor is able to detect a flow-rate equal to 1.0 l min{sup -1} with a sensitivity of about 400 mV l{sup -1} min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min{sup -1}, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l{sup -1} min.

  5. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: measurement principle and static calibration.

    PubMed

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min(-1). The nonlinear behavior allows sensitivities equal to 0.6 V l(-1) min for flow rates ranging from -2.0 to +2.0 l min(-1), equal to 2.0 V l(-1) min for flow rates ranging from -3.0 to -2.0 l min(-1) and from +2.0 to +3.0 l min(-1), up to 5.7 V l(-1) min at higher flow rates ranging from -7.0 to -3.0 l min(-1) and from +3.0 to +7.0 l min(-1). The linear range extends from 3.0 to 7.0 l min(-1) with constant sensitivity equal to 5.7 V l(-1) min. The sensor is able to detect a flow-rate equal to 1.0 l min(-1) with a sensitivity of about 400 mV l(-1) min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min(-1), corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l(-1) min.

  6. Porosity in polysilsesquioxane xerogels

    SciTech Connect

    LOY,DOUGLAS A.; SCHNEIDER,DUANE A.; BAUGHER,BRIGITTA M.; RAHIMIAN,KAMYAR

    2000-05-09

    Polysilsesquioxanes, [RSiO{sub 1.5}]{sub n} are a class of hybrid organic-inorganic materials in which silicon atoms are linked with up to three siloxane bonds to other monomer units in the polymer and the organic group is a pendent functionality. Polysilsesquioxanes are prepared by the hydrolysis and condensation of organotrialkoxysilanes (Scheme l). Organotrialkoxysilanes RSi(OR{prime}){sub 3}, have been extensively used as coupling agents for composites or surface treatments for materials. Polysilsesquioxanes have become increasingly popular for generating specialty coatings such as low k dielectric materials for microelectronic applications. While there is extensive information on the formation of polysilsesquioxanes, there has not been a survey of the ability of organotrialkoxysilanes to form gels until recently. The formation of polysilsesquioxanes gels has been shown to be very sensitive to the nature of the organic group. Many monomers will only form soluble oligomers or polymers upon hydrolysis and condensation, even when the reaction is conducted solvent-free with neat monomer and aqueous catalyst. Furthermore, there is little information concerning the influence of the organic group, R, on the porosity of the polysilsesquioxanes gels that are formed. In this paper the authors describe the preparation of polysilsesquioxane gels where R = H, methyl, ethyl, cyanoethyl, vinyl, dodecyl, hexadecyl, octadecyl, chloromethyl, and chloromethylphenyl, and the characterization of the porosity of the respective xerogels. Gels were prepared from the hydrolysis and condensation of organotrimethoxysilanes, RSi(OEt){sub 3}, and organotriethoxy-silanes, RSi(OEt){sub 3}.

  7. Laminar flow heat transfer and pressure drop characteristics of power-law fluids inside tubes with varying width twisted tape inserts

    SciTech Connect

    Patil, A.G.

    2000-02-01

    Results of an experimental investigation of heat transfer and flow friction of a generalized power-law fluid in tape generated swirl flow inside a 25.0 mm i.d. circular tube, are presented. In order to reduce excessive pressure drops associated with full width twisted tapes, with less corresponding reduction in heat transfer coefficients, reduced width twisted tapes of widths ranging from 11.0 to 23.8 mm, which are lower than the tube inside diameter are used. Reduced width twisted tape inserts give 18%--56% lower isothermal friction factors than the full width tapes. Uniform wall temperature Nusselt numbers decrease only slightly by 5%--25%, for tape widths of 19.7 and 11.0 mm, respectively. Based on the constant pumping power criterion, the tapes of width 19.7 mm perform more or less like full width tapes. Correlations are presented for isothermal and heating friction factors and Nusselt numbers (under uniform wall temperature condition) for a fully developed laminar swirl flow, which are applicable to full width as well as reduced width twisted tapes, using a modified twist ratio as pitch to width ratio of the tape. The reduced width tapes offer 20%--50% savings in the tape material as compared to the full width tapes.

  8. Fatigue Crack and Porosity Measurement in Composite Materials by Thermographic and Ultrasonic Methods

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Russell, Samuel S.; Suits, Michael W.; Workman, Gary L.

    2003-01-01

    Contents include the following: 1. Purpose. Detect thermo-mechanically induced intra-ply fatigue microcracking and manufactured porosity in unlined composite pressure vessels. 2. Defect descriptions. Porosity, microcracking. 3. Thermography. Overview of technique. Strengths and Weaknesses. Examples of its use for porosity detection. 4. Resonant ultrasound spectroscopy. Overview of technique. Strengths and Weaknesses. Examples of its use for microcracking detection. Conclusions.

  9. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid microvolume samples.

    PubMed

    Schaper, J Niklas; Pfeuffer, Kevin P; Shelley, Jacob T; Bings, Nicolas H; Hieftje, Gary M

    2012-11-06

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 μg/mL, without sample pretreatment, were obtained.

  10. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  11. Thermoelectric materials having porosity

    DOEpatents

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  12. Porosity evolution in Icelandic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  13. Mechanistic Effects of Porosity on Structural Composite Materials

    NASA Astrophysics Data System (ADS)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  14. Silica Transport, Deposition and Porosity Evolution in a Fracture : Insights from Hydrothermal Flow-through Experiments

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Yamada, R.; Saishu, H.; Tsuchiya, N.

    2014-12-01

    Geofluids contain a large amount of silica, which solubility changes depending on temperature and pressure. Ubiquitous occurrences of various silica deposits (quartz veins, silica sinter, scales) suggest that silica precipitation plays an important role on temporal and spatial variation of hydrological properties of the Earth's crusts. A pressure drop, for example, induced by seismicity, is one of the driving forces for silica precipitation within the crusts. In spite of the importance of silica depositions in fractures, how porosity and permeability evolution during silica precipitation is still poorly understood. In this study, we conducted the hydrothermal experiments for silica precipitation from supersaturated solutions in vapor (370˚C, 20 MPa) and supercritical (420 ˚C, 30 MPa) conditions with flow rate of 1 g/min. After the experiments, we analyzed the 3-D porosity structures by X-ray CT, and then by making thin section. We developed a tube-in-tube vessel, which is composed of main vessel (made of SUS316), and inner alumina tube (6 mm inner diameter), to make a horizontal flow path. We did not used rock/mineral substrates, and alumina balls (1 mm diameter) are closely packed in the inner tube. In both situations, a significant amount of silica deposited within a week, showing contrasting porosity structures between vapor and supercritical conditions. In vapor conditions, the precipitates are fine-grained quartz aggregate, and the most deposited at around 38 mm from the inlet. The pores were filled from the bottom to the top in the tube. In contrast, in the supercritical conditions, the precipitates are composites of amorphous silica and quartz; which accumulated around the alumina balls uniformly. Quartz grains are formed in amorphous silica layers, and the most porosity reduction occurred at around 25 mm from the inlet. A simple model of cellular automaton involving particle flow, adsorption, settling and deposition reveals that the relative magnitude of

  15. Permeability and porosity of the Illinois UPH 3 drillhole granite and a comparison with other deep drillhole rocks

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    1997-01-01

    Permeability, porosity, and volumetric strain measurements were conducted on granite cores obtained at depths of 0.7 to 1.6 km from the Illinois UPH 3 drillhole at effective confining pressures from 5 to 100 MPa. Initial permeabilities were in the range of 10-17 to 10-19 m2 and dropped rapidly with applied pressure to values between 10-20 and 10-24 m2 at 100 MPa, typical of other deep granite core samples. These values are several decades lower than equivalent weathered surface granites at comparable effective confining pressures, where weathering products in cracks and pores inhibit crack closure with applied pressure. Permeabilities of the Illinois cores were inversely related to sample depth, suggesting that stress relief and thermal microfractures induced during core retrieval dominated the fluid flow. Thus these samples provide an upper bound on in situ matrix permeability values. A comparison of core permeability from UPH 3 and other deep drillholes shows that stress relief damage can often dominate laboratory permeability measurements. We conclude that it may be difficult to make meaningful estimates of in situ permeability based on either borehole samples (possible damage during retrieval) or surface-derived analogs (altered by weathering). Volumetric strain determined from porosity measurements was compared with differential strain analysis (DSA) data reported by other investigators on samples from the same depths in the drillhole. Our strain measurements (0.002 to 0.005 at 100 MPa) were nearly twice as large as the DSA values, probably because of the crack-enhancing effects of fluids present in our samples that are absent in the dry DSA cores, as well as other time-dependent deformation effects. This difference in observed strain magnitudes between the two measurement methods may be an important consideration if strain and/or porosity data from deep core samples are used in models of stress, fluid circulation, and excess fluid pressure generation in the

  16. Deep porosity preservation in the Norphlet Formation, Mobil Bay, Alabama

    SciTech Connect

    Ajdukiewicz, J.M.; Paxton, S.T.; Szabvo, J.O. )

    1991-03-01

    Compaction and pressure solution have commonly been assumed to destroy primary intergranular porosity in deeply buried sandstones. However, primary porosities of up to 20% are preserved at depths greater than 20,000 feet in the Norphlet Formation of Mobile Bay. Previous workers have called upon a number of mechanisms to preserve these high porosities in the Norphlet, specifically chlorite rim cements, gas emplacement, overpressuring, and decementation. In contrast, our study of data from 23 Norphlet wells, including 450 thin sections, indicates that these suggested mechanisms are not the primary cause of porosity preservation in the Norphlet. The authors propose an alternative interpretation: that in the Norphlet, as in other well-sorted, ductile-grain-poor sandstones, porosity loss from compaction did not go to completion under reservoir (premetamorphic) conditions, but stabilized at depths of about 5,000-8,000 feet and porosity values of about 26%. Porosity loss below these values is due to cementation. For cementation to occur, both an adequate source of cement and geochemical conditions favoring cement precipitation must be present. Computer simulations of Norphlet burial history, including post-depositional fluid-flow patterns, suggest that conditions favorable to quartz cementation never occurred in the bulk of the Norphlet because of the formation's stratigraphic position and isolation from a basinward source of silica-saturated fluids.

  17. Brittle and semibrittle creep in a low porosity carbonate rock

    NASA Astrophysics Data System (ADS)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  18. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.

  19. Porosity evolution during experimental diagenesis of carbonates: influence of salinity

    NASA Astrophysics Data System (ADS)

    Neveux, Lucille; Grgic, Dragan; Carpentier, Cedric; Pironon, Jacques

    2015-04-01

    The existence of high quality (high porosity - high permeability) reservoirs in carbonated rocks at great depth highlights a paradox. Indeed, classical modeling of rock evolution during burial forecasts a strong decrease of porosity with depth, thus predicting a lack of economically interesting reservoirs under 4000 m. So how these reservoirs come to exist? The understanding of the way porosity is altered at great depth may indicate potential reservoir rocks. By which processes is porosity modified? To answer these questions, an experimental approach has been conducted, using a specifically designed apparatus that enable, in laboratory, the simulation of deeply buried reservoirs in situ conditions (high pressures and temperature as well as the circulation of fluids). The nature of carbonated rocks (bioclastic and oolitic) has been investigated as well as the nature of the percolating fluid (with and without NaCl). To characterize the evolution of the porosity and of the porous network, analysis via nanotomography, mercury intrusion porosimetry and specific surface area were used. The results obtained in this study show that the main diagenetic process of porosity loss is the pressure solution creep (PSC), reducing by at least three the initial porosity. PSC results in both dissolution and precipitation, processes that lead to a great modification of the rock porous network. This modification is more pronounced in the oolitic limestone than in the bioclastic one. The presence of NaCl in the fluid leads to a greater dissolution of carbonate matter but also to a precipitation of salt minerals partially blocking the porous network. The dataset obtained from these experiments shows the importance of the nature of the deposit rock but also of the nature of the percolating fluid. It can be concluded that pore fluid chemistry and, by consequence, its origin is of great importance in the study of porosity modification with depth.

  20. Dilating Eye Drops

    MedlinePlus

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Dilating Eye Drops En Español Read in Chinese What are dilating eye drops? Dilating eye drops contain medication to enlarge ( ...

  1. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 3 of 3: Appendices C, D, E, and F

    SciTech Connect

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01

    This volume contains the mineralogy, porosity, and permeability results from the Marker Bed 139 anhydrite specimens evaluated by TerraTek, Inc. for the Waste Isolation Pilot Plant. This volume also documents the brine recipe used by RE/SPEC, Inc., the parameter package submitted to Performance Assessment based on all the data, and a memo on the mixed Brooks and Corey two-phase characteristic curves.

  2. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, Carl W.

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  3. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  4. The Porosity of 433 Eros

    NASA Technical Reports Server (NTRS)

    Britt, D. T.; Yeomans, Donald K.; Consolmagno, G. J.

    2001-01-01

    Data from the NEAR mission show the bulk density of 433 Eros is 2.67 g/cm 3 . Given an L or LL composition, the bulk porosity of Eros is in the range of 25-29% and the macroporosity is 14-18%. This is consistent with a fractured, but coherent asteroid. Additional information is contained in the original extended abstract.

  5. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-02

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure.

  6. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  7. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2003-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  8. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2002-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  9. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    PubMed

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity.

  10. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  11. Nanosize-induced drastic drop in equilibrium hydrogen pressure for hydride formation and structural stabilization in Pd-Rh solid-solution alloys.

    PubMed

    Kobayashi, Hirokazu; Morita, Hitoshi; Yamauchi, Miho; Ikeda, Ryuichi; Kitagawa, Hiroshi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Toh, Shoichi; Matsumura, Syo

    2012-08-01

    We have synthesized and characterized homogeneous solid-solution alloy nanoparticles of Pd and Rh, which are immiscible with each other in the equilibrium bulk state at around room temperature. The Pd-Rh alloy nanoparticles can absorb hydrogen at ambient pressure and the hydrogen pressure of Pd-Rh alloys for hydrogen storage is dramatically decreased by more than 4 orders of magnitude from the corresponding pressure in the metastable bulk state. The solid-solution state is still maintained in the nanoparticles even after hydrogen absorption/desorption, in contrast to the metastable bulks which are separated into Pd and Rh during the process.

  12. Porosity of Bleb Capsule declines rapidly with Fluid Challenge

    PubMed Central

    Pandav, Surinder S; Ross, Craig M; Thattaruthody, Faisal; Nada, Ritambhra; Singh, Nirbhai; Gautam, Natasha; Beirne, Stephen; Wallace, Gordon G; Sherwood, Mark B; Crowston, Jonathan G

    2016-01-01

    Introduction The porosity of the fibrous capsule around a glaucoma drainage device (GDD) may be the most important functional attribute. The factors that determine capsular porosity are not well understood. Failed GDD surgeries are usually associated with thick impervious capsules and components of aqueous have been implicated in this process. Purpose In this study, we interrogated the effect of passage of nonaqueous fluid on capsular porosity in mature (but aqueous naïve) blebs in a previously reported GDD model (the “Center for Eye Research Australia Implant”). Materials and methods The study was performed at two centers using 17 New Zealand White (NZW) rabbits. An experimental GDD was implanted into the subconjunctival space but without connection to the anterior chamber. After 28 days, balanced salt solution (BSS) was passed through the implant for 30 to 40 minutes at 12 mm Hg. Capsular porosity was measured as flow (μL/min) at a constant pressure. Porosity of the capsule was retested at 3 and 6 days. Results There was a marked reduction in capsular porosity within 3 days of exposure to BSS (fluid challenge). Even though the baseline porosity was significantly different in the two groups (3.00 ± 0.5 μL/min and 29.67 ± 12.12 μL/min, p < 0.001), the effect of passage of BSS was similar. Capsular porosity fell by approximately 80% in both groups from baseline after single BSS challenge. Capsular thickness was significantly less in Advanced Eye Center (AEC) rabbits at baseline. There was no change in the capsular thickness before and after single fluid challenge. Conclusion Passage of BSS at physiological pressures for under 40 minutes caused marked reduction in the porosity of the fibrous capsule within 3 days. This was not associated with any significant thickening of the fibrous capsule within this time frame. How to cite this article Pandav SS, Ross CM, Thattaruthody F, Nada R, Singh N, Gautam N, Beirne S, Wallace GG, Sherwood MB, Crowston JG, Coote M

  13. Longhi Games, Internal Reservoirs, and Cumulate Porosity

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    2009-05-01

    Fe in plagioclase at an early age, T-rollers (or not) on the Di-Trid boundary in Fo-Di-Sil, the mantle solidus, origins of anorthosites, esoteric uses of Schreinemakers rules and many more topics are all fresh and pleasant memories of John Longhi's prolific and creative work. The Fram-Longhi experimental effect of pressure on plagioclase partitioning with liquid in mafic rocks became essential to an understanding of multiphase Rayleigh fractionation of plagioclase in big layered intrusions. Only by using the pressure effect could I find a good equation through the data for the Kiglapait intrusion, and that result among others required the existence with probability 1.0 of an internal reservoir (Morse, JPet 2008). Knowledge of cumulate porosity is a crucial key to the understanding of layered igneous rocks. We seek both the initial (inverse packing fraction) and residual porosity to find the time and process path from sedimentation to solidification. In the Kiglapait Lower Zone we have a robust estimate of mean residual porosity from the modes of the excluded phases augite, oxides, sulfide, and apatite. To this we apply the maximum variance of plagioclase composition (the An range) to find an algorithm that extends through the Upper Zone and to other intrusions. Of great importance is that all these measurements were made in grain mounts concentrated from typically about 200 g of core or hand specimen, hence the represented sample volume is thousands of times greater than for a thin section. The resulting distribution and scatter of the An range is novel and remarkable. It is V-shaped in the logarithmic representation of stratigraphic height, running from about 20 mole % at both ends (base to top of the Layered Series) to near-zero at 99 PCS. The intercept of the porosity-An range relation gives An range = 3.5 % at zero residual porosity. Petrographic analysis reveals that for PCS less than 95 and greater than 99.9, the An range is intrinsic, i.e. pre-cumulus, for

  14. Effects of EHD on heat transfer enhancement and pressure drop during two-phase condensation of pure R-134a at high mass flux in a horizontal micro-fin tube

    SciTech Connect

    Laohalertdecha, Suriyan; Wongwises, Somchai

    2006-07-15

    Effects of electrohydrodynamic (EHD) on the two-phase heat transfer enhancement and pressure drop of pure R-134a condensing inside a horizontal micro-fin tube are experimentally investigated. The test section is a 2.5m long counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from micro-fin horizontal copper tubing of 9.52mm outer diameter. The electrode is made from cylindrical stainless steel of 1.47mm diameter. Positive high voltage is supplied to the electrode wire, with the micro-fin tube grounded. In the presence of the electrode, a maximum heat transfer enhancement of 1.15 is obtained at a heat flux of 10kW/m{sup 2}, mass flux of 200kg/m{sup 2}s and saturation temperature of 40{sup o}C, while the application of an EHD voltage of 2.5kV only slightly increases the pressure drop. New correlations of the experimental data based on the data gathered during this work for predicting the condensation heat transfer coefficients are proposed for practical application. (author)

  15. Characterization of Showerhead Performance At Low Pressure

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Mihopoulos, Ted; Meyyappan, Meyya; Coronell, Dan; Carroll, Carol W. (Technical Monitor)

    1999-01-01

    The overall objective of this work is to characterize the flow to rough showerheads by deriving pressure drop versus velocity correlations to at can be then used in reactor scale simulations where the showerhead is approximated as a porous medium. At relatively low Reynolds numbers (less than 1-10 based on the hole length scale) and in the absence of slip flow, Darcy's Law, grad P = mu U/k, can be used to express the relation between the pressure drop and velocity where @mu@ is the fluid viscosity and it is the permeability that can be theoretically predicted as k= e R^2 /8, where e is the porosity. However, at sufficiently small hole diameters and decreased pressures (less than 5 Torr), the Knudsen number based on showerhead tube radius increases, and the flow may be in a transition regime. Different expressions have been proposed to account for this effect in the permeability by expressing k as a function of either pressure or Knudsen number. But at even higher Knudsen numbers, the pressure drop - velocity dependence is non-linear, and Darcy's Law no longer holds such that a permeability cannot be defined. The direct simulation Monte Carlo method is used along side conventional CFD techniques to determine the extent to which the CFD technique is appropriate and helps to derive correlations for the more rarefied cases of interest in these showerhead flows.

