Science.gov

Sample records for pressure drop prediction

  1. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  2. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  3. Prediction of Pressure Drop in the ITER Divertor Cooling Channels

    SciTech Connect

    Yin, S.T.; Chen, J.L.

    2005-04-15

    This study investigated the pressure drop in the divertor cooling channels of the International Thermonuclear Experimental Reactor (ITER). The water in the cooling channels will encounter the following flow and boiling regimes: 1) single-phase convection, 2) highly-subcooled boiling, 3) onset of nucleate boiling (ONB), and 4) fully-developed subcooled boiling. The upper operating boundary is limited by the departure from nucleate boiling (DNB) or burnout conditions. Twisted-tape insert will be used to enhance local heat transfer. Analytical models, validated with relevant databases, were proposed for the above-identified flow regimes. A user-friendly computer code was developed to calculate the overall pressure drop and the exit pressure of a specific local segment throughout the entire flow circuit. Although the operating parameters were based on the CDA phase input the results are found in general agreement when compared with the ITER EDA results.

  4. Pressure drop and thrust predictions for transonic micronozzle flows

    NASA Astrophysics Data System (ADS)

    Gomez, J.; Groll, R.

    2016-02-01

    In this paper, the expansion of xenon, argon, krypton, and neon gases through a Laval nozzle is studied experimentally and numerically. The pressurized gases are accelerated through the nozzle into a vacuum chamber in an attempt to simulate the operating conditions of a cold-gas thruster for attitude control of a micro-satellite. The gases are evaluated at several mass flow rates ranging between 0.178 mg/s and 3.568 mg/s. The Re numbers are low (8-256) and the estimated values of Kn number lie between 0.33 and 0.02 (transition and slip-flow regime). Direct Simulation Monte Carlo (DSMC) and continuum-based simulations with a no-slip boundary condition are performed. The DSMC and the experimental results show good agreement in the range Kn > 0.1, while the Navier-Stokes results describe the experimental data more accurately for Kn < 0.05. Comparison between the experimental and Navier-Stokes results shows high deviations at the lower mass flow rates and higher Kn numbers. A relation describing the deviation of the pressure drop through the nozzle as a function of Kn is obtained. For gases with small collision cross sections, the experimental pressure results deviate more strongly from the no-slip assumption. From the analysis of the developed function, it is possible to correct the pressure results for the studied gases, both in the slip-flow and transition regimes, with four gas-independent accommodation coefficients. The thrust delivered by the cold-gas thruster and the specific impulse is determined based on the numerical results. Furthermore, an increase of the thickness of the viscous boundary layer through the diffuser of the micronozzle is observed. This results in a shock-less decrease of the Mach number and the flow velocity, which penalizes thrust efficiency. The negative effect of the viscous boundary layer on thrust efficiency can be lowered through higher values of Re and a reduction of the diffuser length.

  5. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Astrophysics Data System (ADS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-11-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  6. Prediction of Frictional Pressure Drop During Water Permeation Through Packed Beds of Granular Particulates

    SciTech Connect

    KING, WILLIAM D.; ALEMAN, SEBASTIAN E.; HAMM, L. LARRY; PETTIS, MYRA A.

    2005-10-25

    A methodology has been developed based on the Kozeny-Carman equation to predict frictional pressure drops during water permeation of packed columns containing essentially noncompressible, but highly irregular particles. The resulting model accurately predicts pressure drop as a function of liquid flow rate and resin particle size for this system. A total of five particle sieve cuts across the range -20 to +70 mesh were utilized for testing using deionized water as the mobile phase. The Rosin-Rammler equation was used to fit the raw particle size data (wet sieve analysis) for the as-received resin sample and generate a continuous cumulative distribution function based on weight percent passing through the sieve. Probability distribution functions were calculated from the cumulative distribution for each particle sieve cut tested. Nine particle diameter definitions (i.e., number mean, volume mean, etc.) were then selected from the distribution function for each sample to represent the average spherically-equivalent particle diameter as input to the Kozeny-Carman equation. Nonlinear least squares optimization of the normalized pressure drop residuals were performed by parameter estimation of particle shape factor and bed porosity for all samples simultaneously using a given average particle diameter definition. Good fits to the full experimental data set were obtained when utilizing the number mean and the number median diameters. However, the shape factor and porosity values of 0.88 and 0.40, respectively, obtained from fitting the data using the number mean diameter were more consistent with experimental observations.

  7. Geometry-based pressure drop prediction in mildly diseased human coronary arteries.

    PubMed

    Schrauwen, J T C; Wentzel, J J; van der Steen, A F W; Gijsen, F J H

    2014-06-01

    Pressure drop (△p) estimations in human coronary arteries have several important applications, including determination of appropriate boundary conditions for CFD and estimation of fractional flow reserve (FFR). In this study a △p prediction was made based on geometrical features derived from patient-specific imaging data. Twenty-two mildly diseased human coronary arteries were imaged with computed tomography and intravascular ultrasound. Each artery was modelled in three consecutive steps: from straight to tapered, to stenosed, to curved model. CFD was performed to compute the additional △p in each model under steady flow for a wide range of Reynolds numbers. The correlations between the added geometrical complexity and additional △p were used to compute a predicted △p. This predicted △p based on geometry was compared to CFD results. The mean △p calculated with CFD was 855±666Pa. Tapering and curvature added significantly to the total △p, accounting for 31.4±19.0% and 18.0±10.9% respectively at Re=250. Using tapering angle, maximum area stenosis and angularity of the centerline, we were able to generate a good estimate for the predicted △p with a low mean but high standard deviation: average error of 41.1±287.8Pa at Re=250. Furthermore, the predicted △p was used to accurately estimate FFR (r=0.93). The effect of the geometric features was determined and the pressure drop in mildly diseased human coronary arteries was predicted quickly based solely on geometry. This pressure drop estimation could serve as a boundary condition in CFD to model the impact of distal epicardial vessels. PMID:24746019

  8. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section

    NASA Astrophysics Data System (ADS)

    Al-Kayiem, A. H. H.; Ibrahim, M. A.

    2015-12-01

    The flow behaviour and the pressure drop throughout an annular flow test section was investigated in order to evaluate and justify the reliability of experimental flow loop for wax deposition studies. The specific objective of the present paper is to assess and highlight the influence of the equivalent diameter method on the analysis of the hydrodynamic behaviour of the flow and the pressure drop throughout the annular test section. The test section has annular shape of 3 m length with three flow passages, namely; outer thermal control jacket, oil annular flow and inner pipe flow of a coolant. The oil annular flow has internal and external diameters of 0.0422 m and 0.0801 m, respectively. Oil was re-circulated in the annular passage while a cold water-glycol mixture was re-circulated in the inner pipe counter currently to the oil flow. The experiments were carried out at oil Reynolds number range of 2000 to 17000, covering laminar, transition and turbulent flow regimes. Four different methods of equivalent diameter of the annulus have been considered in this hydraulic analysis. The correction factor model for frictional pressure drop was also considered in the investigations. All methods addressed the high deviation of the prediction from the experimental data, which justified the need of a suitable pressure prediction correlation for the annular test section. The conventional hydraulic diameter method is a convenient substitute for characterizing physical dimension of a non-circular duct, and it leads to fairly good correlation between turbulent fluid flow and heat transfer characteristic of annular ducts.

  9. Prediction of two-phase pressure drop in heat exchanger for mixed refrigerant Joule-Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Ardhapurkar, P. M.; Atrey, M. D.

    2015-12-01

    The overall efficiency of a mixed refrigerant Joule-Thomson (MR J-T) cryocooler is governed by the performance of the recuperative heat exchanger. In the heat exchanger, the hot stream of the mixed refrigerant undergoes condensation at high pressure while the cold stream gets evaporated at low pressure. The pressure drop in the low pressure stream is crucial since it directly influences the achievable refrigeration temperature. However, experimental and theoretical studies related to two-phase pressure drop in mixtures at cryogenic temperatures, are limited. Therefore, the design of an efficient MR J-T cryocooler is a challenging task due to the lack of predictive tools. In the present work, the existing empirical correlations, which are commonly used for the prediction of pressure drop in the case of pure refrigerants, evaporating at near ambient conditions, are assessed for the mixed refrigerants. Experiments are carried out to measure the overall pressure drop in the evaporating cold stream of the tube-in-tube helically coiled heat exchanger. The predicted frictional pressure drop in the heat exchanger is compared with the experimental data. The suggested empirical correlations can be used to predict the hydraulic performance of the heat exchanger.

  10. Prediction of the collection efficiency, the porosity, and the pressure drop across filter cakes in particulate air filtration

    NASA Astrophysics Data System (ADS)

    Al-Otoom, Awni Y.

    This study presents a new statistical model to predict the collection efficiency, cake thickness, cake porosity, and pressure drop across filter cakes during the particulate filtration of gases. This model is based on generation of a random distribution of particle sizes and particle falling locations. The model predicts the cake collection efficiency, which was found to be strongly dependent on the ratio of the mean particle size to the mean pore size of the filter medium. The average cake porosity decreases with increasing cake thickness and the pressure drop increases when the mean particle diameter decreases.

  11. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  12. Short term Heart Rate Variability to predict blood pressure drops due to standing: a pilot study

    PubMed Central

    2015-01-01

    Background Standing from a bed or chair may cause a significant lowering of blood pressure (ΔBP), which may have severe consequences such as, for example, falls in older subjects. The goal of this study was to develop a mathematical model to predict the ΔBP due to standing in healthy subjects, based on their Heart Rate Variability, recorded in the 5 minutes before standing. Methods Heart Rate Variability was extracted from an electrocardiogram, recorded from 10 healthy subjects during the 5 minutes before standing. The blood pressure value was measured before and after rising. A mathematical model aiming to predict ΔBP based on Heart Rate Variability measurements was developed using a robust multi-linear regression and was validated with the leave-one-subject-out cross-validation technique. Results The model predicted correctly the ΔBP in 80% of experiments, with an error below the measurement error of sphygmomanometer digital devices (±4.5 mmHg), a false negative rate of 7.5% and a false positive rate of 10%. The magnitude of the ΔBP was associated with a depressed and less chaotic Heart Rate Variability pattern. Conclusions The present study showes that blood pressure lowering due to standing can be predicted by monitoring the Heart Rate Variability in the 5 minutes before standing. PMID:26391336

  13. On the Accuracy of CFD-Based Pressure Drop Predictions for Right-Angle Ducts

    NASA Technical Reports Server (NTRS)

    Brankovic, Andreja

    1993-01-01

    The predictive capability of computational fluid dynamics (CFD) codes for turbulent flow through curved ducts is of significant importance to the design and performance analysis of modern rocket engine flowpaths. Code calibration and validation studies for this class of flow are desireable to estimate the performance margin and operating range of components designed using Navier-Stokes methods. Parametric experimental studies such as that of Weske (NACA ARR W-39) provided a wealth of performance data for the design of single- and compound elbow configurations with various cross-sections, curvature and aspect ratios at varying Reynolds numbers. In that work, the majority of data is presented in the form of loss coefficients, characterizing pressure losses due to duct curvature, and including losses due to wall friction. Using measured friction coefficients, losses of equivalent straight lengths of duct are subtracted, resulting in performance curves useful for design computations. These data are currently used in a CFD-based parametric study covering a broad range of operating conditions. Of particular interest for the accuracy of CFD predictions are the effects on pressure loss due to inlet boundary layer thickness (dependent on upstream development length), and the wall treatment for the turbulence equations (conventional wall functions vs. wall integration using a two-layer model). The experimental data are reassessed in the form of an error analysis, and are compared with CFD predictions for 18 computational cases. Grid-independence, grid spacing, and convergence requirements of the cases are discussed. Conclusions regarding the relative importance of the parametric variables will be presented.

  14. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  15. He II heat transfer through random packed spheres: Pressure drop

    NASA Astrophysics Data System (ADS)

    Vanderlaan, M. H.; Van Sciver, S. W.

    2014-09-01

    Heat flow induced pressure drop through superfluid helium (He II) contained in porous media is examined. In this experiment, heat was applied to one side of a He II column containing a random pack of uniform size polyethylene spheres. Measured results include steady state pressure drops across the random packs of spheres (nominally 35 μm, 49 μm, and 98 μm diameter) for different heat inputs. Laminar, turbulent, and transition fluid flow regimes are examined. The laminar permeability and equivalent channel shape factor are compared to our past studies of the temperature drop through He II in the same porous media of packed spheres. Results from the pressure drop experiments are more accurate than temperature drop experiments due to reduced measurement errors achieved with the pressure transducer. Turbulent results are fitted to models with empirically derived friction factors. A turbulent model considering only dynamic pressure losses in the normal fluid yields the most consistent friction factors. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits all regimes to within 10%.

  16. Low-Pressure-Drop Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Thornborrow, John

    1994-01-01

    Flapper valve remains open under normal flow conditions but closes upon sudden increases to high rate of flow and remains closed until reset. Valve is fluid/mechanical analog of electrical fuse or circuit breaker. Low-pressure-drop shutoff valve contains flapper machined from cylindrical surface. During normal flow conditions, flapper presents small cross section to flow. (Useful in stopping loss of fluid through leaks in cooling systems.)

  17. Predicting Students Drop Out: A Case Study

    ERIC Educational Resources Information Center

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  18. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  19. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  20. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOEpatents

    Sappok, Alexander; Wong, Victor

    2014-11-18

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing or preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.

  1. Effect of humidity on the filter pressure drop

    SciTech Connect

    Vendel, J.; Letourneau, P.

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  2. Pressure drop through generic lumens of hemodialysis catheters.

    PubMed

    Fricker, Zachary P; Rockwell, Donald O

    2007-01-01

    A unique, air-based system has been developed and implemented for rapid and accurate determination of pressure drop versus flow rate characteristics of generic catheter lumens; dimensionless scaling parameters can be effectively used to express these characteristics in units of blood flow used in the clinical setting. Theoretical models are compared with experimental data. For flow and geometric parameters of practical importance, the pronounced effect of developing flow in the lumen must be accounted for in calculation of the pressure drop along the lumen. That is, the theory of classical Poiseuille flow substantially underpredicts the pressure drop. Moreover, a side hole can induce significant, and in some cases large, values of pressure drop, even when the area of the hole exceeds the cross-sectional area of the lumen.

  3. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  4. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  5. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles. PMID:18074287

  6. Reducing cyclone pressure drop with evasés

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are widely used to separate particles from gas flows and as air emissions control devices. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Evasés or exit diffusers potentially could reduce exit pressure losses without affecting collection...

  7. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  8. Pressure Drop Reduction of Slush Nitrogen in Turbulent Pipe Flows

    NASA Astrophysics Data System (ADS)

    Ohira, K.; Nozawa, M.; Ishimoto, J.; Koizumi, N.; Kamiya, T.

    2008-03-01

    Slush fluid such as slush hydrogen and slush nitrogen is a two-phase (solid-liquid) single-component cryogenic fluid containing solid particles in liquid, and consequently its density and refrigerant capacity are greater than for liquid state fluid. Experimental tests were performed with slush nitrogen to obtain the frictional pressure drop flowing in a 15 mm internal diameter, 400 mm long, horizontal, stainless steel pipe. The primary objective of this study was to investigate the pressure drop reduction phenomenon with changes in velocity and solid fraction. From the experimental results, the pressure drop correlation between the friction factor and the Reynolds number was obtained and an empirical correlation was derived. Flow patterns for slush nitrogen inside a pipe and the behavior of solid particles were also observed using a high speed camera.

  9. Validated heat-transfer and pressure-drop prediction methods based on the discrete element method: Phase 1, Three-dimensiional roughness

    SciTech Connect

    Taylor, R.P.; Hodge, B.K.

    1992-02-01

    A computer program based on the discrete element method has been developed and validated to compute friction factors and Nusselt numbers for fully developed turbulent flow and heat transfer in pipes with three-dimensional roughness elements. Computational results are compared with appropriate cases from heat transfer experiments in the literature. The predictions were in general in very good agreement with the experimental data.

  10. Liquid-metal pin-fin pressure drop by correlation in cross flow

    SciTech Connect

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-08-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed.

  11. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  12. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  13. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  14. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  15. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across the Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox usi...

  16. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  17. Factors predicting drop-out in community mental health centres

    PubMed Central

    RENESES, BLANCA; MUÑOZ, ELENA; LÓPEZ-IBOR, JUAN JOSÉ

    2009-01-01

    This study aimed to identify treatment, therapist and patient factors associated with dropping out of treatment in four outpatient mental health services. The experimental group comprised all 789 individuals who attended for the first time the mental health services during one year and dropped out of treatment in the same year or during the two following ones. The control group consisted of the same number of individuals, chosen at random from patients who, in the same year, attended for the first time the services and did not subsequently drop out of treatment. The overall drop-out rate was 33.2%. According to logistic regression analysis, the predictive factors of dropping out were: being treated in a particular centre, the involvement of more than one therapist in treatment, having no previous history of psychiatric disorders, being young and being male. PMID:19812755

  18. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.

    2013-11-01

    Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.

  19. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  20. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  1. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  2. PROGRAM DROP: A computer program for prediction of evaporation from freely falling multicomponent drops

    SciTech Connect

    Gavin, P.M.

    1996-12-01

    PROGRAM DROP consists of a series of FORTRAN routine which together are used to model the evaporation of a freely falling, multicomponent drop composed of an arbitrary number of volatile species and a single nonvolatile, inert component. The physics underlying the model are clearly identified, and the model`s relationship to previous work in the literature is described. Test cases are used to illustrate the viability of the model and to highlight its potential usefulness in the accurate prediction of multicomponent droplet vaporization in a variety of applications.

  3. The pressure drop in a porous material layer during combustion

    SciTech Connect

    Kondrikov, B.N.

    1995-07-01

    During the combustion of a porous material layer, a manometer, which is attached to the cold end of the charge, records at the bottom of the layer a pressure reduction, which was discovered more than 20 years ago but which remains essentially unexplained up to the present. It is experimentally shown that this effect is similar to the pressure change in the cavities when a light gas (helium, hydrogen) diffuses from (or to) them under isothermal conditions and that it increases during the combustion mainly due to the accompanying Stefan type flow, and probably also as a result of the thermal diffusion. A pressure drop in the cavities is evidently made possible also by the pressure reduction in the flame which follows from the Hugoniot adiabatic theory.

  4. Limiting the Accidental Pressure Drop in NIF Beam Tubes

    SciTech Connect

    Garcia, M

    2000-11-06

    This report summarizes the use of a one-dimensional model of a time-dependent compressible flow condition to validate the results from a more sophisticated three-dimensional model. The flow conditions consist of the sudden decompression of a pressurized tube joined to an evacuated sphere, where the tube also has a leak to external atmosphere that is triggered open at a given pressure difference below sea-level pressure. This flow model is used to calculate conditions in a NIF beam tube if an internal vacuum barrier fails, and to calculate how the size and timing of an opening to external atmosphere changes tube pressure. Decompression of a NIF beam tube is a potential safety hazard since the tube could collapse if the tube pressure is reduced below the buckling limit. To prevent this from occurring, each pressurized section includes a rupture panel which is designed to open to external atmosphere at a given pressure difference. The inrush of external atmosphere through the rupture panel fills both the tube and the vacuum drawing on it, and in this way the pressure drop in the tube is quickly limited and reversed. In summary, the results from the 1D model indicate that the 3-D calculations are accurate and reasonable.

  5. Model calibration for pressure drop in a pulse-jet cleaned fabric filter

    NASA Astrophysics Data System (ADS)

    Koehler, John L.; David, Leith

    A model based on Darcy's law allows prediction of pressure drop in a pulse-jet cleaned fabric filter. The model considers the effects of filtration velocity, dust areal density added during one filtration cycle, and pulse pressure. Data used to calibrate the model were collected in experiments with three fabric surface treatments and three dusts conducted at three filtration velocities, for a total of 27 different experimental conditions. The fabric used was polyester felt with untreated, singed, or PTFE-laminated surface. The dusts used were granite, limestone and fly ash. Filtration velocities were 50,75 and 100 mm s -1. Dust areal density added during one filtration cycle was constant, as was pulse pressure. Under these conditions, fabric surface treatment alone largely determined the values for two of the three constants in the model; the third constant depends on pressure drop characteristics of the venturi at the top of each filter bag.

  6. Sudden Drops in Blood Pressure Tied to Higher Odds for Dementia

    MedlinePlus

    ... news/fullstory_161422.html Sudden Drops in Blood Pressure Tied to Higher Odds for Dementia Dizziness, faintness ... be an association between sudden drops in blood pressure upon standing up -- a condition called orthostatic hypotension -- ...

  7. Predicting Drop-Out from Social Behaviour of Students

    ERIC Educational Resources Information Center

    Bayer, Jaroslav; Bydzovska, Hana; Geryk, Jan; Obsivac, Tomas; Popelinsky, Lubomir

    2012-01-01

    This paper focuses on predicting drop-outs and school failures when student data has been enriched with data derived from students social behaviour. These data describe social dependencies gathered from e-mail and discussion board conversations, among other sources. We describe an extraction of new features from both student data and behaviour…

  8. How low can you go? Low pressure drop laboratory design

    SciTech Connect

    Weale, John; Rumsey, Peter; Sartor, Dale; Lock, Lee Eng

    2001-12-01

    Laboratory buildings are characterized by the production of potentially hazardous fumes within the occupied space. The primary objective of a laboratory ventilation system is to isolate and protect the occupants from the fumes, as well as provide minimum outside air at a comfortable temperature. Fume removal results in the need for a large volume of conditioned make-up air, typically a significantly greater volume than required for space temperature conditioning purposes. The high quantity of exhaust naturally results in a once through system, which is also often required by codes that prohibit any recirculation in a laboratory space. The high costs associated with high airflow systems are magnified by the 24 hours a day, 356 days a year ventilation operation often seen in laboratory situations. All too often, the common design approach taken to laboratory mechanical systems results in a traditional office ventilation system upsized to meet a laboratory's requirements. Recognizing the unique aspects of laboratory requirements and operation is essential to optimizing the mechanical system. Figure 1 shows a breakdown of a laboratory building's electricity use, based on a DOE 2 model of a baseline laboratory building design for Montana State University (Bozeman, MT). In laboratory buildings, the largest and easiest target for energy use reduction is usually the ventilation energy. At about 50 percent of the buildings total electricity usage, a 15 percent reduction in the power required by the ventilation system would save more energy than eliminating all lighting energy. As the largest component of a laboratory's energy consumption, the ventilation system is the first target to reduce the energy bill. Significantly improving the standard design efficiency of a ventilation system requires a lower air pressure drop system on both the supply and exhaust system. Implementing low-pressure drop design strategies from the early stages of the design process will result in

  9. Effects of brush seal morphology on leakage and pressure drops

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Yang, Y.; Hendricks, R. C.

    1991-01-01

    Research on brush seals which was undertaken earlier by Braun et al. (1990) is continued. Particular attention is given to the effects of brush positioning, design, and morphology on sealing surfaces, fluid leakage, and associated pressure drops. It is found that both the structure and the design of the brush are important to its performance. High resistance to the flow of the brush/fence combination can result in catastrophic failure of the brush, while at lower flow resistances, the failure is more gradual.

  10. Pressure drop and temperature rise in He II flow in round tubes, Venturi flowmeters and valves

    NASA Technical Reports Server (NTRS)

    Walstrom, P. L.; Maddocks, J. R.

    1988-01-01

    Pressure drops in highly turbulent He II flow were measured in round tubes, valves, and Venturi flowmeters. Results are in good agreement with single-phase flow correlations for classical fluids. The temperature rise in flow in a round tube was measured, and found to agree well with predictions for isenthalpic expansion. Cavitation was observed in the venturis under conditions of low back pressure and high flow rate. Metastable superheating of the helium at the venturi throat was observed before the helium made a transition to saturation pressure.

  11. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    NASA Astrophysics Data System (ADS)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  12. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  13. Pressure drop and heat transfer characteristics of boiling water in sub-hundred micron channel

    SciTech Connect

    Bhide, R.R.; Singh, S.G.; Sridharan, Arunkumar; Duttagupta, S.P.; Agrawal, Amit

    2009-09-15

    The current work focuses on the pressure drop, heat transfer and stability in two phase flow in microchannels with hydraulic diameter of less than one hundred microns. Experiments were conducted in smooth microchannels of hydraulic diameter of 45, 65 {mu}m, and a rough microchannel of hydraulic diameter of 70 {mu}m, with deionised water as the working fluid. The local saturation pressure and temperature vary substantially over the length of the channel. In order to correctly predict the local saturation temperature and subsequently the heat transfer characteristics, numerical techniques have been used in conjunction with the conventional two phase pressure drop models. The Lockhart-Martinelli (liquid-laminar, vapour-laminar) model is found to predict the two phase pressure drop data within 20%. The instability in two phase flow is quantified; it is found that microchannels of smaller hydraulic diameter have lesser instabilities as compared to their larger counterparts. The experiments also suggest that surface characteristics strongly affect flow stability in the two phase flow regime. The effect of hydraulic diameter and surface characteristics on the flow characteristics and stability in two phase flow is seldom reported, and is of considerable practical relevance. (author)

  14. The principles of pressure drop in long segment stenosis.

    PubMed

    Goldberg, S J

    1986-10-01

    With Doppler echocardiography, determination of pressure gradients at the region of valvular stenoses with the aid of the modified Bernoulli equation has been shown feasible in clinical and experimental studies. The Bernoulli equation neglects frictional losses and prerequisites laminar flow across the stenosis such that it would not appear applicable for long segment stenoses in the cardiovascular system. To evaluate pressure drop in a long segment stenosis, the full form of the energy balance equation, encompassing frictional losses and localized velocity profile, must be taken into consideration. Frictional losses occur in the region of flow contraction, the stenosis itself and at the expansion area. Assuming a reasonably square edge at the contraction and expansion, losses in these areas, and, employing the Fanning friction factor, losses in the stenosis can be calculated. Investigation of the theoretically-derived frictional loss equation in an in vitro model of a long segment stenosis with various stenosis lengths and diameters showed a good correlation between manometrically determined pressure gradients and those calculated according to the Bernoulli equation and the frictional loss equation. On use of the frictional loss equation, the pressure gradients, however, were only slightly underestimated while those rendered by the Bernoulli equation were clearly underestimated. In vitro data suggest that a long segment stenosis existed when the obstructive length was greater than twice the obstructive diameter for each 10,000 Reynolds numbers.

  15. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  16. Pressure drop of He II flow through a porous media

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1990-01-01

    The paper reports on measurements of He II pressure drop across two porous SiO2 ceramic filter materials. These materials vary only in porosity, having values of 0.94 and 0.96. The average fiber diameter in both cases is approximately 5 microns. The experiment consists of a glass tube containing a piece of this sponge in one end. The tube is rapidly displaced downward in a bath of helium and the liquid levels are allowed to equilibrate over time producing variable velocities up to 10 cm/sec. The results are compared with those previously obtained using fine mesh screens. Good qualitative agreement is observed for turbulent flow; however, the behavior in the laminar flow regime is not fully understood.

  17. Pressure drop of He II flow through a porous media

    NASA Astrophysics Data System (ADS)

    Maddocks, J. R.; van Sciver, S. W.

    The paper reports on measurements of He II pressure drop across two porous SiO2 ceramic filter materials. These materials vary only in porosity, having values of 0.94 and 0.96. The average fiber diameter in both cases is approximately 5 microns. The experiment consists of a glass tube containing a piece of this sponge in one end. The tube is rapidly displaced downward in a bath of helium and the liquid levels are allowed to equilibrate over time producing variable velocities up to 10 cm/sec. The results are compared with those previously obtained using fine mesh screens. Good qualitative agreement is observed for turbulent flow; however, the behavior in the laminar flow regime is not fully understood.

  18. A dramatic drop in blood pressure following prehospital GTN administration.

    PubMed

    Boyle, Malcolm J

    2007-03-01

    A male in his sixties with no history of cardiac chest pain awoke with chest pain following an afternoon sleep. The patient did not self medicate. The patient's observations were within normal limits, he was administered oxygen via a face mask and glyceryl trinitrate (GTN). Several minutes after the GTN the patient experienced a sudden drop in blood pressure and heart rate, this was rectified by atropine sulphate and a fluid challenge. There was no further deterioration in the patient's condition during transport to hospital. There are very few documented case like this in the prehospital scientific literature. The cause appears to be the Bezold-Jarish reflex, stimulation of the ventricular walls which in turn decreases sympathetic outflow from the vasomotor centre. Prehospital care providers who are managing any patient with a syncopal episode that fails to recover within a reasonable time frame should consider the Bezold-Jarisch reflex as the cause and manage the patient accordingly.

  19. A pressurized drop-tube furnace for coal reactivity studies

    NASA Astrophysics Data System (ADS)

    Ouyang, Shan; Yeasmin, Hasina; Mathews, Joseph

    1998-08-01

    The design and characterization of a pressurized drop-tube furnace for investigation of coal devolatilization, gasification, and combustion are presented. The furnace is designed for high-temperature, isothermal operation in a developing laminar flow regime. It can be operated at pressures up to 1600 kPa, and temperatures up to 1673 K, with variable reaction time, particle feeding rate, and with inert and various oxidizing atmospheres. Particle residence times can be varied between ˜0.02 and ˜10 s depending upon operating conditions and positions of injection and sampling probes. Observations ports are available for sample collections and for optical investigation of the reactions or temperature measurements. Characterization of gas temperature in the furnace shows that, although the gas temperature profile in the furnace is affected by the water-cooled injection probe, the furnace is able to achieve isothermal operation in a developing laminar flow regime. Results from a series of brown coal devolatilization tests demonstrated the suitability of the furnace for experiments in coal research.

  20. An improved method for simultaneous determination of frictional pressure drop and vapor volume fraction in vertical flow boiling

    NASA Technical Reports Server (NTRS)

    Klausner, J. F.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The two-phase frictional pressure drop and vapor volume fraction in the vertical boiling and adiabatic flow of the refrigerant, R11, have been simultaneously measured by a liquid balancing column and differential magnetic reluctance pressure transducers. An account is given of the experimental apparatus and procedure, data acquisition and analysis, and error estimation employed. All values of two-phase multipliers evaluated on the basis of the measured frictional pressure drop data in vertical upflow fall in the range bounded by the predictions of the Chisholm correlation and the homogeneous model.

  1. Experimental study on the flow patterns and the two-phase pressure drops in a horizontal impacting T-Junction

    NASA Astrophysics Data System (ADS)

    Bertani, C.; Malandrone, M.; Panella, B.

    2014-04-01

    The present paper analyzes the experimental results concerning the flow patterns and pressure drops in two-phase flow through a horizontal impacting T-junction, whose outlet pipes are aligned and perpendicular to the inlet pipe. The test section consists of plexiglass pipes with inner diameter of 10 mm. A mixture of water and air at ambient temperature and pressures up to 2.4 bar flows through the T-junction, with different splitting of flow rates in the two outlet branches; superficial velocities of air and water in the inlet pipe have been varied up to a maximum of 35 m/s and 3.5 m/s respectively. The flow patterns occurring in the inlet and branch pipes are compared with the predictions of the Baker and Taitel - Dukler maps. The pressure drops along the branches have been measured relatively to different splitting of the flow rate through the two branches and the pressure loss coefficients in the junction have been evaluated. Friction pressure drops have allowed us to evaluate two-phase friction multipliers, which have then been compared to the predictions of Lockhart-Martinelli, and Friedel correlations. Local pressure drops have been extrapolated at the junction centre and analyzed; the two-phase multiplier has been evaluated and compared with the predictions of Chisholm correlation; the value of the empirical coefficient that minimizes the discrepancy has also been evaluated.

  2. Prediction of performance of centrifugal pumps during starts under pressure

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1969-01-01

    Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.

  3. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  4. Numerical investigation of cavitation flow inside spool valve with large pressure drop

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pan, Dingyi; Xie, Fangfang; Shao, Xueming

    2015-12-01

    Spool valves play an important role in fluid power system. Cavitation phenomena happen frequently inside the spool valves, which cause structure damages, noise and lower down hydrodynamic performance. A numerical tools incorporating the cavitation model, are developed to predict the flow structure and cavitation pattern in the spool valve. Two major flow states in the spool valve chamber, i.e. flow-in and flow-out, are studies. The pressure distributions along the spool wall are first investigated, and the results agree well with the experimental data. For the flow-in cases, the local pressure at the throttling area drops much deeper than the pressure in flow-out cases. Meanwhile, the bubbles are more stable in flow-in cases than those in flow-out cases, which are ruptured and shed into the downstream.

  5. The effect of pressure on annular flow pressure drop in a small pipe

    SciTech Connect

    de Bertodano, M.A.L.; Beus, S.G.; Shi, Jian-Feng

    1996-09-01

    New experimental data was obtained for pressure drop and entrainment for annular up-flow in a vertical pipe. The 9.5 mm. pipe has an L/D ratio of 440 to insure fully developed annular flow. The pressure ranged from 140 kPa to 660 kPa. Therefore the density ratio was varied by a factor of four approximately. This allows the investigation of the effect of pressure on the interfacial shear models. Gas superficial velocities between 25 and 126 m/s were tested. This extends the range of previous data to higher gas velocities. The data were compared with well known models for interfacial shear that represent the state of the art. Good results were obtained when the model by Asali, Hanratty and Andreussi was modified for the effect of pressure. Furthermore an equivalent model was obtained based on the mixing length theory for rough pipes. It correlates the equivalent roughness to the film thickness.

  6. Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.

    SciTech Connect

    Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne; Lucero, Daniel A.; Hubbard, Joshua A.; Servantes, Brandon Lee

    2011-10-01

    Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomerate test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.

  7. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  8. Laboratory manual for static pressure drop experiments in LMFBR wire wrapped rod bundles

    SciTech Connect

    Burns, K.J.; Todreas, N.E.

    1980-07-01

    Purpose of this experiment is to determine both interior and edge subchannel axial pressure drops for a range of Reynolds numbers. The subchannel static pressure drop is used to calculate subchannel and bundle average friction factors, which can be used to verify existing friction factor correlations. The correlations for subchannel friction factors are used as input to computer codes which solve the coupled energy, continuity, and momentum equations, and are also used to develop flow split correlations which are needed as input to codes which solve only the energy equation. The bundle average friction factor is used to calculate the overall bundle pressure drop, which determines the required pumping power.

  9. Compressibility Effects on Heat Transfer and Pressure Drop in Smooth Cylindrical Tubes

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1944-01-01

    An analysis is made to simplify pressure-drop calculations for nonadiabatic and adiabatic friction flow of air in smooth cylindrical tubes when the density changes due to heat transfer and pressure drop are appreciable. Solutions of the equation of motion are obtained by the use of Reynolds' analogy between heat transfer and skin friction. Charts of the solutions are presented for making pressure-drop calculations. A technique of using the charts to determine the position of a normal shock in a tube is described.

  10. LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-03-03

    This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.

  11. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  12. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  13. Nutritional prediction of pressure ulcers.

    PubMed

    Breslow, R A; Bergstrom, N

    1994-11-01

    This article focuses on nutritional risk factors that predict the development of pressure ulcers in hospital and nursing home patients. Cross-sectional studies associate inadequate energy and protein intake; underweight; low triceps skinfold measurement; and low serum albumin, low serum cholesterol, and low hemoglobin levels with pressure ulcers. Prospective studies identify inadequate energy and protein intake, a poor score on the Braden scale (a risk assessment instrument that includes a nutrition component), and possibly low serum albumin level as risk factors for developing a pressure ulcer. Nutritionists should provide a high-energy, high-protein diet for patients at risk of development of pressure ulcers to improve their dietary intake and nutritional status.

  14. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels

    NASA Astrophysics Data System (ADS)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  15. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  16. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  17. Effect of static mixer geometry on flow mixing and pressure drop in marine scr applications

    NASA Astrophysics Data System (ADS)

    Park, Taewha; Sung, Yonmo; Kim, Taekyung; Lee, Inwon; Choi, Gyungmin; Kim, Duckjool

    2014-03-01

    Flow mixing and pressure drop characteristics for marine selective catalytic reduction applications were investigated numerically to develop an efficient static mixer. Two different mixers, line- and swirl-type, were considered. The effect of vane angles on the relative intensity, uniformity index, and pressure drop was investigated in a swirl-type mixer; these parameters are dramatically affected by the mixer geometry. The presence of a mixer, regardless of the mixer type, led to an improvement of approximately 20% in the mixing performance behind the mixer in comparison to not having a mixer. In particular, there was a tradeoff relationship between the uniformity and the pressure drop. Con­sidering the mixing performance and the pressure drop, the swirl-type mixer was more suitable than the line-type mixer in this study.

  18. Heat transfer and pressure drop in an annular channel with downflow

    NASA Astrophysics Data System (ADS)

    Dolan, F. X.; Crowley, C. J.; Qureshi, Z. H.

    The onset of a flow instability (OFI) determines the minimum flow rate for cooling in the flow channels of a nuclear fuel assembly. A test facility was constructed with full-scale models (length and diameter) of annular flow channels incorporating many instruments to measure heat transfer and pressure drop with downflow in the annulus. Tests were performed both with and without axial centering ribs at prototypical values of pressure, flow rate and uniform wall heat flux. The axial ribs have the effect of subdividing the annulus into quadrants, so the problem becomes one of parallel channel flow, unlike previous experiments in tubes (upflow and downflow). Other tests were performed to determine the effects if any of asymmetric and non-uniform circumferential wall heating, operating pressure level and dissolved gas concentration. Data from the tests are compared with models for channel heat transfer and pressure drop profiles in several regimes of wall heating from single-phase forced convection through partially and fully developed nucleate boiling. Minimum stable flow rates were experimentally determined as a function of wall heat flux and heat distribution and compared with the model for the transition to fully developed boiling which is a key criterion in determining the OFI condition in the channel. The heat transfer results in the channel without ribs are in excellent agreement with predictions from a computer model of the flow in the annulus and with empirical correlations developed from similar tests. The test results with centering ribs show that geometrical variations between the channels can lead to differences in subchannel behavior which can make the effect of the ribs and the geometry an important factor when assessing the power level at which the fuel assembly (and the reactor) can be operated to prevent overheating in the event of a loss-of-coolant-accident (LOCA).

  19. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-01

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  20. Two-phase pressure drop across a hydrofoil-based micro pin device using R-123

    SciTech Connect

    Kosar, Ali

    2008-05-15

    The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)

  1. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu

    2009-05-15

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  2. Experimental microbubble generation by sudden pressure drop and fluidics

    NASA Astrophysics Data System (ADS)

    Franco Gutierrez, Fernando; Figueroa Espinoza, Bernardo; Aguilar Corona, Alicia; Vargas Correa, Jesus; Solorio Diaz, Gildardo

    2014-11-01

    Mass and heat transfer, as well as chemical species in bubbly flow are of importance in environmental and industrial applications. Microbubbles are well suited to these applications due to the large interface contact area and residence time. The objective of this investigation is to build devices to produce microbubbles using two methods: pressure differences and fluidics. Some characteristics, advantages and drawbacks of both methods are briefly discussed, as well as the characterization of the bubbly suspensions in terms of parameters such as the pressure jump and bubble equivalent diameter distribution. The authors acknowledge the support of Consejo Nacional de Ciencia y Tecnología.

  3. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  4. Pressure drop characteristics of cryogenic mixed refrigerant at macro and micro channel heat exchangers

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Jeong, Sangkwon; Hwang, Gyuwan

    2012-12-01

    Mixed Refrigerant-Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. The temperature glide effect is one of the major features of using mixed refrigerants since a recuperative heat exchanger in a MR-JT refrigerator is utilized for mostly two-phase flow. Although a pressure drop estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in MR-JT refrigerator heat exchanger designs, it has been rarely discussed so far. In this paper, macro heat exchangers and micro heat exchangers are compared in order to investigate the pressure drop characteristics in the experimental MR-JT refrigerator operation. The tube in tube heat exchanger (TTHE) is a well-known macro-channel heat exchanger in MR-JT refrigeration. Printed Circuit Heat Exchangers (PCHEs) have been developed as a compact heat exchanger with micro size channels. Several two-phase pressure drop correlations are examined to discuss the experimental pressure measurement results. The result of this paper shows that cryogenic mixed refrigerant pressure drop can be estimated with conventional two-phase pressure drop correlations if an appropriate flow pattern is identified.

  5. Numerical investigation of pressure drop and heat transfer in developing laminar and turbulent nanofluid flows

    NASA Astrophysics Data System (ADS)

    Ziaei-Rad, Masoud

    2013-07-01

    This paper concerns the study of laminar and turbulent force convection heat transfer and pressure drop between horizontal parallel plates with a nanofluid composed of Al2O3 and water. A set of governing equations are solved using a non-staggered SIMPLE procedure for the velocity-pressure coupling. For the convection-diffusion terms a power-law scheme is employed. A modified k-ɛ model with a two-layer technique for the near-wall region has been used to predict the turbulent viscosity. The effects of nanoparticle volume fraction in the base fluid on laminar and turbulent flow variables are presented and discussed. The velocity and temperature profiles, friction factor, pressure coefficient and Nusselt number at different Reynolds numbers in the entrance region for both the laminar and turbulent flow regimes are reported under different thermal boundary conditions. The results show that the effect of the presence of nanoparticles in the base fluid on hydraulic and thermal parameters for the turbulent flow is not very significant, while the rate of heat transfer for the laminar flow with nanoparticles is greater than that of the base liquid. Furthermore, the thermal boundary layer and consequently the Nusselt number more quickly reach their fully developed values by increasing the percentage of nanoparticles in the base fluid for the laminar flow regime, while no changes in the trend are observed for the turbulent flow.

  6. Experimental determination of pressure drop caused by wire gauze in an air stream

    NASA Technical Reports Server (NTRS)

    1925-01-01

    For several kinds of wire gauze the difference in static, dynamic and total or absolute pressure in front of and behind the gauze were determined for comparison with the pressure drop caused by an airplane radiator, such gauze being used on airplane models to represent the radiator.

  7. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; Koglin, Jason E.; Liang, Mengning; Aquila, Andrew L.; Robinson, Joseph S.; Gumerlock, Karl L.; Blaj, Gabriel; Sierra, Raymond G.; et al

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  8. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    PubMed

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-01

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures. PMID:27182751

  9. Active control of static pressure drop caused by hydraulic servo-actuator engage

    SciTech Connect

    Janlovic, J.

    1994-12-31

    Pressure drop caused by propagation of expansion waves in the source pipeline of fast high cyclic hydraulic actuator produces possible anomalies in its function. To prevent pressure drop it is possible to minimize wave effects by active control of actuator servo-valve throttle leakage. In the paper is presented synthesis of possible discrete active control of hydraulic actuator and its servo-valve for prevention expansion wave pressure drop. Control synthesis is based on static pressure increasing with decreasing of fluid flow velocity, which can be realized by lower throttle leakage. Some of the effects of assumed control are shown on corresponding diagrams of control valve throttle motion, piston displacement and its corresponding linear velocity.

  10. Effect of flameholder pressure drop on emissions and performance of premixed-prevaporized combustors

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.; Lyons, V. J.

    1983-01-01

    Parametric tests were conducted to determine the effects of flameholder pressure drop on the emissions and performance of lean premixed-prevaporized combustors. A conical flameholder mounted in a diverging duct was tested with two values of flameholder blockage. Emissions of nitrogen oxides, carbon monoxide, carbon dioxide, and unburned hydrocarbons were measured for combustor entrance conditions of 600 to 800 K air temperature, 0.3 MPa to 0.5 MPa pressure, and 20 m/sec to 35 m/sec reference velocity. Jet A fuel was injected at flow rates corresponding to an equivalence ratio range from 0.8 down to the lean stability limit. Emission results for the high-blockage flameholder were a substantial improvement over the low-blockage emission results. A correlation of combustion efficiency with flameholder pressure drop was developed for pressure drops less than 9 percent.

  11. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    PubMed

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-01

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  12. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  13. Effects of cake collapse caused by deposition of fractal aggregates on pressure drop during ceramic filtration.

    PubMed

    Zhang, Wei; Li, Cai-Ting; Wei, Xian-Xun; Gao, Hong-Liang; Wen, Qing-Bo; Fan, Xiao-Peng; Shu, Xin; Zeng, Guang-Ming; Wei, Wei; Zhai, Yun-Bo; He, Yi-De; Li, Shan-Hong

    2011-05-15

    A cake collapse model was developed by taking the combined effects of fractal dimension, relaxation ratio, coordination number, and aggregate diameter into consideration. The cake porosity including intraaggregate and interaggregate porosities was modeled successively by three typical coordination numbers (n = 6, 8, and 12). Accordingly, an inversion method made it possible to deduce the coordination number using the measured cake porosities, and the reverse-calculated value with minimum error and the corresponding relaxation ratios were applied as the parameters for the model. As a result, the profiles of intraaggregate and interaggregate porosities and cake porosity were respectively predicted in contrast to the integrated variation of the relaxation ratio and the fractal dimension. Furthermore, a comparison between the model predictions of the cake pressure drop gradients with and without aggregate compression was conducted to validate the presence of cake collapse. The results show that the predictions based on the proposed collapse model are in agreement with the experiments, and the coordination number is one of the key factors that must be incorporated into the cake collapse models.

  14. Nucleate boiling pressure drop in an annulus: Book 5

    SciTech Connect

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux. This document consists solely of the plato file index from 11/87 to 11/90.

  15. Deformation of drop due to radiation pressure of acoustic standing wave

    NASA Astrophysics Data System (ADS)

    Yamanaka, T.; Saito, M.; Kamimura, H.

