Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J
2012-11-01
Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.
Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.
2012-01-01
Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856
Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulin Deng; Art Ragauskas
Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The secondmore » method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.« less
NASA Technical Reports Server (NTRS)
Jones, Steven M.; Paik, Jong-Ah
2013-01-01
A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.
Key composition optimization of meat processed protein source by vacuum freeze-drying technology.
Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun
2018-05-01
Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.
Bonding of Resin Cement to Zirconia with High Pressure Primer Coating
Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua
2014-01-01
Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678
Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca
2015-04-01
According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results.
Chouvenc, P; Vessot, S; Andrieu, J; Vacus, P
2005-01-01
The principal aim of this study is to extend to a pilot freeze-dryer equipped with a non-instantaneous isolation valve the previously presented pressure rise analysis (PRA) model for monitoring the product temperature and the resistance to mass transfer of the dried layer during primary drying. This method, derived from the original MTM method previously published, consists of interrupting rapidly (a few seconds) the water vapour flow from the sublimation chamber to the condenser and analysing the resulting dynamics of the total chamber pressure increase. The valve effect on the pressure rise profile observed during the isolation valve closing period was corrected by introducing in the initial PRA model a valve characteristic function factor which turned out to be independent of the operating conditions. This new extended PRA model was validated by implementing successively the two types of valves and by analysing the pressure rise kinetics data with the corresponding PRA models in the same operating conditions. The coherence and consistency shown on the identified parameter values (sublimation front temperature, dried layer mass transfer resistance) allowed validation of this extended PRA model with a non-instantaneous isolation valve. These results confirm that the PRA method, with or without an instantaneous isolation valve, is appropriate for on-line monitoring of product characteristics during freeze-drying. The advantages of PRA are that the method is rapid, non-invasive, and global. Consequently, PRA might become a powerful and promising tool not only for the control of pilot freeze-dryers but also for industrial freeze-dryers equipped with external condensers.
Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J
2006-01-01
The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the "vial method." The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (DeltaT; 2 degrees C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with DeltaT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and "vial-method" resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few "warm" edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of DeltaT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.
Mittmann, Philipp; Ernst, A; Mittmann, M; Todt, I
2016-11-01
To preserve residual hearing in cochlear implant candidates, the atraumatic insertion of the cochlea electrode has become a focus of cochlea implant research. In a previous study, intracochlear pressure changes during the opening of the round window membrane were investigated. In the current study, intracochlear pressure changes during opening of the round window membrane under dry and transfluid conditions were investigated. Round window openings were performed in an artificial cochlear model. Intracochlear pressure changes were measured using a micro-optical pressure sensor, which was placed in the apex. Openings of the round window membrane were performed under dry and wet conditions using a cannula and a diode laser. Statistically significant differences in the intracochlear pressure changes were seen between the different methods used for opening of the round window membrane. Lower pressure changes were seen by opening the round window membrane with the diode laser than with the cannula. A significant difference was seen between the dry and wet conditions. The atraumatic approach to the cochlea is assumed to be essential for the preservation of residual hearing. Opening of the round window under wet conditions produce a significant advantage on intracochlear pressure changes in comparison to dry conditions by limiting negative outward pressure.
Determination of end point of primary drying in freeze-drying process control.
Patel, Sajal M; Doen, Takayuki; Pikal, Michael J
2010-03-01
Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.
Modelling of nectarine drying under near infrared - Vacuum conditions.
Alaei, Behnam; Chayjan, Reza Amiri
2015-01-01
Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.
High strength air-dried aerogels
Coronado, Paul R.; Satcher, Jr., Joe H.
2012-11-06
A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.
Method for rapidly producing microporous and mesoporous materials
Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.; Hopper, Robert W.
1997-01-01
An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods.
Method for rapidly producing microporous and mesoporous materials
Coronado, P.R.; Poco, J.F.; Hrubesh, L.W.; Hopper, R.W.
1997-11-11
An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods. 3 figs.
Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum
NASA Astrophysics Data System (ADS)
Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.
2017-06-01
Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.
Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto
2017-10-01
Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.
The feasibility of desorption on Zeolite-water pair using dry gas
NASA Astrophysics Data System (ADS)
Oktariani, E.; Nakashima, K.; Noda, A.; Xue, B.; Tahara, K.; Nakaso, K.; Fukai, J.
2018-04-01
The increase in temperature, reduction in partial pressure, reduction in concentration, purging with an inert fluid, and displacement with a more strongly adsorbing species are the basic things that occur in the practical method of desorption. In this study, dry gas at constant temperature and pressure was employed as the aid to reduce the partial pressure in the water desorption on the zeolite 13X. The objective of this study is to confirm the feasibility of desorption using dry gas experimentally and numerically. The implication of heat and mass transfers were numerically investigated to find the most influential. The results of numerical simulation agree with the experimental ones for the distribution of local temperature and average water adsorbed in the packed bed.
Flow dynamics of a spiral-groove dry-gas seal
NASA Astrophysics Data System (ADS)
Wang, Bing; Zhang, Huiqiang; Cao, Hongjun
2013-01-01
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.
Scanning electron microscopy of high-pressure-frozen sea urchin embryos.
Walther, P; Chen, Y; Malecki, M; Zoran, S L; Schatten, G P; Pawley, J B
1993-12-01
High-pressure-freezing permits direct cryo-fixation of sea urchin embryos having a defined developmental state without the formation of large ice crystals. We have investigated preparation protocols for observing high-pressure-frozen and freeze-fractured samples in the scanning electron microscope. High-pressure-freezing was superior to other freezing protocols, because the whole bulk sample was reasonably well frozen and the overall three-dimensional shape of the embryos was well preserved. The samples were either dehydrated by freeze-substitution and critical-point-drying, or imaged in the partially hydrated state, using a cold stage in the SEM. During freeze-substitution the samples were stabilized by fixatives. The disadvantage of this method was that shrinking and extraction effects, caused by the removal of the water, could not be avoided. These disadvantages were avoided when the sample was imaged in the frozen-hydrated state using a cold-stage in the SEM. This would be the method of choice for morphometric studies. Frozen-hydrated samples, however, were very beam sensitive and many structures remained covered by the ice and were not visible. Frozen-hydrated samples were partially freeze-dried to make visible additional structures that had been covered by ice. However, this method also caused drying artifacts when too much water was removed.
Bertulat, S; Isaka, N; de Prado, A; Lopez, A; Hetreau, T; Heuwieser, W
2017-04-01
In recent years, relationships between high milk yield at dry off, higher prevalence for new intramammary infections, and stress were evaluated. Considering increasing milk yield, dry off methods need to be refined to ensure udder health and animal welfare, especially in high-yielding dairy cows. The present work evaluated the effect of a single cabergoline injection (Velactis, Ceva Santé Animale, Libourne, France) at dry off on udder pressure, milk leakage, and signs of udder pain after dry off. A total of 234 high-yielding (≥16 kg of milk/d) dairy cows was enrolled 7 d before and followed up until 14 d after dry off. Cows were dried off without preparation (i.e., no feed change or intermittent milking before dry off) and treated with a single i.m. injection of 5.6 mg of cabergoline (n = 115) or placebo (n = 119) after last milking. Udder characteristics were measured 4 d before (i.e., before and after milking) and 1, 2, 3, 7, 10, and 14 d after dry off. Udder pressure was evaluated utilizing a hand-held dynamometer. Milk leakage and signs of udder pain were noted as binary variables. Whereas udder pressure baseline values after last milking did not differ between treatment groups (0.541 ± 0.15 kg), cabergoline significantly reduced udder pressure in primiparous but not in multiparous cows after dry off. Differences between cabergoline- and placebo-treated primiparous cows could be evaluated until 3 d after dry off. The first day after dry off, udder pressure in placebo- and cabergoline-treated cows increased by 115% and 42.3%, respectively. Whereas pressure values in placebo cows were highest on the first day after dry off (1.16 ± 0.61 kg) and slowly decreased afterward, udder pressure in cows treated with cabergoline had a slower increase and peak only 2 d after dry off (0.94 ± 0.44 kg). Furthermore, cabergoline caused a reduction of milk leakage, a known factor for new intramammary infections. Only 11.3% of cows treated with cabergoline showed milk leakage compared with 21.0% placebo-treated cows. Additionally, cows with placebo treatment were 2.8 times as likely to show signs of udder pain compared with cows treated with cabergoline. An effect of cabergoline on udder pressure, milk leakage, and udder pain was limited to the first week after dry off. Our data provide evidence that a single injection of cabergoline reduces risk factors for udder health and animal welfare problems around dry off in high-yielding dairy cows with more than 16 kg of milk/d. Further research is warranted, however, to investigate if cabergoline at dry off can also be used to reduce new intramammary infection rates and improve animal welfare after dry off. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Hottot, A; Vessot, S; Andrieu, J
2005-01-01
The principal aim of this study was to evaluate the water vapour mass transfer resistance of the dried layer and the vial heat transfer coefficient values of a pharmaceutical product during the primary drying period. First, overall vial heat transfer coefficient values, Kv, were determined by a gravimetric method based on pure ice sublimation experiments. Thus, it was possible to set up a map of the total heat flux received by each vial throughout the plate surface of our pilot scale freeze-dryer. Important heterogeneities were observed for the vials placed at the plate edges and for the vials placed at the center of the plate. As well, the same gravimetric method was also used to precisely determine the influence of main lyophilization operating parameters (shelf temperature and gas total pressure) or the vial types and sizes on these overall heat transfer coefficient values. A semi-empirical relationship as a function of total gas pressure was proposed. The transient method by pressure rise analysis (PRA method) after interrupting the water vapour flow between the sublimation chamber and the condenser, previously set up and validated in our laboratory, was then extensively used with an amorphous BSA-based formulation to identify the dried layer mass transfer resistance values, Rp, the ice front temperature, and the total heat transfer coefficient values, Kv, with or without annealing treatment. It was proved that this method gave accurate and coherent data only during the first half of the sublimation period when the totality of the vials of the set was still sublimating. Thus, this rapid method allowed estimation of, on line and in situ, the sublimation front temperature and the characterization of the morphology and structure of the freeze-dried layer, all along the first part of the sublimation period. The estimated sublimation temperatures shown by the PRA model were about 2 degrees C lower than the experimental values obtained using thermocouples inserted inside the vial, in accordance with previous data given by this method for similar freeze-drying conditions. As well, by using this method we could confirm the homogenization of the dried layer porous structure by annealing treatment after the freezing step. Furthermore, frozen matrix structure analysis (mean pore diameter) using optical microscopy and mass transfer modelling of water vapour by molecular diffusion (Knudsen regime) allowed, in some cases, to predict the experimental values of this overall mass transfer resistance directly related to the freeze-dried cake permeability.
Space Technology for Crop Drying
NASA Technical Reports Server (NTRS)
1980-01-01
McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.
Hydrodynamics study on drying of pepper in swirling fluidized bed dryer (SFBD)
NASA Astrophysics Data System (ADS)
Syaif Haron, Nazrul; Hazri Zakaria, Jamal; Faizal Mohideen Batcha, Mohd
2017-08-01
Malaysia is one of the pepper producer with exports quantity reaching more than 90000 tonnes between 2010 until 2016. Drying of pepper is mandatory before their export and at present, pepper was dried by sun drying to reduce cost. This conventional drying method was time consuming and may take four days during rainy season, which retards the production of pepper. This paper proposes the swirling fluidized bed drying (SFBD) method, which was known to have high mixing ability and improved solid-gas contact to shorten the drying time of products. A lab scale SFBD system was constructed to carry out this study. Hydrodynamic study was conducted for three beds loadings of 1.0 kg, 1.4 kg at a drying temperature of 90°C. The SFBD has shown excellent potential to dry the pepper with a relatively short drying time compared to the conventional method. Batch drying for the bed loads studied only took 3 hours of drying time only. It was found that bed higher bed loading of wet pepper requires longer drying time due to higher amount of moisture content in the bed. Four distinct regimes of operation were found during drying in the SFBD and these regimes offer flexibility of operation. The total bed pressure drop was relatively low during drying.
Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer
NASA Astrophysics Data System (ADS)
Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes
2017-05-01
Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.
Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.
Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J
2009-01-01
A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.
Nawirska-Olszańska, Agnieszka; Stępień, Bogdan; Biesiada, Anita; Kolniak-Ostek, Joanna; Oziembłowski, Maciej
2017-07-29
Studies on methods for fixing foods (with a slight loss of bioactive compounds) and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols and antioxidant activity as well as colour were also examined. The study showed that Physalis is a difficult material for drying. The best results were obtained using microwave drying at a power of 480 W. Physalis fruit microwave-dried by this method is characterized by higher resistance to compression than the fruit dried by convection. Dried fruit obtained in this way was characterized by higher contents of bioactive compounds, better antioxidant properties, and at the same time the lowest water activity.
Nawirska-Olszańska, Agnieszka; Stępień, Bogdan; Biesiada, Anita; Kolniak-Ostek, Joanna; Oziembłowski, Maciej
2017-01-01
Studies on methods for fixing foods (with a slight loss of bioactive compounds) and obtaining attractive products are important with respect to current technology. The drying process allows for a product with highly bioactive properties. Drying of Physalis fruit was carried out in a conventional manner, and in a microwave under reduced pressure at 120 W and 480 W. After drying, the fruits were subjected to strength and rheological tests. Water activity, content of carotenoids and polyphenols and antioxidant activity as well as colour were also examined. The study showed that Physalis is a difficult material for drying. The best results were obtained using microwave drying at a power of 480 W. Physalis fruit microwave-dried by this method is characterized by higher resistance to compression than the fruit dried by convection. Dried fruit obtained in this way was characterized by higher contents of bioactive compounds, better antioxidant properties, and at the same time the lowest water activity. PMID:28758918
Mason, W T; Lewis, P A; Weber, C I
1983-03-01
Evaluation of analytical methods employed for wet weight (live or preserved samples) of benthic macroinvertebrates reveals that centrifugation at 140 x gravity for one minute yields constant biomass estimates. Less relative centrifugal force increases chance of incomplete removal of body moisture and results in weighing error, while greater force may rupture fragile macroinvertebrates, such as mayflies. Duration of specimen exposure in ethanol, formalin, and formol (formaling-ethanol combinations) causes significant body weight loss with within 48 hr formalin and formol cause less body weight loss than ethanol. However, as all preservatives tested cause body weight loss, preservation time of samples collected for comparative purposes should be treated uniformly. Dry weight estimates of macroinvertebrates are not significantly affected by kind of preservative or duration of exposure. Constant dry weights are attained by oven drying at 103 °C at a minimum of four hours or vacuum oven drying (15 inches of mercury pressure) at 103 °C for a minimum of one hour. Although requiring more time in preparation than oven drying and inalterably changing specimen body shape, freeze drying (10 microns pressure, -55 °C, 24 hr) provides constant dry weights and is advantageous for long term sample storage by minimizing curatorial attention. Constant ash-free dry weights of macroinvertebrate samples are attained by igniting samples at 500-550 °C for a minimum of one hour with slow cooling to room temperature in desiccators before weighing.
McAdams, Wm.A.; Foss, M.H.
1958-08-12
A method of testing containers for leaks is described, particularly the testing of containers or cans in which the uranium slugs for nuelear reactors are jacketed. This method involves the immersion of the can in water under l50 pounds of pressure, then removing, drying, and coating the can with anhydrous copper sulfate. Amy water absorbed by the can under pressure will exude and discolor the copper sulfate in the area about the leak.
ROHO Dry floatation technology: implications for clinical practice.
Stephen-Haynes, Jackie
2009-09-01
This article discusses the aetiology of pressure ulcers, the clinical and financial cost of pressure ulcer prevention and the need for pressure reducing equipment. The role of Dry floatation in pressure ulcer prevention and management is explored. How Dry floatation technology works is discussed and its use within clinical practice is highlighted. The evidence to support Dry floatation is presented.
Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.
Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir
2006-06-01
Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.
Hammel, E. C.; Campa, J. A.; Armbrister, C. E.; ...
2017-09-06
Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, E. C.; Campa, J. A.; Armbrister, C. E.
Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less
Foam-mat drying technology: A review.
Hardy, Z; Jideani, V A
2017-08-13
This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.
Resin impregnation of cellulose nanofibril films facilitated by water swelling
Yan Qing; Ronald Sabo; Zhiyong Cai; Yiqiang Wu
2013-01-01
Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying...
Colloidal isopressing: A new shaping method for ceramic suspensions
NASA Astrophysics Data System (ADS)
Yu, Benjamin Christopher
Colloidal Isopressing is a new processing method for shaping compacts from particulate suspensions. The study of interparticle interactions within a suspension, and their effect on the overall slurry behavior, has led to the prior discovery of a plastic-to-brittle transition in powder compacts formed by pressure filtration. Colloidal Isopressing utilizes this pressure dependent behavior for slurries with a short-range repulsive potential to rapidly transform plastic consolidated bodies into more complex shapes. The first results are presented for aqueous alumina suspensions where electrostatic double layer repulsion is compressed to short interparticle separations by the addition of ammonium chloride. Consolidation at low pressures produces a high relative density slurry that is plastic and can be extruded into a rubber mold. The application of an hydrostatic pressure forces a small amount of liquid into a porous portion of the mold and pushes particles together into a rigid network. As the pressure is released, the newly formed powder compact will partially separate from the lower modulus rubber mold. The body can then be ejected from the mold, dried, and densified to produce the final ceramic component. Colloidal Isopressing has been successfully modeled as a special case of consolidation via pressure filtration. Theoretical analyses have accurately predicted the time required for the rapid transformation from plastic slurry to elastic powder compact. The effects of slurry composition on processing were studied. The electrolyte concentration, powder particle size, slurry pH, and polymer concentration were shown to alter the flow behavior of filter pressed and liquefied compacts. As the free volume of liquid decreased and/or the relative attraction between particles increased, the concentrated slurry became more difficult to process. Finally, drying of compacts formed by Colloidal Isopressing did not result in any shrinkage during drying, thus allowing for very rapid heating rates to be used. In fact, the drying, burnout, and densification could be combined into one step, with final densities approaching the theoretical limit.
Methods are described for measuring changes in atmospheric O2 concentration with emphasis on gas handling procedures. Cryogenically dried air samples are collected in 5 L glass flasks at ambient pressure and analyzed against reference gases derived from high-pressure aluminum tan...
Bioimpedance, dry weight and blood pressure control: new methods and consequences.
Kuhlmann, Martin K; Zhu, Fansan; Seibert, E; Levin, Nathan W
2005-11-01
Chronic overhydration contributes to the development of left ventricular hypertrophy and a high cardiovascular mortality in end-stage renal disease. Assessment of dry weight is highly dependent on clinical assessment. Bioimpedance technology offers the potential to quantify body fluid compartments and to facilitate dry weight prescription. This review covers recent innovative approaches to dry weight assessment using bioimpedance technology. Three different bioimpedance approaches to determine dry weight have been published. The normovolemic/hypervolemic slope method applies whole body multifrequency bioimpedance to assess predialysis total body extracellular fluid volume and compares the extracellular fluid volume/body weight relation at hypervolemia with the standard value in normovolemic individuals. The resistance-reactance graph method uses whole body single frequency bioimpedance for assessment of hydration state and nutritional status from height-adjusted resistance and reactance. The resulting resistance-reactance vector is set in relation to a distribution range in a normovolemic population. An alternative method uses segmental bioimpedance in the form of continuous intradialytic calf bioimpedance to record changes in calf extracellular volume during dialysis. Dry weight by this method is defined as the weight at which calf extracellular volume is not further reduced despite ongoing ultrafiltration. Although promising, none of these methods has gained much popularity, probably due to the difficulties in understanding bioimpedance and the lack of gold standard methods for dry weight determination. Bioimpedance will improve dry weight assessment, but further refinement of the methods as well as large-scale clinical studies to demonstrate the accuracy and the clinical value of objective dry weight determination are needed.
NASA Astrophysics Data System (ADS)
Hadi, S.; Artanti, A. N.; Rinanto, Y.; Wahyuni, D. S. C.
2018-04-01
Curcuminoid, consisting of curcumin, demethoxycurcumin and bis demethoxycurcumin, is the major compound in Curcuma longa L. and Curcuma xanthorrhiza rhizome. It has been known to have a potent antioxidants, anticancer, antibacteria activity. Those rhizomes needs to be dried beforehand which influenced the active compounds concentration. The present work was conducted to assess the curcuminoid content of C. longa L. and C. xanthorrhiza based on drying method with Nuclear Magnetic Resonance (NMR) and High Pressure Liquid Chromatography (HPLC)-UVD. Samples were collected and dried using freeze-drying and oven method. The latter is the common method applied in most drying method at herbal medicine preparation procedure. All samples were extracted using 96% ethanol and analyzed using NMR and HPLC-UVD. Curcuminoid as a bioactive compound in the sample exhibited no significant difference and weak significant difference in C. xanthorrhiza and C. longa L., respectively. HLPC-UVD as a reliable analytical method for the quantification is subsequently used to confirm of the data obtained by NMR. It resulted that curcuminoid content showed no significant difference in both samples. This replied that curcuminoids content in both samples were stable into heating process. These results are useful information for simplicia standardization method in pharmaceutical products regarding to preparation procedure.
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ensure a supply of clean, dry air. (3) Pressure gages. Each retort should be equipped with a pressure... should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. (i) Each... controllers should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. Each...
Searles, James A; Aravapalli, Sridhar; Hodge, Cody
2017-10-01
Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.
Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
Van Bockstal, Pieter-Jan; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; De Beer, Thomas
2017-01-01
Recently, an innovative continuous freeze-drying concept for unit doses was proposed, based on spinning the vials during freezing. An efficient heat transfer during drying is essential to continuously process these spin frozen vials. Therefore, the applicability of noncontact infrared (IR) radiation was examined. The impact of several process and formulation variables on the mass of sublimed ice after 15 min of primary drying (i.e., sublimation rate) and the total drying time was examined. Two experimental designs were performed in which electrical power to the IR heaters, distance between the IR heaters and the spin frozen vial, chamber pressure, product layer thickness, and 5 model formulations were included as factors. A near-infrared spectroscopy method was developed to determine the end point of primary and secondary drying. The sublimation rate was mainly influenced by the electrical power to the IR heaters and the distance between the IR heaters and the vial. The layer thickness had the largest effect on total drying time. The chamber pressure and the 5 model formulations had no significant impact on sublimation rate and total drying time, respectively. This study shows that IR radiation is suitable to provide the energy during the continuous processing of spin frozen vials. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Metallized compliant 3D microstructures for dry contact thermal conductance enhancement
NASA Astrophysics Data System (ADS)
Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.
2018-05-01
Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.
Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)
NASA Astrophysics Data System (ADS)
Alhamid, M. Idrus; Yulianto, M.; Nasruddin
2012-06-01
A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.
Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong
2017-01-05
The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.
Arbeláez, Paula; Granados, Judith; Borrull, Francesc; Marcé, Rosa Maria; Pocurull, Eva
2014-12-01
This paper describes a method for the determination of eight sedative hypnotics (benzodiazepines and barbiturates) in sewage sludge using pressurized liquid extraction and liquid chromatography with tandem mass spectrometry. Pressurized liquid extraction operating conditions were optimized and maximum recoveries were reached using methanol under the following operational conditions: 100ºC, 1500 psi, extraction time of 5 min, one extraction cycle, flush volume of 60% and purge time of 120 s. Pressurized liquid extraction recoveries were higher than 88% for all the compounds except for carbamazepine (55%). The repeatability and reproducibility between days, expressed as relative standard deviation (n = 5), were lower than 6 and 10%, respectively. The detection limits for all compounds were lower than 12.5 μg/kg of dry weight. The method was applied to determine benzodiazepines and barbiturates in sewage sludge from urban sewage treatment plants, and carbamazepine showed the highest concentration (7.9-18.9 μg/kg dry weight). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dry cupping for plantar fasciitis: a randomized controlled trial.
Ge, Weiqing; Leson, Chelsea; Vukovic, Corey
2017-05-01
[Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested.
Dry cupping for plantar fasciitis: a randomized controlled trial
Ge, Weiqing; Leson, Chelsea; Vukovic, Corey
2017-01-01
[Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested. PMID:28603360
System for drying and heating particulate coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offergeld, E.; Wischniewski, M.
1978-04-04
Wet particulate coal and a current of hot dry gas at superatmospheric pressure are introduced into a substantially closed drying chamber to contact the material with the gas while maintaining the drying chamber under superatmospheric pressure so that the material is dried by the gas. The dried material is withdrawn from the drying chamber and the gas is withdrawn from the drying chamber and itself mixed with a stream of hot dry gas produced by burning a combustible and a combustion-supporting gas. This mixture is then reintroduced into the drying chamber as the current of hot gas used to drymore » the coal. The burner is operated at superatmospheric pressure and is formed of a jet-pump type injector, and a diffusor is provided downstream of this injector in the circulation path.« less
Tolrà, R P; Alonso, R; Poschenrieder, C; Barceló, D; Barceló, J
2000-08-11
Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry was used to identify glucosinolates in plant extracts. Optimization of the analytical conditions and the determination of the method detection limit was performed using commercial 2-propenylglucosinolate (sinigrin). Optimal values for the following parameters were determined: nebulization pressure, gas temperature, flux of drying gas, capillar voltage, corona current and fragmentor conditions. The method detection limit for sinigrin was 2.85 ng. For validation of the method the glucosinolates in reference material (rapeseed) from the Community Bureau of Reference Materials (BCR) were analyzed. The method was applied for the determination of glucosinolates in Thlaspi caerulescens plants.
Methods to increase the rate of mass transfer during osmotic dehydration of foods.
Chwastek, Anna
2014-01-01
Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.
Effect of decompression drying treatment on physical properties of solid foods.
Morikawa, Takuya; Takada, Norihisa; Miura, Makoto
2017-04-01
This study used a decompression drying instrument to investigate the effects of a drying treatment on the physical properties of solid foods. Commercial tofu was used as a model food and was treated at different temperature and pressure conditions in a drying chamber. Overall, high temperatures resulted in better drying. Additionally, pressure in the chamber influenced the drying conditions of samples. Differences in physical properties, such as food texture, shrinkage, and color were observed among some samples, even with similar moisture content. This was caused by differences in moisture distribution in the food, which seems to have manifested as a thin, dried film on the surfaces of samples. It caused inefficient drying and changes in physical properties. Control of the drying conditions (i.e. pressure and heat supply) has relations with not only physical properties, but also the drying efficiency of solid foods.
Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System
NASA Astrophysics Data System (ADS)
Deomore, Dayanand N.; Yarasu, Ravindra B.
2018-02-01
The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.
Apparatus and method for feeding coal into a coal gasifier
Bissett, Larry A.; Friggens, Gary R.; McGee, James P.
1979-01-01
This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.
Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie
2018-07-01
During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
Dry chips versus green chips as furnish for medium-density fiberboard
Paul H. Short; George E. Woodson; Duane E. Lyon
1978-01-01
The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refining dry material produced coarser fiber than those obtained from green...
Dry chips versus green chips as furnish for medium-density fiberboard
P.H. Short; G.E. Woodson; D.E. Lyon
1978-01-01
The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refined dry material produced coarser fiber than those obtained from green...
A simple method of predicting S-wave velocity
Lee, M.W.
2006-01-01
Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Zhang, Yannan; Zhang, Yingjie; Zhang, Mingyu; Xu, Mingli; Li, Xue; Yu, Xiaohua; Dong, Peng
2018-05-01
Uniform and spherical LiAl0.075Mn1.925O4 particles have been successfully synthesized by the high-pressure spray-drying method. The structures and electrochemical properties of the particles were characterized by various techniques. Benefiting from the sphere-like morphology and Al-doping, LiAl0.075Mn1.925O4 delivers a capacity retention of 81.6% after 1000 cycles at 2°C, while LiMn2O4 exhibits a capacity retention of only 32.2%. The rate capability and reversible cycling performance are also improved. Furthermore, this work significantly alleviates the dissolution of Mn in LiMn2O4 materials, and effectively improves the transfer rate of lithium ions at the electrode/electrolyte interface. The spherical LiAl0.075Mn1.925O4 prepared by a facile method shows great potential for practical application in low-cost and long-life lithium-ion batteries.
Li, Qian; Lu, Xuebin; Guo, Haigang; Yang, Zengjun; Li, Yingte; Zhi, Suli; Zhang, Keqiang
2018-04-30
In this study, pressurized electro-osmotic dewatering (PEOD) as a pretreatment process, instead of the conventional practice of adding bulking agents, for sewage sludge bio-drying was proposed. Initially, various parameters were optimized for obtaining dewatered sewage sludge (DSS), treated by an efficient, quick, and energy-saving PEOD process. The results show that the moisture content (MC) of sewage sludge could decrease from 83.41% to 60.0% within 7.5 min in the optimum conditions of the PEOD process. Subsequently, two DSS bio-drying tests were carried out to investigate the effects of inoculation. The highest temperature (68.1 °C) was obtained for T2 (inoculation), which was 3.6 °C higher than that for T1 (non- inoculation). The MC accumulative removal rate for T1 (41.49%) was slightly less than that for T2 (44.60%). Lastly, the volatile solid degradation dynamics model parameters were measured. The degradation rate constants (k) for T1 and T2 were 0.00501 and 0.00498, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Preparation of high porosity xerogels by chemical surface modification.
Deshpande, Ravindra; Smith, Douglas M.; Brinker, C. Jeffrey
1996-01-01
This invention provides an extremely porous xerogel dried at vacuum-to-below supercritical pressures but having the properties of aerogels which are typically dried at supercritical pressures. This is done by reacting the internal pore surface of the wet gel with organic substances in order to change the contact angle of the fluid meniscus in the pores during drying. Shrinkage of the gel (which is normally prevented by use of high autoclave pressures, such that the pore fluid is at temperature and pressure above its critical values) is avoided even at vacuum or ambient pressures.
Means and apparatus for throttling a dry pulverized solid material pump
Meyer, J. W.; Daniel, Jr, A. D.; Bonin, J. H.
1982-12-07
Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues. 9 figs.
Means and apparatus for throttling a dry pulverized solid material pump
Meyer, John W [Palo Alto, CA; Daniel, Jr., Arnold D.; Bonin, John H [Sunnyvale, CA
1982-01-01
Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues.
Noncontact Measurement of Humidity and Temperature Using Airborne Ultrasound
NASA Astrophysics Data System (ADS)
Kon, Akihiko; Mizutani, Koichi; Wakatsuki, Naoto
2010-04-01
We describe a noncontact method for measuring humidity and dry-bulb temperature. Conventional humidity sensors are single-point measurement devices, so that a noncontact method for measuring the relative humidity is required. Ultrasonic temperature sensors are noncontact measurement sensors. Because water vapor in the air increases sound velocity, conventional ultrasonic temperature sensors measure virtual temperature, which is higher than dry-bulb temperature. We performed experiments using an ultrasonic delay line, an atmospheric pressure sensor, and either a thermometer or a relative humidity sensor to confirm the validity of our measurement method at relative humidities of 30, 50, 75, and 100% and at temperatures of 283.15, 293.15, 308.15, and 323.15 K. The results show that the proposed method measures relative humidity with an error rate of less than 16.4% and dry-bulb temperature with an error of less than 0.7 K. Adaptations of the measurement method for use in air-conditioning control systems are discussed.
[Non-pharmacologic treatment of arterial hypertension in hemodialysis patients].
Chazot, C; Charra, B
2007-10-01
High blood pressure in dialysis patients is related to extracellular volume excess and the related increase of systemic vascular resistances. Scribner has early described the treatment of hypertension with ultrafiltration and low salt diet, without any drugs. The dry weight method relies on the progressive reduction of the postdialysis body weight until blood pressure is normalized. Additional measures are needed such as low salt diet, neutral sodium balance during dialysis treatment, stop of antihypertensive drugs, adequate length of the dialysis session, and patient education. It may exist a lag time between the normalization of the extracellular volume and blood pressure. It is related to the correction of the hemodynamic consequences of the extracellular volume overload. Moreover, the dry weight may potentially vary in patients undergoing catabolic intercurrent events. The complications of these changes (severe hypertension, pulmonary oedema) must be anticipated by the nephrologist and the staff to avoid additional morbidity to the patient.
Lechner, Anna; Lahmann, Nils; Neumann, Konrad; Blume-Peytavi, Ulrike; Kottner, Jan
2017-08-01
Pressure ulcers are a serious health problem in medical and nursing care. Therefore, effective prevention is crucial. Major pressure ulcer risk factors have been identified but the particular role of dry skin (xerosis cutis) is unclear. To investigate possible associations between dry skin and pressure ulcers focusing on the sacrum/trochanter and at heel/ankle skin areas. Two multicenter cross-sectional studies. In 2014 and 2015 thirty nursing homes and thirteen hospitals in Germany participated. In total 3837 participants were included. Mean age was 76.1 (SD 15.5) years. Skin assessments and data collection were performed by trained nurses based on a standardized data collection form. Descriptive comparisons and multilevel logistic regressions predicting pressure ulcers at sacrum/trochanter and ankle/heel were conducted. The prevalence of skin dryness at the trunk was significantly higher for subjects with pressure ulcers category 2+ at the sacral area compared to without (39.0% vs. 24.4%, p=0.010). Adjusted to demographic variables, mobility and type of institution dry skin at the trunk was no longer associated with pressure ulceration (OR 1.11 (95% CI 0.62-2.00)). 71.9% of patients with heel/ankle pressure ulcers category 2+ were affected by dry skin at legs or feet, compared to 42.8% of subjects without pressure ulcers (p<0.001). In the adjusted analysis the OR was 1.85 (95% CI 0.83-4.14). Study results indicate that dry skin at the feet may be considered as a risk factor for heel pressure ulcer development. Skin dryness may be less important for sacral pressure ulcers. Therefore, the variable skin status should be better defined in future studies and pressure ulcer risk models. Results further support differences in pressure ulcer aetiologies between anatomical locations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar
2008-10-08
This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.
Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal
NASA Astrophysics Data System (ADS)
Chen, Yuan; Jiang, Jinbo; Peng, Xudong
2016-08-01
The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.
Water content dependence of trapped air in two soils
Stonestrom, David A.; Rubin, Jacob
1989-01-01
An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.
Method of preparing sodalite from chloride salt occluded zeolite
Lewis, Michele A.; Pereira, Candido
1997-01-01
A method for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000.degree. K. to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.
Method of preparing sodalite from chloride salt occluded zeolite
Lewis, M.A.; Pereira, C.
1997-03-18
A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.
Kinetic extruder - a dry pulverized solid material pump
Meyer, John W [Palo Alto, CA; Bonin, John H [Sunnyvale, CA; Daniel, Jr., Arnold D.
1983-01-01
Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues.
Method of CO.sub.2 removal from a gasesous stream at reduced temperature
Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A
2014-11-18
A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.
Ding, Wen-jie; Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Li, Lin; Liu, Jun-xin
2016-02-15
Co-processing of sewage sludge using the cement kiln can realize sludge harmless treatment, quantity reduction, stabilization and reutilization. The moisture content should be reduced to below 30% to meet the requirement of combustion. Thermal drying is an effective way for sludge desiccation. Odors and volatile organic compounds are generated and released during the sludge drying process, which could lead to odor pollution. The main odor pollutants were selected by the multi-index integrated assessment method. The concentration, olfactory threshold, threshold limit value, smell security level and saturated vapor pressure were considered as indexes based on the related regulations in China and foreign countries. Taking the pollution potential as the evaluation target, and the risk index and odor emission intensity as evaluation indexes, the odor pollution potential rated evaluation model of the pollutants was built according to the Weber-Fechner law. The aim of the present study is to form the rating evaluation method of odor potential pollution capacity suitable for the directly drying process of sludge.
Monitoring fluidized bed drying of pharmaceutical granules.
Briens, Lauren; Bojarra, Megan
2010-12-01
Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.
Method of low pressure and/or evaporative drying of aerogel
Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.
1995-01-01
A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.
New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
Chayjan, Reza Amiri; Alaei, Behnam
2016-01-01
Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired results for colour change.
Marovitz, W F; Khan, K M
1977-01-01
A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.
Insulation Technology in Dry Air and Vacuum for a 72kV Low Pressured Dry Air Insulated Switchgear
NASA Astrophysics Data System (ADS)
Yoshida, Tadahiro; Koga, Hiromi; Harada, Takakazu; Miki, Shinichi; Arioka, Masahiro; Sato, Shinji; Yoshida, Satoru; Inoue, Naoaki; Maruyama, Akihiko; Takeuchi, Toshie
A new 72kV rated low pressured dry air insulated switchgear applying electromagnetic actuation and function that supports CBM has been developed. First, dielectric characteristics in dry air under lightning impulse application has been investigated at bare and insulator covered electrodes. Dependence of the breakdown electric field strength on the effective area has been clarified to apply the configuration design of the insulation mold for the vacuum interrupter. In addition, moisture volume dependence on surface resistance has been clarified to decide moisture volume in gas pressure tank. Next, a new vacuum circuit breaker (VCB) has been designed. To keep dimensions from former 72kV SF6 gas insulated switchgear, distance between contacts in vacuum interrupter is needed to be shorter than that of former switchgear. Voltage withstand capability between electrodes practically designed for vacuum interrupter has been investigated under dc voltage application simulated the small capacitive current breaking test. Gap configuration including contacts and slits has been optimized and distance has been shortened 11% from former switchgear. As a result, the new low pressured dry air insulated switchgear has been designed comparably in outer size to former SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure has been able to reduce the environmental burden.
Kinetic extruder - a dry pulverized solid material pump
Meyer, J. W.; Bonin, J. H.; Daniel, A. D. Jr.
1983-03-15
Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues. 19 figs.
Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale
NASA Astrophysics Data System (ADS)
Chang, C.; Zoback, M. D.
2002-12-01
We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.
Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices
NASA Astrophysics Data System (ADS)
Salehi, Fakhreddin; Kashaninejad, Mahdi; Jafarianlari, Ali
2017-05-01
Infrared-vacuum drying characteristics of button mushroom ( Agaricus bisporus) were evaluated in a combined dryer system. The effects of drying parameters, including infrared radiation power (150-375 W), system pressure (5-15 kPa) and time (0-160 min) on the drying kinetics and characteristics of button mushroom slices were investigated. Both the infrared lamp power and vacuum pressure influenced the drying time of button mushroom slices. The rate constants of the nine different kinetic's models for thin layer drying were established by nonlinear regression analysis of the experimental data which were found to be affected mainly by the infrared power level while system pressure had a little effect on the moisture ratios. The regression results showed that the Page model satisfactorily described the drying behavior of button mushroom slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 0.83 and 2.33 × 10-9 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased.
Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide
Chen, Yuan Yao; Temelli, Feral
2017-01-01
ABSTRACT High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (aW) of 1.0 were reduced by more than 3 log10 (CFU/ml) after supercritical CO2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 ΔgadAB. E. coli AW1.7 Δcfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO2 at any temperature. Treatments with gaseous CO2 at 65°C were more bactericidal than those with supercritical CO2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δcfa when subjected to the gaseous CO2 treatment. This study identified CO2-induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO2. IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO2 and the mechanisms of CO2-mediated inactivation of dry E. coli depended on the physical state of CO2. Liquid and supercritical CO2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO2 was related to the diffusivity of CO2. Results provide a novel and alternative method for the food industry to enhance the safety of low aW products. PMID:28283526
Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide.
Chen, Yuan Yao; Temelli, Feral; Gänzle, Michael G
2017-05-15
High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO 2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO 2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (a W ) of 1.0 were reduced by more than 3 log 10 (CFU/ml) after supercritical CO 2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 Δ gadAB E. coli AW1.7 Δ cfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO 2 at any temperature. Treatments with gaseous CO 2 at 65°C were more bactericidal than those with supercritical CO 2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δ cfa when subjected to the gaseous CO 2 treatment. This study identified CO 2 -induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO 2 IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO 2 and the mechanisms of CO 2 -mediated inactivation of dry E. coli depended on the physical state of CO 2 Liquid and supercritical CO 2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO 2 was related to the diffusivity of CO 2 Results provide a novel and alternative method for the food industry to enhance the safety of low a W products. Copyright © 2017 American Society for Microbiology.
Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.
Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P
2018-02-01
Drug nanosuspension is one of the established methods to improve the bioavailability of poorly soluble drugs. Drug physical properties aspect (morphology, solid state, starting size et al) is a critical parameter determining the production efficiency. Some drug modification approaches such as spray-drying were proved to improve the millability of drug powders. However, the mechanism behind those improved performances is unclear. This study is to systematically investigate the influence of those physical properties. Five different APIs (active pharmaceutical ingredients) with different millabilities, i.e. resveratrol, hesperetin, glibenclamide, rutin, and quercetin, were processed by standard high pressure homogenization (HPH), wet bead milling (WBM), and a combinative method of spray-drying and HPH. Smaller starting sizes of certain APIs could accelerate the particle size reduction velocity during both HPH and WBM processes. Spherical particles were observed for almost all spray-dried powders (except spray-dried hesperetin) after spray-drying. The crystallinity of some spray-dried samples such as rutin and glibenclamide became much lower than their corresponding unmodified powders. Almost all spray-dried drug powders after HPH processes could lead to smaller nanocrystal particle size than unmodified APIs. The modified microstructure instead of solid state after spray-drying explained the potential reason for improved nanosizing efficiency. In addition, the contribution of starting size on the production efficiency was also critical according to both HPH and WBM results.
Processing of sintered alpha SiC
NASA Technical Reports Server (NTRS)
Storm, R. S.
1984-01-01
Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.
DeLacy, Brendan G; Bandy, Alan R
2008-01-01
An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.
Resin impregnation process for producing a resin-fiber composite
NASA Technical Reports Server (NTRS)
Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)
1994-01-01
Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.
NASA Astrophysics Data System (ADS)
Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.
2012-09-01
During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.
Usability of calcium carbide gas pressure method in hydrological sciences
NASA Astrophysics Data System (ADS)
Arsoy, S.; Ozgur, M.; Keskin, E.; Yilmaz, C.
2013-10-01
Soil moisture is a key engineering variable with major influence on ecological and hydrological processes as well as in climate, weather, agricultural, civil and geotechnical applications. Methods for quantification of the soil moisture are classified into three main groups: (i) measurement with remote sensing, (ii) estimation via (soil water balance) simulation models, and (iii) measurement in the field (ground based). Remote sensing and simulation modeling require rapid ground truthing with one of the ground based methods. Calcium carbide gas pressure (CCGP) method is a rapid measurement procedure for obtaining soil moisture and relies on the chemical reaction of the calcium carbide reagent with the water in soil pores. However, the method is overlooked in hydrological science applications. Therefore, the purpose of this study is to evaluate the usability of the CCGP method in comparison with standard oven-drying and dielectric methods in terms of accuracy, time efficiency, operational ease, cost effectiveness and safety for quantification of the soil moisture over a wide range of soil types. The research involved over 250 tests that were carried out on 15 different soil types. It was found that the accuracy of the method is mostly within ±1% of soil moisture deviation range in comparison to oven-drying, and that CCGP method has significant advantages over dielectric methods in terms of accuracy, cost, operational ease and time efficiency for the purpose of ground truthing.
Simplified installation of thrust bearings
NASA Technical Reports Server (NTRS)
Sensenbaugh, N. D.
1980-01-01
Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.
EOR production technique tested on Codell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1983-05-01
A production method of natural gas that eliminated marketing problems and allowed maximum recovery was dicussed. The method involved the dehydration of the gas, stripping of the propane and butane products, and the compression and reinjection of the dry gas to the well. This maintenance of pressure will allow storage of the gas until marketing conditions improve. The production method is being tested at pilot wells in Colorado by Petromax Energy Corporation.
Korpus, Christoph; Pikal, Michael; Friess, Wolfgang
2016-11-01
The aim of this study was to determine the heat transfer characteristics of an optimized flexible holder device, using Tunable Diode Laser Absorption Spectroscopy, the Pressure Rise Test, and the gravimetric procedure. Two different controlled nucleation methods were tested, and an improved sublimation process, "preheated plate," was developed. Tunable Diode Laser Absorption Spectroscopy identified an initial sublimation burst phase. Accordingly, steady-state equations were adapted for the gravimetric procedure, to account for this initial non-steady-state period. The heat transfer coefficient, K DCC , describing the transfer from the holder to the DCC, was the only heat transfer coefficient showing a clear pressure dependence with values ranging from 3.81E-04 cal/(g·cm 2 ·K) at 40 mTorr to 7.38E-04 cal/(g·cm 2 ·K) at 200 mTorr. The heat transfer coefficient, K tot , reflecting the overall energy transfer via the holder, increased by around 24% from 40 to 200 mTorr. This resulted in a pressure-independent sublimation rate of around 42 ± 1.06 mg/h over the whole pressure range. Hence, this pressure-dependent increase in energy transfer completely compensated the decrease in driving force of sublimation. The "flexible holder" shows a substantially reduced impact of atypical radiation, improved drying homogeneity, and ultimately a better transferability of the freeze-drying cycle for process optimization. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Zheng, Anqing; Zhao, Zengli; Chang, Sheng; Huang, Zhen; Zhao, Kun; Wei, Guoqiang; He, Fang; Li, Haibin
2015-01-01
Wet and dry torrefaction of corncobs was conducted in high-pressure reactor and tube-type reactor, respectively. Effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs was compared. The results showed that hemicellulose could be effectively removed from corncobs by torrefaction. However, dry torrefaction caused severe degradation of cellulose and the cross-linking and charring of corncobs. X-ray diffraction analysis revealed that crystallinity degree of corncobs was evidently enhanced during wet torrefaction, but reduced during dry torrefaction as raising treatment temperature. In thermogravimetric analysis, wet torrefied corncobs produced less carbonaceous residues than raw corncobs, while dry torrefied corncobs gave much more residues owing to increased content of acid insoluble lignin. Pyrolysis-gas chromatography/mass spectroscopy analysis indicated that wet torrefaction significantly promoted levoglucosan yield owing to the removal of alkali metals. Therefore, wet torrefaction can be considered as a more effective pretreatment method for fast pyrolysis of biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Clariana, Maria; Guerrero, Luis; Sárraga, Carmen; Garcia-Regueiro, José A
2012-02-01
The effect of high pressure processing at 400 MPa and 900 MPa on the oxidative stability of sliced and vacuum packaged commercial dry-cured ham was determined by analyzing the antioxidant enzyme activities, TBARS levels (thiobarbituric acid reactive substances), vitamin E content and physicochemical characteristics during refrigerated storage for 50 days in different light conditions. In dry-cured ham pressurized at 400 MPa color changes and sensory analyses were also assessed. The high pressure process at 900 MPa produced a decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and increased vitamin E content. In contrast, pressurization at 400 MPa, increased SOD activity, and showed no effect on vitamin E content and GSHPx activity. In general the physicochemical parameters determined (fat, moisture and collagen) were unaffected by pressurization. Treatment at 400 MPa increased the instrumental color measurement of lightness (L* values, CIELAB). This level of pressure also modified the hardness, chewiness, saltiness and color intensity. These changes of the sensory attributes in dry-cured ham were significant, but small. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fabrication and performance analysis of a DEA cuff designed for dry-suit applications
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Camacho Mattos, A.; Barbazza, A.; Soleimani, M.; Boscariol, P.; Menon, C.
2013-03-01
A method for manufacturing a cylindrical dielectric elastomer actuator (DEA) is presented. The cylindrical DEA can be used in fabricating the cuff area of dry-suits where the garment is very tight and wearing the suit is difficult. When electrically actuated, the DEA expands radially and the suit can be worn more comfortably. In order to study the performance of the DEA, a customized testing setup was designed, and silicone-made cuff samples with different material stiffnesses were tested. Analytical and FEM modeling were considered to evaluate the experimental output. The results revealed that although the stiffness of the DEA material has a direct relationship with the radial constrictive pressure caused by mechanically stretching the DEA, it has a minor effect on the actuation pressure. It was also found that stacking multiple layers of the DEA to fabricate a laminated structure enabled the attainment of a desired variation of pressure required for the implementation of an electrically tunable cuff.
Effect of cooking conditions on fiber bonding in dry-formed binderless hardboard
Otto Suchsland; George E. Woodson; Charles W. McMillin
1987-01-01
Binderless dry-formed hardboards were manufactured in the laboratory from refined Masonite pulp cooked for 2.5 minutes at steam pressures varying from 200 to 500 psi. Increasing steam pressure caused a general improvement in mechanical and physical properties except that linear expanaion increased with increasing steam pressures and that bending strength and stiffness...
Method of low pressure and/or evaporative drying of aerogel
Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.
1995-05-30
A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.
Optimization of machining parameters in dry EDM of EN31 steel
NASA Astrophysics Data System (ADS)
Brar, G. S.
2018-03-01
Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.
Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir
2016-07-15
Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Effects of Three Nebulized Osmotic Agents in the Dry Larynx
ERIC Educational Resources Information Center
Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Elstad, Mark
2007-01-01
Purpose: This investigation examined the effects of nebulized hypertonic saline, isotonic saline (IS), and sterile (hypotonic) water on phonation threshold pressure (PTP) and self-perceived phonatory effort (PPE) following a surface laryngeal dehydration challenge. Method: In a double-blind, randomized experimental trial, 60 vocally healthy women…
Influence of water on clumped-isotope bond reordering kinetics in calcite
NASA Astrophysics Data System (ADS)
Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.
2018-03-01
Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external fluids. We explore the mechanism(s) by which clumped isotope reordering rates may be modestly increased under wet, high-pressure conditions, including changes in defect concentrations in the near surface environment due to reactions at the water-mineral interface, and lattice deformation resulting from pressurization of samples.
Direct conversion of algal biomass to biofuel
Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar
2014-10-14
A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.
Ruiz-Aceituno, Laura; García-Sarrió, M Jesús; Alonso-Rodriguez, Belén; Ramos, Lourdes; Sanz, M Luz
2016-04-01
Microwave assisted extraction (MAE) and pressurized liquid extraction (PLE) methods using water as solvent have been optimized by means of a Box-Behnken and 3(2) composite experimental designs, respectively, for the effective extraction of bioactive carbohydrates (inositols and inulin) from artichoke (Cynara scolymus L.) external bracts. MAE at 60 °C for 3 min of 0.3 g of sample allowed the extraction of slightly higher concentrations of inositol than PLE at 75 °C for 26.7 min (11.6 mg/g dry sample vs. 7.6 mg/g dry sample). On the contrary, under these conditions, higher concentrations of inulin were extracted with the latter technique (185.4 mg/g vs. 96.4 mg/g dry sample), considering two successive extraction cycles for both techniques. Both methodologies can be considered appropriate for the simultaneous extraction of these bioactive carbohydrates from this particular industrial by-product. To the best of our knowledge this is the first time that these techniques are applied for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Studying Cracking and Oil Invasion in Porous Medium During Drying
NASA Astrophysics Data System (ADS)
Jin, Qiu
We study two interesting phenomena occurred during the evaporation of solvent in porous medium: first, the cracking behavior; and second, the expanding mechanism and the collecting methods of the non-evaporative phase. In the first part of this thesis, we visualize the cracking behavior of colloidal suspensions during drying by a confocal microscope. We develop an effective method which can completely eliminate cracking during drying: by adding emulsion droplets into colloidal suspensions, we can systematically decrease the amount of cracking, and eliminate it completely above a critical droplet concentration. We also find another effect that the emulsion droplets can bring: it varies the speed of air invasion and provides a powerful method to adjust drying rate. Besides, we investigate the samples' fundamental mechanical properties with a rheometer and clarify the underlying physical mechanism for the decreasing of crack amounts. With the effective control over cracking and drying rate, our study may find important applications in many drying and cracking related industrial processes. In the second part of the thesis, we conduct a study on the expanding mechanism and collecting methods of the non-evaporative phase in porous medium, which is inspired by a practical pollution problem that occurs when oil spills to the sandy beach. We build a system in a smaller scale to mimic the practical pollution and investigate the distribution change of the polluting phase as the flushing cycle increases. We find an obvious expansion of the polluting phase after several flushing cycles in both hydrophilic and hydrophobic porous media, but with different distributions and expanding behaviors. We explained this difference by analyzing the pressure distribution in the system at the pore level. Finally, we develop two methods to concentrate the polluting phase in some particular regions, which is beneficial to collect and solve the practical pollution problem.
de Alba, María; Montiel, Raquel; Bravo, Daniel; Gaya, Pilar; Medina, Margarita
2012-06-01
The effect of high pressure (HP) on Salmonella Enteritidis in sliced dry-cured ham stored under temperature abuse (8°C) during 60d was investigated. After treatment, reductions of S. Enteritidis were 1.06, 2.54 and 4.32 log units in ham treated at 400, 500 and 600MPa for 5min at 12°C, compared to non-pressurized samples. After 60d, counts of S. Enteritidis in ham treated at 400 and 500MPa were 2.56 and 2.66 log units lower than in non-treated ham, whereas the pathogen was only detected after enrichment in ham treated at 600MPa. Lipid oxidation increased with storage and pressurization, whereas total free amino acid contents were similar in HP and control samples after 60d. Dry-cured ham treated at the highest pressures exhibited lower shear resistance, whereas the maximum force to compress the sample was slightly changed. Color (L*, a* and b*) varied with pressurization and storage. Changes induced by HP in dry-cured ham were attenuated during storage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow
2005-09-30
Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less
Laboratory Development of A High Capacity Gas-Fired paper Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudnovsky, Yaroslav; Kozlov, Aleksandr; Sherrow, Lester
2005-09-30
Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less
High-velocity frictional experiments on dolerite and quartzite under controlled pore pressure
NASA Astrophysics Data System (ADS)
Togo, T.; Shimamoto, T.; Ma, S.
2013-12-01
High-velocity friction experiments on rocks with or without gouge have been conducted mostly under dry conditions and demonstrated dramatic weakening of faults at high velocities (e.g., Di Toro et al., 2011, Nature). Recent experiments under wet conditions (e.g., Ujiie and Tsutsumi, 2010, GRL; Faulkner et al., 2011, GRL) revealed very different behaviors from those of dry faults, but those experiments were done under drained conditions. Experiments with controlled pore pressure Pp are definitely needed to determine mechanical properties of faults under fluid-rich environments such as those in subduction zones. Thus we have developed a pressure vessel that can be attached to our rotary-shear low to high-velocity friction apparatus (Marui Co Ltd., MIS-233-1-76). With a current specimen holder, friction experiments can be done on hollow-cylindrical specimens of 15 and 40 mm in inner and outer diameters, respectively, at controlled Pp to 35 MPa, at effective normal stresses of 3~9 MPa, and at slip rates of 60 mm/year to 2 m/s. An effective normal stress can be applied with a 100 kN hydraulic actuator. We report an outline of the experimental system and preliminary high-velocity experiments on Shanxi dolerite and a quartzite from China that are composed of pyroxene and plagioclase and of almost pure quartz, respectively. High-velocity friction experiments were performed on hollow-cylindrical specimens of Shanxi dolerite at effective normal stresses of 0.13~1.07 MPa and at slip rates of 1, 10, 100 and 1000 mm/sec. All experiments were conducted first with the nitrogen gas filling the pressure vessel (dry tests) and then with a controlled pore-water pressure (wet tests). In the dry tests an axial force was kept at 1 kN and the nitrogen gas pressure was increased in steps to 5 MPa to change an effective normal stress. In the wet tests the specimens were soaked in distilled water in the vessel and Pp was applied by nitrogen gas in a similar manner as in the dry tests. Nitrogen gas acted as buffer to prevent an abrupt changes in the pore-water pressure during experiments. The steady-state friction coefficient (μss) of dry dolerite increased from 0.3~0.35 at 10 mm/s to 0.55~0.8 at 100 mm/s and then decreased down to 0.2~0.6 at 1000 mm/s. The results are quite similar to those of dry granite tested under similar conditions (Reches and Lockner, 2010, Nature). However, the μss of dolerite under a pore-water pressure decreased monotonically from 0.4~0.8 at 1 mm/s to 0.3~0.5 at 1000 mm/s, and the strengthening from 10 to 100 mm/s disappeared with a pore-water pressure. Two experiments were conducted on solid-cylindrical specimens of quartzite at effective normal stresses of 1.39 MPa (a dry test with CO2 gas pressure of 6.22 MPa) and of 0.99 MPa (a wet test with pore-water pressure of 6.1 MPa, also applied with pressurized CO2 gas). In dry and wet tests, the friction coefficient decreases nearly exponentially from about 0.35 at the peak friction to around 0.05 (dry) and 0.03 (wet) at the steady state. A notable difference was that wet quartzite exhibit much more rapid slip weakening with the slip weakening distance Dc of several meters than the dry specimen with Dc of about 15 m. We plan to conduct more experiments with controlled pore-water pressure and to do textural and material analysis of specimens to gain insight on the weakening mechanisms.
Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.
Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong
2014-01-01
The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.
NASA Astrophysics Data System (ADS)
Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.
2014-06-01
The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.
29 CFR 1910.157 - Portable fire extinguishers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...
29 CFR 1910.157 - Portable fire extinguishers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...
29 CFR 1910.157 - Portable fire extinguishers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...
29 CFR 1910.157 - Portable fire extinguishers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... extinguisher to rupture the cartridge or to initiate an uncontrollable pressure generating chemical reaction to... stored pressure dry chemical extinguishers that require a 12-year hydrostatic test are emptied and subjected to applicable maintenance procedures every 6 years. Dry chemical extinguishers having non...
Method and apparatus for extracting water from air using a desiccant
Spletzer, Barry L.; Callow, Diane Schafer
2003-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.
Selection and deposition of nanoparticles using CO.sub.2-expanded liquids
Roberts, Christopher B [Auburn, AL; McLeod, Marshall Chandler [Hillsboro, OR; Anand, Madhu [Auburn, AL
2008-06-10
A method for size selection of nanostructures comprising utilizing a gas-expanded liquids (GEL) and controlled pressure to precipitate desired size populations of nanostructures, e.g., monodisperse. The GEL can comprise CO.sub.2 antisolvent and an organic solvent. The method can be carried out in an apparatus comprising a first open vessel configured to allow movement of a liquid/particle solution to specific desired locations within the vessel, a second pressure vessel, a location controller for controlling location of the particles and solution within the first vessel, a inlet for addition of antisolvent to the first vessel, and a device for measuring the amount of antisolvent added. Also disclosed is a method for forming nanoparticle thin films comprising utilizing a GEL containing a substrate, pressurizing the solution to precipitate and deposit nanoparticles onto the substrate, removing the solvent thereby leaving a thin nanoparticle film, removing the solvent and antisolvent, and drying the film.
Selection of nanoparticles using CO.sub.2-expanded liquids
Roberts, Christopher B; McLeod, Marshall Chandler; Anand, Madhu
2013-02-19
A method for size selection of nanostructures comprising utilizing a gas-expanded liquids (GEL) and controlled pressure to precipitate desired size populations of nanostructures, e.g., monodisperse. The GEL can comprise CO.sub.2 antisolvent and an organic solvent. The method can be carried out in an apparatus comprising a first open vessel configured to allow movement of a liquid/particle solution to specific desired locations within the vessel, a second pressure vessel, a location controller for controlling location of the particles and solution within the first vessel, a inlet for addition of antisolvent to the first vessel, and a device for measuring the amount of antisolvent added. Also disclosed is a method for forming nanoparticle thin films comprising utilizing a GEL containing a substrate, pressurizing the solution to precipitate and deposit nanoparticles onto the substrate, removing the solvent thereby leaving a thin nanoparticle film, removing the solvent and antisolvent, and drying the film.
Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko
2016-08-01
We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment
NASA Astrophysics Data System (ADS)
Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti
2017-04-01
Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation chamber to the main pressure vessel. The amount of water vapor added is also monitored with the pressure reference. For example in -70°C, very small absolute amount of water vapor corresponding to 1 Pa [1][2] pressure rise in the main chamber results in humidity saturation. As the flow of both CO2 and water vapor is kept constant, the main chamber is served with water vapor all the time, keeping the uniform saturation conditions inside the vessel even if some of the water freezes on the vessel and pipe walls. [1] Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 °F, Transactions of the American Society of Heating and Ventilating Engineers [2] Goff, J. A. (1957) Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers
Kong, Kelvin Jia Wey; Alçiçek, Zayde; Balaban, Murat O
2015-03-15
Aquacultured King salmon (Oncorhynchus tshawytscha) pieces were dry brined with a salt/brown sugar mix, dipped in liquid smoke for 3 min, vacuum packed, high hydrostatic pressure (HHP) treated at 600 or 200 MPa for 5 min and stored at 4 °C for up to 40 days. The surface redness (average a*) of the samples increased after dry brining, then decreased after liquid smoke treatment. HHP did not change the outside color of liquid-smoked samples. However, the inside color changed depending on pressure. HHP-treated control samples without dry brining and liquid smoking changed to a pale pink color. HHP at 600 MPa resulted in a significant increase in hardness. Compared with fresh samples, dry-brined samples had reduced water activity, while samples dipped in liquid smoke had lower pH values. Dry brining and liquid smoking protect the outside color of salmon against changes caused by HHP. The increase in hardness may counteract the softening of the smoked salmon tissue over time. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua
2018-01-01
China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.
Determination of the water retention of peat soils in the range of the permanent wilting point.
NASA Astrophysics Data System (ADS)
Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang
2017-04-01
Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.
Tang, Xiaolin; Nail, Steven L; Pikal, Michael J
2006-02-10
This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperature, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45 degrees C).
Tang, Xiaolin; Nail, Steven L; Pikal, Michael J
2006-03-01
This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperatures, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even, if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45°C).
Farhadi, Khosro; Choubsaz, Mansour; Setayeshi, Khosro; Kameli, Mohammad; Bazargan-Hejazi, Shahrzad; Zadie, Zahra H.; Ahmadi, Alireza
2016-01-01
Abstract Background: Postoperative nausea and vomiting (PONV) is a common complication after general anesthesia, and the prevalence ranges between 25% and 30%. The aim of this study was to determine the preventive effects of dry cupping on PONV by stimulating point P6 in the wrist. Methods: This was a randomized controlled trial conducted at the Imam Reza Hospital in Kermanshah, Iran. The final study sample included 206 patients (107 experimental and 99 controls). Inclusion criteria included the following: female sex; age>18 years; ASA Class I-II; type of surgery: laparoscopic cholecystectomy; type of anesthesia: general anesthesia. Exclusion criteria included: change in the type of surgery, that is, from laparoscopic cholecystectomy to laparotomy, and ASA-classification III or more. Interventions are as follows: pre surgery, before the induction of anesthesia, the experimental group received dry cupping on point P6 of the dominant hand's wrist with activation of intermittent negative pressure. The sham group received cupping without activation of negative pressure at the same point. Main outcome was that the visual analogue scale was used to measure the severity of PONV. Results: The experimental group who received dry cupping had significantly lower levels of PONV severity after surgery (P < 0.001) than the control group. The differences in measure were maintained after controlling for age and ASA in regression models (P < 0.01). Conclusion: Traditional dry cupping delivered in an operation room setting prevented PONV in laparoscopic cholecystectomy patients. PMID:27661022
ERIC Educational Resources Information Center
Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Muntz, Faye; Houtz, Daniel R.; Sauder, Cara; Elstad, Mark; Wright-Costa, Julie
2010-01-01
Purpose: To examine the effects of nebulized isotonic saline (IS) versus sterile water (SW) on self-perceived phonatory effort (PPE) and phonation threshold pressure (PTP) following a surface laryngeal dehydration challenge in classically trained sopranos. Method: In a double-blind, within-subject crossover design, 34 sopranos breathed dry air…
Vocal Function and Upper Airway Thermoregulation in Five Different Environmental Conditions
ERIC Educational Resources Information Center
Sandage, Mary J.; Connor, Nadine P.; Pascoe, David D.
2014-01-01
Purpose: Phonation threshold pressure and perceived phonatory effort were hypothesized to increase and upper airway temperature to decrease following exposure to cold and/or dry air. Greater changes were expected with mouth versus nose breathing. Method: In a within-participant repeated measures design, 15 consented participants (7 men, 8 women)…
Method for the preparation of high surface area high permeability carbons
Lagasse, Robert R.; Schroeder, John L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.
Synthesis of fine-grained .alpha.-silicon nitride by a combustion process
Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.
1990-01-01
A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.
Controlled differential pressure system for an enhanced fluid blending apparatus
Hallman, Jr., Russell Louis
2009-02-24
A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.
Mass transfer parameters of celeriac during vacuum drying
NASA Astrophysics Data System (ADS)
Beigi, Mohsen
2017-04-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
Nath, Saurabh; Boreyko, Jonathan B
2016-08-23
Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.
Properties and Types of Significant Thermal Skin Burn Injuries
2018-02-01
Dry , red, painful Blanches with pressure (similar to sunburn) Generally heals within 6 days without scarring Superficial 2nd Degree...pressure only Almost always blisters Wet or waxy Dry Variable mottled colorization Heals in 3-9 weeks if no infection present Causes...Subcutaneous tissue Entire dermis destroyed No to low pain due to nerve destruction Waxy white to leathery gray to charred black skin Dry
The effect of particle size on the dehydration/rehydration behaviour of lactose.
Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G
2010-05-31
Ethanolic suspensions of spray dried and micronized alpha lactose monohydrate (L(alpha)xH(2)O) with average particle size between 3 and 200 microm, have been prepared and their dehydration behaviour was investigated by (13)C CP-MASNMR spectroscopy. Sub-micron lactose suspension prepared by a novel high pressure homogenisation method has been compared with the standard ethanolic suspensions of (L(alpha).H(2)O prepared by reflux or static room temperature methods. In all cases, suspensions were shown to contain the stable anhydrous form of lactose ((L(alpha)(S)). Several approaches were employed to remove ethanol from these suspensions and the resulting dry lactose powders were then analysed by FT-IR, PXRD and SEM to evaluate the effect of drying procedure on type and distribution of lactose polymorphs and particle size. For samples with mean particle size greater than 1 microm, the stable anhydrous polymorphic form of lactose was retained on removal of the ethanol, although differences in the morphology and particle size of the crystals were apparent depending on method of suspension formation. Sub-micron (L(alpha)(S), while stable in dry conditions, has been shown to be less stable to atmospheric water vapour than (L(alpha)(S) with particle size between 3 and 200 microm. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard
2016-01-01
In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard
2016-01-01
In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.
Crystal coating via spray drying to improve powder tabletability.
Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C
2014-11-01
A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.
NASA Astrophysics Data System (ADS)
Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.
2017-07-01
This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.
Stange, Ulrike; Führling, Christian; Gieseler, Henning
2014-09-15
Abstract Orally disintegrating tablets (ODTs) were freeze dried in blisters using the Lyostar® II SMART™ Freeze Dryer Technology. ODT formulations either without non-water soluble particles (placebo) or containing large fractions (717 mg) of taste-masked naproxen sodium (NaS) granules were freeze dried. The process data revealed differences between ODTs with and without embedded granules in the pressure rise curves as well as in the shelf (inlet) temperature adjustments during freeze-drying. Pressure rise curves of the placebo ODTs from eight hours process time showed no distinct temperature-dominated part, and the last optimization step of the shelf temperature to achieve -24.4 °C might be prone to errors. The final shelf temperature of ODTs containing granules was -23.3 °C. The detection of primary drying endpoints using SMART™ Technology or comparative pressure measurements was reliable for both ODT formulations, whereas the application of thermocouples resulted in premature endpoint indication. Product resistance of ODTs containing granules was generally elevated in comparison to ODTs without granules, but increased only slightly over the course of the drying process. In summary, the developed freeze-drying cycle was found applicable for production of elegant ODTs with incorporated taste masked NaS granules.
A novel method of measuring the concentration of anaesthetic vapours using a dew-point hygrometer.
Wilkes, A R; Mapleson, W W; Mecklenburgh, J S
1994-02-01
The Antoine equation relates the saturated vapour pressure of a volatile substance, such as an anaesthetic agent, to the temperature. The measurement of the 'dew-point' of a dry gas mixture containing a volatile anaesthetic agent by a dew-point hygrometer permits the determination of the partial pressure of the anaesthetic agent. The accuracy of this technique is limited only by the accuracy of the Antoine coefficients and of the temperature measurement. Comparing measurements by the dew-point method with measurements by refractometry showed systematic discrepancies up to 0.2% and random discrepancies with SDS up to 0.07% concentration in the 1% to 5% range for three volatile anaesthetics. The systematic discrepancies may be due to errors in available data for the vapour pressures and/or the refractive indices of the anaesthetics.
Synthesis and Biological Evaluation of Brain-Specific Anti-RNA Viral Agents
1990-03-31
water (200 iL). It was dried over sodium sulfate and the solvent was removed under reduced pressure. The resulting oil was dissolved in a minimum...The organic extracts were washed with NaHCO3 (2 x 200 mL), water (200 mL) and dried over sodium sulfate . The solvent was removed in vacuo and the...chloroform. The combined organic extracts were washed with 2 x 250 mL cold deionised water, dried ( sodium sulfate ) and removed under reduced pressure to
Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction.
Hossain, Mohammad B; Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel P; Rai, Dilip K
2015-05-13
A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.
Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki
2018-01-23
Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.C. Baker; T.M. Pfeiffer; J.C. Price
2013-09-01
Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed)more » while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.« less
Cepeda-Vázquez, Mayela; Blumenthal, David; Camel, Valérie; Rega, Barbara
2017-03-01
Furan, a possibly carcinogenic compound to humans, and furfural, a naturally occurring volatile contributing to aroma, can be both found in thermally treated foods. These process-induced compounds, formed by close reaction pathways, play an important role as markers of food safety and quality. A method capable of simultaneously quantifying both molecules is thus highly relevant for developing mitigation strategies and preserving the sensory properties of food at the same time. We have developed a unique reliable and sensitive headspace trap (HS trap) extraction method coupled to GC-MS for the simultaneous quantification of furan and furfural in a solid processed food (sponge cake). HS Trap extraction has been optimized using an optimal design of experiments (O-DOE) approach, considering four instrumental and two sample preparation variables, as well as a blocking factor identified during preliminary assays. Multicriteria and multiple response optimization was performed based on a desirability function, yielding the following conditions: thermostatting temperature, 65°C; thermostatting time, 15min; number of pressurization cycles, 4; dry purge time, 0.9min; water / sample amount ratio (dry basis), 16; and total amount (water + sample amount, dry basis), 10g. The performances of the optimized method were also assessed: repeatability (RSD: ≤3.3% for furan and ≤2.6% for furfural), intermediate precision (RSD: 4.0% for furan and 4.3% for furfural), linearity (R 2 : 0.9957 for furan and 0.9996 for furfural), LOD (0.50ng furan g sample dry basis -1 and 10.2ng furfural g sample dry basis -1 ), LOQ (0.99ng furan g sample dry basis -1 and 41.1ng furfural g sample dry basis -1 ). Matrix effect was observed mainly for furan. Finally, the optimized method was applied to other sponge cakes with different matrix characteristics and levels of analytes. Copyright © 2016. Published by Elsevier B.V.
The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.
Mohammadi, Mahshid; Sharp, Kendra V
2015-03-01
This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these "dry" bubbles, contact line forces and a possible capillary pressure gradient induced by pinning act on the bubbles and resist motion. Without sufficient driving force (e.g., external pressure), a dry bubble is brought to stagnation. For the first time, a bipartite theoretical model that estimates the required pressure difference across the length of stagnant bubbles with concave and convex back interfaces to overcome the contact line forces and stimulate motion is proposed. To validate our theory, the pressure required to move a single dry bubble in square microchannels exhibiting contact angle hysteresis has been measured. The working fluid was deionized water. The experiments have been conducted on coated glass channels with different surface hydrophilicities that resulted in concave and convex back interfaces for the bubbles. The experimental results were in agreement with the model's predictions for square channels. The predictions of the concave and convex back models were within 19% and 27% of the experimental measurements, respectively.
A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying
NASA Astrophysics Data System (ADS)
Tsuruta, Takaharu; Hamidi, Nurkholis
Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.
NASA Astrophysics Data System (ADS)
González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila
2018-04-01
Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation and anthropogenic pressures all over the country, making TDFs a top priority for conservation in Colombia.
Method for the preparation of high surface area high permeability carbons
Lagasse, R.R.; Schroeder, J.L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.
46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... serviceable condition to the satisfaction of the Coast Guard inspector. Dry chemical (cartridge-operated... chemical is free-flowing (not caked) and that extinguisher contains full charge. Dry chemical (stored... determine that extinguisher is fully charged with dry chemical. Recharge if pressure is low or if dry...
46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... serviceable condition to the satisfaction of the Coast Guard inspector. Dry chemical (cartridge-operated... chemical is free-flowing (not caked) and that extinguisher contains full charge. Dry chemical (stored... determine that extinguisher is fully charged with dry chemical. Recharge if pressure is low or if dry...
46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... serviceable condition to the satisfaction of the Coast Guard inspector. Dry chemical (cartridge-operated... chemical is free-flowing (not caked) and that extinguisher contains full charge. Dry chemical (stored... determine that extinguisher is fully charged with dry chemical. Recharge if pressure is low or if dry...
Endotoxin increases pulmonary vascular protein permeability in the dog
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welsh, C.H.; Dauber, I.M.; Weil, J.V.
Endotoxin increases pulmonary vascular permeability consistently in some species but fails to reliably cause injury in the dog. We wondered whether this phenomenon depended on the method of injury assessment, as others have relied on edema measurement; we quantified injury by monitoring the rate of extravascular protein accumulation. /sup 113m/In-labeled protein and /sup 99m/Tc-labeled erythrocytes were injected into anesthetized dogs and monitored by an externally placed lung probe. A protein leak index, the rate of extravascular protein accumulation, was derived from the rate of increase in lung protein counts corrected for changes in intravascular protein activity. After administration of Salmonellamore » enteriditis endotoxin (4 micrograms/kg), the protein leak index was elevated 2.5-fold (41.1 +/- 4.6 X 10(-4) min-1) compared with control (16.0 +/- 2.8 X 10(-4) min-1). In contrast, wet-to-dry weight ratios failed to increase after endotoxin (4.6 +/- 0.8 vs. control values of 4.2 +/- 0.5 g/g dry bloodless lung). However, we observed that endotoxin increased lung dry weight (per unit body weight), which may have attenuated the change in wet-to-dry weight ratios. To determine whether low microvascular pressures following endotoxin attenuated edema formation, we increased pulmonary arterial wedge pressures in five dogs by saline infusion, which caused an increase in wet-to-dry weight ratios following endotoxin but no change in the five controls. We conclude that low dose endotoxin causes pulmonary vascular protein leak in the dog while edema formation is minimal or absent.« less
Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
Salazar, Jaime; Müller, Rainer H; Möschwitzer, Jan P
2013-07-16
Standard particle size reduction techniques such as high pressure homogenization or wet bead milling are frequently used in the production of nanosuspensions. The need for micronized starting material and long process times are their evident disadvantages. Combinative particle size reduction technologies have been developed to overcome the drawbacks of the standard techniques. The H 42 combinative technology consists of a drug pre-treatment by means of spray-drying followed by standard high pressure homogenization. In the present paper, spray-drying process parameters influencing the diminution effectiveness, such as drug and surfactant concentration, were systematically analyzed. Subsequently, the untreated and pre-treated drug powders were homogenized for 20 cycles at 1500 bar. For untreated, micronized glibenclamide, the particle size analysis revealed a mean particle size of 772 nm and volume-based size distribution values of 2.686 μm (d50%) and 14.423 μm (d90%). The use of pre-treated material (10:1 glibenclamide/docusate sodium salt ratio spray-dried as ethanolic solution) resulted in a mean particle size of 236 nm and volume-based size distribution values of 0.131 μm (d50%) and 0.285 μm (d90%). These results were markedly improved compared to the standard process. The nanosuspensions were further transferred into tablet formulations. Wet granulation, freeze-drying and spray-drying were investigated as downstream methods to produce dry intermediates. Regarding the dissolution rate, the rank order of the downstream processes was as follows: Spray-drying>freeze-drying>wet granulation. The best drug release (90% within 10 min) was obtained for tablets produced with spray-dried nanosuspension containing 2% mannitol as matrix former. In comparison, the tablets processed with micronized glibenclamide showed a drug release of only 26% after 10 min. The H 42 combinative technology could be successfully applied in the production of small drug nanocrystals. A nanosuspension transfer to tablets that maintained the fast dissolution properties of the drug nanocrystals was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriman, L.; Simkins, D.