  16. Confined-unconfined changes above longwall coal mining due to increases in fracture porosity

    SciTech Connect

    Booth, C.J.

    2007-11-15

    Subsidence and strata movement above longwall (total extraction) coal mines produce complex hydrologic responses that can occur independently of drainage to the mine. One response is dewatering from confined to unconfined conditions in bedrock aquifers as a result of loss of water into new void space created by fracture and bedding separations. This dewatering process has been little studied but accounts for several hydraulic and geochemical effects of longwall mining. This article presents a conceptual model of the process and reviews evidence from case studies. Confined bedrock aquifers in subsiding zones exhibit dramatically steep head drops because of the low value of confined storage coefficients relative to the volume of water drained into the new fracture void space. The aquifer changes rapidly to an unconfined condition. Tight units to which air entry is restricted may even develop negative water pressures. In the unconfined state, sulfide minerals present in the strata readily oxidize to soluble hydrated sulfates. When the aquifer re-saturates, these salts are rapidly mobilized and produce a flush of increased sulfate and total dissolved solids (TDS) levels. Observations made in our previous studies in Illinois are consistent with the confined-unconfined model and include rapid head drops, changes to unconfined conditions, and increases in sulfate and TDS during re-saturation of a sandstone aquifer. Studies reported from the Appalachian coalfield show aspects consistent with the model, but in this high-relief fractured setting it is often difficult to distinguish aquifers from aquitards, confined from unconfined states, and the fracture-porosity cause of head drops from several others that occur during mine subsidence.

  17. Eye Drop Tips

    MedlinePlus

    ... Involved News About Us Donate In This Section Eye Drop Tips en Español email Send this article ... the reach of children. Steps For Putting In Eye Drops: Start by tilting your head backward while ...

  18. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  19. A dual-porosity reservoir model with a nonlinear coupling term

    SciTech Connect

    Zimmerman, R.W.; Chen, G.; Hadgu, T.; Bodvarsson, G.S.

    1992-09-01

    Since their introduction by Barenblatt et al. (1960), double-porosity models have been widely used for simulating flow in fractured reservoirs, such as geothermal reservoirs. In a dual-porosity system, the matrix blocks provide most of the storage of the reservoir, whereas the fractures provide the global transmissivity. Initially, most work on dual-porosity models emphasized the development of analytical solutions to idealized reservoir problems. Increasingly, the dual-porosity approach is being implemented by numerical reservoir simulators. Accurate numerical simulation of a dual-porosity problem often requires a prohibitively large number of computational cells in order to resolve the transient pressure gradients in the matrix blocks. We discuss a new dual-porosity model that utilizes a nonlinear differential equation to approximate the fracture/matrix interactions, When implemented into a numerical simulator, it eliminates the need to discretize the matrix blocks, and thereby allows more efficient simulation of reservoir problems.

  20. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  1. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam

    NASA Technical Reports Server (NTRS)

    Sullins, Alan D.; Daryabeigi, Kamran

    2001-01-01

    The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.

  2. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  3. Generalized Charts for Determination of Pressure Drop of a High-speed Compressible Fluid in Heat-exchanger Passages I : Air Heated in Smooth Passages of Constant Area with Constant Wall Temperature

    NASA Technical Reports Server (NTRS)

    Valerino, Michael F

    1948-01-01

    In the present paper an analysis is made of the compressible-flow variations occurring in heat-exchanger passages. The results of the analysis describe the flow and heating characteristics for which specific flow passages can be treated as segments of generalized flow systems. The graphical representation of the flow variations in the generalized flow systems can then be utilized as working charts to determine directly the pressure changes occurring in any specific flow passage. On the basis of these results, working charts are constructed to handle the case of air heated at constant wall temperature under turbulent-flow conditions. A method is given of incorporating the effect on the heat-exchanger flow process of high temperature differential between passage wall and fluid as based on recent NACA experimental data. Good agreement is obtained between the experimental and the chart pressure-drop values for passage-wall average temperatures as high as 1752 degrees R (experimental limit) and for flow Mach numbers ranging from 0.32 to 1.00 (choke) at the passage exit.

  4. Dehydration-induced porosity waves and episodic tremor and slip

    NASA Astrophysics Data System (ADS)

    Skarbek, Rob M.; Rempel, Alan W.

    2016-02-01

    Episodic tremor and slip (ETS) along the subduction interface takes place where there is abundant evidence for elevated, near-lithostatic pore pressures, at sufficiently great depths (30-45 km) that chemical dehydration reactions must act as their dominant source. We simulate fluid and heat flow while tracking the location of a vertically oriented, one-dimensional column of material as it subducts through the slow slip and tremor zone. The material in the column is transformed through a pressure-dependent and temperature-dependent dehydration reaction that we describe with a generalized nonlinear kinetic rate law. Column deformation is largely dominated by viscous creep, with a closure rate that depends linearly on porosity. This behavior causes the dehydration reaction to generate traveling porosity waves that transport increased fluid pressures within the slow slip region. To explore the possibility that the observed periodicity of slow slip and tremor in subduction zones can be explained by the migration of such porosity waves, we derive a dispersion relation that accurately describes our numerical results. We also obtain an expression for how the thickness of the dehydrating layer is expected to vary as a function of the parameters in the reaction rate law. Although the amplitudes of pore pressure perturbations rival those that are produced by known external forcings (e.g., tides or passing surface waves), our analysis suggests that given reasonable estimates of rock viscosity, permeabilities in the range 6.5×10-15 to 5×10-10 m2 are required for porosity wave trains to form at periods comparable to those of slow slip and tremor.

  5. A Novel Porosity Model for Use in Hydrocode Simulations

    NASA Technical Reports Server (NTRS)

    Wuennemann, K.; Collins, G. S.; Melosh, H. J.

    2005-01-01

    Introduction: Numerical modeling of impact cratering has reached a high degree of sophistication; however, the treatment of porous materials still poses a large problem in hydrocode calculations. Porosity plays only a minor role in the formation of large craters on most planetary objects, but impacts on comets are believed to be highly affected by the presence of porosity, which may be as much as 80%. The upcoming Deep Impact Mission (launched January 2005) will provide more detailed data about the composition of a comet (Tempel 1) by shooting a approx.370 kg projectile onto the surface of its nucleus. The numerical simulations of such impact events requires an appropriate model for how pore space in the comet is crushed out during the violent initial stage of the impact event. Most hydro-codes compute the pressure explicitly using an "equation of state" (EOS) for each material, which relates changes in density and internal energy to changes in pressure. The added complication introduced by porosity is that changes in a material s density are due to both the closing of pore space (compaction) and compression of the matrix. The amount of resistance to volume change and the amount of irreversible work done during these two processes is very different; it is far easier to compact a porous material sample than to compress a non-porous sample of the same material. As an alternative to existing porosity models, like the Pdot(alpha) model [1], we present a novel approach for dealing with the compaction of porosity in hydrocode calculations.

  6. Passive porosity with free and fixed separation on a tangent-ogive forebody

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Banks, Daniel W.; Bauer, Steven X. S.

    1994-01-01

    Despite the extensive experimental and computational data base in the literature on passive porosity, no clear explanation of the governing flow physics exists. It is theorized that the positive porosity concept modifies the external pressure loading by allowing communication between high- and low-pressure regions on the external surface. This study determines the dominant flow phenomena that govern the effectiveness of passive porosity. It aims to assess the contribution of each phenomenon as related to a porous slender axisymmetric forebody. To assess the influence of the mass transfer and pressure equalization phenomena on the effectiveness of passive porosity on slender axisymmetric forebodies, strakes were attached to the 5.0-caliber solid and porous forebodies to force crossflow separation. Longitudinal force and moment data were obtained at a Mach number of 0.1 over an angle-of-attack range of 0 to 55 deg.

  7. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  8. Porosity in metal-organic framework glasses.

    PubMed

    Thornton, A W; Jelfs, K E; Konstas, K; Doherty, C M; Hill, A J; Cheetham, A K; Bennett, T D

    2016-03-07

    The porosity of a glass formed by melt-quenching a metal-organic framework, has been characterized by positron annihilation lifetime spectroscopy. The results reveal porosity intermediate between the related open and dense crystalline frameworks ZIF-4 and ZIF-zni. A structural model for the glass was constructed using an amorphous polymerization algorithm, providing additional insight into the gas-inaccessible nature of porosity and the possible applications of hybrid glasses.

  9. Porosity determination of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Van Roode, Mark; Beardsley, Brad

    1988-01-01

    Coating porosity is believed to be a critical factor for the thermal conductivity of thermal barrier coatings (TBCs). A number of different techniques have been used to determine the porosities of thermal barrier coatings for diesel applications as part of a NASA/DOE sponsored study. A comparison is made between methods based on water immersion, optical microscopy, eddy current thickness measurements, and Archimedes principle for TBC porosity determination.

  10. Youth Crime Drop. Report.

    ERIC Educational Resources Information Center

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  11. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  12. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  13. A review of recent advances in the assessment of bone porosity, permeability, and interstitial fluid flow

    PubMed Central

    Cardoso, Luis; Fritton, Susannah P.; Gailani, Gaffar; Benalla, Mohammed; Cowin, Stephen C.

    2012-01-01

    This contribution reviews recent research performed to assess the porosity and permeability of bone tissue with the objective of understanding interstitial fluid movement. Bone tissue mechanotransduction is considered to occur due to the passage of interstitial pore fluid adjacent to dendritic cell structures in the lacunar-canalicular porosity. The movement of interstitial fluid is also necessary for the nutrition of osteocytes. This review will focus on four topics related to improved assessment of bone interstitial fluid flow. First, the advantages and limitations of imaging technologies to visualize bone porosities and architecture at several length scales are summarized. Second, recent efforts to measure the vascular porosity and lacunar-canalicular microarchitecture are discussed. Third, studies associated with the measurement and estimation of the fluid pressure and permeability in the vascular and lacunar-canalicular domains are summarized. Fourth, the development of recent models to represent the interchange of fluids between the bone porosities is described. PMID:23174418

  14. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    TOUGHREACT coupled to ROCMECH (geomechanics simulator), and tested 1D and 2D small-scale problems. The numerical results show clear differences between the single and dual/multiple porosity systems. For example, the pressure in the fracture for the five-porosity model becomes higher than those for the single porosity system because the fracture bulk modulus is lower than the upscaled bulk modulus used in the single porosity. For elastoplasticity (the Mohr-Coulomb model), the pressure in the fracture can be supported by compaction when the fracture is in the plastic region. In a 2D case of the five-porosity system, we compare results of thermoporoelasticity with those of a conventional flow simulation using rock compressibility, and find significant differences between them. In conclusion, introducing multiple continuum concepts into geomechanical descriptions of fractured rock can provide more accurate models for coupled flow and geomechanics in fractured porous media.

  15. Reduction of Wake-Stator Interaction Noise Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Thomas, Russell H.; Bauer, Steven X. S.

    2002-01-01

    The present study was conducted to assess the potential of Passive Porosity Technology as a mechanism to reduce interaction noise in turbomachinery by reducing the fluctuating forces acting on the vane surfaces. To do so, a typical fan stator airfoil was subjected to the effects of a transversely moving wake; time histories of the primitive aerodynamic variables, obtained from Computational Fluid Dynamics (CFD) solutions, were then input into an acoustic prediction code. This procedure was performed on the solid airfoil to obtain a baseline, and on a series of porous configurations in order to isolate those that yield maximum noise reductions without compromising the aerodynamic performance of the stator. It was found that communication between regions of high pressure differential - made possible by the use of passive porosity - is necessary to significantly alter the noise radiation pattern of the stator airfoil. In general, noise reductions were obtained for those configurations incorporating passive porosity in the region between x/c is approximately 0.15 on the suction side of the airfoil and x/c is approximately 0.20 on the pressure side. Reductions in overall radiated noise of approximately 1.0 dB were obtained. The noise benefit increased to about 2.5 dB when the effects of loading noise alone were considered.

  16. Millikan "oil drop" stabilized by growth.

    PubMed

    Sun, L K; Gertler, A W; Reiss, H

    1979-01-26

    A diffusion cloud chamber has been used to qualitatively study some dynamic properties of liquid drops by suspending them in an electric field at the plane of saturation (p/ps = 1, where p is the actual partial pressure of the vapor at a given elevation and ps is the equilibrium pressure at that temperature characteristic of that elevation). By varying the strength of the electric field, it is possible to change the size of the suspended droplets and even, if desired, to isolate a single drop.

  17. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  18. Relationship between compressional-wave velocity and porosity of sediments along subduction plate interface

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Hashimoto, Y.

    2012-12-01

    Evolution of physical properties of sediments along subduction interface has effects on wedge strength, wedge geometry, dewatering and dehydration processes, and seismic behavior. Sediments have initially more than 70% of porosity prior to subduction. Through underthrusting and accretion, porosity of sediments decreases by compaction and cementation to be lithified sediments. The purpose of this study is to understand evolution of physical properties from a state before subduction to a state within a wedge using a relationship between compressional-wave velocity and porosity. In this study, we obtained new data for sediments from a reference site in IODP NanTroSEIZE, Expedition 333. In addition to that, we have complied velocity-porosity relationships for the samples and also for previous studies from NanTroSEIZE (off Kumano) (Hashimoto et al., 2010, 2011), ODP Leg 190 (off Shikoku) (Hoffman and Tobin, 2004) and ODP Leg 170 (off Costa Rica) (Gettemy and Tobin, 2003). Velocity measurement procedure in this study to obtain new data is as following: Two pumps were used to control pore fluid pressure and confining pressure. The pore pressure of 1000kPa was kept under drained conditions. Confining (effective) pressure was increased stepwise in the measurements. Velocity measurements were conducted under isotropic pressure conditions. Confining pressure was pressurized in tens seconds and kept for more than 8 hours for next step to obtain equilibrium conditions between effective pressure and sediments strain. Lead zirconate titanate (PZT) shear wave transducers (500kHz) were used in a source-receiver pair to measure wave speed. Porosity and P-wave velocity ranges about 27 - 75% and 1.4 - 2.2 km/s in this study, respectively. In the comparison in Vp-porosity relationships between sedimetns from reference sites and others, sediments were classified into two, simply compacted sediments (reference site and slope sediments) and wedge sediments. Different trends in Vp-porosity

  19. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  20. Modeling of the transition zone porosity

    SciTech Connect

    Bourdette, B.; Ringot, E.; Ollivier, J.P.

    1995-05-01

    The ion diffusion process in mortar is different from the one which occurs in cement paste. This difference is due to the presence of transition zones, which take place around the grains in mortar and which are very porous regions. Based on mercury intrusion porosimetry experimental data and on the analysis of percolation through a 3D mortar model, a computation of the transition zone porosity and of the bulk paste porosity has been carried out. The porosity of the transition zone has been analyzed as a function of the mortar composition and of the degree of hydration.

  1. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  2. Fabrication of dual porosity electrode structure

    DOEpatents

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  3. Fabrication of dual porosity electrode structure

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1991-01-01

    A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.

  4. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  5. Complex Drop Impact Morphology.

    PubMed

    Grishaev, Viktor; Iorio, Carlo Saverio; Dubois, Frank; Amirfazli, A

    2015-09-15

    The aim of this work is to understand the changes in the observed phenomena during particle-laden drop impact. The impact of millimeter-size drops was investigated onto hydrophilic (glass) and hydrophobic (polycarbonate) substrates. The drops were dispersions of water and spherical and nearly iso-dense hydrophobic particles with diameters of 200 and 500 μm. The impact was studied by side and bottom view images in the range 150 ≤ We ≤ 750 and 7100 ≤ Re ≤ 16400. The particles suppressed the appearance of singular jetting and drop partial rebound but promoted splashing, receding breakup, and rupture. The drops with 200 μm particles spread in two phases: fast and slow, caused by inertial and capillary forces, respectively. Also, the increase in volume fraction of 200 μm particle led to a linear decrease in the maximum spreading factor caused by the inertia force on both hydrophilic and hydrophobic substrates. The explanation of this reduction was argued to be the result of energy dissipation through frictional losses between particles and the substrate.

  6. Estimation of Concrete's Porosity by Ultrasounds

    NASA Astrophysics Data System (ADS)

    Benouis, A.; Grini, A.

    Durability of concrete depends strongly on porosity; this conditions the intensity of the interactions of the concrete with the aggressive agents. The pores inside the concrete facilitate the process of damage, which is generally initiated on the surface. The most used measurement is undoubtedly the measurement of porosity accessible to water. The porosimetry by intrusion with mercury constitutes a tool for investigation of the mesoporosity. The relationship between concrete mixtures, porosity and ultrasonic velocity of concrete samples measured by ultrasonic NDT is investigated. This experimental study is interested in the relations between the ultrasonic velocity measured by transducers of 7.5 mm and 49.5 mm diameter and with 54 kHz frequency. Concrete specimens (160 mm diameter and 320 mm height) are fabricated with concrete of seven different mixtures (various W/C and S/S + G ratios), which gave porosities varying between 7% and 16%. Ultrasonic velocities in concrete were measured in longitudinal direction. Finally the results showed the influence of ratio W/C, where the porosity of the concretes of a ratio W/C _0,5 have correctly estimated by ultrasonic velocity. The integration of the concretes of a lower ratio, in this relation, caused a great dispersion. Porosity estimation of concretes with a ratio W/C lower than 0,5 became specific to each ratio.

  7. Porosity prediction in sandstones using erosional unconformities

    SciTech Connect

    Shanmugam, G.