    To investigate the deformation of a liquid drop due to radiation pressure of acoustic standing waves, an analytical and experimental study was carried out. An approximate axisymmetric figure of equilibrium is obtained. The experimental study was carried out in the laboratory by using a triaxial acoustic chamber. An injection syringe was placed at the center of the triaxial acoustic resonance chamber. Holding a small liquid drop at the pointed end of the syringe, deformations of the liquid drop were measured. Assuming an oblate spheroid for the deformation, the experimental results were compared with theory.

  16. Nucleate boiling pressure drop in an annulus: Book 2

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux.

  17. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  18. Influence of ambient pressure on drop-size and velocity distributions in dense sprays

    SciTech Connect

    Jasuja, A.K.; Lefebvre, A.H.

    1994-12-31

    The primary aim of the research is to determine the capabilities of modern noninvasive diagnostics for characterizing the sprays produced by a practical gas turbine atomizer when operating at realistic engine conditions of pressure, fuel type, and fuel-air throughput. A single-velocity-component Phase Doppler Particle Analyzer is used to measure local variations of drop-size distributions and drop velocities along three spray radii at downstream distances from the atomizer of 50 and 70 mm. In the 50-mm plane, excessive signal rejection rates limit measurements to a maximum air pressure of 9 bar and a maximum kerosene flow rate of 18.6 g/s. At the 70-mm measurement plane, satisfactory results are obtained at air pressures up to 12 bar and fuel-flow rates up to 24.8 g/s. The results show that increases in ambient air pressure lead to larger mean drop sizes and lower mean drop velocities in the spray. This is attributed to the fact that the beneficial effect of an increase in air pressure in raising Weber number is more than offset by several adverse factors, all of which are related to the increase in fuel-flow rate that accompanies an increase in air pressure at constant fuel/air ratio.

  19. An improved correlation of the pressure drop in stenotic vessels using Lorentz's reciprocal theorem

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Jin; Sugiyama, Kazuyasu; Noda, Shigeho; He, Ying; Himeno, Ryutaro

    2015-02-01

    A mathematical model of the human cardiovascular system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a theoretical relation between pressure drop and flow rate based on Lorentz's reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxel-based simulator V-FLOW VOF3D, where the vessel geometry is expressed by using volume of fluid (VOF) functions, is employed to find the flow distribution in an idealized stenosis vessel and the identity was validated numerically. It is revealed from the correlation that the pressure drop of NS flow in a stenosis vessel can be decomposed into a linear term caused by Stokes flow with the same boundary conditions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication theory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geometric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under different stenosis conditions by using 1D mathematical model.

  20. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a

  1. Nucleate boiling pressure drop in an annulus: Book 3

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  2. Nucleate boiling pressure drop in an annulus: Book 4

    SciTech Connect

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  3. Nucleate boiling pressure drop in an annulus: Book 8

    SciTech Connect

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of tables of temperature measurements.

  4. Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.

    1973-01-01

    Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.

  5. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressure drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.

  6. Experimental Investigations on the Pressure Drop of a Two-cone Hydrocyclone for Separation Fine Particles from Waste Water

    NASA Astrophysics Data System (ADS)

    Zhao, Qingguo; Li, Weiqing; He, Wei; Xia, Guodong

    2010-03-01

    To separate fine particles from waste water, a novel hydrocyclone was designed which features two cone sections. It is expected that flowrate can be increased at high separation efficiency without additional demand of pressure drop. This paper presents experimental investigations on its pressure drop characteristics. In this paper, influences of flowrate, split ratio, protrudent length of vertex finder, inlet area, vortex finder diameter, and inlet type on pressure drop are comprehensively discussed. It is evidenced that proper operation range falls within q = 5˜10 m3/h, and that the flowrate of the novel two-cone hydrocyclone can be increased by 50˜60%. Pressure drop decreases with vortex finder diameter. Experimental data prove that pressure drop can be significantly affected by split ratio, which has not been explicitly pointed out in literatures on conventional single cone hydrocyclones. Especially, it has been found that protrudent length of vortex finder influences pressure drop in a complex way so that there is a maximum value in pressure drop-protrudent length curve. It is demonstrated that reduction of the inlet area by a half will make pressure drop increase by about 78%. In comparison, involute form of fluid flow channel of inlets makes pressure drop lower than cycloid form.

  7. An experimental study of heat transfer and pressure drop characteristics of divergent wavy minichannels using nanofluids

    NASA Astrophysics Data System (ADS)

    Dominic, A.; Sarangan, J.; Suresh, S.; Devahdhanush, V. S.

    2016-07-01

    An experimental investigation was conducted to study the heat transfer and pressure drop characteristics of an array of wavy divergent minichannels and the results were compared with wavy minichannels with constant cross-section. The experiment was conducted in hydro dynamically developed and thermally developing laminar and transient regimes. The minichannel heat sink array consisted of 15 rectangular channels machined on a 30 × 30 mm2 and 11 mm thick Aluminium substrate. Each minichannel was of 0.9 mm width, 1.8 mm pitch and the depth was varied from 1.3 mm at entrance to 3.3 mm at exit for the divergent channels. DI water and 0.5 and 0.8 % concentrations of Al2O3/water nanofluid were used as working fluids. The Reynolds number was varied from 700 to 3300 and the heat flux was maintained at 45 kW/m2. The heat transfer and pressure drop of these minichannels were analyzed based on the experimental results obtained. It was observed that the heat transfer performance of divergent wavy minichannels was 9 % higher and the pressure drop was 30-38 % lesser than that of the wavy minichannels with constant cross-section, in the laminar regime. Hence, divergent channel flows can be considered one of the better ways to reduce pressure drop. The performance factor of divergent wavy minichannels was 115-126 % for water and 110-113 % for nanofluids.

  8. Pressure drop and pumping power for fluid flow through round tubes

    NASA Technical Reports Server (NTRS)

    Jelinek, D.

    1973-01-01

    Program, written for Hewlett-Packard 9100A electronic desk computer provides convenient and immediate solution to problem of calculating pressure drop and fluid pumping power for flow through round tubes. Program was designed specifically for steady-state analysis and assumes laminar flow.

  9. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.

    PubMed

    Vrouwenvelder, J S; Buiter, J; Riviere, M; van der Meer, W G J; van Loosdrecht, M C M; Kruithof, J C

    2010-02-01

    Biomass accumulation and pressure drop development have been studied in membrane fouling simulators at different flow regimes. At linear flow velocities as applied in practice in spiral wound nanofiltration (NF) and reverse osmosis (RO) membranes, voluminous and filamentous biofilm structures developed in the feed spacer channel, causing a significant increase in feed channel pressure drop. Elevated shear by both single phase flow (water) and two phase flow (water with air sparging: bubble flow) caused biofilm filaments and a pressure drop increase. The amount of accumulated biomass was independent of the applied shear, depending on the substrate loading rate (product of substrate concentration and linear flow velocity) only. The biofilm streamers oscillated in the passing water. Bubble flow resulted in a more compact and less filamentous biofilm structure than single phase flow, causing a much lower pressure drop increase. The biofilm grown under low shear conditions was more easy to remove during water flushing compared to a biofilm grown under high shear. To control biofouling, biofilm structure may be adjusted using biofilm morphology engineering combined with biomass removal from membrane elements by periodic reverse flushing using modified feed spacers. Potential long and short term consequences of flow regimes on biofilm development are discussed. Flow regimes manipulate biofilm morphology affecting membrane performance, enabling new approaches to control biofouling.

  10. Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide

    2011-07-01

    Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase single-component fluids containing solid particles in a liquid. Their density and refrigerant capacity are greater than those of a liquid-state fluid alone. Owing to these advantages, there are high expectations for use of slush fluids in various applications such as a clean-energy fuel, fuel for space-planes to improve the efficiency of transportation and storage, and as a refrigerant for high-temperature superconducting power machines. Experimental tests were performed with slush nitrogen to obtain the frictional pressure drop flowing in a horizontal pipe with an inner diameter of 15 mm and a length of 400 mm. The primary objective of the study was to investigate the pressure drop reduction phenomenon according to changes in velocity and solid fraction. The pressure drop correlation between the friction factor and the Reynolds number was obtained, and an empirical correlation between them was derived. The flow pattern for slush nitrogen inside a pipe and the behavior of solid particles were observed using a high-speed video camera and the PIV method. From the experimental results, the pressure drop reduction phenomenon emerged clearly when the flow velocity was higher than 3.6 m/s and the flow pattern of solid particles inside the pipe was pseudo-homogeneous.

  11. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Okuyama, Jun; Nakagomi, Kei; Takahashi, Koichi

    2012-12-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are solid-liquid, two-phase fluids. As a functional thermal fluid, there are high expectations for use of slush fluids in various applications such as fuels for spacecraft engines, clean-energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental flow tests were performed using slush nitrogen to elucidate pressure-drop characteristics of converging-diverging (C-D) pipes and corrugated pipes. In experimental results regarding pressure drop in two different types of C-D Pipes, i.e., a long-throated pipe and a short-throated pipe, each having an inner diameter of 15 mm, pressure drop for slush nitrogen in the long-throated pipe at a flow velocity of over 1.3 m/s increased by a maximum of 50-60% as compared to that for liquid nitrogen, while the increase was about 4 times as compared to slush nitrogen in the short-throated pipe. At a flow velocity of over 1.5 m/s in the short-throated pipe, pressure drop reduction became apparent, and it was confirmed that the decrease in pressure drop compared to liquid nitrogen was a maximum of 40-50%. In the case of two different types of corrugated pipes with an inner diameter of either 12 mm or 15 mm, a pressure-drop reduction was confirmed at a flow velocity of over 2 m/s, and reached a maximum value of 37% at 30 wt.% compared to liquid nitrogen. The greater the solid fractions, the smaller the pipe friction factor became, and the pipe friction factor at the same solid fraction showed a constant value regardless of the Reynolds number. From the observation of the solid particles' behavior using a high-speed video camera and the PIV method, the pressure-drop reduction mechanisms for both C-D and corrugated pipes were demonstrated.

  12. Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Nakagomi, Kei; Takahashi, Norifumi

    2011-10-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluid alone, there are high expectations for the use of slush fluids in various applications such as clean-energy fuels, spacecraft fuels for improved efficiency in transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental tests were performed using slush nitrogen to obtain the flow and heat-transfer characteristics in two different types of horizontal circular pipes with inner diameters of 10 and 15 mm. One of the primary objectives for the study was to investigate the effect of pipe diameter on the pressure-drop reduction and heat-transfer deterioration of slush nitrogen according to changes in the pipe flow velocity, solid fraction and heat flux. In the case of an inner diameter of 15 mm, pressure drop was reduced and heat-transfer characteristics deteriorated when the pipe flow velocity was higher than 3.6 m/s. On the other hand, in the case of an inner diameter of 10 mm, pressure drop was reduced and heat-transfer characteristics deteriorated when the pipe flow velocity was higher than 2.0 m/s. From these results, it can be seen that a larger pipe diameter produces a higher onset velocity for reducing pressure drop and deteriorating heat-transfer characteristics. Furthermore, based on observations using a high-speed video camera, it was confirmed that pressure drop was reduced and heat-transfer characteristics deteriorated when the solid particles migrated to the center of the pipe and the flow pattern of the solid particles inside the pipe was pseudo-homogeneous.

  13. Pressure drop and heat transfer rates in forced convection rotating square duct flows at high rotation rates

    NASA Astrophysics Data System (ADS)

    Pallares, J.; Grau, F. X.; Davidson, L.

    2005-07-01

    This paper presents and discusses numerical simulations of forced convection heat transfer in a rotating square duct at high rotation rates. The mean pressure gradient has been kept constant in the simulations that were conducted with a second order finite volume code with a dynamical localized subgrid scale model. The rotation number based on the bulk velocity (Ro=2ΩD/U¯b) was varied from 0.12 to 6.6 and consequently the Reynolds number (Re=U¯bD/ν) ranged from 3900 to 1810 according to the fact that rotation tends to increase the pressure drop in the duct. A model for estimating the velocities and the corresponding friction coefficient has been developed by analytically solving simplified versions of the momentum budgets within the Ekman layers occurring near the opposite two walls of the duct perpendicular to the rotation axis. The model reproduces accurately the velocity profiles of the numerical simulation at high rotation rates and predicts that the boundary layer quantities scale as Ek1/2 (Ek=ν/ΩD2). At Ro >1 the Ekman layers are responsible for most of the pressure drop of the flow while the maximum heat transfer rates are found on the wall where the stratification of the x-momentum is unstable with respect to the Coriolis force. Rotation enhances the differences between the contributions of the local friction coefficients and local Nusselt numbers of the four walls of the duct and considerably increases, in comparison with the non-rotating case, the pressure drop of the flow and the Nusselt number. The overall friction coefficient of the measurements and the simulations existing in the literature, as well as the present numerical predictions, are well correlated with the equation 1.09(Cf/Ek1/2)1.25=Ro in the range Ro ⩾1 for Re ⩽104.

  14. Influence of mold growth on the pressure drop in aerated solid state fermentors.

    PubMed

    Auria, R; Morales, M; Villegas, E; Revah, S

    1993-05-01

    The measurement of pressure drop(DeltaP) across an aerated fermentation bed is proposed as alternative on-line sensor for the qualitative and, in some cases, quantitative, macroscopic changes in a static solid state fermentor. An increase in the DeltaP is correlated with the evolution of the different phases of Aspergillus niger growth: germination, vegetative growth, limitation, and sporulation, we observed in the microscope. For the case where the support is not modified during the fermentation and the water content remains constant, i.e., a synthetic resin (Amberlite IRA-900), the gas phase permeability of the bed is directly related to the biomass content. For example, the permeability of the bed is reduced to 5% of the initial value when biomass attains 21 mg dry biomass/g dry support. Biomass was appropriately predicted from the DeltaP measurements in an independent test. Experiments with different initial sucrose solution concentrations showed that biomass could not be produced beyond a certain level (21.5 mg dry biomass/g dry support) which suggests steric limitations. For the case of wheat bran and cane bagasse, the increase in DeltaP was related qualitatively to the evolution in the growth and the morphology of the mold.

  15. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  16. The oceanic response of the Turkish Straits System to an extreme drop in atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Book, Jeffrey W.; Jarosz, Ewa; Chiggiato, Jacopo; Beşiktepe, Åükrü

    2014-06-01

    Moorings across all four entry/exit sections of the Dardanelles Strait and the Bosphorus Strait simultaneously measured the response of the Turkish Straits System to the passage of a severe cyclonic storm that included an atmospheric pressure drop of more than 30 mbar in less than 48 h. The bottom pressure response at the Aegean Sea side of the Dardanelles Strait was consistent with an inverted barometer response, but the response at the other sections did not follow an inverted barometer, leading to a large bottom pressure gradient through the Turkish Straits System. Upper-layer flow toward the Aegean Sea was reversed by the storm and flow toward the Black Sea was greatly enhanced. Bottom pressure across the Sea of Marmara peaked 6 h after the passage of the storm's minimum pressure. The response on the Dardanelles side was a combination of sea elevation and pycnocline depth rise, and the response on the Bosphorus side was an even greater sea elevation rise and a drop in pycnocline depth. The peak in bottom pressure in the Sea of Marmara was followed by another reverse in the flow through the Dardanelles Strait as flow was then directed away from the Sea of Marmara in both straits. A simple conceptual model without wind is able to explain fluctuations in bottom pressure in the Sea of Marmara to a 0.89-0.96 level of correlation. This stresses the importance of atmospheric pressure dynamics in driving the mass flux of the Turkish Strait System for extreme storms.

  17. Pressure drop measurements in the transition region for a circular tube with a square-edged entrance

    NASA Astrophysics Data System (ADS)

    Ghajar, Afshin J.; Augustine, Jody R.

    1990-06-01

    Pressure drop measurements were made in a horizontal circular straight tube with a square-edged entrance under isothermal flow conditions. The experiments covered a Reynolds number range from 512 to 14,970. A total of thirty-three sets of experimental data for the twenty pressure tap locations along the 20 ft length of the test section were gathered. For the square-edged entrance the range of Reynolds number for which transition flow exists was determined to be between 2070 to 2840. A correlation for prediction of fully developed skin friction coefficient in this region is recommended. In the entrance region the length required for the friction factor to become fully developed in both the laminar and turbulent regions was found to be inversely proportional to the Reynolds number, with the turbulent data showing a stronger dependency. A correlation for prediction of entrance length in the turbulent region is offered.

  18. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    NASA Astrophysics Data System (ADS)

    Blackwell, B. F.; Sobolik, K. B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  19. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.

    PubMed

    Hu, Ruiqing; Li, Fen; Lv, Jiaqi; He, Ying; Lu, Detang; Yamada, Takashi; Ono, Naoki

    2015-01-01

    The retinal arterial network is the only source of the highly nutrient-consumptive retina, thus any insult on the arteries can impair the retinal oxygen and nutrient supply and affect its normal function. The aim of this work is to study the influences of vascular structure variation on the flow and pressure characteristics via microfluidic devices. Two sets of micro-channel were designed to mimic the stenosed microvessels and dichotomous branching structure in the retinal arteries. Three working fluids including red blood cell (RBC) suspension were employed to investigate the pressure drop in the stenosed channel. The flow behaviors of RBC suspensions inside the micro channels were observed using high speed camera system. Pressure drop of different working fluids and RBC velocity profiles in the stenosed channel were obtained. Moreover, hematocrit levels of RBC suspensions inside the bifurcated channels were analyzed from the sequential images of RBC flow. The results of the flow in the stenosed channel show that RBCs drift from the center of the channels, and RBC velocity is influenced not only by the inlet flow rate but also the interaction between RBCs. The measured pressure drops in the stenosed channel increase notably with the increase of fluid viscosity. Furthermore, the dimensionless pressure drop due to the stenosis decreases with Reynolds number. On the other hand, the results of flow through the bifurcated channels show that as the ratio of the daughter-branch width to the mother-channel width increases, the ratio of hematocrit in two connected branches (Ht/Hd) decreases, which is in favorable agreement with the available analysis results. PMID:26004808

  20. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view.

  1. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. PMID:27040089

  2. Transitions and Pressure Drop Characteristics of Flow in Channels with Periodically Grooved Parts

    NASA Astrophysics Data System (ADS)

    Adachi, Takahiro; Uehara, Haruo

    Transitions of flow in periodically grooved channels and pressure drop characteristics are numerically investigated by assuming two-dimensional and fully developed flow fields. It is confirmed that a self-sustained oscillatory flow occurs at a critical Reynolds number from the steady-state flow as a result of Hopf bifurcation due to instability. The critical Reynolds numbers are obtained for various channel geometries. The ratio of the pressure drop of the grooved channel to that of the parallel-plate channel is also investigated. It is shown that the ratio is less than unity for the expanded channel geometries for the subcritical Reynolds numbers, whereas it increases above unity for the supercritical values. On the other hand, it always increases above unity for the contracted channel geometries.

  3. Pressure-drop Reduction and Heat-transfer Deterioration of Slush Nitrogen in Square Pipe flow

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Nakagomi, Kei; Takahashi, Koichi; Aoki, Itsuo

    Pressure drop and heat transfer tests were carried out using slush nitrogen flowing in a horizontal square pipe at flow velocity between 1.0 and 4.9 m/s, with a mass solid fraction between 6 and 26 wt.%, and with heat fluxes of 0, 10 and 20 kW/m2. Pressure drop reduction became apparent at flow velocity of 2.5 m/s and over, with the maximum amount of reduction being 12% in comparison with liquid nitrogen, regardless of heating, while heat transfer deterioration became apparent at flow velocity of 1.0 m/s and over, with the maximum amount of deterioration being 16 and 21% at 10 and 20 kW/m2, respectively.

  4. Equivalent particle diameter and length scale for pressure drop in porous metals

    SciTech Connect

    Dukhan, Nihad; Patel, Pragnesh

    2008-04-15

    The internal architecture of metal foam is significantly different from that of traditional porous media. This provides a set of challenges for understanding the fluid flow in this relatively new class of materials. This paper proposes that despite the geometrical differences between metal foam and traditional porous media, the Ergun correlation is a good fit for the linear pressure drop as a function of the Darcian velocity, provided that an appropriate equivalent particle diameter is used. The paper investigates an appropriate particle diameter considering the physics of energy dissipation, i.e. the viscous shear and the form drag. The above approach is supported by wind tunnel steady-state unidirectional pressure drop measurements for airflow through several isotropic open-cell aluminum foam samples having different porosities and pore densities. For each foam sample, the equivalent particle diameter correlated well with the surface area per unit volume of the foam. This was also very well valid for previous porous metal pressure drop data in the open literature. (author)

  5. Comparative studies on toluene removal and pressure drop in biofilters using different packing materials.

    PubMed

    Ryu, Hee Wook; Kim, So Jung; Cho, Kyung Suk

    2010-05-01

    To select the best available packing material for malodorous organic gases such as toluene and benzene, biofilter performance was compared in biofilters employed different packing materials including porous ceramic (celite), Jeju scoria (lava), a mixture of granular activated carbon (GAC) and celite (GAC/celite), and cubic polyurethane foam (PU). A toluene-degrading bacterium, Stenotrophomonas maltophilia T3-c, was used as the inoculum. The maximum elimination capacities in the celite, lava, and GAC/celite biofilters were 100, 130, and 110 gm(-3) hr(-1), respectively. The elimination capacity for the PU biofilter was approximately 350 g m(-3) hr(-1) at an inlet loading of approximately 430 g m(-3) hr(-1), which was 2 to 3.5 times higher than for the other biofilters. The pressure drop gradually increased in the GAC/ celite, celite and lava biofilters after 23 day due to bacterial over-growth, and the toluene removal efficiency remarkably decreased with increasing pressure drop. Backwashing method was not effective for the control of biomass in these biofilters. In the PU biofilter however, backwashing allowed maintenance of a pressure drop of 1 to 3 mm H2O m(-1) and a removal efficiency of > 80%, indicating that the PU was the best packing material for toluene removal among the packing materials tested.

  6. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  7. Threshold concentrations of biomass and iron for pressure drop increase in spiral-wound membrane elements.

    PubMed

    Hijnen, W A M; Cornelissen, E R; van der Kooij, D

    2011-02-01

    In a model feed channel for spiral-wound membranes the quantitative relationship of biomass and iron accumulation with pressure drop development was assessed. Biofouling was stimulated by the use of tap water enriched with acetate at a range of concentrations (1-1000 μgCl(-1)). Autopsies were performed to quantify biomass concentrations in the fouled feed channel at a range of Normalized Pressure Drop increase values (NPD(i)). Active biomass was determined with adenosinetriphosphate (ATP) and the concentration of bacterial cells with Total Direct Cell count (TDC). Carbohydrates (CH) were measured to include accumulated extracellular polymeric substances (EPS). The paired ATP and CH concentrations in the biofilm samples were significantly (p<0.001; R(2)=0.62) correlated and both parameters were also significantly correlated with NPD(i) (p<0.001). TDC was not correlated with the pressure drop in this study. The threshold concentration for an NPD(i) of 100% was 3.7 ng ATP cm(-2) and for CH 8.1 μg CH cm(-2). Both parameters are recommended for diagnostic membrane autopsy studies. Iron concentrations of 100-400 mg m(-2) accumulated in the biofilm by adsorption were not correlated with the observed NPD(i), thus indicating a minor role of Fe particulates at these concentrations in fouling of spiral-wound membrane.

  8. Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata

    NASA Astrophysics Data System (ADS)

    Bernsdorf, J.; Brenner, G.; Durst, F.

    2000-07-01

    The lattice Boltzmann (LB) method is used for a detailed study on the origins of the pressure drop in porous media flow. In agreement with the experimental results [Durst et al., J. Non-Newtonian Fluid Mech. 22 (1987) 169] it is shown, that the elongation and the contraction of fluid elements is an important factor for the pressure loss in porous media flow, and that a significant error is made, when only shear forces are taken into account. To obtain the geometry information of the porous media for our simulations, we used the 3D computer tomography technique.

  9. Changes in predictive motor control in drop-jumps based on uncertainties in task execution.

    PubMed

    Leukel, Christian; Taube, Wolfgang; Lorch, Michael; Gollhofer, Albert

    2012-02-01

    Drop-jumps are controlled by predictive and reactive motor strategies which differ with respect to the utilization of sensory feedback. With reaction, sensory feedback is integrated while performing the task. With prediction, sensory information may be used prior to movement onset. Certainty about upcoming events is important for prediction. The present study aimed at investigating how uncertainties in the task execution affect predictive motor control in drop-jumps. Ten healthy subjects (22±1 years, M±SD) participated. The subjects performed either (i) drop-jumps by knowing that they might had to switch to a landing movement upon an auditory cue, which was sometimes elicited prior to touch-down (uncertainty). In (ii), subjects performed drop-jumps by knowing that there would be no auditory cue and consequently no switch of the movement (certainty). The m. soleus EMG prior to touch-down was higher when subjects knew there would be no auditory cue compared to when subjects performed the same task but switching from drop-jump to landing was possible (uncertainty). The EMG was reversed in the late concentric phase, meaning that it was higher in the high uncertainty task. The results of the present study showed that the muscular activity was predictively adjusted according to uncertainties in task execution. It is argued that tendomuscular stiffness was the variable responsible for the adjustment of muscular activity. The required tendomuscular stiffness was higher in drop-jumps than in landings. Consequently, when it was not certain whether to jump or to land, muscular activity and therefore tendomuscular stiffness was reduced. PMID:21757248

  10. Prevalence of detectable venous pressure drops expected with venous needle dislodgement.

    PubMed

    Ribitsch, Werner; Schilcher, Gernot; Hafner-Giessauf, Hildegard; Krisper, Peter; Horina, Jörg H; Rosenkranz, Alexander R; Schneditz, Daniel

    2014-01-01

    Venous needle dislodgement (VND) is a potentially fatal complication during hemodialysis (HD) treatment and the venous pressure monitor is the most widely used device for its detection. VND can only be detected by the venous sensor if the resulting pressure drop exceeds the difference between the actual venous pressure and the lower alarm limit. In clinical practice, the lower alarm limit is usually set 30-40 mmHg below the actual venous pressure to avoid a disproportionate high number of nuisance alarms. The aim of this study was to quantify the number of fistulas and grafts in a group of HD patients where venous pressure monitoring can be expected to detect VND. We determined intra-access pressures in 99 chronic HD patients. Sixty-five (65.7%) had a fistula and 34 (34.3%) had a prosthetic graft as a vascular access. Mean intra-access pressure (Pa ) in fistulas was 32.6 ± 23.5 mmHg, whereas in grafts mean Pa was 60.9 ± 19.5 mmHg. Nineteen (29.2%) of the fistulas and 32 (94.1%) of the grafts exhibited an intra-access pressure above 40 mmHg. Therefore, in our study nearly all grafts but only 29% of fistulas would fulfill the requirement for venous pressure monitoring to detect VND. PMID:24341865

  11. Effects of sudden expansion and contraction flow on pressure drops in the Stirling engine regenerator

    SciTech Connect

    Hamaguchi, K.; Yamashita, I.; Hirata, K.

    1998-07-01

    The flow losses in the regenerators greatly influence the performance of the Stirling engine. The losses mainly depend on fluid friction through the regenerator matrix, but are also generated in sudden expansion and contraction flow at the regenerator ends. The latter losses can't be neglected in the case of small area ratio (entrance area/cross-sectional area in regenerator). The pressure drops in regenerators are usually estimated assuming a uniform velocity distribution of working gas in the matrices. The estimation results, however, are generally smaller than practical data. The cross-sectional flow areas of the heater and cooler of typical Stirling engines are smaller than the cross- sectional area of the regenerator. The effects of the small flow passage on the velocity distribution of working fluid in the matrix, that is, a flow transition from tubes or channels to a regenerator matrix, can be often confirmed by the discolored matrix. Especially, the lack of a uniform distribution of velocity in the matrix causes increased flow loss and decreased thermal performance. So, it is necessary to understand the quantitative effects of the sudden change in flow area at the regenerator ends on the velocity distribution and pressure drop. In this paper, using matrices made of stacks of wire screens, the effects of the entrance and exit areas and the length of the regenerator on pressure drops are examined by an unidirectional steady flow apparatus. The experimental data are arranged in an empirical equation. The lack of a uniformity of velocity distribution is visualized using smoke-wire methods. The empirical equation presented is applied to the estimation of pressure loss in an actual engine regenerator. The applicability of the equation is examined by comparison of estimated value with engine data in pressure loss.

  12. Advanced turbine systems program conceptual design and product development: Task 8.1, Low-pressure drop recuperator

    SciTech Connect

    1995-09-01

    Purpose of the ATS program is to develop a new baseline for industrial gas turbine systems for the 21st century. A recuperated gas turbine cycle was selected; the eventual engine that result will utilize Solar`s Primary Surface Recuperator (PSR) technology. Besides higher thermal efficiency, other goals included lower emission, cost of power, and improved RAMD (reliability, availability, maintainability). Performance data have been obtained for the candidate heat transfer surface, and on a scaled rig. Pretest predictions of air-side and gas-side pressure drop were in very good agreement with tests results; predicted effectiveness also agreed well with experiment. A flattened tube test to determine changes of the PSR heat transfer surface profile after exposure is underway.

  13. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    SciTech Connect

    Vasilyak, L. M.; Vasiliev, A. I. Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  14. Extraction of essential oils from Algerian myrtle leaves using instant controlled pressure drop technology.

    PubMed

    Berka-Zougali, Baya; Hassani, Aicha; Besombes, Colette; Allaf, Karim

    2010-10-01

    In the present work, the new extraction process of Détente Instantanée Contrôlée DIC (French, for instant controlled pressure drop) was studied, developed, quantitatively and qualitatively compared to the conventional hydrodistillation method for the extraction of essential oils from Algerian myrtle leaves. DIC was used as a thermomechanical treatment, DIC subjecting the product to a high-pressure saturated steam. The DIC cycle ends with an abrupt pressure drop towards vacuum, and this instantly leads to an autovaporization of myrtle volatile compounds. An immediate condensation in the vacuum tank produced a micro-emulsion of water and essential oils. Thus, an ultra-rapid cooling of residual leaves occurred, precluding any thermal degradation. An experimental protocol was designed with 3 independent variables: saturated steam pressure between 0.1 and 0.6 MPa, resulting in a temperature between 100 and 160°C, a total thermal processing time between 19 and 221 s, and between 2 and 6 DIC cycles. The essential oils yield was defined as the main dependent variable. This direct extraction gave high yields and high quality essential oil, as revealed by composition and antioxidant activity (results not shown). After this treatment, the myrtle leaves were recovered and hydrodistilled in order to quantify the essential oil content in residual DIC-treated samples. Scanning electron microscope (SEM) showed some modification of the structure with a slight destruction of cell walls after DIC treatment.

  15. Development of a new pressure dependent threshold superheated drop detector for neutrons

    NASA Astrophysics Data System (ADS)

    Rezaeian, Peiman; Raisali, Gholamreza; Akhavan, Azam; Ghods, Hossein; Hajizadeh, Bardia

    2015-03-01

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for 241Am-Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the 241Am-Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the 241Am-Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors.

  16. Neural Network Burst Pressure Prediction in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Dion, Seth-Andrew T.; Karl, Justin O.; Spivey, Nicholas S.; Walker, James L., II

    2007-01-01

    Acoustic emission data were collected during the hydroburst testing of eleven 15 inch diameter filament wound composite overwrapped pressure vessels. A neural network burst pressure prediction was generated from the resulting AE amplitude data. The bottles shared commonality of graphite fiber, epoxy resin, and cure time. Individual bottles varied by cure mode (rotisserie versus static oven curing), types of inflicted damage, temperature of the pressurant, and pressurization scheme. Three categorical variables were selected to represent undamaged bottles, impact damaged bottles, and bottles with lacerated hoop fibers. This categorization along with the removal of the AE data from the disbonding noise between the aluminum liner and the composite overwrap allowed the prediction of burst pressures in all three sets of bottles using a single backpropagation neural network. Here the worst case error was 3.38 percent.

  17. Pressure drop and heat transfer characteristics for single-phase developing flow of water in rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Mirmanto; Kenning, D. B. R.; Lewis, J. S.; Karayiannis, T. G.

    2012-11-01

    Experiments were conducted to investigate the pressure drop and heat transfer characteristics of single-phase flow of de-ionized water in single copper microchannels of hydraulic diameters 0.438 mm, 0.561 mm and 0.635 mm. The channel length was 62 mm. The experimental conditions covered a range of mass flux from 500 to 5000 kg/m2 s in the laminar, transitional and low Reynolds number turbulent regimes. Pressure drop was measured for adiabatic flows with fluid inlet temperatures of 30°C, 60°C and 90°C. In the heat transfer tests, the heat flux ranged from 256 kW/m2 to 519 kW/m2. Friction factors and Nusselt numbers determined from the measurements were higher than for fully-developed conditions, but in reasonable agreement with predictions made using published solutions for hydrodynamically and thermally developing flow. When entrance effects, experimental uncertainties, heat losses, inlet and exit losses, thermal boundary conditions and departure from laminar flow were considered, the results indicate that equations developed for flow and heat transfer in conventional size channels are applicable for water flows in microchannels of these sizes.

  18. Water management of proton exchange membrane fuel cell based on control of hydrogen pressure drop

    NASA Astrophysics Data System (ADS)

    Song, Mancun; Pei, Pucheng; Zha, Hongshan; Xu, Huachi

    2014-12-01

    Flooding experiments in various conditions are developed and the hydrogen pressure drop is investigated on a two-piece PEM fuel cell in this study. A two-level characteristic of hydrogen pressure drop is observed and analyzed in combination with water droplet accumulation in channels. Based on the characteristic, the flooding process can be divided into four continuous periods, which are the proper period, the humid period, the transitional period and the flooding period. The voltage shows the segmented tendency during these periods. Experimental results show that current and temperature have little influence on the growth rate of the two levels, while the effects of pressure and hydrogen stoichiometry are remarkable. The growth rate can be calculated through the channel dimensions and matches the experimental results well. Hydrogen purge is not a fundamental method to solve flooding. The end of the humid period should be the boundary before flooding. The moist section can be obtained in the beginning part of the humid period. In this section PEM fuel cell is neither flooding nor dehydration by adjusting the cell temperature, which is verified by two additional experiments. This water management is convenient and swift for PEM fuel cell applications and the fault diagnosis.

  19. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space.

    PubMed

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L

    2015-01-01

    It is a challenge for the human body to maintain stable blood pressure while standing. The body's failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change--supposedly mediated by reflexes to the cardiovascular system. We show--for the first time--a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth.

  20. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space

    PubMed Central

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T.; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L.

    2015-01-01

    It is a challenge for the human body to maintain stable blood pressure while standing. The body’s failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change – supposedly mediated by reflexes to the cardiovascular system. We show – for the first time – a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth. PMID:26671177

  1. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space.

    PubMed

    Hallgren, Emma; Migeotte, Pierre-François; Kornilova, Ludmila; Delière, Quentin; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T; Clément, Gilles; Diedrich, André; MacDougall, Hamish; Wuyts, Floris L

    2015-01-01

    It is a challenge for the human body to maintain stable blood pressure while standing. The body's failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change--supposedly mediated by reflexes to the cardiovascular system. We show--for the first time--a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth. PMID:26671177

  2. A New Population Dataset on Dust Devil Pressure Drops : Setting the Stage for Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-09-01

    A quarter of a century ago in the first in-situ study of dust devils on Mars, Ryan and Lucich (1983) rue that 'Unfortunately, we have been unable to find a terrestrial data set that permits a one-to-one comparison with our Mars data'. Remarkably, this state of affairs has largely persisted. Here I present a set of fixed station terrestrial field data, enabled by recent technological developments, which enables a direct comparison with dust devils (as indicated by vortex pressure drops) from Mars Pathfinder, Phoenix, and hopefully MSL Curiosity.

  3. The Interdependence of Plate Coupling Processes, Subduction Rate, and Asthenospheric Pressure Drop across Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Royden, L.; Holt, A.; Becker, T. W.

    2015-12-01

    One advantage of analytical models, in which analytic expressions are used for the various components of the subduction system, is the efficient exploration of parameter space and identification of the physical mechanisms controlling a wide breadth of slab kinematics. We show that, despite subtle differences in how plate interfaces and boundary conditions are implemented, results for single subduction from a 3-D semi-analytical model for subduction FAST (Royden & Husson, 2006; Jagoutz et al., 2015) and from the numerical finite-element model CitcomCU (Moresi & Gurnis, 1996, Zhong et al., 2006) are in excellent agreement when plate coupling (via shear stress on the plate interface) takes place in the FAST without the development of topographic relief at the plate boundary. Results from the two models are consistent across a variety of geometries, with fixed upper plate, fixed lower plate, and stress-free plate ends. When the analytical model is modified to include the development of topography above the subduction boundary, subduction rates are greatly increased, indicating a strong sensitivity of subduction to the mode of plate coupling. Rates of subduction also correlate strongly with the asthenospheric pressure drop across the subducting slab, which drives toroidal flow of the asthenosphere around the slab. When the lower plate is fixed, subduction is relatively slow and the pressure drop from below to above the slab is large, inhibiting subduction and slab roll-back. When the upper plate is fixed and when the plate ends are stress-free, subduction rates are approximately 50% faster and the corresponding asthenospheric pressure drop from below to above the slab is small, facilitating rapid subduction. This qualitative correlation between plate coupling processes, asthenospheric pressure drop, and rates of subduction can be extended to systems with more than one subduction zone (Holt et al., 2015 AGU Fall Abstract). Jagoutz, O., Royden, L., Holt, A. & Becker, T. W

  4. Isolation of Indonesian cananga oil using multi-cycle pressure drop process.

    PubMed

    Kristiawan, Magdalena; Sobolik, Vaclav; Allaf, Karim

    2008-05-30

    New process, instantaneous controlled pressure drop (DIC) was applied on Cananga odorata dry flowers with the aim to isolate essential oil. DIC is based on high temperature, short time heating followed by an abrupt pressure drop into a vacuum. A part of volatile compounds is carried away from flowers in the form of vapor (DIC direct oil) that evolves adiabatically during the pressure drop (proper isolation process) and the other part remains in the DIC-treated flowers (DIC residual oil). In the present paper, the effect of DIC cycle number (1-9) and heating time (4.3-15.7 min) on the availability of oil compounds was investigated at three levels of steam pressure (0.28, 0.4 and 0.6 MPa). The availability was defined as the amount of a compound in direct or residual oil divided by the amount of this compound in the reference oil extracted from non-treated flowers by chloroform during 2h. The total availability and yield of volatiles in the direct oil increased with pressure and cycle number. At a higher pressure, the effect of heating time was insignificant. The amount of oxygenated monoterpenes and other light oxygenated compounds (i.e. predominantly exogenous compounds) in the residual flowers was lower than in the direct oil and this amount decreased with cycle number. On the other hand, the availability of oxygenated sesquiterpenes and other heavy oxygenated compounds (i.e. predominantly endogenous compounds) in residual flowers exhibited a maximum for about five cycles and their quantity at this point was three times as much as in the direct oil. The total availability of each compound at 0.6 MPa was higher than one. The rapid DIC process (0.6 MPa, 8 cycles, 6 min) gave better results than steam distillation (16 h) concerning direct oil yield (2.8%dm versus 2.5%dm) and content of oxygenated compounds (72.5% versus 61.7%). PMID:18400225

  5. Effects of slitted fins on the heat transfer and pressure drop characteristics of a compact heat exchanger

    SciTech Connect

    Kim, C.H.; Yun, J.Y.

    1996-12-31

    A compact heat exchanger which consists of air-cooled aluminum fins and copper tubes circulating refrigerant has been used in a cooling system for a long time. There are two key parameters to be seriously considered for a design of the heat exchanger and its performance improvement. These are the heat transfer rate and pressure drop coefficient which varies with the change of the tube size, its arrangement and the fin configuration. In here, a numerical study was carried to understand the effect of the fin configuration on the heat transfer and pressure drop of the heat exchanger. The diameter and the arrangement of tubes were fixed but three different types of the fin configuration were used to see its effect on the heat transfer capacity and the static pressure drop. The calculation results were compared with that of a flat plate fin. From the comparison, it was found that the slitted fins have higher pressure drop; however, they have higher heat transfer rate. It means that the simpler of the fin configuration, the lower pressure drop and heat transfer coefficients are obtained. It is mainly due to the discretisation of the thermal boundary layer on the fin surface to maximize the heat transfer to air. The slitted sides of fins act like obstacles in the airflow path. From the experimental result, it was found that the same trend in the variation of the heat transfer rate and the pressure drop with the change of the fin configuration was obtained.

  6. Pressure Drop in Tortuosity/Kinking of the Internal Carotid Artery: Simulation and Clinical Investigation

    PubMed Central

    Wang, Lijun; Zhao, Feng; Wang, Daming; Hu, Shen; Liu, Jiachun; Zhou, Zhilun; Lu, Jun; Qi, Peng; Song, Shiying

    2016-01-01

    Background. Whether carotid tortuosity/kinking of the internal carotid artery leads to cerebral ischemia remains unclear. There is very little research about the hemodynamic variation induced by carotid tortuosity/kinking in the literature. The objective of this study was to research the blood pressure changes induced by carotid tortuosity/kinking. Methods. We first created a geometric model of carotid tortuosity/kinking. Based on hemodynamic boundary conditions, the hemodynamics of carotid tortuosity and kinking were studied via a finite element simulation. Then, an in vitro system was built to validate the numerical simulation results. The mean arterial pressure changes before and after carotid kinking were measured using pressure sensors in 12 patients with carotid kinking. Results. Numerical simulation revealed that the pressure drops increased with increases in the kinking angles. Clinical tests and in vitro experiments confirmed the numerical simulation results. Conclusions. Carotid kinking leads to blood pressure reduction. In certain conditions, kinking may affect the cerebral blood supply and be associated with cerebral ischemia. PMID:27195283

  7. Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells

    NASA Astrophysics Data System (ADS)

    Maharudrayya, S.; Jayanti, S.; Deshpande, A. P.

    Parallel-channel configurations for gas-distributor plates of planar fuel cells reduce the pressure drop, but give rise to the problem of severe flow maldistribution wherein some of the channels may be starved of the reactants. This study presents an analysis of the flow distribution through parallel-channel configurations. One-dimensional models based on mass and momentum balance equations in the inlet and exhaust gas headers are developed for Z- and U-type parallel-channel configurations. The resulting coupled ordinary differential equations are solved analytically to obtain closed-form solutions for the flow distribution in the individual channels and for the pressure drop over the entire distributor plate. The models have been validated by comparing the results with those obtained from three-dimensional computational fluid dynamics (CFD) simulations. Application of the models to typical fuel-cell distributor plates shows that severe maldistribution of flow may arise in certain cases and that this can be avoided by careful choice of the dimensions of the headers and the channels.

  8. Flow in microchannels with rough walls: flow pattern and pressure drop

    NASA Astrophysics Data System (ADS)

    Wang, Hao Li; Wang, Yuan

    2007-03-01

    In this paper perturbation methods are introduced to study the laminar flow in microchannels between two parallel plates with rough wall surfaces. By a coordinate transformation, the physical domain of the microchannel is transformed into the computational one. The relative roughness as a small parameter presents the governing equations resulting from the coordinate transformation. The equations are linearized through applying the perturbation method, and the spectral collocation method is employed to solve the perturbation equations. Furthermore, the boundary perturbation method is used to analyze the spatially-averaged pressure drop of the microchannel. The numerical results show that flow in microchannels with rough surfaces is quite different from Poiseuille flow: there exist apparent fluctuations and periodic variations of vorticity along the flow direction in the flow field; flow is viscously dominant under the conditions of a low Reynolds number and the flow separations happen in the troughs of wavy walls at a high Reynolds number. The spatially-averaged pressure drop being subject to the invariable flow rate could be greater than, equal to or even less than the theoretical value, which is qualitatively consistent with the results of the microfluidic experiments.

  9. Heat transfer and pressure drop characteristic of zinc-water nanofluid

    NASA Astrophysics Data System (ADS)

    Sonage, B. K.; Mohanan, P.

    2015-04-01

    Development of alternative working fluids with enhanced thermal properties is very much needed to replace conventional fluids. Colloidal solution of some base fluid with solid nanoparticles dispersed in it, which is called as nanofluid, is emerging as a promising alternative heat transfer fluid. Zinc, being ecofriendly material, is selected as dispersed phase in water to develop zinc-water (Zn-H2O) nanofluid. Zn-H2O nanofluid is synthesized by single step method and characterized. Thermophysical properties are estimated by available theoretical models. Estimated properties proved that nanofluid is having enhanced thermophysical properties compared to the base fluid due to which nanofluid can become potential working fluid for heat exchanging devices. Synthesized nanofluid is circulated through heat transfer loop to assess its performance in turbulent flow regime and at constant wall temperature condition. Heat transfer coefficient and pressure drop are estimated from experimental results and both are considered as performance evaluation criteria for heat transfer performance assessment. 83 % increase in Nusselt number with 9 % increase in pressure drop is observed for the nanofluid compared to water.

  10. Heat transfer and pressure drop characteristic of zinc-water nanofluid

    NASA Astrophysics Data System (ADS)

    Sonage, B. K.; Mohanan, P.

    2014-09-01

    Development of alternative working fluids with enhanced thermal properties is very much needed to replace conventional fluids. Colloidal solution of some base fluid with solid nanoparticles dispersed in it, which is called as nanofluid, is emerging as a promising alternative heat transfer fluid. Zinc, being ecofriendly material, is selected as dispersed phase in water to develop zinc-water (Zn-H2O) nanofluid. Zn-H2O nanofluid is synthesized by single step method and characterized. Thermophysical properties are estimated by available theoretical models. Estimated properties proved that nanofluid is having enhanced thermophysical properties compared to the base fluid due to which nanofluid can become potential working fluid for heat exchanging devices. Synthesized nanofluid is circulated through heat transfer loop to assess its performance in turbulent flow regime and at constant wall temperature condition. Heat transfer coefficient and pressure drop are estimated from experimental results and both are considered as performance evaluation criteria for heat transfer performance assessment. 83 % increase in Nusselt number with 9 % increase in pressure drop is observed for the nanofluid compared to water.