Beads of perspiration dripping from pipes and valves are a nuisance to mop up, but they are a telltale sign of the problems that excess humidity can cause. Fluctuations in the delicate balance of temperature and moisture in process environments are often the culprit for the corrosion, condensation, and clogging and sticking that bottlenecks plant operations and slows down production. Dehumidification is used to prevent moisture regain, condensation and corrosion, and to promote the drying of heat-sensitive products. There are three methods for removing moisture from air: Squeeze out water by increasing the pressure; though commonly used for compressed airmore » and other applications at elevated pressures, it is virtually never used to remove moisture in atmospheric pressure applications. Compressor equipment and operating costs are prohibitive, compared with those for conventional methods for dehumidifying air at ambient pressures; Condense water by chilling the surrounding air; and Pull out water by passing air across the surface of a desiccant. The paper discusses desiccation versus cooling, system design, and project management.« less
Monitoring of the secondary drying in freeze-drying of pharmaceuticals.
Fissore, Davide; Pisano, Roberto; Barresi, Antonello A
2011-02-01
This paper is focused on the in-line monitoring of the secondary drying phase of a lyophilization process. An innovative software sensor is presented to estimate reliably the residual moisture in the product and the time required to complete secondary drying, that is, to reach the target value of the residual moisture or of the desorption rate. Such results are obtained by coupling a mathematical model of the process and the in-line measurement of the solvent desorption rate and by means of the pressure rise test or another sensors (e.g., windmills, laser sensors) that can measure the vapor flux in the drying chamber. The proposed method does not require extracting any vial during the operation or using expensive sensors to measure off-line the residual moisture. Moreover, it does not require any preliminary experiment to determine the relationship between the desorption rate and residual moisture in the product. The effectiveness of the proposed approach is demonstrated by means of experiments carried out in a pilot-scale apparatus: in this case, some vials were extracted from the drying chamber and the moisture content was measured to validate the estimations provided by the soft-sensor. Copyright © 2010 Wiley-Liss, Inc.
Bischof Vukušić, Sandra; Flinčec Grgac, Sandra; Budimir, Ana; Kalenić, Smilja
2011-01-01
Aim To study the antimicrobial activity of citric acid (CA) and sodium hypophosphite monohydrate (SHP) against gram-positive and gram-negative bacteria, and to determine the influence of conventional and microwave thermal treatments on the effectiveness of antimicrobial treatment of cotton textiles. Method Textile material was impregnated with CA and SHP solution and thermally treated by either conventional or microwave drying/curing treatment. Antibacterial effectiveness was tested according to the ISO 20743:2009 standard, using absorption method. The surfaces were morphologically observed by scanning electron microscopy, while physical characteristics were determined by wrinkle recovery angles method (DIN 53 891), tensile strength (DIN 53 837), and whiteness degree method (AATCC 110-2000). Results Cotton fabric treated with CA and SHP showed significant antibacterial activity against MRSA (6.38 log10 treated by conventional drying and 6.46 log10 treated by microwave drying before washing, and 6.90 log10 and 7.86 log10, respectively, after 1 cycle of home domestic laundering washing [HDLW]). Antibacterial activity was also remarkable against S. aureus (4.25 log10 by conventional drying, 4.58 log10 by microwave drying) and against P. aeruginosa (1.93 log10 by conventional and 4.66 log10 by microwave drying). Antibacterial activity against P. aeruginosa was higher in samples subjected to microwave drying/curing than in those subjected to conventional drying/curing. As expected, antibacterial activity was reduced after 10 HDLW cycles but the compound was still effective. The surface of the untreated cotton polymer was smooth, while minor erosion stripes appeared on the surfaces treated with antimicrobial agent, and long and deep stripes were found on the surface of the washed sample. Conclusion CA can be used both for the disposable (non-durable) materials (gowns, masks, and cuffs for blood pressure measurement) and the materials that require durability to laundering. The current protocols and initiatives in infection control could be improved by the use of antimicrobial agents applied on cotton carbohydrate polymer. PMID:21328723
Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones
NASA Astrophysics Data System (ADS)
Zimmerman, R. W.; David, E. C.
2011-12-01
During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always underpredict the rock stiffness and that, for ultrasonic measurements performed at high frequencies (~MHz), it is more accurate to use the results from effective medium theories, which implicitly assume that the fluid is trapped in the pores. Hence, we use the aspect ratio distribution inverted from dry data, but this time introducing fluid in the pores. For a good number of experimental data on sandstones, our predictions for the saturated velocities match well the experimental data. This validates the use of a spheroidal model for pores. The results are only very weakly dependent on the choice of the effective medium theory. We conclude that our method, which remain relatively simple, is a useful tool to extract the pore aspect ratio distribution, as well as predicting the saturated velocities for sandstones.
Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat
2016-06-15
Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH. Copyright © 2016. Published by Elsevier Ltd.
Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams
Siriwardane, Ranjani V [Morgantown, WV; Stevens, Robert W [Morgantown, WV
2012-03-06
A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.
NASA Astrophysics Data System (ADS)
Al-Adwani, Hamad A. H.
Supercritically dried silico-alumino-titanate (Si-Al-Ti) mixed oxides (T2CT) were successfully synthesized by a sol-gel method with hydrothermal synthesis temperatures less than 200°C and autogenic pressure. High-surface-area T2CT aerogels with meso- to macroporosity were obtained. All solid products, after calcination at 450°C, are semicrystalline. In addition, successful scale-up of T2CT synthesis in a one-gallon reactor yielding 500 g was achieved. Surface areas, pore volumes, and average pore diameters are greatly influenced by the drying method. Supercritical drying had no effect on the crystalline or molecular structure of the materials. The synthesized materials were characterized by means of nitrogen physisorption, X-ray diffraction (XRD), thermal analysis, and diffuse reflectance FTIR spectroscopy. The addition of different amounts of phosphorous and antimony affected neither the textural nor the structural aspects of T2CT. However, a decrease in surface area occurred. The catalytic activity of these materials was evaluated after being loaded with nickel and molybdenum by the incipient wetness method. Cyclohexene hydrogenation and thiophene hydrodesulfurization reactions are used in the catalytic activity study. The activities of some of the catalyst prepared in this study are in the same range as the commercial catalyst, Shell 324, but with lower metal loadings than the commercial catalysts. Thus, more efficient use of Mo and Ni was observed.
NASA Astrophysics Data System (ADS)
Hughes, P. N.
2015-12-01
A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.
Atmospheric particulate emissions from dry abrasive blasting using coal slag.
Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya
2006-08-01
Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1976-01-01
In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.
Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard
2017-05-01
This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rader, Jeff; Aguilar, Kelly; Aldred, Derek
2012-11-30
This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grindingmore » and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.« less
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Smith, E. G.
1981-01-01
The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.
Effect of water immersion on cardiopulmonary physiology at high gravity (+Gz)
NASA Technical Reports Server (NTRS)
Arieli, R.; Boutellier, U.; Farhi, L. E.
1986-01-01
The cardiopulmonary responses of eight male subject between 21-31 years exposed to 1, 2, and 3 Gz during immersion at 35 + or - 0.5 C to heart level and during control dry rides are studied. Ventilation, O2 consumption, the end-tidal pressure of CO2, heart frequency, cardiac output, functional residual capacity, and the arterial pressure of CO2 were measured. It is observed that as Gz increases ventilation, heart frequency, and O2 consumption increase, and the end-tidal and arterial pressures of CO2 decrease during dry rides, but are not altered during immersion. It is detected that the functional residual capacity is lower during immersion and decreases in both the dry and immersed state as Gz increases, and cardiac output decreases as Gz increases in dry rides. It is noted that changes produced by acceleration in a Gz direction are due to the effect on the systemic circulation rather than to the effect on the lungs.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric Richard
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing themore » internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured for a wide range of decay power and helium cask pressures. Of particular interest was the evaluation of the effect of increased helium pressure on peak cladding temperatures (PCTs) for identical thermal loads. All steady state peak temperatures and induced flow rates increased with increasing assembly power. Peak cladding temperatures decreased with increasing internal helium pressure for a given assembly power, indicating increased internal convection. In addition, the location of the PCT moved from near the top of the assembly to ~1/3 the height of the assembly for the highest (8 bar absolute) to the lowest (0 bar absolute) pressure studied, respectively. This shift in PCT location is consistent with the varying contribution of convective heat transfer proportional with of internal helium pressure.« less
Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin
2009-11-06
Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.
Kanda, Hideki; Kamo, Yuichi; Machmudah, Siti; Wahyudiono; Goto, Motonobu
2014-01-01
Macroalgae are one of potential sources for carotenoids, such as fucoxanthin, which are consumed by humans and animals. This carotenoid has been applied in both the pharmaceutical and food industries. In this study, extraction of fucoxanthin from wet brown seaweed Undaria pinnatifida (water content was 93.2%) was carried out with a simple method using liquefied dimethyl ether (DME) as an extractant in semi-continuous flow-type system. The extraction temperature and absolute pressure were 25 °C and 0.59 MPa, respectively. The liquefied DME was passed through the extractor that filled by U. pinnatifida at different time intervals. The time of experiment was only 43 min. The amount of fucoxanthin could approach to 390 μg/g dry of wet U. pinnatifida when the amount of DME used was 286 g. Compared with ethanol Soxhlet and supercritical CO2 extraction, which includes drying and cell disruption, the result was quite high. Thus, DME extraction process appears to be a good method for fucoxanthin recovery from U. pinnatifida with improved yields. PMID:24796299
Serra, X; Grèbol, N; Guàrdia, M D; Guerrero, L; Gou, P; Masoliver, P; Gassiot, M; Sárraga, C; Monfort, J M; Arnau, J
2007-01-01
This paper describes the effect of high pressure (400MPa and 600MPa) applied to frozen hams at early stages of the dry-cured ham process: green hams (GH) and hams at the end of the resting stage (ERS), on the appearance, some texture and flavour parameters and on the instrumental colour characteristics of dry-cured hams. Pressurized hams showed slightly lower visual colour intensity than the control ones. In general, pressurization did not have a significant effect on the flavour characteristics of the final product. The 600-MPa hams from the ERS process showed significantly lower crumbliness and higher fibrousness scores than the control and the 400-MPa hams. However, none of these differences were enough to affect the overall sensory quality of the hams negatively. Regarding instrumental colour characteristics (L(∗)a(∗)b(∗)), an increase in lightness was observed in the biceps femoris muscle from GH hams pressurized at 400MPa and 600MPa but not in the ERS hams.
Ghimire, Chandra Prasad; Bruijnzeel, L Adrian; Lubczynski, Maciek W; Zwartendijk, Bob W; Odongo, Vincent Omondi; Ravelona, Maafaka; van Meerveld, H J Ilja
2018-04-21
It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.
El-Hela, Atef A; Al-Amier, Hussein A; Ibrahim, Taghreed A
2010-10-08
Verbena rigida L., Verbena tenera Spreng. and Verbena venosa L. were investigated for their flavonoid content. Analysis was carried out by high-performance liquid chromatography coupled to diode array UV detection (LC-UV), using different techniques, also using post-column addition of shift reagents, afforded precise structural information about the position of the free hydroxyl groups in the flavonoid nucleus. LC-MS using atmospheric pressure chemical ionization (APCI) in the positive mode provided the molecular weight, the number of hydroxyl groups, the number of sugars and an idea about the substitution pattern of the flavonoid. On-line UV and MS data demonstrated the presence of orientin, vitexin, isovitexin, luteolin, luteolin 7-O-glucoside, apigenin 7-O-glucoside in addition to luteolin, chryseriol and apigenin aglycones in the three Verbena species with different concentrations. Quantitative determination of flavonoid content revealed the presence of 69.84 mg/g dry sample, 88.26 mg/g dry sample and 85.82 mg/g dry sample total flavonoid compounds in V. rigida L., V. tenera Spreng. and V. venosa L., respectively. The method developed for identification is useful for further chromatographic fingerprinting of plant flavonoids. Copyright © 2010 Elsevier B.V. All rights reserved.
Thrust performance of a variable-geometry, divergent exhaust nozzle on a turbojet engine at altitude
NASA Technical Reports Server (NTRS)
Straight, D. M.; Collom, R. R.
1983-01-01
A variable geometry, low aspect ratio, nonaxisymmetric, two dimensional, convergent-divergent exhaust nozzle was tested at simulated altitude on a turbojet engine to obtain baseline axial, dry thrust performance over wide ranges of operating nozzle pressure ratios, throat areas, and internal expansion area ratios. The thrust data showed good agreement with theory and scale model test results after the data were corrected for seal leakage and coolant losses. Wall static pressure profile data were also obtained and compared with one dimensional theory and scale model data. The pressure data indicate greater three dimensional flow effects in the full scale tests than with models. The leakage and coolant penalties were substantial, and the method to determine them is included.
Malara, Megan M; Kim, Jayne Y; Clark, J Alexander; Blackstone, Britani N; Ruegsegger, Mark A; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M
2018-06-13
Pressure garments are widely employed for management of postburn scarring. Although pressure magnitude has been linked to efficacy, maintenance of uniform pressure delivery is challenging. An understanding of garment fabric properties is needed to optimize pressure delivery for the duration of garment use. To address this issue, compression vests were manufactured using two commonly used fabrics, Powernet or Dri-Tek Tricot, to achieve 10% reduction in circumference for a child-sized mannequin. Applied pressure was tracked on five anatomical sites over 23 hours, before laundering or after one and five laundering cycles. Load relaxation and fatigue of fabrics were tested before laundering or after one and five laundering cycles, and structural analysis via scanning electron microscopy was performed. Prior to laundering, pressure vests fabricated using Powernet or Dri-Tek Tricot generated a maximum pressure on the mannequin of 20 and 23 mm Hg, respectively. With both fabrics, pressure decreased during daily wear. Following five laundering cycles, Dri-Tek Tricot vests delivered a maximum of 7 vs 15 mm Hg pressure for Powernet at the same site. In cyclic tensile and load relaxation tests, exerted force correlated with fabric weave orientation with greatest force measured parallel to a fabric's long axis. The results demonstrate that Powernet exhibited the greatest applied force with the least garment fatigue. Fabric orientation with respect to the primary direction of tension was a critical factor in pressure generation and maintenance. This study suggests that fabrication of garments using Powernet with its long axis parallel to patient's body part circumference may enhance the magnitude and maintenance of pressure delivery.
Wang, Dongli; Weston, Donald P; Ding, Yuping; Lydy, Michael J
2010-02-01
Pyrethroid insecticides have been implicated as the cause of sediment toxicity to Hyalella azteca in both agricultural and urban areas of California; however, for a subset of these toxic sediments (approximately 30%), the cause of toxicity remains unidentified. This article describes the analytical method development for seven additional pesticides that are being examined to determine if they might play a role in the unexplained toxicity. A pressurized liquid extraction method was optimized to simultaneously extract diazinon, methyl parathion, oxyfluorfen, dicofol, fenpropathrin, pyraclostrobin, and indoxacarb from sediment, and the extracts were cleaned using a two-step solid-phase extraction procedure. The final extract was analyzed for the target pesticides by gas chromatography/nitrogen-phosphorus detector (GC/NPD), and gas chromatography/electron capture detector (GC/ECD), after sulfur was removed by shaking with copper and cold crystallization. Three sediments were used as reference matrices to assess method accuracy and precision. Method detection limits were 0.23-1.8 ng/g dry sediment using seven replicates of sediment spiked at 1.0 ng/g dry sediment. Recoveries ranged from 61.6 to 118% with relative standard deviations of 2.1-17% when spiked at 5.0 and 50 ng/g dry sediment. The three reference sediments, spiked with 50 ng/g dry weight of the pesticide mixture, were aged for 0.25, 1, 4, 7, and 14 days. Recoveries of the pesticides in the sediments generally decreased with increased aging time, but the magnitude of the decline was pesticide and sediment dependent. The developed method was applied to field-collected sediments from the Central Valley of California.
NASA Astrophysics Data System (ADS)
Vespe, Francesco; Benedetto, Catia
2013-04-01
The huge amount of GPS Radio Occultation (RO) observations currently available thanks to space mission like COSMIC, CHAMP, GRACE, TERRASAR-X etc., have greatly encouraged the research of new algorithms suitable to extract humidity, temperature and pressure profiles of the atmosphere in a more and more precise way. For what concern the humidity profiles in these last years two different approaches have been widely proved and applied: the "Simple" and the 1DVAR methods. The Simple methods essentially determine dry refractivity profiles from temperature analysis profiles and hydrostatic equation. Then the dry refractivity is subtracted from RO refractivity to achieve the wet component. Finally from the wet refractivity is achieved humidity. The 1DVAR approach combines RO observations with profiles given by the background models with both the terms weighted with the inverse of covariance matrix. The advantage of "Simple" methods is that they are not affected by bias due to the background models. We have proposed in the past the BPV approach to retrieve humidity. Our approach can be classified among the "Simple" methods. The BPV approach works with dry atmospheric CIRA-Q models which depend on latitude, DoY and height. The dry CIRA-Q refractivity profile is selected estimating the involved parameters in a non linear least square fashion achieved by fitting RO observed bending angles through the stratosphere. The BPV as well as all the other "Simple" methods, has as drawback the unphysical occurrence of negative "humidity". Thus we propose to apply a modulated weighting of the fit residuals just to minimize the effects of this inconvenient. After a proper tuning of the approach, we plan to present the results of the validation.
Sewage sludge dewatering using flowing liquid metals
Carlson, Larry W.
1986-01-01
A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.
On the micromechanics of slip events in sheared, fluid-saturated fault gouge
NASA Astrophysics Data System (ADS)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2017-06-01
We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.
Microstructure of bentonite in iron ore green pellets.
Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas
2014-02-01
Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.
PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY
Kanter, M.A.
1958-05-20
A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.
Jiang, Xiaodan; Lv, Huibin; Qiu, Weiqiang; Liu, Ziyuan; Li, Xuemin; Wang, Wei
2015-01-01
Dry eye is a chronic inflammatory ocular surface disease with high prevalence. The current therapies for dry eye remain to be unspecific and notcomprehensive. This study aims to explore safety and efficacy of a novel treatment - subconjunctival injection of bevacizumab - in dry eye patients. Sixty-four eyes of 32 dry eye patients received subconjunctival injection of 100 μL 25 mg/mL bevacizumab. Dry eye symptoms, signs (corrected visual acuity, intraocular pressure, conjunctival vascularity, corneal staining, tear break-up time, Marx line score, and blood pressure), and conjunctival impression cytology were evaluated 3 days before and 1 week, 1 month, and 3 months after injection. Significant improvements were observed in dry eye symptoms, tear break-up time, and conjunctival vascularization area at all the visits after injection compared to the baseline (P<0.05). The density of the goblet cell increased significantly at 1 month and 3 months after injection (P<0.05). There was no visual and systemic threat observed in any patient. Subconjunctival injection of 100 μL 25 mg/mL bevacizumab is a safe and efficient treatment for ocular surface inflammation of dry eye disease.
“Multi-temperature” method for high-pressure sorption measurements on moist shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves
2013-08-15
A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as “multi-temperature” (short “multi-T”) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1more » K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.« less
Zhang, Yan; Zhang, Jieqiong; Sheng, Wei; Wang, Shuo; Fu, Tong-Jen
2016-05-15
The effects of dry and moist heat, autoclave sterilization and high-pressure treatment on the biochemical characteristics and immunological properties of almond proteins were investigated. Changes in the solubility and immunoreactivity of almond proteins extracted from treated almond flour were evaluated using a total protein assay, indirect competitive inhibition enzyme-linked immunosorbent assay (IC-ELISA), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Almond proteins were stable during dry-heat treatment at temperatures below 250°C. Dry heat at 400°C, boiling, autoclave sterilization and high-pressure treatment in the presence of water at ⩾ 500 MPa greatly reduced the solubility and immunoreactivity of almond proteins. SDS-PAGE revealed that the protein profiles of almond flour samples treated under these conditions also changed significantly. The synergistic effects of heat, pressure and the presence of water contributed to significant changes in solubility and immunoreactivity of almond proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of Defoamers for Confinenment Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D M; Mitchell, A R
Aqueous foam concentrate (AFC) 380 foam was developed by Sandia National Laboratory as a blast mitigation foam for unexploded ordnance (UXO) and its ''engineered foam structure'' is reported to be able to ''envelop chemical or biological aerosols'' [1]. It is similar to commercial fire-fighting foams, consisting mostly of water with small amounts of two alcohols, an ether and surfactant. It also contains xanthan gum, probably, to strengthen the foam film and delay drainage. The concentrate is normally diluted in a 6:94 ratio with water for foaming applications. The diluted solution is normally foamed with air to an expansion factor ofmore » about 100 (density 0.01 g/cc), which is called ''dry'' foam. Higher density foam (0.18 > {rho} > 0.03 g/cc) was discovered which had quite different characteristics from ''dry'' foam and was called ''wet'' foam. Some characterization of these foams has also been carried out, but the major effort described in this document is the evaluation, at the small and medium scale, of chemical, mechanical and thermal approaches to defoaming AFC 380 foam. Several chemical approaches to defoaming were evaluated including oxidation and precipitation of the xanthan, use of commercial oil-emulsion or suspension defoamers, pH modification, and cation exchange with the surfactant. Of these the commercial defoamers were most effective. Two mechanical approaches to defoaming were evaluated: pressure and foam rupture with very fine particles. Pressure and vacuum techniques were considered too difficult for field applications but high surface area silica particles worked very well on dry foam. Finally simple thermal techniques were evaluated. An order-disorder transition occurs in xanthan solutions at about 60 C, which may be responsible for the effectiveness of hot air as a defoamer. During defoaming of 55 gallons of foam with hot air, after about 70% of the AFC 380 foam had been defoamed, the effectiveness of hot air was dramatically reduced. Approximately 15 gal of residual foam containing mostly small bubbles was resistant to further defoaming by methods that had been effective on the original, dry foam. In this paper the residual foam is referred to as ''wet'' and the original foam is referred to as ''dry''. Methods for generating ''wet'' foam in small to moderate quantities for defoaming experiments have been developed. Methods for defoaming wet foam are currently under study.« less
Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon
2012-04-01
TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.
Fundamentals of freeze-drying.
Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A
2002-01-01
Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction--the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature dependence of glass transition-associated mobility, particularly at temperatures below the glass transition, be studied in greater depth. The relevance of the concept of strong and fragile glasses to frozen systems and freeze-dried solids has only begun to be explored. The list of pharmaceutically acceptable protective solutes is very short, and more imagination--and work--is needed in order to develop pharmaceutically acceptable alternative stabilizers. There is a need for technology development in process monitoring, particularly in developing a way to measure the status of the product during freezing and freeze-drying without placing temperature measurement probes in individual vials of product. The current practice of placing thermocouples in vials is uncertain with respect to reliability of the data, inconsistent with elimination of personnel in close proximity to open vials of product in an aseptic environment, and incompatible with technology for automatic material handling in freeze-drying. In addition, a method for controlling the degree of supercooling during freezing would allow better control of freezing rate and would, in many cases, result in more consistent product quality.
Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure
NASA Astrophysics Data System (ADS)
Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian
2016-07-01
Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)
Capillary pressure – saturation relationships for gas shales measured using a water activity meter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, B.; Perfect, E.; McKay, L. D.
Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting and drying measurements, suggesting that hysteresis may not need to be taken into account in leak off simulations.« less
Capillary pressure – saturation relationships for gas shales measured using a water activity meter
Donnelly, B.; Perfect, E.; McKay, L. D.; ...
2016-05-10
Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting and drying measurements, suggesting that hysteresis may not need to be taken into account in leak off simulations.« less
Alonso-Salces, Rosa M; Barranco, Alejandro; Corta, Edurne; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca
2005-02-15
A solid-liquid extraction procedure followed by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a photodiode array detector (DAD) for the determination of polyphenols in freeze-dried apple peel and pulp is reported. The extraction step consists in sonicating 0.5g of freeze-dried apple tissue with 30mL of methanol-water-acetic acid (30:69:1, v/v/v) containing 2g of ascorbic acid/L, for 10min in an ultrasonic bath. The whole method was validated, concluding that it is a robust method that presents high extraction efficiencies (peel: >91%, pulp: >95%) and appropriate precisions (within day: R.S.D. (n = 5) <5%, and between days: R.S.D. (n = 5) <7%) at the different concentration levels of polyphenols that can be found in apple samples. The method was compared with one previously published, consisting in a pressurized liquid extraction (PLE) followed by RP-HPLC-DAD determination. The advantages and disadvantages of both methods are discussed.
Measuring dry plant residues in grasslands: A case study using AVIRIS
NASA Technical Reports Server (NTRS)
Fitzgerald, Michael; Ustin, Susan L.
1992-01-01
Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.
2008 Homeland Security S and T Stakeholders Conference West volume 2 Monday
2008-01-16
per collection and pressure to be applied, etc. . - Enviromental effects; dry vs. wet surface (vs. type of sample swipe), clean vs. dirty surfaces...selection of collection via low volume or high volume sampling, distance to suspect item critical, etc. - Enviromental effects; temperature (range of...selection of material, collection via hand wiping or sampling wand, area per collection and pressure to be applied, etc. . - Enviromental effects; dry
Study on cyclic injection gas override in condensate gas reservoir
NASA Astrophysics Data System (ADS)
Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu
2018-02-01
Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.
Konstantinidis, Alex K; Kuu, Wei; Otten, Lori; Nail, Steven L; Sever, Robert R
2011-08-01
A novel and scalable method has been developed to enable control of the ice nucleation step for the freezing process during lyophilization. This method manipulates the chamber pressure of the freeze dryer to simultaneously induce nucleation in all product vials at a desired temperature. The effects of controlled nucleation on the drying rate of various formulations including 5% (w/w) mannitol, 5% (w/w) sucrose, and a mixture of 3% (w/w) mannitol and 2% (w/w) sucrose were studied. For a 5% (w/w) mannitol, uncontrolled ice nucleation occurred randomly at product temperatures between -8.0°C and -15.9°C as the vials were cooled to -40°C. Controlled ice nucleation was achieved at product temperatures between -2.3°C and -3.7°C. The effect of nucleation control on the effective pore radius (r(e) ) of the cake was determined from the product temperature profiles using a pore diffusion model in combination with a nonlinear parameter estimation approach reported earlier. Results show that the value of r(e) for 5% (w/w) mannitol was enlarged from 13 to 27 μm by uniformly inducing nucleation at higher temperatures. Applying the resistance parameters obtained from the pore diffusion model for 5% (w/w) mannitol, optimized cycles were theoretically generated and experimentally tested, resulting in a 41% reduction in primary drying time. Copyright © 2011 Wiley-Liss, Inc.
Overview Of Dry-Etch Techniques
NASA Astrophysics Data System (ADS)
Salzer, John M.
1986-08-01
With pattern dimensions shrinking, dry methods of etching providing controllable degrees of anisotropy become a necessity. A number of different configurations of equipment - inline, hex, planar, barrel - have been offered, and within each type, there are numerous significant variations. Further, each specific type of machine must be perfected over a complex, interactive parameter space to achieve suitable removal of various materials. Among the most critical system parameters are the choice of cathode or anode to hold the wafers, the chamber pressure, the plasma excitation frequency, and the electrode and magnetron structures. Recent trends include the use of vacuum load locks, multiple chambers, multiple electrodes, downstream etching or stripping, and multistep processes. A major percentage of etches in production handle the three materials: polysilicon, oxide and aluminum. Recent process developments have targeted refractory metals, their silicides, and with increasing emphasis, silicon trenching. Indeed, with new VLSI structures, silicon trenching has become the process of greatest interest. For stripping, dry processes provide advantages other than anisotropy. Here, too, new configurations and methods have been introduced recently. While wet processes are less than desirable from a number of viewpoints (handling, safety, disposal, venting, classes of clean room, automatability), dry methods are still being perfected as a direct, universal replacement. The paper will give an overview of these machine structures and process solutions, together with examples of interest. These findings and the trends discussed are based on semiannual survey of manufacturers and users of the various types of equipment.
Method of introducing additive into a reaction gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelfelder, S.; Chughtai, M.Y.
1984-04-03
A method of continuously introducing additive, which is conveyed by gaseous and/or liquid carriers, into a turbulent reaction gas flow in the combustion chamber of a steam generator having dry ash withdrawal for selective removal, in a dry manner, of environmentally harmful gaseous noxious materials, such as sulfur, chlorine, and chlorine compounds, which are contained in a hot reaction gas flow which results after a complete or incomplete flame combustion of solid, liquid, or gaseous fuels. Depending upon the additive introduced, heat is stored and/or used for decomposition reactions. The additive, is first introduced at one or more input locations,more » due to locally different pressure conditions in the combustion chamber, into one or more recirculation flows which are within the system and are closed. The additive is subsequently withdrawn from these recirculation flows and is introduced into the reaction gas flow.« less
NASA Astrophysics Data System (ADS)
Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.
2018-05-01
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.
Progress in ethanol production from corn kernel by applying cooking pre-treatment.
Voca, Neven; Varga, Boris; Kricka, Tajana; Curic, Duska; Jurisic, Vanja; Matin, Ana
2009-05-01
In order to improve technological properties of corn kernel for ethanol production, samples were treated with a hydrothermal pre-treatment of cooking (steaming), prior to drying. Two types of cooking process parameters were applied; steam pressure of 0.5 bars during a 10 min period, and steam pressure of 1.5 bars during a 30 min period. Afterwards, samples were dried at four different temperatures, 70, 90, 110 and 130 degrees C. Control sample was also submitted to the aforementioned drying parameters. Since the results showed that starch utilization, due to the gelatinization process, was considerably higher in the samples pre-treated before the ethanol production process, it was found that the cooking treatment had a positive effect on ethanol yield from corn kernel. Therefore, the highest ethanol yield was found in the corn kernel samples cooked for 30 min at steam pressure 1.5 bars and dried at 130 degrees C. Due to the similarity of processes used for starch fermentation, introduction of cooking pre-treatment will not significantly increase the overall ethanol production costs, whereas it will result in significantly higher ethanol yield.
Container materials in environments of corroded spent nuclear fuel
NASA Astrophysics Data System (ADS)
Huang, F. H.
1996-07-01
Efforts to remove corroded uranium metal fuel from the K Basins wet storage to long-term dry storage are underway. The multi-canister overpack (MCO) is used to load spent nuclear fuel for vacuum drying, staging, and hot conditioning; it will be used for interim dry storage until final disposition options are developed. Drying and conditioning of the corroded fuel will minimize the possibility of gas pressurization and runaway oxidation. During all phases of operations the MCO is subjected to radiation, temperature and pressure excursions, hydrogen, potential pyrophoric hazard, and corrosive environments. Material selection for the MCO applications is clearly vital for safe and efficient long-term interim storage. Austenitic stainless steels (SS) such as 304L SS or 316L SS appear to be suitable for the MCO. Of the two, Type 304L SS is recommended because it possesses good resistance to chemical corrosion, hydrogen embrittlement, and radiation-induced corrosive species. In addition, the material has adequate strength and ductility to withstand pressure and impact loading so that the containment boundary of the container is maintained under accident conditions without releasing radioactive materials.
Wet-Bulb-Globe Temperature Data Report
2015-03-01
Hour Min Pressure Dry Nat Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT...Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F...Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F deg F deg
Norman, John H.
1983-01-01
A method of extraction of HI from an aqueous solution of HI and I.sub.2. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I.sub.2 solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I.sub.2, as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H.sub.2 O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I.sub.2 without major detriment because of the presence of HBr.
Norman, J.H.
1983-08-02
A method is described for extraction of HI from an aqueous solution of HI and I[sub 2]. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I[sub 2] solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I[sub 2], as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H[sub 2]O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I[sub 2] without major detriment because of the presence of HBr. 1 fig.
Neetoo, Hudaa; Chen, Haiqiang
2011-02-01
Alfalfa sprouts are recurrently implicated in outbreaks of food-borne illnesses as a result of contamination with Salmonella or Escherichia coli O157:H7. In the majority of these outbreaks, the seeds themselves have been shown to be the most likely source of contamination. The aims of this study were to comparatively assess the efficacy of dry heat treatments alone or in conjunction with high hydrostatic pressure (HHP) to eliminate a ∼5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Dry heat treatments at mild temperatures of 55 and 60 °C achieved ≤1.6 and 2.2 log CFU/g reduction in the population of Salmonella spp. after a 10-d treatment, respectively. However, subjecting alfalfa seeds to more aggressive temperatures of 65 °C for 10 days or 70 °C for 24 h eliminated a ∼5 log population of Salmonella and E. coli O157:H7. We subsequently showed that the sequential application of dry heating followed by HHP could substantially reduce the dry heating exposure time while achieving equivalent decontamination results. Dry heating at 55, 60, 65 and 70 °C for 96, 24, 12 and 6 h, respectively followed by a pressure treatment of 600 MPa for 2 min at 35 °C were able to eliminate a ∼5 log CFU/g initial population of both pathogens. Finally, we evaluated the impact of selected treatments on the seed germination percentages and yield ratios and showed that dry heating at 65 °C for 10 days did not bring about any considerable decrease in the germination percentage. However, the sprout yield of treated alfalfa seeds was reduced by 21%. Dry heating at 60 and 65 °C for 24 and 12 h respectively followed by the pressure treatment of 600 MPa for 2 min at 35 °C did not significantly (P > 0.05) affect the germination percentage of alfalfa seeds although a reduction in the sprouting yield was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Recycling positive-electrode material of a lithium-ion battery
Sloop, Steven E.
2017-11-21
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations
Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas
2016-01-01
Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618
Reducing the Negative Vocal Effects of Superficial Laryngeal Dehydration With Humidification
Levendoski, Elizabeth Erickson; Sundarrajan, Anusha; Sivasankar, M. Preeti
2017-01-01
Objectives Environmental humidification is a simple, cost-effective method believed to reduce superficial laryngeal drying. This study sought to validate this belief by investigating whether humidification treatment would reduce the negative effects of superficial laryngeal dehydration on phonation threshold pressure (PTP). Phonation threshold pressure data analysis may be vulnerable to bias because of lack of investigator blinding. Consequently, this study investigated the extent of PTP analysis reliability between unblinded and blinded investigators. Methods Healthy male and female adults were assigned to a vocal fatigue (n = 20) or control group (n = 20) based on their responses to a questionnaire. PTP was assessed after 2 hours of mouth breathing in low humidity (dehydration challenge), following a 5-minute break in ambient humidity, and after 2 hours of mouth breathing in high humidity (humidification). Results PTP significantly increased following the laryngeal dehydration challenge. After humidification, PTP returned toward baseline. These effects were observed in both subject groups. PTP measurements were highly correlated between the unblinded and blinded investigator. Conclusions Humidification may be an effective approach to decrease the detrimental voice effects of superficial laryngeal dehydration. These data lay the foundation for future investigations aimed at preventing and treating the negative voice changes associated with chronic, surface laryngeal drying. PMID:24690983
NASA Astrophysics Data System (ADS)
Michel, Jean-Charles; Qi, Guifang; Charpentier, Sylvain; Boivin, Pascal
2010-05-01
Most of growing media used in horticulture (particularly peat substrates) shows hysteresis phenomena during desiccation and rehydration cycles, which greatly affects their hydraulic properties. The origins of these properties have often been related to one or several of the specific mechanisms such as the non-geometrical uniformity of the pores (also called ‘ink bottle' effect), presence of trapped air, shrinkage-swelling phenomena, and changes in water repellency. However, recent results showed that changes in wettability during desiccation and rehydration could be considered as one of the main factors leading to hysteretic behaviour in these materials with high organic matter contents (Naasz et al., 2008). The general objective was to estimate the evolutions of changes in water repellency on the water retention properties and associated hysteresis phenomena in relation to the intensity and the number of drying/wetting cycles. For this, simultaneous shrinkage/swelling and water retention curves were obtained using method previously developed for soil shrinkage analysis by Boivin (2006) that we have adapted for growing media and to their physical behaviours during rewetting. The experiment was performed in a climatic chamber at 20°C. A cylinder with the growing medium tested was placed on a porous ceramic disk which is used to control the pressure and to full/empty water of the sample. The whole of the device was then placed on a balance to record the water loss/storage with time; whereas linear displacement transducers were used to measure the changes in sample height and diameter upon drying and wetting in the axial and radial directions. Ceramic cups (2 cm long and 0.21 cm diameter) connected to pressure transducers were inserted in the middle of the samples to record the water pressure head. In parallell, contact angles were measured by direct droplet method at different steps during the drying/rewetting cycles. First results obtained on weakly decomposed peat samples with or without surfactants showed isotropic shrinkage and swelling, and highlighted hysteresis phenomena in relation to the intensity of drying/wetting cycle. Contact angle measurements are in progress. Other measurements on highly decomposed peat (more repellent than weakly decomposed), composted pine bark (without volume change during dryin/wetting cycles), and coco fiber (expected as non repellent organic growing media) are also in progress.
NASA Astrophysics Data System (ADS)
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.
Gu, Congying; Shamsi, Shahab A
2010-04-01
A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.
Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon
2014-08-01
The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.
Hathaway, Thomas J.