    1989-03-01

    Erosional unconformities of subaerial origin are created by tectonic uplifts and eustatic sea level fall. Most erosional unconformities developed on sandstones are planes of increased porosity because uplifted sandstones are exposed to undersaturated CO/sub 2/-charged meteoric waters that result in dissolution of unstable framework grains and cements. The chemical weathering of sandstones is intensified in humid regions by the heavy rainfall, soil zones, lush vegetation, and accompanying voluminous production of organic and inorganic acids. Erosional unconformities are considered hydrologically open systems because of abundant supply of fresh meteoric water and relatively unrestricted transport of dissolved constituents away from the site of dissolution, causing a net gain in porosity near unconformities. Thus, porosity in sandstones tends to increase toward overlying unconformities. Such porosity trends have been observed in hydrocarbon-bearing sandstone reservoirs in Alaska, Algeria, Australia, China, Libya, Netherlands, Norwegian North Sea, Norwegian Sea, and Texas. A common attribute of these reservoirs is that they were all subaerially exposed under heavy rainfall conditions. An empirical model has been developed for the Triassic and Jurassic sandstone reservoirs in the Norwegian North Sea on the basis of the observed relationship that shows an increase in porosity in these reservoirs with increasing proximity to the overlying base of Cretaceous unconformity. An important practical attribute of this model is that it allows for the prediction of porosity in the neighboring undrilled areas by recognizing the base of Cretaceous unconformity in seismic reflection profiles and by constructing subcrop maps.

  8. Drop dynamics on a stretched viscoelastic filament: An experimental study

    NASA Astrophysics Data System (ADS)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  9. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  10. Porosity, Pore Size, and Permeability of Sediments from Site C0002, IODP Expedition 338

    NASA Astrophysics Data System (ADS)

    Dugan, B.; Huepers, A.; Song, I.; Kitajima, H.; Esteban, L.

    2013-12-01

    Mercury injection capillary pressure (MICP) measurements were made on cuttings and core samples from Integrated Ocean Drilling Program (IODP) Site C0002 to evaluate porosity, pore throat size, and permeability of mud(stone) at the centerpiece drill site of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). Core samples from 221-464 meters below sea floor (mbsf) in the Kumano forearc basin have MICP-determined porosities from 40-56%, median pore radii from 0.077-0.205 microns, and permeability from 3.3x10-10 - 2.0x10-9 m2. The porosity of these core samples is similar to shipboard porosity determined from moisture and density (MAD) analyses. During IODP Expedition 338 cuttings samples were recovered from ~865-2005 mbsf during riser drilling at Site C0002F. MICP analyses of cuttings samples, greater than 4 mm size fraction, from 928-1980 mbsf in the inner wedge of the accretionary prism constrain porosities from 21-44%, median pore radii from 0.021-0.032 microns, and permeability from 1.2x10-11 - 1.6x10-10 m2. The porosity of these cuttings samples is consistently lower than the MAD-determined porosity on cuttings from the >4mm size fraction, however the values are consistent with core-based, MAD-derived porosity from Hole C0002B above 1057 mbsf and with cuttings-based, MAD-derived porosity on select samples from 1700-2000 mbsf that were determined to be intact formation and not influenced by drilling disturbance. These results suggest that select formation cuttings or MICP-analyses can help define in situ porosity. Additional post-expedition research will be used to better understand the ability of MICP data to define mudstone permeability and to constrain permeability-porosity and permeability-grain size-pore throat relations for sediments at Site C0002. A detailed model of permeability and porosity behavior will inform modeling studies of pore pressure generation and fluid and heat transport.

  11. Effects of Passive Porosity on Interacting Vortex Flows At Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity on vortex flow interaction about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS) These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

  12. Modeling of porosity formation and feeding flow during casting of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Lin, Zhiping

    Porosity is one of the most important defects in metal casting. To quantitatively predict the porosity formation during casting two numerical models are developed for steel and aluminum alloys respectively. For steel, a multi-phase model is developed that predicts melt pressure, feeding flow, porosity (both microscopic and macroscopic), and riser pipe formation during casting. The phases included in the model are solid, liquid, porosity, and air. An energy equation is solved to determine solid fraction. A multi-phase momentum equation, which is valid everywhere in the solution domain, is derived. A pressure equation is then derived from this momentum equation and a mixture continuity equation developed that accounts for all phases. The partial pressure of a gas species dissolved in the melt is determined using the species concentration, which is found by solving a species conservation equation that accounts for convection. Porosity forms once the gas pressure exceeds the sum of the melt pressure and the capillary pressure. The amount of porosity that forms is determined from the mixture continuity equation. The riser pipe is determined from an air continuity equation. A pore size model, which considers the effects of the solidifying steel microstructure on pore size, is incorporated into the multi-phase model. The multi-phase model is applied to one-dimensional, two-dimensional, and three-dimensional simulations. The results clearly illustrate the basic physical phenomena involved and predict microporosity and macroporosity distributions, as well as a riser pipe. For aluminum alloys a gas microsegregation model is developed to quantitatively predict porosity, coupled with the calculations of the pressure field, feeding flow, and distribution of dissolved gas species throughout the casting. The effects of dendritic and eutectic microstructure on the pore shape and size are considered in a pore size model. The model is applied to one-dimensional simulations of A319

  13. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  14. SALTSTONE VARIABILITY STUDY - MEASUREMENT OF POROSITY

    SciTech Connect

    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R

    2007-08-23

    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast ({approx}15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For

  15. High=porosity Cenozoic carbonate rocks of South Florida: progressive loss of porosity with depth

    USGS Publications Warehouse

    Halley, Robert B.; Schmoker, James W.

    1983-01-01

    Porosity measurements by borehole gravity meter in subsurface Cenozoic carbonates of South Florida reveal an extremely porous mass of limestone and dolomite which is transitional in total pore volume between typical porosity values for modern carbonate sediments and ancient carbonate rocks. A persistent decrease of porosity with depth, similar to that of chalks of the Gulf Coast, occurs in these rocks. Carbonate strata with less than 20% porosity are absent from the rocks studied here. Aquifers and aquicludes cannot be distinguished on the basis of porosity. Aquifers are not exceptionally porous when compared to other Tertiary carbonate rocks in South Florida. Permeability in these strata is governed more by the spacial distribution of pore space and matrix than by total volume of porosity present. Dolomite is as porous as, or slightly less porous than, limestones in these rocks. This observation places limits on any model proposed for dolomitization and suggests that dolomitization does not take place by a simple ion-for-ion replacement of magnesium for calcium. Dolomitization may be selective for less porous limestone, or it may involve the incorporation of significant amounts of carbonate as well as magnesium into the rock. The great volume of pore space in these rocks serves to highlight the inefficiency of early diagenesis in reducing carbonate porosity and to emphasize the importance of later porosity reduction which occurs during the burial or late near-surface history of limestones and dolomites.

  16. Graded-porosity heat-pipe wicks

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1976-01-01

    To maximize the capacity of a nonarterial heat pipe, a wick is considered whose porosity is allowed to vary axially along its length. At every axial location the porosity is set no lower than required to maintain the wick in a nearly saturated state under the maximum heat-transport rate. The result is a wick whose permeability is everywhere as high as possible. The differential equation that governs the optimum porosity variation is solved numerically between a condenser-end boundary condition that just prevents a liquid slug or puddle in the vapor spaces and an evaporator-end boundary condition that just prevents circumferential groove dry-up. Experimental performance measurements for an ammonia heat pipe are presented.

  17. Packing Bunker and Pile Silos to Minimize Porosity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article discusses the issue of porosity (i.e., the portion of volume filled with gas) in silages. As porosity increases, the silage is subject to greater losses. Porosity can be reduced by adequately packing the crop at ensiling. To keep porosity below 40% a minimum bulk density of 44 lbs./cu. ...

  18. Low blood pressure

    MedlinePlus

    Hypotension; Blood pressure - low; Postprandial hypotension; Orthostatic hypotension; Neurally mediated hypotension; NMH ... Blood pressure varies from one person to another. A drop as little as 20 mmHg, can cause problems for ...

  19. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models

  20. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    NASA Astrophysics Data System (ADS)

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger

    2014-05-01

    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

  1. Drop tube technical tasks

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1986-01-01

    Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.

  2. The new Drop Tower catapult system

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  3. Electrostatic drops in orbit

    NASA Astrophysics Data System (ADS)

    Rodriguez, Isabel J.; Schmidt, Erin; Weislogel, Mark M.; Pettit, Donald

    2016-11-01

    We present what we think are the first intentional electrostatic orbits in the near-weightless environment of a drop tower. Classical physics problems involving Coulombic forces in orbital mechanics have traditionally been confined to thought experiments due to practical terrestrial experimental limitations, namely, the preponderance of gravity. However, the use of a drop tower as an experimental platform can overcome this challenge for brief periods. We demonstrate methanol-water droplets in orbit around a variety of charged objects- some of which can be used to validate special cases of N-body systems. Footage collected via a high-speed camera is analyzed and orbital trajectories are compared with existing theoretical predictions. Droplets of diameters 0.5 to 2mm in a variety of obits are observed. Due to the repeatability of drop tower initial conditions and effective low-g environment, such experiments may be used to construct empirical analogues and confirm analyses toward the benefit of other fields including space and planetary science. NASA Cooperative Agreement NNX12A047A, Portland State LSAMP, Robert E. McNair Scholars Program.

  4. Drop Testing Representative Multi-Canister Overpacks

    SciTech Connect

    Snow, Spencer D.; Morton, Dana K.

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  5. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  6. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1993-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  7. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1996-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  8. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  9. Formulas for sediment porosity and settling velocity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The formulas of Komura (1963) and Han et al. (1981) for the initial porosity of sediment deposits were tested using data sets collected in different countries and regions. It was found that Komura’s formula slightly underestimates the dry density for sand and gravel deposits and overestimates those ...

  10. Porosity Log Prediction Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier

    2016-08-01

    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  11. A simple procedure for estimating soil porosity

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Holden, Nick

    2016-04-01

    Soil degradation from mismanagement is of international concern. Simple, accessible tools for rapidly assessing impacts of soil management are required. Soil structure is a key component of soil quality and porosity is a useful indicator of structure. We outline a version of a procedure described by Piwowarczyk et al. (2011) used to estimate porosity of samples taken during a soil quality survey of 38 sites across Ireland as part of the Government funded SQUARE (Soil Quality Assessment Research) project. This required intact core (r = 2.5 cm, H = 5cm) samples taken at 5-10 cm and 10-20 cm depth, to be covered with muslin cloth at one end and secured with a jubilee clip. Samples were saturated in sealable water tanks for ≈ 64 hours, then allowed to drain by gravity for 24 hours, at which point Field Capacity (F.C.) was assumed to have been reached, followed by oven drying with weight determined at each stage. This allowed the calculation of bulk density and the estimation of water content at saturation and following gravitational drainage, thus total and functional porosity. The assumption that F.C. was reached following 24 hours of gravitational drainage was based on the Soil Moisture Deficit model used in Ireland to predict when soils are potentially vulnerable to structural damage and used nationally as a management tool. Preliminary results indicate moderately strong, negative correlations between estimated total porosity at 5-10 cm and 10-20 cm depth (rs = -0.7, P < 0.01 in both cases) and soil quality scores of the Visual Evaluation of Soil Structure (VESS) method which was conducted at each survey site. Estimated functional porosity at 5-10 cm depth was found to moderately, negatively correlate with VESS scores (rs = - 0.5, P < 0.05). This simple procedure requires inexpensive equipment and appears useful in indicating porosity of a large quantity of samples taken at numerous sites or if done periodically, temporal changes in porosity at a field scale

  12. Leidenfrost Drop on a Step

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Le Merrer, Marie; Clanet, Christophe; Quere, David

    2008-11-01

    When deposited on a hot plate, a water droplet evaporates quickly. However, a vapor film appears under the drop above a critical temperature, called Leidenfrost temperature, which insulates the drop from its substrate. Linke & al (2006) reported a spontaneous movement of such a drop, when deposited on a ratchet. We study here the case of a flat substrate decorated with a single micrometric step. The drop is deposited on the lower part of the plate and pushed towards the step at small constant velocity. If the kinetic energy of the drop is sufficient, it can climb up the step. In that case, depending on the substrate temperature, the drop can either be decelerated or accelerated by the step. We try to understand the dynamics of these drops, especially the regime where they accelerate. Taking advantage of this phenomenon, we could then build a multiple-step setup, making it possible for a Leidenfrost drop to climb stairs.

  13. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  14. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    SciTech Connect

    Freifeld, Barry Mark

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  15. The impact of porosity waves on crustal reaction progress and CO2 mass transfer

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Ague, Jay J.

    2014-03-01

    Rocks below the brittle-ductile transition can deform viscously and compact while fluid percolates through (two-phase solid-fluid flow). We investigate chemical reaction systematics during two-phase flow using one-dimensional numerical models in which reactive H2O-CO2 fluid ascends down-temperature toward the surface, driving the retrograde reaction: 7CO2+3Calcite+Tremolite=5Dolomite+8Quartz+H2O. The reaction progress is compared to that predicted by fluid-rock reaction during “standard” Darcian flow. A range of layer thicknesses (km-scale) in one- and two-layer systems were investigated at pressure-temperature conditions below the brittle-ductile transition corresponding to ∼13-20 km depth. Model porosity waves of wavelength ∼5 km were generated repeatedly at the base of the flow region using a solitary wave solution with a prescribed initial wave amplitude A = (maximum porosity)/(background porosity of 10-3). Simulation of reaction progress and carbon transfer for the Darcian flow model and for porosity wave transport with A=5, 2.5 and 1.25 yield the following results. First, the overall reaction progress in the two fluid transport models is mainly controlled by the time-integrated fluid flux, and is not strongly dependent on the flow regime. The implication is that the fluid pressure gradient anomalies in the regional-scale porosity waves modeled herein play a negligible role in driving reaction progress. Second, although there are high fluid velocities and thus strong advection in large amplitude porosity waves, the kinetic parameters adopted from experiments predict that the fluid compositions approach local fluid-rock equilibrium in both transport models. Third, regional-scale carbonate-bearing rock layers may be substantial sinks for carbon in ascending fluids if sufficient porosity and permeability can be maintained during reaction. Finally, typical models of retrograde reactions predict that porosity ultimately becomes clogged and, thus, fluid flow

  16. Drop foot corrective device

    NASA Technical Reports Server (NTRS)

    Deis, B. C. (Inventor)

    1986-01-01

    A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.

  17. Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Valdivia, Juan-Carlos; Marquez, Jesús; Susarrey, Orlando; Solorio-Avila, Marco A.

    2016-08-01

    In this Letter, we report experimental and theoretical studies of Newtonian fluid flow through permeable media with fractal porosity. Darcy flow experiments were performed on samples with a deterministic pre-fractal pore network. We found that the seepage velocity is linearly proportional to the pressure drop, but the apparent absolute permeability increases with the increase of sample length in the flow direction L. We claim that a violation of the Hagen-Poiseuille law is due to an anomalous diffusion of the fluid momentum. In this regard we argue that the momentum diffusion is governed by the flow metric induced by the fractal topology of the pore network. The Darcy-like equation for laminar flow in a fractal pore network is derived. This equation reveals that the apparent absolute permeability is independent of L, only if the number of effective spatial degrees of freedom in the pore-network ν is equal to the network fractal (self-similarity) dimension D, e.g. it is in the case of fractal tree-like networks. Otherwise, the apparent absolute permeability either decreases with L, if ν < D, e.g. in media with self-avoiding fractal channels, or increases with L, if ν > D, as this is in the case of the inverse Menger sponge.

  18. Porosity and the ecology of icy satellites

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    The case for a significant role for porosity in the structure and evolution of icy bodies in the Solar System has been difficult to establish. We present a relevant new data set and a series of structure models including a mechanical compression, not thermal creep, model for porosity that accounts satisfactorily for observed densities, moments of inertia, geologic activity, and sizes of tectonic features on icy satellites. Several types of observational data sets have been used to infer significant porosity, but until recently, alternative explanations have been preferred. Our first area of concern is the occurrence of cryovolcanism as a function of satellite radius; simple radiogenic heating models of icy satellites suggest minimum radii for melting and surface cryovolcanism to be 400 to 500 km, yet inferred melt deposits are seen on satellites half that size. One possible explanation is a deep, low conductivity regolith which lowers conductivity and raises internal temperatures, but other possibilities include tidal heating or crustal compositions of low conductivity. Our second area of concern is the occurrence and magnitude of tectonic strain; tectonic structures have been seen on icy satellites as small as Mimas and Proteus. The structures are almost exclusively extensional, with only a few possible compression Al features, and inferred global strains are on the order of 1 percent expansion. Expansions of this order in small bodies like Mimas and prevention of late compressional tectonics due to formation of ice mantles in larger bodies like Rhea are attained only in structure models including low-conductivity, and thus possibly high porosity, crusts. Thirdly, inferred moments of inertia less than 0.4 in Mimas and Tethys can be explained by high-porosity crusts, but also by differentiation of a high density core. Finally, the relatively low densities of smaller satellites like Mimas and Miranda relative to larger neighbors can be explained by deep porosity

  19. Porosity and permeability evolution of clay faults: in situ experiments

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guglielmi, Y.; Seguy, S.; Lefevre, M.; Ghani, I.; Gent, G.; Castilla, R.; Gout, C.; Dick, P.; Nussbaum, C.; Durand, J.

    2015-12-01

    Fault models associating low permeability cores with high permeability damage zones are widely accepted, however, constitutive laws relating permeability with fault structure, stress, and strain remain poorly constrained. We here present preliminary results of hydromechanical experiments performed at the 10 m scale in fault zones in Toarcian and Aalenian black shale formations. Intact formations have a very low permeability (10-19 to 10-22 m2). One case (in IRSN's Tournemire Underground Research Laboratory) displays a porosity increase in and around the fault core and abundant veins and calcite cemented small faults in the damage zone. The other case (Mont Terri Swisstopo Underground Research Laboratory) displays a porosity decrease in the fault core zone and few veins. However, under the present stress state, the static permeability of the fractured zones at both locations is higher than that of the intact formation by up to 3 orders of magnitude. During borehole pressurization tests three regimes of permeability variations are observed. (1) Fracture permeability first increases progressively as a function of fluid pressure (2) When a threshold is reached, permeability further increases by 100 or more, but strain as well as permeability variations remain in most part reversible. (3) When a steady pressure is maintained in the injection borehole (from 20 minutes to several days) flow rate tends to decrease with time. These results show that high transient permeability may locally occur in a fault zone under conditions when most of the deformation is reversible, opening the possibility of transient fluid migration decoupled from slip along faults that are not favorably oriented. However, during one test, more than 1 mm of irreversible slip occurred along one of the main interfaces, associated with a sudden increase in flow rate (from 11 to more than 40 l/min). This suggests that when slip occurs, it could result in permeability variations that may remain difficult

  20. Hayward Fault rocks: porosity, density, and strength measurements

    USGS Publications Warehouse

    Morrow, C.A.; Lockner, D.A.