  11. Influence of peak inspiratory flow rates and pressure drops on inhalation performance of dry powder inhalers.

    PubMed

    Hira, Daiki; Okuda, Tomoyuki; Ichihashi, Mika; Mizutani, Ayano; Ishizeki, Kazunori; Okada, Toyoko; Okamoto, Hirokazu

    2012-01-01

    The aim of this study was to reveal the relationship between human inspiratory flow patterns and the concomitant drops in pressure in different inhalation devices, and the influence of the devices on inhalation performance. As a model formulation for inhalers, a physically mixed dry powder composed of salbutamol sulfate and coarse lactose monohydrate was selected. The drops in pressure at 28.3 L/min of three inhalation devices, Single-type, Dual-type, and Reverse-type, was 1.0, 5.1, and 8.7 kPa, respectively. Measurements of human inspiratory patterns revealed that although the least resistant device (Single) had large inter- and intra-individual variation of peak flow rate (PFR), the coefficients of variation of PFR of the three devices were almost the same. In tests with a human inspiratory flow simulator in vitro, inhalation performance was higher, but the variation in inhalation performance in the range of human flow patterns was wider, for the more resistant device. To minimize the intra- and inter-individual variation in inhalation performance for the model formulation in this study, a formulation design that allows active pharmaceutical ingredient to detach from the carrier with a lower inhalation flow rate is needed.

  12. Predictive a priori pressure-dependent kinetics.

    PubMed

    Jasper, Ahren W; Pelzer, Kenley M; Miller, James A; Kamarchik, Eugene; Harding, Lawrence B; Klippenstein, Stephen J

    2014-12-01

    The ability to predict the pressure dependence of chemical reaction rates would be a great boon to kinetic modeling of processes such as combustion and atmospheric chemistry. This pressure dependence is intimately related to the rate of collision-induced transitions in energy E and angular momentum J. We present a scheme for predicting this pressure dependence based on coupling trajectory-based determinations of moments of the E,J-resolved collisional transfer rates with the two-dimensional master equation. This completely a priori procedure provides a means for proceeding beyond the empiricism of prior work. The requisite microcanonical dissociation rates are obtained from ab initio transition state theory. Predictions for the CH4 = CH3 + H and C2H3 = C2H2 + H reaction systems are in excellent agreement with experiment. PMID:25477457

  13. Predictive a priori pressure-dependent kinetics.

    PubMed

    Jasper, Ahren W; Pelzer, Kenley M; Miller, James A; Kamarchik, Eugene; Harding, Lawrence B; Klippenstein, Stephen J

    2014-12-01

    The ability to predict the pressure dependence of chemical reaction rates would be a great boon to kinetic modeling of processes such as combustion and atmospheric chemistry. This pressure dependence is intimately related to the rate of collision-induced transitions in energy E and angular momentum J. We present a scheme for predicting this pressure dependence based on coupling trajectory-based determinations of moments of the E,J-resolved collisional transfer rates with the two-dimensional master equation. This completely a priori procedure provides a means for proceeding beyond the empiricism of prior work. The requisite microcanonical dissociation rates are obtained from ab initio transition state theory. Predictions for the CH4 = CH3 + H and C2H3 = C2H2 + H reaction systems are in excellent agreement with experiment.

  14. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  15. Quantitative determinations of antipyrine and benzocaine in ear drops by high-pressure liquid chromatography.

    PubMed

    Gupta, V D; Sachanandani, S

    1977-06-01

    Antipyrine and benzocaine were determined quantitatively in ear drops by high-pressure liquid chromatography on an octadecyltrichlorosilane permanently bonded to a Si-C column, using 0.02 M KH2PO4 in methanol-water as the mobile phase. Both compounds can be assayed in combination directly without interference from each other or from oxyquinoline sulfate (the preservative). The method is accurate, precise (estimated universe standard deviations of 0.68% for antipyrine and 1.18% for benzocaine), simple, and short (requires 30 min versus 2-3 hr by the NF method). The method was tried on a commercial product with excellent results and can be used in the presence of decomposition products.

  16. Step Prediction During Perturbed Standing Using Center Of Pressure Measurements

    PubMed Central

    Tortolero, Xavier; Masani, Kei; Popovic, Milos R.

    2007-01-01

    The development of a sensor that can measure balance during quiet standing and predict stepping response in the event of perturbation has many clinically relevant applications, including closed-loop control of a neuroprothesis for standing. This study investigated the feasibility of an algorithm that can predict in real-time when an able-bodied individual who is quietly standing will have to make a step to compensate for an external perturbation. Anterior and posterior perturbations were performed on 16 able-bodied subjects using a pulley system with a dropped weight. A linear relationship was found between the peak center of pressure (COP) velocity and the peak COP displacement caused by the perturbation. This result suggests that one can predict when a person will have to make a step based on COP velocity measurements alone. Another important feature of this finding is that the peak COP velocity occurs considerably before the peak COP displacement. As a result, one can predict if a subject will have to make a step in response to a perturbation sufficiently ahead of the time when the subject is actually forced to make the step. The proposed instability detection algorithm will be implemented in a sensor system using insole sheets in shoes with miniturized pressure sensors by which the COPv can be continuously measured. The sensor system will be integrated in a closed-loop feedback system with a neuroprosthesis for standing in the near future.

  17. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  18. Predictive value of strength loss as an indicator of muscle damage across multiple drop jumps.

    PubMed

    Skurvydas, Albertas; Brazaitis, Marius; Venckūnas, Tomas; Kamandulis, Sigitas

    2011-06-01

    The aim of the present study was to compare the time-course of indirect symptoms of exercise-induced muscle damage after 50 and 100 drop jumps. A high-force, low intensity exercise protocol was used to avoid discrepancies regarding metabolic fatigue immediately after exercise. Healthy untrained men performed 50 ("50 group", n = 13) or 100 ("100 group", n = 13) intermittent (30-s interval between each jump) drop jumps, respectively, from the height of 0.5 m with a counter-movement to a 90° knee flexion angle and immediate maximal rebound. Voluntary and electrically evoked knee extensor strength was assessed using an isokinetic dynamometer immediately before and at 2 min after exercise, as well as 3, 7, and 14 days after exercise. Creatine kinase (CK) activity and muscle soreness within 7 days after exercise were also determined. The results showed that the decrease in voluntary isometric and isokinetic torque as well as 100 Hz stimulation torque at the end of the 50 and 100 drop jumps was very similar, while substantial differences were found in low-frequency fatigue, shift in optimal knee joint angle, muscle soreness, and CK activity. In addition, there was slower muscle strength recovery after the 100 drop jumps. It is concluded that the predictive value of strength loss immediately after exercise as an indicator of muscle damage decreases as the jump number increases. Still, stimuli must be large enough for muscle torque to reach the reduction plateau. Therefore, magnitude of exercise becomes a major factor in accuracy of muscle damage predictions. PMID:21574783

  19. Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Maharudrayya, S.; Jayanti, S.; Deshpande, A. P.

    Single U- and Z-type parallel-channel configurations for gas distributor plates in planar fuel cells reduce the pressure drop but give rise to the problem of severe flow maldistribution wherein some of the channels may be starved of the reactants. In this paper, previous analytical solutions obtained for single U- and Z-type flow configurations are extended to multiple U- and multiple Z-type flow configurations of interest to fuel cell applications. Algorithms to calculate flow distribution and pressure drop in multiple U- and Z-type flow configurations are developed. The results are validated by comparison with those obtained from three-dimensional computational fluid dynamics (CFD) simulations. It is found that there is a significant improvement in the flow distribution in some configurations without paying for extra pressure drop. The possibility of unmatched distribution on the cathode and the anodes sides is also highlighted. Careful design of the flow configuration is therefore necessary for optimum performance.

  20. Characterisation of heat transfer and pressure drop in condensation processes within mini-channel tubes with last generation of refrigerant fluids

    NASA Astrophysics Data System (ADS)

    Lopez Belchi, D. Alejandro

    Heat exchanger developments are driven by energetic efficiency increase and emissionreduction. To reach the standards new system are required based on mini-channels. Mini-channels can be described as tubes with one or more ports extruded in aluminiumwith hydraulic diameter are in the range of 0.2 to 3 mm. Its use in refrigeration systemsfor some years ago is a reality thanks to the human ability to made micro-scale systems.Some heat exchanger enterprises have some models developed specially for their use inautomotive sector, cooling sector, and industrial refrigeration without having a deepknowledge of how these reduced geometries affect the most important parameters suchas pressure drop and the heat transfer coefficient. To respond to this objective, an exhaustive literature review of the last two decades hasbeen performed to determinate the state of the research. Between all the publications,several models have been selected to check the predicting capacities of them becausemost of them were developed for single port mini-channel tubes. Experimentalmeasurements of heat transfer coefficient and frictional pressure drop were recorded inan experimental installation built on purpose at the Technical University of Cartagena.Multiple variables are recorded in this installation in order to calculate local heattransfer coefficient in two-phase condensing flow within mini-channels. Both pressure drop and heat transfer coefficient experimental measurements arecompared to the previously mentioned models. Most of them capture the trend correctlybut others fail predicting experimental data. These differences can be explained by theexperimental parameters considered during the models development. In some cases themodels found in the literature were developed specific conditions, consequently theirpredicting capacities are restricted. As main contributions, this thesis provides new modelling tools for mini-channelscondensing pressure drop and heat transfer coefficient

  1. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    USGS Publications Warehouse

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  2. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).

    PubMed

    Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith

    2016-05-15

    Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation.

  3. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).

    PubMed

    Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith

    2016-05-15

    Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation. PMID:26992749

  4. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  5. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol

  6. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol

  7. Heat transfer and pressure drop in blade cooling channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Lei, C. K.

    1984-01-01

    Repeated rib roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle-of-attack of 90 deg. The objective of the project was to investigate the effect of rib angle-of-attack on the pressure drop and the average heat transfer coefficients in a square duct with two opposite rib-roughned walls for Reynolds number varied from 8000 to 80,000. The rib height-to-equivalent diameter ratio (e/D) was kept at a constant value of 0.063, the rib pitch-to-height ratio (P/e) was varied from 10 to 20, and the rib angle-of-attack (alpha) was varied from 90 deg to 60 deg to 45 deg to 30 deg respectively. Two types of entrance conditions were examined, namely, long duct and sudden contraction. The heat transfer coefficient distribution on the smooth side wall and the rough side wall at the entrance and the fully developed regions were measured. Thermal performance comparison indicated that the pumping power requirement for the rib with an oblique angle to the flow (alpha = 45 deg to 30 deg) was about 20 to 50 percent lower than the rib with a 90 deg angle to the flow for a given heat transfer duty.

  8. Impact of instantaneous controlled pressure drop on microstructural modification of green tea and its infusion quality.

    PubMed

    Wang, Yuefei; Xu, Ping; Feng, Liyun; Yang, Xianqiang; Qian, Lisheng

    2014-01-01

    Instantaneous controlled pressure drop (DIC) was applied to obtain a suitable cell disruption extent as a technology in green tea processing. Microstructural observations showed that DIC increased cell disruption in an even manner as reflected from loosened palisade, distorted cells, widened space between cells, disrupted and rearranged cellular membrane in tea leaves. Color difference determination supported that DIC could facilitate the release and transport of cell contents. DIC sample showed a rise in redness, over 2.5 times greater than the control after spreading naturally for 24 h. Chemical determination revealed a better infusion behavior of tea polyphenols and amino acids in green tea manufactured by DIC method both at high and low temperature. The increase in tea polyphenols content in liquor for the first brew from twisted and needle tea was about 35% and that from flat tea was about 15% in DIC method over the traditional processing. These results suggest that DIC process can be applied in green tea processing for both a traditional product and a new kind of tea capable of making with cold water.

  9. Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Andrzejczyk, Rafał; Jakubowska, Blanka; Mikielewicz, Jarosław

    2014-09-01

    In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.

  10. Impact of instantaneous controlled pressure drop on microstructural modification of green tea and its infusion quality.

    PubMed

    Wang, Yuefei; Xu, Ping; Feng, Liyun; Yang, Xianqiang; Qian, Lisheng

    2014-01-01

    Instantaneous controlled pressure drop (DIC) was applied to obtain a suitable cell disruption extent as a technology in green tea processing. Microstructural observations showed that DIC increased cell disruption in an even manner as reflected from loosened palisade, distorted cells, widened space between cells, disrupted and rearranged cellular membrane in tea leaves. Color difference determination supported that DIC could facilitate the release and transport of cell contents. DIC sample showed a rise in redness, over 2.5 times greater than the control after spreading naturally for 24 h. Chemical determination revealed a better infusion behavior of tea polyphenols and amino acids in green tea manufactured by DIC method both at high and low temperature. The increase in tea polyphenols content in liquor for the first brew from twisted and needle tea was about 35% and that from flat tea was about 15% in DIC method over the traditional processing. These results suggest that DIC process can be applied in green tea processing for both a traditional product and a new kind of tea capable of making with cold water. PMID:24426047

  11. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  12. Pressure drops in a distensible model of end-to-side anastomosis in systemic-to-pulmonary shunts.

    PubMed

    Migliavacca, Francesco; Pennati, Giancarlo; Di Martino, Elena; Dubini, Gabriele; Pietrabissa, Riccardo

    2002-06-01

    The modified Blalock-Taussig shunt is a surgical procedure used as a palliation to treat complex congenital heart defects. It consists of an interposing prosthetic tube between the innominate/subclavian artery and the right pulmonary artery. Previous experience indicates that the pressure drop across the shunt is affected by the pulmonary pressure at the distal anastomosis combined with the distensibility of the anastomosis. In this study, a computational fluid-structure interaction approach is presented to investigate the haemodynamic behaviour. Steady-state fluid dynamics and structural analyses were carried out using commercial codes based on the finite element method (FIDAP and ABAQUS) coupled by means of a purposely-developed procedure to transfer boundary conditions. Both prosthetic tube and artery walls were characterised by non-linear material properties. Three different pulmonary pressures (2, 5 and 15 mmHg) and two volume flow rates (0.4 and 0.8 l/min) were investigated. Results indicate that the effects of distensibility at the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis on the shunt pressure drop are relevant only when the distal anastomosis is not fully distended, which occurs when the pulmonary pressure is lower than 5 mmHg.

  13. Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems

    SciTech Connect

    Reed, C.B.; Hua, T.Q.; Natesan, K.; Kirillov, I.R.; Vitkovski, I.V.; Anisimov, A.M.

    1995-03-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al{sub 2}O{sub 3}/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.

  14. Predicting Increased Blood Pressure Using Machine Learning

    PubMed Central

    Golino, Hudson Fernandes; Amaral, Liliany Souza de Brito; Duarte, Stenio Fernando Pimentel; Soares, Telma de Jesus; dos Reis, Luciana Araujo

    2014-01-01

    The present study investigates the prediction of increased blood pressure by body mass index (BMI), waist (WC) and hip circumference (HC), and waist hip ratio (WHR) using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women) from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42), misclassification (.19), and the higher pseudo R2 (.43). This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25), misclassification (.16), and the higher pseudo R2 (.46). This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power. PMID:24669313

  15. Prediction and experimental confirmation of the response function for neutron detection using superheated drops

    NASA Astrophysics Data System (ADS)

    Lo, Yuan-Chyuan; Apfel, Robert E.

    1988-11-01

    Neutrons can be detected with a suspension of superheated drops in an immiscible and compliant holding medium. The mechanism of this radiation-induced bubble nucleation has been studied. A model to predict the minimum neutron energy required to nucleate a vapor bubble in superheated liquids has previously been reported [R.E. Apfel, S. C. Roy, and Y.-C. Lo, Phys. Rev. A 31, 3194 (1985)]. Now, the energy-dependent response function for the detector has been calculated based on the model and a detailed consideration of the possible interactions of neutrons with superheated materials. The response of the detector has been measured with monoenergetic neutrons (from 0.025 eV to 14 MeV) at facilities of the National Bureau of Standards and the Radiological Research Accelerator Facility at the Nevis Laboratories of Columbia University. The experimental results agree reasonably well with that of the calculations.

  16. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation.

    PubMed

    Qureshi, M Umar; Vaughan, Gareth D A; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S; Olufsen, Mette S; Hill, N A

    2014-10-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281-1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of 'large' arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the 'smaller' arteries and veins of radii ≥ 50 μm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung. PMID:24610385

  17. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation.

    PubMed

    Qureshi, M Umar; Vaughan, Gareth D A; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S; Olufsen, Mette S; Hill, N A

    2014-10-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281-1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of 'large' arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the 'smaller' arteries and veins of radii ≥ 50 μm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung.

  18. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  19. Prediction in cases with superposition of different hydrological phenomena, such as from weather "cold drops

    NASA Astrophysics Data System (ADS)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Andina, D.; Sanchez, M. E.

    2012-04-01

    The authors have been involved in Model Codes for Construction prior to Eurocodes now Euronorms, and in a Drainage Instruction for Roads for Spain that adopted a prediction model from BPR (Bureau of Public Roads) of USA to take account of evident regional differences in Iberian Peninsula and Spanish Isles, and in some related studies. They used Extreme Value Type I (Gumbell law) models, with independent actions in superposition; this law was also adopted then to obtain maps of extreme rains by CEDEX. These methods could be extrapolated somehow with other extreme values distributions, but the first step was useful to set valid superposition schemas for actions in norms. As real case, in East of Spain rain comes usually extensively from normal weather perturbations, but in other cases from "cold drop" local high rains of about 400mm in a day occur, causing inundations and in cases local disasters. The city of Valencia in East of Spain was inundated at 1,5m high from a cold drop in 1957, and the river Turia formerly through that city was just later diverted some kilometers to South in a wider canal. With Gumbell law the expected intensity grows with time for occurrence, indicating a value for each given "return period", but the increasing speed grows with the "annual dispersion" of the Gumbell law, and some rare dangerous events may become really very possible in periods of many years. That can be proved with relatively simple models, e.g. with Extreme Law type I, and they could be made more precise or discussed. Such effects were used for superposition of actions on a structure for Model Codes, and may be combined with hydraulic effects, e.g. for bridges on rivers. These different Gumbell laws, or other extreme laws, with different dispersion may occur for marine actions of waves, earthquakes, tsunamis, and maybe for human perturbations, that could include industrial catastrophes, or civilization wars if considering historical periods.

  20. A study of pressure drop in a Capillary tube-viscometer for a two-phase flow

    SciTech Connect

    Ohene, F.; Livingston, C.; Matthews, C.; Rhone, Y.

    1995-09-01

    The analysis of pipeline transportation of highly concentrated suspensions such as coal-water slurries, can exhibit several flow characteristics depending on the concentration and the physical parameters of the dispersed phase. Experiments were conducted for coal-water slurries flows in a series of horizontal capillary tubes of diameters 0.8, 1.5 and 3.0 mm and 100 mm in length, in order to investigate the effect of concentration, pressure drop, and the transitional Reynolds number from laminar to turbulent flow in a homogeneous slurry. The solid concentration was varied from 15% to 63% in 0.1% xanthum gum solution. Pressure drop and the volume flow measurement were made using HVA-6 Capillary viscometer. The Reynolds numbers obtained were found to be dependent on the slurry concentration and the viscosity of the slurry mixture, but independent of the capillary diameter.

  1. Is drop-out from obesity treatment a predictable and preventable event?

    PubMed Central

    2014-01-01

    Background Attrition is an important but understudied issue that plays a vital role in the successful treatment of obesity. To date, most studies focusing on attrition rates and/or its predictors have been based on pretreatment data routinely collected for other purposes. Our study specifically aims at identifying the predictors of drop-out focusing on empirically or theoretically-based factors. Methods We conducted a retrospective observational study in an academic outpatient clinical nutrition service in Pavia, Italy. We examined a total of 98 adult obese patients (36 males, 62 females) who underwent a 6-month dietary behavioral weight-loss treatment at our Center. Pre-treatment and treatment-related variables were collected or calculated from clinical charts in order to discriminate those subjects who completed treatment from those who abandoned it before its completion. Multivariable regression analysis was used to identify the independent predictors of drop-out. Results The drop-out rates were 21% at 1 month and 57% at 6 months. Compared with completers, noncompleters were significantly younger in terms of age at first dieting attempt (24.0 ± 10.7 vs. 31.3 ± 11.2 years, P = 0.005), had lower diastolic blood pressure (87.8 ± 9.7 vs. 92.7 ± 11.4 mmHg, P = 0.022), had a lower baseline body fat percentage (38.5 ± 6.4 vs. 41.2 ± 4.4% weight, P = 0.015), and had a lower percentage of early weight loss (-1.8 ± 1.8% vs. -3.1 ± 2.1%, P = 0.035). Moreover, noncompleters significantly differed from completers with regard to type of referral (34.1% vs. 53.3% sent by a physician, P = 0.036) and SCL-90 anger-hostility subscale (0.83 ± 0.72 vs. 0.53 ± 0.51, P = 0.022). A multivariable logistic regression analysis including pre-treatment variables showed that body fat percentage (P = 0.030) and SCL-90 anger-hostility subscale (P = 0.021) were independently associated with attrition. In a

  2. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  3. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  4. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  5. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  6. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  7. A model to predict the conditions for liquid drop breakup and the resultant mean fragment size

    NASA Technical Reports Server (NTRS)

    Wert, K. L.; Jacobs, H. R.

    1994-01-01

    The potential significance of drop fragmentation in sprays and other propulsion-related multiphase flows has been noted in the literature. This has motivated recent experimental and theoretical works to: better understand the fundamentals of physics of drop breakup processes, and develop models of drop fragmentation suitable for use in multiphase flow codes. The works summarized below aim to contribute to both sides of this two-pronged attack.

  8. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  9. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    NASA Astrophysics Data System (ADS)

    Lee, T.-W.; An, Keju

    2016-06-01

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  10. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction.

    PubMed

    Vrouwenvelder, J S; Hinrichs, C; Van der Meer, W G J; Van Loosdrecht, M C M; Kruithof, J C

    2009-01-01

    In an earlier study, it was shown that biofouling predominantly is a feed spacer channel problem. In this article, pressure drop development and biofilm accumulation in membrane fouling simulators have been studied without permeate production as a function of the process parameters substrate concentration, linear flow velocity, substrate load and flow direction. At the applied substrate concentration range, 100-400 microg l(-1) as acetate carbon, a higher concentration caused a faster and greater pressure drop increase and a greater accumulation of biomass. Within the range of linear flow velocities as applied in practice, a higher linear flow velocity resulted in a higher initial pressure drop in addition to a more rapid and greater pressure drop increase and biomass accumulation. Reduction of the linear flow velocity resulted in an instantaneous reduction of the pressure drop caused by the accumulated biomass, without changing the biofilm concentration. A higher substrate load (product of substrate concentration and flow velocity) was related to biomass accumulation. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. A decrease of substrate load caused a gradual decline in time of both biomass concentration and pressure drop increase. It was concluded that the pressure drop increase over spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane systems can be reduced by lowering both substrate load and linear flow velocity. There is a need for RO and NF systems with a low pressure drop increase irrespective of the biomass formation. Current efforts to control biofouling of spiral wound membranes focus in addition to pretreatment on membrane improvement. According to these authors, adaptation of the hydrodynamics, spacers and pressure vessel configuration offer promising alternatives. Additional approaches may be replacing heavily biofouled elements and flow direction reversal.

  11. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2001-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  12. Theory of Planned Behavior: Sensitivity and Specificity in Predicting Graduation and Drop-Out among College and University Students?

    ERIC Educational Resources Information Center

    Fichten, Catherine S.; Amsel, Rhonda; Jorgensen, Mary; Nguyen, Mai Nhu; Budd, Jillian; King, Laura; Jorgensen, Shirley; Asuncion, Jennison

    2016-01-01

    We examined sensitivity and specificity when using the three theory of planned behavior (TPB) scales (Perceived Behavioral Control, Subjective Norms, Attitude) to predict graduation and drop-out in a longitudinal study of 252 college and university students with disabilities and in a separate cross-sectional study of a random sample of 1380…

  13. In-tube heat transfer and pressure drop of R-134a and ester lubricant mixtures in a smooth tube and a micro-fin tube. Part 2: Condensation

    SciTech Connect

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1994-12-31

    Average in-tube heat transfer coefficients and pressure drops during condensation are reported for condensation of refrigerant R-134a/lubricant mixtures in a smooth tube and a micro-fin tube of 9.52-mm (3/8-in.) outer diameter. The lubricants tested were 169-SUS and 369-SUS penta erythritol ester mixed acids. Lubricant concentrations ranged from 0% to 5%. The average saturation temperature in the test tube was approximately 40 C (104 F). The mass flux of the refrigerant-lubricant mixtures was varied from 85 kg/m{sup 2}{center_dot}s (62,700 lb/ft{sup 2}{center_dot}h) to 375 kg/m{sup 2}{center_dot}s (276,640 lb/ft{sup 2}{center_dot}h). Heat transfer coefficients during condensation decreased with the addition of lubricants in all cases. Condensation pressure drops increased with the addition of the 169-SUS ester lubricant in both the smooth tube and the micro-fin tube. The addition of the 369-SUS lubricant did not affect pressure drops in the smooth tube, but it decreased the pressure drops in the micro-fin tube. Pure R-134a heat transfer coefficients in the micro-fin tube were 100% to 200% higher than those in the smooth tube, with the higher values occurring at the lower mass fluxes. Pressure drops in the micro-fin tube were 20% to 50% higher than those in the smooth tube. Design equations are presented that aid in predicting the heat transfer coefficients and pressure drops of R-134a/lubricant mixtures in the smooth and micro-fin tubes.

  14. Experimental determination of pressure drop and statistical properties of oil-water intermittent flow through horizontal pipe

    SciTech Connect

    Poesio, Pietro

    2008-09-15

    In this paper, oil-water slug flow is studied experimentally. After presenting the experimental set-up and the post-processing tools, flow maps and pressure drops are shown. The main focus of this piece of work is, however, the determination of the statistical behaviour of the elongated oil drops. The characteristic frequency of the process is determined by three estimators: the mean frequency, the most probable frequency, and the so-called diffusional frequency. All the tools give very similar results indicating a regular behaviour of the flow. The regularity was then further proved by means of both diffusional analysis and by the rescaled range analysis. The fractal dimension of the process was also estimated reinforcing again the conclusion that the flow is made up by highly coherent structures. (author)

  15. Prediction of subsidence: Relationship between lowering of formation pressure and subsidence due to fluid withdrawal

    SciTech Connect

    Serebryakov, V.A.; Chilingar, G.V.

    2000-06-01

    Abnormally low formation pressures develop in petroleum reservoirs during intensive oil and gas production or in aquifers as a result of water extraction. A simple method is presented for calculating (predicting) the amount of compaction (and resulting subsidence) from the pressure drop in formation due to production, i.e., the increase in the effective pressure p{sub e} (p{sub e} = p{sub t} {minus} p{sub p}, where p{sub t} is the total overburden pressure and p{sub p} is the fluid or pore pressure). This work is based on extensive data collected in Russia. For example, large petroliferous areas in Western Siberia became marshlands as a result of fluid withdrawal. One should remember that sophisticated methods, such as FSMT (direct measurement of rock compaction by wireline tools in situ) and GPS (measurement of surface subsidence by satellite microwave Doppler techniques), are not yet available in many areas of the world.

  16. Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.

  17. The effects of viscosity and pressure on the bursting of a drop in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2009-11-01

    As one fluid is injected into another fluid of greater viscosity, instabilities occur in the form of fingers which extend radially from the injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). As the lower-viscosity fluid reaches the free surface it rapidly bursts through the higher- viscosity fluid (times are typically less that 50 ms for our system) and a pressure drop occurs. This pressure drop induces the shrinking of the non-bursting fingers. By varying the air pressure and water-glycerol viscosity we study this process by analyzing sequences of images prior and after the bursting event inside a Hele-Shaw cell with a gap spacing of between 10 and 500 micrometers. It has been shown that in a micro-scale environment the effects of gravity are negligible as fluid flow is dominated by capillary forces, thus such a setup would behave in space just as it does on Earth. Therefore it may then be possible to use hot air injected into a Hele-Shaw cell filled with water to generate steam in a microgravity environment.

  18. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.

    PubMed

    Kabaliuk, N; Jermy, M C; Williams, E; Laber, T L; Taylor, M C

    2014-12-01

    Bloodstain Pattern Analysis (BPA) provides information about events during an assault, e.g. location of participants, weapon type and number of blows. To extract the maximum information from spatter stains, the size, velocity and direction of the drop that produces each stain, and forces acting during flight, must be known. A numerical scheme for accurate modeling of blood drop flight, in typical crime scene conditions, including droplet oscillation, deformation and in-flight disintegration, was developed and validated against analytical and experimental data including passive blood drop oscillations, deformation at terminal velocity, cast-off and impact drop deformation and breakup features. 4th order Runge-Kutta timestepping was used with the Taylor Analogy Breakup (TAB) model and Pilch and Erdman's (1987) expression for breakup time. Experimental data for terminal velocities, oscillations, and deformation was obtained via digital high-speed imaging. A single model was found to describe drop behavior accurately in passive, cast off and impact scenarios. Terminal velocities of typical passive drops falling up to 8m, distances and times required to reach them were predicted within 5%. Initial oscillations of passive blood drops with diameters of 1mmPredictions of oscillating passive drop aspect ratio were within 1.6% of experiment. Under typical crime scene conditions, the velocity of the drop within the first 1.5m of fall is affected little by drag, oscillation or deformation. Blood drops with diameter 0.4-4mm and velocity 1-15m/s cast-off from a rotating disk showed low deformation levels (Weber number<3). Drops formed by blunt impact 0.1-2mm in diameter at velocities of 14-25m/s were highly deformed (aspect ratios down to 0.4) and the larger impact blood drops (∼1-1.5mm in diameter) broke up at critical Weber numbers of 12-14. Most break-ups occurred within 10-20cm of the impact point. The model predicted deformation

  19. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.

    PubMed

    Kabaliuk, N; Jermy, M C; Williams, E; Laber, T L; Taylor, M C

    2014-12-01

    Bloodstain Pattern Analysis (BPA) provides information about events during an assault, e.g. location of participants, weapon type and number of blows. To extract the maximum information from spatter stains, the size, velocity and direction of the drop that produces each stain, and forces acting during flight, must be known. A numerical scheme for accurate modeling of blood drop flight, in typical crime scene conditions, including droplet oscillation, deformation and in-flight disintegration, was developed and validated against analytical and experimental data including passive blood drop oscillations, deformation at terminal velocity, cast-off and impact drop deformation and breakup features. 4th order Runge-Kutta timestepping was used with the Taylor Analogy Breakup (TAB) model and Pilch and Erdman's (1987) expression for breakup time. Experimental data for terminal velocities, oscillations, and deformation was obtained via digital high-speed imaging. A single model was found to describe drop behavior accurately in passive, cast off and impact scenarios. Terminal velocities of typical passive drops falling up to 8m, distances and times required to reach them were predicted within 5%. Initial oscillations of passive blood drops with diameters of 1mmPredictions of oscillating passive drop aspect ratio were within 1.6% of experiment. Under typical crime scene conditions, the velocity of the drop within the first 1.5m of fall is affected little by drag, oscillation or deformation. Blood drops with diameter 0.4-4mm and velocity 1-15m/s cast-off from a rotating disk showed low deformation levels (Weber number<3). Drops formed by blunt impact 0.1-2mm in diameter at velocities of 14-25m/s were highly deformed (aspect ratios down to 0.4) and the larger impact blood drops (∼1-1.5mm in diameter) broke up at critical Weber numbers of 12-14. Most break-ups occurred within 10-20cm of the impact point. The model predicted deformation

  20. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    PubMed

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  1. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient.

    PubMed

    Dreszer, C; Flemming, H-C; Zwijnenburg, A; Kruithof, J C; Vrouwenvelder, J S

    2014-03-01

    Biofilm formation causes performance loss in spiral-wound membrane systems. In this study a microfiltration membrane was used in experiments to simulate fouling in spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules without the influence of concentration polarization. The resistance of a microfiltration membrane is much lower than the intrinsic biofilm resistance, enabling the detection of biofilm accumulation in an early stage. The impact of biofilm accumulation on the transmembrane (biofilm) resistance and feed channel pressure drop as a function of the crossflow velocity (0.05 and 0.20 m s(-1)) and feed spacer presence was studied in transparent membrane biofouling monitors operated at a permeate flux of 20 L m(-2) h(-1). As biodegradable nutrient, acetate was dosed to the feed water (1.0 and 0.25 mg L(-1) carbon) to enhance biofilm accumulation in the monitors. The studies showed that biofilm formation caused an increased transmembrane resistance and feed channel pressure drop. The effect was strongest at the highest crossflow velocity (0.2 m s(-1)) and in the presence of a feed spacer. Simulating conditions as currently applied in nanofiltration and reverse osmosis installations (crossflow velocity 0.2 m s(-1) and standard feed spacer) showed that the impact of biofilm formation on performance, in terms of transmembrane and feed channel pressure drop, was strong. This emphasized the importance of hydrodynamics and feed spacer design. Biomass accumulation was related to the nutrient load (nutrient concentration and linear flow velocity). Reducing the nutrient concentration of the feed water enabled the application of higher crossflow velocities. Pretreatment to remove biodegradable nutrient and removal of biomass from the membrane elements played an important part to prevent or restrict biofouling.

  2. Heat transfer, pressure drop, and mass flow rate in pin fin channels with long and short trailing edge ejection holes

    NASA Astrophysics Data System (ADS)

    Lau, S. C.; Han, J. C.; Batten, T.

    1988-06-01

    The turbulent heat transfer and friction characteristics in the pin fin channels with small trailing edge ejection holes found in internally-cooled turbine airfoils have been experimentally investigated. It is found that the overall heat transfer increases when the length of the trailing edge ejection holes is increased and when the trailing edge ejection holes are configured such that much of the cooling air is forced to flow further downstream in the radial flow direction prior to exiting. The increase in the overall heat transfer is shown to be accompanied by an increase in the overall pressure drop.

  3. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    SciTech Connect

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-07-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  4. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage.

  5. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-01

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system.

  6. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-01

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. PMID:25553669

  7. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  8. A simple expression for pressure drops of water and other low molecular liquids in the flow through micro-orifices

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomiichi; Ushida, Akiomi; Narumi, Takatsune

    2015-12-01

    Flows are generally divided into two types: shear flows and shear-free elongational (extensional) flows. Both are necessary for a thorough understanding of the flow properties of a fluid. Shear flows are easy to achieve in practice, for example, through Poiseuille or Couette flows. Shear-free elongational flows are experimentally hard to achieve, resulting in an incomplete understanding of the flow properties of fluids in micro-devices. Nevertheless, flows through micro-orifices are useful for probing the properties of elongational flows at high elongational rates; although these flows exhibit shear and elongation, the elongation is dominant and the shear is negligible in the central region of the flows. We previously reported an anomalous reduction in pressure drops in the flows of water, a 50/50 mixture of glycerol and water, and silicone oils through micro-orifices. In the present paper, we rearrange the data presented in the previous paper and reveal a simple relationship where the pressure drop is proportional to the velocity through the micro-orifices, independent of the orifice diameter and the viscosity of the liquids tested. We explain our observations by introducing a "fluid element" model, in which fluid elements are formed on entering the orifice. The model is based on the idea that low molecular liquids, including water, generate strong elongational stress, similar to a polymer solution, in the flow through micro-orifices.

  9. Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.

  10. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    NASA Astrophysics Data System (ADS)

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2016-05-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  11. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-01

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. PMID:24994652

  12. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-01

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems.

  13. Extension of spray nozzle correlations to the prediction of drop size distributions using principles of maximum entropy

    NASA Astrophysics Data System (ADS)

    Sankagiri, N.; Ruff, G. A.

    1993-01-01

    For years, design and evaluation of the performance of many existing liquid spray systems has made use of the many empirical correlations for the bulk properties of a spray such as mean drop size, spread angle, etc. However, more detailed information, such as the drop size distribution, is required to evaluate critical performance parameters such as NOx emission in internal combustion engines and the combustion efficiency of a hazardous waste incinerator. The principles of conservation of mass, momentum, and energy can be applied through the maximum entropy formulation to estimate the joint drop size-velocity distribution provided that some information about the bulk properties of the spray exists from empirical correlations. A general method for this determination is described in this paper and differences from previous work are highlighted. Comparisons between the predicted and experimental results verify that this method does yield a good estimation of the drop size distribution for certain applications. Other uses for this methodology in spray analysis are also discussed.

  14. Pressure Drop and Heat Transfer Characteristics of The Fluid Flow through an Array of Interrupted, Parallel-Plate Heat Transfer Surfaces

    NASA Astrophysics Data System (ADS)

    Mochizuki, Sadanari; Yagi, Yoshinao

    A scale-up modeling technique was used to examine the effect of the geometrical properties of interrupted surfaces on the heat transfer and pressure drop performance of compact heat exchangers having off-set-strip and slotted fins. The test cores, each consisting of a number of machined copper finns, were tested in a subsonic wind tunnel. The heat transfer and the pressure drop for each test core was measured for various fin lengths (in flow direction) and slot distances. Flow visualization and local turbulence intensity and pressure measurements within each test core were also performed to gain insight into the mechanisms of heat transfer augmentation in compact heat exchangers with interrupted surfaces. The effect of the geometrical properties of the fins as well as the Reynolds number on the heat transfer rate and the pressure drop were determined and those results were interpreted in terms of observed flow structure. Basic heat transfer and pressure drop data are presented in terms of Colburn j-factors and Fanning friction factors plotted versus Reynolds number. An empirical correlation for heat transfer and pressure drop characteristics for off-set-strip fins are presented.

  15. Computational and experimental investigation of the drag reduction and the components of pressure drop in horizontal slug flow using liquids of different viscosities

    SciTech Connect

    Daas, Mutaz; Bleyle, Derek

    2006-03-01

    Computational and experimental investigation in 10-cm ID horizontal pipes have been carried out utilizing carbon dioxide as the gas phase and two types of oil with different viscosities; namely 0.0025Pas and 0.05Pas, as the liquid phase. The influence of oil viscosity on the magnitude of total pressure drop and each of its components as well as the effectiveness of a drag reducing additive (DRA, CDR WS 500M flow improver) in decreasing the pressure loss was investigated in two-phase oil-gas slug flow. The effects of changing oil viscosity on the contribution of frictional and accelerational components to total pressure drop in slug flow were also examined and analyzed. Computations of accelerational and frictional components of pressure drop were performed. The accelerational component of pressure drop was dominant in the 0.0025Pas oil while the frictional component had significant contributions in the 0.05Pas oil. Despite the fact that the magnitude of drag reduction was higher in the 0.05Pas oil, the DRA was more effective in reducing the total pressure drop and its components in the 0.0025Pas oil. (author)

  16. A Prediction Model of the Capillary Pressure J-Function

    PubMed Central

    Xu, W. S.; Luo, P. Y.; Sun, L.; Lin, N.

    2016-01-01

    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  17. A Prediction Model of the Capillary Pressure J-Function.

    PubMed

    Xu, W S; Luo, P Y; Sun, L; Lin, N

    2016-01-01

    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  18. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    SciTech Connect

    Durandurdu, Murat

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.

  19. Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics

    NASA Technical Reports Server (NTRS)

    Ludewig, M.; Omori, S.; Rao, G. L.

    1974-01-01

    Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.

  20. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  1. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  2. Numerical determination of heat transfer and pressure drop characteristics for converging-diverging flow channel

    NASA Astrophysics Data System (ADS)

    Faghri, M.; Asako, Y.

    1984-12-01

    A finite difference scheme was utilized to predict periodic fully developed heat transfer and fluid flow characteristics in a converging-diverging flow channel. The basis of the method is an algebraic non-orthogonal coordinate transformation which maps the complex fluid domain onto a rectangle. This transformation avoids the task of numerically generating boundary-fitted coordinates. Its adaptation to a periodic example problem of converging-diverging flow channel is illustrated. Representative results were carried out for laminar flow, Prandtl number of 0.7, in the Reynolds number range from 90 to 1635, for various taper angles of converging-diverging flow channel, and for three ratios of maximum-minimum height of the flow channel. Moderate enhancement in the Nusselt number results occurred, at higher values of Reynolds number for most cases, when compared with the corresponding values for a straight duct.

  3. Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop

    SciTech Connect

    Brownell, H.H.; Yu, E.K.C.; Saddler, J.N.

    1986-06-01

    Material balances for pentosan, lignin, and hexosan, during steam-explosion pretreatment of aspenwood, showed almost quantitative recovery of cellulose in the water-insoluble fraction. Dilute acid impregnation resulted in more selective hydrolysis of pentosan relative to undesirable pyrolysis, and gave a more accessible substrate for enzymatic hydrolysis. Thermocouple probes, located inside simulated aspenwood chips heated in 240 degrees C-saturated steam, showed rapid heating of air-dry wood, whereas green or impregnated wood heated slowly. Small chips, 3.2 mm in the fiber direction, whether green or air dry gave approximately equal rates of pentosan destruction and solubilization, and similar yields of glucose and of total reducing sugars on enzmatic hydrolysis with Trichoderma harzianum. Partial pyrolysis, destroying one-third of the pentosan of aspenwood at atmospheric pressure by dry steam at 276 degrees C, gave little increase in yield of reducing sugars on enzymatic hydrolysis. Treatment with saturated steam at 240 degrees C gave essentially the same yields of butanediol and ethanol on fermentation with Klebsiella pneumoniae, whether or not 80% of the steam was bled off before explosion and even if the chips remained intact, showing that explosion was unnecessary. 17 references.

  4. Pressure drop in single-phase and two-phase couette-poiseuille flow

    SciTech Connect

    Salhi, A. ); Rey, C.; Rosant, J.M. )

    1992-03-01

    This paper is concerned with axial pressure gradient in single-phase and two-phase flow at low void fraction in a narrow annular space between two concentric cylinders, the inner one rotating. From experimental results, the coupling function (inertial forces/centrifugal forces) is parameterized by Taylor or Rossby numbers for two values of the intercylindrical width (clearance). The results are discussed with regard to different flow regimes and it is shown in particular that transition from the turbulent vorticed regime to the turbulent regime occurs at Ro {approx equal} 1. The proposed correlation agrees in a satisfactory manner to all the regimes studied in our experiments and in those given in the bibliography. In addition, original tests with a two-phase liquid/gas flow at 5 percent G.O.R. (gas oil ratio), for a finely dispersed gas phase are also reported. These results indicate a similar behavior to single-phase flows, justifying the transposition of the same correlation in the framework of the homogeneous model.

  5. PRESSURE DROP OF FILTERING FACEPIECE RESPIRATORS: HOW LOW SHOULD WE GO?

    PubMed Central

    Kim, Jung-Hyun; Roberge, Raymond J.; Powell, Jeffrey B.; Shaffer, Ronald E.; Ylitalo, Caroline M.; Sebastian, John M.

    2015-01-01

    Objectives This study was undertaken to determine the mean peak filter resistance to airflow (Rfilter) encountered by subjects while wearing prototype filtering facepiece respirators (PRs) with low Rfilter during nasal and oral breathing at sedentary and low-moderate work rates. Material and Methods In-line pressure transducer measurements of mean Rfilter across PRs with nominal Rfilter of 29.4 Pa, 58.8 Pa and 88.2 Pa (measured at 85 l/min constant airflow) were obtained during nasal and oral breathing at sedentary and low-moderate work rates for 10 subjects. Results The mean Rfilter for the 29.4 PR was significantly lower than the other 2 PRs (p < 0.000), but there were no significant differences in mean Rfilter between the PRs with 58.8 and 88.2 Pa filter resistance (p > 0.05). The mean Rfilter was greater for oral versus nasal breathing and for exercise compared to sedentary activity (p < 0.001). Conclusions Mean oral and nasal Rfilter for all 3 PRs was at, or below, the minimal threshold level for detection of inspiratory resistance (the 58.8–74.5 Pa/1×s−1), which may account for the previously-reported lack of significant subjective or physiological differences when wearing PRs with these low Rfilter. Lowering filtering facepiece respirator Rfilter below 88.2 Pa (measured at 85 l/min constant airflow) may not result in additional subjective or physiological benefit to the wearer. PMID:26159949

  6. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  7. Grain-size characteristics of experimental pyroclasts of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature

    NASA Astrophysics Data System (ADS)

    Spieler, Oliver; Alidibirov, Mikhail; Dingwell, Donald

    2002-11-01

    Using the fragmentation bomb, we analysed the effects of temperature and pressure drop on the grain-size characteristics of experimentally produced pyroclasts. Experiments performed on vesicular samples of grey dacite of the 1980 Mount St. Helens cryptodome at T=20-900 °C and initial pressure differential up to 18.5 MPa provide clear evidence of the influence of these physical conditions upon fragment size and character. Cylindrical dacite samples (diameter=17 mm, length=50 mm) are placed in the high-pressure-temperature section of the apparatus, heated and saturated by argon gas. The disruption of a diaphragm located between the high- and low-pressure sections of the apparatus initiates the rapid depressurisation of the sample. The main results may be summarised as follows. (1) Increasing temperature from 20 to 900 °C results in a decrease in the fragmentation threshold value from 9 to 3 MPa, and an increase in the median diameter of the experimental pyroclasts. These observations imply a decrease in the dynamic tensile strength of dacite at higher temperatures which in turn influences the characteristic size of fragments. (2) Increasing initial pressure differential yields a decrease of the median diameter. Thus, a higher initial elastic potential energy in the magma generates a higher degree of fragmentation. (3) Fragments of angular shape are observed from experiments at all investigated temperatures (20-900 °C), including thereby temperatures significantly higher than the classical (dilatometrically or calorimetrically determined) glass transition temperature determined for this dacite of 810 °C. Thus, brittle response of the dacite is observed under rapid decompression. (4) Fragment size distributions do not correspond to log-normal distributions and are more closely described by Rosin-Rammler distributions. With a decrease of temperature and increase of the initial pressure differential, fragment size distributions approach a Rosin-Rammler distribution

  8. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations. PMID:27300985

  9. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  10. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  11. Predicting mass loading as a function of pressure difference across prefilter/HEPA filter systems

    SciTech Connect

    Novick, V.J.; Klassen, J.F. ); Monson, P.R. )

    1992-01-01

    The purpose of this work is to develop a methodology for predicting the mass loading and pressure drop effects on a prefilter/ HEPA filter system. The methodology relies on the use of empirical equations for the specific resistance of the aerosol loaded filter as a function of the particle diameter. These correlations relate the pressure difference across a filter to the mass loading on the filter and accounts for aerosol particle density effects. These predictions are necessary for the efficient design of new filtration systems and for risk assessment studies of existing filter systems. This work specifically addresses the prefilter/HEPA filter Airborne Activity Confinement Systems (AACS) at the Savannah River Plant. In order to determine the mass loading on the system, it is necessary to establish the efficiency characteristics for the prefilter, the mass loading characteristics of the prefilter measured as a function of pressure difference across the prefilter, and the mass loading characteristics of the HEPA filter as a function of pressure difference across the filter. Furthermore, the efficiency and mass loading characteristics need to be determined as a function of the aerosol particle diameter. A review of the literature revealed that no previous work had been performed to characterize the prefilter material of interest. In order to complete the foundation of information necessary to predict total mass loadings on prefilter/HEPA filter systems, it was necessary to determine the prefilter efficiency and mass loading characteristics. The measured prefilter characteristics combined with the previously determined HEPA filter characteristics allowed the resulting pressure difference across both filters to be predicted as a function of total particle mass for a given particle distribution. These predictions compare favorably to experimental measurements ({plus minus}25%).