1979-01-01
This invention provides a housing containing a rotatable coal bucket that is sealed at its ends in the housing with a reciprocal plunger that is sealed in the bucket at one end and has an opposite cone-shaped end that wedges up against a closed end of the bucket, and a method for feeding dry, variable size coal from an ambient atmosphere at low pressure into a high temperature, high pressure reactor between the seals for producing fuel gas substantially without losing any high pressure gas from the reactor or excessively wearing the seals. To this end, the piston biases the plunger back and forth for loading and unloading the bucket with coal along an axis that is separated from the seals, the bucket is rotated to unload the coal into the reactor so as to fill the bucket with trapped high pressure gas from the reactor while preventing the gas from escaping therefrom, and then the cone-shaped plunger end is wedged into mating engagement with the closed end of the bucket to displace this high pressure bucket gas by expelling it back into the reactor whereby the bucket can be re-rotated for filling it with coal again substantially without losing any of the high pressure gas or excessively wearing the seals.
Bak, Kathrine Holmgaard; Lindahl, Gunilla; Karlsson, Anders H; Lloret, Elsa; Ferrini, Gabriele; Arnau, Jacint; Orlien, Vibeke
2012-03-01
Color changes of minced cured restructured ham was studied considering the effects of high pressure (HP) treatment (600MPa, 13°C, 5min), raw meat pH(24) (low, normal, high), salt content (15, 30g/kg), and drying (20%, 50% weight loss). Raw hams were selected based on pH(24) in Semimembranosus, mixed with additives, frozen, sliced, and dried using the Quick-Dry-Slice® process. Meat color (CIE 1976 L*a*b*) and reflectance spectra were measured before and after HP treatment. HP significantly increased L*, decreased a*, and decreased b* for restructured ham dried to 20% weight loss, regardless of salt content and pH(24). L* and a* were best preserved in high pH/high salt restructured ham. HP had no effect on the color of restructured ham dried to 50% weight loss. HP had no effect on the shape of reflectance curves, indicating that the pigment responsible for minced cured restructured ham color did not change due to HP. Copyright © 2011 Elsevier Ltd. All rights reserved.
WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1979-01-01
A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.
Sane, Pooja; Varma, Nikhil; Ganguly, Arnab; Pikal, Michael; Alexeenko, Alina; Bogner, Robin H
2017-02-01
Product temperature during the primary drying step of freeze-drying is controlled by a set point chamber pressure and shelf temperature. However, recent computational modeling suggests a possible variation in local chamber pressure. The current work presents an experimental verification of the local chamber pressure gradients in a lab-scale freeze-dryer. Pressure differences between the center and the edges of a lab-scale freeze-dryer shelf were measured as a function of sublimation flux and clearance between the sublimation front and the shelf above. A modest 3-mTorr difference in pressure was observed as the sublimation flux was doubled from 0.5 to 1.0 kg·h -1 ·m -2 at a clearance of 2.6 cm. Further, at a constant sublimation flux of 1.0 kg·h -1 ·m -2 , an 8-fold increase in the pressure drop was observed across the shelf as the clearance was decreased from 4 to 1.6 cm. Scale-up of the pressure variation from lab- to a manufacturing-scale freeze-dryer predicted an increased uniformity in drying rates across the batch for two frequently used pharmaceutical excipients (mannitol and sucrose at 5% w/w). However, at an atypical condition of shelf temperature of +10°C and chamber pressure of 50 mTorr, the product temperature in the center vials was calculated to be a degree higher than the edge vial for a low resistance product, thus reversing the typical edge and center vial behavior. Thus, the effect of local pressure variation is more significant at the manufacturing-scale than at a lab-scale and accounting for the contribution of variations in the local chamber pressures can improve success in scale-up.
Dueling Mechanisms for Dry Zones around Frozen Droplets
NASA Astrophysics Data System (ADS)
Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan
2016-11-01
Ice acts as a local humidity sink, due to its depressed saturation pressure relative to that of supercooled water. Hygroscopic chemicals typically exhibit annular dry zones of inhibited condensation; however, dry zones do not tend to form around ice because of inter-droplet frost growth to nearby liquid droplets that have already condensed on the chilled surface. Here, we use a humidity chamber with an embedded Peltier stage to initially suppress the growth of condensation on a chilled surface containing a single frozen droplet, in order to characterize the dry zone around ice for the first time. The length of the dry zone was observed to vary by at least two orders of magnitude as a function of surface temperature, ambient humidity, and the size of the frozen droplet. The surface temperature and ambient humidity govern the magnitudes of the in-plane and out-of-plane gradients in vapor pressure, while the size of the frozen droplet effects the local thickness of the concentration boundary layer. We develop an analytical model that reveals two different types of dry zones are possible: one in which nucleation is inhibited and one where the net growth of condensate is inhibited. Finally, a phase map was developed to predict the parameter space in which nucleation dry zones versus flux dry zones are dominant.
Synthesis and characterization of Cu3(BTC)2 membranes by thermal spray seeding and secondary growth.
Noh, Seung-Jun; Kwon, Hyuk Taek; Kim, Jinsoo
2013-08-01
Crack-free Cu3(BTC)2 membranes were successfully prepared by thermal spray seeding and secondary growth method. Thermal spray seeding method, combining thermal seeding and pressurized spraying, uniformly distributed seed solution on the support, anchoring seed crystals tightly on the support. After secondary growth of the seeded support in the autoclave, continuous crack-free membrane was obtained by controlling cooling and drying steps. The gas permeation test was conducted at various temperatures using H2, CO2, CH4 and N2 gases.
Wang, Dongqin; Li, Yanqun; Hu, Xueqiong; Su, Weimin; Zhong, Min
2015-01-01
Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process. PMID:25853267
NASA Astrophysics Data System (ADS)
Ito, Hiroshi; Iwamura, Takuya; Someya, Satoshi; Munakata, Tetsuo; Nakano, Akihiro; Heo, Yun; Ishida, Masayoshi; Nakajima, Hironori; Kitahara, Tatsumi
2016-02-01
This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE.
Chronology of DIC technique based on the fundamental mathematical modeling and dehydration impact.
Alias, Norma; Saipol, Hafizah Farhah Saipan; Ghani, Asnida Che Abd
2014-12-01
A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.
Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacy, Stephen; Allen, Jeffrey
Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudomore » Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.« less
Villagrasa, M; Guillamón, M; Navarro, A; Eljarrat, E; Barceló, D
2008-02-01
A new analytical method for the quantitative determination of benzoxazolinones and their degradation products in agricultural soils based on the use of pressurized liquid extraction (PLE) followed by solid-phase extraction (SPE) and then instrumental determination using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) is described. Using this method, the characterization, separation and quantitative detection of a mixture of two benzoxazolinones, benzoxazolin-2-one (BOA) and 6-methoxybenzoxazolin-2-one (MBOA) and their degradation products, 2-aminophenol (APH), N-(2-hydroxyphenyl)malonamic acid (HMPMA), 2-amino-3-H-phenoxazin-3-one (APO), 9-methoxy-2-amino-3-H-phenoxazin-3-one (AMPO), 2-acetylamino-3-H-phenoxazin-3-one (AAPO) and 2-acetylamino-9-methoxy-2-amino-3-H-phenoxazin-3-one (AAMPO) was achieved. The complete LC-ESI-MS-MS precursor-product ion fragmentation pathways for the degradation products of benzoxazolinones are described for the first time. Quantitative analysis was done in the multiple reaction mode using two specific combinations of precursor-product ion transitions for each compound. The optimized method was quality assessed by the measure of parameter as recovery, linearity, sensitivity, repeatability and reproducibility. Recoveries of the analytes ranged from 53 to 123%. The developed method offered improvements to the sensitivity as compared with our previously LC-MS method, with detection limits down to 2.4-21 ng/g of dry weight. This achievement allows us to identify and quantify for the first time degradation products of benzoxazolinones in real agricultural soil samples. Analytes were found in the range of 20.6-149 ng/g dry weight.
Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials
Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas
2015-01-01
Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492
Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina
2017-10-01
The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.
Continuous manufacturing of delta mannitol by cospray drying with PVP.
Vanhoorne, V; Van Bockstal, P-J; Van Snick, B; Peeters, E; Monteyne, T; Gomes, P; De Beer, T; Remon, J P; Vervaet, C
2016-03-30
Mannitol is a frequently used diluent in the production of tablets due to its non-hygroscopic character and low drug interaction potential. Although the δ-polymorph of mannitol has superior tabletability in comparison to α- and β-mannitol, the latter are most commonly used because large-scale production of δ-mannitol is difficult. Therefore, a continuous method for production of δ-mannitol was developed in the current study. Spray drying an aqueous solution of mannitol and PVP in a ratio of 4:1 resulted in formation of δ-mannitol. The tabletability of a physical mixture of spray dried δ-mannitol with PVP (5%) and paracetamol (75%) was clearly superior to the tabletability of physical mixtures consisting of spray dried α- and β-mannitol with PVP (5%) and paracetamol (75%) which confirmed the excellent tableting properties of the δ-polymorph. In addition, a coprocessing method was applied to coat paracetamol crystals with δ-mannitol and PVP. The tabletability of the resulting coprocessed particles consisting of 5% PVP, 20% δ-mannitol and 75% paracetamol reached a maximal tensile strength of 2.1 MPa at a main compression pressure of 260 MPa. Moreover the friability of tablets compressed at 184 MPa was only 0.5%. This was attributed to the excellent compression properties of δ-mannitol and the coating of paracetamol crystals with δ-mannitol and PVP during coprocessing. Copyright © 2016 Elsevier B.V. All rights reserved.
Model for heat and mass transfer in freeze-drying of pellets.
Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda
2009-07-01
Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.
Validation of Test Methods for Air Leak Rate Verification of Spaceflight Hardware
NASA Technical Reports Server (NTRS)
Oravec, Heather Ann; Daniels, Christopher C.; Mather, Janice L.
2017-01-01
As deep space exploration continues to be the goal of NASAs human spaceflight program, verification of the performance of spaceflight hardware becomes increasingly critical. Suitable test methods for verifying the leak rate of sealing systems are identified in program qualification testing requirements. One acceptable method for verifying the air leak rate of gas pressure seals is the tracer gas leak detector method. In this method, a tracer gas (commonly helium) leaks past the test seal and is transported to the leak detector where the leak rate is quantified. To predict the air leak rate, a conversion factor of helium-to-air is applied depending on the magnitude of the helium flow rate. The conversion factor is based on either the molecular mass ratio or the ratio of the dynamic viscosities. The current work was aimed at validating this approach for permeation-level leak rates using a series of tests with a silicone elastomer O-ring. An established pressure decay method with constant differential pressure was used to evaluate both the air and helium leak rates of the O-ring under similar temperature and pressure conditions. The results from the pressure decay tests showed, for the elastomer O-ring, that neither the molecular flow nor the viscous flow helium-to-air conversion factors were applicable. Leak rate tests were also performed using nitrogen and argon as the test gas. Molecular mass and viscosity based helium-to-test gas conversion factors were applied, but did not correctly predict the measured leak rates of either gas. To further this study, the effect of pressure boundary conditions was investigated. Often, pressure decay leak rate tests are performed at a differential pressure of 101.3 kPa with atmospheric pressure on the downstream side of the test seal. In space applications, the differential pressure is similar, but with vacuum as the downstream pressure. The same O-ring was tested at four unique differential pressures ranging from 34.5 to 137.9 kPa. Up to six combinations of upstream and downstream pressures for each differential pressure were compared. For a given differential pressure, the various combinations of upstream and downstream dry air pressures did not significantly affect the leak rate. As expected, the leak rate of the O-ring increased with increasing differential pressure. The results suggested that the current leak test pressure conditions, used to verify spacecraft sealing systems with elastomer seals, produce accurate values even though the boundary conditions do not model the space application.
Test Plan for the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing themore » internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.« less
Heavy metals in atmospheric surrogate dry deposition
Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri
1999-02-01
This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.
Disinfection methods in general practice and health authority clinics: a telephone survey
Farrow, S.C.; Kaul, S.; Littlepage, B.C.
1988-01-01
Concern about the epidemic of the acquired immune deficiency syndrome led to discussions in one health district about the dangers of cross-infection from instruments in general practice and health authority clinics. In order to establish what current disinfection practices were in use a telephone survey was adopted as a quick and easy method of data collection. Information was collected on who was responsible for disinfection as well as details of how each instrument was disinfected. Results from 69 general practices and 21 health authority clinice in one health district are reported. Some form of sterilizer was used in 63 general practices. These included water boilers (49%), dry heat sterilizers (41%), autoclaves (5%) and pressure cookers (5%). Sixty one practices were using metal vaginal specula and of these 29 were disinfecting by boiling, three were using pressure cookers, 18 dry heat, seven chemical methods, three autoclaves and one the central sterile department of the local hospital. Of those who were boiling after simple washing, three practices boiled for five to 10 minutes and reused instruments during the same clinic. Of the 29 using simple boiling 20 (69%) were boiling for less than 20 minutes. The study highlights the fact that no formal advice has been given on disinfection practice by the DHSS, the health authorities or the family practitioner committees. The need to set up local guidelines and develop practical steps for their introduction are discussed. PMID:3271009
Ye, Xingyou; Patil, Hemlata; Feng, Xin; Tiwari, Roshan V; Lu, Jiannan; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Majumdar, Soumyajit; Neupane, Dipesh; Mishra, Sanjay R; Repka, Michael A
2016-02-01
Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2014-12-10
A less time-, solvent- and sorbent-consuming analytical methodology for the determination of bisphenol A and alkylphenols (4-tert-octylphenol, 4-octylphenol, 4-n-nonylphenol, nonylphenol) in marine sediment was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). The SPLE extraction conditions were optimized by a Plackett-Burman design followed by a central composite design. Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 94 and 100% and repeatability and intermediate precision were <6% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.17 (4-n-nonylphenol) and 4.01 ng g(-1) dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of this green methodology. As an application, marine sediment samples from Galicia coast (NW of Spain) were analysed. Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 20.1 and 1409 ng g(-1) dry weight, respectively. Sediment toxicity was estimated and no risk to aquatic biota was found. Copyright © 2014 Elsevier B.V. All rights reserved.
Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel G.; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.« less
Manufacture of Regularly Shaped Sol-Gel Pellets
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Johnston, James C.; Kinder, James D.
2006-01-01
An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.
Thermodynamics of reformulated automotive fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zudkevitch, D.; Murthy, A.K.S.; Gmehling, J.
1995-06-01
Two methods for predicting Reid vapor pressure (Rvp) and initial vapor emissions of reformulated gasoline blends that contain one or more oxygenated compounds show excellent agreement with experimental data. In the first method, method A, D-86 distillation data for gasoline blends are used for predicting Rvp from a simulation of the mini dry vapor pressure equivalent (Dvpe) experiment. The other method, method B, relies on analytical information (PIANO analyses) of the base gasoline and uses classical thermodynamics for simulating the same Rvp equivalent (Rvpe) mini experiment. Method B also predicts composition and other properties for the fuel`s initial vapor emission.more » Method B, although complex, is more useful in that is can predict properties of blends without a D-86 distillation. An important aspect of method B is its capability to predict composition of initial vapor emissions from gasoline blends. Thus, it offers a powerful tool to planners of gasoline blending. Method B uses theoretically sound formulas, rigorous thermodynamic routines and uses data and correlations of physical properties that are in the public domain. Results indicate that predictions made with both methods agree very well with experimental values of Dvpe. Computer simulation methods were programmed and tested.« less
Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.
Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Rastelli, Massimo
2013-09-01
This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.
Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
Ganguly, Arnab; Nail, Steven L; Alexeenko, Alina
2013-05-01
The study is aimed at quantifying the relative contribution of key heat transfer modes in lyophilization. Measurements of vial heat transfer rates in a laboratory-scale freeze-dryer were performed using pure water, which was partially sublimed under various conditions. The separation distance between the shelf and the vial was systematically varied, and sublimation rates were determined gravimetrically. The heat transfer rates were observed to be independent of separation distance between the vial and the shelf and linearly dependent on pressure in the free molecular flow limit, realized at low pressures (<50 mTorr). However, under higher pressures (>120 mTorr), heat transfer rates were independent of pressure and inversely proportional to separation distance. Previous heat transfer studies in conventional freeze-drying cycles have attributed a dominant portion of the total heat transfer to radiation, the rest to conduction, whereas convection has been found to be insignificant. Although the measurements reported here confirm the significance of the radiative and gas conduction components, the convective component has been found to be comparable to the gas conduction contribution at pressures greater than 100 mTorr. The current investigation supports the conclusion that the convective component of the heat transfer cannot be ignored in typical laboratory-scale freeze-drying conditions. Copyright © 2013 Wiley Periodicals, Inc.
40 CFR 86.344-79 - Humidity calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... = Molecular weight of air = 28.9645 M H2O = Molecular weight of water = 18.01534 P DB = Saturation vapor pressure of water at the dry bulb temperature (Pa) P DP = saturation vapor pressure of water at the dewpoint temperature (Pa) P v = partial pressure of water vapor (Pa) P WB = saturation vapor pressure of...
40 CFR 86.344-79 - Humidity calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... = Molecular weight of air = 28.9645 M H2O = Molecular weight of water = 18.01534 P DB = Saturation vapor pressure of water at the dry bulb temperature (Pa) P DP = saturation vapor pressure of water at the dewpoint temperature (Pa) P v = partial pressure of water vapor (Pa) P WB = saturation vapor pressure of...
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
A thin film degradation study of a fluorinated polyether liquid lubricant using an HPLC method
NASA Technical Reports Server (NTRS)
Morales, W.
1986-01-01
A High Pressure Liquid Chromatography (HPLC) separation method was developed to study and analyze a fluorinated polyether fluid which is promising liquid lubricant for future applications. This HPLC separation method was used in a preliminary study investigating the catalytic effect of various metal, metal alloy, and ceramic engineering materials on the degradation of this fluid in a dry air atmosphere at 345 C. Using a 440 C stainless steel as a reference catalytic material it was found that a titanium alloy and a chromium plated material degraded the fluorinated polyether fluid substantially more than the reference material.
Advanced ETC/LSS computerized analytical models, CO2 concentration. Volume 1: Summary document
NASA Technical Reports Server (NTRS)
Taylor, B. N.; Loscutoff, A. V.
1972-01-01
Computer simulations have been prepared for the concepts of C02 concentration which have the potential for maintaining a C02 partial pressure of 3.0 mmHg, or less, in a spacecraft environment. The simulations were performed using the G-189A Generalized Environmental Control computer program. In preparing the simulations, new subroutines to model the principal functional components for each concept were prepared and integrated into the existing program. Sample problems were run to demonstrate the methods of simulation and performance characteristics of the individual concepts. Comparison runs for each concept can be made for parametric values of cabin pressure, crew size, cabin air dry and wet bulb temperatures, and mission duration.
Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment
NASA Technical Reports Server (NTRS)
Sikdar, D. M.
1984-01-01
The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.
40 CFR 86.344-79 - Humidity calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... = Web-bulb temperature (°K) B = − 12.150799 F 0 = − 8.49922(10)3 F 1 = − 7.4231865(10)3 F 2 = 96.1635147...). ER06OC93.088 Figure D79-5—Saturation Vapor Pressure Over Water (pascals) Temperature °C 0.0 0.1 0.2 0.3 0.4... = barometric pressure (Pa) H = specific humidity, (gm H2O/gm of dry air) K = 0.6220 gm H2O/gm dry air M air...
40 CFR 86.344-79 - Humidity calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... = Web-bulb temperature (°K) B = − 12.150799 F 0 = − 8.49922(10)3 F 1 = − 7.4231865(10)3 F 2 = 96.1635147...). ER06OC93.088 Figure D79-5—Saturation Vapor Pressure Over Water (pascals) Temperature °C 0.0 0.1 0.2 0.3 0.4... = barometric pressure (Pa) H = specific humidity, (gm H2O/gm of dry air) K = 0.6220 gm H2O/gm dry air M air...
Biophysical effects of water and synthetic urine on skin.
Mayrovitz, H N; Sims, N
2001-01-01
Pressure ulcers often occur at sites subjected to pressure and wetness. Although skin wetness is a risk factor for pressure ulcers,the mechanisms and effects of wetness versus urine constituents on skin breakdown is unclear. The hypothesis that wetness reduces skin hardness and, thereby, increases vulnerability of underlying blood vessels to pressure-induced flow reductions was tested in this study. Pads saturated with water and with a water solution mixed with the main chemical constituents of urine (synthetic urine; s-urine) were applied to forearm skin of 10 healthy subjects for 5.5 hours. Skin hardness, blood flow change caused by 60 mm Hg of pressure, erythema, and temperature were compared among dry, water, and s-urine test sites. 10 healthy women. Research Center, Nova Southeastern University, Health Professions Division, Fort Lauderdale, FL. S-urine and water caused significant reductions in initial hardness and caused greater initial perfusion decreases during pressure load when compared with dry sites. Skin temperature and erythema were lower at wet sites when compared with dry sites. The findings of this study are consistent with the concept that sustained skin wetness increases vulnerability to pressure-induced blood flow reduction. The effect appears to be mainly dependent on wetness, but urine constituents may exacerbate the effect. In addition, wetness-related skin cooling may play a role. In the healthy subjects studied, the blood flow decrease was not sustained due to perfusion recovery under pressure. Skin wetness would likely have more sustained effects in patients with compromised recovery mechanisms. Measures to diminish skin exposure to wetness in these patients, whatever the wetness source, are an important consideration in a multifaceted strategy to reduce the risk of pressure ulcers.
NASA Astrophysics Data System (ADS)
Jin, Wenbin; Zou, Xiaoping; Bai, Xiao; Yang, Ying; Chen, Dan
2018-01-01
Herein, we report a modified vapor-assisted deposition method to fabricate CH3NH3PbI3 film at 70 °C in a vacuum drying oven. The modified method has excellent operability and expandability in preparing perovskite solar cells. The CH3NH3I treatment temperature is 130 °C or 150 °C in conventional method, but we reduced the temperature to 70 °C in the modified vapor-assisted method. Meanwhile, the quality of CH3NH3PbI3 films prepared via the modified method is superior to that of CH3NH3PbI3 films of solution-processed method.
Kwakernaak, A. J.; Roksnoer, L. C.; Lambers Heerspink, H. J.; van den Berg-Garrelds, I.; Lochorn, G. A.; van Embden Andres, J. H.; Klijn, M. A.; Kobori, H.; Danser, A. H. J.; Laverman, G. D.; Navis, G. J.
2017-01-01
Aim The combination of weight excess and hypertension significantly contributes to cardiovascular risk and progressive kidney damage. An unfavorable renal hemodynamic profile is thought to contribute to this increased risk and may be ameliorated by direct renin inhibition (DRI). The aim of this trial was to assess the effect of DRI on renal and systemic hemodynamics and on RAAS activity, in men with weight excess and hypertension. Methods A randomized, double-blind, cross-over clinical trial to determine the effect of DRI (aliskiren 300 mg/day), with angiotensin converting enzyme inhibition (ACEi; ramipril 10 mg/day) as a positive control, on renal and systemic hemodynamics, and on RAAS activity (n = 15). Results Mean (SEM) Glomerular filtration rate (101 (5) mL/min/1.73m2) remained unaffected by DRI or ACEi. Effective renal plasma flow (ERPF; 301 (14) mL/min/1.73m2) was increased in response to DRI (320 (14) mL/min/1.73m2, P = 0.012) and ACEi (317 (15) mL/min/1.73m2, P = 0.045). Filtration fraction (FF; 34 (0.8)%) was reduced by DRI only (32 (0.7)%, P = 0.044). Mean arterial pressure (109 (2) mmHg) was reduced by DRI (101 (2) mmHg, P = 0.008) and ACEi (103 (3) mmHg, P = 0.037). RAAS activity was reduced by DRI and ACEi. Albuminuria (20 [9–42] mg/d) was reduced by DRI only (12 [5–28] mg/d, P = 0.030). Conclusions In men with weight excess and hypertension, DRI and ACEi improved renal and systemic hemodynamics. Both DRI and ACEi reduced RAAS activity. Thus, DRI provides effective treatment in weight excess and hypertension. Trial Registration Dutch trial register, registration number: 2532 www.trialregister.nl PMID:28118402
NASA Astrophysics Data System (ADS)
Hong, S. S.; Lim, J. Y.; Khan, W.
2014-02-01
Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.
NASA Astrophysics Data System (ADS)
He, Xinyi; Liu, Liping
2017-12-01
Based on the principle of Gibbs free energy minimization, the thermodynamic analysis on the CO2 conversion processes of dry reforming of methane for H2 and CO2 hydrogenation to dimethyl ether was carried out. The composition of the reaction system was determined on the basis of reaction mechanism. The effects of reaction temperature, pressure and raw material composition on the equilibrium conversion and the selectivity of products were analyzed. The results show that high temperature, low pressure, CO2/CH4 molar ratio of 1.0-1.5 and appropriate amount of oxygen are beneficial to the dry reforming of methane. For CO2 hydrogenation to dimethyl ether, low temperature, high pressure, the appropriate H2/CO2 and the proper CO addition in feed are favorable. The calculated results are compared with the relevant studies, indicating that industrial catalytic technology needs further improvement.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Ishida, H.; Sawada, K.
2018-01-01
We report the development of a microcavity drum sealed by suspended graphene. The drum is fabricated by using a low-pressure dry-transfer technique, which involves vacuum de-aeration between a graphene sheet and a substrate and raising the temperature to above the glass transition of the supporting poly(methyl methacrylate) film, which serves to increase the real contact area. The result is a suspended graphene sheet with a maximum diameter of 48.6 μm. The Raman spectrum of the suspended graphene has a 2D/G ratio of 1.79 and a few D peaks, which suggests that the material is high-quality single-layer graphene. The dry-transfer technique yields a vacuum-sealed microcavity drum 1.1 μm deep up to 4.5 μm in diameter. The Raman shift indicates that the suspended graphene is subjected to a tensile strain of 0.05%, which is attributed to the pressure difference between the evacuated cavity and the exterior gas.
Status update of the BWR cask simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindgren, Eric R.; Durbin, Samuel G.
2015-09-01
The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximummore » thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on heat load and the effect of simulated wind on a simplified below ground vent configuration.« less
Bioinspired Synthesis of Monolithic and Layered Aerogels.
Han, Xiao; Hassan, Khalil T; Harvey, Alan; Kulijer, Dejan; Oila, Adrian; Hunt, Michael R C; Šiller, Lidija
2018-06-01
Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure-drying approach is demonstrated in which instead of employing low-surface-tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore-supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production.
Boyd, Alaina R; Champagne, Pascale; McGinn, Patrick J; MacDougall, Karen M; Melanson, Jeremy E; Jessop, Philip G
2012-08-01
A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents. Copyright © 2012 Elsevier Ltd. All rights reserved.
To determine the end point of wet granulation by measuring powder energies and thermal properties.
Dave, Rutesh H; Wu, Stephen H; Contractor, Labdhi D
2012-04-01
Wet granulation has been widely used in pharmaceutical industry as a tablet manufacturing process. However, end-point determination of wet granulation process has always remained a challenge. Many traditional methods are available for end-point determination, yet accuracy and reproducibility still remain a challenge. Microcrystalline cellulose, widely used as an excipient in pharmaceutical industry, was granulated using water. Wet mass was passed through sieve # 12 and dried till constant percentage loss on drying was obtained and dried granules were obtained. Wet and dried granules collected were subjected to basic flow energy, specific energy, bulk density, pressure drop, differential scanning calorimetry and effusivity measurements. Analysis of data revealed various stages of granule growth from initial seed formation by adding 200-400 g of water, granule growth was observed by adding 600-800 g of water and over wetting was observed at 1155 g of water. In this work, we have justified our work to properly identify and utilize this technique for practical purpose to correctly identify the end-point determination of microcrystalline cellulose and explain various principles underlying energies associated with powder and thermal measurements.
Moisture Effects on the High Strain-Rate Behavior of Sand (Preprint)
2008-04-01
1986) used a conventional SHPB to evaluate a single short pressure pulse traveling through long specimens of 20/40 dry sand, 50/80 dry sand...constant strain-rate within the specimen. In a conventional SHPB experiment, e.g., on dry sand by Veyera (1994), the incident pulse is nearly...strain-rate of 400 s-1. The sand specimen confined in a hardened steel tube, had a dry density of 1.50 g/cm3 with moisture contents varied from 3% to 20
Method for reclaiming waste lubricating oils
Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.
1978-01-01
A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.
Method of identifying defective particle coatings
Cohen, Mark E.; Whiting, Carlton D.
1986-01-01
A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.
NASA Technical Reports Server (NTRS)
2000-01-01
UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.
Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas
2016-06-01
Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings. Copyright © 2016. Published by Elsevier B.V.
Fault gouge rheology under confined, high-velocity conditions
NASA Astrophysics Data System (ADS)
Reches, Z.; Madden, A. S.; Chen, X.
2012-12-01
We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was pressurized through a porous metal (Mott) plug. Comparison with effective stress calculations indicates the same friction coefficient of ~ 1.0 for the sand layer under dry and pressurized conditions. Both kaolinite and quartz sand experiments developed localized shear zones that were examined at the nano- and micro- scales with AFM, SEM and TEM. These zones displayed reduced grain sizes and cementation by local agglomeration. Kaolinite grains sheared in CROC experiment; scale bar = 1 micron.
46 CFR 115.810 - Fire protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (7) Inspection and testing of smoke and fire detecting systems (including sensors and alarms) and... Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and replace if end... clear. Insert charged cartridge. Ensure dry chemical is free flowing, not caked, and extinguisher...
46 CFR 115.810 - Fire protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (7) Inspection and testing of smoke and fire detecting systems (including sensors and alarms) and... Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and replace if end... clear. Insert charged cartridge. Ensure dry chemical is free flowing, not caked, and extinguisher...
46 CFR 115.810 - Fire protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (7) Inspection and testing of smoke and fire detecting systems (including sensors and alarms) and... Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and replace if end... clear. Insert charged cartridge. Ensure dry chemical is free flowing, not caked, and extinguisher...
NASA Astrophysics Data System (ADS)
Devianto, L. A.; Aprilia, D. N.; Indriani, D. W.; Sukarni, S.; Sumarlan, S. H.; Wibisono, Y.
2018-03-01
Microalgae is a potential bioenergy source. It can grows rapidly, even it could be harvested within 7 days. Harvesting is an important part of microalgae cultivation due to the method used. It should be undamaging toward essential content of microalgae and should produces high yields of biomass. In this study, the harvesting of Nannochloropsis oculata was carried out using capillary ultrafiltration in cross flow mode. This study aims to test ultrafiltration membrane performance in Nannochloropsis oculata harvesting accompanied by Backwash and Non-Backwash modes and to analyse its total lipid content. The harvest was done under 1; 1.5; and 2 bar of trans membrane pressure. Some observed parameters were permeate flux, cell density, biomass recovery, microalgae’s dry weight, yield, and total lipid content. The application of high pressure and backwashed treatment have boosted slurry production time which lead to microalgae’s biomass abundance. The result showed that the best treatment of Nannochloropsis oculata harvesting using capillary ultrafiltration membrane in cross flow mode is under 2 bar of pressure with backwashed treatment. This is the fastest condition to produce slurry within 1800 s with the highest recovery percentage 79.50%, 16.05 × 106 cell/ml of post-treatment cell density, 6.8 grams of biomass’ dry weight, 22.66 % of yield, and 2.52 % of total lipid content.
Hardwick, Lisa M; Nail, Steven L; Jarman, James; Hasler, Kai; Hense, Thomas
2013-10-01
A scientific rationale is proposed for the establishment of acceptance criteria for leak rates in pharmaceutical freeze dryers. A method was developed to determine the quantity of air that could leak into any lyophilizer from the outside while still maintaining Class 100/Grade A microbial conditions. A lyophilizing product is assumed most vulnerable to microbial contamination during secondary drying, when mass transfer of water vapor from product to condenser is minimal. Using the void volume of the dryer, calculated from change in internal pressure when a known volume of air is introduced, and the potential maximum bioburden of the leaked air (based on measured values), calculations can determine the allowable leaked volume of air, the flow rate required to admit that volume in a given time frame, and the pressure rise that would result from the leak over a given testing period. For the dryers in this study, using worst-case air quality conditions, it was determined that a leak resulting in a pressure rise of 0.027 mbar over a 30 min period would allow the dryers to remain in secondary drying conditions for 62 h before the established action level of one colony forming unit for each cubic meter of air space would be reached. Copyright © 2013 Elsevier B.V. All rights reserved.
Bover-Cid, S; Belletti, N; Aymerich, T; Garriga, M
2017-01-01
This work aimed to quantify the impact of a w and fat content of dry-cured ham on the Log reduction of Salmonella enterica by high pressure (HP). Dry-cured ham with adjusted a w (0.86-0.96) and fat content (10-50%) was inoculated with S. enterica and pressurised (347-852MPa, 5min/15°C), following a Central Composite Design. Polynomial regression indicated a significant impact of pressure and a w on S. enterica HP-lethality. By lowering a w a clear piezoprotection was observed. At low a w (0.88) the S. enterica reduction was little affected by increasing pressure (e.g. 2.3 to 3.2 Logs at 450 to 750MPa, respectively). At the highest a w the estimated inactivation ranged from 3.3 to 8.9 Logs at 450 to 750MPa, respectively. No significant piezoprotective effect on S. enterica was recorded by the fat content. The relevance of food characteristics on the HP-lethality of S. enterica indicate the need to validate the HP effectiveness on the specific product. Copyright © 2016 Elsevier Ltd. All rights reserved.
30 CFR 250.528 - What must I include in my casing pressure request?
Code of Federal Regulations, 2013 CFR
2013-07-01
... calculated MAWOPs; (h) All casing/riser pre-bleed down pressures; (i) Shut-in tubing pressure; (j) Flowing tubing pressure; (k) Date and the calculated daily production rate during last well test (oil, gas, basic...); (m) Well type (dry tree, hybrid, or subsea); (n) Date of diagnostic test; (o) Well schematic; (p...
30 CFR 250.527 - What must I include in my casing pressure request?
Code of Federal Regulations, 2012 CFR
2012-07-01
... calculated MAWOPs; (h) All casing/riser pre-bleed down pressures; (i) Shut-in tubing pressure; (j) Flowing tubing pressure; (k) Date and the calculated daily production rate during last well test (oil, gas, basic...); (m) Well type (dry tree, hybrid, or subsea); (n) Date of diagnostic test; (o) Well schematic; (p...
30 CFR 250.528 - What must I include in my casing pressure request?
Code of Federal Regulations, 2014 CFR
2014-07-01
... calculated MAWOPs; (h) All casing/riser pre-bleed down pressures; (i) Shut-in tubing pressure; (j) Flowing tubing pressure; (k) Date and the calculated daily production rate during last well test (oil, gas, basic...); (m) Well type (dry tree, hybrid, or subsea); (n) Date of diagnostic test; (o) Well schematic; (p...
Method for synthesizing pollucite from chabazite and cesium chloride
Pereira, C.
1999-02-23
A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.
Method for synthesizing pollucite from chabazite and cesium chloride
Pereira, Candido
1999-01-01
A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.
2011-12-01
This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Oliva, Doretta; Smaldone, Angela; La Martire, Maria L.; Pichierri, Sabrina; Groeneweg, Jop
2011-01-01
This study assessed the use of microswitch technology to promote mouth-drying responses and thereby reduce the effects of drooling by two adults with severe intellectual and multiple disabilities. Mouth-drying responses were performed via a special napkin that contained pressure sensors, a microprocessor and an MP3 to monitor the responses and…
Design, Development, and Testing of a Water Vapor Exchanger for Spacecraft Life Support Systems
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Micka, Daniel J.; Chepko, Ariane B.; Rule, Kyle C.; Anderson, Molly S.
2016-01-01
Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Maximizing the use of regenerative systems and conserving water are critical considerations. This paper describes the design, development, and testing of an innovative water vapor exchanger (WVX) that can minimize the amount of water absorbed in, and vented from, regenerative CO2 removal systems. Key design requirements for the WVX are high air flow capacity (suitable for a crew of six), very high water recovery, and very low pressure losses. We developed fabrication and assembly methods that enable high-efficiency mass transfer in a uniform and stable array of Nafion tubes. We also developed analysis and design methods to compute mass transfer and pressure losses. We built and tested subscale units sized for flow rates of 2 and 5 cu ft/min (3.4–8.5 cu m/hr). Durability testing demonstrated that a stable core geometry was sustained over many humid/dry cycles. Pressure losses were very low (less than 0.5 in. H2O (125 Pa) total) and met requirements at prototypical flow rates. We measured water recovery efficiency across a range of flow rates and humidity levels that simulate the range of possible cabin conditions. We measured water recovery efficiencies in the range of 80 to 90%, with the best efficiency at lower flow rates and higher cabin humidity levels. We compared performance of the WVX with similar units built using an unstructured Nafion tube bundle. The WVX achieves higher water recovery efficiency with nearly an order of magnitude lower pressure drop than unstructured tube bundles. These results show that the WVX provides uniform flow through flow channels for both the humid and dry streams and can meet requirements for service on future exploration spacecraft. The WVX technology will be best suited for long-duration exploration vehicles that require regenerative CO2 removal systems while needing to conserve water.
Dry coupling for whole-body small-animal photoacoustic computed tomography
NASA Astrophysics Data System (ADS)
Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.
2017-04-01
We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.
Ryan, Silke; Doherty, Liam S.; Nolan, Geraldine M.; McNicholas, Walter T.