    2001-01-01

    Porosity, density and strength measurements were conducted on rock samples collected from the Hayward Fault region in Northern California as part of the Hayward Fault Working Group’s efforts to create a working model of the Hayward Fault. The rocks included in this study were both fine and coarse grained gabbros, altered keratophyre, basalt, sandstone, and serpentinite from various rock formations adjacent to the Hayward Fault. Densities ranged from a low of 2.25 gm/cc (altered keratophyre) to 3.05 gm/cc (fine gabbro), with an average of 2.6 gm/cc, typical of many other rocks. Porosities were generally around 1% or less, with the exception of the sandstone (7.6%) and altered keratophyre (13.5%). Failure and frictional sliding tests were conducted on intact rock cylinders at room temperature under effective pressure conditions of up to 192 MPa, simulating depths of burial to 12 km. Axial shortening of the samples progressed at a rate of 0.1 µm/sec (fine samples) or 0.2 µm/sec (porous samples) for 6 mm of displacement. Velocity stepping tests were then conducted for an additional 2 mm of displacement, for a total of 8 mm. Both peak strength (usually failure strength) and frictional strength, determined at 8 mm of displacement, increased systematically with effective pressure. Coefficients of friction, based on the observed fracture angles, ranged from 0.6 to 0.85, consistent with Byerlee’s Law. Possible secondary influences on the strength of the Hayward rock samples may be surface weathering, or a larger number of pre-existing fractures due to the proximity to the Hayward Fault. All samples showed velocity strengthening, so that the average a-b values were all strongly positive. There was no systematic relation between a-b values and effective pressure. Velocity strengthening behavior is associated with stable sliding (creep), as observed in the shallow portions of the Hayward Fault.

  1. Dolomite reservoirs: Porosity evolution and reservoir characteristics

    SciTech Connect

    Sun, S.Q.

    1995-02-01

    Systematic analyses of the published record of dolomite reservoirs worldwide reveal that the majority of hydrocarbon-producing dolomite reservoirs occurs in (1) peritidal-dominated carbonate, (2) subtidal carbonate associated with evaporitic tidal flat/lagoon, (3) subtidal carbonate associated with basinal evaporite, and (4) nonevaporitic carbonate sequence associated with topographic high/unconformity, platform-margin buildup or fault/fracture. Reservoir characteristics vary greatly from one dolomite type to another depending upon the original sediment fabric, the mechanism by which dolomite was formed, and the extent to which early formed dolomite was modified by post-dolomitization diagenetic processes (e.g., karstification, fracturing, and burial corrosion). This paper discusses the origin of dolomite porosity and demonstrates the porosity evolution and reservoir characteristics of different dolomite types.

  2. Effect of Pellet Coatings on PETN Porosity and Slapper Detonator Efficacy

    NASA Astrophysics Data System (ADS)

    Brown, Kathryn; Haroz, Erik; Brown, Geoff; Monroe, Deirdre

    2015-06-01

    PETN is well known to have a high vapor pressure and tends to sublime when heated. Preliminary experiments suggest that this phenomenon results in increased porosity and may decrease sensitivity to shock initiation by a chip slapper detonator. In this study, PETN pellets were coated on the flyer impact surface with various materials. The pellets were subjected to heating over several days, and the surfaces were analyzed for porosity and recrystallization. We attempted to shock initiate each using a chip slapper detonator, and the timing and voltages required were noted.

  3. Trapped liquid drop at the end of capillary.

    PubMed

    Wang, Zhengjia; Yen, Hung-Yu; Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-10-01

    The liquid drop captured at the capillary end, which is observed in capillary valve and pendant drop technique, is investigated theoretically and experimentally. Because of contact line pinning of the lower meniscus, the lower contact angle is able to rise from the intrinsic contact angle (θ*) so that the external force acting on the drop can be balanced by the capillary force. In the absence of contact angle hysteresis (CAH), the upper contact angle remains at θ*. However, in the presence of CAH, the upper contact angle can descend to provide more capillary force. The coupling between the lower and upper contact angles determines the equilibrium shape of the captured drop. In a capillary valve, the pinned contact line can move across the edge as the pressure difference exceeds the valving pressure, which depends on the geometrical characteristic and wetting property of the valve opening. When CAH is considered, the valving pressure is elevated because the capillary force is enhanced by the receding contact angle. For a pendant drop under gravity, the maximal capillary force is achieved as the lower contact angle reaches 180° in the absence of CAH. However, in the presence of CAH, four regimes can be identified by three critical drop volumes. The lower contact angle can exceed 180°, and therefore the drop takes on the shape of a light bulb, which does not exist in the absence of CAH. The comparisons between Surface Evolver simulations and experiments are quite well.

  4. Reducing the open porosity of pyroboroncarbon articles

    NASA Astrophysics Data System (ADS)

    Martyushov, G. G.; Zakharevich, A. M.; Pichkhidze, S. Ya.; Koshuro, V. A.

    2016-02-01

    It is established that a decrease in the open porosity of pyroboroncarbon, a pyrolytic glassy composite material of interest for manufacturing prosthetic heart valves (PHVs), can be achieved via impregnation of articles with an alcohol solution of 3-aminopropyltriethoxysilane and subsequent thermal treatment. The maximum roughness height and linear size of open pores on the surface of PHV parts made of pyroboroncarbon can additionally be reduced by final mechanical processing of a silicon oxide film formed on the surface.

  5. On the wind force needed to dislodge a drop adhered to a surface

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1988-01-01

    The dislodging by dynamic pressure forces of a drop adhered by surface tension to a plane is considered. The method involves the numerical solution of the integrodifferential equation describing the drop shape and the obtaining of the critical Weber number as a function of contact angle hysteresis. The study assumes high-Reynolds-number free-streamline separation from the drop.

  6. Technology of eye drops containing aloe (Aloe arborescens Mill.--Liliaceae) and eye drops containing both aloe and neomycin sulphate.

    PubMed

    Kodym, A; Marcinkowski, A; Kukuła, H

    2003-01-01

    Eye drops made of aloe are a sterile, aqueous extract of fresh leaves of Aloe arborescens Mill., containing necessary additives and neomycin sulphate. The aim of the studies was to establish the technology of eye drops containing biologically active aloe substances and those containing both chemical constituents of aloe and neomycin sulphate. Within the studies, the formulary content and the way of preparing eye drops were determined, criteria were defined and methods of qualitative assessment of drops were proposed. On the basis of the proposed analytical methods, the physicochemical and microbiological stability of the eye drops stored at a temperature of 20-25 degrees C was studied. As the criteria of qualitative assessment of the eye drops, the following analyses were considered: sterility, appearance of the eye drops (clarity), pH, osmotic pressure, density, viscosity, TLC analysis, content of aloenin and aloin, studies of anti-microbial activity of neomycin in the drops, and preservative efficiency of thiomersal in the eye drops. The studies showed that the additives such as: sodium chloride, benzalkonium chloride, chlorhexidine diacetate and digluconate, phenylmercuric borate and Nipagins M and P could not be used to prepare the eye drops because they were involved in pharmaceutical interactions with chemical constituents of aloe in the eye drops. The eye drops containing: aqueous extract of fresh leaves of aloe, boric acid, thiomersal, sodium pyrosulphite, disodium EDTA, beta-phenylethyl alcohol and neomycin sulphate, both freshly prepared and after two years of storage, met the requirements of the Polish Pharmacopoeia (PPh V) mentioned in the monograph Guttae ophthalmicae. They were sterile, clear, their osmotic pressure approximated the osmotic pressure of lacrimal fluid and they were characterized by appropriate pH. Aloenin in the drops was much more stable than aloin. Neomycin after two years of storage retained almost 98% of its starting antimicrobial

  7. Spark plasma sintering and porosity studies of uranium nitride

    NASA Astrophysics Data System (ADS)

    Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-01

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.

  8. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-07-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  9. Magnetic resonance imaging assessed cortical porosity is highly correlated with μCT porosity.

    PubMed

    Bae, Won C; Patil, Shantanu; Biswas, Reni; Li, Shihong; Chang, Eric Y; Statum, Sheronda; D'Lima, Darryl D; Chung, Christine B; Du, Jiang

    2014-09-01

    Cortical bone is typically regarded as "MR invisible" with conventional clinical magnetic resonance imaging (MRI) pulse sequences. However, recent studies have demonstrated that free water in the microscopic pores of cortical bone has a short T2* but a relatively long T2, and may be detectable with conventional clinical spin echo (SE) or fast spin echo (FSE) sequences. In this study we describe the use of a conventional two-dimensional (2D) FSE sequence to assess cortical bone microstructure and measure cortical porosity using a clinical 3T scanner. Twelve cadaveric human cortical bone samples were studied with MRI and microcomputed tomography (μCT) (downsampled to the same spatial resolution). Preliminary results show that FSE-determined porosity is highly correlated (R(2)=0.83; P<0.0001) with μCT porosity. Bland-Altman analysis suggested a good agreement between FSE and μCT with tight limit of agreement at around 3%. There is also a small bias of -2% for the FSE data, which suggested that the FSE approach slightly underestimated μCT porosity. The results demonstrate that cortical porosity can be directly assessed using conventional clinical FSE sequences. The clinical feasibility of this approach was also demonstrated on six healthy volunteers using 2D FSE sequences as well as 2D ultrashort echo time (UTE) sequences with a minimal echo time (TE) of 8μs, which provide high contrast imaging of cortical bone in vivo.

  10. As-placed contact angles for sessile drops.

    PubMed

    Tadmor, Rafael; Yadav, Preeti S

    2008-01-01

    As-placed contact angle is the contact angle a drop adapts as a result of its placement on a surface. As expected, the as-placed contact angle, thetaAP, of a sessile drop on a horizontal surface decreases with the drop size due to the increase in hydrostatic pressure. We present a theoretical prediction for thetaAP which shows that it is a unique function of the advancing contact angle, thetaA, drop size, and material properties (surface tensions and densities). We test our prediction with published and new data. The theory agrees with the experiments. From the relation of the as-placed contact angle to drop size the thermodynamic equilibrium contact angle is also calculated.

  11. Simulations of Coulombic Fission of Charged Inviscid Drops

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; Taborek, P.

    2011-04-01

    We present boundary-integral simulations of the evolution of critically charged droplets. For such droplets, small perturbations are unstable and eventually lead to the formation of a lemon-shaped drop with very sharp tips. For perfectly conducting drops, the tip forms a self-similar cone shape with a subtended angle identical to that of a Taylor cone, and quantities such as pressure and velocity diverge in time with power-law scaling. In contrast, when charge transport is described by a finite conductivity, we find that small progeny drops are formed at the tips, whose size decreases as the conductivity is increased. These small progeny drops are of nearly critical charge, and are precursors to the emission of a sustained flow of liquid from the tips as observed in experiments of isolated charged drops.

  12. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  13. Porosity enhancements at unconformities and their implications

    SciTech Connect

    Ghosh, S.K.

    1996-08-01

    Subaerial unconformities, common worldwide, are created by eustatic sea level fall or tectonic uplift. The increased porosities in sandstones at unconformities result from the dissolution of unstable grains like feldspar, lithic fragments and carbonate/sulphate cements by undersaturated carbon dioxide-rich meteoric waters. Even quartz and chert may dissolve, as observed in the Romima tepuys in Venezuela. Dissolution is pronounced in the coarsest, best sorted and permeable sandstones. Other porosity-controlling factors are mineralogy, grain size, nature and extent of initial diagenesis, duration of subaerial exposure, and timing of hydrocarbon migration. A common attribute of these unconformity-related reservoirs is that they were subaerially exposed in a humid, warm setting, characterized by copious rainfall. In the Maracaibo Basin, various northwest-south-east-trending fault-bounded reservoirs in the Eocene fluvio-deltaic Misoa Formation exhibit a systematic trend of diagenetic evolution related to the post-Eocene uplift (SB-39.5). The fault-bounded reservoirs are truncated by the erosional SB-39.5 unconformity. Both porosity and permeability show maximum values (24% and 2000 md) near the truncated erosional edge. The minimum values (12% and 50 md) occur furthest from the unconformity subcrop in areas beyond the influence of undersaturated waters. Additionally, from the subcrop edge saturated meteoric waters percolate downdip, and mix with deeper connate water and precipitated cements in the southeast, further reducing reservoir quality. In-depth exploration of unconformity related plays will yield significant dividends but it would require integrated analysis of depositional facies, petrology, diagenesis, and burial history, in relation to timing of hydrocarbon migration and structural development.

  14. Determination of effective porosity of mudrocks: a feasibility study

    SciTech Connect

    Dorsch, J.

    1995-11-01

    Matrix diffusion is believed to be an important transport process within the double-porosity (primary sedimentary porosity and secondary fracture porosity) mudrock-dominated stratigraphic units on the Oak Ridge Reservation (ORR). Effective porosity is identified as an important parameter for evaluating and modeling matrix diffusion as a transport process. This report identifies, summarizes and evaluates petrophysical techniques, which can be used to determine the effective porosity of mudrock. Most of the techniques found their original application in the petroleum industry for the evaluation of reservoir rocks.

  15. Results from a new Cocks-Ashby style porosity model

    NASA Astrophysics Data System (ADS)

    Barton, Nathan

    2017-01-01

    A new porosity evolution model is described, along with preliminary results. The formulation makes use of a Cocks-Ashby style treatment of porosity kinetics that includes rate dependent flow in the mechanics of porosity growth. The porosity model is implemented in a framework that allows for a variety of strength models to be used for the matrix material, including ones with significant changes in rate sensitivity as a function of strain rate. Results of the effect of changing strain rate sensitivity on porosity evolution are shown. The overall constitutive model update involves the coupled solution of a system of nonlinear equations.

  16. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Kalatur, Ekaterina Narikovich, Anton; Buyakova, Svetlana E-mail: kulkov@ispms.tsc.ru; Kulkov, Sergey E-mail: kulkov@ispms.tsc.ru

    2014-11-14

    The article studies the porous ceramics consisting of ultra-fine ZrO{sub 2} powders. The porosity of ceramic samples varied from 15% to 80%. The structure of the ceramic materials had a cellular configuration. The distinctive feature of all experimentally obtained strain diagrams is their nonlinearity at low deformations characterized by the parabolic law. It was shown that the observed nonlinear elasticity for low deformations shown in strain diagrams is due to the mechanical instability of cellular elements of the ceramic framework.

  17. Theoretical Exploration of Barrel-Shaped Drops on Cactus Spines.

    PubMed

    Luo, Cheng

    2015-11-03

    To survive an arid environment, desert cacti are capable of harvesting water from fog by transporting condensed water drops using their spines. Cactus spines have a conical shape. In this work, on the basis of the difference of liquid pressure, a new theoretical model has been developed for a barrel-shaped liquid drop on a conical wire. This model is further simplified to interpret the effects of contact angles, conical angle, surface microgrooves, and gravity on the drop movement along a cactus spine.

  18. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  19. Porosity, permeability, and their relationship in granite, basalt, and tuff

    SciTech Connect

    Not Available

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report.

  20. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  1. Ultrasonic wave velocities, gas permeability and porosity in natural and granular rock salt

    NASA Astrophysics Data System (ADS)

    Popp, T.; Kern, H.

    Gas-permeability and P- and S-wave velocities were measured simultaneously as a function of pressure in core samples of rock salt from the Gorleben borehole Go 1002. In addition, compaction experiments were carried out on granular salt in order to establish velocity-porosity systematics. The initial permeabilities of the Gorleben rock salt vary between 10 -16 and 2∗10 -20 m 2 and are found to be controlled by the grain size of the halite matrix minerals and the amount and distribution of “impurities” (anhydrite, polyhalite) on grain boundaries. Increase of effective pressure to 30 MPa gives rise to a marked decrease of permeability and a significant increase of P- and S-wave velocities due to the closure of grain boundary cracks. Our results are in agreement with literature data reported for in situ permeability and acoustic properties of single crystals, respectively. Compaction of granular rock salt gives rise to a reduction of porosity from about 40% to 2% exhibiting linear relationships between porosity and P- and S-wave velocities for porosities <25%. The combined measurements of gas permeability and ultrasonic wave velocities are found to provide powerful tools for the investigation of dilatancy in rock salt.

  2. The origin of star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  3. Axisymmetric model of drop spreading on a horizontal surface

    NASA Astrophysics Data System (ADS)

    Mistry, Aashutosh; Muralidhar, K.

    2015-09-01

    Spreading of an initially spherical liquid drop over a textured surface is analyzed by solving an integral form of the governing equations. The mathematical model extends Navier-Stokes equations by including surface tension at the gas-liquid boundary and a force distribution at the three phase contact line. While interfacial tension scales with drop curvature, the motion of the contact line depends on the departure of instantaneous contact angle from its equilibrium value. The numerical solution is obtained by discretizing the spreading drop into disk elements. The Bond number range considered is 0.01-1. Results obtained for sessile drops are in conformity with limiting cases reported in the literature [J. C. Bird et al., "Short-time dynamics of partial wetting," Phys. Rev. Lett. 100, 234501 (2008)]. They further reveal multiple time scales that are reported in experiments [K. G. Winkels et al., "Initial spreading of low-viscosity drops on partially wetting surfaces," Phys. Rev. E 85, 055301 (2012) and A. Eddi et al., "Short time dynamics of viscous drop spreading," Phys. Fluids 25, 013102 (2013)]. Spreading of water and glycerin drops over fully and partially wetting surfaces is studied in terms of excess pressure, wall shear stress, and the dimensions of the footprint. Contact line motion is seen to be correctly captured in the simulations. Water drops show oscillations during spreading while glycerin spreads uniformly over the surface.

  4. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  5. Update on Asteroid Density and Porosity

    NASA Astrophysics Data System (ADS)

    Britt, D. T.; Consolmagno, G. J.; Merline, W. J.

    2005-08-01

    Data on the bulk density of small bodies has exploded over the last 10 years (primarily from observations of asteroid satellites) and has led to significant insights into the structure of these objects [1,2]. This has contributed to the consensus that most small bodies have relatively low bulk densities and probably have significant porosity. Since then, new observations and planetary missions have provided a significantly expanded set of data, broadening the range of object types and sizes. These include the small icy moons measured by the Cassini mission, new AO observations of asteroid moons, new observations of small binaries using lightcurve techniques, new observations of NEO and TNO binaries, new data on comet and Centaur density, and new observations of Trojan binaries. These data provide a window into new size ranges and into new zones of the solar system. We review the available data and update our compilations of estimated porosity for small bodies. References: [1] Merline, W.J. et al. (2002) Asteroids III (Bottke W. et al., eds, 289-312. [2] Britt D.T. et al., (2002) Asteroids III (Bottke W. et al., eds), 485-500.