  12. Heat transfer coefficients and pressure drops for R-134a and an ester lubricant mixture in a smooth tube and a micro-fin tube

    SciTech Connect

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    This paper reports average heat transfer coefficients and pressure drops during the evaporation and condensation of mixtures of R-134a and a 150 SUS penta erythritol ester branched-acid lubricant. The smooth tube and micro-fin tube tested in this study had outer diameters of 9.52 mm (3/8 in.). The micro-fin tube had 60 fins, a fin height of 0.2 mm (0.008 in), and a spiral angle of 18{degree}. The objective of this study is to evaluate the effectiveness of the micro-fin tube with R-134a and to determine the effect of circulating lubricant. The experimental results show that the micro-fin tube has distinct performance advantages over the smooth tube. For example, the average heat transfer coefficients during evaporation and condensation in the micro-fin tube were 50--200% higher than those for the smooth tube, while the average pressure drops were on average only 10--50% higher. The experimental results indicate that the presence of a lubricant degrades the average heat transfer coefficients during both evaporation and condensation at high lubricant concentrations. Pressure drops during evaporation increased with the addition of a lubricant in both tubes. For condensation, pressure drops were unaffected by the addition of a lubricant.

  13. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  14. Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3-Cu hybrid nanofluids.

    PubMed

    Suresh, S; Venkitaraj, K P; Hameed, M Shahul; Sarangan, J

    2014-03-01

    A study on fully developed turbulent convective heat transfer and pressure drop characteristics of Al2O3-Cu/water hybrid nanofluid flowing through a uniformly heated circular tube is presented in this paper. For this, Al2O3-Cu nanocomposite powder was synthesized in a thermo chemical route using hydrogen reduction technique and dispersed the hybrid nano powder in deionised water to form a stable hybrid nanofluid of 0.1% volume concentration. The prepared powder was characterized by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) to confirm the chemical composition, determine the particle size and study the surface morphology. Stability of the nanofluid was ensured by pH and zeta potential measurements. The average heat transfer enhancement for Al2O3-Cu/water hybrid nanofluid is 8.02% when compared to pure water. The experimental results also showed that 0.1% Al2O3-Cu/water hybrid nanofluids have slightly higher friction factor compared to 0.1% Al2O3/water nanofluid. The empirical correlations proposed for Nusselt number and friction factor were well agreed with the experimental data.

  15. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils

    NASA Astrophysics Data System (ADS)

    Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.; Ali, R. K.

    2016-08-01

    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime in the range of Reynolds number of 14,400 ≤ Re ≤ 42,900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio of 0.044 ≤ e/d ≤ 0.133 and coil pitch ratio of 1 ≤ p/d ≤ 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6 %) and (100.1-128 %) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re. The maximum deviation between correlated and experimental values for Nusselt number and friction factor are ±5 and ±6 %, respectively.

  16. Neural network/acoustic emission burst pressure prediction for impact damaged composite pressure vessels

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.; Hill, E.V.K.

    1997-08-01

    Acoustic emission signal analysis has been used to measure the effect impact damage has on the burst pressure of 146 mm (5.75 in.) diameter graphite/epoxy and the organic polymer, Kevlar/epoxy filament wound pressure vessels. Burst pressure prediction models were developed by correlating the differential acoustic emission amplitude distribution collected during low level hydroproof tests to known burst pressures using backpropagation artificial neural networks. Impact damage conditions ranging from barely visible to obvious fiber breakage, matrix cracking, and delamination were included in this work. A simulated (inert) propellant was also cast into a series of the vessels from each material class, before impact loading, to provide boundary conditions during impact that would simulate those found on solid rocket motors. The results of this research effort demonstrate that a quantitative assessment of the effects that impact damage has on burst pressure can be made for both organic polymer/epoxy and graphite/epoxy pressure vessels. Here, an artificial neural network analysis of the acoustic emission parametric data recorded during low pressure hydroproof testing is used to relate burst pressure to the vessel`s acoustic signature. Burst pressure predictions within 6.0% of the actual failure pressure are demonstrated for a series of vessels.

  17. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings

    PubMed Central

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A.; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    Purpose The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Methods Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. Results The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). Conclusion This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an

  18. Event terms in the response spectra prediction equation and their deviation due to stress drop variations

    NASA Astrophysics Data System (ADS)

    Kawase, H.; Nakano, K.

    2015-12-01

    We investigated the characteristics of strong ground motions separated from acceleration Fourier spectra and acceleration response spectra of 5% damping calculated from weak and moderate ground motions observed by K-NET, KiK-net, and the JMA Shindokei Network in Japan using the generalized spectral inversion method. The separation method used the outcrop motions at YMGH01 as reference where we extracted site responses due to shallow weathered layers. We include events with JMA magnitude equal to or larger than 4.5 observed from 1996 to 2011. We find that our frequency-dependent Q values are comparable to those of previous studies. From the corner frequencies of Fourier source spectra, we calculate Brune's stress parameters and found a clear magnitude dependence, in which smaller events tend to spread over a wider range while maintaining the same maximum value. We confirm that this is exactly the case for several mainshock-aftershock sequences. The average stress parameters for crustal earthquakes are much smaller than those of subduction zone, which can be explained by their depth dependence. We then compared the strong motion characteristics based on the acceleration response spectra and found that the separated characteristics of strong ground motions are different, especially in the lower frequency range less than 1Hz. These differences comes from the difference between Fourier spectra and response spectra found in the observed data; that is, predominant components in high frequency range of Fourier spectra contribute to increase the response in lower frequency range with small Fourier amplitude because strong high frequency component acts as an impulse to a Single-Degree-of-Freedom system. After the separation of the source terms for 5% damping response spectra we can obtain regression coefficients with respect to the magnitude, which lead to a new GMPE as shown in Fig.1 on the left. Although stress drops for inland earthquakes are 1/7 of the subduction

  19. Foot Drop

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Foot Drop Information Page Table of Contents (click to ... research is being done? Clinical Trials What is Foot Drop? Foot drop describes the inability to raise ...

  20. Burst Pressure Prediction of Multiple Cracks in Pipelines

    NASA Astrophysics Data System (ADS)

    Razak, N. A.; Alang, N. A.; Murad, M. A.

    2013-12-01

    Available industrial code such as ASME B1G, modified ASME B1G and DNV RP-F101 to assess pipeline defects appear more conservative for multiple crack like- defects than single crack-like defects. Thus, this paper presents burst pressure prediction of pipe with multiple cracks like defects. A finite element model was developed and the burst pressure prediction was compared with the available code. The model was used to investigate the effect of the distance between the cracks and the crack length. The coalescence diagram was also developed to evaluate the burst pressure of the multiple cracks. It was found as the distance between crack increases, the interaction effect comes to fade away and multiple cracks behave like two independent single cracks.

  1. Theoretical Predictions of Phase Transitions at Ultra-high Pressures

    NASA Astrophysics Data System (ADS)

    Boates, Brian

    2013-06-01

    We present ab initio calculations of the high-pressure phase diagrams of important planetary materials such as CO2, MgSiO3, and MgO. For CO2, we predict a series of distinct liquid phases over a wide pressure (P) and temperature (T) range, including a first-order transition to a dense polymer liquid. We have computed finite-temperature free energies of liquid and solid CO2 phases to determine the melting curve beyond existing measurements and investigate possible phase separation transitions. The interaction of these phase boundaries with the mantle geotherm will also be discussed. Furthermore, we find evidence for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and solid MgO, with a volume change of approximately 1.2 percent. The demixing transition is driven by the crystallization of MgO ? the reaction only occurs below the high-pressure MgO melting curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point near 364 GPa and 12,000 K.

  2. Predicting burst pressures in filament-wound composite pressure vessels by using acoustic emission data

    NASA Astrophysics Data System (ADS)

    Hill, Eric V. K.

    1992-12-01

    Multivariate statistical analysis was used to generate equations for predicting burst pressures in 14.6 cm dia. fiberglass-epoxy and 45.7 cm dia. graphite-epoxy pressure vessels from acoustic emission (AE) data taken during hydroproof. Using the AE energy and amplitude measurements as the primary independent variables, the less accurate of the two linear equations was able to predict burst pressures to within +/- 0.841 MPa of the value given by the 95 percent prediction interval. Moreover, this equation included the effects of two bottles that contained simulated manufacturing defects. Because the AE data used to generate the burst-pressure equations were both taken at or below 25 percent of the expected burst pressures, it is anticipated that by using this approach, it would be possible to lower proof pressures in larger filament-wound composite pressure vessels such as rocket motor cases. This would minimize hydroproof damage to the composite structure and the accompanying potential for premature failure in service.

  3. Theoretical prediction of physical and chemical characteristics of the first drop'' of condensate from superheated geothermal steam: Implications for corrosion and scaling in turbines

    SciTech Connect

    Andreussi, P. . Dipartimento Scienze e Tecnologie Chimiche); Corsi, R. ); Guidi, M.; Marini, L. )

    1994-06-01

    This paper describes a method for computing: (1) the chemical composition of the first drop of condensate which forms at dew-point temperature through expansion of superheated steam, and (2) the saturation index of the drop with respect to relevant solid phases, such as halite, amorphous silica, boric acid, borax and sal ammoniac. Boiling-point elevation is taken into account in these calculations. Preliminary application to some wells in the Larderello geothermal field indicate that: (1) the high concentration of HCl in the steam causes both the low pH and very high TDS of the first drop; (2) the lower the dew-point temperature, the higher the TDS of the first drop; (3) for a given chemical composition, the lower the steam pressure, the higher the risk of corrosion and scaling in the steam path.

  4. Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube

    SciTech Connect

    Li, Xiao-Wei; Meng, Ji-An; Li, Zhi-Xin

    2007-11-15

    The single-phase pressure drop and heat transfer in a micro-fin tube were measured using oil and water as the working fluids. The Prandtl number varied from 3.2 to 220 and the Reynolds number ranged from 2500 to 90,000. The results show that there is a critical Reynolds number, Re{sub cr}, for heat transfer enhancement. For Re

  5. Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants.

    PubMed

    Allaf, Tamara; Tomao, Valérie; Ruiz, Karine; Chemat, Farid

    2013-01-01

    The instant controlled pressure drop (DIC) technology enabled both the extraction of essential oil and the expansion of the matrix itself which improved solvent extraction. The sequential use of DIC and Ultrasound Assisted Extraction (UAE) triggered complementary actions materialized by supplementary effects. We visualized these combination impacts by comparing them to standard techniques: Hydrodistillation (HD) and Solvent Extraction (SE). First, the extraction of orange peel Essential Oils (EO) was achieved by HD during 4h and DIC process (after optimization) during 2 min; EO yields was 1.97 mg/g dry material (dm) with HD compared to 16.57 mg/g d m with DIC. Second, the solid residue was recovered to extract antioxidant compounds (naringin and hesperidin) by SE and UAE. Scanning electron microscope showed that after HD the recovered solid shriveled as opposite to DIC treatment which expanded the product structure. HPLC analyses showed that the best kinetics and yields of naringin and hesperidin extraction was when DIC and UAE are combined. Indeed, after 1h of extraction, DIC treated orange peels with UAE were 0.825 ± 1.6 × 10(-2)g/g of dry material (dm) for hesperidin and 6.45 × 10(-2) ± 2.3 × 10(-4)g/g d m for naringin compared to 0.64 ± 2.7 × 10(-2)g/g of dry material (dm) and 5.7 × 10(-2) ± 1.6 × 10(-3)g/g d m, respectively with SE. By combining DIC to UAE, it was possible to enhance kinetics and yields of antioxidant extraction.

  6. Use of a Poroelastic Model to Predict Intramuscular Pressure

    PubMed Central

    Morrow, D. A.; Odegard, G. M.; Kaufman, K. R.

    2014-01-01

    Measurement of individual muscle tension in a clinical setting has yet to be achieved. Previous investigators have suggested that the tension in skeletal muscle, comprised of approximately 70% fluid, could be determined using interstitial muscle fluid pressure (IMP). A computational model is needed to aid in understanding IMP distribution in muscles of varying geometry and contractile states without exhaustive testing. The first aim of this study was to determine a set of transversely isotropic material properties (i.e., permeability, relaxed modulus, and drained Poisson’s ratio) for excised skeletal muscle using inverse finite element analysis with a poroelastic constitutive formulation on tension data from either longitudinal or transverse uniaxial load-relaxation tests of skeletal muscle tissue. The second aim was to compare pore pressure estimated from a model to experimental pressure measurements to assess its ability to accurately predict IMP. Results of this study indicated that skeletal muscle was transversely isotropic under load-relaxation as demonstrated by significant differences in the drained Poisson’s ratio. It was also noted that the drained Poisson’s ratios under both longitudinal and transverse loading were negative in these tests of excised muscle tissue. Pore pressure calculated with this model provided a good prediction of the development of IMP. These results point to the benefit of using a poroelastic model of skeletal muscle to predict IMP. PMID:25541627

  7. Theoretical predictions of novel potassium chloride phases under pressure.

    PubMed

    Shamp, Andrew; Saitta, Patrick; Zurek, Eva

    2015-05-14

    Evolutionary structure searches predict two hitherto unknown phases of KCl that are the most stable in the pressure regime of 200-600 GPa. I41/amd-KCl, which has the lowest enthalpy between ∼200-350 GPa, can be thought of as being composed of two three-connected nets. This structure can be compared with that of the Cs-IV electride (Cs(+)e(-)): the potassium ions assume the positions of the cesium ions, and the chloride ions are found roughly in the regions of the valence electrons. Above ∼350 GPa a Pnma phase, which is isotypic with phases of CsH and CsI that are stable under pressure, becomes preferred. Just as in Pnma-CsI, the atoms in Pnma-KCl assume an hcp-like lattice; these alkali halides resemble the high-pressure structures of the isoelectronic noble gas solids Xe and Ar, respectively. The equation of state of KCl is extended to 600 GPa, enabling the use of this alkali halide as a pressure guage in ultra-high pressure static compression experiments. KCl is predicted to remain insulating to at least 420 GPa.

  8. High pressure electrides: a predictive chemical and physical theory.

    PubMed

    Miao, Mao-Sheng; Hoffmann, Roald

    2014-04-15

    Electrides, in which electrons occupy interstitial regions in the crystal and behave as anions, appear as new phases for many elements (and compounds) under high pressure. We propose a unified theory of high pressure electrides (HPEs) by treating electrons in the interstitial sites as filling the quantized orbitals of the interstitial space enclosed by the surrounding atom cores, generating what we call an interstitial quasi-atom, ISQ. With increasing pressure, the energies of the valence orbitals of atoms increase more significantly than the ISQ levels, due to repulsion, exclusion by the atom cores, effectively giving the valence electrons less room in which to move. At a high enough pressure, which depends on the element and its orbitals, the frontier atomic electron may become higher in energy than the ISQ, resulting in electron transfer to the interstitial space and the formation of an HPE. By using a He lattice model to compress (with minimal orbital interaction at moderate pressures between the surrounding He and the contained atoms or molecules) atoms and an interstitial space, we are able to semiquantitatively explain and predict the propensity of various elements to form HPEs. The slopes in energy of various orbitals with pressure (s > p > d) are essential for identifying trends across the entire Periodic Table. We predict that the elements forming HPEs under 500 GPa will be Li, Na (both already known to do so), Al, and, near the high end of this pressure range, Mg, Si, Tl, In, and Pb. Ferromagnetic electrides for the heavier alkali metals, suggested by Pickard and Needs, potentially compete with transformation to d-group metals. PMID:24702165

  9. Neural network burst pressure prediction in impact damaged Kevlar/epoxy bottles from acoustic emission amplitude data

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.

    1994-12-31

    Acoustic emission (AE) signal analysis has been used to measure the effect of impact damage on the burst pressure of 5.75 inch diameter filament wound Kevlar/epoxy pressure vessels. A calibrated dead weight drop fixture, featuring both sharp and blunt hemispherical impact tups, generated impact damages with energies up to twenty ft-lb{sub f} in the mid hoop region of each vessel. Burst pressures were obtained by hydrostatically testing twenty-seven damaged and undamaged bottles, eleven of which were filled with inert propellant to simulate a rocket motor. Burst pressure prediction models were developed by correlating the differential AE amplitude distributions, Generated during the first pressure ramp to 25% of the expected burst pressure for the undamaged vessels, to known burst pressures using back propagation neural networks. Independent networks were created for the inert propellant filled vessels and the unfilled vessels using a small subset of each during the training phases. The remaining bottles served as the test sets. The eleven filled vessels had an average prediction error of 5.6%, while the unfilled bottles averaged 5.4%. Both of these results were within the 95% prediction interval, but a portion of the vessel burst pressure errors were greater than the {+-}5% worst case error obtained in previous work. in conclusion, the AE amplitude distribution data collected at low proof loads provided a suitable input for neural network burst pressure prediction in damaged and undamaged Kevlar/epoxy bottles. This included pressure vessels both with and without propellant backing. Work is ongoing to decrease the magnitude of the prediction error through network restructuring.

  10. Orthostatic blood pressure regulation predicts classroom effort in children.

    PubMed

    Carapetian, Stephanie; Siedlarz, Monika; Jackson, Sandra; Perlmuter, Lawrence C

    2008-04-01

    The increase in orthostatic systolic blood pressure associated with the shift in posture from lying to standing requires several compensatory mechanisms to ensure adequate cerebral perfusion. Decreased efficiency in the various mechanisms controlling orthostatic blood pressure regulation can result in dizziness, lightheadedness, and syncope. The degree of effectiveness of orthostatic systolic blood pressure regulation (OBPR) serves as a marker for a variety of problems including fatigue, depression, anxiety, reduced attention, impulsive behavior and reduced volition. In normal children, an insufficient increase in systolic blood pressure in response to upright posture is predictive of mild cognitive and affective problems. The present study examined orthostatic systolic blood pressure regulation in relation to yearlong teachers' evaluations of academic grades and effort in 7-11 year old children. Poorer systolic blood pressure regulation in response to orthostasis was associated with reduced levels of classroom effort, while academic grades were spared. Converging evidence from clinical as well as experimental studies suggests that the linkage between (OBPR) and effort may be partially mediated by sympathetic dysfunction, altered release of neurotransmitters, or reduced cerebral blood flow. PMID:18280600

  11. Predicting out-of-office blood pressure level using repeated measurements in the clinic: an observational cohort study

    PubMed Central

    Sheppard, James P.; Holder, Roger; Nichols, Linda; Bray, Emma; Hobbs, F.D. Richard; Mant, Jonathan; Little, Paul; Williams, Bryan; Greenfield, Sheila; McManus, Richard J.

    2014-01-01

    Objectives: Identification of people with lower (white-coat effect) or higher (masked effect) blood pressure at home compared to the clinic usually requires ambulatory or home monitoring. This study assessed whether changes in SBP with repeated measurement at a single clinic predict subsequent differences between clinic and home measurements. Methods: This study used an observational cohort design and included 220 individuals aged 35–84 years, receiving treatment for hypertension, but whose SBP was not controlled. The characteristics of change in SBP over six clinic readings were defined as the SBP drop, the slope and the quadratic coefficient using polynomial regression modelling. The predictive abilities of these characteristics for lower or higher home SBP readings were investigated with logistic regression and repeated operating characteristic analysis. Results: The single clinic SBP drop was predictive of the white-coat effect with a sensitivity of 90%, specificity of 50%, positive predictive value of 56% and negative predictive value of 88%. Predictive values for the masked effect and those of the slope and quadratic coefficient were slightly lower, but when the slope and quadratic variables were combined, the sensitivity, specificity, positive and negative predictive values for the masked effect were improved to 91, 48, 24 and 97%, respectively. Conclusion: Characteristics obtainable from multiple SBP measurements in a single clinic in patients with treated hypertension appear to reasonably predict those unlikely to have a large white-coat or masked effect, potentially allowing better targeting of out-of-office monitoring in routine clinical practice. PMID:25144295

  12. Prediction of mean arterial blood pressure with linear stochastic models.

    PubMed

    Genc, Sahika

    2011-01-01

    A model-based approach that integrates known portion of the cardiovascular system and unknown portion through a parameter estimation to predict evolution of the mean arterial pressure is considered. The unknown portion corresponds to the neural portion that acts like a controller that takes corrective actions to regulate the arterial blood pressure at a constant level. The input to the neural part is the arterial pressure and output is the sympathetic nerve activity. In this model, heart rate is considered a proxy for sympathetic nerve activity. The neural portion is modeled as a linear discrete-time system with random coefficients. The performance of the model is tested on a case study of acute hypotensive episodes (AHEs) on PhysioNet data. TPRs and FPRs improve as more data becomes available during estimation period.

  13. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the

  14. A comparison of the heat transfer and pressure drop performance of R-134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes

    SciTech Connect

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    The average heat transfer coefficients and pressure drops during evaporation and condensation are reported for mixtures of R-134a and an ester lubricant in tubes of 12.7 mm (1/2 in.) outer diameter. The objective of this paper is to evaluate the performance of the R-134a-lubricant mixtures in these tubes and determine the performance benefits of the micro-fin tube. The performance benefits of the tubes with 12.7 mm (1/2 in.) outer diameter are compared to those of smaller tubes with 9.52 mm (3/8 in.) outer diameter. The lubricant used was a 169 SUS penta erythritol ester mixed-acid lubricant. The lubricant concentration was varied from 0--5.1% in the mixture. The average heat transfer coefficients in the 12.7 mm (1/2 in.) micro-fin tube were 50--150% higher than those for the 12.7 mm (1/2 in.) smooth tube, while pressure drops in the micro-fin tube were 5% to 50% higher than in the smooth tube. The addition of lubricant degraded the average heat transfer coefficients in all cases except during evaporation at low lubricant concentrations. Pressure drops were always increased with the addition of lubricant. The experimental results also indicate that tube diameter has some effect on the performance benefits of the micro-fin tube over that of the smooth tube.

  15. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2016-04-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  16. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  17. Instability prediction by monitoring center of pressure during standing.

    PubMed

    Tortolero, Xavier; Masani, Kei; Thrasher, Timothy A; Popovic, Milos R

    2006-01-01

    Incorporating an instability predictor into a portable sensor has a number of clinically relevant applications. This study investigated the feasibility of developing a real-time assessment tool to predict stepping during standing by monitoring Center of Pressure (COP) measurements. Forward and backward perturbations were performed on 16 able-bodied subjects using a pulley system attached to the subjects' waist. A linear relationship was found between the peak COP velocity (COPv) and the peak COP position caused by the perturbations. As the peak COPv occurs considerably before the peak COP, the peak COP estimated using a regression equation from the peak COPv may serve as an instability predictor. By comparing stepping thresholds with the estimated peak COP, we found that the stepping predictor successfully predicted instability (stepping) earlier than those predictors using actual COP. Results show that the proposed model is a viable solution to predict stepping, and the feasibility of incorporating the model into a neuroprosthesis system for standing. PMID:17947140

  18. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  19. The Braden Scale for Predicting Pressure Sore Risk.

    PubMed

    Bergstrom, N; Braden, B J; Laguzza, A; Holman, V

    1987-01-01

    The Braden Scale for Predicting Pressure Sore Risk was developed to foster early identification of patients at risk for forming pressure sores. The scale is composed of six subscales that reflect sensory perception, skin moisture, activity, mobility, friction and shear, and nutritional status. Content and construct validity were established by expert opinion and empirical testing. Three studies of reliability are reported here, using raters who varied in level of educational preparation and geographic region. Two prospective studies of predictive validity were completed to determine the scale's sensitivity and specificity. Reliability ranged from r = .83 to r = .94 for nurses' aides and licensed practical nurses; when used by registered nurses, the reliability increased to r = .99. Predictive validity was calculated for each cut-off point of the scale. Using a cut-off point of 16, sensitivity was 100% in both studies. Specificity ranged from 64% to 90%. This instrument has highly satisfactory reliability when used by RNs, and greater sensitivity and specificity than instruments previously reported.

  20. Environmental correction factors for predicting room sound pressure levels

    SciTech Connect

    Warnock, A.C.C.

    1998-10-01

    ARI Standard 885 provides a method for calculating sound pressure levels in room below plenums containing air-handling devices. An important step in the calculation is the correction of the sound power for the device from values provided by the manufacturer to values appropriate for use in occupied spaces. This correction is called the environmental adjustment factor. It compensates for the fact that sound power measured for a source placed outdoors or in a hemi-free field has been found to be greater at low frequencies than the sound power measured for the same source in a reverberation room. When making predictions of sound pressure level in a room using such sound power levels, one has to estimate the reduction in sound power caused by the room. Estimated reductions provided in ARI 885 were examined during ASHRAE research project RP-755 and found to be too large. Lower values are suggested in this paper.

  1. Violence and vulnerability of female migrants in drop houses in Arizona: the predictable outcome of a chain reaction of violence.

    PubMed

    Simmons, William Paul; Menjívar, Cecilia; Téllez, Michelle

    2015-05-01

    This qualitative research study examines the experiences of immigrant women crossing the U.S./Mexico border and the proliferation of "drop houses" in Arizona as a new phenomenon, one that is often marked by kidnappings and sexual assault. Little research has been published on the violence women face on their journey, and the drop houses have almost completely escaped scholarly analysis. We argue that the drop houses must be seen as a consequence of a "state of emergency" declared by policy makers that led to changes in U.S. national and local immigration policies that fueled what we call a "chain reaction of violence." PMID:25724379

  2. Violence and vulnerability of female migrants in drop houses in Arizona: the predictable outcome of a chain reaction of violence.

    PubMed

    Simmons, William Paul; Menjívar, Cecilia; Téllez, Michelle

    2015-05-01

    This qualitative research study examines the experiences of immigrant women crossing the U.S./Mexico border and the proliferation of "drop houses" in Arizona as a new phenomenon, one that is often marked by kidnappings and sexual assault. Little research has been published on the violence women face on their journey, and the drop houses have almost completely escaped scholarly analysis. We argue that the drop houses must be seen as a consequence of a "state of emergency" declared by policy makers that led to changes in U.S. national and local immigration policies that fueled what we call a "chain reaction of violence."

  3. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  4. Prediction of Airplane Sonic-Boom Pressure Fields

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; McLean, F. Edward; Middleton, Wilbur D.

    1965-01-01

    This paper presents a discussion of the sensitivity of supersonic-transport design and operation to sonic-boom considerations and shows the necessity for a study of these problems early in the development program. Methods of predicting pressure signatures are outlined and examples of the correlation of these estimates with wind-tunnel and flight measurements are shown. Estimates of sonic-boom characteristics for a representative supersonic transport show that in the critical transonic acceleration portion of the flight, overpressures somewhat lower than estimated by the use of far-field assumptions may be expected. Promising design possibilities for the achievement of further overpressure reductions are explored.

  5. Prediction of pressurant mass requirements for axisymmetric liquid hydrogen tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.

    1995-01-01

    Experimental data from several test series are compared to an existing correlation that predicts the amount of pressurant gas mass required to expel liquid hydrogen from axisymmetric tanks. It was necessary to use an alternate definition of the tank equivalent diameter to accommodate thermal mass in the tank wall that is initially warm and to accommodate liquid residuals in the tank after expulsion is stopped. With this modification, the existing correlation predicted mass requirements to within 14 percent of experimental results. Revision of the correlation constants using a nonlinear least-squares fit of the current experimental data has a minor effect, thus supporting the validity of the original correlation's form, its fitted constants, and the alternate definition of the tank equivalent diameter.

  6. Design prediction for long term stress rupture service of composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Robinson, Ernest Y.

    1992-01-01

    Extensive stress rupture studies on glass composites and Kevlar composites were conducted by the Lawrence Radiation Laboratory beginning in the late 1960's and extending to about 8 years in some cases. Some of the data from these studies published over the years were incomplete or were tainted by spurious failures, such as grip slippage. Updated data sets were defined for both fiberglass and Kevlar composite stand test specimens. These updated data are analyzed in this report by a convenient form of the bivariate Weibull distribution, to establish a consistent set of design prediction charts that may be used as a conservative basis for predicting the stress rupture life of composite pressure vessels. The updated glass composite data exhibit an invariant Weibull modulus with lifetime. The data are analyzed in terms of homologous service load (referenced to the observed median strength). The equations relating life, homologous load, and probability are given, and corresponding design prediction charts are presented. A similar approach is taken for Kevlar composites, where the updated stand data do show a turndown tendency at long life accompanied by a corresponding change (increase) of the Weibull modulus. The turndown characteristic is not present in stress rupture test data of Kevlar pressure vessels. A modification of the stress rupture equations is presented to incorporate a latent, but limited, strength drop, and design prediction charts are presented that incorporate such behavior. The methods presented utilize Cartesian plots of the probability distributions (which are a more natural display for the design engineer), based on median normalized data that are independent of statistical parameters and are readily defined for any set of test data.

  7. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect

    Wongwises, Somchai; Pipathattakul, Manop

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a

  8. Predicting abnormal pressure from 2-D seismic velocity modeling

    SciTech Connect

    Grauls, D.; Dunand, J.P.; Beaufort, D.

    1995-12-01

    Seismic velocities are the only data available, before drilling, on which to base a quantitative, present-day estimate of abnormal pressure. Recent advances in seismic velocity processing have enabled them to obtain, using an in-house approach, an optimized 2-D interval velocity field and consequently to better define the lateral extension of pressure regimes. The methodology, interpretation and quantification of overpressure-related anomalies are supported by case studies, selected in sand-shale dominated Tertiary basins, offshore West Africa. Another advantage of this approach is that it can also account for the presence of reservoir-potential intervals at great depth and thus provide significant insight, from a prospective standpoint, into very poorly explored areas. Although at the outset the 2-D seismic tool legitimately merits being favored, optimization of the final predictive pressure model, prior to drilling, will depend upon the success of its combined use with other concepts and approaches, pertaining to structural geology, sedimentology, rock mechanics and fluid dynamics.

  9. Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink

    NASA Astrophysics Data System (ADS)

    Ashjaee, Mehdi; Goharkhah, Mohammad; Khadem, Leila Azizi; Ahmadi, Reza

    2014-12-01

    The effect of an external magnetic field on the forced convection heat transfer and pressure drop of water based Fe3O4 nanofluid (ferrofluid) in a miniature heat sink is studied experimentally. The heat sink with the dimensions of 40 mm (L) × 40 mm (W) × 10 mm (H) consists of an array of five circular channels with diameter and length of 4 and 40 mm, respectively. It is heated from the bottom surface with a constant heat flux while the other surfaces are insulated. The heat sink is also influenced by an external magnetic field generated by an electromagnet. The local convective coefficients are measured at various flow rates (200 < Re < 900), magnetic field intensities (B < 1,400 G), and particle volume fractions (φ = 0.5, 1, 2 and 3 %). Results show that using ferrofluid results in a maximum of 14 % improvement in heat transfer compared to the pure water, in the absence of magnetic field. This value grows up to 38 % when a magnetic field with the strength of 1,200 G is applied to the ferrofluid. On the other hand, it is observed that the significant heat transfer enhancement due to the magnetic field is always accompanied by a pressure drop penalty. The optimum operating condition is obtained based on the maximum heat transfer enhancement per pressure loss.

  10. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  11. Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction

    PubMed Central

    Zhang, Yunkun; Wu, Lailei; Wan, Biao; Lin, Yangzheng; Hu, Qingyang; Zhao, Yan; Gao, Rui; Li, Zhiping; Zhang, Jingwu; Gou, Huiyang

    2016-01-01

    First-principles calculations were performed to understand the structural stability, synthesis routes, mechanical and electronic properties of diverse ruthenium nitrides. RuN with a new I-4m2 symmetry stabilized by pressure is found to be energetically preferred over the experimental NaCl-type and ZnS-type ones. The Pnnm-RuN2 is found to be stable above 1.1 GPa, in agreement with the experimental results. Specifically, new stoichiometries like RuN3 and RuN4 are proposed firstly to be thermodynamically stable, and the dynamical and mechanical stabilities of the newly predicted structures have been verified by checking their phonon spectra and elastic constants. A phase transition from P4/mmm-RuN4 to C2/c-RuN4 is also uncovered at 23.0 GPa. Drawn from bonding and band structure analysis, P4/mmm-RuN4 exhibits semi-metal-like behavior and becomes a semiconductor for the high-pressure C2/c-RuN4 phase. Meanwhile the P21/c-RuN3 shows metallic feature. Highly directional covalent N-N and Ru-N bonds are formed and dominating in N-enriched Ru nitrides, making them promising hard materials. PMID:27627856

  12. Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction.

    PubMed

    Zhang, Yunkun; Wu, Lailei; Wan, Biao; Lin, Yangzheng; Hu, Qingyang; Zhao, Yan; Gao, Rui; Li, Zhiping; Zhang, Jingwu; Gou, Huiyang

    2016-01-01

    First-principles calculations were performed to understand the structural stability, synthesis routes, mechanical and electronic properties of diverse ruthenium nitrides. RuN with a new I-4m2 symmetry stabilized by pressure is found to be energetically preferred over the experimental NaCl-type and ZnS-type ones. The Pnnm-RuN2 is found to be stable above 1.1 GPa, in agreement with the experimental results. Specifically, new stoichiometries like RuN3 and RuN4 are proposed firstly to be thermodynamically stable, and the dynamical and mechanical stabilities of the newly predicted structures have been verified by checking their phonon spectra and elastic constants. A phase transition from P4/mmm-RuN4 to C2/c-RuN4 is also uncovered at 23.0 GPa. Drawn from bonding and band structure analysis, P4/mmm-RuN4 exhibits semi-metal-like behavior and becomes a semiconductor for the high-pressure C2/c-RuN4 phase. Meanwhile the P21/c-RuN3 shows metallic feature. Highly directional covalent N-N and Ru-N bonds are formed and dominating in N-enriched Ru nitrides, making them promising hard materials. PMID:27627856

  13. Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Yunkun; Wu, Lailei; Wan, Biao; Lin, Yangzheng; Hu, Qingyang; Zhao, Yan; Gao, Rui; Li, Zhiping; Zhang, Jingwu; Gou, Huiyang

    2016-09-01

    First-principles calculations were performed to understand the structural stability, synthesis routes, mechanical and electronic properties of diverse ruthenium nitrides. RuN with a new I-4m2 symmetry stabilized by pressure is found to be energetically preferred over the experimental NaCl-type and ZnS-type ones. The Pnnm-RuN2 is found to be stable above 1.1 GPa, in agreement with the experimental results. Specifically, new stoichiometries like RuN3 and RuN4 are proposed firstly to be thermodynamically stable, and the dynamical and mechanical stabilities of the newly predicted structures have been verified by checking their phonon spectra and elastic constants. A phase transition from P4/mmm-RuN4 to C2/c-RuN4 is also uncovered at 23.0 GPa. Drawn from bonding and band structure analysis, P4/mmm-RuN4 exhibits semi-metal-like behavior and becomes a semiconductor for the high-pressure C2/c-RuN4 phase. Meanwhile the P21/c-RuN3 shows metallic feature. Highly directional covalent N-N and Ru-N bonds are formed and dominating in N-enriched Ru nitrides, making them promising hard materials.

  14. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    NASA Technical Reports Server (NTRS)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  15. The T-By Tray: A plug flow, low pressure drop, high-efficiency contacting device for cross-flow columns

    SciTech Connect

    Bravo, J.L. ); Parker, B.M.; Parker, T.J. )

    1991-01-01

    This report describes the development of the T-By tray, a new tray design for cross-flow contacting of gas and liquid in absorption, stripping and distillation applications, which is designed to promote liquid plug flow and eliminate tray stagnant side zones. Two different designs, T-By I and T-By II, were tested for capacity, mass transfer efficiency and pressure drop. The T-By I design is the most successful, and offers the following advantages over sieve and valve trays: lower pressure drop per tray at equivalent open areas and weir heights, better turndown capability and a wider operating range, equivalent or higher efficiency for mass transfer, and greater vapor handling capacity. Mass transfer data from larger scale devices are needed to confirm some advantages seen in smaller columns, but the T-By tray should perform at least as well and probably better than conventional sieve and valve trays in larger diameter columns. 7 refs., 22 figs., 8 tabs.

  16. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  17. Sessile Rayleigh drop instability

    NASA Astrophysics Data System (ADS)

    Steen, Paul; Bostwick, Josh

    2012-11-01

    Rayleigh (1879) determined the mode shapes and frequencies of the inviscid motion of a free drop held by surface tension. We study the inviscid motions of a sessile Rayleigh drop - a drop which rests on a planar solid and whose contact-line is free to move. Linear stability analysis gives the modes and frequencies of the droplet motions. In this talk, we focus on the ``walking instability,'' an unstable mode wherein the drop moves across a planar substrate in an inviscid rocking-like motion. The mode shape is non-axisymmetric. Although the experimental literature has hinted at such a mode, this is the first prediction from linear stability analysis, as far as we are aware. The ``walking instability'' of the drop converts energy stored in the liquid shape into the energy of liquid motion - which represents a heretofore unknown pathway of energy conversion of potentially wide significance for a broad range of applications.

  18. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  19. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    NASA Technical Reports Server (NTRS)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  20. Deliberate practice predicts performance over time in adolescent chess players and drop-outs: a linear mixed models analysis.

    PubMed

    de Bruin, Anique B H; Smits, Niels; Rikers, Remy M J P; Schmidt, Henk G

    2008-11-01

    In this study, the longitudinal relation between deliberate practice and performance in chess was examined using a linear mixed models analysis. The practice activities and performance ratings of young elite chess players, who were either in, or had dropped out of the Dutch national chess training, were analysed since they had started playing chess seriously. The results revealed that deliberate practice (i.e. serious chess study alone and serious chess play) strongly contributed to chess performance. The influence of deliberate practice was not only observable in current performance, but also over chess players' careers. Moreover, although the drop-outs' chess ratings developed more slowly over time, both the persistent and drop-out chess players benefited to the same extent from investments in deliberate practice. Finally, the effect of gender on chess performance proved to be much smaller than the effect of deliberate practice. This study provides longitudinal support for the monotonic benefits assumption of deliberate practice, by showing that over chess players' careers, deliberate practice has a significant effect on performance, and to the same extent for chess players of different ultimate performance levels. The results of this study are not in line with critique raised against the deliberate practice theory that the factors deliberate practice and talent could be confounded. PMID:18433518

  1. Effect of Interfacial Turbulence and Accommodation Coefficient on CFD Predictions of Pressurization and Pressure Control in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2015-01-01

    Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.

  2. Evaluation of three state-of-the-art metabolite prediction software packages (Meteor, MetaSite, and StarDrop) through independent and synergistic use.

    PubMed

    T'jollyn, H; Boussery, K; Mortishire-Smith, R J; Coe, K; De Boeck, B; Van Bocxlaer, J F; Mannens, G

    2011-11-01

    The aim of this study was to evaluate three different metabolite prediction software packages (Meteor, MetaSite, and StarDrop) with respect to their ability to predict loci of metabolism and suggest relative proportions of metabolites. A chemically diverse test set of 22 compounds, for which in vivo human mass balance studies and metabolic schemes were available, was used as basis for the evaluation. Each software package was provided with structures of the parent compounds, and predicted metabolites were compared with experimentally determined human metabolites. The evaluation consisted of two parts. First, different settings within each software package were investigated and the software was evaluated using those settings determined to give the best prediction. Second, the three different packages were combined using the optimized settings to see whether a synergistic effect concerning the overall metabolism prediction could be established. The performance of the software was scored for both sensitivity and precision, taking into account the capabilities/limitations of the particular software. Varying results were obtained for the individual packages. Meteor showed a general tendency toward overprediction, and this led to a relatively low precision (∼35%) but high sensitivity (∼70%). MetaSite and StarDrop both exhibited a sensitivity and precision of ∼50%. By combining predictions obtained with the different packages, we found that increased precision can be obtained. We conclude that the state-of-the-art individual metabolite prediction software has many advantageous features but needs refinement to obtain acceptable prediction profiles. Synergistic use of different software packages could prove useful.

  3. Air atmospheric pressure plasma jet pretreatment for drop-wise loading of dexamethasone on hydroxyapatite scaffold for increase of osteoblast attachment.

    PubMed

    Lee, Jung-Hwan; Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-10-01

    Periodontal disease affects alveolar bone resorption around the involved teeth. To gain bone height, bone graft materials have been widely used with drug carriers. Application of an atmospheric pressure plasma jet (APPJ) treatment is widely studied due to its ability to change surface characteristics without topographical change. The aim of this study is to identify whether the air APPJ (AAPPJ) treatment before drop-wise loading performance could change loaded amount of dexamethasone, and induce increase of cell attachment and proliferation. The results suggested that AAPPJ treatment decreased the contact angle down to about 13 degrees, which increased gradually but significantly lowered at least 4 days compared to no-treated group. After AAPPJ treatment, hydrocarbon was removed with change of zeta potential into positive charge. However, the AAPPJ treatment did not change the quantity or releasing profile of dexamethasone (p > 0.05). Confocal analysis combined with DNA proliferation analysis showed increase of osteoblast attachment and proliferation. Hence, AAPPJ could be a useful pretreatment method before drop-wise loading on HA scaffold with dexamethasone for increase of osteoblast attachment. PMID:25942843

  4. Become the PPUPET Master: Mastering Pressure Ulcer Risk Assessment With the Pediatric Pressure Ulcer Prediction and Evaluation Tool (PPUPET).

    PubMed

    Sterken, David J; Mooney, JoAnn; Ropele, Diana; Kett, Alysha; Vander Laan, Karen J

    2015-01-01

    Hospital acquired pressure ulcers (HAPU) are serious, debilitating, and preventable complications in all inpatient populations. Despite evidence of the development of pressure ulcers in the pediatric population, minimal research has been done. Based on observations gathered during quarterly HAPU audits, bedside nursing staff recognized trends in pressure ulcer locations that were not captured using current pressure ulcer risk assessment tools. Together, bedside nurses and nursing leadership created and conducted multiple research studies to investigate the validity and reliability of the Pediatric Pressure Ulcer Prediction and Evaluation Tool (PPUPET).

  5. Does Parental Educational Level Predict Drop-Out from Upper Secondary School for 16- to 24-Year-Olds when Basic Skills Are Accounted For? A Cross Country Comparison

    ERIC Educational Resources Information Center

    Lundetrae, Kjersti

    2011-01-01

    Drop-out from upper secondary school is considered a widespread problem, closely connected with youth unemployment. The aim of the current study was to examine whether parents' level of education predicted drop-out for 16-24-year-olds when accounting for basic skills. For this purpose, data from the Norwegian (n = 996) and American (n = 641)…

  6. Analysis of pressure drop characteristics and methods for calculating gas and gas-solid flow in horizontal pipes for dilute coal conveying system

    SciTech Connect

    Weiguo Pan; Zuohe Chi; Yongjing Liao

    1997-07-01

    This article reported pressure drop characteristics and methods for calculating friction factors {lambda} 0 and {lambda}{sub {mu}} for gas and gas-solids flows, respectively, in straight horizontal pipes are summarized advantages seed. The and disadvantages of calculating friction factor {lambda}{sub {mu}} through dimensional analysis in comparison with model simulation are analyzed. It is pointed out that model simulation is more suitable to engineering use than dimensional analysis. According to experimental results of dilute gas-coal powder flow in straight horizontal pipes of the coal pulverization system in a power plant; an empirical formula and a theoretical formula for calculating friction factor {lambda}{sub {mu}} in straight horizontal pipes transporting dilute coal powder are obtained.