2009-01-01
Background: Nasal side effects are common in patients with obstructive sleep apnea syndrome (OSAS) starting on nasal continuous positive airway pressure (CPAP) therapy. We tested the hypothesis that heated humidification or nasal topical steroids improve compliance, nasal side effects and quality of life in this patient group. Methods: 125 patients with the established diagnosis of OSAS (apnea/hypopnea index ≥ 10/h), who tolerated CPAP via a nasal mask, and who had a successful CPAP titration were randomized to 4 weeks of dry CPAP, humidified CPAP or CPAP with additional topical nasal steroid application (fluticasone, GlaxoWellcome). Groups were similar in all demographic variables and in frequency of nasal symptoms at baseline. Outcome measures were objective compliance, quality of life (short form 36), subjective sleepiness (Epworth Sleepiness Scale score) and nasal symptoms such as runny, dry or blocked nose, sneezing and headaches; all variables assessed using a validated questionnaire and by direct interview. Results: There was no difference in compliance between groups after 4 weeks (dry: 5.21 ± 1.66 h/night, fluticasone: 5.66 ± 1.68, humidifier: 5.21 ± 1.84; p = 0.444). Quality of life and subjective sleepiness improved in all groups, but there were no differences in the extent of improvement. Nasal Symptoms were less frequently reported in the humidifier group (28%) than in the remaining groups (dry: 70%, fluticasone: 53%, p = 0.002). However, the addition of fluticasone resulted in increased frequency of sneezing. Conclusion: The addition of a humidifier, but not nasal steroids decreases the frequency of nasal symptoms in unselected OSAS patients initiating CPAP therapy; however compliance and quality of life remain unaltered. Citation: Ryan S; Doherty LS; Nolan GM; McNicholas WT. Effects of heated humidification and topical steroids on compliance, nasal symptoms, and quality of life in patients with obstructive sleep apnea syndrome using nasal continuous positive airway pressure. J Clin Sleep Med 2009;5(5):422-427. PMID:19961025
Abbaszadeh-Amirdehi, Maryam; Ansari, Noureddin Nakhostin; Naghdi, Soofia; Olyaei, Gholamreza; Nourbakhsh, Mohammad Reza
2013-01-01
Introduction Dry needling (DN) is an effective method for the treatment of myofascial trigger points (MTrPs). There is no report on the neurophysiological effects of DN in patients with MTrPs. The aim of the present study will be to assess the immediate neurophysiological efficacy of deep DN in patients with upper trapezius MTrPs. Methods and analysis A prospective, controlled clinical trial was designed to include patients with upper trapezius MTrPs and volunteered healthy participants to receive one session of DN. The primary outcome measures are neuromuscular junction response and sympathetic skin response. The secondary outcomes are pain intensity and pressure pain threshold. Data will be collected at baseline and immediately after intervention. Ethics and dissemination This study protocol has been approved by the Research Council, School of Rehabilitation and the Ethics Committee of Tehran University of Medical Sciences. The results of the study will be disseminated in a peer-reviewed journal and presented at international congresses. PMID:23793673
Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.
Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi
2015-10-01
In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. © 2015 Institute of Food Technologists®
Hauder, J; Benz, H; Rüter, M; Piringer, O-G
2013-01-01
Recycled board plays an important role in food packaging, but the great variety of organic impurities must be considered as potential food contaminants. The diffusion behaviour of the impurities is significantly different from that in plastic materials. The two-layer concept for paper and board introduced recently is now treated in more detail. In the rate-determining surface region the diffusion coefficients of the n-alkanes in the homologous series with 15-35 carbon atoms decrease proportionally as their vapour pressures. This leads to a different equation of the diffusion coefficients in comparison with that for the core layer. Different polarities of the migrants have additional influences on the diffusion due to their interactions with the fibre matrix. A new analytical method for the quantification of aromatic impurities has previously been developed. Based on this method and on the described diffusion behaviour, a migration model for specific and global mass transfer of impurities from recycled board into dry food and food simulants is given.
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1985-01-01
A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.
City plants as ecological indicator of environment quality in St. Petersburg
NASA Astrophysics Data System (ADS)
Sapunov, Valentin; Glazyrina, Tatyana
2017-04-01
Under increase of natural hazard activity and anthropogenic pressure the effective and cheep monitoring methods become necessary. Majority of modern methods of monitoring, such as space and air, needs significant foundation. The simplest monitoring method is biological indication, basing on essay of variability, sex ration and sexual dimorphism. Such a method does not need long time efforts and may be realized by short observation. Urban plants are natural indicators of ecological pressure. Check or their state may give us significant information on area pollution by use of principles of phenogenic indication. Genetic and phenotypic variability of different organism have general principles and constants. The per cent of abnormal organisms and coefficient of variability are stable for majority of species under favorable state and increase under unfavorable conditions. The basis for indication is both state of adult trees and morphological variability of pollen grains. The part of dried threes and threes infected by parasites-xylophagous is correlated with toxic pollution. Float asymmetry of lives is measure of mutagenic pollution. Abnormal form of three (dichotomy, curved) is criteria of teratogenic pollution. Importance of such an indication is increased by such incidents as Chernobyl, Fucusima and so on. Algorithm for analyze of such a data is considered. The map of ecological pressure of St. Petersburg is presented.
Electrostatic Charging of Polymers by Particle Impact at Low Pressures
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)
2001-01-01
Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.
40 CFR 91.311 - Test conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine air at the inlet to the engine and the dry atmospheric pressure (designated as p s and expressed... rates at standard conditions for temperature and pressure. Use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine...
46 CFR 91.25-20 - Fire extinguishing equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... smothering lines shall be checked with at least a 50 p.s.i. air pressure with the ends capped or by blowing... water or antifreeze. Cartridge operated (water, antifreeze or loaded stream) Examine pressure cartridge... Dry chemical (cartridge-operated type) Examine pressure cartridge and replace if end is punctured or...
Yucheng Peng; Douglas J. Gardner; Yousoo Han; Alper Kiziltas; Zhiyong Cai; Mandla A. Tshabalala
2013-01-01
The effect of drying method on selected material properties of nanocellulose was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The thermal stability and crystallinity of the dried nanocellulose were...
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.; Massey, Edward A.
2009-01-01
The Pressure Sensitive Paint (PSP) method was used to measure global surface pressures on a model at full-scale flight Reynolds numbers. In order to achieve these conditions, the test was carried out at the National Transonic Facility (NTF) operating under cryogenic conditions in a nitrogen environment. The upper surface of a wing on a full-span 0.027 scale commercial transport was painted with a porous PSP formulation and tested at 120K. Data was acquired at Mach 0.8 with a total pressure of 200 kPa, resulting in a Reynolds number of 65 x 106/m. Oxygen, which is required for PSP operation, was injected using dry air so that the oxygen concentration in the flow was approximately 1535 ppm. Results show qualitative agreement with expected results. This preliminary test is the first time that PSP has been successfully deployed to measure global surface pressures at cryogenic condition in the NTF. This paper will describe the system as installed, the results obtained from the test, as well as proposed upgrades and future tests.
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.
1977-01-01
The feasibility of recovering parameters from one-way range rate between two earth orbiting spacecraft during occultation of the tracking signal by the earth's lower atmosphere. The tracking data is inverted by an integral transformation (Abel transform) to obtain a vertical refractivity profile above the point of closest approach of the ray connecting the satellites. Pressure and temperature distributions can be obtained from values of dry refractivity using the hydrostatic equation and perfect gas law. Two methods are investigated for recovering pressure and temperature parameters. Results show that recovery is much more sensitive to satellite velocity errors than to satellite position errors. An error analysis is performed. An example is given demonstrating recovery of parameters from radio occultation data obtained during satellite-to-satellite tracking of Nimbus 6 by the ATS 6 satellite.
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise
2016-11-23
We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.
46 CFR 176.810 - Fire protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... systems, including sensors and alarms. (b) The owner, managing operator, or a qualified servicing facility... satisfaction of the Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and... and nozzle to see if they are clear. Insert charged cartridge. Ensure dry chemical is free flowing...
46 CFR 176.810 - Fire protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... systems, including sensors and alarms. (b) The owner, managing operator, or a qualified servicing facility... satisfaction of the Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and... and nozzle to see if they are clear. Insert charged cartridge. Ensure dry chemical is free flowing...
46 CFR 176.810 - Fire protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... systems, including sensors and alarms. (b) The owner, managing operator, or a qualified servicing facility... satisfaction of the Coast Guard inspector. Dry chemical (cartridge operated) Examine pressure cartridge and... and nozzle to see if they are clear. Insert charged cartridge. Ensure dry chemical is free flowing...
NASA Astrophysics Data System (ADS)
Prakash, Sai S.; Brinker, C. Jeffrey; Hurd, Alan J.; Rao, Sudeep M.
1995-03-01
HIGHLY porous inorganic films have potential applications as dielectric materials, reflective and anti-reflective coatings, flat-panel displays, sensors, catalyst supports and super-insulating architectural glazings1-3. Aerogels4 are the most highly porous solids known, and can now be prepared from inorganic5 and organic6,7 precursors with volume-fraction porosities of up to 99.9% (ref. 8). Aerogels are normally prepared by supercritical extraction of the pore fluid from a wet gel1, which prevents the network collapse that is otherwise induced by capillary forces. But supercritical processing is expensive, hazardous and incompatible with the processing requirements of many potential applications,thus severely restricting the commercial exploitation of aerogels. Here we describe a means of preparing aerogels by a simple dip-coating method at ambient pressure without the need for supercriti-cal extraction. We add surface groups to the inorganic gel which make drying shrinkage reversible9: as the solvent is withdrawn, the gel springs back to a porous state. We can generate aerogel films with 98.5% porosity using this approach. We anticipate that it will greatly expand the commercial applications of these materials.
Reducing the negative vocal effects of superficial laryngeal dehydration with humidification.
Levendoski, Elizabeth Erickson; Sundarrajan, Anusha; Sivasankar, M Preeti
2014-07-01
Environmental humidification is a simple, cost-effective method believed to reduce superficial laryngeal drying. This study sought to validate this belief by investigating whether humidification treatment would reduce the negative effects of superficial laryngeal dehydration on phonation threshold pressure (PTP). Phonation threshold pressure data analysis may be vulnerable to bias because of lack of investigator blinding. Consequently, this study investigated the extent of PTP analysis reliability between unblinded and blinded investigators. Healthy male and female adults were assigned to a vocal fatigue (n = 20) or control group (n = 20) based on their responses to a questionnaire. PTP was assessed after 2 hours of mouth breathing in low humidity (dehydration challenge), following a 5-minute break in ambient humidity, and after 2 hours of mouth breathing in high humidity (humidification). PTP significantly increased following the laryngeal dehydration challenge. After humidification, PTP returned toward baseline. These effects were observed in both subject groups. PTP measurements were highly correlated between the unblinded and blinded investigator. Humidification may be an effective approach to decrease the detrimental voice effects of superficial laryngeal dehydration. These data lay the foundation for future investigations aimed at preventing and treating the negative voice changes associated with chronic, surface laryngeal drying.
Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V
2012-10-01
Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time. Copyright © 2012 Wiley-Liss, Inc.
Bai, Yong-liang; Duan, Jin-ao; Su, Shu-lan; Qian, Ye-fei; Qian, Da-wei; Ouyang, Zhen
2014-07-01
To find out dynamic changes of flavonoids and alkaloids in Morus alba leaves by analyzing influence of different drying method and drying degrees, in order to provide evidence for quality evaluation of Morus alba leaves. Different drying methods, programmed temperature methods and constant temperature methods were adopted to dry Morus alba leaves samples respectively. Contents of flavonoids and alkaloids were analyzed by HPLC-PDA and LC-TQ/MS respectively. It's shown obviously that the content of flavonoids were influenced heavily by different drying methods. Methods that suitable for flavonoids were freezing-dried > shade-dried > dried > sun-dried > microwave-dried > infrared-dried; Methods that suitable for alkaloids were freezing-dried > shade-dried > dried > sun-dried > infrared-dried > microwave-dried. The 55 -65 degrees C group was shown to be the lowest in both flavonoids and DNJ while the 85 - 95 degrees C group was shown to be the best for DNJ. For fagomine, the 45 degrees C group was shown to be the lowest concentrations while the 95 - 105 degrees C group was shown to be the highest. Samples with different moisture were shown to be different in content of flavonoids and alkaloids. And samples with 10% moisture contain highest flavonoids while those with 30% - 50% moisture contain lowest flavonoids. Content of DNJ and fagomine raised as moisture decreasing. In addition, the 55 - 65 degrees C group was better than the 95 -105 degrees C one in alkaloids content. The results provide optimal drying methods and condition for drying Morus alba leaves, and foundations for uncovering biochemical transform of Morus alba leaves.
Fungi and bacteria. [fungicide and bactericide measures for spacecraft in tropical regions
NASA Technical Reports Server (NTRS)
Daniels, G. E.
1973-01-01
Spacecraft equipment is usually protected from fungi and bacteria by incorporating a fungicide-bactericide in the material, by a fungicide-bactericide spray, or by reducing the relative humidity to a degree where growth will not take place. A unique method to protect delicate, expensive bearings in equipment was to maintain a pressure (with dry air or nitrogen) slightly above the outside atmosphere (few millibars) within the working parts of the equipment, thus preventing fungi from entering equipment.
Finite Element Simulation Methods for Dry Sliding Wear
2008-03-27
effects of wear only occur on a microscopic level (3; 14; 17). A third reason that wear is not well understood is that it involves many different...material or one with a higher coefficient of friction there will be more of a problem with high pressure points. A third possibility is to spread the...For the local model the rail is modeled as a deformable body , and a small, 1 mm, square is taken from the slipper as the submodel. 5.2 The Global
Critical Evaluation of Soil Pore Water Extraction Methods on a Natural Soil
NASA Astrophysics Data System (ADS)
Orlowski, Natalie; Pratt, Dyan; Breuer, Lutz; McDonnell, Jeffrey
2017-04-01
Soil pore water extraction is an important component in ecohydrological studies for the measurement of δ2H and δ18O. The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of commonly applied lab-based soil water extraction techniques on a natural soil: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and two types of cryogenic extraction systems. We applied these extraction methods to a natural summer-dry (gravimetric water contents ranging from 8% to 15%) glacio-lacustrine, moderately fine textured clayey soil; excavated in 10 cm sampling increments to a depth of 1 meter. Isotope results were analyzed via OA-ICOS and compared for each extraction technique that produced liquid water. From our previous intercomparison study among the same extraction techniques but with standard soils, we discovered that extraction methods are not comparable. We therefore tested the null hypothesis that all extraction techniques would be able to replicate the natural evaporation front in a comparable manner occurring in a summer-dry soil. Our results showed that the extraction technique utilized had a significant effect on the soil water isotopic composition. High pressure mechanical squeezing and vapor equilibration techniques produced similar results with similarly sloped evaporation lines. Due to the nature of soil properties and dryness, centrifugation was unsuccessful in obtaining pore water for isotopic analysis. Cryogenic extraction on both tested techniques produced similar results to each other on a similar sloping evaporation line, but dissimilar with depth.
Detecting Pore Fluid Pressure Changes by Using the Vp/Vs Ratio
NASA Astrophysics Data System (ADS)
Vanorio, T.; Mavko, G.
2006-12-01
A central problem in studies aimed at predicting the dynamic behavior of faults is monitoring and quantifying fluid changes in areas prone to overpressure. Experimental and modeling studies show the Vp/Vs ratio to be a good determinant of the saturation state of a rock formation as well as of its inner pore pressure condition. Dectecting pore pressure changes depends, among other causes, on the reliability of laboratory data to calibrate the in-situ measured velocities. Ideally, laboratory experiments performed under controlled conditions would identify the fundamental mechanisms responsible for changes in the measured acoustic properties. However, technical limitations in the laboratory together with the assumptions driving the experimental and modeling approaches rise spouriuos mechanisms which hinder our present understanding of the actual role of high pore pressure on the elastic and poroelastic parameters. Critical issues unclude: a) the frequencies used in the laboratory are responsible for high-frequency fluid effects which induce velocity dispersion. As a result, both the effective stress parameter and velocities (and their pressure-dependence) estimated from high- frequency ultrasonic data are different from those applicable to crustal low frequency wave propagation; b) laboratory measurements made at dry, drained conditions are assumed to mimic those in gas pressured rocks. However, in dry, drained conditions, no pore pressure is exerted in the pore space, and the pore gas is infinitely compressible; c) when using room-dry, drained measurements as the baseline to model pressured rock formations, the unloading path (i.e. decreasing confining pressure) is supposed to mimic the inflationary path due to pore pressure increase. Doing so, it is assumed that the amount of crack opening due to pore pressure is equal to that of crack closure caused by the overburden stress and thus, the effective stress coefficient is implicitely assumed equal to 1. To minimize the assumptions and limitations described above, we designed a laboratory experiment which used gas as pore fluid medium. Experimental results show that in gas-pressured saturated rocks the Vp/Vs ratio, while remaining lower than values reported for liquid saturation conditions, increases with decreasing differential pressure, similarly to the trend observed in liquid saturated rocks.
Powder compression mechanics of spray-dried lactose nanocomposites.
Hellrup, Joel; Nordström, Josefina; Mahlin, Denny
2017-02-25
The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile. Copyright © 2016 Elsevier B.V. All rights reserved.
Homogeneous nucleation of ethanol and n-propanol in a shock tube
NASA Technical Reports Server (NTRS)
Peters, F.
1982-01-01
The condensation by homogeneous nucleation of ethanol (200 proof) and of n-propanol (99.98%) carried at small mole fraction in dry air (99.995%) was studied in the unsteady, isentropic expansion of a shock tube. Samples of the vapor at different partial pressures in dry air at room temperature were expanded into the liquid coexistence regime of the condensing species. A Kristler pressure transducer and Rayleigh light scattering were used to measure the pressure in the expansion and the onset of condensation. Condensation was observed at different locations between 0.15 and 1 m upstream of the diaphragm location, which correspond to different cooling rates of of the vapor samples about 50 to 10 C/ms.
Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildenschild, D; Berge, P A; Berryman, K G
1999-01-15
The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of themore » measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.« less
Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel
Xu, Mingyue; Zhao, Chengying; Ahmad, Aftab; Zhang, Huijuan; Xiao, Hang
2017-01-01
To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying) were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W.) from 3.39 mg/g (sun drying). Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels. PMID:29348752
Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.
Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie
2017-08-01
Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ileleji, Klein E; Garcia, Arnoldo A; Kingsly, Ambrose R P; Clementson, Clairmont L
2010-01-01
This study quantified the variability among 14 standard moisture loss-on-drying (gravimetric) methods for determination of the moisture content of corn distillers dried grains with solubles (DDGS). The methods were compared with the Karl Fischer (KF) titration method to determine their percent variation from the KF method. Additionally, the thermo-balance method using a halogen moisture analyzer that is routinely used in fuel ethanol plants was included in the methods investigated. Moisture contents by the loss-on-drying methods were significantly different for DDGS samples from three fuel ethanol plants. The percent deviation of the moisture loss-on-drying methods decreased with decrease in drying temperature and, to a lesser extent, drying time. This was attributed to an overestimation of moisture content in DDGS due to the release of volatiles at high temperatures. Our findings indicate that the various methods that have been used for moisture determination by moisture loss-on-drying will not give identical results and therefore, caution should be exercised when selecting a moisture loss-on-drying method for DDGS.
Iwashita, Taichi; Mine, Atsushi; Matsumoto, Mariko; Nakatani, Hayaki; Higashi, Mami; Kawaguchi-Uemura, Asuka; Kabetani, Tomoshige; Tajiri, Yuko; Imai, Dai; Hagino, Ryosuke; Miura, Jiro; Minamino, Takuya; Yatani, Hirofumi
2018-06-14
The purpose of this study was to evaluate drying methods for post space dentin bonding in a direct resin composite core build-up method. Experiment 1: Four root canal plastic models, having diameters of 1.0 or 1.8mm and parallel or tapered shapes, were prepared. After drying each post space using three drying methods (air drying, paper-point drying, or ethanol drying, which involves filling the space with 99.5 vol% ethanol followed by air drying), the residual liquid in the models was weighed. Experiment 2: Thirty endodontically treated single-root teeth were dried using the above-described drying methods and filled with dual-cure resin composite. The bonded specimens were sectioned into square beams of approximately 1mm 2 for microtensile bond strength (μTBS) testing. Nine teeth were observed through transmission electron microscopy (TEM) and micro computed tomography (μCT). The weight of residual liquid and μTBS were analyzed using Scheffé multiple comparison. Experiment 1: The results of air drying were significantly different from those of paper-point drying (p<0.001) and ethanol drying (p<0.001), and no significant difference was observed between paper-point drying and ethanol drying. Experiment 2: The μTBS significantly decreased in the order of ethanol drying, paper-point drying, and air drying (air drying/ethanol drying: p<0.001, air drying/paper-point drying: p=0.048, ethanol drying/paper-point drying: p=0.032). TEM and μCT observation revealed a sufficient dentin/adhesive interface in the ethanol drying group. Ethanol drying was found to be more effective for post space dentin bonding, as compared with air drying and paper-point drying. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aranda-González, Irma; Betancur-Ancona, David; Chel-Guerrero, Luis; Moguel-Ordóñez, Yolanda
2017-01-01
Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g-1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.
58. View of high pressure IngersollRand dehumidifier/dessicator and compressor system ...
58. View of high pressure Ingersoll-Rand dehumidifier/dessicator and compressor system to supply dry pressurized air to waveguides. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
46 CFR 71.25-20 - Fire detecting and extinguishing equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... shall be checked with at least a 50 p.s.i. air pressure with the ends capped or by blowing steam through... water or antifreeze. Cartridge operated (water, antifreeze or loaded stream) Examine pressure cartridge... Dry chemical (cartridge-operated type) Examine pressure cartridge and replace if end is punctured or...
46 CFR 71.25-20 - Fire detecting and extinguishing equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... shall be checked with at least a 50 p.s.i. air pressure with the ends capped or by blowing steam through... water or antifreeze. Cartridge operated (water, antifreeze or loaded stream) Examine pressure cartirdge... Dry chemical (cartridge-operated type) Examine pressure cartridge and replace if end is punctured or...
46 CFR 71.25-20 - Fire detecting and extinguishing equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... shall be checked with at least a 50 p.s.i. air pressure with the ends capped or by blowing steam through... water or antifreeze. Cartridge operated (water, antifreeze or loaded stream) Examine pressure cartirdge... Dry chemical (cartridge-operated type) Examine pressure cartridge and replace if end is punctured or...
Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones
Lee, Myung W.
2005-01-01
Velocities of water-saturated isotropic sandstones under low frequency can be modeled using the Biot-Gassmann theory if the moduli of dry rocks are known. On the basis of effective medium theory by Kuster and Toksoz, bulk and shear moduli of dry sandstone are proposed. These moduli are related to each other through a consolidation parameter and provide a new way to calculate elastic velocities. Because this parameter depends on differential pressure and the degree of consolidation, the proposed moduli can be used to calculate elastic velocities of sedimentary rocks under different in-place conditions by varying the consolidation parameter. This theory predicts that the ratio of P-wave to S-wave velocity (Vp/Vs) of a dry rock decreases as differential pressure increases and porosity decreases. This pattern of behavior is similar to that of water-saturated sedimentary rocks. If microcracks are present in sandstones, the velocity ratio usually increases as differential pressure increases. This implies that this theory is optimal for sandstones having intergranular porosities. Even though the accurate behavior of the consolidation parameter with respect to differential pressure or the degree of consolidation is not known, this theory presents a new way to predict S-wave velocity from P-wave velocity and porosity and to calculate elastic velocities of gas-hydrate-bearing sediments. For given properties of sandstones such as bulk and shear moduli of matrix, only the consolidation parameter affects velocities, and this parameter can be estimated directly from the measurements; thus, the prediction of S-wave velocity is accurate, reflecting in-place conditions.
Duret, Christophe; Wauthoz, Nathalie; Sebti, Thami; Vanderbist, Francis; Amighi, Karim
2012-01-01
Purpose Itraconazole (ITZ) dry powders for inhalation (DPI) composed of nanoparticles (NP) embedded in carrier microparticles were prepared and characterized. Methods DPIs were initially produced by reducing the ITZ particle size to the nanometer range using high-pressure homogenization with tocopherol polyethylene 1000 succinate (TPGS, 10% w/w ITZ) as a stabilizer. The optimized nanosuspension and the initial microsuspension were then spray-dried with different proportions of or in the absence of mannitol and/or sodium taurocholate. DPI characterization was performed using scanning electron microscopy for morphology, laser diffraction to evaluate the size-reduction process, and the size of the dried NP when reconstituted in aqueous media, impaction studies using a multistage liquid impactor to determine the aerodynamic performance and fine-particle fraction that is theoretically able to reach the lung, and dissolution studies to determine the solubility of ITZ. Results Scanning electron microscopy micrographs showed that the DPI particles were composed of mannitol microparticles with embedded nano- or micro-ITZ crystals. The formulations prepared from the nanosuspension exhibited good flow properties and better fine-particle fractions, ranging from 46.2% ± 0.5% to 63.2% ± 1.7% compared to the 23.1% ± 0.3% that was observed with the formulation produced from the initial microsuspension. Spray-drying affected the NP size by inducing irreversible aggregation, which was able to be minimized by the addition of mannitol and sodium taurocholate before the drying procedure. The ITZ NP-based DPI considerably increased the ITZ solubility (58 ± 2 increased to 96 ± 1 ng/mL) compared with that of raw ITZ or an ITZ microparticle-based DPI (<10 ng/mL). Conclusion Embedding ITZ NP in inhalable microparticles is a very effective method to produce DPI formulations with optimal aerodynamic properties and enhanced ITZ solubility. These formulations could be applied to other poorly water-soluble drugs and could be a very effective alternative for treating invasive pulmonary aspergillosis. PMID:23093903
Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah
2016-06-17
The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
Shear dilatancy and acoustic emission in dry and saturated granular materials
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; Siman-Tov, S.
2017-12-01
Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via hydrodynamic lubrication which increases the fluid pressure and therefore increases the dilation compared to dry material. The effect is particularly strong for high viscosity fluids, as observed in the silicon oil experiment. Therefore, fluid viscosity can play a crucial role in determining the physics that controls the rheology of the sheared material.
NASA Technical Reports Server (NTRS)
Middleton, Troy F.; Balla, Robert Jeffrey; Baurle, Robert A.; Wilson, Lloyd G.
2011-01-01
A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature.
Morphological responses of wheat to changes in phytochrome photoequilibrium
NASA Technical Reports Server (NTRS)
Barnes, C.; Bugbee, B.
1991-01-01
Wheat plants (Triticum aestivum L.) were grown at the same photosynthetic photon flux (PPF), 200 micromoles per square meter per second, but with phytochrome photoequilibrium (phi) values of 0.81, 0.55, and 0.33. Plants grown at phi values of 0.55 and 0.33 tillered 43 and 56%, less compared with plants grown at phi of 0.81. Main culm development (Haun stage) was slightly more advanced at lower values of phi, and leaf sheaths, but not leaf lamina, were longer at lower phi. Dry-mass accumulation was not affected by different levels of phi. Three levels of PPF (100, 200, and 400 micromoles per square meter per second) and two lamp types, metal halide and high pressure sodium, were also tested. Higher levels of PPF resulted in more dry mass, more tillering, and a more advanced Haun stage. There was no difference in plant dry mass or development under metal halide versus high pressure sodium lamps, except for total leaf length, which was greater under high pressure sodium lamps (49.5 versus 44.9 centimeters, P < 0.01).
A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
Tozuka, Yuichi; Miyazaki, Yuta; Takeuchi, Hirofumi
2010-02-15
An improved system using both supercritical antisolvent precipitation and rapid expansion from supercritical to aqueous solution (RESAS) was proposed to overcome the problem of low solubility of medicinal substances in scCO(2). When the ethanol solution with IMC was sprayed into the vessel purged with scCO(2), no precipitation of IMC was observed if the CO(2) pressure was more than 15MPa at 40 degrees C. This indicates that very small droplets of the ethanol solution with IMC could disperse in the high pressure CO(2). After expansion into distilled water using an RESAS device, this same solution, in CO(2) at high pressure, produced submicron particles of IMC. For the pharmaceutical application, the IMC suspension was freeze-dried and re-dispersed to the aqueous media. SEM images of freeze-dried sample showed that the suspension was composed of submicron particles with 300-500 nm. Although the average particle size of re-dispersed IMC related significantly to the pressure and temperature in the vessel on scCO(2) processing, the freeze-dried sample of the IMC suspension after the treatment shows good redispersibility as a nanosuspension. This apparatus is found to be a promising way to produce fine crystals of IMC with a high yield. Copyright 2009 Elsevier B.V. All rights reserved.
47. View of "dry air inlets" to waveguides entering scanner ...
47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Cook, Isobel Ann; Ward, Kevin Richard
2011-01-01
We compare frequency modulation spectroscopy (FMS) as a method of headspace water analysis with the method of Karl Fischer coulometric titration (KF), which is widely used in the analysis of residual water in a freeze-dried material. Parameters relating to the type of formulation (amorphous, crystalline) and the freeze-drying cycle (temperature, pressure, time) were investigated in relation to the resulting headspace moisture (HSM) and total water. We describe the effect of stopper treatment and storage conditions on the HSM levels observed using FMS as a non-destructive method, which also allowed individual vials to be reanalyzed at a series of time points as part of a long-term monitoring exercise. The results of this study enabled a better understanding of the effect of stopper type and pre-lyophilization treatment on the HSM levels both immediately after freeze-drying and upon subsequent storage of the sealed vials of lyophilized material at different temperatures. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Moisture mapping of all vials on one shelf of the freeze-dryer enabled further information to be obtained on the relationship of the formulation, vial, process conditions, equipment geometry, and performance on the intra-batch variability in HSM level and dynamics. It is believed that this could therefore represent a potentially useful technique for quality assurance and in the validation of lyophilization cycles, equipment, and scale-up. Lyophilization, also known as "freeze-drying," is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is used to preserve many medical products, for example, many vaccines are not stable in solution and therefore need to be dried to allow long-term storage. In order to produce a freeze-dried vaccine a complex understanding of the processes and critical temperatures is required. Once these have been understood the material is dried to give relatively low moisture content (e.g., 2% w/w). This low moisture content is critical for the long-term stability of the product, allowing doctors/chemists to store these goods on site for use when required. This research paper provides further information on a technique called frequency modulation spectroscopy (FMS) that could be used to further our knowledge of the water dynamics within a freeze-dried product, enabling us to increase our understanding of the role various materials and processing conditions play; this in turn could assist in improving quality assurance and ultimately the final product that reaches the consumer.
NASA Astrophysics Data System (ADS)
Barouchas, Pantelis; Koulos, Vasilios; Melfos, Vasilios
2017-04-01
For the determination of total carbonates in soil archaeometry a new technique was applied using a multi-sensor philosophy, which combines simultaneous measurement of pressure and temperature. This technology is innovative and complies with EN ISO 10693:2013, ASTM D4373-02(2007) and Soil Science Society of America standard test methods for calcium carbonate content in soils and sediments. The total carbonates analysis is based on a pressure method that utilizes the FOGII Digital Soil CalcimeterTM, which is a portable apparatus. The total carbonate content determined by treating a 1.000 g (+/- 0.001 g) dried sample specimens with 6N hydrochloric acid (HCL) reagent grade, in an enclosed reaction vessel. Carbon dioxide gas evolved during the reaction between the acid and carbonate fraction of the specimen, was measured by the resulting pressure generated, taking in account the temperature conditions during the reaction. Prior to analysis the procedure was validated with Sand/Soil mixtures from BIPEA proficiency testing program with soils of different origins. For applying this new method in archaeometry a total number of ten samples were used from various rocks which are related with cultural constructions and implements in Greece. They represent a large range of periods since the Neolithic times, and were selected because there was an uncertainty about their accurate mineralogical composition especially regarding the presence of carbonate minerals. The results were compared to the results from ELTRA CS580 inorganic carbon analyzer using an infrared cell. The determination of total carbonates for 10 samples from different ancient sites indicated a very good correlation (R2 >0.97) between the pressure method with temperature compensation and the infrared method. The proposed method is quickly and accurate in archaeometry and can replace easily other techniques for total carbonates testing. The FOGII Digital Soil CalcimeterTM is portable and easily can be carried for field work in archaeology.
Computational Fluid Dynamics Best Practice Guidelines in the Analysis of Storage Dry Cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zigh, A.; Solis, J.
2008-07-01
Computational fluid dynamics (CFD) methods are used to evaluate the thermal performance of a dry cask under long term storage conditions in accordance with NUREG-1536 [NUREG-1536, 1997]. A three-dimensional CFD model was developed and validated using data for a ventilated storage cask (VSC-17) collected by Idaho National Laboratory (INL). The developed Fluent CFD model was validated to minimize the modeling and application uncertainties. To address modeling uncertainties, the paper focused on turbulence modeling of buoyancy driven air flow. Similarly, in the application uncertainties, the pressure boundary conditions used to model the air inlet and outlet vents were investigated and validated.more » Different turbulence models were used to reduce the modeling uncertainty in the CFD simulation of the air flow through the annular gap between the overpack and the multi-assembly sealed basket (MSB). Among the chosen turbulence models, the validation showed that the low Reynolds k-{epsilon} and the transitional k-{omega} turbulence models predicted the measured temperatures closely. To assess the impact of pressure boundary conditions used at the air inlet and outlet channels on the application uncertainties, a sensitivity analysis of operating density was undertaken. For convergence purposes, all available commercial CFD codes include the operating density in the pressure gradient term of the momentum equation. The validation showed that the correct operating density corresponds to the density evaluated at the air inlet condition of pressure and temperature. Next, the validated CFD method was used to predict the thermal performance of an existing dry cask storage system. The evaluation uses two distinct models: a three-dimensional and an axisymmetrical representation of the cask. In the 3-D model, porous media was used to model only the volume occupied by the rodded region that is surrounded by the BWR channel box. In the axisymmetric model, porous media was used to model the entire region that encompasses the fuel assemblies as well as the gaps in between. Consequently, a larger volume is represented by porous media in the second model; hence, a higher frictional flow resistance is introduced in the momentum equations. The conservatism and the safety margins of these models were compared to assess the applicability and the realism of these two models. The three-dimensional model included fewer geometry simplifications and is recommended as it predicted less conservative fuel cladding temperature values, while still assuring the existence of adequate safety margins. (authors)« less
Dynamics of acoustic-convective drying of sunflower cake
NASA Astrophysics Data System (ADS)
Zhilin, A. A.
2017-10-01
The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.
METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES
Pancer, G.P.; Zegger, J.L.
1961-12-19
A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)
Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air
NASA Technical Reports Server (NTRS)
Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.
1984-01-01
A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.
Hathaway, Thomas J.; Bell, Jr., Harold S.
1979-01-01
This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.
37. PWD Drawing 11,654M35 (1987), 'Dry Dock No. 4 Utility ...
37. PWD Drawing 11,654-M-35 (1987), 'Dry Dock No. 4 Utility Low Pressure Sensors-Hunters Point'; showing basic plan view at upper level of pump room. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA
Bolstering Skin Grafts With a Surgical Scrub Brush: A Cost-effective Solution.
Buller, Mitchell; Lee, Thomas J; Davis, Jared; Wilhelmi, Bradon J
2017-01-01
Objective: The objective of this article is to review the methods currently used for the bolstering of skin grafts and compare their advantages and disadvantages with those of the dry, sterile surgical scrub brush. We report a series of cases performed at a single institution and compare the cost-effectiveness, application, and limitations of this method with other options for skin graft bolstering. Methods: A PubMed search using the parameters "(bolster) AND skin graft" was conducted, yielding 85 results. A total of 40 publications met the criteria for our literature review. The costs of the foam bolsters utilized as stents for skin grafts were obtained from the Central Supply and Resource Division of the University of Louisville Hospital for a cost analysis. The cost per square centimeter of each bolster material was calculated. Results: At $0.003/cm 2 , the 3M Reston foam is the most inexpensive of the 3 bolster materials analyzed. The dry, sterile surgical scrub brush has a similar cost at $0.006/cm 2 but carries the advantage of sterility. The material cost of negative pressure wound therapy is $0.47/cm 2 , and the cost of the system as a whole makes it a much more expensive alternative. In 6 patients with defects of varying size and location, the scrub brush bolster showed a near 100% graft take and no complications. Conclusions: The dry, sterile surgical scrub brush presents a readily available and low-cost option for the stenting of small skin grafts and should be considered a viable method in the armamentarium of available skin graft bolsters.
Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.
Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J
2005-04-01
To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product temperature. It was found that the MTM results serve as an excellent indicator of the end point of primary drying. Further, we find that the rate of water desorption during secondary drying may be accurately measured by a variation of the basic MTM procedure. Thus, both the end point of secondary drying and real-time residual moisture may be obtained during secondary drying. Manometric temperature measurement and the expert system for good practices in freeze drying does allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment.
Optimizing pressurized liquid extraction of microbial lipids using the response surface method.
Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L
2011-01-21
Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.
Tüzün, Emİne Handan; Gıldır, Sıla; Angın, Ender; Tecer, Büşra Hande; Dana, Kezban Öztürk; Malkoç, Mehtap
2017-09-01
[Purpose] We compared the effectiveness of dry needling with a classical physiotherapy program in patients with chronic low-back pain caused by lumbar disc hernia (LHNP). [Subjects and Methods] In total, 34 subjects were allocated randomly to the study (n=18) and control groups (n=16). In the study group, dry needling was applied using acupuncture needles. The control group performed a home exercise program in addition to hot pack, TENS, and ultrasound applications. Pain was assessed with the short form of the McGill Pain Questionnaire. The number of trigger points and their pressure sensitivity were evaluated with a physical examination (palpation). The Beck Depression Inventory was used to assess depression. The Tampa Kinesiophobia Scale was used to assess fear of movement. [Results] In the study group, the calculated Cohen's effect sizes were bigger than those in the control group in terms of pain, trigger point-related variables, and fear of movement. Effect sizes for reducing depressive symptoms were similar in both groups. [Conclusion] These results suggest that dry needling can be an effective treatment for reducing pain, number of trigger points, sensitivity, and kinesiophobia in patients with chronic low-back pain caused by lumbar disc hernia.