  6. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    NASA Astrophysics Data System (ADS)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  7. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  8. Instabilities of volatile films and drops

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa

    2008-12-01

    We report on instabilities during spreading of volatile liquids, with emphasis on the novel instability observed when isopropyl alcohol (IPA) is deposited on a monocrystalline silicon (Si) wafer. This instability is characterized by emission of drops ahead of the expanding front, with each drop followed by smaller, satellite droplets, forming the structures which we nickname "octopi" due to their appearance. A less volatile liquid, or a substrate of larger heat conductivity, suppress this instability. In addition, we examine the spreading of drops of water (DIW)-IPA mixtures on both Si wafers and plain glass slides, and describe the variety of contact line instabilities which appear. We find that the decrease of IPA concentration in mixtures leads to transition from "octopi" to mushroom-like instabilities. Through manipulation of our experimental set up, we also find that the mechanism responsible for these instabilities appears to be mostly insensitive to both the external application of convection to the gas phase, and the doping of the gas phase with vapor in order to create the saturated environment. In order to better understand the "octopi" instability, we develop a theoretical model for evaporation of a pure liquid drop on a thermally conductive solid substrate. This model includes all relevant physical effects, including evaporation, thermal conductivity in both liquid and solid, (thermocapillary) Marangoni effect, vapor recoil, disjoining pressure, and gravity. The crucial ingredient in this problem is the evaporation model, since it influences both the motion of the drop contact line, and the temperature profiles along the liquid-solid and liquid-gas interfaces. We consider two evaporation models: the equilibrium "lens" model and the non-equilibrium one-sided (NEOS) model. Along with the assumption of equilibrium at the liquid-gas interface, the "lens" model also assumes that evaporation proceeds in a (vapor) diffusion-limited regime, therefore bringing

  9. Porosity evolution of upper Miocene reefs, Almeria Province, Southern Spain

    SciTech Connect

    Armstrong, A.K.; Snavely, P.D. Jr.; Addicott, W.O.

    1980-02-01

    In the reef cores and fore-reef breccia beds, porosity in both primary and postdepositional. Primary porosity is of three types: (a) boring clam holes in the scleractinian coral heads, cemented reef rocks, and breccias; (b) intraparticle porosity within the corals, Halimeda plates, and vermetid worm tubes; and (c) interparticle porosity between bioclastic fragments and in the reef breccia. Postdepositional moldic porosity was formed by the solution of aragonitic material such as molluscan and coral fragments. The Polomo reef carbonate rocks have high porosity and permeability, and retain a great amount of depositional porosity. Pores range in size from a few micrometers to 30 cm. The extensive intercrystalline porosity and high permeability resulted from dolomitization of micritic matrix. Some porosity reduction has occured by incomplete and partial sparry calcite infilling of interparticular, moldic, and intercrystalline voids. The high porosity and permeability of these reefs make them important targets for petroleum exploration in the western Mediterranean off southern Spain. In these offshore areas in the subsuface the volcanic ridge and the Plomo reef complex are locally onlapped or overlapped by 350 m or more of Miocene and Pliocene fine-grained sedimentary rocks. The possibility exists that the buried Plomo reef deposits may form traps for oil and gas in the offshore areas southwest of the type locality. Stratigraphic traps also may occur where the Neogene sequence above the Plomo reef complex onlaps the volcanic ridge. 17 figures.

  10. Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods

    NASA Astrophysics Data System (ADS)

    Schild, M.; Siegesmund, S.; Vollbrecht, A.; Mazurek, M.

    2001-07-01

    Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the `in situ Connected Porosity' experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the pore-space, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P-wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2-2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of

  11. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  12. Liquid drops on soft solids

    NASA Astrophysics Data System (ADS)

    Lubbers, Luuk A.; Weijs, Joost H.; Das, Siddhartha; Botto, Lorenzo; Andreotti, Bruno; Snoeijer, Jacco H.

    2014-03-01

    A sessile drop can elastically deform a substrate by the action of capillary forces. The typical size of the deformation is given by the ratio of surface tension and the elastic modulus, γ / E , which can reach up to 10-100 microns for soft elastomers. In this talk we theoretically show that the contact angles of drops on such a surface exhibit two transitions when increasing γ / E : (i) the microsocopic geometry of the contact line first develops a Neumann-like cusp when γ / E is of the order of few nanometers, (ii) the macroscopic angle of the drop is altered only when γ / E reaches the size of the drop. Using the same framework we then show that two neighboring drops exhibit an effective interaction, mediated by the deformation of the elastic medium. This is in analogy to the well-known Cheerios effect, where small particles at a liquid interface attract each other due to the meniscus deformations. Here we reveal the nature of drop-drop interactions on a soft substrate by combining numerical and analytical calculations.

  13. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  14. Method for maintaining precise suction strip porosities

    NASA Technical Reports Server (NTRS)

    Gallimore, Frank H. (Inventor)

    1989-01-01

    This invention relates to a masking method generally and, more particularly to a method of masking perforated titanium sheets having laminar control suction strips. As illustrated in the drawings, a nonaerodynamic surface of a perforated sheet has alternating suction strip areas and bonding land areas. Suction strip tapes overlie the bonding land areas during application of a masking material to an upper surface of the suction strip tapes. Prior to bonding the perforated sheet to a composite structure, the bonding land tapes are removed. The entire opposite aerodynamic surface is masked with tape before bonding. This invention provides a precise control of suction strip porosities by ensuring that no chemicals penetrate the suction strip areas during bonding.

  15. Coalescence and noncoalescence of sessile drops: impact of surface forces.

    PubMed

    Karpitschka, Stefan; Hanske, Christoph; Fery, Andreas; Riegler, Hans

    2014-06-17

    Due to capillarity, sessile droplets of identical liquids will instantaneously fuse when they come in contact at their three-phase lines. However, with drops of different, completely miscible liquids, instantaneous coalescence can be suppressed. Instead, the drops remain in a state of noncoalescence for some time, with the two drop bodies connected only by a thin neck. The reason for this noncoalescence is the surface tension difference, Δγ, between the liquids. If Δγ is sufficiently large, then it induces a sufficiently strong Marangoni flow, which keeps the main drop bodies temporarily separated. Studies with spreading drops have revealed that the boundary between instantaneous coalescence and noncoalescence is sharp (Karpitschka, S.; Riegler, H. J. Fluid. Mech. 2014, 743, R1). The boundary is a function of two parameters only: Δγ and Θ(a), the arithmetic mean of the contact angles in the moment of drop-drop contact. It appears plausible that surface forces (the disjoining pressure) could also influence the coalescence behavior. However, in experiments with spreading drops, surface forces always promote coalescence and their influence might be obscured. Therefore, we present here coalescence experiments with partially wetting liquids and compare the results to the spreading case. We adjust different equilibrium contact angles (i.e., different surface forces) with different substrate surface coatings. As for spreading drops, we observe a sharp boundary between regimes of coalescence and noncoalescence. The boundary follows the same power law relation for both partially and completely wetting cases. Therefore, we conclude that surface forces have no significant, explicit influence on the coalescence behavior of sessile drops from different miscible liquids.

  16. Numerical modeling of porosity waves in the Nankai accretionary wedge décollement, Japan: implications for aseismic slip

    NASA Astrophysics Data System (ADS)

    Joshi, Ajit; Appold, Martin S.

    2016-10-01

    Seismic and hydrologic observations of the Nankai accretionary wedge décollement, Japan, show that overpressures at depths greater than ˜2 km beneath the seafloor could have increased to near lithostatic values due to sediment compaction and diagenesis, clay dehydration, and shearing. The resultant high overpressures are hypothesized then to have migrated in rapid surges or pulses called `porosity waves' up the dip of the décollement. Such high velocities—much higher than expected Darcy fluxes—are possible for porosity waves if the porous media through which the waves travel are deformable enough for porosity and permeability to increase strongly with increasing fluid pressure. The present study aimed to test the hypothesis that porosity waves can travel at rates (kilometers per day) fast enough to cause aseismic slip in the Nankai décollement. The hypothesis was tested using a one-dimensional numerical solution to the fluid mass conservation equation for elastic porous media. Results show that porosity waves generated at depths of ˜2 km from overpressures in excess of lithostatic pressure can propagate at rates sufficient to account for aseismic slip along the décollement over a wide range of hydrogeological conditions. Sensitivity analysis showed porosity wave velocity to be strongly dependent on specific storage, fluid viscosity, and the permeability-depth gradient. Overpressure slightly less than lithostatic pressure could also produce porosity waves capable of traveling at velocities sufficient to cause aseismic slip, provided that hydrogeologic properties of the décollement are near the limits of their geologically reasonable ranges.

  17. Modeling and interpretation of Q logs in carbonate rock using a double porosity model and well logs

    NASA Astrophysics Data System (ADS)

    Parra, Jorge O.; Hackert, Chris L.

    2006-03-01

    Attenuation data extracted from full waveform sonic logs is sensitive to vuggy and matrix porosities in a carbonate aquifer. This is consistent with the synthetic attenuation (1 / Q) as a function of depth at the borehole-sonic source-peak frequency of 10 kHz. We use velocity and densities versus porosity relationships based on core and well log data to determine the matrix, secondary, and effective bulk moduli. The attenuation model requires the bulk modulus of the primary and secondary porosities. We use a double porosity model that allows us to investigate attenuation at the mesoscopic scale. Thus, the secondary and primary porosities in the aquifer should respond with different changes in fluid pressure. The results show a high permeability region with a Q that varies from 25 to 50 and correlates with the stiffer part of the carbonate formation. This pore structure permits water to flow between the interconnected vugs and the matrix. In this region the double porosity model predicts a decrease in the attenuation at lower frequencies that is associated with fluid flowing from the more compliant high-pressure regions (interconnected vug space) to the relatively stiff, low-pressure regions (matrix). The chalky limestone with a low Q of 17 is formed by a muddy porous matrix with soft pores. This low permeability region correlates with the low matrix bulk modulus. A low Q of 18 characterizes the soft sandy carbonate rock above the vuggy carbonate. This paper demonstrates the use of attenuation logs for discriminating between lithology and provides information on the pore structure when integrated with cores and other well logs. In addition, the paper demonstrates the practical application of a new double porosity model to interpret the attenuation at sonic frequencies by achieving a good match between measured and modeled attenuation.

  18. Plastic Foam Porosity Characterization by Air-Borne Ultrasound

    NASA Astrophysics Data System (ADS)

    Hoffrén, H.; Karppinen, T.; Hæggström, E.

    2006-03-01

    We continue to develop an ultrasonic burst-reflection method for estimating porosity and tortuosity of solid materials. As a first step we report on method design considerations and measurements on polyurethane foams (Sylomer® vibration dampener) with well-defined porosity. The ultrasonic method is experimentally tested by measuring 235 kHz and 600 kHz air-borne ultrasound reflection from a foam surface at two incidence angles. The reflected sound wave from different foam samples (32% - 64% porosity) was compared to a wave that had traveled from the transmitter to the detector without reflection. The ultrasonically estimated sample porosities coincided within 8% with the porosity estimates obtained by a gravimetric reference method. This parallels the uncertainty of the gravimetric method, 8%. The repeatability of the ultrasonic porosity measurements was better than 5%.

  19. Preimpact porosity controls the gravity signature of lunar craters

    NASA Astrophysics Data System (ADS)

    Milbury, C.; Johnson, B. C.; Melosh, H. J.; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Bierson, C. J.; Phillips, R. J.; Zuber, M. T.

    2015-11-01

    We model the formation of lunar complex craters and investigate the effect of preimpact porosity on their gravity signatures. We find that while preimpact target porosities less than ~7% produce negative residual Bouguer anomalies (BAs), porosities greater than ~7% produce positive anomalies whose magnitude is greater for impacted surfaces with higher initial porosity. Negative anomalies result from pore space creation due to fracturing and dilatant bulking, and positive anomalies result from destruction of pore space due to shock wave compression. The central BA of craters larger than ~215 km in diameter, however, are invariably positive because of an underlying central mantle uplift. We conclude that the striking differences between the gravity signatures of craters on the Earth and Moon are the result of the higher average porosity and variable porosity of the lunar crust.

  20. Orion Capsule Mockup is Dropped

    NASA Video Gallery

    An Orion capsule mockup is dropped from a plane 25,000 feet above the Arizona desert to test its parachute design. Orion will return to Earth at speeds faster than previous human spacecraft, and wi...

  1. Effect of Porosity Correlations on Sensitivity of Contaminant Travel Time

    NASA Astrophysics Data System (ADS)

    Pohlmann, K. F.; Zhu, J.; Chapman, J. B.; Russell, C. E.; Shafer, D. S.; Carroll, R. W.

    2010-12-01

    Effective porosity of hydrogeologic units (HGUs) is an important parameter influencing contaminant travel time and is particularly significant for applications where steady state Darcy flux is calculated from calibrated groundwater flow models. Under such circumstances, the effective porosities of HGUs along flowpaths are the primary control on advective velocities of particles and therefore contaminant travel times. As a result, the uncertainty in effective porosity is a critical source of uncertainty in the prediction of contaminant travel time, which is often required for designing networks for monitoring long-term migration of contaminants. In this study, uncorrelated and correlated sensitivities of advective contaminant travel times to porosities of HGUs were quantified using the advective travel time of contaminants from underground nuclear detonations at the Nevada Test Site to the Yucca Mountain area in Nevada U.S. as an example. First we investigated the importance of HGU porosities to the uncertainty of advective contaminant travel time based on Monte Carlo sampling techniques. We then partitioned the uncertainty of the advective travel time of contaminants into two portions: the correlated portion by the correlated variances (i.e. variances of an HGU porosity which are correlated with other HGU porosities) and the uncorrelated portion by the uncorrelated variations (i.e. the unique variations of an HGU porosity which cannot be expressed from other HGU porosities). Various correlation scenarios of HGU porosities were considered to examine the impacts of porosity correlations on the uncertainty and sensitivity of advective contaminant travel times. The emphasis is on how HGU porosity correlation scenarios influence uncorrelated and correlated uncertainty contributions.

  2. On the derivation of Young's equation for sessile drops: nonequilibrium effects due to evaporation.

    PubMed

    Butt, Hans-Jürgen; Golovko, Dmytro S; Bonaccurso, Elmar

    2007-05-17

    Sessile liquid drops have a higher vapor pressure than planar liquid surfaces, as quantified by Kelvin's equation. In classical derivations of Young's equation, this fact is often not taken into account. For an open system, a sessile liquid drop is never in thermodynamic equilibrium and will eventually evaporate. Practically, for macroscopic drops the time of evaporation is so long that nonequilibrium effects are negligible. For microscopic drops evaporation cannot be neglected. When a liquid is confined to a closed system, real equilibrium can be established. Experiments on the evaporation of water drops confirm the calculations.

  3. Coalescence of Drops of a Power-law Fluid

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Basaran, Osman

    2014-11-01

    Drop coalescence is crucial in a host of industrial, household, and natural processes that involve dispersions. Coalescence is a rate-controlling process in breaking emulsions and strongly influences drop-size-distributions in sprays. In a continuum approach, coalescence begins by the formation of a microscopic, non-slender bridge connecting the two drops. Indefinitely large axial curvature at the neck results in local lowering of pressure that drives fluid from the bulk of the drops toward the neck, thereby causing the bridge radius r (t) and height z (t) to increase in time t. The coalescence of Newtonian drops in air has heretofore been thoroughly studied. Here, we extend these earlier studies by analyzing the coalescence of drops of power-law fluids because many fluids encountered in real applications, including cosmetic creams, shampoos, grease, and paint, exhibit power-law (deformation-rate thinning) rheology. On account of the non-slender geometry of the liquid bridge connecting the two drops (z << r) , we analyze the resulting free surface flow problem by numerical simulation. Among other results, we present and discuss the nature of flows and scaling behaviors for r and z as functions of the initial viscosity and power-law index (0 < n <= 1) .

  4. Porosity, permeability and fluid flow in the YellowstoneGeothermal System, Wyoming

    SciTech Connect

    Dobson, Patrick F.; Kneafsey, Timothy J.; Hulen, Jeffrey; Simmons, Ardyth

    2002-03-29

    Cores from two of 13 U.S. Geological Survey (USGS) research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the0.6 Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia

  5. How gradients in porosity can make a better filter

    NASA Astrophysics Data System (ADS)

    Griffiths, Ian; Bruna, Maria; Dalwadi, Mohit

    2015-11-01

    Depth filters are a common device for removing contaminants from fluid. Porosity-graded filters, whose porosities decrease with depth, have been shown experimentally to offer improved filtration efficiency over filters with uniform porosity, by allowing contaminants to be trapped more evenly within the filter media. However, experiments are unable to probe the microscopic behavior, and so the underlying mechanisms that are responsible for this improved filtration are unclear. We use homogenization theory to derive a macroscopic model for the fluid flow and particle trapping within a porosity-graded depth filter. We find that gradients in porosity induce a macroscale particle advection in the direction of reducing porosity and show how particle trapping is more evenly spread through the filter for a decreasing porosity compared with a uniform porosity. By quantifying the removal rate, we show how a given operating regime can be fine-tuned to improve filter efficiency. The talk is accompanied by an online demonstration of MEMFI, a software package in which audience members may explore for themselves the effect of porosity gradients in user-specified operating regimes.

  6. The role of surfactants in drop formation and thread breakup

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Wagoner, Brayden; Thete, Sumeet; Basaran, Osman

    2016-11-01

    The ability of surfactants to adsorb onto and lower the surface tension of water-air and water-oil interfaces is exploited in industrial applications, nature, and everyday life. An important example is provided by drop formation where a thinning liquid thread connects an about-to-form globular, primary drop to the rest of the liquid that remains on the nozzle when the primary drop falls from it. Surfactants can affect pinch-off in two ways: first, by lowering surface tension they lower capillary pressure (which equals, to highest order, surface tension divided by thread radius), and second, as surfactant concentration along the interface can be non-uniform, they cause the interface to be subjected to a gradient of surface tension, or Marangoni stress. By means of high-accuracy simulations and supporting experiments, we clarify the role played by surfactants on drop formation and thread breakup.

  7. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    SciTech Connect

    Fischer, A.; Wendt, H.

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  8. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    NASA Astrophysics Data System (ADS)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  9. Porosity and Health: Perspective of Traditional Persian Medicine

    PubMed Central

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27516679

  10. Porosity and Health: Perspective of Traditional Persian Medicine

    PubMed Central

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  11. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  12. Porosity and mechanical properties of zirconium ceramics

    NASA Astrophysics Data System (ADS)

    Buyakova, S.; Sablina, T.; Kulkov, S.

    2015-11-01

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO2(MgO), ZrO2(Y2O3) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO2 powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO2 grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  13. Whisker Formation in Porosity in Al Alloys

    NASA Astrophysics Data System (ADS)

    Griffiths, William David; Elsayed, Ahmed; El-Sayed, Mahmoud Ahmed

    2016-12-01

    An examination of the fracture surfaces of tensile test bars from Al alloy castings held in the liquid state for up to 20 minutes revealed porosity which in some cases contained whisker-like features. Energy-dispersive X-ray analysis in a SEM suggested that these might be oxide whiskers forming in an oxide-related pore or double oxide film defect. Such entrainment defects (also known as bifilms) may entrap a small amount of the local atmosphere when they form and become incorporated into the liquid metal. This atmosphere may be predominantly air, which then subsequently reacts with the surrounding melt, firstly by reaction with oxygen and secondly by reaction with nitrogen. A CFD model of the heat distribution associated with the reactions between the interior atmosphere of a double oxide film defect and the surrounding liquid alloy suggested that highly localized increases in temperature, up to about 2000 K to 5000 K (1727 °C to 4727 °C), could occur, over a scale of a few hundred micrometers. Such localized increases in temperature might lead to the evaporation or disassociation of oxide within the pore, followed by condensation, to form the whisker structures observed. Hydrogen might also be expected to diffuse into the bifilm and may play a role in the chemical reactions associated with the development of the bifilm.