  7. A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    López, R.; Lecuona, A.; Ventas, R.; Vereda, C.

    2012-11-01

    In Plate Heat Exchangers it is important to determine the flow distribution and pressure drops, because they affect directly the performance of a heat exchanger [1]. This work proposes an incompressible, one-dimensional, steady state, discrete model allowing for variable overall momentum coefficients to determine these magnitudes. The model consists on a modified version of the Bajura and Jones [2] model for dividing and combining flow manifolds. The numerical procedure is based on the finite differences approximation approach proposed by Datta and Majumdar [3]. A linear overall momentum coefficient distribution is used in the dividing manifold, but the model is not limited to linear distributions. Comparisons are made with experimental, numerical and analytical data, yielding good results.

  8. Drag with external and pressure drop with internal flows: a new and unifying look at losses in the flow field based on the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Herwig, Heinz; Schmandt, Bastian

    2013-10-01

    Internal and external flows are characterized by friction factors and drag coefficients, respectively. Their definitions are based on pressure drop and drag force and thus are very different in character. From a thermodynamics point of view in both cases dissipation occurs which can uniformly be related to the entropy generation in the flow field. Therefore we suggest to account for losses in the flow field by friction factors and drag coefficients that are based on the overall entropy generation due to the dissipation in the internal and external flow fields. This second law analysis (SLA) has been applied to internal flows in many studies already. Examples of this flow category are given together with new cases of external flows, also treated by the general SLA-approach.

  9. Investigations of Pressure Drops during Piston Flow Pneumatic Conveying of Ice Cubes and Applying It to High Density Conveying of Cold Energy

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi; Yanadori, Michio; Tsubota, Yuji

    To overcome the defect of conventional chilled water systems, we propose pneumatic conveying of ice cubes. We conducted experiments to investigate the pressure drops during pneumatic conveying of ice cubes in a prototype conveyance pipe, and obtained the following results : (1)The mean velocity of the ice cubes is proportional to the mean velocity of the conveying air flow regardless of balls in the pipe or the volume fraction of the ice cubes. (2) Difference in the velocity of the air flow cause variations in the density of ice cubes. If we convey ice cubes with balls, it is possible to convey a higher density. (3) The volume fraction of this method is about 10 times that of the previous experimental results. (4)The pump power of this proposed conveyance system is reduced to about 0.71 to 0.59 times that of the conventional chilled water systems.

  10. Heat transfer and pressure drop in a compact pin-fin heat exchanger with pin orientation at 18 deg to the flow direction

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    The heat transfer and pressure drop characteristics of a novel, compact heat exchanger in helium gas were measured at 3.5 MPa and Reynolds numbers of 450 to 12,000. The pin-fin specimen consisted of pins, 0.51 mm high and spaced 2.03 mm on centers, spanning a channel through which the helium flows; the angle of the row of pins to the flow direction was 18 deg. The specimen was radiatively heated on the top side at heat fluxes up to 74 W/sq cm and insulated on the back side. Correlations were developed for the friction factor and Nusselt number. The Nusselt number compares favorably to those of past studies of staggered pin-fins, when the measured temperatures are extrapolated to the temperature of the wall-fluid interface.

  11. Void Fraction and Pressure Drop in Two-Phase Equilibrium Flows in a Vertical 2 × 3 Rod Bundle Channel ─ Assessment of Correlations against the Present Subchannel Data

    NASA Astrophysics Data System (ADS)

    Sadatomi, Michio; Kano, Keiko; Kawahara, Akimaro; Mori, Naoki

    In order to increase void fraction and pressure drop data in a multi-subchannel system like an actual fuel rod bundle, air-water experiments have been conducted using a vertical 2 × 3 rod bundle channel made up of two central and four side subchannels as the test channel. Void fraction and pressure drop in each subchannel were measured and the frictional pressure drop was determined mainly for slug and churn flows. The results show that both the void fraction and the frictional pressure drop are higher in the central subchannel than the side one. In order to analyze the data, the data on gas and liquid flow rates in each subchannel under the same flow condition have been used. In the analysis, the calculations by various correlations reported in literatures have been compared with the present data for validation. The recommended correlations respectively for the void fraction and the frictional pressure drop have been clarified. Results of such experiments and analyses are presented and discussed in this paper.

  12. Parametric study on heat transfer enhancement and pressure drop of an internal blade tip-wall with pin-fin arrays

    NASA Astrophysics Data System (ADS)

    Xie, Gongnan; Sundén, Bengt; Wang, Lieke; Utriainen, Esa

    2011-01-01

    One way to cool gas turbine tips is to design serpentine passages with 180° turns inside the blades to fully utilize the coolant potential. It is therefore a desire to improve the cooling of the blade tips to ensure a long durability and safe operation. In the present work, a two-pass channel with a 180° turn and various arrays of pin-fins mounted internally on the tip-cap is considered. The effects of pin-fin height, diameter and pitches on the heat transfer enhancement and pressure drop are investigated numerically. The nominal ratio of height to diameter (H/D) of the pin-fins is 2, and the ratio of tip clearance to pin-fin height is about 10. The inlet Reynolds numbers based on hydraulic diameter are ranging from 100,000 to 600,000. Details of the three dimensional fluid flow and heat transfer over the pin-finned tips are presented. The overall performances of various tips are compared. It is found that due to the combination of turning, impingement and pin-fin crossflow, the heat transfer coefficient of the pin-finned tips is up to a factor of 2.1 higher than that of the smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 30%. Results show that the magnitude of the heat transfer enhancement depends upon pin-fin configuration and arrangement. It is suggested that pin-fins are suitable to enhance the blade tip heat transfer and thus to improve the tip cooling.

  13. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  14. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  15. Drop Testing Representative Multi-Canister Overpacks

    SciTech Connect

    Snow, Spencer D.; Morton, Dana K.

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  16. Mechanically-Excited Sessile Drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Bostwick, Joshua; Daniel, Susan; Steen, Paul

    2010-11-01

    The volume and contact-line mobility of a sessile drop determine the frequency response of the drop to mechanical excitation. A useful signature of the drop is its response to a sweep of frequency. At particular frequencies the drop exhibits standing wave patterns of different mode numbers and/or azimuthal, spinning motion. We report observations of the spectrum of standing wave patterns and compare to predictions of a linear stability theory. On the side of application, the results suggest how to tune the pinning-unpinning of a sessile drop in order to maximize its translation.

  17. Liquid drops impacting superamphiphobic coatings.

    PubMed

    Deng, Xu; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2013-06-25

    The dynamics of liquid drops impacting superamphiphobic coatings is studied by high-speed video microscopy. Superamphiphobic coatings repel water and oils. The coating consists of a fractal-like hydrophobized silica network. Mixtures of ethanol-water and glycerin-water are chosen to investigate the influence of interfacial tension and viscosity on spreading and retraction dynamics. Drop spreading is dominated by inertia. At low impact velocity, the drops completely rebound. However, the contact time increases with impact velocity, whereas the restitution coefficient decreases. We suggest that the drop temporarily impales the superamphiphobic coating, although the drop completely rebounds. From an estimate of the pressure, it can be concluded that impalement is dominated by depinning rather than sagging. With increasing velocity, the drops partially pin, and an increasing amount of liquid remains on the coating. A time-resolved study of the retraction dynamics reveals two well-separated phases: a fast inertia-dominated phase followed by a slow decrease of the contact diameter of the drop. The crossover occurs when the diameter of the retracting drop matches the diameter of the drop before impact. We suggest that the depth of impalement increases with impact velocity, where impalement is confined to the initial impact zone of the drop. If the drop partially pins on the coating, the depth of impalement exceeds a depth, preventing the whole drop from being removed during the retraction phase.

  18. Recommendations on selecting the closing relations for calculating friction pressure drop in the loops of nuclear power stations equipped with VVER reactors

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Belikov, V. V.; Davydov, A. V.; Emel'yanov, D. A.; Mosunova, N. A.

    2013-05-01

    Closing relations describing friction pressure drop during the motion of two-phase flows that are widely applied in thermal-hydraulic codes and in calculations of the parameters characterizing the flow of water coolant in the loops of reactor installations used at nuclear power stations and in other thermal power systems are reviewed. A new formula developed by the authors of this paper is proposed. The above-mentioned relations are implemented in the HYDRA-IBRAE thermal-hydraulic computation code developed at the Nuclear Safety Institute of the Russian Academy of Sciences. A series of verification calculations is carried out for a wide range of pressures, flowrates, and heat fluxes typical for transient and emergency operating conditions of nuclear power stations equipped with VVER reactors. Advantages and shortcomings of different closing relations are revealed, and recommendations for using them in carrying out thermal-hydraulic calculations of coolant flow in the loops of VVER-based nuclear power stations are given.

  19. Experimental investigation of heat transfer and pressure drop characteristics of water and glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

    NASA Astrophysics Data System (ADS)

    Khan, Md Mesbah-ul Ghani

    Microchannels have several advantages over traditional large tubes. Heat transfer using microchannels recently have attracted significant research and industrial design interests. Open literatures leave with question on the applicability of classical macroscale theory in microchannels. Better understanding of heat transfer in various microchannel geometries and building experimental database are continuously urged. The purpose of this study is to contribute the findings and data to this emerging area through carefully designed and well controlled experimental works. The commercially important glycol-water mixture heat transfer fluid and multiport slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter tubes experience turbulent flow whereas the narrow channels face laminar flow and often developing flow. Study of low Reynolds number developing glycol-water mixture laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is not available in the open literature. Current research therefore experimentally investigates glycol-water mixture and water in simultaneously developing laminar flows. Three multiport microchannel heat exchangers; straight and serpentine slabs, are used for each fluid. Friction factors of glycol-water mixture and water flows in straight slabs are higher than conventional fully developed laminar flow. If a comprehensive pressure balance is introduced, the results are well compared with conventional Poiseuille theory. Similar results are found in serpentine slab. The pressure drop for the straight core is the highest, manifolds are the intermediate, and serpentine is the least; which are beneficial for heat exchangers. The heat transfer results in serpentine slab for glycol-water mixture and water are higher and could not be compared with conventional fully developed and developing flow correlations. New

  20. Midlife blood pressure predicts future diastolic dysfunction independently of blood pressure

    PubMed Central

    Ghosh, Arjun Kumar; Hughes, Alun David; Francis, Darrel; Chaturvedi, Nishi; Pellerin, Denis; Deanfield, John; Kuh, Diana; Mayet, Jamil; Hardy, Rebecca

    2016-01-01

    Objectives High blood pressure (BP) is associated with diastolic dysfunction, but the consequence of elevated BP over the adult life course on diastolic function is unknown. We hypothesised that high BP in earlier adulthood would be associated with impaired diastolic function independent of current BP. Methods Participants in the Medical Research Council National Survey of Health and Development birth cohort (n=1653) underwent investigations including echocardiography at age 60–64 years. The relationships between adult BP, antihypertensive treatment (HTT) and echocardiographic measures of diastolic function were assessed using adjusted regression models. Results Increased systolic BP (SBP) at ages 36, 43 and 53 years was predictive of increased E/e′ and increased left atrial volume. These effects were only partially explained by SBP at 60–64 years and increased left ventricular mass. HTT was also associated with poorer diastolic function after adjustment for SBP at 60–64 years. Faster rates of increase in SBP in midlife were also associated with increased poorer diastolic function. Conclusions High SBP in midlife is associated with poorer diastolic function at age 60–64 years. Early identification of individuals with high BP or rapid rises in BP may be important for prevention of impaired cardiac function in later life. PMID:27056972

  1. Subjective Stress and Coping Resources Interact To Predict Blood Pressure Reactivity in Black College Students.

    ERIC Educational Resources Information Center

    Clark, Rodney

    2003-01-01

    Examined the effects of subjective stress and coping resources on blood pressure reactivity among black college students. The interactive effects of subjective stress and coping resources predicted diastolic blood pressure reactivity. Higher levels of problem-focused coping related to more marked diastolic blood pressure changes under conditions…

  2. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    NASA Astrophysics Data System (ADS)

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min-1. The nonlinear behavior allows sensitivities equal to 0.6 V l-1 min for flow rates ranging from -2.0 to +2.0 l min-1, equal to 2.0 V l-1 min for flow rates ranging from -3.0 to -2.0 l min-1 and from +2.0 to +3.0 l min-1, up to 5.7 V l-1 min at higher flow rates ranging from -7.0 to -3.0 l min-1 and from +3.0 to +7.0 l min-1. The linear range extends from 3.0 to 7.0 l min-1 with constant sensitivity equal to 5.7 V l-1 min. The sensor is able to detect a flow-rate equal to 1.0 l min-1 with a sensitivity of about 400 mV l-1 min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min-1, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l-1 min.

  3. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    SciTech Connect

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-15

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 deg. C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min{sup -1}. The nonlinear behavior allows sensitivities equal to 0.6 V l{sup -1} min for flow rates ranging from -2.0 to +2.0 l min{sup -1}, equal to 2.0 V l{sup -1} min for flow rates ranging from -3.0 to -2.0 l min{sup -1} and from +2.0 to +3.0 l min{sup -1}, up to 5.7 V l{sup -1} min at higher flow rates ranging from -7.0 to -3.0 l min{sup -1} and from +3.0 to +7.0 l min{sup -1}. The linear range extends from 3.0 to 7.0 l min{sup -1} with constant sensitivity equal to 5.7 V l{sup -1} min. The sensor is able to detect a flow-rate equal to 1.0 l min{sup -1} with a sensitivity of about 400 mV l{sup -1} min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min{sup -1}, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l{sup -1} min.

  4. Comparison of Two-dimensional Measurement Techniques for Predicting Knee Angle and Moment during a Drop Vertical Jump

    PubMed Central

    Mizner, Ryan L.; Chmielewski, Terese L.; Toepke, John J.; Tofte, Kari B.

    2011-01-01

    Objective To determine the association of two dimensional (2D) video-based techniques and three-dimensional (3D) motion analysis to assess potential knee injury risk factors during jump landing. Design Observational study Setting Research Laboratory Participants Thirty-six female athletes in cutting and pivoting sports. Assessment Athletes performed a drop vertical jump during which movement was recorded with a motion analysis system and a digital video camera positioned in the frontal plane. Main Outcome Measures The 2D variables were the frontal plane projection angle (FPPA), the angle formed between thigh and leg, and the knee:ankle separation ratio, the distance between knee joints divided by the distance between ankles. The 3D variables were knee abduction angle and external abduction moment. All variables were assessed at peak knee flexion. Linear regression assessed the relationship between the 2D and 3D variables. In addition, intraclass correlation coefficients determined rater reliability for the 2D variables and compared the 2D measurements made from digital video to the same measurements from the motion analysis. Results The knee:ankle separation ratio accounted for a higher variance of 3D knee abduction angle (r2 =0.350) and knee abduction moment (r2=0.394) when compared to the FPPA (r2=0.145, 0.254). The digital video measures had favorable rater reliability (ICC:0.89–0.94) and were comparable to the motion analysis system (ICC≥0.92). Conclusion When compared to the FPPA, the knee:ankle separation ratio had better association with previously cited knee injury risk factors in female athletes. The 2D measures have adequate consistency and validity to merit further clinical consideration in jump landing assessments. PMID:22544058

  5. Intraoperative testing of opening and closing pressure predicts risk of low intraocular pressure after Ahmed glaucoma valve implantation

    PubMed Central

    Bochmann, F; Kipfer, A; Tarantino, J; Kaufmann, C; Bachmann, L; Thiel, M

    2014-01-01

    Purpose The aim of this study was to assess whether intraoperative testing of silicone Ahmed glaucoma valves (AGVs) would identify valves with an increased risk of low postoperative intraocular pressure (IOP). Methods In 30 consecutive cases of glaucoma surgery with AGV implantation, after priming the AGV, we intraoperatively measured the opening pressure A, closing pressure B, and re-opening pressure C using the active infusion pump of a phako-machine. IOP was checked postoperatively on the same day. Low IOP was defined as <5 mm Hg. Intraoperatively measured pressure characteristics of the valve function were analysed for their ability to predict postoperative IOP outcomes. Results Opening A, closing B, and re-opening C pressures (mean, (SD)) were 18.4 (5.1), 8.3 (4.7), and 11.7 (4.8)mm Hg, respectively. Ten patients (33.3%) had low IOP. An opening pressure of ≤18 mm Hg predicted low postoperative IOP with a sensitivity (10/10) of 100% (95% CI, 69.2–100) and a specificity (13/20) of 65.0% (95% CI, 40.8–84.6). Conclusions AGVs have a high variability of opening, closing, and re-opening pressures. An opening pressure of ≤18 mm Hg, a closing pressure of ≤10 mm Hg, or a re-opening pressure of ≤11 mm Hg identified all patients with low postoperative IOP. PMID:25060848

  6. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak

    2016-01-01

    Background Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. Objectives The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. Methods MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. Results MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 < R2 < 0.738) with a mean difference of −11.13 J/m3 (SD = 4.34 J/m3). Results of MRI and PIV measurements differ by 2.76 ± 0.82 cm/s (velocity) and −11.13 ± 4.34 J/m3 (TKE) for turbulent flow (Re > 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. Conclusions These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique. PMID:26978529

  7. The precipitation of silica gels along seismogenic faults due to sudden fluid pressure drops: an example from the Zuccale low angle normal fault, Italy

    NASA Astrophysics Data System (ADS)

    Holdsworth, R. E.; Smith, S.; Lloyd, G. E.

    2012-04-01

    Based on experimental and some field-based studies several authors have proposed that silica gel (hydrated amorphous silica) layers are generated by frictional slip along seismogenic faults. The precise mechanism(s) of formation have remained somewhat enigmatic, but most studies invoke a mixture of frictional and chemical processes simultaneous with seismogenic slip. In this presentation we describe a new occurrence of ultrafine grained silica fault rocks that are hosted along a number of detachment faults developed within the Zuccale low angle normal fault on the island of Elba, Italy. Based on the geological and microstructural observations, including very detailed EBSD measurements, we propose an alternative mechanism of formation in which the gels precipitate rapidly from supersaturated pore fluids formed due to sudden drops in fluid pressure along faults during or immediately following episodes of seismogenic slip. This mechanism may have widespread application to other examples of fault-hosted silica gels. Furthermore, given the field appearance of these layers (see figure) and the recognition of ultrafine quartz crystallites in thin section, it is possible that similar examples in other natural fault zones may have been mistakenly identified as pseudotachylytes. The implications for fault weakening will also be discussed.

  8. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  9. Habitual intake of fruit juice predicts central blood pressure.

    PubMed

    Pase, Matthew P; Grima, Natalie; Cockerell, Robyn; Pipingas, Andrew

    2015-01-01

    Despite a common perception that fruit juice is healthy, fruit juice contains high amounts of naturally occurring sugar without the fibre content of the whole fruit. Frequent fruit juice consumption may therefore contribute to excessive sugar consumption typical of the Western society. Although excess sugar intake is associated with high blood pressure (BP), the association between habitual fruit juice consumption and BP is unclear. The present study investigated the association of fruit juice consumption with brachial and central (aortic) BP in 160 community dwelling adults. Habitual fruit juice consumption was measured using a 12 month dietary recall questionnaire. On the same day, brachial BP was measured and central (aortic) BP was estimated through radial artery applanation. Frequency of fruit juice consumption was classified as rare, occasional or daily. Those who consumed fruit juice daily, versus rarely or occasionally, had significantly higher central systolic BP (F (2, 134) = 6.09, p <0.01), central pulse pressure (F (2, 134) = 4.16, p <0.05), central augmentation pressure (F (2, 134) = 5.98, p <0.01) and central augmentation index (F (2, 134) = 3.29, p <0.05) as well as lower pulse pressure amplification (F (2, 134) = 4.36, p <0.05). There were no differences in brachial BP. Central systolic BP was 3-4 mmHg higher for those who consumed fruit juice daily rather than rarely or occasionally. In conclusion, more frequent fruit juice consumption was associated with higher central BPs.

  10. Comparison of three computational models for predicting pressurization characteristics of cryogenic tank during discharge

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Kang, Zhu; Yonghua, Jin

    2015-01-01

    In order to select an effective approach to predict the pressurization characteristics of cryogenic tank during rocket launching, three computational models, defined as 0-D, 1-D and CFD models, are used to obtain the pressure evolution and thermal performance of a cryogenic tank during pressurized discharge period. Several pressurization cases are computed by all of the three models to evaluate their predictive abilities and effects, respectively. The comparative study shows that for the case with a diffuser-type injector at the tank inlet, the consistent results by the three models are obtained in the most of period, except that 1-D model has a peak departure prediction of pressure value at the beginning of process. All of the three models can be used to predict the pressurization performance, and their predictive abilities could be validated with one another. The CFD model is the unique suitable model to display the pressurization performance including physical distribution in radial direction especially for the system with no-diffuser-type injector. Based on the analysis, the application selection of three models for different cases is accomplished. The 0-D model is the priority selection for a simple pressure prediction of tank ullage, even for the situation that severe temperature distribution exists in the ullage range. The 1-D model is the optimal selection as considering both the convenience and the time consumption for the constant-pressure cases. But it is not recommended in a constant-inlet flux cases for its distinct predicting deviation at the beginning of the process. When the detailed distributions within the tank are concerned, the CFD model is the unique selection. The results of this paper may be beneficial to the model selection and optimization analysis of a pressurization system.

  11. Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Beomsoo; Kim, Sang-Yoon; Hwang, Jungho

    2014-12-01

    Drop-on-demand printing is receiving a great deal of interest in industrial applications; however, the desired pattern sizes are realized by trial and error, through repeated printing experiments with varied materials (ink and suspended particles), operating conditions (voltage, flow rate, nozzle-to-plate distance, etc.), and substrate wettability. Since this approach requires a great deal of time, cost, and effort, a more convenient and efficient method that will predict pattern sizes with a minimal number of experiments is needed. In this study, we patterned a series of Ag dots and lines using a pulsed voltage-applied electrohydrodynamic jet printing system and measured their sizes with an optical microscope. We then applied a model suggested by Stringer and Derby (J Eur Ceram Soc 29:913-918, 2009) and Gao and Sonin (Proc R Soc Lond Ser A 444:533-554, 1994) to predict the pattern sizes, comparing these predictions with the measured sizes. Finally, we demonstrated our methodology on disconnected line repairing.

  12. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.

    PubMed

    Sizochenko, Natalia; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Kuz'min, Victor; Puzyn, Tomasz; Leszczynski, Jerzy

    2014-11-21

    Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were established. A new approach for representation of nanoparticles' structure is presented. For description of the supramolecular structure of nanoparticles the "liquid drop" model was applied. It is expected that a novel, proposed approach could be of general use for predictions related to nanomaterials. In addition, in our study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. The developed nano-QSAR models were validated and reliably predict the toxicity of all studied metal oxide nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-based descriptors were revealed to have an almost similar level of contribution to toxicity in both cases, while other parameters (van der Waals interactions, electronegativity and metal-ligand binding characteristics) have unequal contribution levels. In addition, the models developed here suggest different mechanisms of nanotoxicity for these two types of cells.

  13. Improved prediction of the turbulence-shear contribution to wind noise pressure spectra.

    PubMed

    Yu, Jiao; Raspet, Richard; Webster, Jeremy; Abbott, JohnPaul

    2011-12-01

    In previous research [Raspet et al., J. Acoust. Soc. Am. 123(3), 1260-1269 (2008)], predictions of the low frequency turbulence-turbulence and turbulence-mean shear interaction pressure spectra measured by a large wind screen were developed and compared to the spectra measured using large spherical wind screens in the flow. The predictions and measurements agreed well except at very low frequencies where the turbulence-mean shear contribution dominated the turbulence-turbulence interaction pressure. In this region the predicted turbulence-mean shear interaction pressure did not show consistent agreement with microphone measurements. The predicted levels were often much larger than the measured results. This paper applies methods developed to predict the turbulence-shear interaction pressure measured at the ground [Yu et al., J. Acoust. Soc. Am. 129(2), 622-632 (2011)] to improve the prediction of the turbulence-shear interaction pressure above the ground surface by incorporating a realistic wind velocity profile and realistic turbulence anisotropy. The revised prediction of the turbulence-shear interaction pressure spectra compares favorably with wind-screen microphone measurements in large wind screens at low frequency.

  14. A kinetic model of pressure solution/compaction for porosity prediction

    SciTech Connect

    Lahann, R.W. )

    1991-03-01

    A pressure/temperature history model for prediction of porosity of well-sorted, quartzose sandstones was developed and calibrated. The model assumes that porosity loss of quartzose sandstones is by pressure solution, which can be modeled by calculations of pressure solution/compaction of a uniform grain pack. The model assumes that all mass mobilized by the pressure solution is precipitated within the system and no mass is introduced from outside sources. A pressure solution rate law was developed that requires depth, temperature, and pressure information throughout the sandstone burial history. Rate of pressure solution is assumed to be proportional to effective lithostatic pressure, inversely proportional to te contact area between grains, and to have an Arrhenius-type dependence on temperature. The predicted porosities vary as a function of grain size and the pressure/temperature history of the sample. 'Unknowns' in the rate law were determined by calibration to a North Sea/Norwegian shelf data base of average porosities for well-sorted sandstones ranging in age from Devonian to Jurassic. Comparison of observed and model-predicted porosities indicates that, for the calibration data base, the model has a standard error if estimate of 3.6 porosity units. Sources of error include erroneous model assumptions, and grain size, sorting, and temperature and pressure history determinations on the calibration set. The model was tested on US Gulf Coast Miocene and Oligocene reservoirs and provided good estimates of observed porosities.

  15. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  16. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis

    NASA Astrophysics Data System (ADS)

    Onda, Kazuo; Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei

    Recent attention focused on fuel cell electric vehicles (FCEVs) has created demand for the construction of hydrogen supply stations for FCEVs throughout the world. The hydrogen pressure supplied at the supply stations is intentionally high to increase the FCEVs driving mileage. Water electrolysis can produce clean hydrogen by utilizing electricity from renewable energy without CO 2 emission to the atmosphere when compared with the industrial fossil fuel reforming process. The power required for high-pressure water electrolysis, wherein water is pumped up to a high-pressure, may be less than the power required for atmospheric water electrolysis, wherein the produced atmospheric hydrogen is pumped by a compressor, since the compression power for water is much less than that for hydrogen-gas. In this study, the ideal water electrolysis voltage of up to 70 MPa and 250 °C is estimated by referring to both the results of LeRoy et al. up to 10 MPa and 250 °C, and the latest steam tables. Using this high-pressure water electrolysis voltage, the power required to produce high-pressure hydrogen by high-pressure water electrolysis is estimated to be about 5% less than that required for atmospheric water electrolysis, assuming compressor and pump efficiencies of 50%.

  17. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  18. Spectral models for ground motion prediction in the L'Aquila region (central Italy): evidence for stress-drop dependence on magnitude and depth

    NASA Astrophysics Data System (ADS)

    Pacor, F.; Spallarossa, D.; Oth, A.; Luzi, L.; Puglia, R.; Cantore, L.; Mercuri, A.; D'Amico, M.; Bindi, D.

    2016-02-01

    between seismic moment and local magnitude that improves the existing ones and extends the validity range to 3.0-5.8. We find a significant stress drop increase with seismic moment for events with Mw larger than 3.75, with so-called scaling parameter ε close to 1.5. We also observe that the overall offset of the stress-drop scaling is controlled by earthquake depth. We evaluate the performance of the proposed parametric models through the residual analysis of the Fourier spectra in the frequency range 0.5-25 Hz. The results show that the considered stress-drop scaling with magnitude and depth reduces, on average, the standard deviation by 18 per cent with respect to a constant stress-drop model. The overall quality of fit (standard deviation between 0.20 and 0.27, in the frequency range 1-20 Hz) indicates that the spectral model calibrated in this study can be used to predict ground motion in the L'Aquila region.

  19. Method for predicting pump-induced acoustic pressures in fluid-handling systems. [ACSTIC code

    SciTech Connect

    Schwirian, R.E.; Shockling, L.A.; Singleton, N.R.; Riddell, R.A.

    1982-01-01

    A method is described for predicting the amplitudes of pump-induced acoustic pressures in fluid-handling systems using a node-flow path discretization methodology and a harmonic analysis algorithm. A computer model of a Westinghouse test loop using the volumetric forcing function model of the pump is presented. Comparisons of measured pressure amplitude profiles in the loop with model prediction are shown to be in good agreement for both the first and second pump blade-passing frequencies. 10 refs.

  20. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  1. Pressure Ulcers in Adults: Prediction and Prevention. Clinical Practice Guideline Number 3.

    ERIC Educational Resources Information Center

    Agency for Health Care Policy and Research (DHHS/PHS), Rockville, MD.

    This package includes a clinical practice guideline, quick reference guide for clinicians, and patient's guide to predicting and preventing pressure ulcers in adults. The clinical practice guideline includes the following: overview of the incidence and prevalence of pressure ulcers; clinical practice guideline (introduction, risk assessment tools…

  2. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    NASA Technical Reports Server (NTRS)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  3. Non-Newtonian fluids: Frictional pressure loss prediction for fully-developed flow in straight pipes

    NASA Astrophysics Data System (ADS)

    1991-10-01

    ESDU 91025 discusses models used to describe the rheology of time independent pseudohomogeneous non-Newtonian fluids (power-law, Bingham, Herschel-Bulkley and a generalized model due to Metzner and Reed); they are used to calculate the laminar flow pressure drop (which is independent of pipe roughness in this regime). Values of a generalized Reynolds number are suggested to define transitional and turbulent flow. For turbulent flow in smooth pipes, pressure loss is estimated on the basis of an experimentally determined rheogram using either the Dodge-Metzner or Bowen approach depending on the available measurements. Bowen requires results for at least two pipe diameters. The choice of Dodge-Metzner when data are limited is discussed; seven possible methods are assessed against five sets of experimental results drawn from the literature. No method is given for transitional flow, which it is suggested should be avoided, but the turbulent correlation is recommended because it will yield an overestimate. Suggestions are made for the treatment of roughness effects. Several worked examples illustrate the use of the methods and a flowchart guides the user through the process from experimentally characterizing the behavior of the fluid to determining the pressure drop. A computer program, ESDUpac A9125, is also provided.

  4. Prediction of kinematic and kinetic performance in a drop vertical jump with individual anthropometric factors in adolescent female athletes: implications for cadaveric investigations.

    PubMed

    Bates, Nathaniel A; Myer, Gregory D; Hewett, Timothy E

    2015-04-01

    Anterior cruciate ligament injuries are common, expensive to repair, and often debilitate athletic careers. Robotic manipulators have evaluated knee ligament biomechanics in cadaveric specimens, but face limitations such as accounting for variation in bony geometry between specimens that may influence dynamic motion pathways. This study examined individual anthropometric measures for significant linear relationships with in vivo kinematic and kinetic performance and determined their implications for robotic studies. Anthropometrics and 3D motion during a 31 cm drop vertical jump task were collected in high school female basketball players. Anthropometric measures demonstrated differential statistical significance in linear regression models relative to kinematic variables (p-range <0.01-0.95). However, none of the anthropometric relationships accounted for clinical variance or provided substantive univariate accuracy needed for clinical prediction algorithms (r(2) < 0.20). Mass and BMI demonstrated models that were significant (p < 0.05) and predictive (r(2) > 0.20) relative to peak flexion moment, peak adduction moment, flexion moment range, abduction moment range, and internal rotation moment range. The current findings indicate that anthropometric measures are less associated with kinematics than with kinetics. Relative to the robotic manipulation of cadaveric limbs, the results do not support the need to normalize kinematic rotations relative to specimen dimensions.

  5. Repeated Blood Pressure Measurements in Childhood in Prediction of Hypertension in Adulthood.

    PubMed

    Oikonen, Mervi; Nuotio, Joel; Magnussen, Costan G; Viikari, Jorma S A; Taittonen, Leena; Laitinen, Tomi; Hutri-Kähönen, Nina; Jokinen, Eero; Jula, Antti; Cheung, Michael; Sabin, Matthew A; Daniels, Stephen R; Raitakari, Olli T; Juonala, Markus

    2016-01-01

    Hypertension may be predicted from childhood risk factors. Repeated observations of abnormal blood pressure in childhood may enhance prediction of hypertension and subclinical atherosclerosis in adulthood compared with a single observation. Participants (1927, 54% women) from the Cardiovascular Risk in Young Finns Study had systolic and diastolic blood pressure measurements performed when aged 3 to 24 years. Childhood/youth abnormal blood pressure was defined as above 90th or 95th percentile. After a 21- to 31-year follow-up, at the age of 30 to 45 years, hypertension (>140/90 mm Hg or antihypertensive medication) prevalence was found to be 19%. Carotid intima-media thickness was examined, and high-risk intima-media was defined as intima-media thickness >90th percentile or carotid plaques. Prediction of adulthood hypertension and high-risk intima-media was compared between one observation of abnormal blood pressure in childhood/youth and multiple observations by improved Pearson correlation coefficients and area under the receiver operating curve. When compared with a single measurement, 2 childhood/youth observations improved the correlation for adult systolic (r=0.44 versus 0.35, P<0.001) and diastolic (r=0.35 versus 0.17, P<0.001) blood pressure. In addition, 2 abnormal childhood/youth blood pressure observations increased the prediction of hypertension in adulthood (0.63 for 2 versus 0.60 for 1 observation, P=0.003). When compared with 2 measurements, third observation did not provide any significant improvement for correlation or prediction (P always >0.05). A higher number of childhood/youth observations of abnormal blood pressure did not enhance prediction of adult high-risk intima-media thickness. Compared with a single measurement, the prediction of adult hypertension was enhanced by 2 observations of abnormal blood pressure in childhood/youth.

  6. Can the Foot Posture Index or their individual criteria predict dynamic plantar pressures?

    PubMed

    Sánchez-Rodríguez, Raquel; Martínez-Nova, Alfonso; Escamilla-Martínez, Elena; Pedrera-Zamorano, Juan Diego

    2012-07-01

    The Foot Posture Index (FPI) quantifies foot posture through the evaluation of six individual criteria. The objective of the present study was then to establish the plantar pressure differences between types of feet, and to study the capacity of the whole FPI value and the six individual criteria to predict the pattern of plantar pressures. In a sample of 400 healthy subjects (201 men and 199 women), the FPI was evaluated and plantar pressures were measured in 10 zones using the Footscan(®) platform. Five plantar pressures measurements were made for each foot, using for the study the mean of these measurements for each subject's left foot. The hallux and the lesser toes had lower pressure indices in highly supinated feet, with the values increasing progressively toward the highly pronated feet (p<0.001 and p=0.019 respectively). The fifth metatarsal head (MTH) values were greater in highly supinated feet, and decreased in the highly pronated feet (p<0.001). The FPI value predicts low variability of plantar pressures, mainly in the heel and midfoot, while the individual criteria predict higher variability in the forefoot. The talonavicular prominence and the calcaneal frontal plane position was the most influential criterion, explaining 8.5% of the hallux pressure and 11.1% of the fifth MTH pressure. Neither talar head palpation nor the supra and infra malleolar curvature predicted any of the plantar pressures variables. The FPI can distinguish three groups of feet--pronated, neutral, and supinated. Its individual criteria predict moderate or low plantar pressures variability, with the talonavicular prominence being the most influential criterion.

  7. Predicting Out-of-Office Blood Pressure in the Clinic (PROOF-BP)

    PubMed Central

    Stevens, Richard; Gill, Paramjit; Martin, Una; Godwin, Marshall; Hanley, Janet; Heneghan, Carl; Hobbs, F.D. Richard; Mant, Jonathan; McKinstry, Brian; Myers, Martin; Nunan, David; Ward, Alison; Williams, Bryan; McManus, Richard J.

    2016-01-01

    Patients often have lower (white coat effect) or higher (masked effect) ambulatory/home blood pressure readings compared with clinic measurements, resulting in misdiagnosis of hypertension. The present study assessed whether blood pressure and patient characteristics from a single clinic visit can accurately predict the difference between ambulatory/home and clinic blood pressure readings (the home–clinic difference). A linear regression model predicting the home–clinic blood pressure difference was derived in 2 data sets measuring automated clinic and ambulatory/home blood pressure (n=991) using candidate predictors identified from a literature review. The model was validated in 4 further data sets (n=1172) using area under the receiver operator characteristic curve analysis. A masked effect was associated with male sex, a positive clinic blood pressure change (difference between consecutive measurements during a single visit), and a diagnosis of hypertension. Increasing age, clinic blood pressure level, and pulse pressure were associated with a white coat effect. The model showed good calibration across data sets (Pearson correlation, 0.48–0.80) and performed well-predicting ambulatory hypertension (area under the receiver operator characteristic curve, 0.75; 95% confidence interval, 0.72–0.79 [systolic]; 0.87; 0.85–0.89 [diastolic]). Used as a triaging tool for ambulatory monitoring, the model improved classification of a patient’s blood pressure status compared with other guideline recommended approaches (93% [92% to 95%] classified correctly; United States, 73% [70% to 75%]; Canada, 74% [71% to 77%]; United Kingdom, 78% [76% to 81%]). This study demonstrates that patient characteristics from a single clinic visit can accurately predict a patient’s ambulatory blood pressure. Usage of this prediction tool for triaging of ambulatory monitoring could result in more accurate diagnosis of hypertension and hence more appropriate treatment. PMID:27001299

  8. Prediction of light aircraft interior sound pressure level using the room equation

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The room equation is investigated for predicting interior sound level. The method makes use of an acoustic power balance, by equating net power flow into the cabin volume to power dissipated within the cabin using the room equation. The sound power level transmitted through the panels was calculated by multiplying the measured space averaged transmitted intensity for each panel by its surface area. The sound pressure level was obtained by summing the mean square sound pressures radiated from each panel. The data obtained supported the room equation model in predicting the cabin interior sound pressure level.

  9. Trailing edge noise prediction from measured surface pressures

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.; Hodgson, T. H.

    1981-01-01

    Trailing edge (TE) noise is investigated for the case of a two-dimensional airfoil embedded in a uniform low Mach number flow, and the usefulness of several TE noise theories is examined by applying them to the measured data. The TE noise spectra and directivity are quantitatively determined for the case of a high Reynolds number and a fully turbulent boundary layer. Parameters include angle of attack, flow velocity and TE bluntness. Evanescent wave theories by Chase (1975) and Chandiramani (1974) are compared to the present results and show good agreement. Agreement of the near field pressure scatter phenomenon analysis with measurements implies that the basic assumptions used in the analysis are correct, i.e., the turbulent boundary layer (TBL) flow passes the trailing edge into the wake region. No hydrodynamic wake shedding activity is confirmed for the two-sided TBL flow, and a method incorporating the principles of the coherent output power method is used to determine the sound field. The near field edge scatter model is found to not only establish optimum sizing of edge treatment for noise control, but also to separate and identify the scattered field from the incident hydrodynamic field.

  10. From basic physics to mechanisms of toxicity: the ``liquid drop'' approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sizochenko, Natalia; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Kuz'min, Victor; Puzyn, Tomasz; Leszczynski, Jerzy

    2014-10-01

    Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were established. A new approach for representation of nanoparticles' structure is presented. For description of the supramolecular structure of nanoparticles the ``liquid drop'' model was applied. It is expected that a novel, proposed approach could be of general use for predictions related to nanomaterials. In addition, in our study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. The developed nano-QSAR models were validated and reliably predict the toxicity of all studied metal oxide nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-based descriptors were revealed to have an almost similar level of contribution to toxicity in both cases, while other parameters (van der Waals interactions, electronegativity and metal-ligand binding characteristics) have unequal contribution levels. In addition, the models developed here suggest different mechanisms of nanotoxicity for these two types of cells.Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were

  11. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis.

    PubMed

    Park, Seong-Hi; Lee, Young-Shin; Kwon, Young-Mi

    2016-04-01

    Preventing pressure ulcers is one of the most challenging goals existing for today's health care provider. Currently used tools which assess risk of pressure ulcer development rarely evaluate the accuracy of predictability, especially in older adults. The current study aimed at providing a systemic review and meta-analysis of 29 studies using three pressure ulcer risk assessment tools: Braden, Norton, and Waterlow Scales. Overall predictive validities of pressure ulcer risks in the pooled sensitivity and specificity indicated a similar range with a moderate accuracy level in all three scales, while heterogeneity showed more than 80% variability among studies. The studies applying the Braden Scale used five different cut-off points representing the primary cause of heterogeneity. Results indicate that commonly used screening tools for pressure ulcer risk have limitations regarding validity and accuracy for use with older adults due to heterogeneity among studies.

  12. Prediction of pressure fluctuation in sounding rockets and manifolded recovery systems

    NASA Technical Reports Server (NTRS)

    Laudadio, J. F.

    1972-01-01

    The determination of altitude by means of barometric sensors in sounding rocket applications is discussed. A method for predicting the performance of such sensing systems is needed. A method is developed for predicting the pressure-time response of a volume subjected to subsonic air flow through from one to four passages. The pressure calculation is based on one-dimensional gas flow with friction. A computed program has been developed which solves the differential equations using a self-starting predictor-corrector integration technique. The input data required are the pressure sensing system dimensions, pressure forcing function(s) at the inlet port(s), and a trajectory over the time of analysis (altitude-velocity-time), if the forcing function is trajectory dependent. The program then computes the pressure-temperature history of the gas in the manifold over the time interval specified.

  13. Behavior of precipitating water drops under the influence of electrical and aerodynamical forces

    NASA Astrophysics Data System (ADS)

    Coquillat, Sylvain; Chauzy, Serge

    1993-06-01

    The present work performs a realistic modeling of precipitating charged water drops under the influence of electrical and dynamical forces in the vertical and downward electric field of a thundercloud. The following factors which control the shape of an individual raindrop are taken into account: surface tension, internal hydrostatic pressure, aerodynamic pressure, and electrostatic pressure. Unlike a recent and notable work by Chuang and Beard (1990) in which this problem is approached by adjusting an empirical pressure distribution for the distortion, our model considers simple local pressure balance to determine the drop shape. This computation aims at characterizing drop distortion, falling speed modification, and disruption. The overall present results are similar to those of Chuang and Beard's more sophisticated model, and the predicted critical fields are even closer to wind tunnel measurements by Richards and Dawson (1971). The disruption of positively charged drops requires lower ambient fields than that of the negatively charged drops, and for highly charged and large drops they are of the order of those commonly measured within thunderclouds. At last, the terminal velocity is highly affected by net charge and ambient field. These processes are probably important in lightning initiation during drop disruption.

  14. Reliable prediction of electric spark sensitivity of nitramines: a general correlation with detonation pressure.

    PubMed

    Keshavarz, Mohammad Hossein; Pouretedal, Hamid Reza; Semnani, Abolfazl

    2009-08-15

    For nitramines, a general correlation has been introduced to predict electric spark sensitivity through detonation pressure. New method uses maximum obtainable detonation pressure as a fundamental relation so that it can be corrected for some nitramines which have some specific molecular structure. There is no need to use crystal density and heat of formation of nitramine explosives for predicting detonation pressure and electric spark sensitivity. The predicted electric spark sensitivities are compared with calculated results on the basis of quantum mechanical computations for some nitramines that latter can be applied. The root mean square (rms) deviations from experiment for new method and the predicted results of complicated quantum mechanical method are 1.18 and 3.49J, respectively.

  15. Prediction of Burst Pressure Using a Decoupled Ductile Fracture Criterion for Tube Hydroforming of Aerospace Alloys

    NASA Astrophysics Data System (ADS)

    Saboori, M.; Gholipour, J.; Champliaud, H.; Gakwaya, A.; Savoie, J.; Wanjara, P.

    2011-05-01

    One of the failure modes in tube hydroforming (THF) is bursting. To predict the burst pressure in the THF process, Brozzo's decoupled ductile fracture criterion was used in conjunction with a dynamic nonlinear commercial finite element software, Ls-Dyna, and the criterion was evaluated using the data obtained from the free expansion (tube bulging) tests performed on 0.9 mm and 1.2 mm thick stainless steel (SS) 321 tubes. The predicted burst pressures were compared with the experimental results for both thicknesses. The predicted burst failure of the tube bulging, based on the Brozzo's criterion, demonstrated a good agreement with the experimental data, indicating that the present approach for predicting the burst failure for the tube bulging can be extended to predict formability limits in THF applications.

  16. [Professional stress and blood pressure reactivity to stress do not predict blood pressure at 5 years].

    PubMed

    Fauvel, J P; Mpio, I; Quelin, P; Rigaud, J P; Laville, M; Ducher, M L

    2004-01-01

    High job strain has been reported to be associated with higher blood pressure. Job strain could lead to hypertension if individual perception of stress or cardiovascular reactivity to stress are high. We report the results of the first five-year follow up study, which aimed to assess the respective influences of perception of professional strain and cardiovascular reactivity to a mental stress test on BP. A cohort of 292 healthy subjects (mean +/- SEM, 38 +/- 1 years) was followed for progression to hypertension outcome which was defined as an increase in SBP or DBP higher than 7 mmHg or a DBP higher than 95 mmHg during the follow-up. The high strain (HS) group representing 20.9% of the subjects was compared with the remaining subjects (NHS). Similarly the 20.9% subjects with the highest BP stress reactivity (HR) were compared with the remaining subjects (NHR). The Kaplan-Meier survival estimates revealed that neither high job strain, nor high stress reactivity, increased incidence of progression to hypertension. Age, alcohol, salt diet, BMI, and occupation did not interfere with our results. In conclusion, high stress cardiovascular reactivity and high job strain do not appear to be major risk markers for future high BP in healthy young adults. Stress could be associated with high BP at a short term and could explain high blood pressure in a long run only in stress-sensible subjects.