León-Hernández, Jose V.; Martín-Pintado-Zugasti, Aitor; Frutos, Laura G.; Alguacil-Diego, Isabel M.; de la Llave-Rincón, Ana I.; Fernandez-Carnero, Josue
2016-01-01
ABSTRACT Background Dry needling (DN) and percutaneous electrical nerve stimulation (PENS) are widely used techniques in the treatment of myofascial pain. Objective To investigate the immediate and short-term effects of the combination of DN and PENS compared to DN alone on the upper trapezius muscle. Method This is a 72-hour follow-up single-blinded randomized controlled trial. Sixty-two volunteer patients with chronic myofascial neck pain with active Myofascial Trigger Points (MTrPs) in the upper trapezius muscle were recruited. Randomization was performed, and 31 patients received DN treatment (DN group) and 31 received DN and PENS (DN+PENS group). The primary outcomes were neck disability index (NDI) and visual analog scale for pain for both post-needling soreness (PNS) and neck pain intensity (NPI). Pressure pain threshold (PPT) and cervical range of motion (CROM) were the secondary outcomes. Results We detected between-group differences in NPI and PNS in favor of the DN+PENS group immediately after treatment. No between-group differences in NDI were observed. Conclusion PENS application after dry needling treatment is more effective than dry needling alone for decreasing soreness in the short term and improving neck pain intensity immediately in patients with myofascial chronic neck pain. PMID:27410163
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.
2018-05-01
Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.
RoHo Dry Floatation system: an alternative means of pressure relief.
Williams, C
Pressure sores are believed to occur as a result of two pressures, external pressure leading to occlusion, and disruptive shearing forces causing endothelial damage to the micro circulation. One of the main principles, therefore, of pressure sore prevention is relief or reduction of pressure. Scandinavian Mobility produces a range of systems--therapeutic cushions, specialist cushions and products, and mattresses--that can reduce the pressure, reportedly achieving interface pressures of 21-28 mmHg. These systems have been shown to be cost-effective in the clinical setting and provide pressure relief in low-, medium- and high risk patients.
Hwang, Chiu-Chu; Lin, Chia-Min; Kung, Hsien-Feng; Huang, Ya-Ling; Hwang, Deng-Fwu; Su, Yi-Cheng; Tsai, Yung-Hsiang
2012-11-15
The effects of salt concentrations (0-15.0%) and drying methods on the quality of dried milkfish were studied. The results showed that the levels of aerobic plate counts, total coliform, water activity, moisture contents, total volatile basic nitrogen (TVBN) and thiobarbituric acid (TBA) of the dried milkfish samples prepared with the same drying method decreased with increased salt concentrations. The samples prepared with the cold-air drying method had better quality in term of lower TVBN and TBA values than those of samples prepared with other drying methods. The histamine contents in all samples, except two, prepared with various salt concentrations by different drying methods were less than 1.9 mg/100 g. Two unsalted samples prepared with hot-air drying at 35 °C and sun drying methods were found to contain histamine at levels of 249.7 and 67.4 mg/100 g, respectively, which were higher than the potential hazard level of 50 mg/100 g. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.; Smith, E. G.
1979-01-01
The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Hagen, L.; Kokalj, D.
2017-10-01
In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.
NASA Astrophysics Data System (ADS)
Webster, Elizabeth T.
Sol-gel methods for fabricating ceramic membranes on porous supports include dip coating, evaporative drying, and sintering. The ceramic membranes of interest in the present research were prepared from aqueous sols of silica, titania, or iron oxide nano-particles which were deposited on porous alumina supports. Physisorption measurements indicate that the diameters of the pores in the resulting membranes are 20 A or smaller. Defect formation during fabrication is particularly problematic for ceramic membranes with pore diameters in the nanometer range. Solutions to these problems would greatly enhance the commercial potential of nano-filtration membranes for gas-phase separations. Cracks are debilitating defects which originate during the drying and firing phases of fabrication. As water evaporates during drying, the sol-gel film is subjected to large capillary forces. Unchecked, these tensile forces result in catastrophic cracking across the membrane. A novel technique called internal deposition can be employed to deposit the sol particles within the pores of the support rather than on its surface. Internal deposition obstructs the propagation of cracks, thereby reducing the impact of crack-type defects. A patent for demonstration of proof of concept of the internal deposition technique has been received. Experimental difficulties associated with the nonuniform morphology of the tubular alumina support hindered further development of the internal deposition protocol. The final phase of the research incorporated a support containing uniform capillaries (Anotec(TM) disks). Two-level factorial experiments were conducted to determine the effects of various deposition and drying conditions (viz., speed and method of deposition, surface charge, humidity, and drying rate) on membrane performance. Membrane performance was characterized in terms of the permeabilities of nitrogen and helium in the resulting membranes. The permeability and pressure data were incorporated in a transport model to characterize the mechanisms of fluid flow and the morphologies of the membranes. Electron microscopy was employed to evaluate membrane coverage and to identify defects in the membranes. The results of the factorial experiments indicate that membrane performance is strongly affected by humidity during deposition and drying. These results underscore the importance of controlling process humidity during fabrication of ceramic membranes.
Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil
Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice
2004-01-01
We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is, 0 °C at 760 mm. Hg with no water vapor...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is 0 °C at 760mm Hg with no water vapor...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is 0 °C at 760mm Hg with no water vapor...
Lin, Xiao; Chyi, Chin Wun; Ruan, Ke-feng; Feng, Yi; Heng, Paul Wan Sia
2011-10-01
This work aimed to explore the potential of lactose as novel cushioning agents with suitable physicomechanical properties by micronization and co-spray drying with polymers for protecting coated multi-particulates from rupture when they are compressed into tablets. Several commercially available lactose grades, micronized lactose (ML) produced by jet milling, spray-dried ML (SML), and polymer-co-processed SMLs, were evaluated for their material characteristics and tableting properties. Hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), and polyvinylpyrrolidone (PVP) at three different levels were evaluated as co-processed polymers for spray drying. Sugar multi-particulates layered with chlorpheniramine maleate followed by an ethylcellulose coat were tableted using various lactose types as fillers. Drug release from compacted multi-particulate tablets was used to evaluate the cushioning effect of the fillers. The results showed that the cushioning effect of lactose principally depended on its particle size. Micronization can effectively enhance the protective action of lactose. Although spray drying led to a small reduction in the cushioning effect of ML, it significantly improved the physicomechanical properties of ML. Co-spray drying with suitable polymers improved both the cushioning effect and the physicomechanical properties of SML to a certain degree. Among the three polymers studied, HPC was the most effective in terms of enhancing the cushioning effect of SML. This was achieved by reducing yield pressure, and enhancing compressibility and compactibility. The combination of micronization and co-spray drying with polymers is a promising method with which new applications for lactose can be developed. Copyright © 2011 Elsevier B.V. All rights reserved.
Increased nocturnal blood pressure in enuretic children with polyuria.
Kruse, Anne; Mahler, Birgitte; Rittig, Soren; Djurhuus, Jens Christian
2009-10-01
We investigated the association between nocturnal blood pressure and urine production in children with enuresis. A total of 39 consecutive children with a mean age of 9.8 years (range 6.2 to 14.9) with monosymptomatic nocturnal enuresis completed a bladder diary, including 2 weeks of basic documentation and 2 with desmopressin titration from 120 to 240 microg sublingually. Arterial blood pressure was measured every 30 minutes during 24 hours and during 4 additional nights using an ambulatory blood pressure monitor. Furthermore, 10 healthy children were recruited into the study who completed a bladder diary for 5 days while measuring arterial blood pressures with documentation of all intake and voided volumes. Patients with nocturnal polyuria had significantly higher nocturnal mean arterial pressure than patients without polyuria and controls (p <0.05). Furthermore, a positive correlation was seen between nocturnal urine output and nocturnal mean arterial pressure (r = 0.32, p <0.001). Nocturnal urine output was significantly higher during wet nights than dry nights (p <0.001). However, no significant difference was found in mean arterial pressure between wet and dry nights. Nocturnal mean arterial pressure was significantly higher in children with enuresis with polyuria than in children without polyuria. There was a significant positive correlation between average nocturnal mean arterial pressure and nocturnal urine volume in the whole study. The association between nocturnal blood pressure and urine volume, and the role of blood pressure should be investigated in a larger group of children with enuresis who have nocturnal polyuria.
Creatinine measurement on dry blood spot sample for chronic kidney disease screening.
Silva, Alan Castro Azevedo E; Gómez, Juan Fidel Bencomo; Lugon, Jocemir Ronaldo; Graciano, Miguel Luis
2016-03-01
Chronic kidney disease (CKD) screening is advisable due to its high morbidity and mortality and is usually performed by sampling blood and urine. Here we present an innovative and simpler method, by measuring creatinine on a dry blood spot on filter paper. One-hundred and six individuals at high risk for CKD were enrolled. The creatinine values obtained using both tests and the demographic data of each participant allowed us to determinate the eGFR. The adopted cutoff for CKD was an eGFR < 60 ml/min. Mean age was 57 ± 12 years, 74% were female, 40% white, and 60% non-white. Seventy-six percent were hypertensive, 30% diabetic, 37% had family history of CKD, and 22% of smoking. The BMI was 29.5 ± 6.9 kg/m2, median systolic blood pressure was 125 mmHg (IQR 120-140 mmHg) and median diastolic blood pressure was 80 mmHg (IQR 70-80 mmHg). According to MDRD equation, sensitivity was 96%, specificity 55%, predictive positive value 96%, predictive negative value 55% and accuracy 92%. By the CKD-EPI equation the sensitivity was 94%, specificity 55%, predictive positive value 94%, predictive negative value 55% and accuracy 90%. A Bland and Altman analysis showed a relatively narrow range of creatinine values differences (+ 0.68mg/dl to -0.55mg/dl) inside the ± 1.96 SD, without systematic differences. Measurement of creatinine on dry blood sample is an easily feasible non-invasive diagnostic test with good accuracy that may be useful to screen chronic kidney disease.
Gu, Tingyue; Held, Michael A; Faik, Ahmed
2013-01-01
Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.
Gaviria, Julian; Engelbrecht, Bettina M. J.
2015-01-01
Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests are less important. PMID:26619138
Management type affects composition and facilitative processes in altoandine dry grassland
NASA Astrophysics Data System (ADS)
Catorci, Andrea; Cesaretti, Sabrina; Velasquez, Jose Luis; Burrascano, Sabina; Zeballos, Horacio
2013-10-01
We performed our study in the Dry Puna of the southern Peruvian Andes. Through a comparative approach we aimed to assess the effects of the two management systems, low grazing pressure by wild camelids vs. high grazing pressure by domestic livestock and periodic burning. Our general hypothesis was that the traditional high disturbance regime affects the dry Puna species diversity and composition through modifications of the magnitude of plant-plant-interactions and changes of the community structure due to shifts in species dominance. In 40 plots of 10 × 10 m, the cover value of each species was recorded and the species richness, floristic diversity, and community similarity of each treatment were compared. For each disturbance regime, differences of soil features (organic matter, carbon/nitrogen ratio, and potassium content) were tested. To evaluate plant-plant interactions, 4 linear transect divided into 500 plots of 10 × 10 cm were laid out and co-occurrence analysis was performed. We found that different disturbance regimes were associated with differences in the floristic composition, and that the high disturbance condition had lower species diversity and evenness. A decrease of tall species such as Festuca orthophylla and increase of dwarf and spiny Tetraglochin cristatum shrubs was observed as well. In addition, different disturbance intensities caused differences in the functional composition of the plant communities, since species with avoidance strategies are selected by high grazing pressure. High disturbance intensity was also associated to differences of soil features and to different clumped spatial structure of the dry Puna. Our results indicate also that: positive interactions are often species-specific mainly depending on the features of nurse and beneficiary species; the importance of positive interaction is higher at low grazing pressure than at high disturbance intensity; the magnitude and direction of the herbivory-mediated facilitation processes may be traced back to the grazing pressure of wild camelids.
Addressing water scarcity through limited irrigation cropping: Field experiments and modeling
USDA-ARS?s Scientific Manuscript database
Population growth in urbanizing areas such as the Front Range of Colorado has led to increased pressure to transfer water from agriculture to municipalities. In many cases this has led to complete dry up of productive irrigated lands. An option to complete dry-up is the practice of limited or defi...
Optimization and modeling of flow characteristics of low-oil DDGS using regression techniques
USDA-ARS?s Scientific Manuscript database
Storage conditions such as temperature, relative humidity (RH), consolidation pressure (CP), and time affect flow behavior of bulk solids like distillers dried grains with solubles (DDGS), which is widely used as animal feed by the U.S. cattle and swine industries. The typical dry grind DDGS product...
NASA Technical Reports Server (NTRS)
Mistry, D. K.; Chen, T. N.
1977-01-01
A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.
Accelerated aging of phenolic-bonded flakeboards
Andrew J. Baker; Robert H. Gillespie
1978-01-01
Specimens of phenolic-bonded flakeboard, vertical-grain southern pine and Douglas-fir, and marine-grade Douglas-fir plywood were exposed to four accelerated aging situations. These consisted of: 1) Multiple cycles of boiling and elevated-temperature drying, 2) multiple cycles of vacuum- pressure soaking and intermediate-temperature drying, 3) the six-cycle ASTM D-1037...
9 CFR 318.305 - Equipment and procedures for heat processing systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ensure a supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... section. (2) Cooling canal water shall be chlorinated or treated with a chemical approved by the...
9 CFR 381.305 - Equipment and procedures for heat processing systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type devices... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... cooling except as provided for in paragraphs (h) (2) and (3) of this section. (2) Cooling canal water...
Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C
Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.
1996-01-01
The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.
Effect of natural and synthetic organics on the processing of ceramics
NASA Astrophysics Data System (ADS)
Schulz, Brett M.
Dry pressing has been shown to be an efficient and cost effective method of manufacturing ceramic ware. Dry pressed parts are typically manufactured with a low moisture content which has the further advantage of eliminating the drying step that is necessary for plastic formed ware, i.e., jiggered or ram pressed. Problems associated with the use of dry pressing in an industrial setting involve the high loss rate during the bisque firing process and the poor surface finish of the green (unfired) ware. It was the goal of this research to improve the surface finish of dry pressed ware to a level that is satisfactory for decorating of the bisque fired ware. The adsorption of organic additives, specifically dispersants, on the surface of particles is an important aspect of ceramic processing. The interactions between organic additives, specifically sodium poly[acrylic acid] and poly[vinyl alcohol], have been demonstrated to result in phase separation into distinct domains during the spray-drying process. This phase separation leads to a poly[vinyl alcohol]-rich film on the surface of the granulate which will increase the P1 value, the pressure at the onset of granule deformation, of the granulate. This negative interaction between the organics increases the surface roughness of the dry pressed ware. The roughness of the industrially prepared ware was determined using an optical interferometer to set a baseline for improvements in the surface finish of the dry pressed ware. Blending of dried granulate was determined to significantly improve the surface finish of the ware. Alternative binders to replace a plasticized poly[vinyl alcohol] were observed to show improvements in the surface finish of the ware dry pressed in a semi-isostatic die. In summary the most important aspect to improving the surface finish of dry pressed ware, i.e. facilitating compaction, is the selection of the organic additives. Additives which are observed to have a negative interaction, i.e. to phase separate into distinct domains, will result in an organic rich film at the surface of the granule thus increasing the P1 value of the granulate.
Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko
2016-12-01
After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low-pressure technology to prevent odorous gasses from spreading into the environment. There are presented two new technologies: a) Sewage sludge or digestate drying in the vacuum chamber consumes approx. 1 kWh/dm 3 of evaporated water and, therefore, reaches a price of 180-240 Euros/t Dry Matter (DM), and b) Heavy metals' reduction using adsorbing reaction with magnetite nanostructures can decrease the level of heavy metals in the sewage sludge or digestate up to 20% in one cycle, which can be repeated several times on the same sludge. The aim of the paper is to present a newly developed technology which can provide economic and safe use of moderate heavy metals polluted sewage sludge on agricultural lands as organic fertilizer and, therefore, returning the nutrients (nitrogen, phosphorous, potassium) back to the human food chain, instead of being incinerated or landfilled. The proposed drying technology is economically sustainable due to the low vacuum and temperature (35 °C-40 °C), that increases the efficiency of the heat pump (coefficient of performance 5-7,2) of the energy produced by the anaerobic digestion. Hence, the main emphasis is given to the development of: an efficient method for heavy metals' reduction in the sludge treatment chain by using chitosan covered magnetite nanoparticles, an efficient drying method in a vacuum with low temperature energy which can be exploited from sludge digestion to reduce organic matter, and an energy sustainable concept of sludge treatment, with the addition of fats, oil and grease (FOG) to produce enough biogas for sludge drying to produce fertilizer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of a Self-Powered Food Sanitation Center
2002-11-01
This pump is capable of priming itself, up to 7 feet of water, and can operate dry without damage. The pump is actuated by a pressure - switch sensing...the pressure of the accumulator. The pressure - switch is set to 45 psi and has a 5 psi differential. 3.8 Mixing Valve The mixing valve...pressure of about 0.8 psi. When the boiler reaches about 0.7 psi, a pressure - switch deactivates the high-fire fuel-control solenoid, bypassing the
Ichihara, Noriko; Namba, Kazuyoshi; Ishikawa-Takata, Kazuko; Sekine, Kazunori; Takase, Mitsunori; Kamada, Yuko; Fujii, Seigo
2012-10-01
This study aimed to clarify the energy requirement in patients with amyotrophic lateral sclerosis (ALS) undergoing tracheostomy positive pressure ventilation with tracheostomy. Total energy expenditure (TEE) was measured in 10 hospitalized bedridden ALS patients using the doubly-labeled water (DLW) method. The mean TEE/day and TEE/fat- free mass estimated by DLW method were 934 ± 201 kcal/day and 34.8 ± 5.5 kcal/kg/day, respectively. The mean TEE/resting metabolic rate (RMR) was 0.85 when RMR was estimated by the Harris-Benedict equation, 0.91 by Dietary Reference Intake (DRI), and 0.97 by Ganpule's equation using fat-free mass (FFM). The ratios of TEE to measured RMR were 1.05, 1.15 and 1.23 in three patients. In conclusion, multiplying measured RMR by 1.1 to 1.2 is considered to be appropriate to estimate energy need. However, because it is difficult to measure RMR directly in a clinical setting, an appropriate equation for estimating RMR for ALS patient should be developed.
Preliminary investigation and application of alternate dry gas seal face materials{copyright}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evenson, R.; Peterson, R.; Hanson, R.
1994-01-01
Traditional seal mating ring materials such as tungsten carbide (WC) are commonly used in high pressure centrifugal gas compressor dry gas (gas lubricating film) seal applications. Although these materials possess desirable properties for minimizing thermal distortion and deformation when subjected to pressure and centrifugal force, they have low toughness, i.e., they are brittle and have poor resistance to thermal shock. It has been found that these materials are easily heat checked during seal face touchdown. Heat checking as well as other crack indications inherent in these materials can quickly propagate, resulting in a catastrophic seal ring failure. In this paper,more » an investigation of alternate seal face materials is described. Two ductile, nitrided, low ferrous materials proved to be readily manufacturable into dry gas seal rings and performed comparably to tungsten carbide in natural gas service. 10 refs., 13 figs., 5 tabs.« less
Pressurized rf cavities in ionizing beams
Freemire, B.; Tollestrup, A. âV.; Yonehara, K.; ...
2016-06-20
A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less
Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.
Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk
2015-01-01
Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.
Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements
Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk
2016-01-01
Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed. PMID:26779233
Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong
2016-04-15
Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of high-pressure extruding pretreatment on MSW upgrading and hydrolysis enhancement.
Xu, Shuang; Kong, Xin; Liu, Jianguo; Zhao, Ke; Zhao, Guangqi; Bahdolla, Amanjol
2016-12-01
High-pressure extruding (HPE) is an efficient technology used to separate municipal solid waste (MSW) into wet (biodegradable) and dry (combustible) fractions. Effects of pressure, 10, 20, 30, and 40MPa on quality upgrading of the MSW and hydrolysis of the wet fraction were examined. TS of the dry fraction increased from 48.5% to 59.4% when the extruding pressure increased from 10 to 40MPa, meanwhile the biochemical methane potential (BMP) of the wet fraction extruded under 40MPa was 674mL CH 4 /g·VS, 33% higher than that of the organic fraction of the MSW (OFMSW) control. Furthermore, in the initial stage of hydrolysis experiment, the extruded wet fractions had lower pH and higher COD, volatile fatty acids (VFAs) and COD/VFA than those of the OFMSW control. The results confirmed that HPE upgraded the MSW and enhanced hydrolysis of the wet fractions. However, high extruding pressure as 40MPa aggravated the excessive acidification of the wet fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Differential Response Pattern of Oropharyngeal Pressure by Bolus and Dry Swallows.
Hasegawa, Mana; Kurose, Masayuki; Okamoto, Keiichiro; Yamada, Yoshiaki; Tsujimura, Takanori; Inoue, Makoto; Sato, Taisuke; Narumi, Takatsune; Fujii, Noritaka; Yamamura, Kensuke
2018-02-01
The aim of this study was to determine if bolus and dry swallow showed similar pressure changes in the oropharynx using our newly developed device. A unique character of it includes that baropressure can be measured with the sensor being placed in the balloon and can assess the swallowing mechanics in terms of pressure changes in the oropharynx with less influences of direct contacts of boluses and oropharyngeal structures during swallow indirectly. Fifteen healthy subjects swallowed saliva (dry), 15 ml of water, 45 ml of water, and 15 ml of two different types of food in terms of viscosity (potage soup-type and mayonnaise-type foods). Suprahyoid muscle activity was recorded simultaneously. Three parameters, area under the curve (AUC), peak amplitude, and duration of pressure, were analyzed from each swallow. Almost all of the bolus swallowing events had biphasic baropressure responses consisting of an early phase and late phase (99%), whereas 90% of the saliva swallowing events had a single phase. AUC, peak, and duration displayed greater effects during the late phase than during the early phase. Baropressure of the early phase, but not of the late phase, significantly increased with increasing volume; however, small but significant viscosity effects on pressure were seen during both phases. Peak pressure of the late phase was preceded by maximum muscle activity, whereas that of the early phase was seen when muscle activity displayed a peak response. These findings indicated that our device with the ability to measure baropressure has the potential to provide additional parameter to assess the swallow physiology, and biphasic baropressure responses in the early and late phases could reflect functional aspects of the swallowing reflexes.
Tyree, Melvin T.; Engelbrecht, Bettina M.J.; Vargas, Gustavo; Kursar, Thomas A.
2003-01-01
Studies of the desiccation tolerance of the seedlings of five tropical trees were made on potted plants growing in a greenhouse. Pots were watered to field capacity and then dehydrated for 3 to 9 weeks to reach various visual wilting stages, from slightly wilted to dead. Saturated root hydraulic conductance was measured with a high-pressure flowmeter, and whole-stem hydraulic conductance was measured by a vacuum chamber method. Leaf punches (5.6-mm diameter) were harvested for measurement of leaf water potential by a thermocouple psychrometer method and for measurement of fresh and dry weight. In a parallel study, the same five species were studied in a field experiment in the understory of a tropical forest, where these species frequently germinate. Control seedlings were maintained in irrigated plots during a dry season, and experimental plants were grown in similar plots with rain exclusion shelters. Every 2 to 4 weeks, the seedlings were scored for wilt state and survivorship. After a 22-week drought, the dry plots were irrigated for several weeks to verify visual symptoms of death. The field trials were used to rank drought performance of species, and the greenhouse desiccation studies were used to determine the conditions of moribund plants. Our conclusion is that the desiccation tolerance of moribund plants correlated with field assessment of drought-performance for the five species (r2 > 0.94). PMID:12857825
Tyree, Melvin T; Engelbrecht, Bettina M J; Vargas, Gustavo; Kursar, Thomas A
2003-07-01
Studies of the desiccation tolerance of the seedlings of five tropical trees were made on potted plants growing in a greenhouse. Pots were watered to field capacity and then dehydrated for 3 to 9 weeks to reach various visual wilting stages, from slightly wilted to dead. Saturated root hydraulic conductance was measured with a high-pressure flowmeter, and whole-stem hydraulic conductance was measured by a vacuum chamber method. Leaf punches (5.6-mm diameter) were harvested for measurement of leaf water potential by a thermocouple psychrometer method and for measurement of fresh and dry weight. In a parallel study, the same five species were studied in a field experiment in the understory of a tropical forest, where these species frequently germinate. Control seedlings were maintained in irrigated plots during a dry season, and experimental plants were grown in similar plots with rain exclusion shelters. Every 2 to 4 weeks, the seedlings were scored for wilt state and survivorship. After a 22-week drought, the dry plots were irrigated for several weeks to verify visual symptoms of death. The field trials were used to rank drought performance of species, and the greenhouse desiccation studies were used to determine the conditions of moribund plants. Our conclusion is that the desiccation tolerance of moribund plants correlated with field assessment of drought-performance for the five species (r(2) > 0.94).
Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.
Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D
2017-04-19
Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.
Effect of mistletoe combined with carboxymethyl cellulose on dry eye in postmenopausal women
Jiang, Nan; Ye, Lin-Hong; Ye, Lei; Yu, Jing; Yang, Qi-Chen; Yuan, Qing; Zhu, Pei-Wen; Shao, Yi
2017-01-01
AIM To investigate the protective effect of mistletoe combined with carboxymethyl cellulose eye drops on dry eye in postmenopausal women. METHODS Sixty postmenopause female patients diagnosed of dry eye were assigned randomly to mistletoe combined with carboxymethyl cellulose eye drops treatment group (n=30) and control group treated with normal saline eye drops (n=30). The subjective symptoms of ocular surface, Ocular Surface Disease Index (OSDI), tear film function tests, tear protein and corneal morphology by confocal scanning microscopy were analyzed before treatment and at 1, 2, 4 and 8wk after treatment respectively. To ensure the safety of the trial, all patients were examined with systolic pressure, diastolic pressure, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, urine creatinine, and blood urea nitrogen at 8wk after treatment. RESULTS There were no obvious differences between two groups before the treatment (P>0.05). In two months after the treatment, the symptoms of ocular surface, OSDI, tear protein, and tear film function were only slightly changed in normal saline eye drops group. However, all indices were improved after the treatment of mistletoe combined with carboxymethyl cellulose eye drops group (P<0.05). In addition, the average amount of corneal epithelium basal cells and inflammatory cells of mistletoe treated group were 3174±379 and 38±25 cells/mm2, significantly decreased as compared to the control group with 4309±612 and 158± 61 cells/mm2, respectively. In the control group, although nerves still maintained straight under corneal epithelium, the number of nerves were significantly decreased, as compared with normal female. In the mistletoe treated group, the number of nerves was only slightly reduced, compared with normal female. CONCLUSION Mistletoe combined with carboxymethyl cellulose eye drops can alleviate the symptoms and signs of dry eye symptoms. PMID:29181309
Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient.
Brenes-Arguedas, Tania; Coley, Phyllis D; Kursar, Thomas A
2009-07-01
Understanding the mechanisms that shape the distribution of organisms can help explain patterns of local and regional biodiversity and predict the susceptibility of communities to environmental change. In the species-rich tropics, a gradient in rainfall between wet evergreen and dry seasonal forests correlates with turnover of plant species. The strength of the dry season has previously been shown to correlate with species composition. Herbivores and pathogens (pests) have also been hypothesized to be important drivers of plant distribution, although empirical evidence is lacking. In this study we experimentally tested the existence of a gradient in pest pressure across a rainfall gradient in the Isthmus of Panama and measured the influence of pests relative to drought on species turnover. We established two common gardens on the dry and wet sides of the Isthmus using seedlings from 24 plant species with contrasting distributions along the Isthmus. By experimentally manipulating water availability and insect herbivore access, we showed that pests are not as strong a determinant of plant distributions as is seasonal drought. Seasonal drought in the dry site excluded wet-distribution species by significantly increasing their seedling mortality. Pathogen mortality and insect herbivore damage were both higher in the wet site, supporting the existence of a gradient in pest pressure. However, contrary to predictions, we found little evidence that dry-distribution species suffered significantly more pest attack than wet-distribution species. Instead, we hypothesize that dry-distribution species are limited from colonizing wetter forests by their inherently slower growth rates imposed by drought adaptations. We conclude that mechanisms limiting the recruitment of dry-distribution species in wet forests are not nearly as strong as those limiting wet-distribution species from dry forests.
Extrusion energy and pressure requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, M.; Hanna, M.A.
1984-01-01
Corn gluten meal samples at moisture contents of 14, 20 and 26% dry basis were extruded at barrel temperatures of 120, 145 and 170/sup 0/C with screw speeds of 100, 150 and 200 rpm. The specific energy requirements and specific operating pressure decreases as the moisture content and temperature were increased. The effect of screw speed on specific energy and pressure was inconclusive.
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., minus 47 mm. Hg, which is the tracheal pressure displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is, 0 °C at 760 mm. Hg with no water vapor). [Doc. No. 26344, 58 FR 18978, Apr. 9, 1993] § 23.1443...
Smith, Joel B.; Godt, Jonathan W.; Baum, Rex L.; Coe, Jeffrey A.; Burns, William J.; Morse, Michael M.; Sener-Kaya, Basak; Kaya, Murat
2014-01-01
The Oregon Coast Range is dissected by numerous unchanneled headwater basins, which can generate shallow landslides and debris flows during heavy or prolonged rainfall. An automated monitoring system was installed in an unchanneled headwater basin to measure rainfall, volumetric water content, groundwater temperature, and pore pressures at 15-minute intervals. The purpose of this report is to describe and present the methods used for the monitoring as well as the preliminary data collected during the period from 2009 to 2012. Observations show a pronounced seasonal variation in volumetric water content and pore pressures. Increases in pore pressures and volumetric water content from dry-season values begin with the onset of the rainy season in the fall (typically early to mid October). High water contents and pore pressures tend to persist throughout the rainy season, which typically ends in May. Heavy or prolonged rainfall during the wet season that falls on already moist soils often generates positive pore pressures that are observed in the deeper instruments. These data provide a record of the basin’s hydrologic response to rainfall and provide a foundation for understanding the conditions that lead to landslide and debris-flow occurrence.
Automated catalyst processing for cloud electrode fabrication for fuel cells
Goller, Glen J.; Breault, Richard D.
1980-01-01
A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.
Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.
Butaric, Lauren N; Klocke, Ross P
2018-05-01
High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.
1976-01-01
During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.
Samarakoon, Kalpa; Senevirathne, Mahinda; Lee, Won-Woo; Kim, Young-Tae; Kim, Jae-Il; Oh, Myung-Cheol
2012-01-01
In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization. PMID:22808341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matusiewicz, H.; Barnes, R.M.
1985-02-01
A method utilizing pressure decomposition to minimize sample pretreatment is described for the inductively coupled plasma atomic emission spectrometric analysis of red spruce and sugar maple. Cores collected from trees growing on Camels Hump Mountain, Vermont, were divided into decade increments in order to monitor the temporal changes in concentrations of 21 elements. Dried wood samples were decomposed in a bomb made of Teflon with 50% hydrogen peroxide heated in an oven at 125/sup 0/C for 4 h. The digestion permitted use of aqueous standards and minimized any potential matrix effects. The element concentrations were obtained sequentially by electrothermal vaporizationmore » ICP-AES using 5 ..mu..L sample aliquots. The method precision varied between 3 and 12%. Elements forming oxyanions (Al, As, Fe, Ge, Mn, Si, V) were found at elevated concentrations during the most recent three decades, while other metal (e.g., Mg, Zn) concentrations were unchanged or decreased. 45 references, 6 tables, 1 figure.« less
De Meulemeester, Kayleigh E; Castelein, Birgit; Coppieters, Iris; Barbe, Tom; Cools, Ann; Cagnie, Barbara
2017-01-01
The aim of this study was to investigate short-term and long-term treatment effects of dry needling (DN) and manual pressure (MP) technique with the primary goal of determining if DN has better effects on disability, pain, and muscle characteristics in treating myofascial neck/shoulder pain in women. In this randomized clinical trial, 42 female office workers with myofascial neck/shoulder pain were randomly allocated to either a DN or MP group and received 4 treatments. They were evaluated with the Neck Disability Index, general numeric rating scale, pressure pain threshold, and muscle characteristics before and after treatment. For each outcome parameter, a linear mixed-model analysis was applied to reveal group-by-time interaction effects or main effects for the factor "time." No significant differences were found between DN and MP. In both groups, significant improvement in the Neck Disability Index was observed after 4 treatments and 3 months (P < .001); the general numerical rating scale also significantly decreased after 3 months. After the 4-week treatment program, there was a significant improvement in pain pressure threshold, muscle elasticity, and stiffness. Both treatment techniques lead to short-term and long-term treatment effects. Dry needling was found to be no more effective than MP in the treatment of myofascial neck/shoulder pain. Copyright © 2016. Published by Elsevier Inc.
Chuyen, Hoang V; Roach, Paul D; Golding, John B; Parks, Sophie E; Nguyen, Minh H
2017-03-01
Gac fruit (Momordica cochinchinensis Spreng.) is a rich source of carotenoids for the manufacture of powder, oil and capsules for food, cosmetic and pharmaceutical uses. Currently, only the aril of the Gac fruit is processed and the peel, similar to the other components, is discarded, although it contains high level of carotenoids, which could be extracted for commercial use. In the present study, four different drying methods (hot-air, vacuum, heat pump and freeze drying), different temperatures and drying times were investigated for producing dried Gac peel suitable for carotenoid extraction. The drying methods and drying temperatures significantly affected the drying time, carotenoid content and antioxidant capacity of the dried Gac peel. Among the investigated drying methods, hot-air drying at 80 o C and vacuum drying at 50 o C produced dried Gac peel that exhibited the highest retention of carotenoids and the strongest antioxidant capacity. Hot-air drying at 80 o C and vacuum drying at 50 o C are recommended for the drying of Gac peel. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Walia, Kavita; Argüello, Hector; Lynch, Helen; Grant, Jim; Leonard, Finola C; Lawlor, Peadar G; Gardiner, Gillian E; Duffy, Geraldine
2017-04-04
This study investigated several cleaning and disinfection protocols for their ability to eliminate Salmonella and to reduce levels of Enterobacteriaceae, within the lairage pens of a commercial pig abattoir. Eight protocols were evaluated in each of 12 lairage pens at the end of the slaughtering day on 3 occasions (36 pens/protocol): (P1) high-pressure cold water wash (herein referred to as high-pressure wash); (P2) high-pressure wash followed by a quaternary ammonium compound (QAC)-based disinfectant without rinsing; (P3) high-pressure wash followed by a chlorocresol-based disinfectant without rinsing; (P4) high-pressure wash followed by a sodium hydroxide/sodium hypochlorite detergent with rinsing; (P5) P4 followed by P2; (P6) P4 followed by P3; (P7) P5 with drying for 24-48h; and (P8) P6 with drying for 24-48h. Two floor swabs and one wall swab were taken from each lairage pen before and after each protocol was applied, and examined for the presence of Salmonella and enumeration of Enterobacteriaceae. High-pressure washing alone (P1) did not reduce the prevalence of Salmonella in the lairage pens. When high-pressure washing, the probability of detecting Salmonella following application of the chlorocresol-based disinfectant (P3) was lower than with the QAC-based disinfectant, P2 (14.2% versus 34.0%, respectively; p<0.05). The probability of detecting Salmonella after the combined use of detergent and the chlorocresol-based disinfectant (P6) was also lower than application of detergent followed by the QAC-based disinfectant, P5 (2.2% versus 17.1%, respectively; p<0.05). Drying of pens (P7 and P8) greatly reduced the probability of detecting Salmonella. Only 3.8% of swabs were Salmonella-positive 48h after cleaning with detergent and the QAC-based disinfectant (P7); while an eradication of Salmonella was achieved 24h after cleaning with detergent and the chlorocresol-based disinfectant, P8. A reduction in Enterobacteriaceae counts to below the limit of detection (LOD; 10CFU/cm 2 ) was achieved following cleaning with detergent and disinfection with the chlorocresol-based disinfectant, regardless of drying (p<0.05), whereas, applying detergent and the QAC-based disinfectant (P7) did not reduce Enterobacteriaceae counts to below the LOD. Therefore ensuring that lairage pens are allowed to dry after intensive cleaning with detergent and a chlorocresol-based disinfectant is recommended as the most effective hygiene routine to eliminate Salmonella and reduce Enterobacteriaceae counts. Copyright © 2017 Elsevier B.V. All rights reserved.
Strength of Wet and Dry Montmorillonite
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Lockner, D. A.; Moore, D. E.
2015-12-01
Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal stress from 0.008 to 0.002. All values were either neutral or rate strengthening, indicating a tendency for stable sliding.
Koppenhaver, Shane L; Walker, Michael J; Rettig, Charles; Davis, Joel; Nelson, Chenae; Su, Jonathan; Fernández-de-Las-Peñas, Cesar; Hebert, Jeffrey J
2017-06-01
To investigate the relationship between dry needling-induced twitch response and change in pain, disability, nociceptive sensitivity, and lumbar multifidus muscle function, in patients with low back pain (LBP). Quasi-experimental study. Department of Defense Academic Institution. Sixty-six patients with mechanical LBP (38 men, 28 women, age: 41.3 [9.2] years). Dry needling treatment to the lumbar multifidus muscles between L3 and L5 bilaterally. Examination procedures included numeric pain rating, the Modified Oswestry Disability Index, pressure algometry, and real-time ultrasound imaging assessment of lumbar multifidus muscle function before and after dry needling treatment. Pain pressure threshold (PPT) was used to measure nocioceptive sensitivity. The percent change in muscle thickness from rest to contraction was calculated to represent muscle function. Participants were dichotomized and compared based on whether or not they experienced at least one twitch response on the most painful side and spinal level during dry needling. Participants experiencing local twitch response during dry needling exhibited greater immediate improvement in lumbar multifidus muscle function than participants who did not experience a twitch (thickness change with twitch: 12.4 [6]%, thickness change without twitch: 5.7 [11]%, mean difference adjusted for baseline value, 95%CI: 4.4 [1 to 8]%). However, this difference was not present after 1-week, and there were no between-groups differences in disability, pain intensity, or nociceptive sensitivity. The twitch response during dry needling might be clinically relevant, but should not be considered necessary for successful treatment. Published by Elsevier Ltd.