  14. Tunable-Porosity Membranes From Discrete Nanoparticles

    PubMed Central

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  15. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Buyakova, S. Kulkov, S.; Sablina, T.

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  16. Modeling fracture porosity evolution in dolostone

    NASA Astrophysics Data System (ADS)

    Gale, Julia F. W.; Lander, Robert H.; Reed, Robert M.; Laubach, Stephen E.

    2010-09-01

    Opening-mode fractures in dolostones buried to depths of ˜1-5 km contain synkinematic dolomite cement, the amount and internal structure of which has a systematic relationship to fracture size. Narrow fractures (<0.01 mm) typically seal completely with either massive cement or cement with a crack-seal texture that indicates multiple incremental openings. Wider fractures can preserve considerable effective porosity, but anomalously thick dolomite cement bridges are commonly present in fractures that are otherwise lined with a thin veneer of cement. Dolomite bridges resemble quartz bridges that are common in fractured sandstones. We developed a geometric crystal growth model for synkinematic dolomite fracture fill in fractured dolostones, where periodic incremental fracture-opening events are introduced with concurrent cement growth. We assumed constant temperature and supersaturation with respect to dolomite. A key assumption in the model is that rapid dolomite accumulation within bridges is governed by high cement-growth rates on repeatedly broken grain surfaces during the process of crack seal. Slower cement-growth rates occur on euhedral crystals. This assumption is made on the basis of a comparison with quartz cement growth in fractured sandstones. Simulations with different fracture-opening rates mimic bridge and lining cement morphologies, including characteristic rhombic shapes of dolomite bridges.

  17. Tunable-Porosity Membranes From Discrete Nanoparticles

    NASA Astrophysics Data System (ADS)

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-12-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130-150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol-1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer.

  18. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    NASA Technical Reports Server (NTRS)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  19. Fracture porosity in the décollement zone of Nankai accretionary wedge using Logging While Drilling resistivity data

    NASA Astrophysics Data System (ADS)

    Bourlange, Sylvain; Henry, Pierre; Moore, J. Casey; Mikada, Hitoshi; Klaus, Adam

    2003-04-01

    Fracture porosity in the décollement zone of Nankai accretionary wedge is estimated by comparison of porosity measured on cores during Ocean Drilling Program Leg 131 and porosity calculated from resistivity logs acquired during Leg 196 using Logging While Drilling. Resistivity is converted to formation factor considering both pore fluid conductivity and surface conductivity of clay particles. Pore fluid conductivity is calculated from temperature and ion concentration in interstitial water, whereas surface conductivity is calculated from cationic exchange capacity data and exchangeable cation concentrations. Finally the formation factor is converted to porosity using the generalized Archie's law. The décollement appears as a zone of compacted rock where dilatant fractures have developed. The contrast between resistivity-porosity and core porosity is used to estimate fracture porosity in the décollement, assuming that the total conductivity is the result of fracture network and rock fragment conductivities, behaving as resistors in parallel, in the direction of the fracture network. Fracture porosity increases downward in the décollement zone from 1.8% to 8.5%. This suggests pore pressure in the décollement zone is higher than the pore pressure estimated from compaction curves (excess pore pressure ratio of 0.47). A possible explanation is that dilatancy is associated with a high pressure transient. The migration of a pressure wave along the décollement could occur at a velocity of 500 m/yr if the permeability of the dilated zone is higher than 10 -12 m 2. The characteristic time for transient dissipation by diffusion in the footwall and hanging wall of the décollement is estimated to be 100-1000 years. Coexistence of dilatant and compactive shear localization structures is observed within the wedge and in the main fault zones. However, only the décollement is currently dilated by fluids. We propose that fluids are injected into the décollement zone during

  20. Drop spreading with random viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver E.

    2016-10-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated viscosity within the precursor film to hinder spreading. A low-order model provides explicit predictions of the variances in spreading rate and drop location, which are validated against simulations.

  1. Drop Spreading with Random Viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  2. Water uptake in biochars: The roles of porosity and hydrophobicity

    EPA Science Inventory

    We assessed the effects of porosity and hydrophobicity on water uptake by biochars. Biochars were produced from two feedstocks (hazelnut shells and Douglas fir chips) at three production temperatures (370 °C, 500 °C, and 620 °C). To distinguish the effects of porosity from the ...

  3. Low porosity metallic periodic structures with negative Poisson's ratio.

    PubMed

    Taylor, Michael; Francesconi, Luca; Gerendás, Miklós; Shanian, Ali; Carson, Carl; Bertoldi, Katia

    2014-04-16

    Auxetic behavior in low porosity metallic structures is demonstrated via a simple system of orthogonal elliptical voids. In this minimal 2D system, the Poisson's ratio can be effectively controlled by changing the aspect ratio of the voids. In this way, large negative values of Poisson's ratio can be achieved, indicating an effective strategy for designing auxetic structures with desired porosity.

  4. Casting Porosity-Free Grain Refined Magnesium Alloys

    SciTech Connect

    Schwam, David

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  5. Surfactant and nonlinear drop dynamics in microgravity

    NASA Astrophysics Data System (ADS)

    Jankovsky, Joseph Charles

    2000-11-01

    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu

  6. Apparent contact angle of an evaporating drop

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2012-11-01

    In experiments by Poulard et al. (2005), a sessile drop of perfectly wetting liquid evaporates from a non-heated substrate into an under-saturated mixture of vapour with an inert gas; evaporation is limited by vapour diffusion. The system exhibits an apparent contact angle θ that is a flow property. Under certain conditions, the apparent contact line was stationary relative to the substrate; we predict θ for this case. Observed values of θ are small, allowing lubrication analysis of the liquid film. The liquid and vapour flows are coupled through conditions holding at the phase interface; in particular, vapour partial pressure there is related to the local value of liquid pressure through the Kelvin condition. Because the droplet is shallow, the interfacial conditions can be transferred to the solid-liquid interface at y = 0 . We show that the dimensionless partial pressure p (x , y) and the film thickness h (x) are determined by solving ∇2 p = 0 for y > 0 subject to a matching condition at infinity, and the conditions - p = L hxx +h-3 and (h3px) x + 3py = 0 at y = 0 . The parameter L controls the ratio of Laplace to disjoining pressure. We analyse this b.v.p. for the experimentally-relevant case L --> 0 .

  7. Processing of thermal insulation materials with controlled porosity

    SciTech Connect

    Lyckfeldt, O.; Liden, E.; Carlsson, R.

    1995-08-01

    Slip-cast cordierite-based materials with reduced thermal conductivity have been manufactured with controlled introduction of porosity. The porosity was obtained by addition of different kinds of fillers (hollow Al-silicate spheres, paraffin, polystyrene, carbon black or starch particles). The processing and the ultimate thermal and mechanical properties were evaluated. The results showed that additions of corn or potato starch gave the most favourable concept, considering the processing and porosity control. A homogeneous distribution of spherical pores with the sizes 5-25 or 15-40 {mu}m was obtained after sintering. Slip-cast cordierite with 37% porosity had a thermal conductivity of 1.7 W/mK (compared with 3.7 W/mK for fully dense cordierite), and a bending strength above 50 MPa. The porosity effect correlated very well to theoretical models by Maxwell and, hence, the thermal conductivity of the porous ceramic material could be predicted.

  8. Results from a new Cocks-Ashby style porosity model

    NASA Astrophysics Data System (ADS)

    Barton, Nathan

    2015-06-01

    A new porosity evolution model will be described, along with preliminary results. The formulation makes use of a Cocks-Ashby style treatment of porosity kinetics that includes rate dependent flow in the mechanics of porosity growth. The porosity model is implemented in a framework that allows for a variety of strength models to be used for the matrix material, including ones with significant changes in rate sensitivity as a function of strain rate. Results of the effect of changing strain rate sensitivity on porosity evolution will be shown. The overall constitutive model update involves the coupled solution of a system of nonlinear equations - efficiency and robustness of the numerical implementation are significant issues. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-666658).

  9. Advanced Aerodynamic Design of Passive Porosity Control Effectors

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

  10. Drop stability in wind: theory

    NASA Astrophysics Data System (ADS)

    Lee, Sungyon

    2015-11-01

    Water drops may remain pinned on a solid substrate against external forcing due to contact angle hysteresis. Schmucker and White investigated this phenomenon experimentally in a high Reynolds number regime, by measuring the critical wind velocity at which partially wetting water drops depin inside a wind tunnel. Due to the unsteady turbulent boundary layer, droplets are observed to undergo vortex-shedding induced oscillations. By contrast, the overall elongation of the drop prior to depinning occurs on a much slower timescale with self-similar droplet shapes at the onset. Based on these observations, a simple, quasi-static model of depinning droplet is developed by implementing the phenomenological description of the boundary layer. The resultant model successfully captures the critical onset of droplet motion and is the first of on-going studies that connect the classical boundary layer theory with droplet dynamics.

  11. Isoelectric focusing in a drop.

    PubMed

    Weiss, Noah G; Hayes, Mark A; Garcia, Antonio A; Ansari, Rafat R

    2011-01-04

    A novel approach to molecular separations is investigated using a technique termed droplet-based isoelectric focusing. Drops are manipulated discretely on a superhydrophobic surface, subjected to low voltages for isoelectric focusing, and split-resulting in a preparative separation. A universal indicator dye demonstrates the generation of stable, reversible pH gradients (3-10) in ampholyte buffers, and these gradients lead to protein focusing within the drop length. Focusing was visually characterized, spectroscopically verified, and assessed quantitatively by noninvasive light scattering measurements. It was found to correlate with a quantitative model based on 1D steady-state theory. This work illustrates that molecular separations can be deployed within a single open drop, and the differential fractions can be separated into new discrete liquid elements.

  12. Buoyancy-induced squeezing of a deformable drop through an axisymmetric ring constriction

    NASA Astrophysics Data System (ADS)

    Ratcliffe, Thomas; Zinchenko, Alexander Z.; Davis, Robert H.

    2010-08-01

    Axisymmetric boundary-integral (BI) simulations were made for buoyancy-induced squeezing of a deformable drop through a ring constriction. The algorithm uses the Hebeker representation for the solid-particle contribution. A high-order, near-singularity subtraction technique is essential for near-critical squeezing. The drop velocity and minimum drop-solid spacing were determined for different ring and hole sizes, viscosity ratios, and Bond numbers, where the latter is a dimensionless ratio of gravitational to interfacial forces. The drop velocity decelerates typically 100-fold or more, and the drop-solid spacing reduces to typically 0.1%-1% of the nondeformed drop radius as the drop passes through the constriction. The critical Bond number (below which trapping occurs) was determined for different conditions. For supercritical conditions, the nondimensional time required for the drop to pass through the ring increases for a fixed drop-to-hole size with increasing viscosity ratio and decreasing Bond number, but it has a nonmonotonic dependence on the ratio of the radii of the drop and ring cross section. Numerical results indicate that the square of the drop squeezing time is inversely proportional to the Bond number minus the critical Bond number for near-critical squeezing. The critical Bond number, determined from dynamic BI calculations, compares favorably to that obtained precisely from a static algorithm. The static algorithm uses the Young-Laplace equation to calculate the pendant and sessile portions of the drop interface coupled through the conditions of global pressure continuity and total drop volume conservation. Over a limited parameter space, the critical Bond number increases almost linearly with the drop-to-hole ratio and is a weak function of the ratio of the ring cross-sectional radius to the hole radius. Another dynamic phenomenon, in addition to drop squeezing, is a drop "dripping" around the outer edge of the ring constriction, and a critical

  13. Dolomite diagenesis and porosity preservation in lithic reservoirs: Carmopolis member, Sergipe-Alagoas Basin, northeastern Brazil

    SciTech Connect

    Souza, R.S. de; De Ros, L.F.; Morad, S.

    1995-05-01

    The lithic sandstones and conglomerates of the Carmopolis Member of the Muribeca Formation (Aptian) were deposited by fan deltas, alluvial fans, and braid deltas that prograded from low-grade metamorphic terrains into the Sergipe-Alagoas rift basin during the opening of the South Atlantic. Initial carbonates in the Carmopolis reservoirs (presently at depths of 180-2200 m) were marine (high-Mg calcite/aragonite) grain rims, allochems, stromatolitic laminites, and meteoric calcite. These carbonates were subsequently replaced by dolomite/ankerite ({delta}18O{sub PDB} = -7.3 to -4.1{per_thousand}; {delta}{sup 13}C{sub PDB} = -15 to +16.2{delta}) derived from ascending thermobaric fluids prior to oil emplacement. These fluids also caused the direct precipitation of dolomite/ankerite cements and the replacement of dolomite/ankerite cements and the replacement of nonferroan dolomite by ferroan dolomite/ankerite. Rocks lacking early cements were strongly compacted, losing their primary intergranular porosity and permeability, whereas massively cemented rocks show only minor compaction and further diagenetic modifications. Partial cementation has greatly limited the compaction and preserved intergranular porosity, allowing the partial dissolution of carbonates and framework grains and the precipitation of replacive ferroan dolomite/ankerite and pyrite. Offshore reservoirs show late porosity reduction by the precipitation of quartz, kaolinite/dickite, saddle dolomite, and ferroan calcite. Experimental analyses of porosity and permeability reduction under pressure confirmed the importance of early cementation in the preservation of porosity in lithic rocks with ductile framework.

  14. The secondary porosity trick: Arkose to quartzite in the North Sea

    SciTech Connect

    Haszeldine, S.; Wilkinson, M.; Darby, D. )

    1996-01-01

    Observations of mineralogy, texture, poroperm, stratigraphy and overpressure compiled from major reservoirs of the North Sea at different burial, structural and pressure settings, indicate to us that secondary porosity has continued to form at depths of 10-18,000ft (3-6km). This has resulted in strata-bound economic improvements to reservoir quality by as much as 8% and 2,000mD. The Brent Sandstone Group shows a decrease of feldspar with depth from 20% to 5%; clay content does not increase; identifiable secondary porosity does not increase. The HPHT Fulmar Sandstone shows a decrease of feldspar from 40% to 10%; aluminum (clay) content decreases; identifiable secondary porosity does not increase. Differences within these two sandstone Groups can not be explained by depositional variations. The Brea Formation shows loss of feldspar and calcite from 10% to 5%; only minimal clay is present; secondary porosity is often present, and is strata-bound. In this last case, an adjacent oilfield contains oil leaked up-dip from the deeper sandstones. This West Brae oilfield contains up to 13% kaolin clay, a big excess over the usual 2% expected for its present depth. The deep sand has lost clay, the shallow sand has imported clay. We conclude that feldspars continue to dissolve below 10,000ft. The liberated aluminum is not precipitated locally, but can be transported for distances of at least 5 miles (7km) to form clay. Poroperm in the deeper sandstones is improved selectively along routes of overpressured fluid expulsion; these can become quartzites. Secondary porosity must also compact during burial to trick petrographers into textural mis-identification.

  15. The secondary porosity trick: Arkose to quartzite in the North Sea

    SciTech Connect

    Haszeldine, S.; Wilkinson, M.; Darby, D.

    1996-12-31

    Observations of mineralogy, texture, poroperm, stratigraphy and overpressure compiled from major reservoirs of the North Sea at different burial, structural and pressure settings, indicate to us that secondary porosity has continued to form at depths of 10-18,000ft (3-6km). This has resulted in strata-bound economic improvements to reservoir quality by as much as 8% and 2,000mD. The Brent Sandstone Group shows a decrease of feldspar with depth from 20% to 5%; clay content does not increase; identifiable secondary porosity does not increase. The HPHT Fulmar Sandstone shows a decrease of feldspar from 40% to 10%; aluminum (clay) content decreases; identifiable secondary porosity does not increase. Differences within these two sandstone Groups can not be explained by depositional variations. The Brea Formation shows loss of feldspar and calcite from 10% to 5%; only minimal clay is present; secondary porosity is often present, and is strata-bound. In this last case, an adjacent oilfield contains oil leaked up-dip from the deeper sandstones. This West Brae oilfield contains up to 13% kaolin clay, a big excess over the usual 2% expected for its present depth. The deep sand has lost clay, the shallow sand has imported clay. We conclude that feldspars continue to dissolve below 10,000ft. The liberated aluminum is not precipitated locally, but can be transported for distances of at least 5 miles (7km) to form clay. Poroperm in the deeper sandstones is improved selectively along routes of overpressured fluid expulsion; these can become quartzites. Secondary porosity must also compact during burial to trick petrographers into textural mis-identification.

  16. Interfacial Instabilities in Evaporating Drops

    NASA Astrophysics Data System (ADS)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  17. Dynamics of drops – Formation, growth, oscillation, detachment, and coalescence.

    PubMed

    Karbaschi, M; Taeibi Rahni, M; Javadi, A; Cronan, C L; Schano, K H; Faraji, S; Won, J Y; Ferri, J K; Krägel, J; Miller, R

    2015-08-01

    Single drops or bubbles are frequently used for the characterization of liquid-fluid interfaces. Their advantage is the small volume and the various protocols of their formation. Thus, several important methods are based on single drops and bubbles, such as capillary pressure and profile analysis tensiometry. However, these methods are often applied under dynamic conditions, although their principles are defined under equilibrium conditions. Thus, specific attention has to be paid when these methods are used beyond certain limits. In many cases, computational fluid dynamics (CFD) simulations have allowed researchers, to extend these limits and to gain important information on the interfacial dynamics. Examples discussed here are the capillary pressure tensiometry used for short time and profile analysis tensiometry for long time dynamic interfacial tension measurements, the oscillating drop methods for measuring dilational visco-elasticity. For measuring the coalescence of two drops the liquid dynamics of the subsequently formed liquid bridges have to be considered. In this paper, a thorough review of important experimental and computational findings, related to the dynamics of drops, including its formation, growth, oscillation, detachment, and coalescence is presented. Emphasis is however on some selected important developments. In addition, the paper tries to predict the main directions of advancement in interfacial research for the near future.

  18. Liquid drops and surface tension with smoothed particle applied mechanics

    NASA Astrophysics Data System (ADS)

    Nugent, S.; Posch, H. A.

    2000-10-01

    Smoothed particle applied mechanics (SPAM), also referred to as smoothed particle hydrodynamics, is a Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a liquid drop, surrounded by its vapor, for a van der Waals (vdW) fluid in two dimensions. The cohesive pressure of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed from the pressure excess in their centers. It agrees very well with the surface tension independently determined from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under microgravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of angular momentum conservation, which is a consequence of noncentral forces contributed by the full Newtonian viscous stress tensor.