  17. Prediction of peak pressure from clinical and radiological measurements in patients with diabetes

    PubMed Central

    Guldemond, Nick A; Leffers, Pieter; Walenkamp, Geert HIM; Schaper, Nicolaas C; Sanders, Antal P; Nieman, Fred HM; van Rhijn, Lodewijk W

    2008-01-01

    Background Various structural and functional factors of foot function have been associated with high local plantar pressures. The therapist focuses on these features which are thought to be responsible for plantar ulceration in patients with diabetes. Risk assessment of the diabetic foot would be made easier if locally elevated plantar pressure could be indicated with a minimum set of clinical measures. Methods Ninety three patients were evaluated through vascular, orthopaedic, neurological and radiological assessment. A pressure platform was used to quantify the barefoot peak pressure for six forefoot regions: big toe (BT) and metatarsals one (MT-1) to five (MT-5). Stepwise regression modelling was performed to determine which set of the clinical and radiological measures explained most variability in local barefoot plantar peak pressure in each of the six forefoot regions. Comprehensive models were computed with independent variables from the clinical and radiological measurements. The difference between the actual plantar pressure and the predicted value was examined through Bland-Altman analysis. Results Forefoot pressures were significant higher in patients with neuropathy, compared to patients without neuropathy for the whole forefoot, the MT-1 region and the MT-5 region (respectively 138 kPa, 173 kPa and 88 kPa higher: mean difference). The clinical models explained up to 39 percent of the variance in local peak pressures. Callus formation and toe deformity were identified as relevant clinical predictors for all forefoot regions. Regression models with radiological variables explained about 26 percent of the variance in local peak pressures. For most regions the combination of clinical and radiological variables resulted in a higher explained variance. The Bland and Altman analysis showed a major discrepancy between the predicted and the actual peak pressure values. Conclusion At best, clinical and radiological measurements could only explain about 34

  18. A finite element model of the human buttocks for prediction of seat pressure distributions.

    PubMed

    Verver, M M; van Hoof, J; Oomens, C W J; Wismans, J S H M; Baaijens, F P T

    2004-08-01

    Seating comfort is becoming increasingly important for the automotive industry. Car manufacturers use seating comfort to distinguish their products from those of competitors. However, the development and design of a new, more comfortable seat is time consuming and costly. The introduction of computer models of human and seat will accelerate this process. The contact interaction between human and seat is an important factor in the comfort sensation of subjects. This paper presents a finite element (FE) model of the human buttocks, able to predict the pressure distribution between human and seating surface by its detailed and realistic geometric description. A validation study based on volunteer experiments shows reasonable correlation in pressure distributions between the buttocks model and the volunteers. Both for simulations on a rigid and a soft cushion, the model predicts realistic seat pressure distributions. A parameter study shows that a pressure distribution at the interface between human and seat strongly depends on variations in human flesh and seat cushion properties.

  19. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  20. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  1. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  2. Validation of finite element predictions of cartilage contact pressure in the human hip joint.

    PubMed

    Anderson, Andrew E; Ellis, Benjamin J; Maas, Steve A; Peters, Christopher L; Weiss, Jeffrey A

    2008-10-01

    Methods to predict contact stresses in the hip can provide an improved understanding of load distribution in the normal and pathologic joint. The objectives of this study were to develop and validate a three-dimensional finite element (FE) model for predicting cartilage contact stresses in the human hip using subject-specific geometry from computed tomography image data, and to assess the sensitivity of model predictions to boundary conditions, cartilage geometry, and cartilage material properties. Loads based on in vivo data were applied to a cadaveric hip joint to simulate walking, descending stairs, and stair-climbing. Contact pressures and areas were measured using pressure sensitive film. CT image data were segmented and discretized into FE meshes of bone and cartilage. FE boundary and loading conditions mimicked the experimental testing. Fair to good qualitative correspondence was obtained between FE predictions and experimental measurements for simulated walking and descending stairs, while excellent agreement was obtained for stair-climbing. Experimental peak pressures, average pressures, and contact areas were 10.0 MPa (limit of film detection), 4.4-5.0 MPa, and 321.9-425.1 mm(2), respectively, while FE-predicted peak pressures, average pressures, and contact areas were 10.8-12.7 MPa, 5.1-6.2 MPa, and 304.2-366.1 mm(2), respectively. Misalignment errors, determined as the difference in root mean squared error before and after alignment of FE results, were less than 10%. Magnitude errors, determined as the residual error following alignment, were approximately 30% but decreased to 10-15% when the regions of highest pressure were compared. Alterations to the cartilage shear modulus, bulk modulus, or thickness resulted in +/-25% change in peak pressures, while changes in average pressures and contact areas were minor (+/-10%). When the pelvis and proximal femur were represented as rigid, there were large changes, but the effect depended on the particular

  3. Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint

    PubMed Central

    Anderson, Andrew E.; Ellis, Benjamin J.; Maas, Steve A.; Peters, Christopher L.; Weiss, Jeffrey A.

    2010-01-01

    Methods to predict contact stresses in the hip can provide an improved understanding of load distribution in the normal and pathologic joint. The objectives of this study were to develop and validate a three-dimensional finite element (FE) model for predicting cartilage contact stresses in the human hip using subject-specific geometry from computed tomography image data, and to assess the sensitivity of model predictions to boundary conditions, cartilage geometry, and cartilage material properties. Loads based on in vivo data were applied to a cadaveric hip joint to simulate walking, descending stairs and stair-climbing. Contact pressures and areas were measured using pressure sensitive film. CT image data were segmented and discretized into FE meshes of bone and cartilage. FE boundary and loading conditions mimicked the experimental testing. Fair to good qualitative correspondence was obtained between FE predictions and experimental measurements for simulated walking and descending stairs, while excellent agreement was obtained for stair-climbing. Experimental peak pressures, average pressures, and contact areas were 10.0 MPa (limit of film detection), 4.4-5.0 MPa and 321.9-425.1 mm2, respectively, while FE predicted peak pressures, average pressures and contact areas were 10.8-12.7 MPa, 5.1-6.2 MPa and 304.2-366.1 mm2, respectively. Misalignment errors, determined as the difference in root mean squared error before and after alignment of FE results, were less than 10%. Magnitude errors, determined as the residual error following alignment, were approximately 30% but decreased to 10-15% when the regions of highest pressure were compared. Alterations to the cartilage shear modulus, bulk modulus, or thickness resulted in ±25% change in peak pressures, while changes in average pressures and contact areas were minor (±10%). When the pelvis and proximal femur were represented as rigid, there were large changes, but the effect depended on the particular loading

  4. Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane

    1999-01-01

    Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.

  5. In-tube heat transfer and pressure drop of R-134a and ester lubricant mixtures in a smooth tube and a micro-fin tube. Part 1: Evaporation

    SciTech Connect

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1994-12-31

    In-tube heat transfer coefficients and pressure drops during evaporation are reported for mixtures of refrigerant R-134a and a penta erythritol ester mixed-acid lubricant. The ester lubricant was tested at viscosities of 169 SUS and 369 SUS over a lubricant concentration range of 0% to 5% in both a smooth tube and a micro-fine tube. The average saturation temperature used was 1 C (33.8 F). Measurements were taken for the refrigerant-lubricant mixture over a mass flux range of 85 kg/m{sup 2}{center_dot}s (62,700 lb/ft{sup 2}{center_dot}h) to 375 kg/m{sup 2}{center_dot}s (276,640 lb/ft{sup 2}{center_dot}h) in test tubes with an outer diameter of 9.52 mm (3/8 in.). Heat transfer coefficients during evaporation increased at low concentrations of the 169-SUS ester lubricant and then dropped off at high lubricant concentrations in both the smooth tube and the micro-fin tube. The higher viscosity 369-SUS lubricant decreased the heat transfer coefficients in both tubes over the range of lubricant concentrations tested. Pressure drops during evaporation increased in both the smooth tube and the micro-fin tube with the addition of ester lubricant of either viscosity. The heat transfer coefficients for the micro-fin tube were 100% to 50% higher than those for the smooth tube, with the higher values occurring at low mass fluxes. Pressure drops in the micro-fin tube were 10% to 20% higher than those in the smooth tube.

  6. First-principles prediction of a high-pressure hydrous phase of AlOOH

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Jun; Tsuchiya, Taku

    2011-02-01

    We have predicted a high-pressure hydrous phase of AlOOH stabilizing at ˜170 GPa by first-principles density-functional calculations. The structure predicted has a cubic pyrite-type AlO2 framework with interstitial H atoms forming symmetric hydrogen bonds, whose symmetry is assigned to the space group Pa3¯ (No. 205). The predicted δ-AlOOH to the pyrite-type phase sequence is analogous to a recent theoretical and experimental discovery of high-pressure phase evolution in InOOH and invokes the high-pressure phase relationship in SiO2, but the transition pressure is much greater in AlOOH than in InOOH. Relative enthalpies also indicate that the dissociation of this phase into a CaIrO3-type phase of Al2O3 plus ice X finally occurs at a further pressure of 300 GPa. The present results suggest that AlOOH has an unexpectedly wide stability range in pressure compared to common hydrous materials.

  7. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.

  8. Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model

    NASA Astrophysics Data System (ADS)

    Moon, Gi Jong; Ahn, Myung Mo; Kang, In Seok

    2015-12-01

    An analysis has been performed for the osmotic pressure of ionic liquids in the electric double layer (EDL). By using the electromechanical approach, we first derive a differential equation that is valid for computing the osmotic pressure in the continuum limit of any incompressible fluid in EDL. Then a specific model for ionic liquids proposed by Bazant et al. [M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 106, 046102 (2011), 10.1103/PhysRevLett.106.046102] is adopted for more detailed computation of the osmotic pressure. Ionic liquids are characterized by the correlation and the steric effects of ions and their effects are analyzed. In the low voltage cases, the correlation effect is dominant and the problem becomes linear. For this low voltage limit, a closed form formula is derived for predicting the osmotic pressure in EDL with no overlapping. It is found that the osmotic pressure decreases as the correlation effect increases. The osmotic pressures at the nanoslit surface and nanoslit centerline are also obtained for the low voltage limit. For the cases of moderately high voltage with high correlation factor, approximate formulas are derived for estimating osmotic pressure values based on the concept of a condensed layer near the electrode. In order to corroborate the results predicted by analytical studies, the full nonlinear model has been solved numerically.

  9. Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model.

    PubMed

    Moon, Gi Jong; Ahn, Myung Mo; Kang, In Seok

    2015-12-01

    An analysis has been performed for the osmotic pressure of ionic liquids in the electric double layer (EDL). By using the electromechanical approach, we first derive a differential equation that is valid for computing the osmotic pressure in the continuum limit of any incompressible fluid in EDL. Then a specific model for ionic liquids proposed by Bazant et al. [M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 106, 046102 (2011)] is adopted for more detailed computation of the osmotic pressure. Ionic liquids are characterized by the correlation and the steric effects of ions and their effects are analyzed. In the low voltage cases, the correlation effect is dominant and the problem becomes linear. For this low voltage limit, a closed form formula is derived for predicting the osmotic pressure in EDL with no overlapping. It is found that the osmotic pressure decreases as the correlation effect increases. The osmotic pressures at the nanoslit surface and nanoslit centerline are also obtained for the low voltage limit. For the cases of moderately high voltage with high correlation factor, approximate formulas are derived for estimating osmotic pressure values based on the concept of a condensed layer near the electrode. In order to corroborate the results predicted by analytical studies, the full nonlinear model has been solved numerically.

  10. Predicting the size of droplets produced through Laplace pressure induced snap-off.

    PubMed

    Barkley, Solomon; Scarfe, Samantha J; Weeks, Eric R; Dalnoki-Veress, Kari

    2016-09-21

    Laplace pressure driven snap-off is a technique that is used to produce droplets for emulsions and microfluidics purposes. Previous predictions of droplet size have assumed a quasi-equilibrium low flow limit. We present a simple model to predict droplet sizes over a wide range of flow rates, demonstrating a rich landscape of droplet stability depending on droplet size and growth rate. The model accounts for the easily adjusted experimental parameters of geometry, interfacial tension, and the viscosities of both phases.

  11. Prediction of pore-water pressure response to rainfall using support vector regression

    NASA Astrophysics Data System (ADS)

    Babangida, Nuraddeen Muhammad; Mustafa, Muhammad Raza Ul; Yusuf, Khamaruzaman Wan; Isa, Mohamed Hasnain

    2016-05-01

    Nonlinear complex behavior of pore-water pressure responses to rainfall was modelled using support vector regression (SVR). Pore-water pressure can rise to disturbing levels that may result in slope failure during or after rainfall. Traditionally, monitoring slope pore-water pressure responses to rainfall is tedious and expensive, in that the slope must be instrumented with necessary monitors. Data on rainfall and corresponding responses of pore-water pressure were collected from such a monitoring program at a slope site in Malaysia and used to develop SVR models to predict pore-water pressure fluctuations. Three models, based on their different input configurations, were developed. SVR optimum meta-parameters were obtained using k-fold cross validation and a grid search. Model type 3 was adjudged the best among the models and was used to predict three other points on the slope. For each point, lag intervals of 30 min, 1 h and 2 h were used to make the predictions. The SVR model predictions were compared with predictions made by an artificial neural network model; overall, the SVR model showed slightly better results. Uncertainty quantification analysis was also performed for further model assessment. The uncertainty components were found to be low and tolerable, with d-factor of 0.14 and 74 % of observed data falling within the 95 % confidence bound. The study demonstrated that the SVR model is effective in providing an accurate and quick means of obtaining pore-water pressure response, which may be vital in systems where response information is urgently needed.

  12. Encapsulating Ellipsoids in Drops

    NASA Astrophysics Data System (ADS)

    Norton, Michael; Brugarolas, Teresa; Chou, Jonathan; Bau, Haim; Lee, Daeyeon

    2012-11-01

    Large aspect ratio particles were produced by embedding spherical polystyrene particles within a polymer film and subsequently heating and stretching the film. Particles were released by dissolving the film. Using a flow-focusing device, the elongated particles were partially encapsulated within droplets of fluid A, such as water, surrounded by an immiscible fluid B, such as oil. Drop volumes were controlled by adjusting the flow rates of fluids A and B. The contact angle was adjusted indirectly by varying the amount of surfactant adsorbed to the particle surface. The encapsulation process was visualized with a high-speed video camera. We observed cases ranging from partial to complete encapsulation and examined experimentally and theoretically the shape of the interface between fluid A and fluid B as a function of the drop volume. The numerically predicted position of the pinning line and the shape of the drop were compared to experimentally produced conformations and agreed favorably. This work was supported by ITMAT (UL1RR024134 from the NCRR) and the Penn MRSEC (NSF DMR-1120901).

  13. Environment, behavior and physiology: do birds use barometric pressure to predict storms?

    PubMed

    Breuner, Creagh W; Sprague, Rachel S; Patterson, Stephen H; Woods, H Arthur

    2013-06-01

    Severe storms can pose a grave challenge to the temperature and energy homeostasis of small endothermic vertebrates. Storms are accompanied by lower temperatures and wind, increasing metabolic expenditure, and can inhibit foraging, thereby limiting energy intake. To avoid these potential problems, most endotherms have mechanisms for offsetting the energetic risks posed by storms. One possibility is to use cues to predict oncoming storms and to alter physiology and behavior in ways that make survival more likely. Barometric pressure declines predictably before inclement weather, and several lines of evidence indicate that animals alter behavior based on changes in ambient pressure. Here we examined the effects of declining barometric pressure on physiology and behavior in the white-crowned sparrow, Zonotrichia leucophrys. Using field data from a long-term study, we first evaluated the relationship between barometric pressure, storms and stress physiology in free-living white-crowned sparrows. We then manipulated barometric pressure experimentally in the laboratory and determined how it affects activity, food intake, metabolic rates and stress physiology. The field data showed declining barometric pressure in the 12-24 h preceding snowstorms, but we found no relationship between barometric pressure and stress physiology. The laboratory study showed that declining barometric pressure stimulated food intake, but had no effect on metabolic rate or stress physiology. These data suggest that white-crowned sparrows can sense and respond to declining barometric pressure, and we propose that such an ability may be common in wild vertebrates, especially small ones for whom individual storms can be life-threatening events.

  14. Predicting Structural Behavior of Filament Wound Composite Pressure Vessel Using Three Dimensional Shell Analysis

    NASA Astrophysics Data System (ADS)

    Madhavi, M.; Venkat, R.

    2014-01-01

    Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.

  15. Direct Pressure Monitoring Accurately Predicts Pulmonary Vein Occlusion During Cryoballoon Ablation

    PubMed Central

    Kosmidou, Ioanna; Wooden, Shannnon; Jones, Brian; Deering, Thomas; Wickliffe, Andrew; Dan, Dan

    2013-01-01

    Cryoballoon ablation (CBA) is an established therapy for atrial fibrillation (AF). Pulmonary vein (PV) occlusion is essential for achieving antral contact and PV isolation and is typically assessed by contrast injection. We present a novel method of direct pressure monitoring for assessment of PV occlusion. Transcatheter pressure is monitored during balloon advancement to the PV antrum. Pressure is recorded via a single pressure transducer connected to the inner lumen of the cryoballoon. Pressure curve characteristics are used to assess occlusion in conjunction with fluoroscopic or intracardiac echocardiography (ICE) guidance. PV occlusion is confirmed when loss of typical left atrial (LA) pressure waveform is observed with recordings of PA pressure characteristics (no A wave and rapid V wave upstroke). Complete pulmonary vein occlusion as assessed with this technique has been confirmed with concurrent contrast utilization during the initial testing of the technique and has been shown to be highly accurate and readily reproducible. We evaluated the efficacy of this novel technique in 35 patients. A total of 128 veins were assessed for occlusion with the cryoballoon utilizing the pressure monitoring technique; occlusive pressure was demonstrated in 113 veins with resultant successful pulmonary vein isolation in 111 veins (98.2%). Occlusion was confirmed with subsequent contrast injection during the initial ten procedures, after which contrast utilization was rapidly reduced or eliminated given the highly accurate identification of occlusive pressure waveform with limited initial training. Verification of PV occlusive pressure during CBA is a novel approach to assessing effective PV occlusion and it accurately predicts electrical isolation. Utilization of this method results in significant decrease in fluoroscopy time and volume of contrast. PMID:23485956

  16. An Euler code prediction of near field to midfield sonic boom pressure signatures

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.; Darden, C. M.

    1990-01-01

    A new approach is presented for computing sonic boom pressure signatures in the near field to midfield that utilizes a fully three-dimensional Euler finite volume code capable of analyzing complex geometries. Both linear and nonlinear sonic boom methodologies exist but for the most part rely primarily on equivalent area distributions for the prediction of far field pressure signatures. This is due to the absence of a flexible nonlinear methodology that can predict near field pressure signatures generated by three-dimensional aircraft geometries. It is the intention of the present study to present a nonlinear Euler method than can fill this gap and supply the needed near field signature data for many of the existing sonic boom codes.

  17. Prediction of walking speed using single stance force or pressure measurements in healthy subjects.

    PubMed

    Keijsers, N L W; Stolwijk, N M; Renzenbrink, G J; Duysens, J

    2016-01-01

    Walking speed is one of the best measures of overall walking capacity. In plantar pressure measurements, walking speed can be assessed using contact time, but it is only moderately correlated with walking speed. The center of pressure might be of more value to indicate walking speed since walking speed alters foot loading. Therefore, the purpose of this study is to assess walking speed using the velocity of the center of pressure (VCOP). Thirty-three subjects walked over a Footscan pressure plate at three speed conditions; slow, preferred, and fast. Walking speed was measured by a motion analysis system. (Multiple) linear regression analysis was used to indicate the relation between walking speed and independent variables derived from the pressure plate such as mean VCOP and stance time for all walking conditions separately and together. The mean VCOP had the highest correlation coefficient value with walking speed for all walking conditions combined (0.94) and for the preferred walking condition (0.80). The multiple regression analysis, based on a number of additional parameters, revealed a small to modest increase in the performance of predicting walking speed (r=0.98 for combined and r=0.93 for preferred). The mean VCOP was the best predictor for walking speed when using a plantar pressure plate. The mean VCOP predicts the walking speed with a 95% accuracy of 0.20m/s when healthy subjects walk at their preferred walking speed.

  18. Self-reported racism and social support predict blood pressure reactivity in Blacks.

    PubMed

    Clark, Rodney

    2003-01-01

    This study explored the effects of perceived racism and social support (quantity and quality) on blood pressure reactivity. In a college sample of 64 Blacks (M age = 22.69 years, SD =6.60), systolic blood pressure (SBP) and diastolic blood pressure (DBP) were assessed before and during a standardized serial subtraction task. Perceptions of racism and the quantity and quality of social support were measured by self-report. Separate multiple regression analyses revealed that perceived racism and social support (neither quantity nor quality) were not independent predictors of SBP or DBP changes (ps >.05). These analyses did indicate that perceived racism interacted with the quantity of social support (p <.002, partial R2 =.175) and with the quality of social support (p <.0007, partial R2 =.195) to predict DBP changes. Perceived racism also interacted with the quantity of social support to predict changes in SBP (p <.02, partial R2 =.11). In general, whereas high social support was related to less marked blood pressure changes under conditions of low perceived racism, high social support was associated with exaggerated blood pressure changes under conditions of high perceived racism. These significant interaction effects persisted after statistically controlling for potential confounders. The findings highlight the importance of examining the joint contribution of real-world experiences and coping resources to blood pressure reactivity in Blacks.

  19. Heat transfer and pressure measurements and comparison with prediction for the SSME two-stage turbine

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kim, J.

    1992-01-01

    Time averaged Stanton number and surface pressure distributions are reported for the first stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine (SSME) two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform, blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin film heat flux gages were used to obtain the heat flux measurements, while miniature silicon diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  20. Recollections of pressure to eat during childhood, but not picky eating, predict young adult eating behavior.

    PubMed

    Ellis, Jordan M; Galloway, Amy T; Webb, Rose Mary; Martz, Denise M; Farrow, Claire V

    2016-02-01

    Picky eating is a childhood behavior that vexes many parents and is a symptom in the newer diagnosis of Avoidant/Restrictive Food Intake Disorder (ARFID) in adults. Pressure to eat, a parental controlling feeding practice aimed at encouraging a child to eat more, is associated with picky eating and a number of other childhood eating concerns. Low intuitive eating, an insensitivity to internal hunger and satiety cues, is also associated with a number of problem eating behaviors in adulthood. Whether picky eating and pressure to eat are predictive of young adult eating behavior is relatively unstudied. Current adult intuitive eating and disordered eating behaviors were self-reported by 170 college students, along with childhood picky eating and pressure through retrospective self- and parent reports. Hierarchical regression analyses revealed that childhood parental pressure to eat, but not picky eating, predicted intuitive eating and disordered eating symptoms in college students. These findings suggest that parental pressure in childhood is associated with problematic eating patterns in young adulthood. Additional research is needed to understand the extent to which parental pressure is a reaction to or perhaps compounds the development of problematic eating behavior.

  1. Electrokinetics of isolated electrified drops.

    PubMed

    Pillai, Rohit; Berry, Joseph D; Harvie, Dalton J E; Davidson, Malcolm R

    2016-04-14

    Using a recently developed multiphase electrokinetic model, we simulate the transient electrohydrodynamic response of a liquid drop containing ions, to both small and large values of electric field. The temporal evolution is found to be governed primarily by two dimensionless groups: (i) Ohnesorge number (Oh), a ratio of viscous to inertio-capillary effects, and (ii) inverse dimensionless Debye length (κ), a measure of the diffuse regions of charge that develop in the drop. The effects of dielectric polarization dominate at low Oh, while effects of separated charge gain importance with increase in Oh. For small values of electric field, the deformation behaviour of a drop is shown to be accurately described by a simple analytical expression. At large electric fields, the drops are unstable and eject progeny drops. Depending on Oh and κ this occurs via dripping or jetting; the regime transitions are shown by a Oh-κ phase map. In contrast to previous studies, we find universal scaling relations to predict size and charge of progeny drops. Our simulations suggest charge transport plays a significant role in drop dynamics for 0.1 ≤ Oh ≤ 10, a parameter range of interest in microscale flows.

  2. “Buzz-saw” noise: Prediction of the rotor-alone pressure field

    NASA Astrophysics Data System (ADS)

    McAlpine, A.; Schwaller, P. J. G.; Fisher, M. J.; Tester, B. J.

    2012-10-01

    Public expectations of lower environmental noise levels, and increasingly stringent legislative limits on aircraft noise, result in noise being a critical technical issue in the development of jet engines. Noise at take-off, when the engines are at high-power operating conditions, is a key reference level for engine noise certification. "Buzz-saw" noise is the dominant fan tone noise from modern high-bypass-ratio turbofan aircraft engines during take-off. Rotor-alone tones are the key component of buzz-saw noise. The rotor-alone pressure field is cut-off at subsonic fan tip speeds; buzz-saw noise is associated with supersonic fan tip speeds, or equivalently, high power engine operating conditions. A recent series of papers has described new work concerning the prediction of buzz-saw noise. The prediction method is based on modelling the nonlinear propagation of one-dimensional sawtooth waveforms. A sawtooth waveform is a simplified representation of the rotor-alone pressure field. Previous validation of the prediction method focussed entirely on reproducing the spectral characteristics of buzz-saw noise; this was dictated at that time by the availability of spectral data only for comparison between measurement and prediction. In this paper, full validation of the method by comparing measurement and prediction of the rotor-alone pressure field is published for the first time. It is shown that results from the modelling based on a one-dimensional sawtooth waveform capture the essential features of the rotor-alone pressure field as it propagates upstream inside a hard-walled inlet duct. This verifies that predictions of the buzz-saw noise spectrum, which are in good agreement with the measured data, are based on a model which reproduces the key physics of the noise generation process. Validation results for the rotor-alone pressure field in an acoustically lined inlet duct are also shown. Comparisons of the measured and predicted rotor-alone pressure field are more

  3. Superamphiphobic polymeric surfaces sustaining ultrahigh impact pressures of aqueous high- and low-surface-tension mixtures, tested with laser-induced forward transfer of drops.

    PubMed

    Ellinas, Kosmas; Chatzipetrou, Marianneza; Zergioti, Ioanna; Tserepi, Angeliki; Gogolides, Evangelos

    2015-04-01

    Superamphiphobic, (quasi-)ordered plasma-textured surfaces, coated with a perfluorinated monolayer, exhibit extreme resistance against drop-pinning for both water-like and low-surface-tension mixtures (36 mN m(-1)). The highest values reported here are 36 atm for a water-like mixture, 5 times higher than previously reported in the literature, and 7 atm for a low-surface-tension mixture, the highest ever reported value for lotus-leaf-inspired surfaces.

  4. Building a Chemical Intuition Under Pressure: Prediction of Alkali Metal Polyhydrides and Subhydrides

    NASA Astrophysics Data System (ADS)

    Zurek, Eva

    2013-06-01

    Stabilization of solid phases with unusual combinations or stoichiometries, and unexpected electronic structures may be achieved by applying external pressure. The prediction of these structures using our chemical intuition (developed at 1 atmosphere) would be exceedingly difficult, making automated structure search techniques prudent. For this reason, we have written XtalOpt, an open-source evolutionary algorithm for crystal structure prediction. Whereas at 1 atmosphere the classic alkali hydrides combine in a one-to-one ratio, M+H-, under pressure non-classic stoichiometries MHn(n > 1) and MmH (m > 1) are preferred. For example, theoretical work has predicted that LiH6 and NaH9 become particularly stable phases at about 100 and 25 GPa, respectively. And the potassium, rubidium and cesium polyhydrides all contain the H3-anion, the simplest exaple of a three centered four electron bond. The alkaline-earth polyhydrides are considered as well. Chemical trends relating the stabilization pressure to the ionization potential, and the nature of the hydrogenic sublattice to the strength of the metal-hydride interaction can be made. These hydrogen-rich materials with nontraditional stoichiometries are computed to undergo an insulator to metal transition at pressures attainable in diamond anvil cells. It may be that these systems are superconductors at experimentally achievable pressures. The metal-rich region of the alkali/hydrogen phase diagram under pressure shows that alkali-metal subhydrides may also be stabilized under pressure. We acknowledge the NSF (DMR-1005413) for financial support.

  5. Predicting the onset of turbulence in the presence of a pressure gradient

    NASA Astrophysics Data System (ADS)

    Charles, R. D.

    1983-12-01

    An analytical study is presented regarding the determination of a pressure gradient dependent criterion for flow transition from laminar to turbulent flow. The results obtained were derived from two parallel approaches to flow stability; one of wave-dependent stability and the other of vorticity-dependent stability. In both cases, one of a variable transition Reynolds number dependent upon the ambient pressure gradient and the other one of a constant transition Reynolds number bases on the boundary-layer displacement thickness, the prediction results were either as good or better than those from available prediction methods. In addition these two criteria were used to predict transition locations on a NACA 0018 airfoil, again with favorable results.

  6. Numerical prediction of pressure fluctuations in a prototype pump turbine base on PANS methods

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Li, Y.; Gao, Y.; Hu, Q.; Wu, Y. L.

    2016-05-01

    Unsteady flow and pressure fluctuations within a prototypel pump turbine are numerically studied using a nonlinear Partial Averaged Navier Stokes (PANS) model. Pump turbine operating at different conditions with guide vanes opening angle 6° is simulated. Results revealed that the predictions of performance and relative peak-to-peak amplitude by PANS approach agree well with the experimental data. The amplitude of the pressure fluctuation in the vaneless space at turbine mode on a “S” curve increases with the decrease of the flow rate, and it has maximum value when it runs close to runaway line at turbine braking mode. The amplitude of the pressure fluctuation in the vaneless space at turbine braking mode on a “S” curve decreases with the reduce of the flow rate. The above high pressure fluctuations should be avoided during the design of pump turbines especially those operating at high-head condition.

  7. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    NASA Astrophysics Data System (ADS)

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-07-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib.

  8. Instabilities of volatile films and drops

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa

    2008-12-01

    We report on instabilities during spreading of volatile liquids, with emphasis on the novel instability observed when isopropyl alcohol (IPA) is deposited on a monocrystalline silicon (Si) wafer. This instability is characterized by emission of drops ahead of the expanding front, with each drop followed by smaller, satellite droplets, forming the structures which we nickname "octopi" due to their appearance. A less volatile liquid, or a substrate of larger heat conductivity, suppress this instability. In addition, we examine the spreading of drops of water (DIW)-IPA mixtures on both Si wafers and plain glass slides, and describe the variety of contact line instabilities which appear. We find that the decrease of IPA concentration in mixtures leads to transition from "octopi" to mushroom-like instabilities. Through manipulation of our experimental set up, we also find that the mechanism responsible for these instabilities appears to be mostly insensitive to both the external application of convection to the gas phase, and the doping of the gas phase with vapor in order to create the saturated environment. In order to better understand the "octopi" instability, we develop a theoretical model for evaporation of a pure liquid drop on a thermally conductive solid substrate. This model includes all relevant physical effects, including evaporation, thermal conductivity in both liquid and solid, (thermocapillary) Marangoni effect, vapor recoil, disjoining pressure, and gravity. The crucial ingredient in this problem is the evaporation model, since it influences both the motion of the drop contact line, and the temperature profiles along the liquid-solid and liquid-gas interfaces. We consider two evaporation models: the equilibrium "lens" model and the non-equilibrium one-sided (NEOS) model. Along with the assumption of equilibrium at the liquid-gas interface, the "lens" model also assumes that evaporation proceeds in a (vapor) diffusion-limited regime, therefore bringing

  9. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing.

    PubMed

    Riboux, Guillaume; Gordillo, José Manuel

    2014-07-11

    Making use of experimental and theoretical considerations, in this Letter we deduce a criterion to determine the critical velocity for which a drop impacting a smooth dry surface either spreads over the substrate or disintegrates into smaller droplets. The derived equation, which expresses the splash threshold velocity as a function of the material properties of the two fluids involved, the drop radius, and the mean free path of the molecules composing the surrounding gaseous atmosphere, has been thoroughly validated experimentally at normal atmospheric conditions using eight different liquids with viscosities ranging from μ=3×10(-4) to μ=10(-2)  Pa s, and interfacial tension coefficients varying between σ=17 and σ=72  mN m(-1). Our predictions are also in fair agreement with the measured critical speed of drops impacting in different gases at reduced pressures given by Xu et al. [Phys. Rev. Lett. 94, 184505 (2005). PMID:25062193

  10. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing.

    PubMed

    Riboux, Guillaume; Gordillo, José Manuel

    2014-07-11

    Making use of experimental and theoretical considerations, in this Letter we deduce a criterion to determine the critical velocity for which a drop impacting a smooth dry surface either spreads over the substrate or disintegrates into smaller droplets. The derived equation, which expresses the splash threshold velocity as a function of the material properties of the two fluids involved, the drop radius, and the mean free path of the molecules composing the surrounding gaseous atmosphere, has been thoroughly validated experimentally at normal atmospheric conditions using eight different liquids with viscosities ranging from μ=3×10(-4) to μ=10(-2)  Pa s, and interfacial tension coefficients varying between σ=17 and σ=72  mN m(-1). Our predictions are also in fair agreement with the measured critical speed of drops impacting in different gases at reduced pressures given by Xu et al. [Phys. Rev. Lett. 94, 184505 (2005).

  11. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shifta)

    NASA Astrophysics Data System (ADS)

    Flandro, Gary A.; Fischbach, Sean R.; Majdalani, Joseph

    2007-09-01

    High-amplitude pressure oscillations in solid propellant rocket motor combustion chambers display nonlinear effects including: (1) limit cycle behavior in which the fluctuations may dwell for a considerable period of time near their peak amplitude, (2) elevated mean chamber pressure (DC shift), and (3) a triggering amplitude above which pulsing will cause an apparently stable system to transition to violent oscillations. Along with the obvious undesirable vibrations, these features constitute the most damaging impact of combustion instability on system reliability and structural integrity. The physical mechanisms behind these phenomena and their relationship to motor geometry and physical parameters must, therefore, be fully understood if instability is to be avoided in the design process, or if effective corrective measures must be devised during system development. Predictive algorithms now in use have limited ability to characterize the actual time evolution of the oscillations, and they do not supply the motor designer with information regarding peak amplitudes or the associated critical triggering amplitudes. A pivotal missing element is the ability to predict the mean pressure shift; clearly, the designer requires information regarding the maximum chamber pressure that might be experienced during motor operation. In this paper, a comprehensive nonlinear combustion instability model is described that supplies vital information. The central role played by steep-fronted waves is emphasized. The resulting algorithm provides both detailed physical models of nonlinear instability phenomena and the critically needed predictive capability. In particular, the origin of the DC shift is revealed.

  12. DONBOL: A computer program for predicting axisymmetric nozzle afterbody pressure distributions and drag at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1979-01-01

    A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.

  13. Prediction of bodyweight and energy expenditure using point pressure and foot acceleration measurements.

    PubMed

    Sazonova, Nadezhda A; Browning, Raymond; Sazonov, Edward S

    2011-01-01

    Bodyweight (BW) is an essential outcome measure for weight management and is also a major predictor in the estimation of daily energy expenditure (EE). Many individuals, particularly those who are overweight, tend to underreport their BW, posing a challenge for monitors that track physical activity and estimate EE. The ability to automatically estimate BW can potentially increase the practicality and accuracy of these monitoring systems. This paper investigates the feasibility of automatically estimating BW and using this BW to estimate energy expenditure with a footwear-based, multisensor activity monitor. The SmartShoe device uses small pressure sensors embedded in key weight support locations of the insole and a heel-mounted 3D accelerometer. Bodyweight estimates for 9 subjects are computed from pressure sensor measurements when an automatic classification algorithm recognizes a standing posture. We compared the accuracy of EE prediction using estimated BW compared to that of using the measured BW. The results show that point pressure measurement is capable of providing rough estimates of body weight (root-mean squared error of 10.52 kg) which in turn provide a sufficient replacement of manually-entered bodyweight for the purpose of EE prediction (root-mean squared error of 0.7456 METs vs. 0.6972 METs). Advances in the pressure sensor technology should enable better accuracy of body weight estimation and further improvement in accuracy of EE prediction using automatic BW estimates.

  14. Prediction of space shuttle fluctuating pressure environments, including rocket plume effects

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.; Robertson, J. E.

    1973-01-01

    Preliminary estimates of space shuttle fluctuating pressure environments have been made based on prediction techniques developed by Wyle Laboratories. Particular emphasis has been given to the transonic speed regime during launch of a parallel-burn space shuttle configuration. A baseline configuration consisting of a lightweight orbiter and monolithic SRB, together with a typical flight trajectory, have been used as models for the predictions. Critical fluctuating pressure environments are predicted at transonic Mach numbers. Comparisons between predicted environments and wind tunnel test results, in general, showed good agreement. Predicted one-third octave band spectra for the above environments were generally one of three types: (1) attached turbulent boundary layer spectra (typically high frequencies); (2) homogeneous separated flow and shock-free interference flow spectra (typically intermediate frequencies); and (3) shock-oscillation and shock-induced interference flow spectra (typically low frequencies). Predictions of plume induced separated flow environments were made. Only the SRB plumes are important, with fluctuating levels comparable to compression-corner induced separated flow shock oscillation.

  15. Sound field inside acoustically levitated spherical drop

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2007-05-01

    The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.

  16. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure.

  17. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure. PMID:27385506

  18. Neural network based forward prediction of bladder pressure using pudendal nerve electrical activity.

    PubMed

    Geramipour, A; Makki, S; Erfanian, A

    2015-01-01

    Individuals with spinal cord injury or neurological disorders have problems in urinary bladder storage and in voiding function. In these people, the detrusor of bladder contracts at low volume and this causes incontinence. The goal of bladder control is to increase the bladder capacity by electrical stimulation of relative nerves such as pelvic nerves, sacral nerve roots or pudendal nerves. For this purpose, the bladder pressure has to be monitored continuously. In this paper, we propose a method for real-time estimating the bladder pressure using artificial neural network. The method is based upon measurements of electroneurogram (ENG) signal of pudendal nerve. This approach yields synthetic bladder pressure estimates during bladder contraction. The experiments were conducted on three rats. The results show that neural predictor can provide accurate estimation and prediction of bladder pressure with good generalization ability. The average error of 1-second and 5-second ahead prediction of bladder pressure are 9.62% and 10.54%, respectively. PMID:26737354

  19. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing

    SciTech Connect

    Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J.

    2009-08-15

    Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

  20. Assessing Predictive Validity of Pressure Ulcer Risk Scales- A Systematic Review and Meta-Analysis

    PubMed Central

    PARK, Seong-Hi; LEE, Hea Shoon

    2016-01-01

    Background: The purpose of this study was to present a scientific reason for pressure ulcer risk scales: Cubbin& Jackson modified Braden, Norton, and Waterlow, as a nursing diagnosis tool by utilizing predictive validity of pressure sores. Methods: Articles published between 1966 and 2013 from periodicals indexed in the Ovid Medline, Embase, CINAHL, KoreaMed, NDSL, and other databases were selected using the key word “pressure ulcer”. QUADAS-II was applied for assessment for internal validity of the diagnostic studies. Selected studies were analyzed using meta-analysis with MetaDisc 1.4. Results: Seventeen diagnostic studies with high methodological quality, involving 5,185 patients, were included. In the results of the meta-analysis, sROC AUC of Braden, Norton, and Waterflow scale was over 0.7, showing moderate predictive validity, but they have limited interpretation due to significant differences between studies. In addition, Waterlow scale is insufficient as a screening tool owing to low sensitivity compared with other scales. Conclusion: The contemporary pressure ulcer risk scale is not suitable for uninform practice on patients under standardized criteria. Therefore, in order to provide more effective nursing care for bedsores, a new or modified pressure ulcer risk scale should be developed upon strength and weaknesses of existing tools. PMID:27114977

  1. Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure.

    PubMed

    Buckow, Roman; Isbarn, Sonja; Knorr, Dietrich; Heinz, Volker; Lehmacher, Anselm

    2008-02-01

    Noroviruses, which are members of the Caliciviridae family, represent the leading cause of nonbacterial gastroenteritis in developed countries; such norovirus infections result in high economic costs for health protection. Person-to-person contact, contaminated water, and foods, especially raw shellfish, vegetables, and fruits, can transmit noroviruses. We inactivated feline calicivirus, a surrogate for the nonculturable norovirus, in cell culture medium and mineral water by heat and high hydrostatic pressure. Incubation at ambient pressure and 75 degrees C for 2 min as well as treatment at 450 MPa and 15 degrees C for 1 min inactivated more than 7 log10 PFU of calicivirus per ml in cell culture medium or mineral water. The heat and pressure time-inactivation curves obtained with the calicivirus showed tailing in the logarithmic scale. Modeling by nth-order kinetics of the virus inactivation was successful in predicting the inactivation of the infective virus particles. The developed model enables the prediction of the calicivirus reduction in response to pressures up to 500 MPa, temperatures ranging from 5 to 75 degrees C, and various treatment times. We suggest high pressure for processing of foods to reduce the health threat posed by noroviruses.

  2. Equilibrium shapes of acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C.-J.

    1986-05-01

    The quantitative determination of the shape of liquid drops levitated in an ultrasonic standing wave has provided experimental data on the radiation pressure-induced deformations of freely suspended liquids. Within the limits of small deviations from the spherical shape and small drop diameter relative to the acoustic wavelength, an existing approximate theory yields a good agreement with experimental evidence. The data were obtained for millimeter and submillimeter drops levitated in air under 1 g, where g is the sea level gravitational acceleration.

  3. A Sequential Dynamic Bayesian Network for Pore Pressure Prediction and Quantification of Uncertainty.

    NASA Astrophysics Data System (ADS)

    Oughton, R. H.; Wooff, D. A.; Hobbs, R. W.; Swarbrick, R. E.

    2014-12-01

    Pore pressure prediction is vital when drilling a well, as unexpected overpressure can cause drilling challenges and uncontrolled hydrocarbon leakage. One cause of overpressure is when pore fluid is trapped during burial and takes on part of the lithostatic load. Predictions often use porosity-based techniques, such as the Eaton Ratio method and equivalent depth method. These rely on an idealised compaction trend and use a single wireline log as a proxy for porosity. Such methods do not account for the many sources of uncertainty, or for the multivariate nature of the system. We propose a sequential dynamic Bayesian network (SDBN) as a solution to these issues. The SDBN models the quantities in the system (such as pressures, porosity, lithology, wireline logs, fluid properties and so on) using conditional probability distributions to capture their joint behaviour. A compaction model is central to the SDBN, relating porosity to vertical effective stress, with uncertainty in the relationship, so that the logic is similar to that of the equivalent depth method. The probability distribution for porosity depends on VES and lithology, with much more uncertainty in sandstone-like rocks than in shales to reflect a general lack of understanding of sandstone compaction. The distributions of the wireline logs depend on porosity and lithology, along with other quantities, and so when they are observed the SDBN learns about porosity and lithology and in turn VES and pore pressure, using Bayes theorem. The probability distribution for each quantity in the SDBN is updated in light of any data, so that rather than giving a single-valued prediction for pore pressure, the SDBN gives a prediction with uncertainty that takes into account the whole system, knowledge and data. The dynamic nature of the SDBN enables it to use the bulk density to calculate total vertical stress, and to account for the dissipation of pore pressure. The vertical correlation in the SDBN means it is suited to

  4. Factors predicting drop out from, and retention in, specialist drug treatment services: A case control study in the North West of England

    PubMed Central

    Beynon, Caryl M; McMinn, Alison M; Marr, Adam JE

    2008-01-01

    Background: In the United Kingdom (UK), the National Treatment Agency for Substance Misuse (NTA) considers retention to be the best available measure of drug treatment effectiveness. Accordingly, the NTA has set local treatment systems the annual target of retaining 75% of clients for 12 weeks or more, yet little assessment of this target or factors that improve retention has occurred. This study aims to quantify the proportion of people retained in treatment for 12 weeks in the North West of England and to identify factors associated with premature drop out. Methods: The North West National Drug Treatment Monitoring System (NDTMS) was used to identify treatment durations for everyone beginning a treatment episode between 1st April 2005 and 31st March 2006 (N = 16626). Odds ratios, chi-square and logistic regression analyses compared clients retained for 12 weeks to clients whose discharge record showed they had prematurely dropped out before 12 weeks. Individuals with other outcomes were excluded from analyses. Results: 75% of clients (N = 12230) were retained for 12 weeks and 10% (N = 1649) dropped out prematurely. Multivariate analysis showed drop out was more likely among Asian drug users (adjusted odds ratio 1.52, 95% CI 1.12 to 2.08) than their white equivalents. Drop out was more likely among residents of Cumbria and Lancashire (adjusted odds ratio 1.80, 95% CI 1.51 to 2.15) and Greater Manchester (adjusted odds ratio 2.00, 95% CI 1.74 to 2.29) than Cheshire and Merseyside and less likely among alcohol users (adjusted odds ratio 0.73, 95% CI 0.59 to 0.91). A significant interaction between age and deprivation was observed. For those aged 18 to 24 years and 25 to 34 years, drop out was significantly more likely among those living in affluent areas. For those in the older age groups the converse effect was observed. Conclusion: In combination, the drug treatment systems of the North West achieved the Government's retention target in 2005/06. A number of

  5. Human pressures predict species' geographic range size better than biological traits.

    PubMed

    Di Marco, Moreno; Santini, Luca

    2015-06-01

    Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predictors of range size, but macroecological patterns can also be distorted by human activities. Here, we analyse the role of extrinsic (biogeography, habitat state, climate, human pressure) and intrinsic (biology) variables in predicting range size of the world's terrestrial mammals. In particular, our aim is to compare the predictive ability of human pressure vs. species biology. We evaluated the ability of 19 intrinsic and extrinsic variables in predicting range size for 4867 terrestrial mammals. We repeated the analyses after excluding restricted-range species and performed separate analyses for species in different biogeographic realms and taxonomic groups. Our model had high predictive ability and showed that climatic variables and human pressures are the most influential predictors of range size. Interestingly, human pressures predict current geographic range size better than biological traits. These findings were confirmed when repeating the analyses on large-ranged species, individual biogeographic regions and individual taxonomic groups. Climatic and human impacts have determined the extinction of mammal species in the past and are the main factors shaping the present distribution of mammals. These factors also affect other vertebrate groups globally, and their influence on range size may be similar as well. Measuring climatic and human variables can allow to obtain approximate range size estimations for data-deficient and newly discovered species (e.g. hundreds of mammal species worldwide). Our results support the need for a more careful consideration of the role of climate change and human impact - as opposed to species biological

  6. Characterization and Prediction of Subsurface Pneumatic PressureVariations at Yucca Mountain, Nevada

    SciTech Connect

    Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    1998-01-02

    Yucca Mountain, Nevada is being investigated as the proposed site for geologic disposal of high level nuclear waste. A massive data collection effort for characterization of the unsaturated zone is being carried out at the site. The USGS is monitoring the subsurface pressure variations due to barometric pumping in several boreholes. Numerical models are used to simulate the observed subsurface pressure variations. Data inversion is used to characterize the unsaturated system and estimate the pneumatic diffusivity of important geologic features. Blind predictions of subsurface response and subsequent comparison to recorded data have built confidence in the models of Yucca Mountain.