Chen, Hongzhang; Li, Yanjun; Xu, Fujian
2013-11-01
A self-designed novel solid-state fermentation (SSF) bioreactor named "gas double-dynamic solid-state fermentation bioreactor (GDSFB)" showed great success in processes for the production of several valuable products. For the present study, a simple GDSFB (2 L in volume) was designed to investigate the impact of exhaust time on SSF performance. Both air pressure and vent aperture significantly influenced the exhaust time. The production of cellulase by Penicillium decumbens JUA10 was studied in this bioreactor. When the vent aperture was maintained at 0.2 cm, the highest FPA activity of 17.2 IU/g dry solid-state medium was obtained at an air pressure of 0.2 MPa (gauge pressure). When the air pressure was maintained at 0.2 MPa, a vent aperture of 0.3 cm gave the highest FPA activity of 18.0 IU/g dry solid-state medium. Further analysis revealed that the exhaust time was a crucial indicator of good performance in GDSFB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-10-03
This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less
Non-Invasive Electromagnetic Skin Patch Sensor to Measure Intracranial Fluid–Volume Shifts
Griffith, Jacob; Cluff, Kim; Eckerman, Brandon; Aldrich, Jessica; Becker, Ryan; Moore-Jansen, Peer; Patterson, Jeremy
2018-01-01
Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments) were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure. PMID:29596338
Rapid process for producing transparent, monolithic porous glass
Coronado, Paul R [Livermore, CA
2006-02-14
A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.
CTR Fuel recovery system using regeneration of a molecular sieve drying bed
Folkers, Charles L.
1981-01-01
A primary molecular sieve drying bed is regenerated by circulating a hot inert gas through the heated primary bed to desorb water held on the bed. The inert gas plus water vapor is then cooled and passed through an auxiliary molecular sieve bed which adsorbs the water originally desorbed from the primary bed. The main advantage of the regeneration technique is that the partial pressure of water can be reduced to the 10.sup.-9 atm. range. This is significant in certain CTR applications where tritiated water (T.sub.2 O, HTO) must be collected and kept at very low partial pressure.
Production of superheated steam from vapor-dominated geothermal reservoirs
Truesdell, A.H.; White, D.E.
1973-01-01
Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.
Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Samuel; Lindgren, Eric R.
The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplified interpretation of results. Two different arrangements of ducting were used to mimic conditions for aboveground and belowground storage configurations for vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured throughout the test assembly. The induced air mass flow rate was measured for both the aboveground and belowground configurations. In addition, the impact of cross-wind conditions on the belowground configuration was quantified. Over 40 unique data sets were collected and analyzed for these efforts. Fourteen data sets for the aboveground configuration were recorded for powers and internal pressures ranging from 0.5 to 5.0 kW and 0.3 to 800 kPa absolute, respectively. Similarly, fourteen data sets were logged for the belowground configuration starting at ambient conditions and concluding with thermal-hydraulic steady state. Over thirteen tests were conducted using a custom-built wind machine. The results documented in this report highlight a small, but representative, subset of the available data from this test series. This addition to the dry cask experimental database signifies a substantial addition of first-of-a-kind, high-fidelity transient and steady-state thermal-hydraulic data sets suitable for CFD model validation.« less
Verification of a two-dimensional infiltration model for the resin transfer molding process
NASA Technical Reports Server (NTRS)
Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform and corn oil. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle.
NASA Astrophysics Data System (ADS)
De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca
2015-04-01
Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.
Travis, T W; Morgan, T R
1994-05-01
Current high-performance fighter aircraft subject pilots to acceleration forces that can adversely effect performance and induce unconsciousness during flight. The main strategies to help the fighter pilot sustain +Gz include a pressurized anti-G garment (G-suit), the anti-G straining maneuver, and centrifuge training to optimize this effective, but very fatiguing, maneuver. To improve anti-G support for aircrew, a positive-pressure breathing anti-G system (PBG) has been developed in the COMBAT EDGE program. In order to determine if any acute adverse health effects are occurring from the use of PBG, a survey of 241 (F-15 and F-16) pilots (49 using PBG and 192 using standard methods) was conducted. Questions were asked regarding acute health effects and the impact of PBG on mission accomplishment. With the exception of dry cough, no significant increases in adverse events were found, and acceptance in the F-16 was much greater than in the F-15.
Propagation of dry tropical forest trees in Mexico
Martha A. Cervantes Sanchez
2002-01-01
There is a distinct lack of technical information on the propagation of native tree species from the dry tropical forest ecosystem in Mexico. This ecosystem has come under heavy human pressures to obtain several products such as specialty woods for fuel, posts for fences and construction, forage, edible fruits, stakes for horticulture crops, and medicinal products. The...
USDA-ARS?s Scientific Manuscript database
Murta (Ugni molinae T.) berries were vacuum dried at a constant pressure of 15 kPa. The effects of processing temperatures (50, 60, 70, 80 and 90 °C) on the physico-chemical characteristics, the phenolic and flavonoid compounds, the antioxidant activity (measured by DPPH and ORAC) and the sugar and ...
Porous membrane utilization in plant nutrient delivery
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Hinkle, C. R.; Prince, R. P.; Knott, W. M., III
1987-01-01
A spacecraft hydroponic plant growth unit of tubular configuration, employing a microporous membrane as a capilary interface between plant roots and a nutrient solution, is presented. All three of the experimental trials undertaken successfully grew wheat from seed to harvest. Attention is given to the mass/seed, number of seeds/head, ratio of seed dry mass to total plant dry mass, production of tillers, and mass of seed/plant. Dry matter production is found to be reduced with increasing suction pressure; this is true for both average seed and average total dry matter/plant. This may be due to a reduction in water and nutrient availability through the microporous membrane.
Martin-StPaul, N K; Longepierre, D; Huc, R; Delzon, S; Burlett, R; Joffre, R; Rambal, S; Cochard, H
2014-08-01
Three methods are in widespread use to build vulnerability curves (VCs) to cavitation. The bench drying (BD) method is considered as a reference because embolism and xylem pressure are measured on large branches dehydrating in the air, in conditions similar to what happens in nature. Two other methods of embolism induction have been increasingly used. While the Cavitron (CA) uses centrifugal force to induce embolism, in the air injection (AI) method embolism is induced by forcing pressurized air to enter a stem segment. Recent studies have suggested that the AI and CA methods are inappropriate in long-vesselled species because they produce a very high-threshold xylem pressure for embolism (e.g., P50) compared with what is expected from (i) their ecophysiology in the field (native embolism, water potential and stomatal response to xylem pressure) and (ii) the P50 obtained with the BD method. However, other authors have argued that the CA and AI methods may be valid because they produce VCs similar to the BD method. In order to clarify this issue, we assessed VCs with the three above-mentioned methods on the long-vesselled Quercus ilex L. We showed that the BD VC yielded threshold xylem pressure for embolism consistent with in situ measurements of native embolism, minimal water potential and stomatal conductance. We therefore concluded that the BD method provides a reliable estimate of the VC for this species. The CA method produced a very high P50 (i.e., less negative) compared with the BD method, which is consistent with an artifact related to the vessel length. The VCs obtained with the AI method were highly variable, producing P50 ranging from -2 to -8.2 MPa. This wide variability was more related to differences in base diameter among samples than to differences in the length of samples. We concluded that this method is probably subject to an artifact linked to the distribution of vessel lengths within the sample. Overall, our results indicate that the CA and the AI should be used with extreme caution on long-vesselled species. Our results also highlight that several criteria may be helpful to assess the validity of a VC. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High temperature pressure coupled ultrasonic waveguide
Caines, Michael J.
1983-01-01
A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.
High-temperature pressure-coupled ultrasonic waveguide
Caines, M.J.
1981-02-11
A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.
Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan
2017-06-01
Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R 2 > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Prediction of dry ice mass for firefighting robot actuation
NASA Astrophysics Data System (ADS)
Ajala, M. T.; Khan, Md R.; Shafie, A. A.; Salami, MJE; Mohamad Nor, M. I.
2017-11-01
The limitation in the performance of electric actuated firefighting robots in high-temperature fire environment has led to research on the alternative propulsion system for the mobility of firefighting robots in such environment. Capitalizing on the limitations of these electric actuators we suggested a gas-actuated propulsion system in our earlier study. The propulsion system is made up of a pneumatic motor as the actuator (for the robot) and carbon dioxide gas (self-generated from dry ice) as the power source. To satisfy the consumption requirement (9cfm) of the motor for efficient actuation of the robot in the fire environment, the volume of carbon dioxide gas, as well as the corresponding mass of the dry ice that will produce the required volume for powering and actuation of the robot, must be determined. This article, therefore, presents the computational analysis to predict the volumetric requirement and the dry ice mass sufficient to power a carbon dioxide gas propelled autonomous firefighting robot in a high-temperature environment. The governing equation of the sublimation of dry ice to carbon dioxide is established. An operating time of 2105.53s and operating pressure ranges from 137.9kPa to 482.65kPa were achieved following the consumption rate of the motor. Thus, 8.85m3 is computed as the volume requirement of the CAFFR while the corresponding dry ice mass for the CAFFR actuation ranges from 21.67kg to 75.83kg depending on the operating pressure.
Pharmaceutical patent applications in freeze-drying.
Ekenlebie, Edmond; Einfalt, Tomaž; Karytinos, Arianna Irò; Ingham, Andrew
2016-09-01
Injectable products are often the formulation of choice for new therapeutics; however, formulation in liquids often enhances degradation through hydrolysis. Thus, freeze-drying (lyophilization) is regularly used in pharmaceutical manufacture to reduce water activity. Here we examine its contribution to 'state of the art' and look at its future potential uses. A comprehensive search of patent databases was conducted to characterize the international patent landscape and trends in the use of freeze-drying. A total of 914 disclosures related to freeze-drying, lyophilization or drying of solid systems in pressures and temperatures equivalent to those of freeze-drying were considered over the period of 1992-2014. Current applications of sublimation technology were contrasted across two periods those with patents due to expire (1992-1993) and those currently filed. The number of freeze-drying technology patents has stabilized after initial activity across the biotechnology sector in 2011 and 2012. Alongside an increasing trend for patent submissions, freeze-drying submissions have slowed since 2002 and is indicative of a level of maturity.
Evapotranspiration from areas of native vegetation in west-central Florida
Bidlake, W.R.; Woodham, W.M.; Lopez, M.A.
1993-01-01
A study was made to examine the suitability of three different micrometeorological methods for estimating evapotranspiration from selected areas of native vegetation in west-central Florida and to estimate annual evapotranspiration from those areas. Evapotranspiration was estimated using the energy- balance Bowen ratio and eddy correlation methods. Potential evapotranspiration was computed using the Penman equation. The energy-balance Bowen ratio method was used to estimate diurnal evapotrans- piration at unforested sites and yielded reasonable results; however, measurements indicated that the magnitudes of air temperature and vapor-pressure gradients above the forested sites were too small to obtain reliable evapotranspiration measurements with the energy balance Bowen ratio system. Analysis of the surface energy-balance indicated that sensible and latent heat fluxes computed using standard eddy correlation computation methods did not adequately account for available energy. Eddy correlation data were combined with the equation for the surface energy balance to yield two additional estimates of evapotranspiration. Daily potential evapotranspiration and evapotranspira- tion estimated using the energy-balance Bowen ratio method were not correlated at a unforested, dry prairie site, but they were correlated at a marsh site. Estimates of annual evapotranspiration for sites within the four vegetation types, which were based on energy-balance Bowen ratio and eddy correlation measurements, were 1,010 millimeters for dry prairie sites, 990 millimeters for marsh sites, 1,060 millimeters for pine flatwood sites, and 970 millimeters for a cypress swamp site.
Effects of varying refiner pressure on the machanical properties of loblolly pine fibres
Les Groom; Timothy Rials; Rebecca Snell
2000-01-01
Loblolly pine chips, separated into mature and juvenile portions, were refined at three pressures (4, 8, and 12 bar) in a single disc refiner at the BioComposites Centre. Fibres were dried in a flash drier to a moisture content of approximately 12 percent. The mechanical properties of single fibres from each refining pressure were determined using a tensile strength...
The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...
NASA Astrophysics Data System (ADS)
Elhussein, Elaf Abdelillah Ali; Şahin, Selin
2018-07-01
Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.
NASA Astrophysics Data System (ADS)
Elhussein, Elaf Abdelillah Ali; Şahin, Selin
2018-01-01
Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.
Fujita, Megumi; Himi, Satoshi; Iwata, Motokazu
2010-03-01
SX-3228, 6-benzyl-3-(5-methoxy-1,3,4-oxadiazol-2-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-2(1H)-one, is a newly-synthesized benzodiazepine receptor agonist intended to be developed as a tablet preparation. This compound, however, becomes chemically unstable due to decreased crystallinity when it undergoes mechanical treatments such as grinding and compression. A wet-granule tableting method, where wet granules are compressed before being dried, was therefore investigated as it has the advantage of producing tablets of sufficient hardness at quite low compression pressures. The results of the stability testing showed that the drug substance was chemically considerably more stable in wet-granule compression tablets compared to conventional tablets. Furthermore, the drug substance was found to be relatively chemically stable in wet-granule compression tablets even when high compression pressure was used and the effect of this pressure was small. After investigating the reason for this excellent stability, it became evident that near-isotropic pressure was exerted on the crystals of the drug substance because almost all the empty spaces in the tablets were occupied with water during the wet-granule compression process. Decreases in crystallinity of the drug substance were thus small, making the drug substance chemically stable in the wet-granule compression tablets. We believe that this novel approach could be useful for many other compounds that are destabilized by mechanical treatments.
Adali, M Kemal; Uzun, Cem
2005-09-01
The aim of the present study is to evaluate the effect of swallowing type (dry versus wet) on the outcome of a nine-step inflation/deflation tympanometric Eustachian tube function (ETF) test in healthy adults. Fourteen normal healthy volunteers, between 19 and 28 years of age, were included in the study. The nine-step test was performed in two different test procedures: (1) test with dry swallows (dry test procedure) and (2) test with liquid swallows (wet test procedure). If the equilibration of middle-ear (ME) pressure was successful in all the steps of the nine-step test, ETF was considered 'Good'. Otherwise, the test was considered 'Poor', and the test was repeated at a second session. In the dry test procedure, ETF was 'Good' in 21 ears at the first session and in 24 ears after the second session (p > 0.05). However, in the wet test procedure, ETF was 'Good' in 13 ears at the first session and in 21 ears after the second session (p < 0.05). At the first session, ETF was 'Good' in 21 and 13 ears in the dry and wet test procedures, respectively. The difference was statistically significant (p < 0.05). However, after the second session, the overall number of ears with 'Good' tubal function was almost the same in both test procedures (24 ears at dry test procedures versus 21 ears at wet test procedures;p > 0.05). Dry swallowing seems to be more effective for the equilibration of ME pressure. Thus, a single-session dependent evaluation of ETF may be efficient for the dry test procedure of the nine-step test. Swallowing with water may be easier for subjects, but a repetition of the test at a second session may be necessary when the test result is 'Poor'.
Viganó, Juliane; Aguiar, Ana C; Moraes, Damila R; Jara, José L P; Eberlin, Marcos N; Cazarin, Cinthia B B; Maróstica, Mário R; Martínez, Julian
2016-07-01
Passion fruit seeds are currently discarded on the pulp processing but are known for their high piceatannol and scirpusin B contents. Using pressurized liquid extraction (PLE), these highly valuable phenolic compounds were efficiently extracted from defatted passion fruit bagasse (DPFB). PLE was performed using mixtures of ethanol and water (50 to 100% ethanol, w/w) as solvent, temperatures from 50 to 70°C and pressure at 10MPa. The extraction methods were compared in terms of the global yield, total phenolic content (TPC), piceatannol content and the antioxidant capacity of the extracts. The DPFB extracts were also compared with those from non-defatted passion fruit bagasse (nDPFB). Identification and quantification of piceatannol were performed using UHPLC-MS/MS. The results showed that high TPC and piceatannol content were achieved for the extracts obtained from DPFB through PLE at 70°C and using 50 and 75% ethanol as the solvent. The best PLE conditions for TPC (70°C, 75% ethanol) resulted in 55.237mgGAE/g dried and defatted bagasse, whereas PLE at 70°C and 50% ethanol achieved 18.590mg of piceatannol/g dried and defatted bagasse, and such yields were significantly higher than those obtained using conventional extraction techniques. The antioxidant capacity assays showed high correlation with the TPC (r>0.886) and piceatannol (r>0.772). The passion fruit bagasse has therefore proved to be a rich source of piceatannol and PLE showed high efficiency to recover phenolic compounds from defatted passion fruit bagasse. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ambarkhane, Ameet V; Pincott, Kim; Buckton, Graham
2005-04-27
The aim of this study was to measure the glass transition of amorphous lactose under well-controlled temperature and humidity, using inverse gas chromatography (IGC) and to relate these data to gravimetric vapour sorption experiments. Amorphous lactose (spray-dried) was exposed to a stepwise increment in the relative humidity (%RH) under isothermal conditions in an IGC. At the end of each conditioning step a decane injection was made, and the retention volumes were calculated using the maximum peak height (V(max)) method. The pressure drop across the column was recorded using the pressure transducers. These measurements were performed at various temperatures from 25 to 40 degrees C. The extent of water sorption at identical humidity (%RH) and temperature conditions was determined gravimetrically using dynamic vapour sorption (DVS). At each T, it was possible to determine: (1) a transition at low RH relating to the onset of mobility; (2) changes in retention volume relating to the point, where T(g) = T; (3) changes in pressure drop, which were related to the sample collapse. The rate and extent of water sorption was seen to alter at T(g) and also at a collapse point. Combinations of temperature and critical %RH (%cRH required to lower the dry glass transition temperature to the experimental temperature) obtained from IGC were comparable to those obtained from DVS. It was shown that at each T, the sample spontaneously crystallised, when T(g) was 32 degrees C below T. Inverse gas chromatograph can be used in this novel way to reveal the series of transitions that occur in amorphous materials.
Mejuto-Vázquez, María J; Salom-Moreno, Jaime; Ortega-Santiago, Ricardo; Truyols-Domínguez, Sebastián; Fernández-de-Las-Peñas, César
2014-04-01
Randomized clinical trial. To determine the effects of trigger point dry needling (TrPDN) on neck pain, widespread pressure pain sensitivity, and cervical range of motion in patients with acute mechanical neck pain and active trigger points in the upper trapezius muscle. TrPDN seems to be effective for decreasing pain in individuals with upper-quadrant pain syndromes. Potential effects of TrPDN for decreasing pain and sensitization in individuals with acute mechanical neck pain are needed. Methods Seventeen patients (53% female) were randomly assigned to 1 of 2 groups: a single session of TrPDN or no intervention (waiting list). Pressure pain thresholds over the C5-6 zygapophyseal joint, second metacarpal, and tibialis anterior muscle; neck pain intensity; and cervical spine range-of-motion data were collected at baseline (pretreatment) and 10 minutes and 1 week after the intervention by an assessor blinded to the treatment allocation of the patient. Mixed-model analyses of variance were used to examine the effects of treatment on each outcome variable. Patients treated with 1 session of TrPDN experienced greater decreases in neck pain, greater increases in pressure pain threshold, and higher increases in cervical range of motion than those who did not receive an intervention at both 10 minutes and 1 week after the intervention (P<.01 for all comparisons). Between-group effect sizes were medium to large immediately after the TrPDN session (standardized mean score differences greater than 0.56) and large at the 1-week follow-up (standardized mean score differences greater than 1.34). The results of the current randomized clinical trial suggest that a single session of TrPDN may decrease neck pain intensity and widespread pressure pain sensitivity, and also increase active cervical range of motion, in patients with acute mechanical neck pain. Changes in pain, pressure pain threshold, and cervical range of motion surpassed their respective minimal detectable change values, supporting clinically relevant treatment effects. Level of Evidence Therapy, level 1b-.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzen, K.; Kim, M.; Liang, H.
This report contains a detailed summary of all work performed to date. Task 10 involves a comprehensive review of drying theory. Proposed mass transfer mechanisms include liquid and vapor diffusion, capillary flow, surface diffusion, hydrodynamic flow, and evaporation/condensation processes. Pasta was chosen as a model system in this project since it is macroscopically homogenous and can be made under controlled conditions. Task 11 involves experimental drying studies. A high pressure drying apparatus is available for studies related to the revision of the fundamental drying model. The dryer will require two major modifications for the planned tests: installation of a pressuremore » control valve and recirculation of exhaust gas. A tray dryer was used to measure the shrinkage coefficient of nonfat milk, and will be used for further tests on nonfat milk, as well as whey and tomato puree. A method of economic analysis regarding use of mechanical vapor recompression is presented. Task 12 involves food quality studies. A model of nonenzymatic browning (NEB) was developed based on NEB in skim milk samples containing 3.5--50% moisture, exposed to temperatures of 35--130{degrees}C. The browning rate was zero order after a lag period, and the temperature dependence fit an Arrhenius relation. The critical moisture occurs between 4% and 11% moisture. Task 13 addresses recommendations and strategies for dryer design and control. Moisture sensors were reviewed with specific reference to their on-line applicability. The IR sensor was found to be the most promising. Task 14 examined moisture mobility and interaction in foods. The BET adsorption method using nitrogen gas was applied to pasta, skim milk and egg albumin systems. The data obtained do not show good reproducibility, possibly due to an inadequate sample size. The possibility of using water vapor adsorption will be studied in future experiments. 210 refs., 30 figs., 22 tabs. (MHB)« less
Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi
2018-07-01
This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.
Extraction of orange peel's essential oil by solvent-free microwave extraction
NASA Astrophysics Data System (ADS)
Qadariyah, Lailatul; Amelia, Prilia Dwi; Admiralia, Cininta; Bhuana, Donny S.; Mahfud, Mahfud
2017-05-01
Sweet orange peel (Citrus sinensis) is part of orange plant that contains essential oils. Generally, taking essential oil from orange peel is still using hydrodistillation and steam-hydrodistillation method which still needs solvent and takes a long time to produce high quality essential oil. Therefore, the objectives of this experiment are to study the process of orange peel's essential oil extraction using Solvent Free Microwave Extraction (SFME) and to study the operating condition that effect an optimum yield and quality of the essential oil. In this experiment, extraction process with SFME method goes for 60 minutes at atmospheric pressure. Variables for SFME are: variation of orange peel condition (fresh and dry), ratio orange peel mass to distiller volume (0,1; 0,2; 0,3; 0,4 g/mL), orange peel size (±0,5; ±2; ±3,5 cm width), and microwave power (100, 264, 400 Watt). Moisture content of fresh peel is 71,4% and for dry peel is 17,37% which is obtained by sun drying. The result of this experiment will be analyzed with GC-MS, SEM, density, and miscibility in ethanol 90%. The optimum result obtained from this experiment based on the number of the yield under condition of fresh orange peel is at peel mass/distiller volume 0,1 g/mL, orange peel size ±3,5 cm width, and microwave power 400 Watt, results 1,6738% yield. The result of GC-MS for fresh orange peel shows that the dominant compound is Limonene 54,140% and for dry orange peel is Limonene 59,705%. The density obtained is around 0,8282-0,8530 g/mL and miscibility in ethanol 90% is 1:5.
North-South Migration of West Coast Low Pressure Centers
ERIC Educational Resources Information Center
McIntosh, C. Barron
1974-01-01
Monthly maps of low pressure centers are presented here to attempt a concrete representation that may help students to understand the seasonal change from dry months to wet months along the mid-latitude west coast as a seasonal north-south migration of factors controlling rain and drought. (Author/JH)
40 CFR 90.311 - Test conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pressure, and use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine test conditions. Measure the absolute temperature (designated as T and expressed in Kelvin) of the engine air at the inlet to the engine and the dry atmospheric...
Biomass torrefaction: A promising pretreatment technology for biomass utilization
NASA Astrophysics Data System (ADS)
Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen
2018-02-01
Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.
Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin.
de Torres, C; Díaz-Maroto, M C; Hermosín-Gutiérrez, I; Pérez-Coello, M S
2010-02-15
Grape skins are the part of the fruit with the highest amount of volatile and polyphenolic compounds. Volatile compounds give the fruit and other grape derivatives their flavour. Polyphenolic compounds are responsible for the colour of the fruit, juice and wine, and also act as very important natural antioxidant compounds. Dehydration is a method used to prevent the damage of these compounds over time. Nevertheless, in the case of volatile compounds, removing water can cause compound degradation or the evaporation of such compounds. This work studied two drying methods, freeze-drying and oven-drying, at 60 degrees C, as skin preservation methods. The skins from two grape varieties, Carménère and Cabernet Sauvignon, were dried. Many volatile compounds, which are of interest in the aroma profile, were identified in both varieties as terpenes (linalool, etc.), sesquiterpenes (farnesol), norisoprenoids (vitispirane, etc.), C(6) alcohols (1-hexanol, etc.), etc., and their amount decreased significantly with the oven-drying method, in contrast to the freeze-drying method. Both phenolic compounds, anthocyanins and flavonols, were identified in fresh and dehydrated samples, thus resulting in the freeze-drying method being less aggressive than oven-drying methods. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Barnett, Donald M.
1995-01-01
Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.
Khurana, Rahul N; LaBree, Laurie D; Scott, Garrett; Smith, Ronald E; Yiu, Samuel C
2006-09-01
To investigate the effect of esterified estrogens combined with methyltestosterone (EECM) (Estratest, Solvay, Pharmaceuticals, Inc, Baudette, Minnesota, USA) on intraocular pressure (IOP) in postmenopausal women. Observational case series. The IOP of 13 consecutive postmenopausal women with dry eye syndrome were recorded before and during EECM therapy (1.25 mg of esterified estrogens and 2.5 mg of methyltestosterone for several months). The mean IOP increased from a baseline of 15.0 mm Hg before treatment to 18.2 mm Hg on EECM therapy (P < .0001) after a median duration of 11.3 months (range, 0.9 to 24 months). The increase in IOP was statistically significant at the 0.05 level of significance within three months and continued over 12 months. Two patients whose pressures increased (>4 mm Hg) returned to baseline levels after EECM was discontinued. Esterified estrogens combined with methyltestosterone produce a clinically significant increase in IOP in postmenopausal women with dry eye syndrome.
Magnetically Enhanced Solid-Liquid Separation
NASA Astrophysics Data System (ADS)
Rey, C. M.; Keller, K.; Fuchs, B.
2005-07-01
DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.
NASA Astrophysics Data System (ADS)
Preti, Federico; Caruso, Marco; Dani, Andrea; Errico, Alessandro; Guastini, Enrico; Trucchi, Paolo
2015-04-01
The two abstracts present the design and set-up of an experimental field plant whose aim is the study and modeling of water circulation in a terraced slope together with its influence on the stability of the retaining dry stone walls. The pilot plant is located at "Fattoria di Lamole" (Greve in Chianti, Firenze, Italy) where both ancient and recently restored or rebuilt dry stone retaining walls are present. The intense vineyards cultivation makes it very representative in terms of range of external stresses that affect both hillslopes and walls. The research is developed within a bigger framework of landscape preservation as a way to prevent hydrogeological instabilities and landslide risks. First Part A first/preliminary field survey was carried out in order to estimate the hydraulic and mechanical soil characteristics. Field saturated hydraulic conductivity measurements with the Simplified Falling Head (SFH) method on a terrace along an alignment were performed. Infiltrometer tests with a double ring device and soil texture determinations with both fine particle-size and skeleton fraction distributions were also performed. The Direct shear test on undisturbed and reconstituted soil samples will offer an estimation of the Mohr-Coulomb failure envelope parameters (friction angle and cohesion). A reference portion of a dry stone wall will be also monitored. Lateral earth pressure at backfill-retaining wall interface (compared to temperature and air pressure measured values), backfill volumetric water content (both in saturated and unsaturated states) and ground-water level are measured. Acknowledgements Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area
Direct synthesis of catalyzed hydride compounds
Gross, Karl J.; Majzoub, Eric
2004-09-21
A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.
Direct synthesis of calcium borohydride
Ronnebro, Ewa Carin Ellinor [Dublin, CA; Majzoub, Eric H [Pleasanton, CA
2009-10-27
A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.
Johnson, Robert E; Oldroyd, Megan E; Ahmed, Saleem S; Gieseler, Henning; Lewis, Lavinia M
2010-06-01
The freeze-drying behavior and cake morphology of a model protein in an amorphous formulation were studied at varying protein concentrations using conservative (-25 degrees C) and aggressive (+25 degrees C) shelf temperatures at constant chamber pressure during primary drying. The two cycles were characterized by manometric temperature measurements (MTM) in a SMART freeze dryer that estimates the sublimation rate (dm/dt), product temperature at the freeze-drying front (T(p-MTM)) and product resistance (R(p)) during a run. The calculated sublimation rates (dm/dt) were 3-4 times faster in the aggressive cycle compared to the conservative cycle. For conservatively dried cakes R(p) increased with both dry layer thickness and protein concentration. For aggressively dried cakes (where freeze-drying occurs at the edge of microcollapse), R(p) also increased with protein concentration but was independent of the dry layer thickness. The sublimation rate was influenced by R(p), dry layer thickness and T(p-MTM) in the conservative cycle, but was governed mainly by T(p-MTM) in the aggressive cycle, where R(p) is independent of the dry layer thickness. The aggressively dried cakes had a more open and porous structure compared to their conservatively dried counterparts. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billone, M. C.; Burtseva, T. A.
2016-08-30
The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).
NASA Astrophysics Data System (ADS)
Mages, Margarete; Woelfl, Stefan; v. Tümpling jun, Wolf
2001-11-01
Two new preparation techniques for total-reflection X-ray fluorescence (TXRF) element determination of single freshwater crustacean specimens (dry weight: 3-40 μg ind -1) have been developed and tested using Daphnia pulex from a deep, oligotrophic freshwater lake located in southern Chile. Dry method: Specimens were washed with 0.2 μm filtered lake water and frozen in liquid nitrogen. The freeze-dried Daphnia specimens were weighed using an ultra-fine microbalance and placed on quartz glass carriers for TXRF analysis. Wet method: Specimens were washed with 0.2 μm filtered lake water and placed on quartz glass carriers for TXRF analysis and dried in air. The dry weight was determined using the previously established body length-dry weight relationship. Method validation for both the dry and the wet preparation method in combination with TXRF spectrometry for the element determination in small single freshwater crustaceans showed that both methods can be used for routine investigations. There were no significant differences between the dry and the wet methods concerning the elements Ca, K, Fe, Zn, Br, P, Cu, but the determination of Mn, S and Sr revealed significant differences between the two methods. It seems that the dry method yields more precise results, but the wet method is easier to handle in the field when samples cannot be fixed with liquid nitrogen.
Serpula lacrymans, the dry rot fungus and tolerance towards copper-based wood preservatives
Anne Christine Steenkjaer Hastrup; Frederick Green; Carol Clausen; Bo Jensen
2005-01-01
Serpula lacrymans (Wulfen : Fries) Schröter, the dry rot fungus, is considered the most economically important wood decay fungus in temperate regions of the world i.e. northern Europe, Japan and Australia. Previously copper based wood preservatives were the most commonly used preservatives for pressure treatment of wood for building constructions. Because of a...
Emily E. Atkinson; Erika Marín-Spiotta
2015-01-01
Tropical dry forests are subject to intense human pressure and land change, including conversion to agricultural crops, pasture or agroforestry, and urban encroachment. Decades, and even centuries, of conversion, expansion, regrowth, and changing land-use practices can result in a mosaic of secondary growth patches with different land-use histories. Whereas post-...
Jennifer A. Holm; H.H. Shugart; Skip J. Van Bloem; G.R. Larocque
2012-01-01
Because of human pressures, the need to understand and predict the long-term dynamics and development of subtropical dry forests is urgent. Through modifications to the ZELIG simulation model, including the development of species- and site-specific parameters and internal modifications, the capability to model and predict forest change within the 4500-ha Guanica State...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge... mercury (Hg) sorbent flow rate Hourly Once per hour ✔ ✔ Minimum pressure drop across the wet scrubber or...
Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.
Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu
2016-05-01
The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.
Tensiometer for shallow or deep measurements including vadose zone and aquifers
Faybishenko, B.
1999-08-24
A two cell tensiometer is described in which water level in the lower cell is maintained at a relatively constant height, and in equilibrium with the water pressure of materials that surround the tensiometer. An isolated volume of air in the lower cell changes pressure proportionately to the changing water pressure of the materials that surround the tensiometer. The air pressure is measured remotely. The tensiometer can be used in drying as well as wetting cycles above and below the water table. 8 figs.
Tensiometer for shallow or deep measurements including vadose zone and aquifers
Faybishenko, Boris
1999-01-01
A two cell tensiometer is described in which water level in the lower cell is maintained at a relatively constant height, and in equilibrium with the water pressure of materials that surround the tensiometer. An isolated volume of air in the lower cell changes pressure proportionately to the changing water pressure of the materials that surround the tensiometer. The air pressure is measured remotely. The tensiometer can be used in drying as well as wetting cycles above and below the water table.
Bak, Kathrine Holmgaard; Lindahl, Gunilla; Karlsson, Anders H; Lloret, Elsa; Gou, Pere; Arnau, Jacint; Orlien, Vibeke
2013-10-01
Color stability of minced cured restructured ham was studied by considering the effects of high pressure (HP) (600 MPa, 13°C, 5 min), raw meat pH24 (low, normal, high), salt content (15, 30 g/kg), drying (20%, 50% weight loss), and residual oxygen level (0.02%-0.30%). Raw hams were selected by pH24 in Semimembranosus, mixed with additives, frozen, sliced, and dried by the Quick-Dry-Slice® (QDS) process followed by HP treatment or not (control). Packaging and storage simulated industrial packaging: modified atmosphere containing 80% N2, 20% CO2, and residual O2 in one of three intervals: <0.1%, 0.1%-0.2%, or 0.2%-0.3%, and retail storage conditions: chill storage, 12 h light, 12 h darkness. HP improved the stability of the redness of 20% QDS hams, while the stabilizing effect on 50% QDS hams was smaller, concluding that water has the dominating role. Raw meat pH24, salt content, and residual oxygen level had varying effects on the stability of the red color. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Xiao-hua; Guo, Qiao-sheng; Zhu, Zai-biao; Chen, Jun; Miao, Yuan-yuan; Yang, Ying; Sun, Yuan
2015-10-01
Effects of different drying methods including sun drying, steamed, boiled, constant temperature drying (at 40, 50, 60 °C) on appearance, hardness, rehydration ratio, dry rate, moisture, total ash, extractive and polysaccharides contents were studied to provide the basis of standard processing method for Tulipa edulis bulbus. The results showed that the treatments of sun drying and 40 °C drying showed higher rehydration ratios, but lower dry rate, higher hardness, worse color, longer time and obvious distortion and shrinkage in comparison with other drying methods. The treatments of 60 °C constant temperature drying resulted in shorter drying time, lower water and higher polysaccharides content. Drying time is shorter and appearance quality is better in the treatment of steaming and boiling compared with other treatments, but the content of extractive and polysaccharides decreased significantly. The treatments of 50 °C constant temperature drying led to similar appearance quality of bulb to commercial bulb, and it resulted in lowest hardness and highest dry rate as well as higher rehydration ratio, extractive and polysaccharides content, moderate moisture and total ash contents among these treatments. Based on the results obtained, 50 °C constant temperature drying is the better way for the processing of T. edulis bulbus.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.
2004-09-01
We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.
Recent developments in high-quality drying of vegetables, fruits, and aquatic products.
Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan
2017-04-13
Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.
Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Quirantes-Piné, Rosa; Segura-Carretero, Antonio
2018-04-16
The aim of the present study was to optimize the extraction of phenolic compounds in avocado peel using pressurized liquid extraction (PLE) with GRAS solvents. Response surface methodology (RSM) based on Central Composite Design 2 2 model was used in order to optimize PLE conditions. Moreover, the effect of air drying temperature on the total polyphenol content (TPC) and individual phenolic compounds concentration were evaluated. The quantification of individual compounds was performed by HPLC-DAD-ESI-TOF-MS. The optimized extraction conditions were 200°C as extraction temperature and 1:1 v/v as ethanol/water ratio. Regarding to the effect of drying, the highest TPC was obtained with a drying temperature of 85°C. Forty seven phenolic compounds were quantified in the obtained extracts, showing that phenolic acids found to be the more stables compounds to drying process, while procyanidins were the more thermolabiles analytes. To our knowledge, this is the first available study in which phenolic compounds extraction was optimized using PLE and such amount of phenolic compounds was quantified in avocado peel. These results confirm that PLE represents a powerful tool to obtain avocado peel extracts with high concentration in bioactive compounds suitable for its use in the food, cosmetic or pharmaceutical sector. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon
2017-12-01
Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.
Utami, Diah Ayu Satyari; Widanarni; Suprayudi, M Agus
2015-02-01
The main things that need to be considered in the preparation of probiotics are viability during preparation and storage which are the disadvantages of the use of fresh culture probiotics. Dried probiotic can be applied through the feed, easy to be applied and has a long shelf life but application of dried probiotic in aquaculture is still not widely studied. This study aimed to evaluate the quality of dried Bacillus NP5 as the probiotic through in vitro assays and determine the best dose for the growth performance of tilapia. The treatment of in vitro assays including the production of dried probiotic without using of the coating material and dried by spray drying method (NS); freeze drying method (NF); with using of the coating material and dried by spray drying method (WS); freeze drying method (WF). The treatment which showed the best result at in vitro assays was applied for in vivo assays. The in vivo assays containing 4 treatments and 5 replicates which were control (K) and the administration of dried Bacillus NP5 Rf(R) (10(10) CFU g(-1)) in feed with dose of 0.5% (A), 1% (B) and 2% (C). The fish fed 3 times a day by at satiation for 28 days. Probiotic that encapsulated by maltodextrin and dried by spray drying method that stored in room temperature had the higher percentage product, viability after drying process and storage. The administration of 0.5% dried Bacillus NP5 showed the best growth performance in tilapia.