  19. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  20. On the use of surface porosity to reduce wake-stator interaction noise

    NASA Astrophysics Data System (ADS)

    Tinetti, Ana Fiorella

    An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of Passive Porosity Technology as a mechanism for alleviating interaction effects and radiated noise by reducing the fluctuating forces acting on the vane surfaces. The study involved a typical high bypass fan stator airfoil immersed in a free field and exposed to the effects of a transversely moving wake. Time histories of the primitive aerodynamic variables obtained from Computational Fluid Dynamics (CFD) calculations were input into an acoustic prediction code to estimate noise levels at a radial distance of ten chords from the stator airfoil. This procedure was performed on the solid airfoil to obtain a baseline, and on approximately fifty porous configurations in order to isolate those that would yield maximum noise reductions without compromising the aerodynamic performance of the stator. It was found during the study that, for a single stator immersed in a free flow field, communication between regions of high pressure differential---made possible by the use of passive porosity---tends to induce a time-dependent oscillatory pattern of small inflow-outflow regions near the stator leading edge (LE), which is well established before wake effects come into play. The oscillatory pattern starts at the LE, and travels downstream on both suction and pressure sides of the airfoil. The amplitude of the oscillations seemed to be proportional to the extension of the porous patch on the pressure side. Regardless of this effect, which may not have occurred if the airfoil were placed within a stator cascade, communication between regions of high pressure differential is necessary to significantly alter the noise radiation pattern of the stator airfoil. Whether those changes result in

  1. Drop tests of the Three Mile Island knockout canister

    SciTech Connect

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1986-09-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report.

  2. Ultrasonic atomization of liquids in drop-chain acoustic fountains.

    PubMed

    Simon, Julianna C; Sapozhnikov, Oleg A; Khokhlova, Vera A; Crum, Lawrence A; Bailey, Michael R

    2015-03-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain.

  3. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  4. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    SciTech Connect

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses technical assessment and

  5. The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Evans, Alexander J.; Johnson, Brandon C.; Melosh, H. Jay; Miljković, Katarina; Phillips, Roger J.; Andrews-Hanna, Jeffrey C.; Bierson, Carver J.; Head, James W.; Milbury, Colleen; Neumann, Gregory A.; Nimmo, Francis; Smith, David E.; Solomon, Sean C.; Sori, Michael M.; Wieczorek, Mark A.; Zuber, Maria T.

    2015-09-01

    We have analyzed the Bouguer anomaly (BA) of ~1200 complex craters in the lunar highlands from Gravity Recovery and Interior Laboratory observations. The BA of these craters is generally negative, though positive BA values are observed, particularly for smaller craters. Crater BA values scale inversely with crater diameter, quantifying how larger impacts produce more extensive fracturing and dilatant bulking. The Bouguer anomaly of craters larger than 93-19+47 km in diameter is independent of crater size, indicating that there is a limiting depth to impact-generated porosity, presumably from pore collapse associated with either overburden pressure or viscous flow. Impact-generated porosity of the bulk lunar crust is likely in a state of equilibrium for craters smaller than ~30 km in diameter, consistent with an ~8 km thick lunar megaregolith, whereas the gravity signature of larger craters is still preserved and provides new insight into the cratering record of even the oldest lunar surfaces.

  6. Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone

    USGS Publications Warehouse

    Schultz, Richard A.; Okubo, Chris H.; Fossen, Haakon

    2010-01-01

    Determining the rock properties that permit or impede the growth of compaction bands in sedimentary sequences is a critical problem of importance to studies of strain localization and characterization of subsurface geologic reservoirs. We determine the porosity and average grain size of a sequence of stratigraphic layers of Navajo Sandstone that are then used in a critical state model to infer plastic yield envelopes for the layers. Pure compaction bands are formed in layers having the largest average grain sizes (0.42–0.45 mm) and porosities (28%), and correspondingly the smallest values of critical pressure (-22 MPa) in the sequence. The results suggest that compaction bands formed in these layers after burial to -1.5 km depth in association with thrust faulting beneath the nearby East Kaibab monocline, and that hardening of the yield caps accompanied compactional deformation of the layers.

  7. Porosity as a significant factor for asteroid survival

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.

    2014-07-01

    Most asteroids, for which porosities have been inferred, have porosities ranging from 20 % to > 50 %, with a mean around 30 % porosity (Britt et al. 2002). Since porous targets react differently to hypervelocity impact cratering and disruption than non-porous targets of the same mass, porosity is likely to play a role in asteroid survival. Measurements show the threshold collisional specific energy, Q^*_D, required to produce a disruption with the largest fragment equal to one-half the original target mass is much higher for porous targets (Table). Ordinary chondrite meteorites, with a mean porosity of ˜9 % (Britt et al. 2002), disrupted at the NASA Ames Vertical Gun Range (AVGR), required almost twice as much impactor kinetic energy per unit target mass to produce an equivalent disruption as did targets of low-porosity terrestrial basalt or granodiorite (Flynn and Durda 2004). Limited data from hypervelocity disruption of three CM2 carbonaceous chondrites (Flynn et al. 2009), all to the right of the ordinary chondrite points on a Q^* vs. M_L/M_T plot, indicate CM2 meteorites, with a mean porosity of 23 % (Consolmagno et al. 2008), have even higher Q^*_D, ˜1900 to 2100 J/kg. The CI carbonaceous chondrites, e.g., Orgueil, with a density of 1.5 g/cm^3 (Britt and Consolmagno 2003) and porosity of 35 % (Consolmagno et al. 2008), are the most porous known meteorites, approaching the C-type asteroid Mathilde, which has a bulk density of 1.3 and > 50 % porosity (Britt et al., 2002). However, the CI meteorites are so scarce than none have yet been studied in impact experiments. As an extreme end member for high-porosity, rigid targets, Flynn et al. (2014) disrupted eleven terrestrial pumice targets, obtaining a Q^*_D of ˜2300 J/kg. However, porosity increases the target's cross section. The ''Required Disruption Energy'' to produce a largest fragment mass equal to one- half the target mass for spherical asteroids of 10-m, 1-km, and 100-km radius having the same physical

  8. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.965 Section 178.965 Transportation... Packagings § 178.965 Drop test. (a) General. The drop test must be conducted for the qualification of all...) Special preparation for the drop test. Large Packagings must be filled in accordance with § 178.960....

  9. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.810 Section 178.810 Transportation... Drop test. (a) General. The drop test must be conducted for the qualification of all IBC design types... the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be...

  10. 49 CFR 178.1045 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.1045 Section 178.1045... Containers § 178.1045 Drop test. (a) General. The drop test must be conducted for the qualification of all... subpart. (b) Special preparation for the drop test. Flexible Bulk Containers must be filled to...

  11. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.603 Section 178.603 Transportation... Packagings and Packages § 178.603 Drop test. (a) General. The drop test must be conducted for the... than flat drops, the center of gravity of the test packaging must be vertically over the point...

  12. Dispersion in Spherical Water Drops.

    ERIC Educational Resources Information Center

    Eliason, John C., Jr.

    1989-01-01

    Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)

  13. Getting the Drop on Sediment

    ERIC Educational Resources Information Center

    Galindez, Peter

    1977-01-01

    In this exercise, students examine Aristotle's weight hypothesis by testing variously shaped marble chips. These chips are weighed and dropped down a water tube. Average fall times and weights are recorded and graphed. Students are asked to apply this information to rock and soil deposition by streams. (MA)

  14. Friction Factor Characterization for High-Porosity Random Fiber Regenerators

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    2001-01-01

    NASA Glenn Research Center, the Department of Energy (DOE), and Stirling Technology Company (STC) of Kennewick, Washington are developing a Stirling convertor for a high-efficiency Stirling Radioisotope Power System to provide electric power for NASA Space Science Missions. STC is developing the 55-We Technology Demonstration Convertor (TDC) under contract to DOE. Steady-flow tests were completed to determine the friction factor for the high-porosity regenerators that are used in the TDC. STC fabricated a flow test fixture and three random fiber regenerator test samples, one each at approximately 80, 88, and 96 percent porosities. The flow tests were then completed by the NASA Glenn Flow Calibration Laboratory, and the data reduced to Reynolds number and friction factor. The results showed that the 80 and 88 percent porosity samples had similar characteristics while the 96 percent porosity sample had significantly higher friction factors for given Reynolds numbers compared to the samples with lower porosities. Comparisons were also made between the test data and existing correlations. STC used this data to derive a modified regenerator friction factor correlation for use in the Stirling design code GLIMPS for porosities greater than 88 percent. Using this new correlation, the final optimized regenerator design porosity was reduced from 96 to 90 percent.

  15. Soil surface roughness and porosity under different tillage systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Gonzalez, J.; Saa-Requejo, A.; Gómez, J. A.; Valencia, J. L.; Zarco, P.; Tarquis, A. M.

    2012-04-01

    Both soil porosity and surface elevation can be altered by tillage operation. Even though the surface porosity is an important parameter of a tilled field, however, no practical technique for rapid and non-contact measurement of surface porosity has been developed yet. On the contrary, the surface elevation of tilled soil can be quickly determined with a laser profiler. Working under the assumption that the surface elevation of a tilled field is a complicated superposition of the soil terrain profile at a larger-scale and the roughness at a fine-scale, this study included three aspects: (i) to establish an index (Roughness Index, RI) at a fine-scale to associate the surface roughness with porosity; (ii) to examine the correlation between surface porosity and the proposed RI by three types of tillage treatment in the field; and (iii) to check the scaling/multiscaling behavior among different grid sizes of calculating RI on predicting surface porosity. Consequently, the statistical results from each tilled plot show a strong correlation between the surface porosity and the defined RI in an early stage (ca. 2 days) after tillage. Acknowledgements Funding provided by CEIGRAM (Research Centre for the Management of Agricultural and Environmental Risks)and Spanish Ministerio de Ciencia e Innovación (MICINN) through project AGL2010-21501/AGR is greatly appreciated.

  16. Effect of Porosity on Strength Distribution of Microcrystalline Cellulose.

    PubMed

    Keleṣ, Özgür; Barcenas, Nicholas P; Sprys, Daniel H; Bowman, Keith J

    2015-12-01

    Fracture strength of pharmaceutical compacts varies even for nominally identical samples, which directly affects compaction, comminution, and tablet dosage forms. However, the relationships between porosity and mechanical behavior of compacts are not clear. Here, the effects of porosity on fracture strength and fracture statistics of microcrystalline cellulose compacts were investigated through diametral compression tests. Weibull modulus, a key parameter in Weibull statistics, was observed to decrease with increasing porosity from 17 to 56 vol.%, based on eight sets of compacts at different porosity levels, each set containing ∼ 50 samples, a total of 407 tests. Normal distribution fits better to fracture data for porosity less than 20 vol.%, whereas Weibull distribution is a better fit in the limit of highest porosity. Weibull moduli from 840 unique finite element simulations of isotropic porous materials were compared to experimental Weibull moduli from this research and results on various pharmaceutical materials. Deviations from Weibull statistics are observed. The effect of porosity on fracture strength can be described by a recently proposed micromechanics-based formula.

  17. Self-assembly of nanoparticles in evaporating particle-laden emulsion drops

    NASA Astrophysics Data System (ADS)

    Pack, Min; Yang, Xin; Sun, Ying

    2014-11-01

    In this study, we demonstrate the scalable fabrication of nanostructures (e.g., nanomesh and nanoring arrays) via inkjet printing of oil-in-water emulsion drops containing nanoparticles in water. Nanoscale oil drops dispersed in water are used here as templates for assembly of nanoparticles on a substrate. The effect of oil vapor pressure on particle deposition morphologies is studied by using a variety of oils. For oil drops with a lower vapor pressure, non-uniform evaporation rate along the air-water interface drives dispersed oil drops to move and accumulate near the air/water/substrate contact line. These oil drops remain on the substrate while water is evaporating enabling nanoparticles to self-assemble into nanomeshes. While keeping the same oil concentration, oil drops with a higher vapor pressure completely evaporates near the contact line before water dries out, leading to nanoparticle deposition of coffee-ring structures. If nanoparticles are confined inside the dispersed oil drops, nanoring arrays are formed as the emulsion evaporates. The characteristics of the nanomeshes and nanorings are controlled by tuning the size and concentration of oil drops and nanoparticles, substrate wettability, surfactant concentration, and vapor pressure of oil.

  18. Free-streamline analysis of deformation and dislodging by wind force of drops on a surface

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1988-01-01

    Free-streamline theory is used to analyze the deformation and dislodging by wind pressure of drops of liquid adhered by surface tension to a solid surface. The critical Weber number for droplets to be dislodged is determined as a function of advancing and receding contact angle. Graphical results for drop shape are in good agreement with observation.

  19. Transport-related phenomena for clusters of drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1989-01-01

    Calculations for n-decane drops evaporating in a spherical cluster surrounded by unvitiated ambient air at atmospheric pressure were performed using two previously proposed cluster models. Both cluster models predict that turbulent transport effects are more important in the case of small clusters. This is due to the smaller volume to surface ratio and thus to the greater transport of hot unvitiated gas to the drops in order to promote evaporation. The results obtained are compared with those of two turbulent models for each one of the 'trapping factors' and similarity models.

  20. Microgravity containerless processing in long drop tubes

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Evans, N. D.; Hofmeister, W. H.; Robinson, M. B.

    1984-01-01

    Extensive experience in utilizing long drop tubes for studying effects of microgravity on the solidification of alloys was obtained. While some modifications are necessary to improve versatility, the facility proved to be most useful. Both an electron beam furnace and an electromagnetic levitation furnace can be used. The electron beam furnace is used with vacuum environments (0.00001 torr), whereas the levitation furnace is presently used only in inert gas environments (above 100 torr). Experiments are best applied to refractory alloys because of the sensitivity of the detectors now being used to observe solidification. Processing of lower melting point metals and alloys simply cannot be recorded. On the other hand, expected improvements in detector sensitivity will allow experimentation with relatively low melting alloys. In such cases, solidification will occur in flight only if higher inert gas pressure is used (100 to 760 torr) to increase heat loss by convection. Under these conditions microgravity conditions no longer apply. However, as shown by results to date, it is not microgravity as such that is important in drop tube solidification. Instead it is the containerless nature of the process that is significant, leading to large degrees of undercooling before solidification and therefore to unique alloys.

  1. Ultrasonic measurement of porosity in casts and welds

    NASA Astrophysics Data System (ADS)

    Adler, L.; Wang, S. W.

    1986-01-01

    The development of a quantitative nondestructive method which involves ultrasonic attenuation measurements in frequency domain to determine volume fraction of porosity in aluminum cast is discussed. The aluminum alloy A357 casting samples were produced at the Ohio State University Foundry with controlled porosity contents ranging from 0% to 6%. A computer controlled system was used to direct ultrasonic beam to a test sample to different places to conduct ultrasonic attenuation measurements. The plot of attenuation coefficients as a function of frequency was then evaluated based on existing theories to determine volume fraction of porosity and pore size.

  2. Bubble and Drop Nonlinear Dynamics experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  3. Horizontal Drop of 21- PWR Waste Package

    SciTech Connect

    A.K. Scheider

    2007-01-31

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in-terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 1 1) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  4. True porosity measurement of hair: a new way to study hair damage mechanisms.

    PubMed

    Hessefort, Yin; Holland, Brian T; Cloud, Richard W

    2008-01-01

    This study employs a novel method, gas sorption (1), to quantify the porosity characteristics of hair by determining total pore volume, adsorption pore-size distribution, and the surface area of damaged hair. Damage mechanisms were studied by comparing the different pore volume and surface area resulting from two different types of damage: chemical and UV. Hair color measurement and tensile strength, both reflecting the changes in hair cortex, were also employed in this study. The results suggest that hair damage caused by oxidative bleach and UV oxidation follows different pathways. Chemical damage (oxidative bleach) nearly triples the hair surface area in the first minute of bleaching due to the increase in the number of pores, followed by a sudden drop after 10 min of bleaching from smaller pores breaking down into larger ones. In contrast, UV damage shows an immediate loss in surface area in the first 200 hr of exposure and a gradual increase as exposure time continues.

  5. Positron annihilation characteristics in mesostructural silica films with various porosities

    SciTech Connect

    Xiong, Bangyun; Mao, Wenfeng; Tang, Xiuqin; He, Chunqing

    2014-03-07

    Porous silica films with various porosities were prepared via a sol-gel method using a nonionic amphiphilic triblock copolymer F127 as the structure-directing agent. Doppler broadening of positron annihilation radiation (DBAR) spectra were collected for the prepared films using a variable energy slow positron beam. Different linear relationships between positron annihilation line shape parameters S and W are found for the as-deposited films and calcined ones, indicative of the decomposition of the copolymer porogen in the as-deposited films upon calcination. This also reveals the variation of positron annihilation sites as a function of F127 loading or porosity. Strong correlations between positronium 3γ annihilation fraction, S parameter and porosity of the mesoporous silica films with isolated pores are obtained, which may provide a complementary method to determine closed porosities of mesoporous silica films by DBAR.

  6. Porosity-dependent fractal nature of the porous silicon surface

    SciTech Connect

    Rahmani, N.; Dariani, R. S.

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  7. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering

    PubMed Central

    Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali

    2010-01-01

    Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414

  8. Positron annihilation characteristics in mesostructural silica films with various porosities

    NASA Astrophysics Data System (ADS)

    Xiong, Bangyun; Mao, Wenfeng; Tang, Xiuqin; He, Chunqing

    2014-03-01

    Porous silica films with various porosities were prepared via a sol-gel method using a nonionic amphiphilic triblock copolymer F127 as the structure-directing agent. Doppler broadening of positron annihilation radiation (DBAR) spectra were collected for the prepared films using a variable energy slow positron beam. Different linear relationships between positron annihilation line shape parameters S and W are found for the as-deposited films and calcined ones, indicative of the decomposition of the copolymer porogen in the as-deposited films upon calcination. This also reveals the variation of positron annihilation sites as a function of F127 loading or porosity. Strong correlations between positronium 3γ annihilation fraction, S parameter and porosity of the mesoporous silica films with isolated pores are obtained, which may provide a complementary method to determine closed porosities of mesoporous silica films by DBAR.

  9. High porosity of basal till at Burroughs glacier, southeastern Alaska

    SciTech Connect

    Ronnert, L.; Mickelson, D.M. )

    1992-09-01

    Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

  10. Porosity evolution of upper Miocene reefs, Almeria Province, southern Spain

    USGS Publications Warehouse

    Armstrong, A.K.; Snavely, P.D.; Addicott, W.O.