  7. Draft tube pressure pulsation predictions in Francis turbines with transient Computational Fluid Dynamics methodology

    NASA Astrophysics Data System (ADS)

    Melot, M.; Nennemann, B.; Désy, N.

    2014-03-01

    An automatic Computational Fluid Dynamics (CFD) procedure that aims at predicting Draft Tube Pressure Pulsations (DTPP) at part load is presented. After a brief review of the physics involved, a description of the transient numerical setup is given. Next, the paper describes a post processing technique, namely the separation of pressure signals into synchronous, asynchronous and random pulsations. Combining the CFD calculation with the post-processing technique allows the quantification of the potential excitation of the mechanical system during the design phase. Consequently it provides the hydraulic designer with a tool to specifically target DTPP and thus helps in the development of more robust designs for part load operation of turbines.

  8. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  9. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  10. Prediction of acid lactic-bacteria growth in turkey ham processed by high hydrostatic pressure

    PubMed Central

    Mathias, S.P.; Rosenthal, A.; Gaspar, A.; Aragão, G.M.F.; Slongo-Marcusi, A.

    2013-01-01

    High hydrostatic pressure (HHP) has been investigated and industrially applied to extend shelf life of meat-based products. Traditional ham packaged under microaerophilic conditions may sometimes present high lactic acid bacteria population during refrigerated storage, which limits shelf life due to development of unpleasant odor and greenish and sticky appearance. This study aimed at evaluating the shelf life of turkey ham pressurized at 400 MPa for 15 min and stored at 4, 8 and 12 °C, in comparison to the non pressurized product. The lactic acid bacteria population up to 107 CFU/g of product was set as the criteria to determine the limiting shelf life According to such parameter the pressurized sample achieved a commercial viability within 75 days when stored at 4 °C while the control lasted only 45 days. Predictive microbiology using Gompertz and Baranyi and Roberts models fitted well both for the pressurized and control samples. The results indicated that the high hydrostatic pressure treatment greatly increased the turkey ham commercial viability in comparison to the usual length, by slowing down the growth of microorganisms in the product. PMID:24159279

  11. A Large-Scale, Energetic Model of Cardiovascular Homeostasis Predicts Dynamics of Arterial Pressure in Humans

    PubMed Central

    Roytvarf, Alexander; Shusterman, Vladimir

    2008-01-01

    The energetic balance of forces in the cardiovascular system is vital to the stability of blood flow to all physiological systems in mammals. Yet, a large-scale, theoretical model, summarizing the energetic balance of major forces in a single, mathematically closed system has not been described. Although a number of computer simulations have been successfully performed with the use of analog models, the analysis of energetic balance of forces in such models is obscured by a big number of interacting elements. Hence, the goal of our study was to develop a theoretical model that represents large-scale, energetic balance in the cardiovascular system, including the energies of arterial pressure wave, blood flow, and the smooth muscle tone of arterial walls. Because the emphasis of our study was on tracking beat-to-beat changes in the balance of forces, we used a simplified representation of the blood pressure wave as a trapezoidal pressure-pulse with a strong-discontinuity leading front. This allowed significant reduction in the number of required parameters. Our approach has been validated using theoretical analysis, and its accuracy has been confirmed experimentally. The model predicted the dynamics of arterial pressure in human subjects undergoing physiological tests and provided insights into the relationships between arterial pressure and pressure wave velocity. PMID:18269976

  12. Predictive capacity of risk assessment scales and clinical judgment for pressure ulcers: a meta-analysis.

    PubMed

    García-Fernández, Francisco Pedro; Pancorbo-Hidalgo, Pedro L; Agreda, J Javier Soldevilla

    2014-01-01

    A systematic review with meta-analysis was completed to determine the capacity of risk assessment scales and nurses' clinical judgment to predict pressure ulcer (PU) development. Electronic databases were searched for prospective studies on the validity and predictive capacity of PUs risk assessment scales published between 1962 and 2010 in English, Spanish, Portuguese, Korean, German, and Greek. We excluded gray literature sources, integrative review articles, and retrospective or cross-sectional studies. The methodological quality of the studies was assessed according to the guidelines of the Critical Appraisal Skills Program. Predictive capacity was measured as relative risk (RR) with 95% confidence intervals. When 2 or more valid original studies were found, a meta-analysis was conducted using a random-effect model and sensitivity analysis. We identified 57 studies, including 31 that included a validation study. We also retrieved 4 studies that tested clinical judgment as a risk prediction factor. Meta-analysis produced the following pooled predictive capacity indicators: Braden (RR = 4.26); Norton (RR = 3.69); Waterlow (RR = 2.66); Cubbin-Jackson (RR = 8.63); EMINA (RR = 6.17); Pressure Sore Predictor Scale (RR = 21.4); and clinical judgment (RR = 1.89). Pooled analysis of 11 studies found adequate risk prediction capacity in various clinical settings; the Braden, Norton, EMINA (mEntal state, Mobility, Incontinence, Nutrition, Activity), Waterlow, and Cubbin-Jackson scales showed the highest predictive capacity. The clinical judgment of nurses was found to achieve inadequate predictive capacity when used alone, and should be used in combination with a validated scale.

  13. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  14. Diagnosis Accuracy of Mean Arterial Pressure Variation during a Lung Recruitment Maneuver to Predict Fluid Responsiveness in Thoracic Surgery with One-Lung Ventilation

    PubMed Central

    Kang, Woon-Seok; Oh, Chung-Sik; Park, Chulmin; Shin, Bo Mi; Yoon, Tae-Gyoon; Rhee, Ka-Young; Woo, Nam-Sik

    2016-01-01

    Background. Lung recruitment maneuver (LRM) during thoracic surgery can reduce systemic venous return and resulting drop in systemic blood pressure depends on the patient's fluid status. We hypothesized that changes in systemic blood pressure during the transition in LRM from one-lung ventilation (OLV) to two-lung ventilation (TLV) may provide an index to predict fluid responsiveness. Methods. Hemodynamic parameters were measured before LRM (T0); after LRM at the time of the lowest mean arterial blood pressure (MAP) (T1) and at 3 minutes (T2); before fluid administration (T3); and 5 minutes after ending it (T4). If the stroke volume index increased by >25% following 10 mL/kg colloid administration for 30 minutes, then the patients were assigned to responder group. Results. Changes in MAP, central venous pressure (CVP), and stroke volume variation (SVV) between T0 and T1 were significantly larger in responders. Areas under the curve for change in MAP, CVP, and SVV were 0.852, 0.759, and 0.820, respectively; the optimal threshold values for distinguishment of responders were 9.5 mmHg, 0.5 mmHg, and 3.5%, respectively. Conclusions. The change in the MAP associated with LRM at the OLV to TLV conversion appears to be a useful indicator of fluid responsiveness after thoracic surgery. Trial Registration. This trial is registered at Clinical Research Information Service with KCT0000774.

  15. Predicting the size of droplets produced through Laplace pressure induced snap-off.

    PubMed

    Barkley, Solomon; Scarfe, Samantha J; Weeks, Eric R; Dalnoki-Veress, Kari

    2016-09-21

    Laplace pressure driven snap-off is a technique that is used to produce droplets for emulsions and microfluidics purposes. Previous predictions of droplet size have assumed a quasi-equilibrium low flow limit. We present a simple model to predict droplet sizes over a wide range of flow rates, demonstrating a rich landscape of droplet stability depending on droplet size and growth rate. The model accounts for the easily adjusted experimental parameters of geometry, interfacial tension, and the viscosities of both phases. PMID:27535011

  16. Evaluation of the constant pressure panel method (CPM) for unsteady air loads prediction

    NASA Technical Reports Server (NTRS)

    Appa, Kari; Smith, Michael J. C.

    1988-01-01

    This paper evaluates the capability of the constant pressure panel method (CPM) code to predict unsteady aerodynamic pressures, lift and moment distributions, and generalized forces for general wing-body configurations in supersonic flow. Stability derivatives are computed and correlated for the X-29 and an Oblique Wing Research Aircraft, and a flutter analysis is carried out for a wing wind tunnel test example. Most results are shown to correlate well with test or published data. Although the emphasis of this paper is on evaluation, an improvement in the CPM code's handling of intersecting lifting surfaces is briefly discussed. An attractive feature of the CPM code is that it shares the basic data requirements and computational arrangements of the doublet lattice method. A unified code to predict unsteady subsonic or supersonic airloads is therefore possible.

  17. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  18. Predicted Sizes of Pressure-supported HI Clouds in the Outskirts of the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Burkhart, Blakesley; Loeb, Abraham

    2016-06-01

    Using data from the ALFALFA AGES Arecibo HI survey of galaxies and the Virgo cluster X-ray pressure profiles from XMM-Newton, we investigate the possibility that starless dark HI clumps, also known as “dark galaxies,” are supported by external pressure in the surrounding intercluster medium. We find that the starless HI clump masses, velocity dispersions, and positions allow these clumps to be in pressure equilibrium with the X-ray gas near the virial radius of the Virgo cluster. We predict the sizes of these clumps to range from 1 to 10 kpc, in agreement with the range of sizes found for spatially resolved HI starless clumps outside of Virgo. Based on the predicted HI surface density of the Virgo sources, as well as a sample of other similar resolved ALFALFA HI dark clumps with follow-up optical/radio observations, we predict that most of the HI dark clumps are on the cusp of forming stars. These HI sources therefore mark the transition between starless HI clouds and dwarf galaxies with stars.

  19. Theoretical prediction of high pressure phase transition in ScC and YC: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.

    2013-08-01

    The structural stability of ScC and YC has been analyzed under hydrostatic compression employing the first-principles calculations using the plane-wave pseudopotential method. The comparison of theoretically calculated enthalpies of rocksalt type (B1), primitive orthorhombic (Pmmn), and CsCl type (B2) structures as a function of pressure suggests that the B1 structure transforms to Pmmn phase instead of transforming to B2 phase that predicted by Soni et al. [J. Phys. Chem. Solids 72, 810 (2011)]. The pressure for B1 to Pmmn transition predicted for ScC and YC are ˜80 GPa and ˜30 GPa, respectively. To further substantiate the outcomes of our static lattice calculations, we have performed lattice dynamic calculations also. Our lattice dynamic calculations correctly demonstrate that the B1 phase is dynamically stable structure at ambient condition. Further, for both the carbides, we find that the Pmmn structure becomes dynamically stable around the transition pressure whereas the B2 structure remains unstable, supporting the B1 to Pmmn phase transition predicted by our static lattice calculations.

  20. Coalescence dynamics of viscous conical drops

    NASA Astrophysics Data System (ADS)

    Lu, Jiakai; Fang, Shengyang; Corvalan, Carlos M.

    2016-02-01

    When two oppositely charged drops come into light contact, a liquid meniscus bridge with double-cone geometry forms between the drops. Recent experiments have demonstrated the existence of a critical cone angle above which the meniscus bridge pinches off and the drops do not coalesce. This striking behavior—which has implications for processes ranging from the coarsening of emulsions to electrospray ionization in mass spectrometry—has been studied theoretically and experimentally for inertial liquid drops. Little is known, however, about the influence of the liquid viscosity on the critical cone angle. Here, we use high-fidelity numerical simulations to gain insight into the coalescence dynamics of conical drops at intermediate Reynolds numbers. The simulations, which account for viscous, inertial, and surface tension effects, predict that the critical cone angle increases as the viscosity of the drops decreases. When approaching the inertial regime, however, the predicted critical angle quickly stabilizes at approximately 27∘, as observed in experiments.

  1. Coalescence of Liquid Drops

    NASA Technical Reports Server (NTRS)

    Yao, Wei-Jun

    2003-01-01

    When two liquid drops come into contact, a neck forms between them and grows rapidly. We are interested in the very early stage of the coalescence process, which can be characterized by the time dependence of the radius of the neck. The functional dependence of the size of the neck on time depends on the properties of the liquid. Experimentally, we are investigating a liquid in Stokes flow regime where the viscosity provides the principal retarding force to the surface tension. Recently, it has been predicted that the neck radius should change as t ln|t| in this regime. Theoretically, we have studied the situation when the velocity at each point on the surface is proportional to the local curvature and directed normal to the surface. This is the case that should be applicable to superfluid helium at low temperature when the mean free path of the thermal excitations are comparable to the size of liquid drops. For this system, the radius of the neck is found to be proportional to t(sup 1/3). We are able to find a simple expression for the shape of the interface in the vicinity of the neck.

  2. Comparison of theoretical and observed pressure profiles in geothermal wells

    SciTech Connect

    Marquez M, R.

    1981-01-01

    Two-phase water-steam flow conditions in geothermal wells are studied aimed at predicting pressure drops in these wells. Five prediction methods were selected to be analyzed and compared with each other and with actual pressure measurements. These five correlations were tested on five wells: three in New Zealand, one in Mexico, and one in the Philippines.

  3. Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Webb, Lannie D.; Mccain, William E.; Rose, Lucinda A.

    1988-01-01

    Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing.

  4. Preeclampsia Prediction in Type 1 Diabetes and Diurnal Blood Pressure Methodology.

    PubMed

    Lauszus, Finn Friis

    2016-01-01

    the measurements to be considered are reproducibility, consistency, precision, and trend over scale of measurement. Studies on these issues suggest that consistency and precision depend on which monitor is used. During pregnancy, the reproducibility and specificity depend on the timing and whether measurements are performed repeatedly. Over- and underestimations of blood pressure are typical for 24-h monitoring in high- as well as low risk pregnancies. Preeclampsia is associated with urinary albumin excretion rate, reduced night/day ratio, and elevated diurnal blood pressure from first trimester and onwards. However, due to blunting of the diurnal variation, the night/day rhythm provides no good prediction of preeclampsia. Diurnal measurement is a valuable estimate of blood pressure in terms of sensitivity, specificity, and predictive values. PMID:27292175

  5. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    SciTech Connect

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-06-10

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected

  6. ICU Blood Pressure Variability May Predict Nadir of Respiratory Depression After Coronary Artery Bypass Surgery

    PubMed Central

    Costa, Anne S. M.; Costa, Paulo H. M.; de Lima, Carlos E. B.; Pádua, Luiz E. M.; Campos, Luciana A.; Baltatu, Ovidiu C.

    2016-01-01

    Objectives: Surgical stress induces alterations on sympathovagal balance that can be determined through assessment of blood pressure variability. Coronary artery bypass graft surgery (CABG) is associated with postoperative respiratory depression. In this study we aimed at investigating ICU blood pressure variability and other perioperative parameters that could predict the nadir of postoperative respiratory function impairment. Methods: This prospective observational study evaluated 44 coronary artery disease patients subjected to coronary artery bypass surgery (CABG) with cardiopulmonary bypass (CPB). At the ICU, mean arterial pressure (MAP) was monitored every 30 min for 3 days. MAP variability was evaluated through: standard deviation (SD), coefficient of variation (CV), variation independent of mean (VIM), and average successive variability (ASV). Respiratory function was assessed through maximal inspiratory (MIP) and expiratory (MEP) pressures and peak expiratory flow (PEF) determined 1 day before surgery and on the postoperative days 3rd to 7th. Intraoperative parameters (volume of cardioplegia, CPB duration, aortic cross-clamp time, number of grafts) were also monitored. Results: Since, we aimed at studying patients without confounding effects of postoperative complications on respiratory function, we had enrolled a cohort of low risk EuroSCORE (European System for Cardiac Operative Risk Evaluation) with < 2. Respiratory parameters MIP, MEP, and PEF were significantly depressed for 4–5 days postoperatively. Of all MAP variability parameters, the ASV had a significant good positive Spearman correlation (rho coefficients ranging from 0.45 to 0.65, p < 0.01) with the 3-day nadir of PEF after cardiac surgery. Also, CV and VIM of MAP were significantly associated with nadir days of MEP and PEF. None of the intraoperative parameters had any correlation with the postoperative respiratory depression. Conclusions: Variability parameters ASV, CV, and VIM of the MAP

  7. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  8. Dilating Eye Drops

    MedlinePlus

    ... Conditions Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ... Loading... Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ...

  9. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  10. Systems Training for Emotional Predictability and Problem Solving (STEPPS): program efficacy and personality features as predictors of drop-out -- an Italian study.

    PubMed

    Alesiani, Roberta; Boccalon, Silvia; Giarolli, Laura; Blum, Nancee; Fossati, Andrea

    2014-05-01

    In this study we present a clinical application of the STEPPS model in an Italian sample of severely affected patients with borderline personality disorder (BPD) or personality disorder (PD) with prominent borderline features in comorbidity with a mood disorder. The aims of this work are: 1) to confirm our preliminary results in a larger sample and at a 12-month follow-up, and 2) to identify predictors of drop-out vs completion of STEPPS in order to understand which characteristics of patients make them suitable or not for this treatment. The sample is composed of 32 subjects recruited from a population of inpatients of the Mood Disorders Center, Department of Clinical Neurosciences, Hospital San Raffaele-Turro, Milan. To confirm STEPPS efficacy at 12-month follow-up, we selected the following outcome criteria: reduction in the number of hospitalizations related to self-harm acts; reduction in the number of suicidal attempts; reduction of perceived emotional intensity levels; changes in cognitive filter scores; changes in the scores on self-report questionnaires. To identify predictors of drop-out vs completion, we analysed the following variables: demographic features (sex, marital status, school level achieved, and job status); Axis-I diagnosis; Axis-II categorical and dimensional diagnosis; and personality features. Seventeen (53%) subjects completed the treatment successfully. The drop-out rate was 47%. Patients who completed the program show a significant decrease in the number of hospitalizations, both at the end of the treatment and at 12-month follow-up. Friedman ANOVA test shows a significant decrease in suicidal attempts during and after STEPPS, and at 12-month follow-up. Analysis of drop-outs showed no significant differences with regard to sex, marital status, school level and job status between the two groups. Axis-I and Axis-II categorical diagnoses did not discriminate between the two groups. Those patients who dropped differ significantly from

  11. Apfel's superheated drop detector

    NASA Astrophysics Data System (ADS)

    D'Errico, Francesco

    2001-05-01

    The introduction of new approaches for radiation dosimetry is rare. A similar breakthrough occurred in 1979, when Robert Apfel invented the superheated drop detector, a miniature relative of the bubble chamber. A fundamental in high-energy particle physics, the bubble chamber utilizes a liquid briefly brought to a transient, radiation-sensitive superheated state by reducing its pressure. Mass boiling of the liquid is prevented by cyclic pressurization, drastically limiting the detection efficiency. In Apfel's detector, the liquid is kept in a steady superheated state by fractionating it into droplets and dispersing them in an immiscible host fluid, a perfectly smooth and clean container. The approach extends the lifetime of the metastable droplets to the point that practical application in radiation dosimetry is possible. Bubble formation is measured from the volume of vapor or by detecting individual vaporizations acoustically. Various halocarbons are employed and this permits a wide range of applications. Moderately superheated halocarbons are used for neutron measurements, since they are only nucleated by energetic neutron recoil particles. Highly superheated halocarbons nucleate with much smaller energy deposition and are used to detect photons and electrons. This paper reviews the radiation physics of superheated emulsions and their manifold applications.

  12. Measurements of drop size at the spray edge near the nozzle in atomizing liquid jets

    SciTech Connect

    Wu, K.; Reitz, R.D.; Bracco, F.V.

    1986-04-01

    The drop size distribution was measured from back-lighted spark photographs at the edge of steady sprays in the immediate vicinity of the nozzle exit. The conditions of these liquid-into-gas sprays were such that the outer surface of the liquid jets broke up into small drops at the nozzle exit. The objective was to elucidate the mechanism of breakup. At room temperature, n-hexane and n-tetradecane at pressures from 2.86 to 9.76 MPa were injected into gaseous nitrogen at 1.48 to 2.86 MPa through three straight cylindrical nozzles of different diameters, 127 and 335 ..mu..m, and length-to-diameter ratios, 4 and 10. In all cases, the drop sizes could be fitted satisfactorily with a chi-square distribution with degree of freedom equal to 28. The Sauter mean drop diameter and other average diameters were found to decrease with increasing injection velocity and decreasing liquid surface tension, to be insensitive to nozzle diameter and length, and to increase slightly with increasing gas density. The trends and magnitudes are in agreement with those predicted by the supplemented aerodynamic theory of surface breakup if it is assumed that between the jet surface where the drops are formed, that is not visible, and the edge of the spray, where the measurements were made, drops undergo collisions and coalescence. In this region of dense sprays, drop coalescence leads to a rapid increase in drop size, particularly in high gas densities.

  13. Computational Prediction of Pressure and Thermal Environments in the Flame Trench With Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Sozer, Emre; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.; Moini-Yekta, Shayan; Vu, Bruce T.; Parlier, Christopher R.

    2014-01-01

    One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads.

  14. Non-coalescence of oppositely charged drops.

    PubMed

    Ristenpart, W D; Bird, J C; Belmonte, A; Dollar, F; Stone, H A

    2009-09-17

    Electric fields induce motion in many fluid systems, including polymer melts, surfactant micelles and colloidal suspensions. Likewise, electric fields can be used to move liquid drops. Electrically induced droplet motion manifests itself in processes as diverse as storm cloud formation, commercial ink-jet printing, petroleum and vegetable oil dehydration, electrospray ionization for use in mass spectrometry, electrowetting and lab-on-a-chip manipulations. An important issue in practical applications is the tendency for adjacent drops to coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence. Here we report the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to 'bounce' off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction. PMID:19759616

  15. Intelligent Prediction of Fan Rotation Stall in Power Plants Based on Pressure Sensor Data Measured In-Situ

    PubMed Central

    Xu, Xiaogang; Wang, Songling; Liu, Jinlian; Liu, Xinyu

    2014-01-01

    Blower and exhaust fans consume over 30% of electricity in a thermal power plant, and faults of these fans due to rotation stalls are one of the most frequent reasons for power plant outage failures. To accurately predict the occurrence of fan rotation stalls, we propose a support vector regression machine (SVRM) model that predicts the fan internal pressures during operation, leaving ample time for rotation stall detection. We train the SVRM model using experimental data samples, and perform pressure data prediction using the trained SVRM model. To prove the feasibility of using the SVRM model for rotation stall prediction, we further process the predicted pressure data via wavelet-transform-based stall detection. By comparison of the detection results from the predicted and measured pressure data, we demonstrate that the SVRM model can accurately predict the fan pressure and guarantee reliable stall detection with a time advance of up to 0.0625 s. This superior pressure data prediction capability leaves significant time for effective control and prevention of fan rotation stall faults. This model has great potential for use in intelligent fan systems with stall prevention capability, which will ensure safe operation and improve the energy efficiency of power plants. PMID:24854057

  16. Idiopathic normal pressure hydrocephalus: diagnostic and predictive value of clinical testing, lumbar drainage, and CSF dynamics.

    PubMed

    Mahr, Cynthia V; Dengl, Markus; Nestler, Ulf; Reiss-Zimmermann, Martin; Eichner, Gerrit; Preuß, Matthias; Meixensberger, Jürgen

    2016-09-01

    OBJECTIVE The aim of the study was to analyze the diagnostic and predictive values of clinical tests, CSF dynamics, and intracranial pulsatility tests, compared with external lumbar drainage (ELD), for shunt response in patients with idiopathic normal pressure hydrocephalus (iNPH). METHODS Sixty-eight consecutive patients with suspected iNPH were prospectively evaluated. Preoperative assessment included clinical tests, overnight intracranial pressure (ICP) monitoring, lumbar infusion test (LIFT), and ELD for 24-72 hours. Simple and multiple linear regression analyses were conducted to identify predictive parameters concerning the outcome after shunt therapy. RESULTS Positive response to ELD correctly predicted improvement after CSF diversion in 87.9% of the patients. A Mini-Mental State Examination (MMSE) value below 21 was associated with nonresponse after shunt insertion (specificity 93%, sensitivity 67%). Resistance to outflow of CSF (ROut) > 12 mm Hg/ml/min was false negative in 21% of patients. Intracranial pulsatility parameters yielded different results in various parameters (correlation coefficient between pulse amplitude and ICP, slow wave amplitude, and mean ICP) but did not correlate to outcome. In multiple linear regression analysis, a calculation of presurgical MMSE versus the value after ELD, ROut, and ICP amplitude quotient during LIFT was significantly associated with outcome (p = 0.04). CONCLUSIONS Despite a multitude of invasive tests, presurgical clinical testing and response to ELD yielded the best prediction for improvement of symptoms following surgery. The complication rate of invasive testing was 5.4%. Multiple and simple linear regression analyses indicated that outcome can only be predicted by a combination of parameters, in accordance with a multifactorial pathogenesis of iNPH. PMID:26824377

  17. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-10-01

    The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).

  18. VTOL in ground effect flows for closely spaced jets. [to predict pressure and upwash forces on aircraft structures

    NASA Technical Reports Server (NTRS)

    Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.

    1979-01-01

    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.

  19. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    PubMed Central

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-01-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib. PMID:26198974

  20. Francis turbine draft tube modelling for prediction of pressure fluctuations on prototype

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Landry, C.; Favrel, A.; Nicolet, C.; Avellan, F.

    2015-12-01

    The prediction of pressure fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations measured on the reduced scale model to the prototype generating units. This paper presents this methodology which relies on an advanced modelling of the draft tube cavitation flow, and focuses on the transposition to the prototype of the draft tube model parameters identified on the reduced scale model. Different modelling assumptions of the draft tube are considered and their influence on the eigenmodes and the forced response of the system are presented.

  1. Predicting the pressure driven flow of gases through micro-capillaries and micro-orifices

    SciTech Connect

    Anderson, B.L.; Carlson, R.W.; Fischer, L.E.

    1994-11-01

    A large body of experimentally measured gas flow rates were obtained from the literature and then compared to the predictions obtained with constitutive flow equations. This was done to determine whether the equations apply to the predictions of gas flow rates from leaking containment vessels used to transport radioactive materials. The experiments consisted of measuring the volumetric pressure-driven flow of gases through micro-capillaries and micro-orifices. The experimental results were compared to the predictions obtained with the equations given in ANSI N14.5 the American National Standard for Radioactive Materials-Leakage Tests on Package for Shipment. The equations were applied to both (1) the data set according to the recommendations given in ANSI N14.5 and (2) globally to the complete data set. It was found that: The continuum and molecular flow equation provided good agreement between the experimental and calculated flow rates for flow rates less than about 1 atm{center_dot}cm{sup 3}/s. The choked flow equation resulted in over-prediction of the flow rates for flow rates less than about 1 atm-cm{sup 3}/s. For flow rates higher than 1 atm{center_dot}cm{sup 3}/s, the molecular and continuum flow equation over-predicted the measured flow rates and the predictions obtained with the choked flow equation agreed well with the experimental values. Since the flow rates of interest for packages used to transport radioactive materials are almost always less than 1 atm{center_dot}cm{sup 3}/s, it is suggested that the continuum and molecular flow equation be used for gas flow rate predictions related to these applications.

  2. Diagnostic Value of Electrocardiogram in Predicting Exaggerated Blood Pressure Response to Exercise Stress Testing

    PubMed Central

    Eshraghi, Ali; Ebdali, Reyhaneh Takalloo; Sajjadi, Seyed Sajed; Golnezhad, Reza

    2016-01-01

    Introduction It is believed that an exaggerated blood pressure response (EBPR) to exercise stress test is associated with a higher risk of cardiovascular events. It is also assumed that QT dispersion (QT-d), which was originally proposed to measure the spatial dispersion of ventricular recovery times, may have a relationship to cardiovascular events. The objective of this study was to examine the difference of changes in QT-d, Maxi-QT, Mini-QT, and QT-c (corrected QT interval) of the electrocardiogram in two groups of patients with exaggerated blood pressure responses (EBPR group) and normal responses (control group) to exercise testing. Also, the diagnostic value of each of these criteria in the prediction of EBPR was studied. Methods This cross-sectional study was conducted from May 2015 to February 2016 on patients suspected of coronary artery disease (CAD) undergoing exercise testing who had been referred to Ghaem and Imam Reza hospitals in Mashhad (Iran). All patients underwent a treadmill exercise test with the 12-lead ECG, which was optically scanned and digitized for analysis of QT-d, QT max, and QT min. Patients were divided into two groups of normal and EBPR to exercise testing. QT changes of ECG were compared between the two groups, and the diagnostic accuracy of QT variables for prediction of EBPR to exercise testing was studied. A multiple linear regression analysis (MLR), Pearson Chi-qquare, independent samples t-test, and receiver operating characteristic (ROC) curve were used as statistical methods in IBM SPSS version 19. Results Sixty patients (55% male) with a mean age of 50.48 ± 10.89 years were studied in two groups of normal (n=30) and exaggerated blood pressure response (n=30) to exercise testing. Maximum QT and QT dispersion were statistically different in individuals’ exaggerated blood pressure response to exercise stress test (p < 0.05). The logistic regression analysis revealed that none of our parameters predicted the EBPR. The ROC

  3. Location and Pressures Change Prediction of Bromo Volcano Magma Chamber Using Inversion Scheme

    NASA Astrophysics Data System (ADS)

    Kumalasari, Ratih; Srigutomo, Wahyu

    2016-08-01

    Bromo volcano is one of active volcanoes in Indonesia. It has erupted at least 50 times since 1775 and has been monitored by Global Positioning System (GPS) since 1989. We applied the Levenberg-Marquardt inversion scheme to estimate the physical parameters contributing to the surface deformation. Physical parameters obtained by the inversion scheme such as magma chamber location and volume change are useful in monitoring and predicting the activity of Bromo volcano. From our calculation it is revealed that the depth of the magma chamber d = 6307.6 m, radius of magma chamber α = 1098.6 m and pressure change ΔP ≈ 1.0 MPa.

  4. The prediction of steady, three-dimensional flow in pressurized water-stream generators

    NASA Astrophysics Data System (ADS)

    Hulme, G.; Phelps, P. J.; Spalding, D. B.; Tatchell, D. G.

    A calculation procedure is described for three dimensional flow and heat transfer in stea generators. Options are provided to calculate slip between the phases, and to treat the flow as homogeneous (i.e., phase velocities equal). Typical homogeneous-flow results are shown for a steam generator of the type used in pressurized-water reactors. The predicted effect of removing the flow-distribution plate is illustrated. These results, and others reported elsewhere, show that practical, three dimensional predictions of steam generator flow phenomena can now be made. These can be utilised by designers and operators to: improve performance at the design stage by, for example, examining effects of flow distributing devices on performance; analyze the effects of changes in operating conditions, or deterioration, which occur during use; or, examine the causes of failure in use, and the effectiveness of proposed cures.

  5. Eddy current signal deconvolution technique for the improvement of steam generator tubing burst pressure predictions.

    SciTech Connect

    Petri, M. C.; Wei, T. Y. C.; Kupperman, D. S.; Reifman, J.; Morman, J. A.

    2000-01-01

    Eddy current techniques are extremely sensitive to the presence of axial cracks in nuclear power plant steam generator tube walls, but they are equally sensitive to the presence of dents, fretting, support structures, corrosion products, and other artifacts. Eddy current signal interpretation is further complicated by cracking geometries more complex than a single axial crack. Although there has been limited success in classifying and sizing defects through artificial neural networks, the ability to predict tubing integrity has, so far, eluded modelers. In large part, this lack of success stems from an inability to distinguish crack signals from those arising from artifacts. We present here a new signal processing technique that deconvolves raw eddy current voltage signals into separate signal contributions from different sources, which allows signals associated with a dominant crack to be identified. The signal deconvolution technique, combined with artificial neural network modeling, significantly improves the prediction of tube burst pressure from bobbin-coil eddy current measurements of steam generator tubing.

  6. Blood pressure interacts with APOE ε4 to predict memory performance in a midlife sample

    PubMed Central

    Oberlin, Lauren E.; Manuck, Stephen B.; Gianaros, Peter J.; Ferrell, Robert E.; Muldoon, Matthew F.; Jennings, J. Richard; Flory, Janine D.; Erickson, Kirk I.

    2015-01-01

    Objective Elevated blood pressure and the Apolipoprotein ε4 allele (APOE ε4) are independent risk factors for Alzheimer’s disease. We sought to determine whether the combined presence of the APOE ε4 allele and elevated blood pressure is associated with lower cognitive performance in cognitively healthy middle-aged adults. Methods A total of 975 participants aged 30–54 (mean age = 44.47) were genotyped for APOE. Cardiometabolic risk factors including blood pressure, lipids, and glucose were assessed and cognitive function was measured using the Trail Making Test and the Visual Reproduction and Logical Memory subtests from the Wechsler Memory Scale. Results Multivariable regression analysis showed that the association between APOE ε4 and episodic memory performance varied as a function of systolic blood pressure (SBP), such that elevated SBP was predictive of poorer episodic memory performance only in APOE ε4 carriers (β = −.092; t = −2.614; p = .009). Notably, this association was apparent at prehypertensive levels (≥ 130 mm Hg), even after adjusting for physical activity, depression, smoking, and other cardiometabolic risk factors. Conclusions The joint presence of APOE ε4 and elevated SBP, even at prehypertensive levels, is associated with lower cognitive performance in healthy, middle-aged adults. Results of this study suggest that the combination of APOE ε4 and elevated SBP may synergistically compromise memory function well before the appearance of clinically significant impairments. Interventions targeting blood pressure control in APOE ε4 carriers during midlife should be studied as a possible means to reduce the risk of cognitive decline in genetically susceptible samples. PMID:25730733

  7. Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Corson, L. T.; Tsakonas, C.; Duffy, B. R.; Mottram, N. J.; Sage, I. C.; Brown, C. V.; Wilson, S. K.

    2014-12-01

    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young-Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.

  8. Determination of musk fragrances in sewage sludge by pressurized liquid extraction coupled to automated ionic liquid-based headspace single-drop microextraction followed by GC-MS/MS.

    PubMed

    Vallecillos, Laura; Borrull, Francesc; Pocurull, Eva

    2012-10-01

    A method for the quantitative determination of ten musk fragrances extensively used in personal care products from sewage sludge was developed by using a pressurized liquid extraction (PLE) followed by an automated ionic liquid-based headspace single-drop microextraction and gas chromatography-tandem mass spectrometry. The influence of main factors on the efficiency of PLE was studied. For all musks, the highest recovery values were achieved using 1 g of pretreated sewage sludge, H(2) O/methanol (1:1) as an extraction solvent, a temperature of 80°C, a pressure of 1500 psi, an extraction time of 5 min, 2 cycles, a 100% flush volume, a purge time of 120 s, and 1 g Florisil as in-cell clean-up extraction sorbent. The use and optimization of an in-cell clean-up sorbent was necessary to remove fatty interferents of the PLE extract that make the subsequent ionic liquid-based headspace single-drop microextraction difficult. Validation parameters, namely LODs and LOQs, ranged from 0.5-1.5 to 2.5-5 ng/g, respectively. Good levels of intra- and interday repeatabilities were obtained analyzing sewage sludge samples spiked at 10 ng/g (n = 3, RSDs < 10%). The method applicability was tested with sewage sludge from different wastewater treatment plants. The analysis revealed the presence of all the polycyclic musks studied at concentrations higher than the LOQs, ranging from 6 to 530 ng/g. However, the nitro musk concentrations were below the LOQs or, in the case of musk xylene, was not detected.

  9. Mathematical Equations to Predict Positive Airway Pressures for Obstructive Sleep Apnea: A Systematic Review

    PubMed Central

    Camacho, Macario; Riaz, Muhammad; Tahoori, Armin; Certal, Victor; Kushida, Clete A.

    2015-01-01

    Objective. To systematically review the international literature for mathematical equations used to predict effective pressures for positive airway pressure (PAP) devices. Methods. Google Scholar, PubMed, Scopus, Embase, Web of Science, CINAHL, and The Cochrane Library were searched through June 27, 2015. The PRISMA statement was followed. There was no language limitation. Results. 709 articles were screened, fifty were downloaded, and twenty-six studies presented equations that met the inclusion and exclusion criteria. In total, there were 4,436 patients in the development phases and 3,489 patients in the validation phases. Studies performed multiple linear regressions analyses as part of the equation(s) development and included the following variables: physical characteristics, polysomnography data, behavioral characteristics, and miscellaneous characteristics, which were all predictive to a variable extent. Of the published variables, body mass index (BMI) and mean oxygen saturation are the most heavily weighted, while BMI (eighteen studies), apnea-hypopnea index (seventeen studies), and neck circumference (eleven studies) were the variables most frequently used in the mathematical equations. Ten studies were from Asian countries and sixteen were from non-Asian countries. Conclusion. This systematic review identified twenty-six unique studies reporting mathematical equations which are summarized. Overall, BMI and mean oxygen saturation are the most heavily weighted. PMID:26294977

  10. Prediction of pressure loss and heat transfer in internal cooling passages.

    PubMed

    Hermanson, K; Parneix, S; von Wolfersdorf, J; Semmler, K

    2001-05-01

    This paper reports CFD-simulations of the turbulent flow, pressure loss and heat transfer occurring in ribbed passages. The channel section is rectangular, with an aspect ratio of 2.04. Ribs are square cross-section, their height is 10% of the channel height, and their inclination is varied from 90 degrees to 33 degrees. Reynolds number is 30,000. Three turbulence models (k-epsilon wall functions and 2-layer, V2F) are used and compared to the experimental data of Cho et al. All three models accurately predict the pressure losses due to the ribs and the qualitative heat transfer distribution on the ribbed wall. However, only the V2F model can accurately reproduce the absolute heat transfer levels, this at all inclination angles. The correlation developed by Han and co-workers for smaller rib-heights under-predicts the friction factor and wall heat transfer level on the current configuration. This shows the danger of using a correlation outside of its application range.

  11. Vapor pressure and boiling point elevation of slash pine black liquors: Predictive models with statistical approach

    SciTech Connect

    Zaman, A.A.; McNally, T.W.; Fricke, A.L.

    1998-01-01

    Vapor-liquid equilibria and boiling point elevation of slash pine kraft black liquors over a wide range of solid concentrations (up to 85% solids) has been studied. The liquors are from a statistically designed pulping experiment for pulping slash pine in a pilot scale digester with four cooking variables of effective alkali, sulfidity, cooking time, and cooking temperature. It was found that boiling point elevation of black liquors is pressure dependent, and this dependency is more significant at higher solids concentrations. The boiling point elevation data at different solids contents (at a fixed pressure) were correlated to the dissolved solids (S/(1 {minus} S)) in black liquor. Due to the solubility limit of some of the salts in black liquor, a change in the slope of the boiling point elevation as a function of the dissolved solids was observed at a concentration of around 65% solids. An empirical method was developed to describe the boiling point elevation of each liquor as a function of pressure and solids mass fraction. The boiling point elevation of slash pine black liquors was correlated quantitatively to the pulping variables, using different statistical procedures. These predictive models can be applied to determine the boiling point rise (and boiling point) of slash pine black liquors at processing conditions from the knowledge of pulping variables. The results are presented, and their utility is discussed.

  12. Sleep Complaints Predict Increases in Resting Blood Pressure Following Marital Separation

    PubMed Central

    Krietsch, Kendra N.; Mason, Ashley E.; Sbarra, David A.

    2015-01-01

    Objective Although marital separation and divorce are associated with many negative health outcomes, few studies examine the psychophysiological mechanisms that may give rise to these outcomes. This study examined changes in resting blood pressure (BP) as a function of sleep complaints in recently divorced adults. Method Recently separated adults (n = 138; 38 men) completed a self-report measure of sleep complaints and a resting blood pressure (BP) assessment in the laboratory at three occasions across 7.5 months. Results Multilevel analyses revealed that although sleep complaints were not associated with concurrent BP, sleep complaints predicted significant increases in both systolic and diastolic BP at the subsequent laboratory visit. In addition, time since the separation from an ex-partner moderated the association between sleep complaints at baseline and resting systolic blood pressure (SBP) 3 months later. People who reported high sleep complaints 10 weeks or more after their separation demonstrated greater increases in SBP. Conclusions In recently separated adults, greater sleep complaints may index increased risk for future increases in BP. This work helps pinpoint one potential mechanistic pathway linking marital separation with an important, health-relevant biological outcome. PMID:25020156

  13. Homogenizing surface pressure time-series from operational numerical weather prediction models for geodetic applications

    NASA Astrophysics Data System (ADS)

    Dobslaw, H.

    2016-07-01

    Global surface pressure grids from 14.5 years of 6-hourly analyses out of both the operational ECMWF weather prediction model and ERA-Interim are mapped to a common reference orography by means of ECMWF's mean sea-level pressure diagnostic. The approach reduces both relative biases and residual variability by about one order of magnitude and thereby achieves a consistency among both data sets at the level of about 1 hPa. Remaining differences rather reflect temperature biases and also resolution limitations of the reanalysis data set, but are not anymore related to the local roughness in orography or to changes in the spatial resolution of the operational model. The presented reduction method therefore allows to obtain surface pressure time series with the long-time consistency of a reanalysis from an operational numerical weather model with much higher resolution and much shorter latency, making the results suitable for geodetic near realtime applications requiring continuously updated time series that are homogeneous over many years.

  14. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  15. Drop impact on a fiber

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Gil; Kim, Wonjung

    2016-04-01

    We present the results of a combined experimental and theoretical investigation of drop impact on a thin fiber. Using high-speed videography, we analyze the dynamics of droplet collision with a fiber. Based on the systematic experiments, we identify three outcomes of collision: capturing, single drop falling, and splitting. The outcomes are presented in a regime map, where the regime boundaries are explained through a scale analysis of forces. We also measure the liquid retention on the fiber after the droplet impact. By considering a liquid film on the fiber, we develop a mechanical model that predicts the residual water mass. Our model reveals that the residual mass depends critically on the fiber thickness and less on the impact speed. Our study can be extended to predicting the remaining droplet, critical problems in air filtration, water collection, and fiber coating.

  16. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  17. Predicting pressure ulcer risk with the modified Braden, Braden, and Norton scales in acute care hospitals in Mainland China.

    PubMed

    Kwong, Enid; Pang, Samantha; Wong, Thomas; Ho, Jacqueline; Shao-ling, Xue; Li-jun, Tao

    2005-05-01

    The aim of this study was to develop a modified Braden scale, to evaluate its predictive validity, and to identify a more valid pressure ulcer risk calculator for application in acute care hospitals in Mainland China among the modified Braden, Braden, and Norton scales. The initial modified Braden scale, with the addition of skin type and body build for height, was proposed in this study. Four hundred twenty-nine subjects who were admitted to two acute care hospitals in Mainland China within 24 hr and free of pressure ulcers upon admission were assessed with the initial modified Braden, Braden, and Norton scales by three nurse assessors. This was followed by a daily skin assessment to note any pressure ulcer by a nurse assessor. Nine subjects had pressure ulcers detected at Stages I (89%) and II (11%) after an average stay of 11 days. The descriptive analysis of each subscale scoring item in the initial modified Braden scale indicated that skin type and body build for height were the most distinct predictive factors whereas nutrition was the least distinct factor for predicting pressure ulcer development. Based on these findings, the modified Braden scale was further developed with the addition of skin type and body build for height and by exclusion of nutrition. The predictive validity test reported that the modified Braden scale demonstrated a better balance of sensitivity (89%) and specificity (75%) at a cutoff score of 16, with a higher positive predictive value (7%), than the Braden and Norton scales. This finding revealed that for this sample, the modified Braden scale is more effective in pressure ulcer risk prediction than the other two scales. Because the modified Braden scale is not 100% sensitive and specific, to increase clinical efficacy in the prevention of pressure ulcer, it is recommended that it be adopted combined with nursing judgment to predict pressure ulcer development in acute care settings in Mainland China.

  18. Prediction of light aircraft interior sound pressure level from the measured sound power flowing in to the cabin

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1986-01-01

    The validity of the room equation of Crocker and Price (1982) for predicting the cabin interior sound pressure level was experimentally tested using a specially constructed setup for simultaneous measurements of transmitted sound intensity and interior sound pressure levels. Using measured values of the reverberation time and transmitted intensities, the equation was used to predict the space-averaged interior sound pressure level for three different fuselage conditions. The general agreement between the room equation and experimental test data is considered good enough for this equation to be used for preliminary design studies.

  19. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA GRC

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.

    2015-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA GRC. The TDU consists of three subsystems: the Reactor Simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the Heat Exchanger Manifold (HXM). An Annular Linear Induction Pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now), is referred to as the RxSim subsystem and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the CAD model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras turbulence model), and 2.223 kg/sec (using the k-? turbulence model). The computational error of the predictions for the available mass flow is -0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k-epsilon turbulence model) when compared to measured data.