Review of patents and application of spray drying in pharmaceutical, food and flavor industry.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis
2014-04-01
Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.
Yucheng Peng; Douglas J. Gardner; Yousoo Han; Zhiyong Cai; Mandla A. Tshabalala
2013-01-01
Research and development of the renewable nanomaterial cellulose nanofibrils (CNFs) has received considerable attention. The effect of drying on the surface energy of CNFs was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and...
White, David E; Nates, Roy J; Bartley, Jim
2014-02-06
Continuous positive air pressure (CPAP) users frequently report troublesome symptoms of airway dryness and nasal congestion. Clinical investigations have demonstrated that supplementary humidification reduces these symptoms but the reason for their occurrence remains unexplained. Investigations using human computational air-conditioning models are unable to reproduce or quantify the apparent airway drying experienced during CPAP therapy. The purpose of this study was to determine whether augmented air pressures change overall mucosal airway surface liquid (ASL) water supply and, if so, the extent of this effect. In an original in vitro experimental set up, maximal ASL supply was determined in whole bovine trachea when exposed to simulated tidal breathing stresses over a range of air pressures. At ambient pressure, the maximal supply of ASL was found to compare well to previously published data (31.2 μl/cm2.hr). CPAP pressures from 5 cm H2O above ambient were found to reduce ASL supply by 22%. Statistical analysis (n = 8) showed a significant difference existed between the ambient and CPAP results (p < 0.0001), and that there was no significant variation between all pressurized results (p = 0.716). These findings provide preliminary data that ASL supply is reduced by CPAP therapy which may explain the airway drying symptoms associated with this therapy.
Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu
2016-04-01
Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P < 0.05) values of water solubility (45.26%), soluble solid (63.46%), hygroscopicity (18.06%), color parameters and anthocyanin retention (60.70%) of raspberry powder compared with other drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.
Piedrahíta-Aguirre, C A; Bastos, R G; Carvalho, A L; Monte Alegre, R
2014-08-01
The strain Bacillus iso 1 co-produces the lipopeptide iturin A and biopolymer poly-γ-glutamic acid (γ-PGA) in solid-state fermentation of substrate consisting of soybean meal, wheat bran with rice husks as an inert support. The effects of pressure drop, oxygen consumption, medium permeability and temperature profile were studied in an aerated packed bed bioreactor to produce iturin A, diameter of which was 50 mm and bed height 300 mm. The highest concentrations of iturin A and γ-PGA were 5.58 and 3.58 g/kg-dry substrate, respectively, at 0.4 L/min after 96 h of fermentation. The low oxygen uptake rates, being 23.34 and 22.56 mg O2/kg-dry solid substrate for each air flow rate tested generated 5.75 W/kg-dry substrate that increased the fermentation temperature at 3.7 °C. The highest pressure drop was 561 Pa/m at 0.8 L/min in 24 h. This is the highest concentration of iturin A produced to date in an aerated packed bed bioreactor in solid-state fermentation. The results can be useful to design strategies to scale-up process of iturin A in aerated packed bed bioreactors. Low concentration of γ-PGA affected seriously pressure drop, decreasing the viability of the process due to generation of huge pressure gradients with volumetric air flow rates. Also, the low oxygenation favored the iturin A production due to the reduction of free void by γ-PGA production, and finally, the low oxygen consumption generated low metabolic heat. The results show that it must control the pressure gradients to scale-up the process of iturin A production.
Corneal thickness in dry eyes in an Iraqi population.
Ali, Noora Mauwafak; Hamied, Furkaan M; Farhood, Qasim K
2017-01-01
Dry eye disorder is a multifactorial disease of the tears and ocular surface that results in discomfort and visual disturbance. Corneal pachymetry becomes increasingly important in refractive surgery, for the accurate assessment of intraocular pressure, and in the preoperative assessment of other ocular surgeries. To assess the effect of dry eye disorder on the central corneal thickness (CCT) by comparing with CCT of normal eyes of age-matched individuals. The total number of eyes examined was 280 (140 dry eyes from 70 patients and 140 normal eyes from 70 individuals). Pentacam (Scheimpflug imaging system) was used for measuring the CCT of all eyes. Patients with dry eye syndrome had significantly lower CCT compared to the control group ( P <0.01). Its mean was 536.5 versus 561.3, respectively. CCT of dry eyes was significantly reduced when compared with age- and gender-matched population. This result can be attributed to chronic desiccation by the inflammatory mediators in dry eyes, leading to corneal thinning.
NASA Astrophysics Data System (ADS)
Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.
2017-05-01
The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.
Effect of drying method to antioxidants capacity of Limnophila aromatica
NASA Astrophysics Data System (ADS)
Yen, Tran Thi Ngoc; Vu, Nguyen Hoang
2017-09-01
Limnophila aromatica is widely used in South East Asian countries to make spices in food and medicine in traditional medicine. The use value of vegetables is known because some of the lesser constituents in plants are called antioxidants. These active ingredients have not been fully researched and their pharmacological effects are underestimated. In this study, the drying temperature at 40 °C was showed that the antioxidant activity decreased the most. The drying temperature of 50 °C is suitable for convection drying method and drying temperature of 60 °C suitable for vacuum drying, as it retains the most antioxidant properties. Regarding the drying method, freeze drying proved to be effective when retaining high antioxidant capacity. Using The convection drying at 50 °C and the vacuum drying at 60 °C, the antioxidant activity of Limnophila aromatica was not different. Over 6 weeks of preservation, the dried product has deterioration in antioxidant properties.
High post-thaw survival of ram sperm after partial freeze-drying.
Arav, Amir; Idda, Antonella; Nieddu, Stefano Mario; Natan, Yehudit; Ledda, Sergio
2018-03-14
Recrystallization damages occur when a frozen sample is held at high subzero temperatures and when the warming process is too slow. In this work, ram semen diluted in two different concentrations of sugar solutions (Lyo A consisted of 0.4 M sorbitol and 0.25 M trehalose, and the second, Lyo B composed of 0.26 M sorbitol and 0.165 M trehalose) in egg yolk and Tris medium were compared after freezing 10 μL samples to: (1) - 10, - 25, and - 35 °C and thawing. (2) Freezing to - 10 and - 25 °C, holding for 1 h and then thawing, and (3) freezing to - 10 and - 25 °C and drying for 1 h at these temperatures at a vacuum of 80 mTorr, prior thawing. For drying, we used a new freeze-drying apparatus (Darya, FertileSafe, Israel) having a condensation temperature below - 110 °C and a vacuum pressure of 10-100 mTorr that is reached in less than 10s. Results showed that samples in Lyo B solution frozen at - 25 °C had significantly higher sperm motility in partially freeze-dried samples than frozen samples (46.6 ± 2.8% vs 1.2 ± 2.5%, P < 0.001). Moreover, partially dried samples in Lyo B showed higher motility than Lyo A at - 25 °C (46.6 ± 2.8% vs 35 ± 4%). Cryomicroscopy and low-temperature/low-pressure environmental scanning electronic microscope demonstrated that the amount of the ice crystals present in partially dried samples was lower than in the frozen samples. Holding the sperm at high subzero temperatures is necessary for the primary drying of cells during the freeze-drying process. Rapid freeze-drying can be achieved using this new device, which enables to reduce recrystallization damages.
Mineralization of wastes of human vital activity and plants to be used in a Life Support System.
Kudenko YuA; Gribovskaya, I V; Pavlenko, R A
1997-08-01
Available methods for mineralizing wastes of human activity and inedible biomass of plants used in this country and abroad are divided into two types: dry mineralization at high temperatures up to 1270 K with subsequent partial dissolution of the ash and the other--wet oxidation by acids. In this case mineralization is performed at a temperature of 470-460 K and a pressure of 220-270 atmospheres in pure oxygen with the output of mineral solution and dissoluble sediments in the form of scale. The drawback of the first method is the formation of dioxins, CO, SO2, NO2 and other toxic compounds. The latter method is too sophisticated and is presently confined to bench testing. The here proposed method to mineralize the wastes is in mid-position between the thermal and physical chemical methods. At a temperature of 80-90 degrees C the mixture was exposed to a controlled electromagnetic field at normal atmospheric pressure. The method merits simplicity, reliability, produces no dissoluble sediment or emissions noxious for human and plants. The basic difference from the above said methods is to employ as an oxidizer atomic oxygen, its active forms including OH-radicals with hydrogen peroxide as the source. Hydrogen peroxide can be produced with electric power from water inside the Life Support System (LSS).
Analysis of dry friction damping characteristics for short cylindrical shell structures
NASA Astrophysics Data System (ADS)
Wang, Nengmao; Wang, Yanrong
2018-05-01
An efficient mathematical model to describe the friction of short cylindrical shell structures with a dry friction damping sleeve is proposed. The frictional force in the circumference and axial direction is caused by the opposing bending strains at the interface. Slipping will occur at part region of the interface and the mathematic model of the slipping region is established. Ignoring the effect of contact stiffness on the vibration analysis, the friction energy dissipation capability of damping sleeve would be calculated. Structural vibration mode, positive pressure at the interface and vibration stress of the short cylindrical shell structures is analyzed as influence factors to the critical damping ratio. The results show that the circumferential friction energy dissipation is more sensitive to the number of nodal diameter, and the circumferential friction damping ratio increases rapidly with the number of nodal diameter. The slipping frictional force would increase along with the positive pressure, but the slipping region would decrease with it. The peak damping ratio keeps nearly constant. But the vibration stress corresponding to peak damping ratio would increases with the positive pressure. The dry friction damping ratio of damping sleeve contains the effect of frictional force in the circumference and axial direction, and the axial friction plays a major role.
Carbon dioxide extraction of residual chloroform from biodegradable polymers.
Koegler, Wendy S; Patrick, Carmen; Cima, Michael J; Griffith, Linda G
2002-01-01
Biodegradable polymeric devices for drug delivery and tissue engineering are often fabricated with the use of organic solvents and may still contain significant amounts of solvent (> 1 wt%) even after aggressive vacuum drying. This excess solvent can interfere with tissue response and the mechanical properties of the devices. The aim of this article is to demonstrate that liquid CO(2) extraction can be used to reduce residual solvent in dense poly(L-lactide-co-glycolide) devices to 50 ppm relatively quickly and with minimal changes in architecture under some conditions. Two liquid CO(2) extraction systems were developed to examine the removal of residual solvents from bar-shaped PLGA devices: (1) a low-pressure (1400 psi) batch system, and (2) a high-pressure (5000 psi) continuous-flow system. Eight hours of extraction in the high-pressure system reduced residual chloroform in 3 mm thick bars below the 50-ppm target. A simple Fickian diffusion model was fit to the extraction results. Diffusion coefficients ranged from 1.10 x 10(-6) cm(2)/s to 2.64 x 10(-6) cm(2)/s. The model predicts that approximately 1 h is needed to dry 1-mm bars to chloroform levels below 50 ppm, and 7 h are needed for 3 mm thick bars. The micro- and macroarchitectures of porous PLGA scaffolds created by particulate leaching were not significantly altered by CO(2) drying if the salt used to make the pores was not removed before drying. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 567-576, 2002
Carli, V; Menu-Bouaouiche, L; Cardinael, P; Benissan, L; Coquerel, G
2018-07-01
The objective of this work is to show the feasibility of manufacturing from a spray drying process particles containing immunoglobulin G capable of being administered by inhalation via a pressurized metered dose inhaler. Spray drying were made from aqueous solutions containing IgG and two types of excipients, mannitol and trehalose, with two ratios: 25% w/w and 75%w/w. The physicochemical and aerodynamic properties of the powders obtained were characterized just after manufacturing and after 1 month of storage at 40°C/75% RH according to criteria defined as needed to satisfy an inhaled formulation with a pressurized metered dose inhaler. Maintain of the biological activity and the structure of IgG after atomization was also tested by slot blot and circular dichroism. All spray-dried powders presented a median diameter lower than 5μm. The powders atomized with trehalose showed a solid state more stable than those atomized with mannitol. All atomized powders were in the form of wrinkled particles regardless the nature and the ratios of excipients. The results showed that the aerosolisation properties were compliant with the target, independently of the excipient used at a ratio of 25% w/w IgG-excipient. Moreover, the addition of excipient during the atomization process the denaturation of IgG was limited. This study showed that the use of trehalose as excipient could satisfy the requirements of an inhaled formulation with a pressurized metered dose inhaler. Copyright © 2018 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Control of the dehydration process in production of intermediate-moisture meat products: a review.
Chang, S F; Huang, T C; Pearson, A M
1996-01-01
IM meat products are produced by lowering the aw to 0.90 to 0.60. Such products are stable at ambient temperature and humidity and are produced in nearly every country in the world, especially in developing areas where refrigeration is limited or unavailable. Traditionally IM meats use low cost sources of energy for drying, such as sun drying, addition of salt, or fermentation. Products produced by different processes are of interest since they do not require refrigeration during distribution and storage. Many different IM meat products can be produced by utilizing modern processing equipment and methods. Production can be achieved in a relatively short period of time and their advantages during marketing and distribution can be utilized. Nevertheless, a better understanding of the principles involved in heat transfer and efficiency of production are still needed to increase efficiency of processing. A basic understanding of the influence of water vapor pressure and sorption phenomena on water activity can materially improve the efficiency of drying of IM meats. Predrying treatments, such as fermentation and humidity control, can also be taken advantage of during the dehydration process. Such information can lead to process optimization and reduction of energy costs during production of IM meats. The development of sound science-based methods to assure the production of high-quality and nutritious IM meats is needed. Finally, such products also must be free of pathogenic microorganisms to assure their success in production and marketing.
Future drying of the southern Amazon and central Brazil
NASA Astrophysics Data System (ADS)
Yoon, J.; Zeng, N.; Cook, B.
2008-12-01
Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.
Pre-release plastic packaging of MEMS and IMEMS devices
Peterson, Kenneth A.; Conley, William R.
2002-01-01
A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.
NASA Technical Reports Server (NTRS)
Parker, J. C.
1981-01-01
The project development requirements and criteria are presented along with technical data for the modules. Performance tests included: ducting, temperature, pressure and air flow measurements, dry and wet bulb temperature; duct pressure measurements; and air conditioning apparatus checks; installation, operation, and maintenance instructions are included.
30 CFR 250.527 - What must I include in my casing pressure request?
Code of Federal Regulations, 2011 CFR
2011-07-01
... casing/riser calculated MAWOPs; (h) All casing/riser pre-bleed down pressures; (i) Shut-in tubing... test (oil, gas, basic sediment, and water); (l) Well status (shut-in, temporarily abandoned, producing, injecting, or gas lift); (m) Well type (dry tree, hybrid, or subsea); (n) Date of diagnostic test; (o) Well...
Cavitation Events in Thuja occidentalis L.? 1
Tyree, Melvin T.; Dixon, Michael A.
1983-01-01
Ultrasonic acoustic emissions (AE) in the frequency range of 0.1 to 1 megahertz appear to originate in the sapwood of Thuja occidentalis L. The AE are vibrations of an impulsive nature. The vibrations can be transduced to a voltage waveform and amplified. The vibrations of each AE event begin at a large amplitude which decays over 20 to 100 microseconds. Strong circumstantial evidence indicates that the ultrasonic AE result from cavitation events because: (a) they occur only when the xylem pressure potential Ψxp is more negative than a threshold level of about —1 megapascal; (b) the rate of AE events increases as Ψxp decreases and when the net rate of water loss increases; (c) the AE can be stopped by raising Ψxp above —1 megapascal. Ultrasonic AE have been measured in whole terminal shoots allowed to dry in the laboratory, in isolated pieces of sapwood as they dried in the laboratory, and in whole terminal shoots in a pressure bomb when Ψxp was decreased by lowering the gas pressure in the pressure bomb. PMID:16663126
Method for predicting dry mechanical properties from wet wood and standing trees
Meglen, Robert R.; Kelley, Stephen S.
2003-08-12
A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.
NASA Astrophysics Data System (ADS)
Spencer, S.; Ogle, S.; Borch, T.; Rock, B.
2008-12-01
Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral approaches to either replace or augment traditional lab-based carbon analyses of soils.
Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y
2009-01-01
To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.
A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.
Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu
2012-05-30
Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders. Copyright © 2012 Elsevier B.V. All rights reserved.
Magnetized Target Fusion - Field Reversed Configuration Formation and Injection (MTF-FRC)
2009-11-06
from accidental breakage and personnel from injury in that event. The pumps for the vacuum system included a Varian dry scroll pump that was...a dry scroll (oil-free) mechanical pump could be used, as mTorr pressures would be sufficient for the vacuum switch voltage hold-off and operation...56 FIGURE 46. ROUGHING PUMP AND VACUUM -GAUGE CONTROLLERS BENEATH THETA COIL CABLE HEADER
NASA Astrophysics Data System (ADS)
Watson, E. B.; Cherniak, D. J.
1997-05-01
Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.
Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed
2012-01-01
Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854
Szychowski, Przemysław J; Lech, Krzysztof; Sendra-Nadal, Esther; Hernández, Francisca; Figiel, Adam; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A
2018-07-30
Quinces are attracting interest due to their health and nutritional benefits. Drying kinetics, bioactive compounds, antioxidant activity, and the main sensory parameters were determined in dried quinces, cultivar Leskovač, as affected by the drying method. The highest total polyphenols content was observed in dried samples obtained after freeze drying and convective drying at 50 °C. The best drying treatment, considering only sensory attributes, was vacuum-microwave drying at 480 W, because it led to intermediate dark color and high intensities of basic tastes and key flavor attributes. The studied parameters were finally used to recommend convective drying at 60 °C as the most appropriate drying method for quinces, because it had a high content of total phenolic compounds (2nd best treatment out of 10), a good sensory profile, was cheap, and caused no negative effects on nutritional or sensory parameters; the only disadvantage was its long drying time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mach-Number Measurement with Laser and Pressure Probes in Humid Supersonic Flow
NASA Technical Reports Server (NTRS)
Herring, G. C.
2008-01-01
Mach-number measurements using a nonintrusive optical technique, laser-induced thermal acoustics (LITA), are compared to pressure probes in humid supersonic airflow. The two techniques agree well in dry flow (-35 C dew point), but LITA measurements show about five times larger fractional change in Mach number than that of the pressure-probe when water is purposefully introduced into the flow. Possible reasons for this discrepancy are discussed.
NASA Technical Reports Server (NTRS)
Spencer, J. W., Jr.; Nur, A. M.
1976-01-01
A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.
Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method
NASA Astrophysics Data System (ADS)
Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.
2018-05-01
Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.
Effect of Atmospheric Press on Wet Bulb Depression
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.; Stasiak, Michael A.; Lawson, Jamie; Wehkamp, Cara Ann P.; Dixon, Michael A.
2008-01-01
Our measurements of wet bulb depression at different pressures matched the modeled adiabatic saturation temps reasonably well. At a dry bulb temp of 25 C, the normal wet bulb temp for 30% RH and 100 kPa is approx.15 C, but this dropped to approx.8 C at 10 kPa. The results suggest that psychrometers need direct calibration at the target pressures or that pressure corrected charts are required. For a given vapour pressure deficit, any moist surfaces, including transpiring plant leaves, will be cooler at lower pressures due to the increased evaporation rates.
The Kiln Drying of Wood for Airplanes
NASA Technical Reports Server (NTRS)
Tiemann, Harry D
1919-01-01
This report is descriptive of various methods used in the kiln drying of woods for airplanes and gives the results of physical tests on different types of woods after being dried by the various kiln-drying methods.
Wu, Songhai; Li, Feng; Jia, Shaoyi; Ren, Haitao; Gong, Guili; Wang, Yanyan; Lv, Zesheng; Liu, Yong
2014-03-15
Three polysaccharides (ABMP-F, ABMP-V, ABMP-A) were obtained from Agaricus blazei Murrill via methods such as freeze drying, vacuum drying and air drying, respectively. Their chemical compositions were examined, and antioxidant activities were investigated on the basis of assay for hydroxyl radical, DPPH radical, ABTS free radical scavenging ability and assay for Fe(2+)-chelating ability. Results showed that the three ABMPs have different physicochemical and antioxidant properties. Compared with air drying and vacuum drying methods, freeze drying method resulted to ABMP with higher neutral sugar, polysaccharide yield, uronic acid content, and stronger antioxidant abilities of hydroxyl radical, DPPH radical, ABTS radical scavenging and Fe(2+)-chelating. As a result, Agaricus blazei Murrill polysaccharides are natural antioxidant and freeze drying method serves as a good choice for the preparation of such polysaccharides and should be used to produce antioxidants for food industry. Copyright © 2014. Published by Elsevier Ltd.
Lee, M S; Seo, S R; Kim, J-C
2012-10-01
Pressure sores are lesions caused by impaired blood flow. Conventional dressings can absorb exudates, but do not promote wound healing. A hydrogel composed of β-cyclodextrin (β-CD), polyethyleneimine (PEI) and silk fibroin (SF) was assessed for use in healing of pressure sores. The hydrogel was prepared by crosslinking β-CD-grafted PEI and SF using epichlorohydrin. The gel was then immersed in an aqueous solution of Centella asiatica extract (CAE) 0.7 mg/mL and/or hydrocortisone acetate (HCA) 0.5 mg/mL. The in vivo pressure sore-healing efficacy of the dry gel (with or without the drugs) was investigated in terms of the hyperplasia of epidermis and the number of neutrophils in the skin tissue. The specific loading of CAE was 0.0091 g/g of dry gel. The percentage of CAE released at 24 h at pH 3.0, 5.0 and 7.4 was approximately 63.9%, 55.0% and 44.4%, respectively. This pH-dependent release is possibly due to the degree of gel swelling, which decreased with increasing pH. The specific loading of HCA was 0.0050 g/g dry gel, and the percentage release of HCA at 24 h was around 20% at all three pH points. It is likely that HCA release is independent of pH. HCA is a hydrophobic compound, and therefore the release of HCA is affected by the partitioning of HCA between the β-CD cavity and the bulk water phase, but not by the degree of swelling of the hydrogel. The pressure sores treated with the hydrogel healed in 6 days, compared with 10 days for controls. In this study, a β-CD/PEI/SF hydrogel containing CAE and HCA reduced the healing time for pressure sores. © The Author(s). CED © 2012 British Association of Dermatologists.
Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.
2010-01-01
We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.
Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.
2011-01-01
We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.
Atmospheric Science Data Center
2015-11-25
... Buoy Instrument: Barometer Sonic Anemometer Thermistor Spatial Coverage: (34.60, ... Earthdata Search Parameters: Dry Bulb Temperature Pressure Sea Surface Temperature Wet Bulb Temperature ...
Alternatives for joining Si wafers to strain-accommodating Cu for high-power electronics
NASA Astrophysics Data System (ADS)
Faust, Nicholas; Messler, Robert W.; Khatri, Subhash
2001-10-01
Differences in the coefficients of thermal expansion (CTE) between silicon wafers and underlying copper electrodes have led to the use of purely mechanical dry pressure contacts for primary electrical and thermal connections in high-power solid-state electronic devices. These contacts are limited by their ability to dissipate I2R heat from within the device and by their thermal fatigue life. To increase heat dissipation and effectively deal with the CTE mismatch, metallurgical bonding of the silicon to a specially-structured, strain-accommodating copper electrode has been proposed. This study was intended to seek alternative methods for and demonstrate the feasibility of bonding Si to structured Cu in high-power solid-state devices. Three different but fundamentally related fluxless approaches identified and preliminarily assessed were: (1) conventional Sn-Ag eutectic solder; (2) a new, commercially-available active solder based on the Sn-Ag eutectic; and (3) solid-liquid interdiffusion bonding using the Au-In system. Metallurgical joints were made with varying quality levels (according to nonde-structive ultrasonic C-scan mapping, SEM, and electron microprobe) using each approach. Mechanical shear testing resulted in cohesive failure within the Si or the filler alloys. The best approach, in which eutectic Sn-Ag solder in pre-alloyed foil form was employed on Si and Cu substrates metallized (from the substrate outward) with Ti, Ni and Au, exhibited joint thermal conduction 74% better than dry pressure contacts.
Benucci, Ilaria; Liburdi, Katia; Cerreti, Martina; Esti, Marco
2016-08-01
The preparation of yeast starter culture (Pied de Cuve) for producing sparkling wine with the traditional method is a key factor for manufacturing a good Prise de mousse. In this paper, the evolution of total yeast population, its viability during Pied de Cuve preparation, and the pressure profile during the 2nd fermentation in 2 different base wines made from Bombino bianco and Chardonnay grapes were investigated using 4 different commercial active dried yeasts. The study proves that despite the initial differences observed throughout the acclimatization phase, all the tested strains showed similar results on either the total population (from 8.2 × 10(7) cells/mL to 1.3 × 10(8) cells/mL) or cellular viability (from 70% to 84%). Independently from the base wine tested, the kinetic of sugar consumption was faster during the gradual acclimatization to the alcoholic medium (phase II) and slower during the preparation of starter culture in active growth phase (phase III). During both of these phases Saccharomyces cerevisiae bayanus Vitilevure DV10(®) (Station œnotechnique de Champagne) proved to have a higher sugar consumption rate than the other strains. During the Prise de mousse, S. cerevisiae bayanus Lalvin EC-1118(®) (Lallemand) reached the maximum pressure increase within time in both base wines. © 2016 Institute of Food Technologists®
He, Yuan-Mei; Feng, Li; Huo, Dong-Mei; Yang, Zhen-Hua; Liao, Yun-Hua
2013-09-01
Both enalapril and losartan are effective and widely used in patients with chronic kidney disease (CKD). This review aimed to evaluate the benefits of enalapril and losartan in adults with CKD. PubMed, EMBASE, the Cochrane Library and ClinicalTrials.gov were searched, without language limitations, for randomized controlled trials (RCT), in which enalapril and losartan were compared in adults with CKD. Standard methods, consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, were used. Reviewer Manager software, ver. 5.2, was used for meta-analysis. Of 318 citations retrieved, 17 RCT (14 parallel-group and three cross-over) met our inclusion criteria. The pooled analysis for parallel RCT showed that the effects of enalapril and losartan on blood pressure, renal function and serum uric acid (UA) were similar. Meta-analysis indicated that patients taking enalapril had a higher risk of dry cough (risk ratio, 2.88; 95% CI, 1.11-7.48; P=0.03). Sensitivity analysis showed good robustness of these findings. Enalapril has similar effects to losartan on systemic blood pressure, renal function and serum UA in patients with CKD, but carries a higher risk of dry cough. Larger trials are required to evaluate the effects of these medications on clinical outcomes. © 2013 The Authors. Nephrology © 2013 Asian Pacific Society of Nephrology.
He, Jun; Shamsi, Shahab A.
2012-01-01
In the present work we report, for the first time, the successful on-line coupling of chiral micellar electrokinetic chromatography (CMEKC) to atmospheric pressure photo-ionization mass spectrometry (APPI-MS). Four structurally similar neutral test solutes (e.g., benzoin derivatives) were successfully ionized by APPI-MS. The mass spectra in the positive ion mode showed that the protonated molecular ions of benzoins are not the most abundant fragment ions. Simultaneous enantioseparation by CMEKC and on-line APPI-MS detection of four photoinitiators: hydrobenzoin (HBNZ), benzoin (BNZ), benzoin methyl ether (BME), benzoin ethyl ether (BEE), were achieved using an optimized molar ratio of mixed molecular micelle of two polymeric chiral surfactants (polysodium N-undecenoxy carbonyl-L-leucinate and polysodium N-undecenoyl-L,L-leucylvalinate). The CMEKC conditions, such as voltage, chiral polymeric surfactant concentration, buffer pH, and BGE concentration, were optimized using a multivariate central composite design (CCD). The sheath liquid composition (involving % v/v methanol, dopant concentration, electrolyte additive concentration, and flow rate) and spray chamber parameters (drying gas flow rate, drying gas temperature, and vaporizer temperature) were also optimized with CCD. Models built based on the CCD results and response surface method was used to analyze the interactions between factors and their effects on the responses. The final overall optimum conditions for CMEKC-APPI-MS were also predicted and found in agreement with the experimentally optimized parameters. PMID:21500208
Drying of Pigment-Cellulose Nanofibril Substrates
Timofeev, Oleg; Torvinen, Katariina; Sievänen, Jenni; Kaljunen, Timo; Kouko, Jarmo; Ketoja, Jukka A.
2014-01-01
A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature. PMID:28788220
De Meyer, L; Van Bockstal, P-J; Corver, J; Vervaet, C; Remon, J P; De Beer, T
2015-12-30
Spin-freezing as alternative freezing approach was evaluated as part of an innovative continuous pharmaceutical freeze-drying concept for unit doses. The aim of this paper was to compare the sublimation rate of spin-frozen vials versus traditionally frozen vials in a batch freeze-dryer, and its impact on total drying time. Five different formulations, each having a different dry cake resistance, were tested. After freezing, the traditionally frozen vials were placed on the shelves while the spin-frozen vials were placed in aluminum vial holders providing radial energy supply during drying. Different primary drying conditions and chamber pressures were evaluated. After 2h of primary drying, the amount of sublimed ice was determined in each vial. Each formulation was monitored in-line using NIR spectroscopy during drying to determine the sublimation endpoint and the influence of drying conditions upon total drying time. For all tested formulations and applied freeze-drying conditions, there was a significant higher sublimation rate in the spin-frozen vials. This can be explained by the larger product surface and the lower importance of product resistance because of the much thinner product layers in the spin frozen vials. The in-line NIR measurements allowed evaluating the influence of applied drying conditions on the drying trajectories. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced sludge dewatering by electrofiltration. A feasibility study.
Saveyn, H; Huybregts, L; Van der Meeren, P
2001-01-01
Sludge treatment is a major issue in today's waste water treatment. One of the problems encountered is the limiting dewaterability of mainly biological sludges, causing high final treatment costs for incineration or landfill. Although during recent years, improvements are realised in the field of dewatering, the actual dry solids content after dewatering remains at a maximum value of about 35%. In order to increase the dry solids content, the technique of electrofiltration was investigated. Electrofiltration is the combination of two known techniques, traditional pressure filtration and electroosmotic/electrophoretic dewatering. Pressure filtration is based on pressure as the driving force for dewatering a sludge. Limitations hereby lie in the clogging of the filter cloth due to the build-up of the filtercake. Electroosmotic/electrophoretic dewatering is based on an electric field to separate sludge colloid particles from the surrounding liquid by placing the sludge liquor between two oppositely charged electrodes. In this case, mobile sludge particles will move to one electrode due to their natural surface charge, and the liquid phase will be collected at the oppositely charged electrode. Combination of both techniques makes it possible to create a more homogeneous filter cake and prevent the filter from clogging, resulting in higher cake dry solids contents and shorter filtration cycles. To investigate the feasibility of this technique for the dewatering of activated sludge, a filter unit was developed for investigations on lab scale. Multiple dewatering tests were performed in which the electric parameters for electrofiltration were varied. It was derived from these experiments that very high filter cake dry solids contents (to more than 60%), and short filtration cycles were attainable by using a relatively small electric DC field. The power consumption was very low compared to the power needed to dewater sludge by thermal drying techniques. For this reason, this technique seems very promising for the dewatering of biological sludges.
Comparison of Different Drying Methods for Recovery of Mushroom DNA.
Wang, Shouxian; Liu, Yu; Xu, Jianping
2017-06-07
Several methods have been reported for drying mushroom specimens for population genetic, taxonomic, and phylogenetic studies. However, most methods have not been directly compared for their effectiveness in preserving mushroom DNA. In this study, we compared silica gel drying at ambient temperature and oven drying at seven different temperatures. Two mushroom species representing two types of fruiting bodies were examined: the fleshy button mushroom Agaricus bisporus and the leathery shelf fungus Trametes versicolor. For each species dried with the eight methods, we assessed the mushroom water loss rate, the quality and quantity of extracted DNA, and the effectiveness of using the extracted DNA as a template for PCR amplification of two DNA fragments (ITS and a single copy gene). Dried specimens from all tested methods yielded sufficient DNA for PCR amplification of the two genes in both species. However, differences among the methods for the two species were found in: (i) the time required by different drying methods for the fresh mushroom tissue to reach a stable weight; and (ii) the relative quality and quantity of the extracted genomic DNA. Among these methods, oven drying at 70 °C for 3-4 h seemed the most efficient for preserving field mushroom samples for subsequent molecular work.
Maurya, Vaibhav Kumar; Gothandam, Kodiveri Muthukaliannan; Ranjan, Vijay; Shakya, Amita; Pareek, Sunil
2018-07-01
A randomized block design experiment was performed to investigate the influence of drying on the physical, chemical and nutritional quality attributes of five prominent cultivars of India under sun drying (SD) (mean temperature 35.5 °C, average daily radiation 5.26 kW h m -2 and mean relative humidity 73.66% RH), hot air drying (HD) at 65 °C, microwave vacuum drying (MVD) (800 W, 5 kPa) and freeze drying (FD) (-50 °C, 5 kPa). Water activity, pH, total phenolic content (TPC), ascorbic acid (AA), capsaicin, β-carotene, color and Scoville heat unit were studied. TPC, AA, capsaicin content, β-carotene, color and water activity were significantly affected by the drying method. FD was observed to be most efficient in minimizing the loss of color, capsaicin and β-carotene. The hotness of analyzed samples decreased in the order 'Bird's Eye' > 'Sannam S4' > 'CO-4' > 'PLR-1' > 'PKM-1' among the studied cultivars, and FD > MVD > HD > SD among the drying methods. The FD method was observed to be the most efficient drying method for retaining capsaicin content over other drying methods (SD, HD, MVD), whereas MVD was found to be most efficient in minimizing the loss to nutritional attributes for all five pepper cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
In-Situ Molecular Vapor Composition Measurements During Lyophilization.
Liechty, Evan T; Strongrich, Andrew D; Moussa, Ehab M; Topp, Elizabeth; Alexeenko, Alina A
2018-04-11
Monitoring process conditions during lyophilization is essential to ensuring product quality for lyophilized pharmaceutical products. Residual gas analysis has been applied previously in lyophilization applications for leak detection, determination of endpoint in primary and secondary drying, monitoring sterilization processes, and measuring complex solvents. The purpose of this study is to investigate the temporal evolution of the process gas for various formulations during lyophilization to better understand the relative extraction rates of various molecular compounds over the course of primary drying. In this study, residual gas analysis is used to monitor molecular composition of gases in the product chamber during lyophilization of aqueous formulations typical for pharmaceuticals. Residual gas analysis is also used in the determination of the primary drying endpoint and compared to the results obtained using the comparative pressure measurement technique. The dynamics of solvent vapors, those species dissolved therein, and the ballast gas (the gas supplied to maintain a set-point pressure in the product chamber) are observed throughout the course of lyophilization. In addition to water vapor and nitrogen, the two most abundant gases for all considered aqueous formulations are oxygen and carbon dioxide. In particular, it is observed that the relative concentrations of carbon dioxide and oxygen vary depending on the formulation, an observation which stems from the varying solubility of these species. This result has implications on product shelf life and stability during the lyophilization process. Chamber process gas composition during lyophilization is quantified for several representative formulations using residual gas analysis. The advantages of the technique lie in its ability to measure the relative concentration of various species during the lyophilization process. This feature gives residual gas analysis utility in a host of applications from endpoint determination to quality assurance. In contrast to other methods, residual gas analysis is able to determine oxygen and water vapor content in the process gas. These compounds have been shown to directly influence product shelf life. With these results, residual gas analysis technique presents a potential new method for real-time lyophilization process control and improved understanding of formulation and processing effects for lyophilized pharmaceutical products.
Mejia-Meza, E I; Yáñez, J A; Remsberg, C M; Takemoto, J K; Davies, N M; Rasco, B; Clary, C
2010-01-01
Fresh and dried raspberries prepared by freeze drying (FD), microwave-vacuum (MIVAC), hot-air drying (HAD), and a combination of hot-air drying and microwave-vacuum (HAD/MIVAC) drying methods were evaluated for polyphenol retention, total polyphenol and anthocyanin contents, total antioxidant capacity, and antiadipogenic activity (the inhibition of fat cell development). Ellagic acid and quercetin were present in the largest concentrations in fresh and dehydrated raspberries. Dehydration led to a loss of polyphenols and anthocyanins and antioxidant capacity. Polyphenols (aglycone form) were retained in the greatest amount: 20% (freeze dried) to 30% (HAD/MIVAC) (fresh = 100%). A total of 30% of polyphenols (glycoside form) were retained in raspberries dried by the HAD/MIVAC methods with 5% of retention observed for raspberries dried by FD, HAD, or MIVAC. FD and MIVAC resulted in higher retention of anthocyanins (aglycone form) than other drying methods. It was also observed that antioxidant activity was reduced by dehydration. Adipogenesis was inhibited by polyphenolic glycosides (30%) and aglycones (30% to 40%) in fresh and HAD/MIVAC raspberries. Extracts from dried raspberries by HAD/MIVAC methods were relatively more effective at inhibiting adipogenesis compared to HAD and FD dried raspberries.
de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa
2016-09-01
Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration. © 2016 Wiley Periodicals, Inc.
Compact dry chemistry instruments.
Terashima, K; Tatsumi, N
1999-01-01
Compact dry chemistry instruments are designed for use in point-of-care-testing (POCT). These instruments have a number of advantages, including light weight, compactness, ease of operation, and the ability to provide accurate results in a short time with a very small sample volume. On the other hand, reagent costs are high compared to liquid method. Moreover, differences in accuracy have been found between dry chemistry and the liquid method in external quality assessment scheme. This report examines reagent costs and shows how the total running costs associated with dry chemistry are actually lower than those associated with the liquid method. This report also describes methods for minimizing differences in accuracy between dry chemistry and the liquid method. Use of these measures is expected to increase the effectiveness of compact dry chemistry instruments in POCT applications.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-06-01
The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.
Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia
2010-07-01
The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.