    1980-01-01

    Sea cliffs 40 km east of Almeria, southeastern Spain, expose upper Miocene reefs and patch reefs of the Plomo formation. These reefs are formed of scleractinian corals, calcareous algae, and mollusks. The reef cores are as much as 65 m thick and several hundred meters wide. Fore-reef talus beds extend 1,300 m across and are 40 m thick. The reefs and reef breccias are composed of calcific dolomite. They lie on volcanic rocks that have a K-Ar date of 11.5 m.y. and in turn are overlain by the upper Miocene Vicar Formation. In the reef cores and fore-reef breccia beds, porosity is both primary and postdepositional. Primary porosity is of three types: (a) boring clam holes in the scleractinian coral heads, cemented reef rocks, and breccias; (b) intraparticle porosity within the corals, Halimeda plates, and vermetid worm tubes; and (c) interparticle porosity between bioclastic fragments and in the reef breccia. Postdepositional moldic porosity was formed by the solution of aragonitic material such as molluscan and coral fragments. The Plomo reef carbonate rocks have high porosity and permeability, and retain a great amount of depositional porosity. Pores range in size from a few micrometers to 30 cm. The extensive intercrystalline porosity and high permeability resulted from dolomitization of micritic matrix. Dolomite rhombs are between 10 and 30 μ across. More moldic porosity was formed by the dissolution of the calclte bioclasts. Some porosity reduction has occurred by incomplete and partial sparry calcite infilling of interparticular, moldic, and intercrystalline voids. The high porosity and permeability of these reefs make them important targets for petroleum exploration in the western Mediterranean off southern Spain. In these offshore areas in the subsurface the volcanic ridge and the Plomo reef complex are locally onlapped or overlapped by 350 m or more of Miocene(?) and Pliocene fine-grained sedimentary rocks. The possibility exists that the buried Plomo reef

  11. Universal Behavior of the Initial Stage of Drop Impact

    NASA Astrophysics Data System (ADS)

    Klaseboer, Evert; Manica, Rogerio; Chan, Derek Y. C.

    2014-11-01

    During the early stages of the impact of a drop on a solid surface, pressure builds up in the intervening thin lubricating air layer and deforms the drop. The extent of the characteristic deformation is determined by the competition between capillary, gravitational, and inertial forces that has been encapsulated in a simple analytic scaling law. For millimetric drops, variations of the observed deformation with impact velocity V exhibit a maximum defined by the Weber and Eötvös numbers: We =1 +Eo . The deformation scales as V1 /2 at the low-velocity capillary regime and as V-1 /2 at the high-velocity inertia regime, in excellent agreement with a variety of experimental systems.

  12. Response of driven sessile drops with contact-line dissipation.

    PubMed

    Bostwick, Joshua B; Steen, Paul H

    2016-11-04

    A partially-wetting sessile drop is driven by a sinusoidal pressure field that produces capillary waves on the liquid/gas interface. Response diagrams and phase shifts for the droplet, whose contact-line moves with contact-angle that is a smooth function of the contact line speed, are reported. Contact-line dissipation originating from the contact-line speed condition leads to damping for drops with finite contact-line mobility, even for inviscid fluids. The critical mobility and associated driving frequency to generate the largest contact-line dissipation is computed. Viscous dissipation is approximated using the irrotational flow and the critical Ohnesorge number bounding regions beyond which a given mode becomes over-damped is computed. Regions of modal coexistence where two modes can be simultaneously excited by a single forcing frequency are identified. Predictions compare favorably to related experiments on vibrated drops.

  13. Drop impact on a fiber

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Gil; Kim, Wonjung

    2016-04-01

    We present the results of a combined experimental and theoretical investigation of drop impact on a thin fiber. Using high-speed videography, we analyze the dynamics of droplet collision with a fiber. Based on the systematic experiments, we identify three outcomes of collision: capturing, single drop falling, and splitting. The outcomes are presented in a regime map, where the regime boundaries are explained through a scale analysis of forces. We also measure the liquid retention on the fiber after the droplet impact. By considering a liquid film on the fiber, we develop a mechanical model that predicts the residual water mass. Our model reveals that the residual mass depends critically on the fiber thickness and less on the impact speed. Our study can be extended to predicting the remaining droplet, critical problems in air filtration, water collection, and fiber coating.

  14. Dropped head syndrome in mitochondriopathy.

    PubMed

    Finsterer, J

    2004-11-01

    In a 63-year-old, 165-cm-tall woman with a history of repeated tick bites, dilative cardiomyopathy, osteoporosis, progressive head ptosis with neck stiffness and cervical pain developed. The family history was positive for thyroid dysfunction and neuromuscular disorders. Neurological examination revealed prominent forward head drop, weak anteflexion and retroflexion, nuchal rigidity, weakness of the shoulder girdle, cogwheel rigidity, and tetraspasticity. The lactate stress test was abnormal. Electromyograms of various muscles were myogenic. Muscle biopsy showed non-specific myogenic abnormalities and generally weak staining for cytochrome oxydase. Mitochondriopathy with multi-organ involvement was suspected. The response to anti-Parkinson medication was poor. In conclusion, dropped head syndrome (DHS) may be due to multi-organ mitochondriopathy, manifesting as Parkinsonism, tetraspasticity, dilative cardiomyopathy, osteoporosis, short stature, and myopathy. Anti-Parkinson medication is of limited effect.

  15. Influence of Weld Porosity on the Integrity of Marine Structures

    DTIC Science & Technology

    1989-02-01

    Bruce Mustain Mr. Alexander B . Stavov; U. S. MERCHANT MARINE ACADEMY NATIONAL ACADEMY OF SCIENCES Dr. C. B . Kim COMMITTEE ON MARINE STRUCTURE,, U. S...FIGURE 9(a). STRESS-LIFE PLOT SHOWING ACTUAL FATIGUE LIVES VERSUS PREDICTED FATIGUE LIVES OF WELDS CONTAINING POROSITY 32 FIGURE 9( b ). STRESS-LIFE PLOT...37 FIGURE 11. CLASS A AND CLASS B POROSITY CHART FOR 0.5 INCH (12.5 MM) THICK MATERIAL ....... ...................... ... 38 FIGURE 12

  16. Modulus Dependence on Large Scale Porosity of Powder Metallurgy Steel

    NASA Astrophysics Data System (ADS)

    Allison, P. G.; Horstemeyer, M. F.; Brown, H. R.

    2012-07-01

    This article compares the existing theoretical expressions for the porosity dependence on elastic constants to experimental data for a commercially available material, FC-0205 powder metallurgy (PM) steel. The modulus of compression, tension, effective torsion, and ultrasound-based data at varying porosity levels are plotted graphically against the theoretical expressions. An equation by McAdam ( J. Iron Steel Inst. Lond., 1950, 168, p 346) was able to most accurately predict the experimental data with the adjustment of only one material constant.

  17. Permeability-porosity relationships of subduction zone sediments

    USGS Publications Warehouse

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2011-01-01

    Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.

  18. Properties of Bulk Sintered Silver As a Function of Porosity

    SciTech Connect

    Wereszczak, Andrew A; Vuono, Daniel J; Wang, Hsin; Ferber, Mattison K; Liang, Zhenxian

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity, thermal

  19. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  20. A review of porosity-generating mechanisms in crustal shear zones

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    Knowledge of the spatiotemporal characteristics of permeability is critical for the understanding of fluid migration in rocks. In diagenetic and metamorphic rocks different porosity-generating mechanisms contribute to permeability and so influence fluid migration and fluid/rock interaction. However, little is known about their relative contributions to the porosity architecture of a rock in a tectono-metamorphic environment. This presentation reviews porosity-generating mechanisms that affect fluid migration in shear zones, the most important crustal fluid conduits, in the context of the tectonometamorphic evolution of rocks. Mechanisms that generate porosity can be classified in a) those that involve the direct action of a fluid, b) processes in which a fluid partakes or that are supported by a fluid or c) mechanism that do not involve a fluid. a) Hydraulic fracturing, where it happens through the formation of tensile fractures, occurs where pore fluid pressures equalize the combined lithostatic pressure and strength of the rock (Etheridge et al., 1984, Cox & Etheridge, 1989, Oliver, 1996). Here an internally released (devolatilisation reactions, e.g., Rumble, 1994, Hacker, 1997, Yardley, 1997 and references therein) or externally derived (infiltrating from metamorphic, magmatic or meteoric sources, Baumgartner et al., 1997, Jamtveit et al., 1997, Thompson, 1997, Gleeson et al., 2003) fluid directly causes the mechanical failure of a rock. Where a fluid is in chemical disequilibrium with a rock (undersaturated with regard to a chemical species) minerals will be dissolved, generating dissolution porosity. Rocks ‘leached' by the removal of chemical components by vast amounts of fluid are reported to lose up to 60% of their original volume (e.g., Kerrich et al., 1984, McCaig 1988). Dissolution porosity is probably an underrated porosity-generating mechanism. It can be expected along the entire metamorphic evolution, including diagenesis (Higgs et al., 2007) and

  1. Reusable Material for Drop Tower

    DTIC Science & Technology

    2011-08-01

    UNCLASSIFIED: Distribution A. Approved for public release. REUSABLE MATERIAL FOR DROP TOWER A thesis written at TANK AUTOMOTIVE RESEARCH AND...ABSTRACT This thesis represents the capstone of my five years combined academic work at Kettering University and job experience at Tank Automotive ...NUMBER OF PAGES 57 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form

  2. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    PubMed Central

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  3. Bone porosity and longevity in early medieval Southern Croatia.

    PubMed

    Bečić, Kristijan; Jandrić Bečić, Darija; Definis-Gojanović, Marija; Zekić Tomaš, Sandra; Anterić, Ivana; Bašić, Zeljana

    2014-03-01

    Porosity of the skull and skeletal remains, especially of the orbital roof, are one of the most frequent pathological findings on ancient human skeletal remains. There are several presumed causes of this condition and anthropologists consider skull porosities as a marker of physical and nutritional stress. A total of 115 graves were discovered at the early-medieval graveyard near Zadar (Croatia) that contained 128 partially preserved skeletons. Average estimated age at death was 37.2 ± 12.6 years for men, 31.9 ± 13.9 for women, and 5.3 ± 3.6 years for subadults. Pathological bone porosity was analysed. Cribra orbitalia was observed on 21 skulls (28.7%), signs of temporal porosity were noticed on six skulls and signs of subperiosteal bleeding on three skulls. Nineteen skulls had bone porosities in other areas. There was a significant difference (p = 0.039) in achieved age of adults with and without cribra orbitalia as those with cribra orbitalia lived on average 8.1 years longer. The bone porosity was probably caused by malnutrition that might have had a beneficial effect on longevity of adults, similar to effects of restricted food intake on extending lifespan through epigenetic signatures influencing gene expression.

  4. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  5. Numerical study of porosity in titanium dental castings.

    PubMed

    Wu, M; Sahm, P R; Augthun, M; Spiekermann, H; Schädlich-Stubenrauch, J

    1999-09-01

    A commercial software package, MAGMASOFT (MAGMA Giessereitechnologie GmbH, Aachen, Germany), was used to study shrinkage and gas porosity in titanium dental castings. A geometrical model for two simplified tooth crowns connected by a connector bar was created. Both mold filling and solidification of this casting model were numerically simulated. Shrinkage porosity was quantitatively predicted by means of a built-in feeding criterion. The risk of gas pore formation was investigated using the numerical filling and solidification results. The results of the numerical simulations were compared with experiments, which were carried out on a centrifugal casting machine with an investment block mold. The block mold was made of SiO2 based slurry with a 1 mm thick Zr2 face coat to reduce metal-mold reactions. Both melting and casting were carried out under protective argon (40 kPa). The finished castings were sectioned and the shrinkage porosity determined. The experimentally determined shrinkage porosity coincided with the predicted numerical simulation results. No apparent gas porosity was found in these model castings. Several running and gating systems for the above model casting were numerically simulated. An optimized running and gating system design was then experimentally cast, which resulted in porosity-free castings.

  6. Double porosity modeling in elastic wave propagation for reservoir characterization

    SciTech Connect

    Berryman, J. G., LLNL

    1998-06-01

    Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.

  7. Integrated design of castings: effect of porosity on mechanical performance

    NASA Astrophysics Data System (ADS)

    Hardin, R. A.; Beckermann, C.

    2012-07-01

    Porosity can significantly reduce the strength and durability of castings in service. An integrated design approach has been developed where casting simulation is combined with mechanical performance simulations. Predictions of the porosity distribution from the casting process simulation are transferred to and used in stress and fatigue life simulations. Thus, the effect of casting quality on service performance can be evaluated. Results of a study are presented where the measured porosity distribution in cast steel specimens is transferred to an elasto-plastic finite-element stress analysis model. Methods are developed to locally reduce the mechanical properties according to the porosity present, without having to resolve individual pores. Plastic deformation is modeled using porous metal plasticity theory. The predictions are compared to tensile measurements performed on the specimens. The complex deformations and the reductions in the ductility of the specimens due to porosity are predicted well. The predicted stresses are transferred to a fatigue analysis code that takes the porosity distribution into account as well. The measured and predicted fatigue lives are also in good agreement. Finally, the results of a case study are presented that illustrate the utility of the present integrated approach in optimizing the design of a steel casting.

  8. Drop spreading with random viscosity

    PubMed Central

    2016-01-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid’s viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop’s motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop’s effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated viscosity within the precursor film to hinder spreading. A low-order model provides explicit predictions of the variances in spreading rate and drop location, which are validated against simulations. PMID:27843398

  9. Thermocapillary motion of deformable drops

    NASA Astrophysics Data System (ADS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-08-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  10. How to freeze drop oscillations with powders

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy; Zhu, Ying; Vakarelski, Ivan; Thoroddsen, Sigurdur

    2012-11-01

    We present experiments that show when a water drop impacts onto a bed of fine, hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. For all drop impact speeds, the drop rebounds due to the hydrophobic nature of the powder. However, we observe that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a complete coverage of powder, thus creating a deformed liquid marble. This powder coating acts to freeze the drop oscillations during rebound.

  11. Transient dual-porosity simulations of unsaturated flow in fractured rocks

    SciTech Connect

    Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

    1995-01-01

    This report describes the development and use of a semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but is accurate in both early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module that acts as a source/sink term for fracture elements; this module is compatible with the unsaturated flow simulator TOUGH. Flow processes are then simulated using only fracture elements in the computational grid. This semi-analytical dual-porosity module has been tested with TOUGH on various problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new semi-analytical dual-porosity model accurately simulates flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks.

  12. Propagation and attenuation of inhomogeneous waves in double-porosity dual-permeability materials

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2016-11-01

    This study considers the propagation of harmonic plane waves in a double-porosity dual-permeability solid saturated with single viscous fluid. Christoffel system is obtained to explain the existence of three longitudinal waves and a transverse wave in the medium considered. Each wave is identified with a complex velocity, which is resolved for inhomogeneous propagation to calculate the phase velocity and attenuation of the wave. Pore-fluid pressures are expressed in terms of velocities of solid particles corresponding to the propagation of three longitudinal waves. Then, transfer rate of pore-fluid between two porosities induced by each longitudinal wave is calculated as a function of its complex velocity. Numerical example is solved to study the dispersion in phase velocity and attenuation for each of the four waves. Effects of pore-fluid viscosity, wave-inhomogeneity and composition of double porosity on inhomogeneous propagation are analysed graphically. Transfer rate of pore-fluid, induced by each of the three longitudinal waves, is calculated as a periodic waveform. Variations in the fluid-flow profile are exhibited for different values of pore-fluid viscosity, skeleton permeability, wave-frequency and wave-inhomogeneity.

  13. Propagation and attenuation of inhomogeneous waves in double-porosity dual-permeability materials

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2017-02-01

    This study considers the propagation of harmonic plane waves in a double-porosity dual-permeability solid saturated with single viscous fluid. Christoffel system is obtained to explain the existence of three longitudinal waves and a transverse wave in the medium considered. Each wave is identified with a complex velocity, which is resolved for inhomogeneous propagation to calculate the phase velocity and attenuation of the wave. Pore-fluid pressures are expressed in terms of velocities of solid particles corresponding to the propagation of three longitudinal waves. Then, transfer rate of pore-fluid between two porosities induced by each longitudinal wave is calculated as a function of its complex velocity. Numerical example is solved to study the dispersion in phase velocity and attenuation for each of the four waves. Effects of pore-fluid viscosity, wave-inhomogeneity and composition of double porosity on inhomogeneous propagation are analysed graphically. Transfer rate of pore-fluid, induced by each of the three longitudinal waves, is calculated as a periodic waveform. Variations in the fluid-flow profile are exhibited for different values of pore-fluid viscosity, skeleton permeability, wave-frequency and wave-inhomogeneity.

  14. Effects of porosity on shock-induced melting of honeycomb-shaped Cu nanofoams

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    Metallic foams are of fundamental and applied interests in various areas, including structure engineering (e.g., lightweight structural members and energy absorbers), and shock physics (e.g., as laser ablators involving shock-induced melting and vaporization).Honeycomb-shaped metallic foams consist of regular array of hexagonal cells in two dimensions and have extensive applications and represent a unique, simple yet useful model structure for exploring mechanisms and making quantitative assessment. We investigate shock-induced melting in honeycomb-shaped Cu nanofoams with extensive molecular dynamics simulations. A total of ten porosities (phi) are explored, ranging from 0 to 0.9 at an increment of 0.1. Upon shock compression, void collapse induces local melting followed by supercooling for sufficiently high porosity at low shock strengths. While superheating of solid remnants occurs for sufficiently strong shocks at phi<0.1. Both supercooling of melts and superheating of solid remnants are transient, and the equilibrated shock states eventually fall on the equilibrium melting curve for partial melting. However, phase equilibrium has not been achieved on the time scale of simulations in supercooled Cu liquid (from completely melted nanofoams). The temperatures for incipient and complete melting are related to porosity via a power law and approach the melting temperature at zero pressure as phi tends to 1.

  15. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing.

    PubMed

    Riboux, Guillaume; Gordillo, José Manuel

    2014-07-11

    Making use of experimental and theoretical considerations, in this Letter we deduce a criterion to determine the critical velocity for which a drop impacting a smooth dry surface either spreads over the substrate or disintegrates into smaller droplets. The derived equation, which expresses the splash threshold velocity as a function of the material properties of the two fluids involved, the drop radius, and the mean free path of the molecules composing the surrounding gaseous atmosphere, has been thoroughly validated experimentally at normal atmospheric conditions using eight different liquids with viscosities ranging from μ=3×10(-4) to μ=10(-2)  Pa s, and interfacial tension coefficients varying between σ=17 and σ=72  mN m(-1). Our predictions are also in fair agreement with the measured critical speed of drops impacting in different gases at reduced pressures given by Xu et al. [Phys. Rev. Lett. 94, 184505 (2005).

  16. Evaporation of sessile water/ethanol drops in a controlled environment.

    PubMed

    Liu, Chuanjun; Bonaccurso, Elmar; Butt, Hans-Jürgen

    2008-12-21

    The evaporation of water/ethanol drops with different mixing ratios was investigated at controlled vapor pressure of water (relative humidity) and ethanol in the background gas. Therefore, a drop of about 1 microL was deposited on a hydrophobized silicon substrate at room temperature in a closed cell. With a microscope camera we monitored the contact angle, the volume and the contact radius of the drops as function of time. Pure water drops evaporated in constant contact angle mode. The evaporation rate of water decreased with increasing humidity. In mixed drops ethanol did not evaporate completely at first, but a fraction still remained in the