  20. Predictive Reactor Pressure Vessel Steel Irradiation Embrittlement Models: Issues and Opportunities

    SciTech Connect

    Odette, George Robert; Nanstad, Randy K

    2009-01-01

    Nuclear plant life extension to 80 years will require accurate predictions of neutron irradiation-induced increases in the ductile-brittle transition temperature ( T) of reactor pressure vessel (RPV) steels at high fluence conditions that are far outside the existing database. Remarkable progress in mechanistic understanding of irradiation embrittlement has led to physically motivated T correlation models that provide excellent statistical fi ts to the existing surveillance database. However, an important challenge is developing advanced embrittlement models for low fl ux-high fl uence conditions pertinent to extended life. These new models must also provide better treatment of key variables and variable combinations and account for possible delayed formation of late blooming phases in low copper steels. Other issues include uncertainties in the compositions of actual vessel steels, methods to predict T attenuation away from the reactor core, verifi cation of the master curve method to directly measure the fracture toughness with small specimens and predicting T for vessel annealing remediation and re-irradiation cycles.

  1. The deterministic prediction of failure of low pressure steam turbine disks

    SciTech Connect

    Liu, Chun; Macdonald, D.D.

    1993-05-01

    Localized corrosion phenomena, including pitting corrosion, stress corrosion cracking, and corrosion fatigue, are the principal causes of corrosion-induced damage in electric power generating facilities and typically result in more than 50% of the unscheduled outages. Prediction of damage, so that repairs and inspections can be made during scheduled outages, could have an enormous impact on the economics of electric power generation. To date, prediction of corrosion damage has been made on the basis of empirical/statistical methods that have proven to be insufficiently robust and accurate to form the basis for the desired inspection/repair protocol. In this paper, we describe a deterministic method for predicting localized corrosion damage. We have used the method to illustrate how pitting corrosion initiates stress corrosion cracking (SCC) for low pressure steam turbine disks downstream of the Wilson line, where a thin condensed liquid layer exists on the steel disk surfaces. Our calculations show that the SCC initiation and propagation are sensitive to the oxygen content of the steam, the environment in the thin liquid condensed layer, and the stresses that the disk experiences in service.

  2. Analytical Evaluation of Drop Tests Performed on Nine 18-Inch Diameter Standardized DOE Spent Nuclear Fuel Canisters

    SciTech Connect

    Snow, Spencer David; Morton, Dana Keith; Rahl, Tommy Ervin; Ware, Arthur Gates; Smith, Nancy Lynn

    2000-07-01

    During fiscal year 1999, a total of nine 18-inch diameter test canisters were fabricated at the Idaho National Engineering & Environmental Laboratory (INEEL) to represent the standardized Department of Energy (DOE) Spent Nuclear Fuel (SNF) canister design. Various "worst case" internal loadings were incorporated. Seven of the test canisters were 15-foot long and weighed approximately 6000 pounds, while two were 10-foot long and weighed 3000 and 3800 pounds. Seven of the test canisters were dropped from thirty feet onto an essentially unyielding flat surface and one of the test canisters was dropped from 40-inches onto a 6-inch diameter puncture post. The final test canister was dropped from 24 inches onto a 2-inch thick vertically oriented steel plate, and then tipped over to impact another 2-inch thick vertically oriented steel plate. This last test was attempting to represent a canister dropping onto another larger container such as a repository disposal container. All drop testing was performed at Sandia National Laboratory (SNL). The nine test canisters experienced varying degrees of damage to their skirts, lifting rings, and pressure boundary components (heads and main body). However, all of the canisters were shown to have maintained their pressure boundary (through pressure testing), and the four worst damaged canisters were also shown to be leaktight (via helium leak testing performed at the INEEL). Pre-drop and post-drop test canister finite element modeling was performed at the INEEL in support of the canister drop test program. All model evaluations were performed using the ABAQUS/Explicit software. The finite element models representing the test canisters accurately (though at times, slightly conservatively) predicted the actual test canister responses during the defined drop events.This paper will discuss highlights of the drop testing program and will give detailed comparisons of analysis versus actual test results.

  3. Experimental evaluation of a mathematical model for predicting transfer efficiency of a high volume-low pressure air spray gun.

    PubMed

    Tan, Y M; Flynn, M R

    2000-10-01

    The transfer efficiency of a spray-painting gun is defined as the amount of coating applied to the workpiece divided by the amount sprayed. Characterizing this transfer process allows for accurate estimation of the overspray generation rate, which is important for determining a spray painter's exposure to airborne contaminants. This study presents an experimental evaluation of a mathematical model for predicting the transfer efficiency of a high volume-low pressure spray gun. The effects of gun-to-surface distance and nozzle pressure on the agreement between the transfer efficiency measurement and prediction were examined. Wind tunnel studies and non-volatile vacuum pump oil in place of commercial paint were used to determine transfer efficiency at nine gun-to-surface distances and four nozzle pressure levels. The mathematical model successfully predicts transfer efficiency within the uncertainty limits. The least squares regression between measured and predicted transfer efficiency has a slope of 0.83 and an intercept of 0.12 (R2 = 0.98). Two correction factors were determined to improve the mathematical model. At higher nozzle pressure settings, 6.5 psig and 5.5 psig, the correction factor is a function of both gun-to-surface distance and nozzle pressure level. At lower nozzle pressures, 4 psig and 2.75 psig, gun-to-surface distance slightly influences the correction factor, while nozzle pressure has no discernible effect. PMID:11036729

  4. Dynamic Arterial Elastance in Predicting Arterial Pressure Increase After Fluid Challenge During Robot-Assisted Laparoscopic Prostatectomy

    PubMed Central

    Seo, Hyungseok; Kong, Yu-Gyeong; Jin, Seok-Joon; Chin, Ji-Hyun; Kim, Hee-Yeong; Lee, Yoon-Kyung; Hwang, Jai-Hyun; Kim, Young-Kug

    2015-01-01

    Abstract During robot-assisted laparoscopic prostatectomy, specific physiological conditions such as carbon dioxide insufflation and the steep Trendelenburg position can alter the cardiac workload and cerebral hemodynamics. Inadequate arterial blood pressure is associated with hypoperfusion, organ damage, and poor outcomes. Dynamic arterial elastance (Ea) has been proposed to be a useful index of fluid management in hypotensive patients. We therefore evaluated whether dynamic Ea can predict a mean arterial pressure (MAP) increase ≥ 15% after fluid challenge during pneumoperitoneum and the steep Trendelenburg position. We enrolled 39 patients receiving robot-assisted laparoscopic prostatectomy. Fluid challenge was performed with 500 mL colloids in the presence of preload-dependent conditions and arterial hypotension. Patients were classified as arterial pressure responders or arterial pressure nonresponders according to whether they showed an MAP increase ≥15% after fluid challenge. Dynamic Ea was defined as the ratio between the pulse pressure variation and stroke volume variation. Receiver operating characteristic curve analysis was performed to assess the arterial pressure responsiveness after fluid challenge during robot-assisted laparoscopic prostatectomy. Of the 39 patients, 17 were arterial pressure responders and 22 were arterial pressure nonresponders. The mean dynamic Ea before fluid challenge was significantly higher in arterial pressure responders than in arterial pressure nonresponders (0.79 vs 0.61, P < 0.001). In receiver operating characteristic curve analysis, dynamic Ea showed an area under the curve of 0.810. The optimal cut-off value of dynamic Ea for predicting an MAP increase of ≥ 15% after fluid challenge was 0.74. Dynamic Ea can predict an MAP increase ≥ 15% after fluid challenge during robot-assisted laparoscopic prostatectomy. This result suggests that evaluation of arterial pressure responsiveness using dynamic Ea helps to

  5. Generalized Charts for Determination of Pressure Drop of a High-speed Compressible Fluid in Heat-exchanger Passages I : Air Heated in Smooth Passages of Constant Area with Constant Wall Temperature

    NASA Technical Reports Server (NTRS)

    Valerino, Michael F

    1948-01-01

    In the present paper an analysis is made of the compressible-flow variations occurring in heat-exchanger passages. The results of the analysis describe the flow and heating characteristics for which specific flow passages can be treated as segments of generalized flow systems. The graphical representation of the flow variations in the generalized flow systems can then be utilized as working charts to determine directly the pressure changes occurring in any specific flow passage. On the basis of these results, working charts are constructed to handle the case of air heated at constant wall temperature under turbulent-flow conditions. A method is given of incorporating the effect on the heat-exchanger flow process of high temperature differential between passage wall and fluid as based on recent NACA experimental data. Good agreement is obtained between the experimental and the chart pressure-drop values for passage-wall average temperatures as high as 1752 degrees R (experimental limit) and for flow Mach numbers ranging from 0.32 to 1.00 (choke) at the passage exit.

  6. Mathematical modeling to predict the sub-bandage pressure on a conical limb for multi-layer bandaging.

    PubMed

    Sikka, M P; Ghosh, S; Mukhopadhyay, A

    2016-09-01

    The effectiveness of the compression treatment by a medical compression bandage is dependent on the pressure generated at the interface between the bandage and the skin. This pressure is called interface pressure or sub-bandage pressure. The performance of a bandage depends upon the level of interface pressure applied by the bandage and the sustenance of this pressure over time. The interface pressure exerted by the bandage depends on several other factors like limb shape or size, application technique, physical and structural properties of the bandage, physical activities taken by the patient, etc. The current understanding of how bandages apply pressure to a limb is based on the Law of Laplace, which states that tension in the walls of a container is dependent on both the pressure of the container's content and its radius. This concept was translated mathematically into equation relating pressure to tension and radius by Thomas. In addition, a modified equation was generated by multiplying the model with a constant that represents the number of bandage layers in order to use the model to estimate the pressure applied by multi-layer bandages. This simple multiplication adjustment was questioned by researchers. They had doubts about the model validity and whether it can be used to predict the sub-bandage pressure applied by pressure garments. One of the questions that were raised regarding the bandage thickness affecting the sub-bandage pressure has been recently explored by Al Khaburi where he used the thin and thick cylinder shell theory to study the effect of Multi Component Bandage's (MCB) thickness on the sub-bandage pressure. The model by Al Khaburi and the earlier models developed for pressure prediction are all based on calculations considering the cylindrical limb shapes although the human limb normally is wider at the calf and reduces in circumference towards the ankle. So in our approach, the bandage is assumed to take a conical shape during application

  7. Development of a simple model for predicting the spark-induced bubble behavior under different ambient pressures

    NASA Astrophysics Data System (ADS)

    Zhang, L. C.; Zhu, X. L.; Huang, Y. F.; Liu, Z.; Yan, K.

    2016-07-01

    In this paper, a simple model was developed to predict the dynamics of a spark-induced bubble under different ambient pressures. This work helps in developing a deep-towed plasma sparker, as the model can predict the dynamics of bubbles subjected to very high ambient pressures (about 20 MPa) which normally are difficult to obtain experimentally. Experimental results indicate that the maximum bubble radius for a fixed discharge energy decreases as a power-law function of the ambient pressure up to 1.0 MPa; the bubble period also decreases quickly with increasing ambient pressure. For a constant value of the ratio of bubble energy to discharge energy, the modeling results for both maximum radius and bubble period are in good agreement with the experimental results. Both sets of results indicate that the bubble period is proportional to the maximum radius under different ambient pressures.

  8. Validation of airway resistance models for predicting pressure loss through anatomically realistic conducting airway replicas of adults and children.

    PubMed

    Borojeni, Azadeh A T; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2015-07-16

    This work describes in vitro measurement of the total pressure loss at varying flow rate through anatomically realistic conducting airway replicas of 10 children, 4 to 8 years old, and 5 adults. Experimental results were compared with analytical predictions made using published airway resistance models. For the adult replicas, the model proposed by van Ertbruggen et al. (2005. J. Appl. Physiol. 98, 970-980) most accurately predicted central conducting airway resistance for inspiratory flow rates ranging from 15 to 90 L/min. Models proposed by Pedley et al. (1970. J. Respir. Physiol. 9, 371-386) and by Katz et al. (2011. J. Biomech. 44, 1137-1143) also provided reasonable estimates, but with a tendency to over predict measured pressure loss for both models. For child replicas, the Pedley and Katz models both provided good estimation of measured pressure loss at flow rates representative of resting tidal breathing, but under predicted measured values at high inspiratory flow rate (60 L/min). The van Ertbruggen model, developed based on flow simulations performed in an adult airway model, tended to under predict measured pressure loss through the child replicas across the range of flow rates studied (2 to 60 L/min). These results are intended to provide guidance for selection of analytical pressure loss models for use in predicting airway resistance and ventilation distribution in adults and children.

  9. Predicting physical stability in pressurized metered dose inhalers via dwell and instantaneous force colloidal probe microscopy.

    PubMed

    D'Sa, Dexter; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-09-01

    Colloidal probe microscopy (CPM) is a quantitative predictive tool, which can offer insight into particle behavior in suspension pressurized metered dose inhalers (pMDIs). Although CPM instantaneous force measurements, which involve immediate retraction of the probe upon sample contact, can provide information on inter-particle attractive forces, they lack the ability to appropriately imitate all critical particle pMDI interactions (e.g., particle re-dispersion after prolonged pMDI storage). In this paper, two novel dwell force techniques - indentation and deflection dwell - were employed to mimic long-term particle interactions present in pMDIs, using particles of various internal structures and a model liquid propellant (2H,3H perfluoropentane) as a model system. Dwell measurements involve particle contact for an extended period of time. In deflection dwell mode the probe is held at a specific position, while in indentation dwell mode the probe is forced into the sample with a constant force for the entirety of the contact time. To evaluate the applicability of CPM to predict actual pMDI physical stability, inter-particle force measurements were compared with qualitative and quantitative bulk pMDI measurement techniques (visual quality and light scattering). Measured instantaneous attractive (snap-in) and adhesive (max-pull) forces decreased as a function of increasing surface area, while adhesive forces measured by indentation dwell decreased as a function of dwell contact time for particles containing voids. Instantaneous force measurements provided information on the likelihood of floccule formation, which was predictive of partitioning rates, while indentation dwell force measurements were predictive of formulation re-dispersibility after prolonged storage. Dwell force measurements provide additional information on particle behavior within a pMDI not obtainable via instantaneous measurements. PMID:25058596

  10. Effects of pressure on the structure of metmyoglobin: molecular dynamics predictions for pressure unfolding through a molten globule intermediate.

    PubMed Central

    Floriano, W. B.; Nascimento, M. A.; Domont, G. B.; Goddard, W. A.

    1998-01-01

    We investigated the pathway for pressure unfolding of metmyoglobin using molecular dynamics (MD) for a range of pressures (0.1 MPa to 1.2 GPa) and a temperature of 300 K. We find that the unfolding of metmyoglobin proceeds via a two-step mechanism native --> molten globule intermediate --> unfolded, where the molten globule forms at 700 MPa. The simulation describes qualitatively the experimental behavior of metmyoglobin under pressure. We find that unfolding of the alpha-helices follows the sequence of migrating hydrogen bonds (i,i + 4) --> (i,i + 2). PMID:9827996

  11. Youth Crime Drop. Report.

    ERIC Educational Resources Information Center

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  12. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  13. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  14. Modeling pollen tube growth: feeling the pressure to deliver testifiable predictions.

    PubMed

    Kroeger, Jens; Geitmann, Anja

    2011-11-01

    The frequency and amplitude of oscillatory pollen tube growth can be altered by changing the osmotic value of the surrounding medium. This has motivated the proposition that the periodic change in growth velocity is caused by changes in turgor pressure. Using mathematical modeling we recently demonstrated that the oscillatory pollen tube growth does not require turgor to change but that this behavior can be explained with a mechanism that relies on changes in the mechanical properties of the cell wall which in turn are caused by temporal variations in the secretion of cell wall precursors. The model also explains why turgor and growth rate are correlated for oscillatory growth with long growth cycles while they seem uncorrelated for oscillatory growth with short growth cycles. The predictions made by the model are testifiable by experimental data and therefore represent an important step towards understanding the dynamics of the growth behavior in walled cells.

  15. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.

  16. Theoretical Prediction of Sauter Mean Diameter for Pressure-Swirl Atomizers through Integral Conservation Methods

    NASA Astrophysics Data System (ADS)

    Moradi, Ali

    A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.

  17. Prediction of magnetic moment collapse in ZrFe{sub 2} under hydrostatic pressure

    SciTech Connect

    Zhang, Wenxu; Zhang, Wanli

    2015-04-28

    Electronic structure and magnetic properties of ZrFe{sub 2} in the cubic Laves phase are investigated by calculations based on density functional theory. The magnetic moment decreases with the increase of the hydrostatic pressure in an unusual way: Two-step magnetic collapse is predicted. The first one is a continuous change from 1.53 μ{sub B}/Fe to 0.63 μ{sub B}/Fe at about 3.6 GPa, and the other is from 0.25 μ{sub B}/Fe to the nonmagnetic state at about 15 GPa in a first order manner under the local spin density approximation of the exchange correlation potential. A metastable state with intermediate spin moment about 0.15 μ{sub B}/Fe may exist before that. We understand this process by the changes of density of states during it. The magnetic moment decreases under the pressure in the vicinity of the experimental lattice constant with dlnm/dp=−0.038 GPa{sup −1}. The spontaneous volume magnetostriction is 3.6%, which is huge enough to find potential applications in magnetostriction actuators and sensors. We suggest that the Invar effect of this compound may be understood when considering the magnetic moment variation according to the magnetostrictive model of Invar.

  18. Prediction of a potential high-pressure structure of FeSiO3

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Lin, Yangzheng

    2014-10-01

    We predict a candidate high-temperature, high-pressure structure of FeSiO3 with space-group symmetry Cmmm by applying an evolutionary algorithm within density functional theory (DFT)+U that we call post-perovskite II (PPv-II). An exhaustive search found no other competitive candidate structures with ABO3 composition. We compared the x-ray diffraction pattern of FeSiO3 PPv-II with experimental results of the recently reported "H phase" of (Fe,Mg)SiO3. The intensities and positions of two main x-ray diffraction peaks of PPv-II FeSiO3 compare well with those of the H phase. We also calculated the static equation of state, the enthalpy, and the bulk modulus of the PPv-II phase and compared it with those of the perovskite (Pv) and post-perovskite (PPv) phases of FeSiO3. According to the static DFT+U computations, the PPv-II phase of FeSiO3 is less stable than the Pv and PPv phases under lower mantle pressure conditions at T =0 K and has a higher volume. PPv-II may be entropically stabilized, and may be a stable phase in Earth's lower mantle, coexisting with -PbO2 (columbite-structure) silica and perovskite, or with magnesiowustite and/or ferropericlase, depending on the bulk composition.

  19. Predicting Pressure Profiles of Cement Columns in Oil Wells Using a Thixotropic Model

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael; Marchesini, Flávio

    2014-11-01

    It is important to the oil and gas industry to provide proper well-bore isolation from the surrounding porous formations. This can be aided by predicting and preventing formation fluid invasion after primary cementing an oil well. In that regard, this work investigates the downhole pressure profile of a cement column placed in the annular space between the casing and the formation. The developed model takes into account the influence of (i) fluid loss to the geological formation, (ii) thixotropy and structure development during gelation, and (iii) compressibility and shrinkage of the cement slurry. This is a one-dimensional model where shear rates are estimated by the downhole velocity of the cement slurry and the annular distance. The thixotropic model recently proposed by de Souza Mendes and Thompson (Rheologica Acta, 2013) is used to calculate shear stresses, which are then plugged into the momentum equation. This equation is coupled with an equation for pressure evolution derived from mass balance and compressibility considerations. The model is under validation against large-scale cementing experiments, and application to current oil field data show promising results.

  20. Spent Nuclear Fuel (SNF) Bounding Drop Support Calculations

    SciTech Connect

    CHENAULT, D.M.

    1999-11-16

    This report evaluates different drop heights, concrete and other impact media to which the transport package and/or the MCO is dropped. A prediction method is derived for estimating the resultant impact factor for determining the bounding drop case for the SNF Project.

  1. Variables Affecting Students' Decisions to Drop Out of School

    ERIC Educational Resources Information Center

    Dunn, Caroline; Chambers, Dalee; Rabren, Karen

    2004-01-01

    This study examined factors predictive of dropping out of high school for students with learning disabilities (LD) and mental retardation (MR). The sample was composed of 228 students with LD or MR who dropped out of school and 228 students with LD or MR who had not dropped out. Two sets of pre- dictor variables (student demographics and interview…

  2. Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Nennemann, B.; Morissette, J. F.; Chamberland-Lauzon, J.; Monette, C.; Braun, O.; Melot, M.; Coutu, A.; Nicolle, J.; Giroux, A. M.

    2014-03-01

    Some of the potentially most damaging continuous operating conditions for hydraulic turbines are the no-load (NL) conditions. At NL conditions the flow passes through the turbine without power generation, but with non-negligible flow rate, and therefore all the potential energy in the flow has to be dissipated. This takes place through a mechanism where the runner channels are partially pumping, thus generating large scale unsteady vortex structures which, by their nature, break down into smaller and smaller vortices until energy dissipation occurs at the smallest scales. This type of flow, dominated by its turbulent character, is inherently difficult to simulate by means of numerical methods since turbulence model and numerical dissipation have a major influence. The resulting dynamic loads on the runner are largely of stochastic nature, exciting a broad band of frequencies and thus, almost always interact with at least one deformation mode. The presented investigations are aimed at predicting the effect of the unsteady NL pressure loads on the fatigue life of a Francis turbine runner. A combination of computational fluid dynamics (CFD) and finite element analysis (FEA) methods has been employed. The results from transient CFD simulations are presented. Comparison of the results with prototype strain gauge measurements at no load conditions shows that the stochastic nature and the approximate range of the dynamic stresses can be predicted.

  3. On the prediction of free turbulent jets with swirl using a quadratic pressure-strain model

    NASA Technical Reports Server (NTRS)

    Younis, Bassam A.; Gatski, Thomas B.; Speziale, Charles G.

    1994-01-01

    Data from free turbulent jets both with and without swirl are used to assess the performance of the pressure-strain model of Speziale, Sarkar and Gatski which is quadratic in the Reynolds stresses. Comparative predictions are also obtained with the two versions of the Launder, Reece and Rodi model which are linear in the same terms. All models are used as part of a complete second-order closure based on the solution of differential transport equations for each non-zero component of the Reynolds stress tensor together with an equation for the scalar energy dissipation rate. For non-swirling jets, the quadratic model underestimates the measured spreading rate of the plane jet but yields a better prediction for the axisymmetric case without resolving the plane jet/round jet anomaly. For the swirling axisymmetric jet, the same model accurately reproduces the effects of swirl on both the mean flow and the turbulence structure in sharp contrast with the linear models which yield results that are in serious error. The reasons for these differences are discussed.

  4. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.

    2016-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (S?A) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is ?0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.

  5. Predicting Strong Ground-Motion Seismograms for Magnitude 9 Cascadia Earthquakes Using 3D Simulations with High Stress Drop Sub-Events

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.

    2015-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.

  6. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.

    2004-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.

  7. Failure behavior of internally pressurized flawed and unflawed steam generator tubing at high temperatures -- Experiments and comparison with model predictions

    SciTech Connect

    Majumdar, S.; Shack, W.J.; Diercks, D.R.; Mruk, K.; Franklin, J.; Knoblich, L.

    1998-03-01

    This report summarizes experimental work performed at Argonne National Laboratory on the failure of internally pressurized steam generator tubing at high temperatures ({le} 700 C). A model was developed for predicting failure of flawed and unflawed steam generator tubes under internal pressure and temperature histories postulated to occur during severe accidents. The model was validated by failure tests on specimens with part-through-wall axial and circumferential flaws of various lengths and depths, conducted under various constant and ramped internal pressure and temperature conditions. The failure temperatures predicted by the model for two temperature and pressure histories, calculated for severe accidents initiated by a station blackout, agree very well with tests performed on both flawed and unflawed specimens.

  8. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  9. Liquid Metal Drop Impingement

    NASA Astrophysics Data System (ADS)

    Che, Judy; Han, Jaehoon; Tryggvason, Gretar; Ceccio, Steven

    1996-11-01

    "Ballistic Partical Manufacturing" is a process in which individual drops are layered to form a part. We examine how metal drops deform and solidify, and how the solidification rate affects the material microstructure using both numerical simulations and experiments. A single set of equations governing the conservation of mass, energy, and momentum are written for all phases involved, and the phase boundary is treated as an imbedded interface by adding the appropriate source terms. We have simulated single drops colliding with a surface using a simple model which assumes that a melt solidifies below the melting point. Although simple, this model captures many aspects of the fluid flow and solidification. The experimental apparatus creates a single drop of prescribed size and propels it toward a cooled substrate. Favorable comparisons of experimental and numerical results have been achieved.

  10. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  11. Blood pressure but not parental history for hypertension predicts pain perception in women.

    PubMed

    al'Absi, M; Petersen, K L; Wittmers, L E

    2000-10-01

    Previous work has suggested an attenuated sensitivity to painful stimulation in hypertensive men. We recently reported that, compared with persons with negative parental history, men, but not women, with a positive history for hypertension showed attenuated pain perception. This study specifically addressed factors that predict pain perception in women, including blood pressure, parental history and mood states. Fifty-four normotensive women with positive (PH+; n = 20) or negative parental history (PH-; n = 34) for hypertension and high or low casual systolic blood pressure (BP) performed the cold pressor (CP) test. Participants rated their pain every 15 s during a 90-s hand CP (0-4 degrees C) and a 90-s post-CP rest period. Detailed mood ratings were obtained immediately before the CP test. Data were evaluated using multivariate repeated measure analyses of variance and regression analyses. PH+ and PH- women did not differ in age, height, weight, education, resting BP, or heart rate. PH+ and PH- women did not differ in pain ratings during or after the CP, or pain ratings using the McGill Pain Questionnaire (MPQ), and they did not differ in their cardiovascular responses to the CP, confirming our earlier study in a separate sample. Women with high casual systolic BP reported significantly less pain, especially after the CP (P < 0.01). MPQ total scores confirmed this finding with high BP women reporting less pain than low BP women (P < 0.05). Regression analyses confirmed these effects. Controlling for potential confounding variables did not alter these relationships. These findings suggest that in women, phenotype systolic BP may be a better predictor of hypoalgesia than parental history of hypertension.

  12. A new phase of ThC at high pressure predicted from a first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, Yongliang; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Han, Han; Ren, Cuilan; Zhu, Zhiyuan

    2015-08-01

    The phase transition of thorium monocarbide (ThC) at high pressure has been studied by means of density functional theory. Through structure search, a new phase with space group P 4 / nmm has been predicted. The calculated phonons demonstrate that this new phase and the previous B2 phase are dynamically stable as the external pressure is greater than 60 GPa and 120 GPa, respectively. The transformation from B1 to P 4 / nmm is predicted to be a first-order transition, while that from P 4 / nmm to B2 is found to be a second-order transition.

  13. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  14. Quantitative method for analysis of monensin in soil, water, and urine by direct combination of single-drop microextraction with atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Sekar, Ramaiyan; Wu, Hui-Fen

    2006-09-15

    A simple and selective analytical method for the quantitative determination of low concentrations of monensin in soil, surface water, and human urine has been developed. Prior to atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) analysis, the samples were preconcentrated by using the single-drop microextraction (SDME) technique. Several factors that affect the analyte's extraction, including selection of solvent, microdrop volume, extraction time, and ionic strength, were investigated. Chloroform-toluene (1:1, v/v) was selected as the extraction solvent. Reliable results were obtained using dibenzo-30-crown-10-ether as an internal standard. The proposed method has been successfully applied for the determination of monensin in soil, surface water, and human urine spiked samples. Under the optimized conditions, the limits of quantification of the analyte in surface water, soil, and human urine were 6.7, 12.4 and 7.8 ng/mL, respectively. The intraday and interday precision variation and accuracy of the present method is within the acceptable ranges. The present method avoids the pre- and postderivatization of weak UV absorbing monensin determination using high performance liquid chromatography-ultraviolet detection (HPLC-UV). Furthermore, these techniques are time-consuming, nonreproducible at trace levels, and form undesirable products. The proposed SDME combined with AP-MALDI-MS is simple, fast, and selective for the determination of monensin in environmental and urine samples.

  15. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  16. Predictive power of the Braden scale for pressure sore risk in adult critical care patients: a comprehensive review.

    PubMed

    Cox, Jill

    2012-01-01

    Critical care is designed for managing the sickest patients within our healthcare system. Multiple factors associated with an increased likelihood of pressure ulcer development have been investigated in the critical care population. Nevertheless, there is a lack of consensus regarding which of these factors poses the greatest risk for pressure ulceration. While the Braden scale for pressure sore risk is the most commonly used tool for measuring pressure ulcer risk in the United States, research focusing on the cumulative Braden Scale score and subscale scores is lacking in the critical care population. This author conducted a literature review on pressure ulcer risk assessment in the critical care population, to include the predictive value of both the total score and the subscale scores. In this review, the subscales sensory perception, mobility, moisture, and friction/shear were found to be associated with an increased likelihood of pressure ulcer development; in contrast, the Activity and Nutrition subscales were not found to predict pressure ulcer development in this population. In order to more precisely quantify risk in the critically ill population, modification of the Braden scale or development of a critical care specific risk assessment tool may be indicated.

  17. Drop impact on solid surface: Short time self-similarity

    NASA Astrophysics Data System (ADS)

    Philippi, Julien; Lagrée, Pierre-Yves; Antkowiak, Arnaud

    2014-11-01

    Drop impact on a solid surface is a problem with many industrial or environmental applications. Many studies focused on the last stages of this phenomenon as spreading or splashing. In this study we are interested in the early stages of drop impact on solid surface. Inspired by Wagner theory developed by water entry community we shown the self-similar structure of the velocity field and the pressure field. The latter is shown to exhibit a maximum not near the impact point, but rather at the contact line. The motion of the contact line is furthermore shown to exhibit a transition from ``tank treading'' motion to pure sweeping when the lamella appears. We performed numerical simulations with the open-cource code Gerris which are in good agreement with theoretical predictions. Interestingly the inviscid self-similar impact pressure and velocities depend on the self-similar variable r /√{ t} . This allows to construct a seamless uniform analytical solution encompassing both impact and viscous effects. We predict quantitatively observables of interest, such as the evolution of total and maximum viscous shear stresses and net total force. We finally demonstrate that the structure of the flow resembles a stagnation point flow unexpectedly involving r /√{ t} .

  18. Rotating drops of axion dark matter

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha; Schwetz, Thomas

    2016-06-01

    We consider how QCD axions produced by the misalignment mechanism could form galactic dark matter halos. We recall that stationary, gravitationally stable axion field configurations have the size of an asteroid with masses of order 10-13M⊙ (because gradient pressure is insufficient to support a larger object). We call such field configurations "drops." We explore whether rotating drops could be larger, and find that their mass could increase by a factor ˜10 . This mass is comparable to the mass of miniclusters generated from misalignment axions in the scenario where the axion is born after inflation. We speculate that misalignment axions today are in the form of drops, contributing to dark matter like a distribution of asteroids (and not as a coherent oscillating background field). We consider some observational signatures of the drops, which seem consistent with a galactic halo made of axion dark matter.

  19. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  20. Neural Network Prediction of Failure of Damaged Composite Pressure Vessels from Strain Field Data Acquired by a Computer Vision Method

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Lansing, Matthew D.

    1997-01-01

    This effort used a new and novel method of acquiring strains called Sub-pixel Digital Video Image Correlation (SDVIC) on impact damaged Kevlar/epoxy filament wound pressure vessels during a proof test. To predict the burst pressure, the hoop strain field distribution around the impact location from three vessels was used to train a neural network. The network was then tested on additional pressure vessels. Several variations on the network were tried. The best results were obtained using a single hidden layer. SDVIC is a fill-field non-contact computer vision technique which provides in-plane deformation and strain data over a load differential. This method was used to determine hoop and axial displacements, hoop and axial linear strains, the in-plane shear strains and rotations in the regions surrounding impact sites in filament wound pressure vessels (FWPV) during proof loading by internal pressurization. The relationship between these deformation measurement values and the remaining life of the pressure vessels, however, requires a complex theoretical model or numerical simulation. Both of these techniques are time consuming and complicated. Previous results using neural network methods had been successful in predicting the burst pressure for graphite/epoxy pressure vessels based upon acoustic emission (AE) measurements in similar tests. The neural network associates the character of the AE amplitude distribution, which depends upon the extent of impact damage, with the burst pressure. Similarly, higher amounts of impact damage are theorized to cause a higher amount of strain concentration in the damage effected zone at a given pressure and result in lower burst pressures. This relationship suggests that a neural network might be able to find an empirical relationship between the SDVIC strain field data and the burst pressure, analogous to the AE method, with greater speed and simplicity than theoretical or finite element modeling. The process of testing SDVIC

  1. Uric acid levels predict future blood pressure and new onset hypertension in the general Japanese population.

    PubMed

    Takase, H; Kimura, G; Dohi, Y

    2014-09-01

    We tested the hypothesis that uric acid levels predict new-onset hypertension in the Japanese general population. Normotensive individuals who visited our hospital for a yearly health checkup (n=8157, men=61.0% and age=50.7±12.2 years) were enrolled in the present study. After baseline evaluation, participants were followed up for a median of 48.3 months (range 4.9-101.0 months), with the endpoint being the development of hypertension, defined as systolic blood pressure (BP) > or = 140 mm Hg, diastolic BP > or = 90 mm Hg or the use of antihypertensive medication. The impact of uric acid and other cardiovascular risk factors at baseline on future BP and development of hypertension was assessed. During follow-up, 19.0% of women (n=605) and 29.5% of men (n=1469) participants developed hypertension. Incident hypertension was increased across the quartiles for baseline uric acid levels (P<0.0001), and multivariate Cox proportional hazards analysis revealed a significant and independent association between the uric acid level and the onset of hypertension in both men and women participants (P<0.05). Furthermore, uric acid was independently and positively correlated with future BP (P<0.05). Thus, uric acid is an independent predictor of new-onset hypertension in both women and men.

  2. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  3. Identification of pre-operative and intra-operative variables predictive of pressure ulcer development in patients undergoing urologic surgical procedures.

    PubMed

    Connor, Tom; Sledge, Jennifer A; Bryant-Wiersema, Laurel; Stamm, Linda; Potter, Patricia

    2010-01-01

    This study examined variables predictive of pressure ulcers among patients undergoing urologic surgical procedures. Anesthesia duration and total time of the diastolic blood pressure was less than 50 Hgmm were statistically significant predictors. Dynamic pressure-relieving devices are recommended to reduce incidences of pressure ulcer incidence.

  4. A method for predicting full scale buffet response with rigid wind tunnel model fluctuating pressure data. Volume 1: Prediction method development and assessment

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.; Benepe, D. B.; Watts, D.; Waner, P. G.

    1978-01-01

    The method requires unsteady aerodynamic forces, natural airplane modes, and the measured pressure data as input. A gust response computer program is used to calculate buffet response due to the forcing function posed by the measured pressure data. By calculating both symmetric and antisymmetric solutions, upper and lower bounds on full-scale buffet response are formed. Comparisons of predictions with flight test results are made and the effects of horizontal tail loads and static aeroelasticity are shown. Discussions are also presented on the effects of primary wing torsion modes, chordwise and spanwise phase angles, and altitude.

  5. Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: the pressure is on.

    PubMed

    Zurek, Eva; Grochala, Wojciech

    2015-02-01

    Experimental studies of compressed matter are now routinely conducted at pressures exceeding 1 mln atm (100 GPa) and occasionally at pressures greater than 10 mln atm (1 TPa). The structure and properties of solids that have been so significantly squeezed differ considerably from those of solids at ambient pressure (1 atm), often leading to new and unexpected physics. Chemical reactivity is also substantially altered in the extreme pressure regime. In this feature paper we describe how synergy between theory and experiment can pave the road towards new experimental discoveries. Because chemical rules-of-thumb established at 1 atm often fail to predict the structures of solids under high pressure, automated crystal structure prediction (CSP) methods are increasingly employed. After outlining the most important CSP techniques, we showcase a few examples from the recent literature that exemplify just how useful theory can be as an aid in the interpretation of experimental data, describe exciting theoretical predictions that are guiding experiment, and discuss when the computational methods that are currently routinely employed fail. Finally, we forecast important problems that will be targeted by theory as theoretical methods undergo rapid development, along with the simultaneous increase of computational power.

  6. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  7. Pattern formation in drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J.

    2011-01-01

    The drying of a drop of human blood exhibits coupled physical mechanisms, such as Marangoni flow, evaporation and wettability. The final stage of a whole blood drop evaporation reveals regular patterns with a good reproducibility for a healthy person. Other experiments on anaemic and hyperlipidemic people were performed, and different patterns were revealed. The flow motion inside the blood drop is observed and analyzed with the use of a digital camera: the influence of the red blood cells (RBCs) motion is revealed at the drop periphery as well as its consequences on the final stage of drying. The mechanisms which lead to the final pattern of the dried blood drops are presented and explained on the basis of fluid mechanics in conjunction with the principles of haematology. The blood drop evaporation process is evidenced to be driven only by Marangoni flow. The same axisymetric pattern formation is observed, and can be forecast for different blood drop diameters. The evaporation mass flux can be predicted with a good agreement, assuming only the knowledge of the colloids mass concentration.

  8. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  9. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. PMID:25122383

  10. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klapp, Jaime; di G Sigalotti, Leonardo; Troconis, Jorge; Sira, Eloy; Pena, Franklin; ININ-IVIC Team; Cinvestav-UAM-A Team

    2014-11-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of Smoothed Particle Hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. Cinvestav-Abacus.

  11. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  12. Leidenfrost drops on liquid baths: theory

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Rednikov, Alexei; Maquet, Laurent; Darbois-Texier, Baptiste; Duchesne, Alexis; Brandenbourger, Martin; Dorbolo, Stéphane; Colinet, Pierre

    2015-11-01

    It is well known that a liquid drop released over a very hot surface generally does not contact the surface nor boils but rather levitates over a thin vapor film generated by its own evaporation (Leidenfrost effect). In particular, the case of a hot (and flat) solid substrate has been extensively studied in recent years. In contrast, we here focus on Leidenfrost drops over a superheated liquid bath, addressing the problem theoretically and comparing our predictions with experimental results, detailed in a separate talk. We predict the geometry of the drop and of the liquid bath, based on the hydrostatic Young-Laplace and lubrication equations. A good agreement is observed with the available experimental data concerning the deformation of the liquid bath. The modeling also yields a rather complete insight into the shape of the drop. As in the case of a solid substrate, the vapor layer generally appears to be composed of a vapor pocket surrounded by a circular neck. The influences of the superheat and of the drop size are parametrically investigated. A number of scaling laws are established. Unlike the case of a solid substrate, no chimney instability was found in the range of drop size studied.

  13. How do drops evaporate?

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou

    2007-11-01

    The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

  14. Outcome Prediction for Patients with Traumatic Brain Injury with Dynamic Features from Intracranial Pressure and Arterial Blood Pressure Signals: A Gaussian Process Approach.

    PubMed

    Pimentel, Marco A F; Brennan, Thomas; Lehman, Li-Wei; King, Nicolas Kon Kam; Ang, Beng-Ti; Feng, Mengling

    2016-01-01

    Previous work has been demonstrated that tracking features describing the dynamic and time-varying patterns in brain monitoring signals provide additional predictive information beyond that derived from static features based on snapshot measurements. To achieve more accurate predictions of outcomes of patients with traumatic brain injury (TBI), we proposed a statistical framework to extract dynamic features from brain monitoring signals based on the framework of Gaussian processes (GPs). GPs provide an explicit probabilistic, nonparametric Bayesian approach to metric regression problems. This not only provides probabilistic predictions, but also gives the ability to cope with missing data and infer model parameters such as those that control the function's shape, noise level and dynamics of the signal. Through experimental evaluation, we have demonstrated that dynamic features extracted from GPs provide additional predictive information in addition to the features based on the pressure reactivity index (PRx). Significant improvements in patient outcome prediction were achieved by combining GP-based and PRx-based dynamic features. In particular, compared with the a baseline PRx-based model, the combined model achieved over 30 % improvement in prediction accuracy and sensitivity and over 20 % improvement in specificity and the area under the receiver operating characteristic curve.

  15. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  16. Incremental predictive value of adding past blood pressure measurements to the Framingham hypertension risk equation: the Whitehall II Study.

    PubMed

    Kivimäki, Mika; Tabak, Adam G; Batty, G David; Ferrie, Jane E; Nabi, Hermann; Marmot, Michael G; Witte, Daniel R; Singh-Manoux, Archana; Shipley, Martin J

    2010-04-01

    Records of repeated examinations of blood pressure are increasingly available for primary care patients, but the use of this information in predicting incident hypertension remains unclear, because cohort studies with repeat blood pressure monitoring are rare. We compared the incremental value of using data on blood pressure history to a single measure as in the Framingham hypertension risk score, a validated hypertension risk prediction algorithm. Participants were 4314 London-based civil servants (1297 women) aged 35 to 68 years who were free from prevalent hypertension, diabetes mellitus, and coronary heart disease at baseline examination (the Whitehall II Study). Standard clinical examinations of blood pressure, weight and height, current cigarette smoking, and parental history of hypertension were undertaken on a 5-year basis. A total of 1052 incident (new-onset) cases of hypertension were observed in two 5-year baseline follow-up data cycles. Comparison of the Framingham risk score with a score additionally incorporating 5-year blood pressure history showed, at best, modest improvements in indicators of predictive performance: C statistics (0.796 versus 0.799), predicted:observed ratios (1.04 [95% CI: 0.95 to 1.15] versus 0.98 [95% CI: 0.89 to 1.08]), or Hosmer-Lemeshow chi(2) values (11.5 versus 6.5). The net reclassification improvement with the modified score was 9.3% (95% CI: 4.2% to 14.4%), resulting from a net 17.1% increase in nonhypertensives correctly identified as being at lower risk but a net 7.8% increase in hypertensives incorrectly identified as at lower risk. These data suggest that, despite the net reclassification improvement, the clinical use of adding repeat measures of blood pressure to the Framingham hypertension risk score may be limited.

  17. Dynamics of liquid drops coalescing in the inertial regime.

    PubMed

    Sprittles, James E; Shikhmurzaev, Yulii D

    2014-06-01

    We examine the dynamics of two coalescing liquid drops in the "inertial regime," where the effects of viscosity are negligible and the propagation of the front of the bridge connecting the drops can be considered as "local." The solution fully computed in the framework of classical fluid mechanics allows this regime to be identified, and the accuracy of the approximating scaling laws proposed to describe the propagation of the bridge to be established. It is shown that the scaling law known for this regime has a very limited region of accuracy, and, as a result, in describing experimental data it has frequently been applied outside its limits of applicability. The origin of the scaling law's shortcoming appears to be the fact that it accounts for the capillary pressure due only to the longitudinal curvature of the free surface as the driving force for the process. To address this deficiency, the scaling law is extended to account for both the longitudinal and azimuthal curvatures at the bridge front, which, fortuitously, still results in an explicit analytic expression for the front's propagation speed. This expression is shown to offer an excellent approximation for both the fully computed solution and for experimental data from a range of flow configurations for a remarkably large proportion of the coalescence process. The derived formula allows one to predict the speed at which drops coalesce for the duration of the inertial regime, which should be useful for the analysis of experimental data. PMID:25019880

  18. Comparison of experimental surface pressures with theoretical predictions on twin two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Pendergraft, O. C., Jr.; Burley, J. R., II

    1986-01-01

    A three-dimensional subsonic aerodynamic panel code (VSAERO) was used to predict the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle pressure coefficient distributions and external nozzle drag of nonaxisymmetric convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine high performance aircraft model. Nozzle static pressure coefficient distributions along the upper and lower surfaces near the model centerline and near the outer edges (corner) of the two surfaces were calculated, and nozzle drag was predicted using these surface pressure distributions. A comparison between the theoretical predictions and experimental wind tunnel data is made to evaluate the utility of the code in calculating the flow about these types of non-axisymmetric afterbody configurations. For free-stream Mach numbers of 0.60 and 0.90, the conditions where the flows were attached on the boattails yielded the best comparison between the theoretical predictions and the experimental data. For the Boattail terminal angles of greater than 15 deg., the experimental data for M = 0.60 and 0.90 indicated areas of separated flow, so the theoretical predictions failed to match the experimental data. Even though calculations of regions of separated flows are within the capabilities of the theoretical method, acceptable solutions were not obtained.

  19. Pore Pressure prediction in shale gas reservoirs using neural network and fuzzy logic with an application to Barnett Shale.

    NASA Astrophysics Data System (ADS)

    Aliouane, Leila; Ouadfeul, Sid-Ali; Boudella, Amar

    2015-04-01

    The main goal of the proposed idea is to use the artificial intelligence such as the neural network and fuzzy logic to predict the pore pressure in shale gas reservoirs. Pore pressure is a very important parameter that will be used or estimation of effective stress. This last is used to resolve well-bore stability problems, failure plan identification from Mohr-Coulomb circle and sweet spots identification. Many models have been proposed to estimate the pore pressure from well-logs data; we can cite for example the equivalent depth model, the horizontal model for undercompaction called the Eaton's model…etc. All these models require a continuous measurement of the slowness of the primary wave, some thing that is not easy during well-logs data acquisition in shale gas formtions. Here, we suggest the use the fuzzy logic and the multilayer perceptron neural network to predict the pore pressure in two horizontal wells drilled in the lower Barnett shale formation. The first horizontal well is used for the training of the fuzzy set and the multilayer perecptron, the input is the natural gamma ray, the neutron porosity, the slowness of the compression and shear wave, however the desired output is the estimated pore pressure using Eaton's model. Data of another horizontal well are used for generalization. Obtained results clearly show the power of the fuzzy logic system than the multilayer perceptron neural network machine to predict the pore pressure in shale gas reservoirs. Keywords: artificial intelligence, fuzzy logic, pore pressure, multilayer perecptron, Barnett shale.

  20. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.